United States    
COMPAQ STORE | PRODUCTS | SERVICES | SUPPORT
| CONTACT US | SEARCH
C++
multimap (3C++std) - Tru64 UNIX
Standard C++ Library
Copyright 1996, Rogue Wave Software, Inc.

NAME

  multimap  - An associative container providing access to non-key values
  using keys.  multimap keys are not required to be unique.  A multimap
  supports bidirectional iterators.

SYNOPSIS

  #include <map>

  template <class Key, class T, class Compare = less<Key>,
           class Allocator = allocator<T> >
  class multimap ;

DESCRIPTION

  multimap <Key ,T, Compare, Allocator> provides fast access to stored values
  of type T which are indexed by keys of type Key.  The default operation for
  key comparison is the < operator.  Unlike map, multimap allows insertion of
  duplicate keys.

  multimap provides bidirectional iterators which point to  an instance of
  pair<const Key x, T y> where x is the key and y is the stored value
  associated with that key.   The  definition of multimap provides a typedef
  to this pair called value_type.

  The types used for both the template parameters  Key  and T must provide
  the following (where T is the type, t is a value of T and u is a const
  value of T):

  Copy constructors -  T(t) and T(u)
   Destructor        -  t.~T()
   Address of        -  &t and &u yielding T* and
                        const T* respectively
   Assignment        -  t = a where a is a
                         (possibly const) value of T

  The type used for the Compare template parameter must satisfy the
  requirements for binary functions.

INTERFACE

  template <class Key, class T, class Compare = less<Key>,
           class Allocator = allocator<T> >
  class multimap {

  public:

  // types

    typedef Key key_type;
    typedef T mapped_type;
    typedef pair<const Key, T> value_type;
    typedef Compare key_compare;
    typedef Allocator allocator_type;
    typename reference;
    typename const_reference;
    typename iterator;
    typename const_iterator;
    typename size_type;
    typename difference_type;
    typename reverse_iterator;
    typename const_reverse_iterator;

  class value_compare
      : public binary_function<value_type, value_type, bool>
      {
      friend class multimap<Key, T, Compare, Allocator>;

      public :
        bool operator() (const value_type&, const value_type&) const;
      };

  // Construct/Copy/Destroy

    explicit multimap (const Compare& = Compare(), const Allocator& =
                       Allocator());
    template <class InputIterator>
     multimap (InputIterator, InputIterator,
               const Compare& = Compare(),
               const Allocator& = Allocator());
    multimap (const multimap<Key, T, Compare, Allocator>&);
     ~multimap ();
    multimap<Key, T, Compare, Allocator>& operator=
         (const multimap<Key, T, Compare, Allocator>&);

  // Iterators

    iterator begin ();
    const_iterator begin () const;
    iterator end ();
    const_iterator end () const;
    reverse_iterator rbegin ();
    const_reverse_iterator rbegin () const;
    reverse_iterator rend ();
    const_reverse_iterator rend () const;

  // Capacity

    bool empty () const;
    size_type size () const;
    size_type max_size () const;

  // Modifiers

    iterator insert (const value_type&);
    iterator insert (iterator, const value_type&);
    template <class InputIterator>
     void insert (InputIterator, InputIterator);

    iterator erase (iterator);
    size_type erase (const key_type&);
    iterator erase (iterator, iterator);
    void swap (multimap<Key, T, Compare, Allocator>&);

  // Observers

    key_compare key_comp () const;
    value_compare value_comp () const;

  // Multimap operations

    iterator find (const key_type&);
    const_iterator find (const key_type&) const;
    size_type count (const key_type&) const;

    iterator lower_bound (const key_type&);
    const_iterator lower_bound (const key_type&) const;
    iterator upper_bound (const key_type&);
    const_iterator upper_bound (const key_type&) const;
    pair<iterator, iterator> equal_range (const key_type&);
    pair<const_iterator, const_iterator>
      equal_range (const key_type&) const;
  };

  // Non-member Operators

  template <class Key, class T,class Compare, class Allocator>
  bool operator== (const multimap<Key, T, Compare, Allocator>&,
                   const multimap<Key, T, Compare, Allocator>&);

  template <class Key, class T,class Compare, class Allocator>
  bool operator!= (const multimap<Key, T, Compare, Allocator>&,
                   const multimap<Key, T, Compare, Allocator>&);

  template <class Key, class T, class Compare, class Allocator>
  bool operator< (const multimap<Key, T, Compare, Allocator>&,
                  const multimap<Key, T, Compare, Allocator>&);

  template <class Key, class T, class Compare, class Allocator>
  bool operator> (const multimap<Key, T, Compare, Allocator>&,
                  const multimap<Key, T, Compare, Allocator>&);

  template <class Key, class T, class Compare, class Allocator>
  bool operator<= (const multimap<Key, T, Compare, Allocator>&,
                  const multimap<Key, T, Compare, Allocator>&);

  template <class Key, class T, class Compare, class Allocator>
  bool operator>= (const multimap<Key, T, Compare, Allocator>&,
                  const multimap<Key, T, Compare, Allocator>&);

  // Specialized Algorithms

  template <class Key, class T, class Compare, class Allocator>
  void swap (multimap<Key, T, Compare, Allocator>&,
             multimap<Key, T, Compare, Allocator>&;

CONSTRUCTORS AND DESTRUCTORS

  explicit multimap(const Compare& comp = Compare(),
                   const Allocator& alloc = Allocator());
                      Default constructor.  Constructs an empty multimap that
                      will use the optional relation comp to order keys and
                      the allocator alloc for all storage management.

  template <class InputIterator>
  multimap(InputIterator first,
           InputIterator last,
           const Compare& comp = Compare()
           const Allocator& alloc = Allocator());
              Constructs a multimap containing values in  the  range [first,
              last).   Creation of the new multimap is only guaranteed to
              succeed if the iterators first and  last return values of type
              pair<class Key, class T>.

  multimap(const multimap<Key, T, Compare, Allocator>& x);
     Copy constructor.  Creates a new multimap by copying all pairs of key
     and value from x.

  ~multimap();
     The destructor.  Releases any allocated memory for this multimap.

ASSIGNMENT OPERATOR

  multimap<Key, T, Compare, Allocator>&
  operator=(const multimap<Key, T, Compare, Allocator>& x);
     Replaces the contents of *this with a copy of the multimap x.

ALLOCATOR

  allocator_type
  get_allocator() const;
     Returns a copy of the allocator used by self for storage management.

ITERATORS

  iterator
  begin() ;
     Returns a bidirectional iterator pointing to the first element  stored
     in the multimap.  "First" is defined by the multimap's comparison
     operator, Compare.

  const_iterator
  begin() const;
     Returns a const_iterator pointing to the first element stored in the
     multimap. "First" is defined by the multimap's comparison operator,
     Compare.

  iterator
  end() ;
     Returns a bidirectional iterator pointing to the last element  stored in
     the multimap, i.e. the off-the-end value.

  const_iterator
  end() const;
     Returns a const_iterator pointing to the last element stored in the
     multimap.

  reverse_iterator
  rbegin() ;
     Returns a reverse_iterator pointing to the first element stored in the
     multimap.  "First" is defined by the multimap's comparison operator,
     Compare.

  const_reverse_iterator
  rbegin() const;
     Returns a const_reverse_iterator pointing to the first element stored in
     the multimap.

  reverse_iterator
  rend() ;
     Returns a reverse_iterator pointing to the last element stored in the
     multimap, i.e., the off-the-end value.

  const_reverse_iterator
  rend() const;
     Returns a const_reverse_iterator pointing to the last element stored in
     the multimap.

MEMBER FUNCTIONS

  void
  clear();
     Erases all elements from the self.

  size_type
  count(const key_type& x) const;
     Returns the number of elements in the multimap with the key value x.

  bool
  empty() const;
     Returns true if the multimap is empty, false otherwise.

  pair<iterator,iterator>
  equal_range(const key_type& x);

  pair<const_iterator,const_iterator>
  equal_range(const key_type& x) const;
     Returns the pair (lower_bound(x), upper_bound(x)).

  iterator
  erase(iterator first, iterator last);
     Providing the iterators first and last point to the same multimap and
     last is reachable from first, all elements in the range (first, last)
     will be deleted from the multimap. Returns an iterator pointing to the
     element following the last deleted element, or end(), if there were no
     elements after the deleted range.

  iterator
  erase(iterator position);
     Deletes the multimap element pointed to by the iterator position.
     Returns an iterator pointing to the element following the deleted
     element, or end(), if the deleted item was the last one in this list.

  size_type
  erase(const key_type& x);
     Deletes the elements with the key value x from the map, if any exist.
     Returns the number of deleted elements, or  0 otherwise.

  iterator
  find(const key_type& x);
     Searches the multimap for a pair with the key value x and  returns an
     iterator to that pair if it is found.  If such a pair is not found the
     value end()  is returned.

  const_iterator
  find(const key_type& x) const;
     Same as find above but returns a const_iterator.

  iterator
  insert(const value_type& x);
  iterator
  insert(iterator position, const value_type& x);
     x is inserted into the multimap.  A position may be supplied as a hint
     regarding where to do the insertion.  If the insertion may be done right
     after position  then it takes amortized constant time.  Otherwise it
     will take O(log N) time.

  template <class InputIterator>
  void
  insert(InputIterator first, InputIterator last);
     Copies of each element in the range [first, last) will be inserted into
     the multimap.  The iterators first and last must return values of type
     pair<T1,T2>.  This operation takes approximately O(N*log(size()+N))
     time.

  key_compare
  key_comp() const;
     Returns a function object capable of comparing key values using the
     comparison operation, Compare, of the current multimap.

  iterator
  lower_bound(const key_type& x);
     Returns an iterator to the  first  multimap element whose key  is
     greater  than or equal to x.  If no such element exists then end() is
     returned.

  const_iterator
  lower_bound(const key_type& x) const;
     Same as lower_bound above but returns a const_iterator.

  size_type
  max_size() const;
     Returns the maximum possible size of the multimap.

  size_type
  size() const;
     Returns the number of elements in the multimap.

  void
  swap(multimap<Key, T, Compare, Allocator>& x);
     Swaps the contents of the multimap x with the current multimap, *this.

  iterator
  upper_bound(const key_type& x);
     Returns an iterator to the first element  whose key is less than  or
     equal to x.  If no such element exists, then end() is returned.

  const_iterator
  upper_bound(const key_type& x) const;
     Same as upper_bound above but returns a const_iterator.

  value_compare
  value_comp() const;
     Returns a function object capable of comparing value_types  (key,value
     pairs) using the comparison operation, Compare, of the current multimap.

NON-MEMBER OPERATORS

  bool
  operator==(const multimap<Key, T, Compare, Allocator>& x,
            const multimap<Key, T, Compare, Allocator>& y);
               Returns true if all  elements in x are element-wise equal to
               all elements in y, using (T::operator==). Otherwise it returns
               false.

  bool
  operator!=(const multimap<Key, T, Compare, Allocator>& x,
            const multimap<Key, T, Compare, Allocator>& y);
               Returns !(x==y).

  bool
  operator<(const multimap<Key, T, Compare, Allocator>& x,
            const multimap<Key, T, Compare, Allocator>& y);
               Returns true if x is lexicographically less than y.
               Otherwise, it returns false.

  bool
  operator>(const multimap<Key, T, Compare, Allocator>& x,
            const multimap<Key, T, Compare, Allocator>& y);
               Returns y < x.

  bool
  operator<=(const multimap<Key, T, Compare, Allocator>& x,
            const multimap<Key, T, Compare, Allocator>& y);
               Returns !(y < x).

  bool
  operator>=(const multimap<Key, T, Compare, Allocator>& x,
            const multimap<Key, T, Compare, Allocator>& y);
               Returns !(x < y).

SPECIALIZED ALGORITHMS

  template<class Key, class T, class Compare, class Allocator>
  void swap(multimap<Key, T, Compare, Allocator>& a,
            multimap<Key, T, Compare, Allocator>& b);
               Efficiently swaps the contents of a and b.

EXAMPLE

  //
  // multimap.cpp
  //
   #include <string>
   #include <map>
   #include <iostream.h>

  typedef multimap<int, string, less<int> > months_type;

   // Print out a pair
  template <class First, class Second>
  ostream& operator<<(ostream& out,
                      const pair<First,Second>& p)
   {
    cout << p.second << " has " << p.first << " days";
    return out;
   }

   // Print out a multimap
  ostream& operator<<(ostream& out, months_type l)
   {
    copy(l.begin(),l.end(), ostream_iterator
               <months_type::value_type,char>(cout,"0));
    return out;
   }

  int main(void)
   {
     // create a multimap of months and the number of
     // days in the month
    months_type months;

    typedef months_type::value_type value_type;

     // Put the months in the multimap
    months.insert(value_type(31, string("January")));
    months.insert(value_type(28, string("February")));
    months.insert(value_type(31, string("March")));
    months.insert(value_type(30, string("April")));
    months.insert(value_type(31, string("May")));
    months.insert(value_type(30, string("June")));
    months.insert(value_type(31, string("July")));
    months.insert(value_type(31, string("August")));
    months.insert(value_type(30, string("September")));
    months.insert(value_type(31, string("October")));
    months.insert(value_type(30, string("November")));
    months.insert(value_type(31, string("December")));

     // print out the months
    cout << "All months of the year" << endl << months << endl;

     // Find the Months with 30 days
    pair<months_type::iterator,months_type::iterator> p =
           months.equal_range(30);

     // print out the 30 day months
    cout << endl << "Months with 30 days" << endl;
    copy(p.first,p.second,
      ostream_iterator<months_type::value_type,char>(cout,"0));

    return 0;
   }

  Output :
  All months of the year
  February has 28 days
  April has 30 days
  June has 30 days
  September has 30 days
  November has 30 days
  January has 31 days
  March has 31 days
  May has 31 days
  July has 31 days
  August has 31 days
  October has 31 days
  December has 31 days

  Months with 30 days
  April has 30 days
  June has 30 days
  September has 30 days
  November has 30 days

WARNINGS

  Member function templates are used in all containers provided by the
  Standard C++ Library.  An example of this feature is the constructor for
  multimap<Key,T,Compare,Allocator>  that takes two templated iterators:

  template <class InputIterator>
  multimap (InputIterator, InputIterator,
            const Compare& = Compare(),
            const Allocator& = Allocator());

  multimap also has an insert function of this type.  These functions, when
  not restricted by compiler limitations, allow you to use any type of  input
  iterator as arguments. For compilers that do not support this feature we
  provide substitute functions that allow you to use an iterator obtained
  from the same type of container as the one you are constructing (or calling
  a member function on), or you can use a pointer to the type of element you
  have in the container.

  For example, if your compiler does not support member function templates
  you can construct a multimap in the following two ways:

  multimap<int,int>::value_type intarray[10];
  multimap<int,int> first_map(intarry, intarray + 10);
  multimap<int,int>
   second_multimap(first_multimap.begin(), first_multimap.end());

  but not this way:

  multimap<long,long>
   long_multimap(first_multimap.begin(),first_multimap.end());

  since the long_multimap and first_multimap are not the same type.

  Also, many compilers do not support default template arguments.  If your
  compiler is one of these you need to always supply the Compare template
  argument and the Allocator template argument. For instance you'll have to
  write:

  multimap<int, int, less<int>, allocator<int> >

  instead of:

  multimap<int, int>

SEE ALSO

  allocator, Containers, Iterators, map

STANDARDS CONFORMANCE

  ANSI X3J16/ISO WG21 Joint C++ Committee
  

1.800.AT.COMPAQ

privacy and legal statement