United States    
COMPAQ STORE | PRODUCTS | SERVICES | SUPPORT
| CONTACT US | SEARCH
C++
map (3C++std) - Tru64 UNIX
Standard C++ Library
Copyright 1996, Rogue Wave Software, Inc.

NAME

  map  - An associative container providing access to non-key values using
  unique keys.  A map supports bidirectional iterators.

SYNOPSIS

  #include <map>

  template <class Key, class T, class Compare = less<Key>
           class Allocator = allocator<T> >
  class map;

DESCRIPTION

  map <Key, T, Compare, Allocator> provides fast access to stored values of
  type T  which are indexed by unique keys of type Key.  The default
  operation for key comparison is the < operator.

  map provides bidirectional iterators  that point to an instance of
  pair<const Key x, T y> where x is the key and y is the stored value
  associated with that key.  The definition of map provides a typedef to this
  pair called value_type.

  The types used for both the template parameters  Key  and T must provide
  the following (where T is the type, t is a value of T and u is a const
  value of T):

   Copy constructors -  T(t) and T(u)
   Destructor        -  t.~T()
   Address of        -  &t and &u yielding T* and
                        const T* respectively
   Assignment        -  t = a where a is a
                         (possibly const) value of T

  The type used for the Compare template parameter must satisfy the
  requirements for binary functions.

INTERFACE

  template <class Key, class T, class Compare = less<Key>
           class Allocator = allocator<T> >
  class map {

  public:

  // types

    typedef Key key_type;
    typedef T mapped_type;
    typedef pair<const Key, T> value_type;
    typedef Compare key_compare;
    typedef Allocator allocator_type;
    typename reference;
    typename const_reference;
    typename iterator;
    typename const_iterator;
    typename size_type;
    typename difference_type;
    typename reverse_iterator;
    typename const_reverse_iterator;

    class value_compare
        : public binary_function<value_type, value_type, bool>
     {
      friend class map<Key, T, Compare, Allocator>;

      public :
        bool operator() (const value_type&,
                         const value_type&) const;
     };

  // Construct/Copy/Destroy

    explicit map (const Compare& = Compare(),
                  const Allocator& = Allocator ());
    template <class InputIterator>
     map (InputIterator, InputIterator,
          const Compare& = Compare(),
          const Allocator& = Allocator ());
    map (const map<Key, T, Compare, Allocator>&);
     ~map();
    map<Key, T, Compare, Allocator>&
     operator= (const map<Key, T, Compare, Allocator>&);
    allocator_type get_allocator () const;

  // Iterators

    iterator begin();
    const_iterator begin() const;
    iterator end();
    const_iterator end() const;
    reverse_iterator rbegin();
    const_reverse_iterator rbegin() const;
    reverse_iterator rend();
    const_reverse_iterator rend() const;

  // Capacity

    bool empty() const;
    size_type size() const;
    size_type max_size() const;

  // Element Access

    mapped_type& operator[] (const key_type&);
    const mapped_type& operator[] (const key_type&) const;

  // Modifiers

    pair<iterator, bool> insert (const value_type&);
    iterator insert (iterator, const value_type&);
    template <class InputIterator>
     void insert (InputIterator, InputIterator);

    iterator erase (iterator);
    size_type erase (const key_type&);
    iterator erase (iterator, iterator);
    void swap (map<Key, T, Compare, Allocator>&);

  // Observers

    key_compare key_comp() const;
    value_compare value_comp() const;

  // Map operations

    iterator find (const key_value&);
    const_iterator find (const key_value&) const;
    size_type count (const key_type&) const;
    iterator lower_bound (const key_type&);
    const_iterator lower_bound (const key_type&) const;
    iterator upper_bound (const key_type&);
    const_iterator upper_bound (const key_type&) const;
    pair<iterator, iterator> equal_range (const key_type&);
    pair<const_iterator, const_iterator>
      equal_range (const key_type&) const;
  };

  // Non-member Map Operators

  template <class Key, class T, class Compare, class Allocator>
   bool operator== (const map<Key, T, Compare, Allocator>&,
                   const map<Key, T, Compare, Allocator>&);

  template <class Key, class T, class Compare, class Allocator>
   bool operator!= (const map<Key, T, Compare, Allocator>&,
                   const map<Key, T, Compare, Allocator>&);

  template <class Key, class T, class Compare, class Allocator>
  bool operator< (const map<Key, T, Compare, Allocator>&,
                  const map<Key, T, Compare, Allocator>&);

  template <class Key, class T, class Compare, class Allocator>
  bool operator> (const map<Key, T, Compare, Allocator>&,
                  const map<Key, T, Compare, Allocator>&);

  template <class Key, class T, class Compare, class Allocator>
  bool operator<= (const map<Key, T, Compare, Allocator>&,
                  const map<Key, T, Compare, Allocator>&);

  template <class Key, class T, class Compare, class Allocator>
  bool operator>= (const map<Key, T, Compare, Allocator>&,
                  const map<Key, T, Compare, Allocator>&);

  // Specialized Algorithms

  template <class Key, class T, class Compare, class Allocator>
  void swap (map<*Key,T,Compare,Allocator>&,
             map<Key,T,Compare,Allocator>&);

CONSTRUCTORS AND DESTRUCTORS

  explicit map(const Compare& comp = Compare(),
              const Allocator& alloc = Allocator());
                 Default constructor.  Constructs an empty map that  will use
                 the relation comp to order keys, if it is supplied.  The map
                 will use the allocator alloc for all storage management.

  template <class InputIterator>
  map(InputIterator first, InputIterator last,
     const Compare& comp = Compare(),
     const Allocator& alloc = Allocator());
        Constructs a map containing values in the range [first, last).
        Creation of the new map is only guaranteed to succeed if the
        iterators first and  last return values of type pair<class Key, class
        Value> and all values of Key in the range[first, last) are unique.
        The map will use the relation comp to order keys, and the allocator
        alloc for all storage management.

  map(const map<Key,T,Compare,Allocator>& x);
     Copy constructor.  Creates a new map by copying all pairs of key and
     value from x.

  ~map();
     The destructor.  Releases any allocated memory for this map.

ALLOCATOR

  allocator_type get_allocator() const;
     Returns a copy of the allocator used by self for storage management.

ITERATORS

  iterator
  begin() ;
     Returns an iterator pointing to the first element stored in the map.
     "First" is defined by the map's comparison operator, Compare.

  const_iterator
  begin() const;
     Returns a const_iterator pointing to the first element stored in the
     map.

  iterator
  end() ;
     Returns an iterator pointing to the last element  stored in the map,
     i.e., the off-the-end value.

  const_iterator
  end() const;
     Returns a const_iterator pointing to the last element stored in the map.

  reverse_iterator
  rbegin();
     Returns a reverse_iterator pointing to the first element stored in the
     map.  "First" is defined by the map's comparison operator, Compare.

  const_reverse_iterator
  rbegin() const;
     Returns a const_reverse_iterator pointing to the  first element stored
     in the map.

  reverse_iterator
  rend() ;
     Returns a reverse_iterator pointing to the last element stored in the
     map, i.e., the off-the-end value.

  const_reverse_iterator
  rend() const;
     Returns a const_reverse_iterator pointing to the last element stored in
     the map.

MEMBER OPERATORS

  map<Key, T, Compare, Allocator>&
  operator=(const map<Key, T, Compare, Allocator>& x);
     Assignment.  Replaces the contents of *this with a copy of the map x.

  mapped_type&
  operator[](const key_type& x);
     If an element with the key x exists in the map, then a reference to its
     associated value will be returned. Otherwise the pair x,T() will be
     inserted into the map and a reference to the default object T() will be
     returned.

ALLOCATOR

  allocator_type
  get_allocator() const;
     Returns a copy of the allocator used by self for storage management.

MEMBER FUNCTIONS

  void
  clear();
     Erases all elements from the self.

  size_type
  count(const key_type& x) const;
     Returns a 1 if a value with the key x exists in  the map, otherwise
     returns a 0.

  bool
  empty() const;
     Returns true if the map is empty, false otherwise.

  pair<iterator, iterator>
  equal_range (const  key_type& x);
     Returns the pair, (lower_bound(x), upper_bound(x)).

  pair<const_iterator,const_iterator>
  equal_range(const key_type& x) const;
     Returns the pair, (lower_bound(x), upper_bound(x)).

  iterator
  erase(iterator position);
     Deletes the map element pointed to by the iterator position. Returns an
     iterator pointing to the element following the deleted element, or end()
     if the deleted item was the last one in this list.

  iterator
  erase(iterator first, iterator last);
     Providing the iterators first and last point to the same map and last is
     reachable from first, all elements in the range (first, last) will be
     deleted from the map. Returns an iterator pointing to the element
     following the last deleted element, or end() if there were no elements
     after the deleted range.

  size_type
  erase(const key_type& x);
     Deletes the element with the key value x from the map, if one exists.
     Returns 1 if x existed  in the map, 0 otherwise.

  iterator
  find(const key_type& x);
     Searches the map for a pair with the key value x and returns an iterator
     to that pair if it is found.  If such  a  pair is not found  the value
     end() is returned.

  const_iterator find(const key_type& x) const;
     Same as find above but returns a const_iterator.

  pair<iterator, bool>
  insert(const value_type& x);
  iterator
  insert(iterator position, const value_type& x);
     If a value_type with the same key as  x  is  not present in the map,
     then x is inserted into the map. Otherwise, the pair is not inserted. A
     position may be supplied as a hint regarding where to do the insertion.
     If the insertion may be done right after position then it  takes
     amortized  constant time.  Otherwise it will take O(log N) time.

  template <class InputIterator>
  void
  insert(InputIterator first, InputIterator last);
     Copies of each element in the range [first, last) which  possess a
     unique key, one not already in the map, will be inserted into the map.
     The  iterators first and last must return values of type pair<T1,T2>.
     This  operation takes approximately O(N*log(size()+N)) time.

  key_compare
  key_comp() const;
     Returns a function object capable of comparing key values using the
     comparison operation, Compare, of the current map.

  iterator
  lower_bound(const key_type& x);
     Returns a reference to the first entry with a key greater than or equal
     to x.

  const_iterator
  lower_bound(const key_type& x) const;
     Same as  lower_bound above but returns a const_iterator.

  size_type
  max_size() const;
     Returns the maximum possible size of the map.   This size is only
     constrained by the number of unique keys which can be represented by the
     type Key.

  size_type
  size() const;
     Returns the number of elements in the map.

  void
  swap(map<Key, T, Compare, Allocator>& x);
     Swaps the contents of the map x with the current map, *this.

  iterator
  upper_bound(const key_type& x);
     Returns a reference to the last entry with a key less than or equal to
     x.

  const_iterator
  upper_bound(const key_type& x) const;
     Same as upper_bound above but returns a const_iterator.

  value_compare
  value_comp() const;
     Returns a function object  capable of comparing pair<const Key, T>
     values using the comparison operation, Compare, of the current map.
     This function is identical to key_comp for sets.

NON-MEMBER OPERATORS

  template <class Key, class T, class Compare, class Allocator>
  bool operator==(const map<Key, T, Compare, Allocator>& x,
                  const map<Key, T, Compare, Allocator>& y);
                     Returns true if all elements in x are element-wise equal
                     to all elements in y, using (T::operator==). Otherwise
                     it returns false.

  template <class Key, class T, class Compare, class Allocator>
  bool operator!=(const map<Key, T, Compare, Allocator>& x,
                  const map<Key, T, Compare, Allocator>& y);
                     Returns !(x==y).

  template <class Key, class T, class Compare, class Allocator>
  bool operator<(const map<Key, T, Compare, Allocator>& x,
                 const map<Key, T, Compare, Allocator>& y);
                    Returns true if x is lexicographically less than  y.
                    Otherwise, it returns false.

  template <class Key, class T, class Compare, class Allocator>
  bool operator>(const map<Key, T, Compare, Allocator>& x,
                 const map<Key, T, Compare, Allocator>& y);
                    Returns y < x.

  template <class Key, class T, class Compare, class Allocator>
  bool operator<=(const map<Key, T, Compare, Allocator>& x,
                 const map<Key, T, Compare, Allocator>& y);
                    Returns !(y < x).

  template <class Key, class T, class Compare, class Allocator>
  bool operator>=(const map<Key, T, Compare, Allocator>& x,
                 const map<Key, T, Compare, Allocator>& y);
                    Returns !(x < y).

SPECIALIZED ALGORITHMS

  template <class Key, class T, class Compare, class Allocator>
  void swap(map<Key, T, Compare, Allocator>& a,
            map<Key, T, Compare, Allocator>& b);
               Efficiently swaps the contents of a and b.

EXAMPLE

  //
  // map.cpp
  //
   #include <string>
   #include <map>
   #include <iostream.h>

  typedef map<string, int, less<string> > months_type;

   // Print out a pair
  template <class First, class Second>
  ostream& operator<<(ostream& out,
                      const pair<First,Second> & p)
   {
    cout << p.first << " has " << p.second << " days";
    return out;
   }

   // Print out a map
  ostream& operator<<(ostream& out, const months_type & l)
   {
    copy(l.begin(),l.end(), ostream_iterator
                  <months_type::value_type,char>(cout,"0));
    return out;
   }

  int main(void)
   {
     // create a map of months and the number of days
     // in the month
    months_type months;

    typedef months_type::value_type value_type;

     // Put the months in the multimap
    months.insert(value_type(string("January"),   31));
    months.insert(value_type(string("February"),   28));
    months.insert(value_type(string("February"),   29));
    months.insert(value_type(string("March"),     31));
    months.insert(value_type(string("April"),     30));
    months.insert(value_type(string("May"),       31));
    months.insert(value_type(string("June"),      30));
    months.insert(value_type(string("July"),      31));
    months.insert(value_type(string("August"),    31));
    months.insert(value_type(string("September"), 30));
    months.insert(value_type(string("October"),   31));
    months.insert(value_type(string("November"),  30));
    months.insert(value_type(string("December"),  31));

     // print out the months
     // Second February is not present
    cout << months << endl;

     // Find the Number of days in June
    months_type::iterator p = months.find(string("June"));

     // print out the number of days in June
    if (p != months.end())
      cout << endl << *p << endl;

    return 0;
   }

  Output :
  April has 30 days
  August has 31 days
  December has 31 days
  February has 28 days
  January has 31 days
  July has 31 days
  June has 30 days
  March has 31 days
  May has 31 days
  November has 30 days
  October has 31 days
  September has 30 days

WARNING

  Member function templates are used in all containers provided by the
  Standard C++ Library.  An example of this feature is the constructor for
  map<Key,T,Compare,Allocator> that takes two templated iterators:

  template <class InputIterator>
  map (InputIterator, InputIterator, const Compare& = Compare(),
       const Allocator& = Allocator());

  map also has an insert function of this type.  These functions, when not
  restricted by compiler limitations, allow you to use any type of input
  iterator as arguments.  For compilers that do not support this feature, we
  provide substitute functions that allow you to use an iterator obtained
  from the same type of container as the one you are constructing (or calling
  a member function on), or you can  use a pointer to the type of element you
  have in the container.

  For example, if your compiler does not support member function templates,
  you can construct a map in the following two ways:

  map<int, int, less<int> >::value_type intarray[10];
  map<int, int, less<int> > first_map(intarray, intarray + 10);
  map<int, int, less<int> > second_map(first_map.begin(),
                                      first_map.end());

  But not this way:

  map<long, long, less<long> > long_map(first_map.begin(),
                                       first_map.end());

  Since the long_map and first_map are not the same type.

  Also, many compilers do not support default template arguments.  If your
  compiler is one of these, you need to always supply the Compare template
  argument and the Allocator template argument. For instance, you'll have to
  write:

  map<int, int, less<int>,  allocator<int> >

  instead of:

  map<int, int>

SEE ALSO

  allocator, Containers, Iterators, multimap

STANDARDS CONFORMANCE

  ANSI X3J16/ISO WG21 Joint C++ Committee
  

1.800.AT.COMPAQ

privacy and legal statement