
IRIX® Admin: Resource Administration

007–3700–015

CONTRIBUTORS

Written by Terry Schultz
Edited by Susan Wilkening
Illustrated by Chris Wengelski
Production by Glen Traefald
Engineering contributions by Tom Goozen, Sharif Islam, Marlys Kohnke, Tina Liang, Dennis Parker, Michael Sanford, Dan Stekloff, and
Sam Watters

COPYRIGHT
© 1999 - 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere
herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in
any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX, and Origin are registered trademarks and ccNUMA, NUMAflex, IRIS InSight and Trusted
IRIX are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide.

LSF is a trademark of Platform Computing Corporation. Sun is a trademark of Sun Microsystems, Inc. PBS is a trademark of Veridian
Corporation. UNIX is a registered trademark and X Window system is a trademark of The Open Group.

Cover Design By Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in This Manual

This rewrite of IRIX Admin: Resource Administration supports the 6.5.21 release of the
IRIX operating system.

New Features Documented
Added information about cpuset support for memory nodes in "Cpusets and
Memory-Only Nodes", page 69.

Major Documentation Changes
Added information about kernel threads running in a boot cpuset in "Boot Cpuset",
page 61.

Added information about changes to cpuset syntax to support memory-only nodes in
"Boot Cpuset", page 61 and "Cpuset Configuration File", page 63.

Added information about new cpuset functions to support memory-only nodes in
"Application Programming Interface for the Cpuset System", page 195.

007–3700–015 iii

Record of Revision

Version Description

001 July 1999
Draft version.

002 January 2000
Supports the IRIX 6.5.7 release.

003 April 2000
Supports the IRIX 6.5.8 release.

004 August 2000
Supports the IRIX 6.5.9 release.

005 November 2000
Supports the IRIX 6.5.10 release.

006 February 2001
Supports the IRIX 6.5.11 release.

007 May 2001
Supports the IRIX 6.5.12 release.

008 August 2001
Supports the IRIX 6.5.13 release.

009 November 2001
Supports the IRIX 6.5.14 release.

010 February 2002
Supports the IRIX 6.5.15 release.

011 May 2002
Supports the IRIX 6.5.16 release.

012 August 2002
Supports the IRIX 6.5.17 release.

007–3700–015 v

Record of Revision

013 November 2002
Supports the IRIX 6.5.18 release.

014 May 2003
Supports the IRIX 6.5.20 release.

015 August 2003
Supports the IRIX 6.5.21 release.

vi 007–3700–015

Contents

About This Manual . xxv

Related Publications . xxv

Obtaining Publications . xxvi

Conventions . xxvii

Reader Comments . xxvii

1. Process Limits . 1

Process Limits Overview . 1

Using csh and sh to Limit Resource Consumption 1

Using systune to Display and Set Process Limits 2

Additional Process Limits Parameters 4

2. Job Limits . 5

Read Me First . 6

Job Limits Overview . 6

Job Limits Supported . 9

getjlimit and setjlimit 10

waitjob . 11

systune . 11

cpulimit_gracetime . 11

User Limits Database . 12

Creating the User Limits Database 13

Creating the User Limits Directives Input File 14

Comments . 14

Numeric Limit Values . 14

007–3700–015 vii

Contents

Domain Directives . 15

User Directives . 15

Setting Up a User Limits Directive Input File Example 16

Using systune to Display and Set Job Limits 18

User Commands for Viewing and Setting Job Limits 19

showlimits . 19

jlimit . 22

jstat . 23

Job Limits and Existing IRIX software 24

Running Job Limits with Message Passing Interface (MPI) Jobs 25

Installing Job Limits . 26

Troubleshooting Job Limits . 27

Job Limits Man Pages . 27

User-Level Man Pages . 27

Administrator Man Pages . 27

Application Interface Man Pages 28

Error Messages . 29

3. Miser Batch Processing System 31

Read Me First . 31

Miser Overview . 32

About Logical Number of CPUs 33

The Effect of Reservation of CPUs on Interactive Processes 33

About Miser Memory Management 34

How Miser Management Affects Users 34

Miser Configuration . 35

Setting Up the Miser System Queue Definition File 35

Setting Up the Miser User Queue Definition FIle 37

viii 007–3700–015

IRIX® Admin: Resource Administration

Setting Up the Miser Configuration FIle 39

Setting Up the Miser CommandLine Options File 39

Configuration Recommendations 40

Miser Configuration Examples 41

Enabling or Disabling Miser . 44

Submitting Miser Jobs . 45

Querying Miser About Job Schedule/Description 46

Querying Miser About Queues 46

Moving a Block of Resources 47

Resetting Miser . 47

Terminating a Miser Job . 47

Miser and Batch Management Systems 48

Miser Man Pages . 48

User-Level Man Pages . 48

File Format Man Pages . 49

Miscellaneous Man Pages . 49

4. Cpuset System . 51

Using Cpusets . 53

Restrictions on CPUs within Cpusets 56

Cpuset System Tutorial . 56

Boot Cpuset . 61

Cpuset Command and Configuration File 62

cpuset Command . 63

Cpuset Configuration File . 63

Cpusets and Memory-Only Nodes 69

Installing the Cpuset System . 70

007–3700–015 ix

Contents

Obtaining the Properties Associated with a Cpuset 70

Cpuset System and Trusted IRIX 71

Using the Cpuset Library . 72

Using the cpusetAttachPID and cpusetDetachPID Functions 73

Using the cpusetMove and cpusetMoveMigrate Functions 74

Cpuset System Man Pages . 76

User-Level Man Pages . 76

Cpuset Library Man Pages . 76

File Format Man Pages . 78

Miscellaneous Man Pages . 78

5. Comprehensive System Accounting 81

Read Me First . 82

CSA Overview . 83

Concepts and Terminology . 84

Enabling or Disabling CSA . 86

CSA Files and Directories . 87

Files in the /var/adm/acct Directory 87

Files in the /var/adm/acct/ Directory 88

Files in the /var/adm/acct/day Directory 89

Files in the /var/adm/acct/work Directory 89

Files in the /var/adm/acct/sum/csa Directory 90

Files in the /var/adm/acct/fiscal/csa Directory 90

Files in the /var/adm/acct/nite/csa Directory 91

/usr/lib/acct Directory 93

/etc Directory . 94

/etc/config Directory 94

x 007–3700–015

IRIX® Admin: Resource Administration

Comprehensive System Accounting Expanded Description 95

Daily Operation Overview . 95

Setting Up CSA . 96

The csarun Command . 100

Daily Invocation . 100

Error and Status Messages 101

States . 101

Restarting csarun . 103

Verifying and Editing Data Files 104

CSA Data Processing . 105

Data Recycling . 109

How Jobs Are Terminated 109

Why Recycled Sessions Should Be Scrutinized 110

How to Remove Recycled Data 111

Adverse Effects of Removing Recycled Data 112

NQS or Workload Management Requests and Recycled Data 114

Tailoring CSA . 115

System Billing Units (SBUs) 116

Process SBUs . 117

NQS SBUs . 119

Workload Management SBUs 120

Tape SBUs . 120

Example SBU Settings 121

Daemon Accounting . 122

Setting up User Exits . 123

Writing a User Exit . 124

Charging for NQS Jobs . 126

007–3700–015 xi

Contents

Charging for Workload Management Jobs 127

Tailoring CSA Shell Scripts and Commands 128

Using at to Execute csarun 128

Allowing Non Superusers to Execute CSA 129

Using an Alternate Configuration File 130

CSA Reports . 131

CSA Daily Report . 131

Consolidated Information Report 132

Unfinished Job Information Report 132

Disk Usage Report . 132

Command Summary Report 133

Last Login Report . 133

Daemon Usage Report . 134

Periodic Report . 135

Consolidated accounting report 135

Command summary report 136

CSA and Existing IRIX Software 137

acct(1M) Man Page . 137

acctsh(1M) Man Page . 137

dodisk(1M) Man Page . 137

explain(1) Man Page . 137

capabilities(4) Man Page 138

Migrating Accounting Data . 138

CSA Man Pages . 138

User-Level Man Pages . 138

Administrator Man Pages . 139

xii 007–3700–015

IRIX® Admin: Resource Administration

6. IRIX Memory Usage 141

Memory Usage Commands . 141

Shared Memory . 143

Physical Memory . 144

Virtual Memory . 144

7. Array Services . 145

Using an Array . 146

Using an Array System . 147

Finding Basic Usage Information 147

Logging In to an Array . 147

Invoking a Program . 148

Managing Local Processes . 149

Monitoring Local Processes and System Usage 149

Scheduling and Killing Local Processes 150

Summary of Local Process Management Commands 150

Using Array Services Commands 150

About Array Sessions . 151

About Names of Arrays and Nodes 152

About Authentication Keys 152

Summary of Common Command Options 152

Specifying a Single Node . 153

Common Environment Variables 154

Interrogating the Array . 155

Learning Array Names . 155

Learning Node Names . 155

Learning Node Features . 156

007–3700–015 xiii

Contents

Learning User Names and Workload 156

Learning User Names . 156

Learning Workload . 157

Browsing With ArrayView . 158

Managing Distributed Processes 158

About Array Session Handles (ASH) 159

Listing Processes and ASH Values 160

Controlling Processes . 160

Using arshell . 160

About the Distributed Example 161

Managing Session Processes 162

About Job Container IDs 163

About Array Configuration . 164

About the Uses of the Configuration File 164

About Configuration File Format and Contents 165

Loading Configuration Data 165

About Substitution Syntax . 166

Testing Configuration Changes 167

Configuring Arrays and Machines 168

Specifying Arrayname and Machine Names 168

Specifying IP Addresses and Ports 169

Specifying Additional Attributes 169

Configuring Authentication Codes 170

Configuring Array Commands 170

Operation of Array Commands 170

Summary of Command Definition Syntax 171

xiv 007–3700–015

IRIX® Admin: Resource Administration

Configuring Local Options . 173

Designing New Array Commands 174

Array Services Library . 176

Data Structures . 176

Error Message Conventions 177

Connecting to Array Services Daemons 178

Database Interrogation . 180

Managing Array Service Handles 181

Executing an Array Command 182

Normal Batch Execution 183

Immediate Execution . 184

Interactive Execution . 184

Executing a User Command 184

Appendix A. Programming Guide for Resource Management 187

Application Programming Interface for Job Limits 187

Data Types . 187

Function Calls . 188

getjlimit and setjlimit 188

getjusage . 188

getjid . 189

killjob . 189

jlimit_startjob . 189

makenewjob . 189

setjusage . 190

setwaitjobpid . 191

waitjob . 191

Error Messages . 192

007–3700–015 xv

Contents

Application Programming Interface for the ULDB 192

Data Types . 192

uldb_namelist_t . 192

uldb_limitlist_t . 192

Function Calls . 193

uldb_get_limit_values 193

uldb_get_value_units 194

uldb_get_limit_names 194

uldb_get_domain_names 194

uldb_free_namelist . 195

uldb_free_limit_list 195

Error Messages . 195

Application Programming Interface for the Cpuset System 195

Management functions . 200

cpusetAllocQueueDef(3x) 202

cpusetAttach(3x) . 208

cpusetAttachPID(3x) . 210

cpusetCreate(3x) . 212

cpusetDetachAll(3x) . 217

cpusetDetachPID(3x) . 219

cpusetDestroy(3x) . 221

cpusetMove(3x) . 222

cpusetMoveMigrate(3x) 224

cpusetSetCPULimits(3x) 226

cpusetSetCPUList(3x) 228

cpusetSetFlags(3x) . 230

cpusetSetMemLimits(3x) 234

xvi 007–3700–015

IRIX® Admin: Resource Administration

cpusetSetMemList(3x) 236

cpusetSetNodeList(3x) 238

cpusetSetPermFile(3x) 240

Retrieval Functions . 241

cpusetGetCPUCount(3x) 243

cpusetGetCPULimits(3x) 244

cpusetGetCPUList(3x) 246

cpusetGetFlags(3x) . 248

cpusetGetMemLimits(3x) 252

cpusetGetMemList(3x) 254

cpusetGetName(3x) . 256

cpusetGetNameList(3x) 259

cpusetGetNodeList(3x) 261

cpusetGetPIDList(3x) 263

cpusetGetProperties(3x) 265

cpusetGetTrustPerm (3x) 267

cpusetGetUnixPerm(3x) 269

Clean-up Functions . 271

cpusetFreeCPUList(3x) 272

cpusetFreeNameList(3x) 273

cpusetFreeNodeList(3x) 274

cpusetFreePIDList(3x) 275

cpusetFreeProperties(3x) 276

cpusetFreeQueueDef(3x) 277

Using the Cpuset Library . 278

Index . 281

007–3700–015 xvii

Figures

Figure 2-1 Point of Entry Processes 7

Figure 2-2 Limit Domains . 8

Figure 4-1 Dividing a System Using Cpusets 57

Figure 4-2 Using the cpusetAttachPID and cpusetDetachPID Functions 74

Figure 4-3 Moving Processes From One Cpuset to Another 75

Figure 5-1 The /var/adm/acct Directory 88

Figure 5-2 CSA Data Processing 106

Figure 7-1 Typical Display from ArrayView 158

007–3700–015 xix

Tables

Table 1-1 Process Limits . 2

Table 2-1 Job Limits . 9

Table 5-1 Possible Effects of Removing Recycled Data 114

Table 7-1 Information Sources for Invoking a Program 149

Table 7-2 Information Sources: Local Process Management 150

Table 7-3 Common Array Services Commands 151

Table 7-4 Array Services Command Option Summary 153

Table 7-5 Array Services Environment Variables 154

Table 7-6 Information Sources: Array Configuration 164

Table 7-7 Subentries of a COMMAND Definition 171

Table 7-8 Substitutions Used in a COMMAND Definition 172

Table 7-9 Options of the COMMAND Definition 173

Table 7-10 Subentries of the LOCAL Entry 174

Table 7-11 Array Services Data Structures 177

Table 7-12 Error Message Functions 178

Table 7-13 Functions for Connections to Array Services Daemons 179

Table 7-14 Server Options That Functions Can Query or Change 179

Table 7-15 Functions for Interrogating the Configuration 180

Table 7-16 Functions for Managing Array Service Handles 181

Table 7-17 Functions for ASH Interrogation 182

007–3700–015 xxi

Examples

Example 5-1 Save a sorted pacct File During a Daily Accounting Run 124

Example 5-2 Consolidated Information Report by Project Rather than by User 125

Example A-1 Example of Creating a Cpuset 278

Example A-2 Example of Creating a Replacement Library 280

007–3700–015 xxiii

About This Manual

This publication documents the IRIX 6.5.21 operating system running on SGI server
systems.

This guide is a reference document for people who manage the operation of SGI
computer systems running the IRIX operating system. It contains information needed
in the administration of various system resource management features.

This manual contains the following chapters:

• Chapter 1, "Process Limits", page 1

• Chapter 2, "Job Limits", page 5

• Chapter 3, "Miser Batch Processing System", page 31

• Chapter 4, "Cpuset System", page 51

• Chapter 5, "Comprehensive System Accounting", page 81

• Chapter 6, "IRIX Memory Usage", page 141

• Appendix A, "Programming Guide for Resource Management", page 187

Related Publications
This guide is part of the IRIX Admin manual set, which is intended for administrators:
those who are responsible for servers, multiple systems, and file structures outside the
user’s home directory and immediate working directories. If you maintain systems
for others or if you require more information about IRIX than is in the end-user
manuals, these guides are for you. The IRIX Admin guides are available through the
IRIS InSight online viewing system. The set consists of these volumes:

• IRIX Admin: Software Installation and Licensing - Explains how to install and license
software that runs under IRIX, the SGI implementation of the UNIX operating
system. Contains instructions for performing miniroot and live installations using
inst(1M), the command line interface to the IRIX installation utility. Identifies the
licensing products that control access to restricted applications running under IRIX
and refers readers to licensing product documentation.

007–3700–015 xxv

About This Manual

• IRIX Admin: System Configuration and Operation - Lists good general system
administration practices and describes system administration tasks, including
configuring the operating system; managing user accounts, user processes, and
disk resources; interacting with the system while in the PROM monitor; and
tuning system performance.

• Irix Admin: Disks and Filesystems - Explains disk, filesystem, and logical volume
concepts. Provides system administration procedures for SCSI disks, XFS and
Extent File System (EFS) filesystems, XLV logical volumes, and guaranteed-rate
I/O.

• IRIX Admin Networking and Mail - Describes how to plan, set up, use, and maintain
the networking and mail systems, including discussions of sendmail, UUCP, SLIP,
and PPP.

• IRIX Admin: Backup, Security and Accounting - Describes how to back up and
restore files, how to protect your system’s and network’s security, and how to
track system usage on a per-user basis.

• IRIX Admin: Resource Administration - Provides an introduction to system resource
administration and describes how to use and administer various IRIX resource
management features, such as IRIX process limits, IRIX job limits, the Miser Batch
Processing System, the Cpuset System, Comprehensive System Accounting (CSA),
IRIX memory usage, and Array Services.

• IRIX Admin: Peripheral Devices - Describes how to set up and maintain the
software for peripheral devices such as terminals, modems, printers, and CD-ROM
and tape drives.

• IRIX Admin: Selected Reference Pages – (not available in InSight) – Provides concise
man page information on the use of commands that may be needed while the
system is down. Generally, each man page covers one command, although some
man pages cover closely related commands. Man pages are available online
through the man(1) command.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various
formats are available. This library contains the most recent and most

xxvi 007–3700–015

IRIX® Admin: Resource Administration

comprehensive set of online books, release notes, man pages, and other
information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the

007–3700–015 xxvii

About This Manual

front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

xxviii 007–3700–015

Chapter 1

Process Limits

Standard system resource limits are applied so that each login process receives the
same process-based limits at the time the process is created. This chapter describes
process limits and contains the following sections:

• "Process Limits Overview", page 1

• "Using csh and sh to Limit Resource Consumption", page 1

• "Using systune to Display and Set Process Limits", page 2

• "Additional Process Limits Parameters", page 4

Process Limits Overview
The IRIX operating system supports limits on individual processes. Limits on the
consumption of a variety of system resources by a process and each process it creates
may be obtained with the getrlimit(2) system call and set with the setrlimit(2)
system call.

Each call to either getrlimit or setrlimit identifies a specific resource to be
operated upon as well as a resource limit. A resource limit is a pair of values: one
specifying the current (soft) limit, the other a maximum (hard) limit. Soft limits may
be changed by a process to any value that is less than or equal to the hard limit. A
process may (irreversibly) lower its hard limit to any value that is greater than or
equal to the soft limit.

Using csh and sh to Limit Resource Consumption
The csh or sh limit -h resource max-use commands can be used to limit the
resource consumption by the current process or any process it spawns.

These commands limit the consumption by the current process and each process it
creates to not individually exceed maximum-use on the specified resource. If no
maximum-use is given, then the current limit is printed; if no resource is given, then
all limitations are given. If the -h flag is given, the hard (maximum) limits are used
instead of the current limits. The hard limits impose a ceiling on the values of the

007–3700–015 1

1: Process Limits

current limits. To raise maximum (hard) limits, you must have the CAP_PROC_MGT
capability.

For additional information, see the csh(1) and sh(1) man pages. For more
information on the capability mechanism that provides fine grained control over the
privileges of a process, see the capability(4) and capabilities(4) man pages.

Using systune to Display and Set Process Limits
Table 1-1 shows the process limits supported by the IRIX operating system.

Table 1-1 Process Limits

Limit Name Symbolic ID Units Description Enforcement

rlimit_cpu_cur
rlimit_cpu_max

RLIMIT_CPU seconds Maximum
number of CPU
seconds the
process is
allowed

Process termination
via SIGXCPU signal

rlimit_fsize_cur
rlimit_fsize_max

RLIMIT_FSIZE bytes Maximum size
of file that can
be created by
process

Write/expansion
attempt fails with
errno set to EFBIG

rlimit_data_cur
rlimit_data_max

RLIMIT_DATA bytes Maximum
process heap
size

brk(2) calls fail with
errno set to ENOMEM

rlimit_stack_cur
rlimit_stack_max

RLIMIT_STACK bytes Maximum
process stack
size

Process termination
via SIGSEGV signal

rlimit_ core_cur
rlimit_core_max

RLIMIT_CORE bytes Maximum size
of a core file that
can be created
by process

Writing of core file
terminated at limit

2 007–3700–015

IRIX® Admin: Resource Administration

Limit Name Symbolic ID Units Description Enforcement

rlimit_nofile_cur
rlimit_nofile_max

RLIMIT_NOFILE file descriptors Maximum
number of open
file descriptors
process can
have

open(2) attempts file
with errno set to
EMFILE

rlimit_vmem_cur
rlimit_vmem_max

RLIMIT_VMEM bytes Maximum
process address
space

brk(2) and mmap(2)
calls fail with errno
set to ENOMEM

rlimit_rss_cur
rlimit_rss_max

RLIMIT_RSS bytes Maximum size
of resident set
size of the
process

Resident pages above
limit become prime
swap candidates

rlimit_pthread_cur
rlimit_pthread_max

RLIMIT_PTHREAD threads Maximum
number of
threads that
process can
create

Thread creation fails
with errno set to
EAGAIN

You can use the systune resource command to view and set systemwide default
values for process limits. The resource group contains the following variables:

rlimit_cpu_cur

rlimit_cpu_max

rlimit_fsize_cur

rlimit_fsize_max

rlimit_data_cur

rlimit_data_max
rlimit_stack_cur

rlimit_stack_max

rlimit_core_cur

rlimit_core_max

rlimit_nofile_cur
rlimit_nofile_max

rlimit_vmem_cur

rlimit_vmem_max

rlimit_rss_cur

rlimit_rss_max

007–3700–015 3

1: Process Limits

rlimit_pthread_cur
rlimit_pthread_max

For additional information, see the systune(1M) man page.

If job limits software is installed and running on the system, you can choose to set
user-based process limits values in the user limits database (ULDB). Both current and
maximum values, such as rlimit_cpu_cur and rlimit_cpu_max can be specified.
Values in the ULDB override the system defaults set by the systune(1M) command.

For additional information on the ULDB, see "User Limits Database", page 12.

Additional Process Limits Parameters
IRIX has configurable parameters for certain system limits. For example, you can set
maximum values for each process (its core or file size), the number of groups per user,
the number of resident pages, and so forth. The maxup and cpulimit_gracetime
are described below. All parameters are set and defined in /var/sysgen/mtune.

maxup Maximum number of processes per user

cpulimit_gracetime Process and job limit grace period

For additional information on the maxup parameter and other “System Limits
Parameters”, see IRIX Admin: System Configuration and Operation.

The cpulimit_gracetime parameter establishes a grace period for processes that
exceed the CPU time limit. You should set it to the number of seconds that a process
will be allowed to run after exceeding the limit. When cputlimit_gracetime is
not set (that is, when it is zero), any process that exceeds either the process or job
CPU limit will be sent a SIGXCPU signal. The kernel will periodically send a
SIGXCPU signal to that process as long as it continues to execute. Since a process can
register to handle a SIGXCPU signal, the process can effectively ignore the CPU limit.

If you use the systune(1M) command to set the cpulimit_gracetime parameter
to a nonzero value, its behavior changes. When a process exceeds the CPU limit, the
kernel sends a SIGXCPU signal to a process only once. The process can register for
this signal and then perform any cleanup and shutdown operations it wants to
perform. If the process is still running after accruing cpulimit_gracetime more
seconds of CPU time, the kernel terminates the process with a SIGKILL signal.

4 007–3700–015

Chapter 2

Job Limits

Standard system resource limits are set up so that each process receives the same
process-based limits at the time the process is created. While limits on individual
processes are useful, they do not restrict individual users to a given share of the
system. With the IRIX kernel job limits feature, all processes associated with a
particular login session or batch submission are encapsulated as a single logical unit
called a job. The job is the container used to group processes by login session. Limits
on resource usage are applied on a per user basis for a particular job and these limits
are enforced by the kernel. All processes are associated with a particular job and are
identified by a unique job identifier (job ID). The processes belonging to a particular
job can be limited, controlled, queried, and accounted for as a unit. This allows a
system administrator to set job-specific limits on CPU time, memory, file space, and
other system resources. The user limits database (ULDB) allows user-specific limits
for jobs. If no ULDB is defined, job limits are the same for all jobs. Job limits software
can help maximize utilization of larger systems in a multiuser environment.

Note: Job limit values (rlim_t) are 64-bit in both n32 and n64 binaries. Consequently,
n32 binaries can set 64-bit limits. o32 binaries cannot set 64-bit limits because rlim_t
is 32-bits in o32 binaries. IRIX supports three Application Binary Interfaces (ABIs):
o32, n64, and n32 (for more information on ABIs, see the abi(5) man page).

For more information on rlimit_* values, see "Using systune to Display and Set
Process Limits", page 2 and "showlimits", page 19.

This chapter contains the following sections:

• "Read Me First", page 6

• "Job Limits Overview", page 6

• "Job Limits Supported", page 9

• "User Limits Database", page 12

• "Running Job Limits with Message Passing Interface (MPI) Jobs", page 25

• "Installing Job Limits", page 26

007–3700–015 5

2: Job Limits

• "Job Limits Man Pages", page 27

• "Error Messages", page 29

Read Me First
The sections in this chapter contain information about installing job limits software on
your system. You should reference them in the order they are listed here:

1. For a general description of jobs and job limits, see "Job Limits Overview", page 6,
and "Job Limits Supported", page 9.

2. To install the job limits package, see "Installing Job Limits", page 26.

3. For information about writing a user limits directives input file infile and creating
the user limits database (ULDB), see "Creating the User Limits Directives Input
File", page 14, and "Creating the User Limits Database", page 13, respectively.

For a list of man pages related to job limits, see "Job Limits Man Pages", page 27.

4. For information on how to use the systune joblimits command to set
systemwide default values for job limits, see "Using systune to Display and Set
Job Limits", page 18.

5. For information on how to view job limits on a system, see "User Commands for
Viewing and Setting Job Limits", page 19.

6. For information on troubleshooting your job limits installation, see
"Troubleshooting Job Limits", page 27.

7. For information on application programming interfaces, see "Application
Programming Interface for Job Limits", page 187, and "Application Programming
Interface for the ULDB", page 192.

Job Limits Overview
Job limits software helps ensure that each user has access to the appropriate amount
of system resources such as CPU time and memory and makes sure that users do not
exceed their allotted amount. Job limits software can improve system throughput and
utilization by restricting how much of a machine each user can use. For information
on user-based job limits supported in IRIX, see "Job Limits Supported", page 9.

6 007–3700–015

IRIX® Admin: Resource Administration

Work on a machine is submitted in a variety of ways, such as an interactive login, a
submission from a workload management system, a cron job, or a remote access
such as rsh, rcp, or array services. Each of these points of entry create an original
shell process and multiple processes flow from that original point of entry. The kernel
job provides a means to limit the resource usage of all the processes resulting from a
point of entry. A job is a group of related processes all descended from a point of
entry process and identified by a unique job ID. A job can contain multiple process
groups, sessions, or array sessions and all processes in one of these subgroups are
always contained within one job. Figure 2-1, page 7, shows the point of entry
processes that initiate the creation of jobs.

log
in

cro
n

su
rsh

, r
log

in

Miser

arr
ayd

jlimit-startjob() Irix
job

Figure 2-1 Point of Entry Processes

IRIX job limits have the following characteristics:

• A job is an inescapable container. A process cannot leave the job nor can a new
process be created outside the job without explicit action, that is, a system call
with root privilege.

• Each new process inherits the job ID and limits from its parent process.

• All point of entry processes (job initiators) create a new job and set the job limits
appropriately.

007–3700–015 7

2: Job Limits

• Users can raise and lower their own job limits within maximum values specified
by the system administrator.

• The job initiator performs authentication and security checks.

The process control initialization process (init(1M)) and startup scripts called by
init are not part of a job and have a job ID of zero.

Note: The upper bits of the job ID are used to indicate the machine ID. The job ID
contains the array services machine ID (asmchid). Array services are started by the
init process and large job IDs are created. To the administrator, this may seem like
large job ID values appear without explanation because they have not set the machine
ID. For more information on the asmchid parameter, see Appendix A, “IRIX Kernel
Tunable Parameters”, in the IRIX Admin: System Configuration and Operation and the
arsctl(2) and newarraysess(2) man pages.

Note: The existing IRIX commands jobs(1), fg(1), and bg(1) man pages apply to
shell “jobs” and are not related to IRIX kernel job limits.

Note: Job initiators like secure shell that are not developed by SGI might not initiate
an IRIX kernel job.

Figure 2-2 shows two limit domains. Limit domains are a way to categorize work.
The job initiators shown in Figure 2-1, page 7, can be categorized as either interactive
or batch processes. Limit domain names are defined by the system administrator
when the user limits database (ULDB) is created. Applications that use the ULDB to
retrieve job limits information expect to find limit information with specific names.
These names are defined by convention. For additional information on limit domains
and the ULDB, see "User Limits Database", page 12.

Unscheduled

On demand

cron,
 login

, rsh,

rlogi
n, su

Interactive

Scheduled

Miser

Batch

Figure 2-2 Limit Domains

8 007–3700–015

IRIX® Admin: Resource Administration

The IRIX operating system provides a number of commands that provide information
about the memory usage on a system. The job limits jstat(1) command reports the
current usage and highwater memory values of all concurrently running processes
within a job. For more information on memory usage in IRIX, see Chapter 6, "IRIX
Memory Usage", page 141. For more information on the jstat(1) command, see
"jstat", page 23.

Job Limits Supported
Table 2-1 shows job limits supported by the IRIX operating system. Each limit
restricts the use of a particular system resource for all the processes contained within
a job. Job limits software also introduces a limit unique to jobs called
JLIMIT_NUMPROC that controls the number of processes in a job.

Table 2-1 Job Limits

Limit Name Symbolic ID Units Description Enforcement

jlimit_nproc_cur
jlimit_nproc_max

JLIMIT_NUMPROC processes Maximum
number of
processes within
the job

Process creation by any job
fails with errno set to
EAGAIN

jlimit_nofile_cur
jlimit_nofile_max

JLIMIT_NOFILE file
descriptors

Maximum total
number of open
file descriptors all
processes in job
can have

open(2) calls by any job
fail with errno set to
EMFILE

jlimit_rss_cur
jlimit_rss_max

JLIMIT_RSS bytes Maximum total
resident set size
for all processes
in a job

Resident pages above limit
become prime swap
candidates

jlimit_vmem_cur
jlimit_vmem_max

JLIMIT_VMEM bytes Maximum total
address space for
all processes in a
job

The brk(2) and mmap(2)
calls in any job fail with
errno set to ENOMEM

007–3700–015 9

2: Job Limits

Limit Name Symbolic ID Units Description Enforcement

jlimit_data_cur
jlimit_data_max

JLIMIT_DATA bytes Maximum total
heap size for all
processes in job

The brk(2) calls in any job
fail with errno set to
ENOMEM

jlimit_cpu_cur
jlimit_cpu_max

JLIMIT_CPU seconds Maximum
number of CPU
seconds allowed
for all processes
in a job.

Termination of all
processes in a job that
continue to consume CPU
time via SIGXCPU signal.
See Note below. You can
also use the
cpulimit_gracetime
parameter to alter
signalling behavior, see
"cpulimit_gracetime",
page 11.

jlimit_pmem_cur
jlimit_pmem_max

JLIMIT_PMEM bytes Maximum total
resident set size
for all processes
in a job.

Termination of all
processes in job that
continue to consume
system resources via
SIGKILL signal. See Note
below and
"cpulimit_gracetime",
page 11.

getjlimit and setjlimit

Limits on the consumption of system resources by a job, shown in Table 2-1, page 9,
may be obtained with the getjlimit(2) function and set by the setjlimit(2)
function. The getjlimit function gets the current and maximum job limits values
for the specified job. The CAP_MAC_READ capability is needed to retrieve values from
jobs belonging to other users.

The setjlimit(2) function sets the current and maximum job limits values for the
specified job. If the current job is different from the job being requested, the
setjlimit function checks for the CAP_MAC_WRITE capability. If the maximum
(hard) limits are being raised, the setjlimit function checks for the CAP_PROC_MGT
capability.

10 007–3700–015

IRIX® Admin: Resource Administration

For additional information, see the getjlimit(2) man page. For more information
on the capability mechanism that provides fine grained control over the privileges of
a process, see the capability(4) and capabilities(4) man pages.

waitjob

The waitjob mechanism allows a batch processing system to find out job limit
information for jobs that exit abnormally. The waitjob function obtains information
about a terminated job that has been set with setwaitjobpid argument to wait. For
more information on the waitjob(2) and setwaitjobpid(2) calls, see "Application
Programming Interface for Job Limits", page 187 and "Application Programming
Interface for the ULDB", page 192, respectively, and the waitjob(2) and
setwaitjobpid(2) man pages.

systune

You can use the systune joblimits command to set system-wide defaults. For
additional information, see "Using systune to Display and Set Job Limits", page 18
and the systune(1M) man page.

cpulimit_gracetime

The cpulimit_gracetime parameter establishes a grace period for processes that
exceed the CPU time limit. Each process in a job has a cpulimit_gracetime
associated with it. If the cpulimit_gracetime parameter is set to 10 seconds and a
job has 100 processes, theoretically, a job could run for an additional 1000 seconds
after the JLIMIT_CPU limit had been exceeded. The cpulimit_gracetime
parameter controls the signalling behavior associated with the CPU limit. For
additional information on the cpulimit_gracetime parameter, see "Additional
Process Limits Parameters", page 4.

Job limits software works in a manner similar to process limits when dealing with the
cpulimit_gracetime. As a process executes, the CPU usage increases. When the
limit is reached, the SIGXCPU signal is sent individually to each process when it
executes. When the SIGXCPU is sent to a process, the grace period goes into effect for
that process. If the process is still executing when the grace period expires, it is
terminated with the SIGKILL signal. Only the processes in a job that are executing,
are sent a SIGXCPU signal. Each process in a job gets an individual grace period.
Therefore, the SIGXCPU signal is not sent en masse to all processes in a job.

007–3700–015 11

2: Job Limits

Note: Only processes in a job that are executing and consuming system resources,
such as CPU time or memory, when a clock interrupt occurs and a JLIMIT_CPU or
JLIMIT_PMEM limit has been exceeded, will receive either a SIGXCPU or SIGKILL
signal, respectively. It is possible that processes in a job that are idle will not be
signalled even if a limit has been exceeded.

User Limits Database
The User Limits Database (ULDB) contains job limits information which allows a
system administrator to control access to a machine on a per user basis. Job initiators,
the applications that initiate new jobs on the system like login, rsh, rlogin, cron,
and workload management systems like Miser, retrieve job limits values from the
ULDB for a particular user and use the information to set limits, appropriately.

For more information on job initiators, see "Job Limits Overview", page 6.

The ULDB is used to set job limit and process limit values for jobs when the job limits
package is installed. If job limits are not installed, process limits are handled by the
current resource limits functionality.

Domain defaults apply to all users unless there is a "user" entry that describes values
for that user. User specific values override the domain defaults. Values in the ULDB
override the system default values for both job limits and process limits.

This section describes the commands used to create, maintain, and display the
contents of the ULDB and the library application programming interface (API), which
allows applications access to the ULDB information.

Note: The ULDB configuration file contained in the /etc/jlimits.in file contains
a template you can follow when setting up the ULDB on your system.

The /etc directory also contains the jlimits and jlimits.m files. The
jlimits.in file is parsed into the colon delimited jlimits file, which is used to
load job limits into the local ULDB jlimits.m file or into the NIS master map. The
jlimits file is automatically generated by the genlimits(1M) command. The
jlimits.m file is the local ULDB mdbm file.

12 007–3700–015

IRIX® Admin: Resource Administration

Creating the User Limits Database

The command to create the ULDB is as follows:

genlimits [-i infile] [-l] [-m] [-L local_database] [-N nisfile] [-v]

The genlimits command parses the formatted ASCII user limits directives input file
(infile) into a colon-delimited ASCII file, which can be used to create one of the
following output formats:

• Network Information Service (NIS) master server map (-m option)

• Local database for NIS or direct (non-NIS) use (-l option)

The genlimits command accepts the following options:

-i infile Identifies the location of the user limits directives input
file. If you do not specify the -i option, the default file
is /etc/jlimits.in.

-l Creates a local database for Network Information
Service (NIS) or direct (non-NIS) use. When NIS is
enabled, the local database contains local entries which
override or supplement entries from the NIS server.
When NIS is not enabled, the local database contains
information to set limits on the system. By default, this
database is in the /etc/jlimits.m file. You cannot
use the -l option with the -m option.

-m Creates the NIS master server map. It generates and
stores the map in the standard NIS map location. You
cannot override this location. You cannot use the -m
option with the -l option.

-L local_database Specifies an alternate location for the local database.
The -L option works in conjunction with the -l
option.

-N nisfile Specifies a different location for the created NIS
database source input file. The default location is the
/etc/jlimits file. You can use the -N nisfile option
to create a new database without overwriting the
existing /etc/jlimits file.

007–3700–015 13

2: Job Limits

-v Specifies verbose mode, which prints out messages
describing actions of the genlimits command.

For additional information, see the genlimits(1M) man page.

Creating the User Limits Directives Input File

The user limits directive file contains the input to the genlimits(1M) command,
defining the information on domains, limits, and users that will be used to generate
the ULDB. This section describes how to write a user limits directives input file.

Comments

Any text following the # character is treated as a comment.

Numeric Limit Values

Numeric values can have a letter appended that indicate a multiplier that is applied
to the numeric value provided to determine the limit value as follows:

Letter Multiplier Value

k (kilo) 1024 (2**10)

m (mega) 1,048,576 (2**20)

g (giga) 1,073,741,824 (2**30)

t (tera) 1,099,511,627,776 (2**40)

H (hours) 3600

M (minutes) 60

• Use the k, m, g, and t multipliers when defining memory limits or other large
values.

• Use the H and M multipliers when defining time values.

Multiplier values are defined in the /usr/include/uldb.h system include file.

There are no requirements that multipliers be use in the above manner.

Numeric limit values can also be specified as “unlimited” which indicates there is no
upper limit for this particular limit type.

14 007–3700–015

IRIX® Admin: Resource Administration

For additional information about creating the ULDB, see the genlimits(1M) man
page.

Domain Directives

Each limit domain that is referenced in the ULDB must first be identified using the
"domain" directive. The directive provides the ASCII domain name and a list of the
default limit values for the domain. An example domain directive follows:

domain domain_name {

limit_name = value

limit_name:machname = value

...
}

Certain domain names are reserved for user job limits. Other domain names may be
created and used for special purposes. The following list contains reserved domain
names:

Reserved Domain Name Description

interactive Used by interactive job initiators such as telnet and
login

batch A generic batch domain used as secondary choice for
all workload management software

miser The domain used when submitting work to Miser

nqe The domain used when submitting work to NQE

lsf The domain used when submitting work to LSF

User Directives

The "user" directive specifies a set of limits for an individual user. The user name
must identify a valid login account. The uid value is optional. If uid is specified, the
genlimits command verifies that the uid provided matches the uid defined for the
user on the machine where genlimits executes. Domain clauses identify each
domain for which the user will have unique limit values. The domain listed in the
user directive must already be defined in a prior domain directive. The syntax and
semantics of the domain clause is the same as the domain directive. It is not
necessary to provide user directives for all users on the system. If there is no user

007–3700–015 15

2: Job Limits

directive for a queried user or there are no values for a queried domain, the default
values for that domain are returned. An example user directive follows:

user user_name[:uid] {

domain_name {

limit_name = value

limit_name:machname = value

...

}
domain_name {

...

}

...

}

The limit specifications for both the domain and user directives may include an
optional machine name. Limit values specified with a machine name apply only to
that machine. Limits without a machine name apply to all machines in the cluster.
The directives input file can contain several occurrences of the same limit, each with a
different name, as well as an occurrence without a machine name specified.

The genlimits command processes limit values with associated machine names
differently depending on the type of database (see "Creating the User Limits
Database", page 13) being generated:

• If the -m option is used to generate a NIS master map, limit values with associated
machine names are ignored. Only clusterwide values without machine names are
included in the database.

• If the -l option is used to generate a local database, the genlimits command
selects the limit value with the name of the local machine if present. If there is no
limit value with the local machine name, the genlimits command selects the
clusterwide value with no machine name. You can determine the local machine
name by running the uname -n command. For additional information on the
uname command, see the uname(1) man page.

Setting Up a User Limits Directive Input File Example

Because the ULDB is completely rebuilt whenever the genlimits command is
invoked, the input directive file must contain a complete representation of the
database. When changes are needed, the system administrator must edit the user
limits directives input file and then rebuild the database. Because domain defaults are
used if there is no user entry for a particular user, the administrator only needs to

16 007–3700–015

IRIX® Admin: Resource Administration

provide user entries for named users to overwrite default values. The following
example shows a user limits directives input file that specifies three limit types, two
domains, and one user with individual limits. The ULDB only stores the limit values.
The meaning of a value and the units it expresses are up to the application that uses
the limit.

Note: If you are updating entries in the ULDB and they do not change the job limit
values on your system, make sure that limit names used in the ULDB and limit
names used in the systune joblimits group are exactly the same. For additional
information, see "Troubleshooting Job Limits", page 27.

domain interactive { # domain for interactive logins

jlimit_cpu_cur = 60

jlimit_cpu_max = 120 # limit interactive jobs to 120 CPU seconds

jlimit_vmem_cur = 2m
jlimit_vmem_max = 4m # limit interactive jobs to 4 megabytes of virtual memory

jlimit_numproc_cur =10

jlimit_numproc_max = 20 # limit interactive jobs to 20 concurrent processes

}

domain batch { # domain for batch submissions
jlimit_cpu_cur = 3600

jlimit_cpu_max = 7200 # limit batch jobs to two hours of CPU time

jlimit_vmem_cur = 128m

jlimit_vmem_max = 256m # limit batch jobs to 256 megabytes of memory

jlimit_numproc_cur = unlimited

jlimit_numproc_max = unlimited # no limit on processes in a batch job
}

user fred:123 { # User "fred" gets his own interactive CPU limits

interactive { #

jlimit_cpu_cur = 300
jlimit_cpu_max = 600 # "fred" needs to run longer jobs in interactive mode

}

}

007–3700–015 17

2: Job Limits

Using systune to Display and Set Job Limits

You can use the systune joblimits command to view and set systemwide default
values for user job limits. The ULDB will override these values if it exists. The
joblimits group contains the following variables:

jlimit_cpu_cur

jlimit_cpu_max

jlimit_data_cur

jlimit_data_max

jlimit_vmem_cur
jlimit_vmem_max

jlimit_rss_cur

jlimit_rss_max

jlimit_nofile_cur

jlimit_nofile_max
jlimit_numproc_cur

jlimit_numproc_max

jlimit_pmem_cur

jlimit_pmem_max

Output from the systune joblimits command follows:

$ systune joblimits

group: joblimits (statically changeable)

jlimit_numproc_max = 1024 (0x400) ll
jlimit_numproc_cur = 1024 (0x400) ll

jlimit_nofile_max = 5000 (0x1388) ll

jlimit_nofile_cur = 400 (0x190) ll

jlimit_rss_max = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_rss_cur = 9223372036854775807 (0x7fffffffffffffff) ll
jlimit_vmem_max = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_vmem_cur = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_data_max = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_data_cur = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_cpu_max = 9223372036854775807 (0x7fffffffffffffff) ll
jlimit_cpu_cur = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_pmem_max = 9223372036854775807 (0x7fffffffffffffff) ll

jlimit_pmem_cur = 9223372036854775807 (0x7fffffffffffffff) ll

18 007–3700–015

IRIX® Admin: Resource Administration

The display information is described below:

• jlimit_numproc - Number of processes limit

• jlimit_nofile - Number of files limit

• jlimit_rss - Resident set size, default is in bytes

• jlimit_vmem - Virtual memory limit, default is in bytes

• jlimit_data - Data size, default is in bytes

• jlimit_cpu - CPU time, default in seconds.

• jlimit_pmem - Maximum resident set size for all processes in a job, default in
bytes

For additional information, see the systune(1M) and jlimit(1) man pages.

User Commands for Viewing and Setting Job Limits

This section describes the following user commands which can be used to view and
set job limits:

• "showlimits", page 19

• "jlimit", page 22

• "jstat", page 23

showlimits

The command to view limit information from the ULDB is as follows:

showlimits [-D] [-d] [-u user_name] [domain_name]

The showlimits command displays limits information from the user limits database
(ULDB).

The showlimits command accepts the following options:

-D Displays the names of all the domains defined in the
ULDB. When you specify the -D option, the domain
name and other options are ignored.

007–3700–015 19

2: Job Limits

-d Displays the domain default limits. When no options
are specified, the showlimits command displays the
default limits for all domains.

-u user_name Displays the limits values for the specified user rather
than the current user.

domain_name Displays the limits values for the specified domain
rather than all domains.

If no options are specified, the showlimits command displays the current limits
information for the current user for all domains as shown below:

% showlimits

Domain interactive:

jlimit_cpu_cur: unlimited
jlimit_cpu_max: unlimited

jlimit_data_cur: unlimited

jlimit_data_max: unlimited

jlimit_nofile_cur: 400

jlimit_nofile_max: unlimited

jlimit_vmem_cur: unlimited
jlimit_vmem_max: unlimited

jlimit_rss_cur: unlimited

jlimit_rss_max: unlimited

jlimit_pthread_cur: 2k

jlimit_pthread_max: 65535
jlimit_numproc_cur: 1k

jlimit_numproc_max: 65535

rlimit_cpu_cur: unlimited

rlimit_cpu_max: unlimited

rlimit_fsize_cur: unlimited
rlimit_fsize_max: unlimited

rlimit_data_max: unlimited

rlimit_stack_cur: 64m

rlimit_stack_max: unlimited

rlimit_core_cur: unlimited

rlimit_core_max: unlimited
rlimit_nofile_cur: 200

rlimit_nofile_max: unlimited

rlimit_vmem_max: unlimited

rlimit_rss_max: unlimited

20 007–3700–015

IRIX® Admin: Resource Administration

Domain batch:

jlimit_cpu_cur: unlimited

jlimit_cpu_max: unlimited

jlimit_data_cur: unlimited

jlimit_data_max: unlimited
jlimit_nofile_cur: 400

jlimit_nofile_max: unlimited

jlimit_vmem_cur: unlimited

jlimit_vmem_max: unlimited

jlimit_rss_cur: unlimited

jlimit_rss_max: unlimited
jlimit_pthread_cur: 2k

jlimit_pthread_max: 65535

jlimit_numproc_cur: 1k

jlimit_numproc_max: 65535

rlimit_cpu_cur: unlimited
rlimit_cpu_max: unlimited

rlimit_fsize_cur: unlimited

rlimit_fsize_max: unlimited

rlimit_data_max: unlimited

rlimit_stack_cur: 64m

rlimit_stack_max: unlimited
rlimit_core_cur: unlimited

rlimit_core_max: unlimited

rlimit_nofile_cur: 200

rlimit_nofile_max: unlimited

rlimit_vmem_max: unlimited
rlimit_rss_max: unlimited

Note: If the ULDB has changed after the user logged in, the current limits will not be
effective. Current limits will be effective for any new users that login.

For a description of the job limit values, see Table 2-1, page 9. For a description of the
process limit values, see Table 1-1, page 2.

For additional information, see the showlimits(1) man page.

007–3700–015 21

2: Job Limits

jlimit

The command to display and set job limits is as follows:

jlimit [-j job_id] [-h] [limit_name [value]]

The jlimit command displays and changes limits on job resource usage. The
current and maximum (hard) limits are set when a job starts from values that are
contained in the user limits database (ULDB) information for the user. You can raise
and lower your current limits within the range not to exceed your maximum limit.
You can irrevocably lower your maximum limit. You must have the CAP_PROC_MGT
capability to raise your maximum limit. Limit enforcement always occurs at the
current limit regardless of your maximum limit value. See the capability(4) and
capabilities(4) man pages for additional information on the capability mechanism
that provides fine grained control over the privileges of a process.

The jlimit command accepts the following options:

-j job_id Specifies a particular job ID for a job where limits are
going to be changed. You must have the
CAP_MAC_WRITE and CAP_PROC_MGT capabilities to
change job limits for jobs that belong to other users.
The job ID is printed out in hexadecimal. When the job
ID is specified, the "0x" prefix is optional.

-h Specifies that the maximum (hard) limit values for a job
are displayed or modified. If you do not specify the -h
option, the jlimit command displays or modifies
current limit values.

limit_name [value] Displays or sets the value for the specified limit:

• If no limit name is specified, jlimit displays the
values for all limits.

• If the limit name is specified without a value,
jlimit displays the value for the limit.

• If both a limit name and a value are specified,
jlimit sets the appropriate value for the limit.

If the -j option with a job_id argument is specified, the jlimit command prints out
the following information:

22 007–3700–015

IRIX® Admin: Resource Administration

% jlimit -j 0x14
cputime: unlimited

datasize: unlimited

files: unlimited

vmemory: unlimited

ressetsize: unlimited
processes: 65535

For an explanation of the limit values, see Table 2-1, page 9.

For additional information, see the jlimit(1) man page.

jstat

The command to display job status information for active jobs is as follows:

jstat [-a] [-l] [-p]

jstat [-j job_id] [-l] [-p]

The jstat command accepts the following options:

-a Displays information about all jobs.

-j job_id Displays information only for the specified job ID
(job_id).

-l Displays limit information about the current or
specified job including the current usage, current limit,
and maximum limit.

-p Displays information about each process that belongs to
the current or specified job including the process ID,
state, and executing command.

-P Displays the memory limits information in pages rather
than in bytes. This option is used with the -l option.

If neither the -a or -j job_id are used, the jstat command displays information on
the current job.

If the -l option is specified, the jstat command prints out the current usage, high
usage, current limit, and maximum limit information for the current job as shown
below:

007–3700–015 23

2: Job Limits

% jstat -l

JID OWNER COMMAND

--------------- -------------- --------------

0x5eac0000001bd terry -csh

LIMIT NAME USAGE HIGH USAGE CURRENT LIMIT MAX LIMIT

--------------- -------------- -------------- -------------- --------------

cputime 1:05 1:05 unlimited unlimited

datasize 400k 400k unlimited unlimited

files 10 35 400 5000

vmemory 44 201 unlimited unlimited
ressetsize 340 357 unlimited unlimited

processes 2 4 1024 1024

If the -l and -P options are specified, the jstat command will print out the same
information that the -l option displays with the exception that memory values are
shown in pages. SGI systems support multiple page sizes. For more information on
pages sizes, see the "Multiple Page Sizes" section, chapter 10, "System Performance
Tuning" in the IRIX Admin: System Configuration and Operation manual.

Summary information is always printed. For an explanation of the limit values, see
Table 2-1, page 9.

For additional information, see the jstat(1) man page.

Job Limits and Existing IRIX software
The ps -j command prints out the process ID, process group ID, session ID, and job
ID in hexadecimal:

% ps -j

PID PGID SID JID TTY TIME CMD

253430 253430 253430 0x5eac001bd ttyq12 0:00 csh

254563 254563 253430 0x5eac001bd ttyq12 0:00 ps

For additional information, see the ps(1) man page.

The array services daemon, arrayd(1M), propagates the job ID from the originating
machine to any other machines when starting new processes for the job on other
machines in a cluster.

24 007–3700–015

IRIX® Admin: Resource Administration

For additional information, see the arrayd(1M) man page.

The cpr(1) command allows you to include job information in the system restart
statefile. A JID checkpoint type has been added to the cpr -p option. This JID type
allows you to checkpoint and restart an entire job. See the example as follows:

% cpr -c ckpt02 -p 0x8000000000001234:JID

This example checkpoints all the processes contained within a job with the job ID
0x8000000000001234 to the statefile directory ./ckpt02.

For additional information, see the cpr(1) man page.

If you have job limits software installed on your system and want jobs started via the
remote shell server (rshd(1M)) and remote execution server (rexecd(1M)) to
recognize the SIGXCPU signal, you must update the /etc/default/rshd and
/etc/default/rexecd files, respectively. You must set the SVR4_SIGNALS
parameter to NO. This allows the rshd and rexecd servers to recognize the SIGXCPU
signal.

For additional information, see the rsh(1M) and rexecd(1M) man pages.

Running Job Limits with Message Passing Interface (MPI) Jobs
Message Passing Interface (MPI) jobs requires a great number of file descriptors. By
default, a job’s current limit for the files limit is set to 400 as shown by the jstat
command with the -l option:

% jstat -l

JID OWNER COMMAND

------------------ -------------- --------------
0x23fc000000000035 user -csh

LIMIT NAME USAGE HIGH USAGE CURRENT LIMIT MAX LIMIT

------------------ -------------- -------------- -------------- --------------

cputime 0 0 unlimited unlimited
datasize 80k 208k unlimited unlimited

files 8 28 400 5000

vmemory 2384k 9824k unlimited unlimited

ressetsize 608k 2320k unlimited unlimited

threads 1 1 2048 2048

007–3700–015 25

2: Job Limits

processes 2 6 1024 1024
physmem 608k 2320k unlimited unlimited

If you run MPI jobs on systems with 16 or more CPUs, the default current limit for
files set at 400 is easily encountered and an error message similar to the following
is issued:

MPI jobs fail with the error MPI: fork_slaves/fork: Resource temporarily unavailable

MPI: daemon terminated: mice1 - job aborting

To avoid this error, set the default current limit for the files limit higher when you
are running MPI jobs. For information on setting system job limits, see "User Limits
Database", page 12 and "Using systune to Display and Set Job Limits", page 18.

The following table contains the recommended default current limit for the files
limit when you are running large MPI jobs depending upon the number of CPUs in
your system. The recommended settings are approximate values.

Number of CPUs Default Current Limit or Higher

16 351

17 380

18 410

20 472

25 648

30 848

50 4448

Installing Job Limits
Use the inst(1M) software installation tool or the swmgr(1M) software management
tool to install kernel job limits software. For more information on inst(1M) and
swmgr(1M), see IRIX Admin: Software Installation and Licensing in the IRIX Admin
manual set and their respective man pages.

To install the kernel job limits software on IRIX systems, install this subsystem:
eoe.sw.jlimits.

Once the job limits software is installed, run the autoconfig(1M) command and
reboot the system.

26 007–3700–015

IRIX® Admin: Resource Administration

To turn off job limits, you must deinstall the eoe.sw.jlimits software module and
then reboot the system.

Troubleshooting Job Limits
If you are updating entries in the ULDB and they do not change the job limit values
on your system, make sure that limit names used in the ULDB and limit names used
in the systune joblimits group are exactly the same. The ULDB cannot determine
which job limit variables are valid and which are not. If the symbolic names in the
ULDB are entered incorrectly, values from the systune joblimits group will be
applied. For information on limit names, see Table 2-1, page 9.

Job Limits Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type mancommandname.

User-Level Man Pages

The following user-level man pages are provided with job limits software:

User-level man page Description

jlimit(1) Displays and sets resource limits

jstat(1) Displays job status information

showlimits(1) Displays limits information from
the user limits database

Administrator Man Pages

The following administrator man page is provided with job limits software:

007–3700–015 27

2: Job Limits

Administrator man page Description

genlimits(1M) Creates the user limits data base

Application Interface Man Pages

The following online man pages are provided with job limits software to help those
who develop applications that use job limits software:

Application interface man page Description

getjid(2) Get job ID

getjlimit(2) Control a job’s maximum system
resource consumption

getjusage(2) Get job usage information

killjob(2) Terminates all processes for the
specified job

jlimit_startjob(3c) Creates a new job

makenewjob(2) Creates a new job container

setjusage(2) Updates the resource usage values
for the specified job ID.

setwaitjobpid(2) Sets a job to wait for a specified
process ID (PID) to call the
waitjob(2) function

waitjob(2) Obtains information about a
terminated job

uldb_get_limit_values(3c) Collection of functions that all
interact with the user limits
database (ULDB) to retrieve or set
limit values for a domain or user.

28 007–3700–015

IRIX® Admin: Resource Administration

Error Messages
The following job limits related error messages are returned:

EBUSY The requested job ID value is in use.

EINVAL Invalid parameters encountered.

ENOATTR The domain name or namelist are not specified.

ENOEXIST The jlimits file does not exit.

ENOJOB A job with the specified job ID cannot be found.

ENOMEM Sufficient memory is not available.

ENOPKG The job limits software is not installed.

007–3700–015 29

Chapter 3

Miser Batch Processing System

Miser is a resource management facility that provides deterministic batch scheduling
of applications with known time and space requirements without requiring static
partitioning of system resources. When Miser is given a job, it searches through the
time/space pool that it manages to find an allocation that best fits the job’s resource
requirements.

Miser has an extensive administrative interface that allows most parameters to be
modified without requiring a restart. Miser runs as a separate trusted process. All
communication to Miser, either from the kernel or the user, is done through a series
of Miser commands. Miser accepts requests for process scheduling, process state
changes, and batch system configuration control, and returns values and status
information for those requests.

This chapter contains the following sections:

• "Miser Overview", page 32

• "Miser Configuration", page 35

• "Miser Configuration Examples", page 41

• "Enabling or Disabling Miser", page 44

• "Submitting Miser Jobs", page 45

Read Me First
The sections in this chapter contain information about installing Miser software on
your system. You should reference them in the order they are listed here:

1. For a general description of Miser, see "Miser Overview", page 32.

2. To install the Miser package, see "Enabling or Disabling Miser", page 44.

3. For information on how to configure the Miser queues, see "Miser Configuration",
page 35.

4. For information on submitting Miser jobs, see "Submitting Miser Jobs", page 45.

5. For information on Miser man pages, see "Miser Man Pages", page 48.

007–3700–015 31

3: Miser Batch Processing System

Miser Overview
Miser manages a set of time/space pools. The time component of the pool defines
how far into the future Miser can schedule jobs. The space component of the pool is
the set of resources against which a job can be scheduled. This component can vary
with time.

A system pool represents the set of resources (number of CPUs and physical memory)
that is available to Miser. A set of user-defined pools represents resources against
which jobs can be scheduled. The resources owned by the user pools cannot exceed
the total resources available to Miser. Resources managed by Miser are available to
non-Miser applications when they are unused by a scheduled job.

Associated with each pool is a definition of the pool resources, a set of jobs allocating
resources from the pool, and a policy that controls the scheduling of jobs. The
collection of the resource pool, jobs scheduled, and policy is called a queue.

The queues allow for fine-grained resource management of the batch system. The
resources allotted to a queue can vary with time. For example, a queue can be
configured to manage 5 CPUs during the day and 20 during the night. The use of
multiple queues allows the resources to be partitioned among different users of a
batch system. For example, on a 24 CPU system, it is possible to define two queues:
one that has 16 CPUs and another that has 6 CPUs (assuming that 2 CPUs have been
kept outside the control of Miser). It is possible to restrict access to queues to
particular users or groups of users on a system to enforce this resource partition.

The policy defines the way a block of time/space is searched to satisfy the resource
request made by the application. Miser has two policies: “default” and “repack.”
Default is the first fit policy. Once a job is scheduled, its start and end time remain
constant. If an earlier job finishes ahead of schedule, it does not have an effect on the
start/end time of future scheduled jobs. On the other hand, in addition to using the
first fit policy, repack maintains the order of the scheduled jobs and attempts to
reschedule the jobs to pull them ahead in time in the event of a job’s early termination.

Users submit jobs to the queue using the miser_submit command, which specifies
the queue to which the job should be attached and a resource request to be made
against the queue. Each Miser job is an IRIX process group. The resource request is a
tuple of time and space. The time is the total CPU wall-clock time if run on a single
CPU. The space is the logical number of CPUs and the physical memory required.
The request is passed to Miser, and Miser schedules the job against the queue’s
resources using the policy attached to the queue. Miser returns a start and end time
for the job to the user.

32 007–3700–015

IRIX® Admin: Resource Administration

When a job’s start time has not yet arrived, the job is in batch state. A job in batch
state has lower priority than any non-weightless process. A job in batch state may
execute if the system has idle resources; it is said to run opportunistically. When the
specified execution time arrives, the job state is changed to batch critical, and the job
then has priority over any non-realtime process. The time spent executing in batch
state does not count against the time that has been requested and scheduled. While
the process is in batch critical state, it is guaranteed the physical memory and CPUs
that it requested. The process is terminated if it exceeds its time allotment or uses
more physical memory than it had requested.

A job with the static flag specified that was scheduled with the default policy will only
run when the segment is scheduled to run. It will not run earlier even if idle resources
are available to the job. If a job is scheduled with the repack policy, it may run earlier.

About Logical Number of CPUs

When a job is scheduled by Miser, it requests that a number of CPUs and some
amount of memory be reserved for use by the job. When the time period during
which these resources were reserved for the job arrives, Miser reserves specific CPUs
and some amount of logical swap space for the job.

There are a number of issues that affect CPU allocation for a job. When a job becomes
batch critical, Miser will try to find a dense cluster of nodes. If it fails to find such a
cluster, it will assign the threads of the job to any free CPUs that are available. These
CPUs may be located at distant parts of the system.

The Effect of Reservation of CPUs on Interactive Processes

The way in which Miser handles the reservation of CPUs is one of its strengths.
Miser controls and reserves CPUs based on a logical number, not on physical CPUs.
This provides Miser with flexibility in how it controls CPU resources.

Interactive and batch processes that run opportunistically are allowed to use all CPUs
in a system that have not been reserved for Miser jobs. If new jobs are submitted,
Miser attempts to schedule the jobs based on the amount of logical resources still
available to Miser. As a result, CPUs could become reserved by Miser, and the
interactive processes would no longer be able to execute on the newly reserved CPUs.
However, if a resource is not being used by Miser, the resource is free to be used by
any other application. Miser will claim the resource when it needs it.

007–3700–015 33

3: Miser Batch Processing System

About Miser Memory Management

While Miser only reserves CPUs when they are needed, memory must be reserved
before it is needed.

When Miser is started, it is told the number of CPUs and amount of memory that it
will be able to reserve for use by jobs. The number of CPUs is a logical number.
When a Miser job becomes batch critical, it is assigned a set of CPUs. Until a Miser
job requires a CPU (in other words, until a process or thread is ready to run), the
CPU is available to the rest of the system. When a Miser job’s thread begins
executing, the currently non-Miser thread is preempted and resumes on a CPU where
no Miser thread is currently running.

Memory resources are quite different than CPU resources. The memory that Miser
uses to reserve for jobs is called logical swap space. Logical swap space is defined as
the sum total of physical memory (less space occupied by the kernel) and all the
swap devices.

When Miser begins, it needs to reserve memory for its jobs. However, it does not
need to reserve physical memory; it simply needs to make sure that there is enough
physical memory plus swap to move non-Miser jobs memory to. Miser does this by
reserving logical swap equal to the memory that it requires.

Only jobs that are submitted to Miser are able to use allocations of the logical swap
space that was reserved for Miser. However, any physical memory that is not being
used by Miser is free to be used by any other application. Miser will claim the
physical memory when it needs it.

How Miser Management Affects Users

If a user submits a job to Miser, that job will have an allocation of resources reserved
for the requested time period. The job will not have to compete for system resources.
As a result, the job should complete more quickly and have more stable run-times
than it would if run as an interactive job. However, there is a cost. Because Miser is
space sharing the resources, the job must wait until its scheduled reservation period
before the requested resources will be reserved. Prior to that time, the non-static job
may run opportunistically, competing with the interactive workload, but at a lower
priority than the interactive workload.

If a user is working interactively, the user will not have full access to all of the system
resources. The user’s interactive processes will have access to all of the unreserved
CPUs on the system, but the processes will only have a limited amount of logical

34 007–3700–015

IRIX® Admin: Resource Administration

swap space available for memory allocation. The amount of logical swap space
available for non-Miser jobs is the amount not reserved by Miser when it was started.

Miser Configuration
The central configurable aspect of Miser is the set of queues. The Miser queues define
the resources allocated to Miser.

The configuration of Miser consists of the following:

• Set up the Miser system queue definition file. Every Miser system must have a
Miser system queue definition file. This file’s vector definition specifies the
maximum resources available to any other queue’s vector definition.

• Define the queues by setting up the Miser user queue definition file.

• Enumerate all the queues that will be part of the Miser system by setting up the
Miser configuration file.

• Set up the Miser commandline options file to define the maximum CPUs and
memory that can be managed by Miser.

Setting Up the Miser System Queue Definition File

The Miser system queue definition file (/etc/miser_system.conf) defines the
resources managed by the system pool. This file defines the maximum duration of the
pool. All other queues must be less than or equal to the system queue. The system
queue identifies the maximum limit for resources that a job can request. It is required
that a Miser system queue be configured.

Valid tokens are as follows:

POLICY name The policy is always “none” as the system queue has
no policy.

QUANTUM time The size of the quantum. A quantum is the Miser term
for an arbitrary number of seconds. The quantum is
used to specify how you want to break up the
time/space pool. It is specified in both the system
queue definition file and in the user queue definition
file and must be the same in both files.

NSEG number The number of resource segments.

007–3700–015 35

3: Miser Batch Processing System

SEGMENT Defines the beginning of a new segment of the vector
definition. Each new segment must begin with the
SEGMENT token. Each segment must contain at a
minimum the number of CPUs, memory, and wall-clock
time.

START number The number of quanta from 0 that the segment begins
at. The origin for time is 00:00 Thursday, January 1st
1970 local time.

Miser maps the start and end times to the current time
by repeating the queue forward until the current day.
For example, a 24-hour queue always begins at
midnight of the current day.

END number The number of quanta from 0 that the segment ends at.

NCPUS number The number of CPUs.

MEMORY amount The amount of memory, specified by an integer
followed by an optional unit of k for kilobytes, m for
megabytes, or g for gigabytes. If no unit is specified,
the default is bytes.

The following system queue definition file defines a queue that has a quantum of 20
seconds and 1 element in the vector definition. The start and end times of each
multiple are specified in quanta, not in seconds.

The segment defines a resource multiple beginning at 00:00 and ending at 00:20, with
1 CPU and 5 megabytes of memory.

POLICY none # System queue has no policy

QUANTUM 20 # Default quantum set to 20 seconds

NSEG 1

SEGMENT
START 0

END 60# Number of quanta (20min*60sec) / 20

NCPUS 1

MEMORY 5m

36 007–3700–015

IRIX® Admin: Resource Administration

Setting Up the Miser User Queue Definition FIle

The Miser user queue definition file (/etc/miser_default.conf) defines the
CPUs, the physical memory, the policy name, and the resource pool of the queue. The
file consists of a header that specifies the policy of the queue, the number of resource
segments, and the quantum used by the queue.

Access to a queue is controlled by the file permissions of the queue definition file.
Read permission allows a user to examine the contents of the queue using the
miser_qinfo command. Execute permission allows a user to schedule a job on a
queue using the miser_submit command. Write permission allows a user to modify
the resources of a queue using the miser_move and miser_reset commands.

The default user queue definition file can be used as a template for other user queue
definition files. Each Miser queue has a separate queue definition file, which is named
in the overall Miser configuration file (/etc/miser.conf).

Users schedule against the resources managed by the user queues, not against the
system queue. If the duration specified by a user queue is less than that specified by
the system queue, the user queue will be repeated again and again (for example, the
system queue specifies one week and the user queue specifies 24 hours). If the user
queue does not divide into the system queue (for example, the system queue is 6 and
the user queue is 5), the user queue will repeat evenly.

Valid tokens are as follows:

POLICY name The name of the policy that will be used to schedule
applications submitted to the queue. The two valid
policies are “default” and repack.” Default is the first fit
policy; it specifies that once a job is scheduled, its start
and end time remain constant. Repack maintains the
order of the scheduled jobs and attempts to reschedule
the jobs to pull them ahead in time in the event of a
job’s early termination. Note that both policies initially
use the first fit method when scheduling a job.

QUANTUM time The size of the quantum. A quantum is the Miser term
for an arbitrary number of seconds. The quantum is
used to specify how you want to break up the
time/space pool. It is specified in both the system
queue definition file and in the user queue definition
file and must be the same in both files.

NSEG number The number of resource segments.

007–3700–015 37

3: Miser Batch Processing System

SEGMENT Defines the beginning of a new segment of the vector
definition. Each new segment must begin with the
SEGMENT token. Each segment must contain at a
minimum the number of CPUs, memory, and wall-clock
time.

START number The number of quanta from 0 that the segment begins
at. The origin for time is 00:00 Thursday, January 1st
1970 local time.

Miser maps the start and end times to the current time
by repeating the queue forward until the current day.
For example, a 24-hour queue always begins at
midnight of the current day.

END number The number of quanta from 0 that the segment ends at.

NCPUS number The number of CPUs.

MEMORY amount The amount of memory, specified by an integer
followed by an optional unit of k for kilobytes, m for
megabytes, or g for gigabytes. If no unit is specified,
the default is bytes.

The following user queue definition file defines a queue using the policy named
“default”. It has a quantum of 20 seconds and 3 elements to the vector definition.
The start and end times of each multiple are specified in quanta, not in seconds.

• The first segment defines a resource multiple beginning at 00:00 and ending at
00:50, with 50 CPUs and 100 MB of memory.

• The second segment defines a resource multiple beginning at 00:51.67 and ending
at 01:00, with 50 CPUs and 100 MB.

• The third segment defines a resource multiple beginning at 01:02.00 and ending at
01:03.33, also with 50 CPUs and 100 MB of memory.

POLICY default

QUANTUM 20

NSEG 3

SEGMENT

START 0

END 150 (50min*60sec) / 20

NCPUS 50

MEMORY 100m

38 007–3700–015

IRIX® Admin: Resource Administration

SEGMENT

START 155 ((51min*60sec)+67) / 20

END 185 (1h*60min*60sec) / 20

NCPUS 50

MEMORY 100m

SEGMENT

START 186 ((1h*60min*60sec)+(2min*60sec)) / 20

END 190 ((1h*60min*60sec)+(3min*60sec)+33sec) / 20

NCPUS 50

MEMORY 100m

Setting Up the Miser Configuration FIle

The Miser configuration file (/etc/miser.conf) lists the names of all Miser queues
and the path name of the queue definition file for each queue. This file enumerates all
the queue names and their queue definition files.

Every Miser configuration file must include as one of the queues the Miser system
queue that defines the resources of the system pool. The Miser system queue is
identified by the queue name “system.”

Valid tokens are as follows:

QUEUE queue_name queue_definition_file_path

The queue_name identifies the queue when using any interface to
Miser. The queue name must be between 1 and 8 characters long. The
queue name “system” is used to designate the Miser system queue.

The following is a sample Miser configuration file:

Miser config file

QUEUE system /hosts/foobar/usr/local/data/system.conf
QUEUE user /hosts/foobar/usr/local/data/usr.conf

Setting Up the Miser CommandLine Options File

The Miser commandline options file (/etc/config/miser.options) defines the
maximum CPUs and memory that can be managed by Miser.

007–3700–015 39

3: Miser Batch Processing System

The -c flag defines the maximum number of CPUs that Miser can use. This value is
the maximum number of CPUs that any resource segment of the system queue can
reserve.

The -m flag defines the maximum memory that Miser can use. This value is the
maximum memory that any resource segment of the system queue can reserve. The
memory reserved for Miser comes from physical memory. The amount of memory
that Miser uses should be less than the total physical memory, leaving enough
memory for kernel use. Also, the system should have at least the amount of swap
space configured for Miser so that if Miser memory is in full use, the system will have
enough swap space to move previous non Miser submitted processes out of the way.

The following example sets the -c and -m values in the commandline options file to 1
and 5 megabytes, respectively:

-f/etc/miser.conf -v -d -c 1 -m 5m

The -v flag specifies verbose mode, which results in additional output.

The -d flag specifies debug mode. When this mode is specified, the application does
not relinquish control of the tty (that is, it does not become a daemon). This mode is
useful in conjunction with the -v flag to figure out why Miser may not be starting up
correctly.

Note: The -C flag can be used to release any Miser reserved resources after the Miser
daemon is killed and before it is restarted. For additional information, see the
miser(1) man page.

Configuration Recommendations

The configuration of Miser is site dependent. The following guidelines may be helpful:

• The system must be balanced for interactive/batch use. One suggestion is to keep
at least one or two processors outside the control of Miser at all times. These two
processors will act as the interactive portion of the system when all of the Miser
managed CPUs are reserved. For an interactive load, you typically want the load
average for the CPUs to be less than 2.0. Keep this in mind as you adjust for the
optimal number of free CPUs.

• The amount of free logical swap should be balanced against the number of free
CPUs. When you have a system with N CPUs, you should also have an
appropriate amount of memory to be used by processes running on those N CPUs.

40 007–3700–015

IRIX® Admin: Resource Administration

Also, many system administrators like to back up this memory with swap space.
If you think of the free CPUs as a separate system and provide memory and swap
space accordingly, interactive work should perform well. Remember that the free
memory not reserved by Miser is logical swap space (the combination of physical
memory and the swap devices).

• Be careful when using virtual swap. When no Miser application is running,
time-share processes can consume all of physical memory. When Miser runs, it
begins to reclaim physical memory and swaps out time-share processes. If the
system is using virtual swap, there may be no physical swap to move the process
to, and at that point the time-share process may be terminated.

Miser Configuration Examples
In the examples used in this section, the system has 12 CPUs and 160 MB available to
user programs.

Example 1:

In this example, the system is dedicated to batch scheduling with one queue, 24 hours
a day.

The first step is to define a system queue. You must decide how long you want the
system queue to be. The length of the system queue defines the maximum duration
of any job submitted to the system. For this system, you have determined that the
maximum duration for any one job can be 48 hours, so you define the system vector
to have a duration of 48 hours.

The system queue /usr/local/miser/system.conf

POLICY none # System queue has no policy

QUANTUM 20 # Default quantum set to 20 seconds
NSEG 1

SEGMENT

NCPUS 12

MEMORY 160m
START 0

END 8640 # Number of quanta (48h*60 min*60 sec) / 20

The next step is to define a user queue.

007–3700–015 41

3: Miser Batch Processing System

The user queue /usr/local/miser/physics.conf
POLICY default # First fit, once scheduled maintains start/end time

QUANTUM 20 # Default quantum set to 20 seconds

NSEG 1

SEGMENT
NCPUS 12

MEMORY 160m

START 0

END 8640 # Number of quanta (48h*60 min*60 sec) / 20

The last step is to define a Miser configuration file:

Miser config file

QUEUE system /usr/local/miser/system.conf

QUEUE physics /usr/local/miser/physics.conf

Example 2:

In the following example, the system is dedicated to batch scheduling, 24 hours a day,
and split between two user groups: chemistry and physics. The system must be
divided between them with a ratio of 75% for physics and 25% for chemistry.

The system queue is identical to the one given in Example 1.

The physics user queue appears as follows:

The physics queue /usr/local/miser/physics

POLICY default # System queue has no policy

QUANTUM 20 # Default quantum set to 20 seconds
NSEG 1

SEGMENT

NCPUS 8

MEMORY 120m
START 0

END 8640 # Number of quanta (48h*60min*60sec) / 20

Next, you define the chemistry queue:

The chemistry queue /usr/local/miser/chemistry.conf
POLICY default # System queue has no policy

QUANTUM 20 # Default quantum set to 20 seconds

NSEG 1

42 007–3700–015

IRIX® Admin: Resource Administration

SEGMENT

NCPUS 4

MEMORY 40m

START 0

END 8640 # Number of quanta (48h*60min*60sec) / 20

To restrict access to each queue, you create the user group physics and the user group
chemistry. You then set the permissions on the physics queue definition file to execute
only for group physics and similarly for the chemistry queue.

Having defined the physics and chemistry queue, you can now define the Miser
configuration file:

Miser configuration file

QUEUE system /usr/local/miser/system.conf

QUEUE physics /usr/local/miser/physics.conf

QUEUE chem /usr/local/miser/chemistry.conf

Example 3:

In this example, the system is dedicated to time-sharing in the morning and to batch
use in the evening. The evening is 8:00 P.M. to 4:00 A.M., and the morning is 4:00
A.M. to 8:00 P.M.

First you define the system queue.

The system queue /hosts/foobar/usr/local/data/system.conf

POLICY none # System queue has no policy

QUANTUM 20 # Default quantum set to 20 seconds
NSEG 2

SEGMENT

NCPUS 12

MEMORY 160m
START 0

END 720 # (4h*60min*60sec) / 20

SEGMENT

NCPUS 12

MEMORY 160m
START 3600 # (8pm is 20 hours from UTC, so 20h*60min*60sec) / 20

END 4320

007–3700–015 43

3: Miser Batch Processing System

Next, you define the batch queue:

User queue

POLICY repack # Repacks jobs (FIFO) if a job finishes early

QUANTUM 20 # Default quantum set to 20 seconds

NSEG 2

SEGMENT

NCPUS 12

MEMORY 160m

START 0

END 720 # (4h*60min*60sec) / 20

SEGMENT

NCPUS 12

MEMORY 160m

START 3600 # (8pm is 20 hours from 0, so 20h*60min*60sec) / 20

END 4320

The last step is to define a Miser configuration file:

Miser config file

QUEUE system /usr/local/miser/system.conf

QUEUE user /usr/local/miser/usr.conf

Enabling or Disabling Miser
The following steps are required to set up the Miser batch processing system:

1. Use the inst(1M) utility to install the eoe.sw.miser subsystem from your IRIX
distribution media.

2. Modify the Miser configuration files as appropriate for your site. For information
on the Miser configuration files, see "Miser Configuration Examples", page 41.

After the Miser configuration files are modified appropriately, Miser can be
selected for boot-time startup with the chkconfig(1) command and the system
can be rebooted, or Miser can be started directly by root with the command
/etc/init.d/miser start. When starting Miser manually without rebooting,
the chkconfig command must be issued first or Miser will not start up.

44 007–3700–015

IRIX® Admin: Resource Administration

3. To enable Miser manually, use the following command sequence:

chkconfig miser on
/etc/init.d/miser start

4. Miser can be stopped at any time by root. To disable Miser, use the following
command sequence:

/etc/init.d/miser stop

/etc/init.d/miser cleanup

Running Miser jobs are not stopped, and the current committed resources cannot be
reclaimed until the jobs are terminated. If you are going to restart Miser after
stopping it, you do not need to run the miser cleanup command.

Note: The Miser -C flag can be used to release any Miser reserved resources after the
Miser daemon is killed and before it is restarted.

Submitting Miser Jobs
The command to submit a job so that it is managed by Miser is as follows:

miser_submit -q queue -o c=cpus,m=memory, t=time[,static] command
miser_submit -q queue -f file command

-q queue Specifies the name of the queue against which to
schedule the application.

-o c=cpus,m=memory,
t=time[,static]

Specifies a block of resources. The CPUs must be an
integer up to the maximum number of CPUs available
to the queue being scheduled against. The memory
consists of an integer followed by a unit of k for
kilobyte, m for megabyte, or g for gigabyte. If no unit
is specified, the default is bytes. Time can be specified
either as an integer followed by a unit specifier of h for
hours, m for minutes, or s for seconds, or by a string in
the format hh:mm:ss.

A job with the static flag specified that was
scheduled with the default policy will only run when
the segment is scheduled to run. It will not run earlier

007–3700–015 45

3: Miser Batch Processing System

even if idle resources are available to the job. If a job is
scheduled with the repack policy, it may run earlier.

-f file File that specifies a list of resource segments. This flag
allows greater control over the scheduling parameters
of a job.

command Specifies a script or program name.

For additional information, see the miser_submit(1) and miser_submit(4) man
pages.

Querying Miser About Job Schedule/Description

The command to query Miser about the schedule/description of a submitted job is as
follows:

miser_jinfo -j bid [-d]

The bid is the ID of the Miser job and is the process group ID of the job. The -d flag
prints the job description including job owner and command.

Note that when the system is being used heavily, Miser swapping can take some time.
Therefore, the Miser job may not begin processing immediately after it is submitted.

For additional information, see the miser_jinfo(1) man page.

Querying Miser About Queues

The command to query Miser for information on Miser queues, queue resource status,
and a list of jobs scheduled against a queue is as follows:

miser_qinfo -Q|-q queue [-j]|-a

The -Q flag returns a list of currently configured Miser queue names. The -q flag
returns the free resources associated with the specified queue name. The -j flag
returns the list of jobs currently scheduled against the queue. The -a flag returns a
list of all scheduled jobs, ordered by job ID, in all configured Miser queues and also
produces a brief description of the job.

For additional information, see the miser_qinfo(1) man page.

46 007–3700–015

IRIX® Admin: Resource Administration

Moving a Block of Resources

The command to move a block of resources from one queue to another is as follows:

miser_move -s srcq -d destq -f file
miser_move -s srcq -d destq -o s=start,e=end,c=CPUs,m=memory

This command removes a tuple of space from the source queue’s vector and adds it
to the destination queue’s vector, beginning at the start time and ending at the end
time. The resources added or removed do not change the vector definition, and are,
therefore, temporary. The command returns a table that lists the start and end times
of each resource transfer and the amount of resources transferred.

The -s and -d flags specify the names of any valid Miser queues. The -f flag
contains a resource block specification. The -o flag specifies a block of resources to be
moved. The start and end times are relative to the current time. The CPUs are an
integer up to the maximum free CPUs associated with a queue. The memory is an
integer with an identifier of k for kilobyte, m for megabyte, or g for gigabyte.

Note: The resource transfer is temporary. If Miser is killed or crashes, the resources
transferred are lost, and Miser will be unable to restart.

For additional information, see the miser_move(1) and miser_move(4) man pages.

Resetting Miser

The command to reset Miser with a new configuration file is as follows:

miser_reset -f file

This command forces a running version of Miser to use a new configuration file
(specified by -f file). The new configuration will succeed only if all scheduled jobs
can be successfully scheduled against the new configuration.

For additional information, see the miser_reset(1) man page.

Terminating a Miser Job

The miser_kill command is used to terminate a job submitted to Miser. This
command both terminates the process and contacts the Miser daemon to free any

007–3700–015 47

3: Miser Batch Processing System

resources currently committed to the submitted process. For additional information,
see the miser_kill(1) man page.

Miser and Batch Management Systems

This section discusses the differences between a Miser job and a batch job from a
batch management system such as the Network Queuing Environment (NQE) or
Load Share Facility (LSF).

Miser and batch management systems such as NQE each lack certain key
characteristics. For Miser, these characteristics are features to protect and manage the
Miser session. For batch management systems, the ability to guarantee resources is
lacking. However, these two systems used together provide a much more capable
solution, provided the batch management system supports the Miser scheduler.

If your site does not need the job management and protection provided by a batch
management system, then Miser alone may be an adequate batch system. However,
most production-quality environments require the support and protection provided
by batch systems such as NQE or LSF. These sites should run a batch management
system in cooperation with the Miser scheduler.

Miser Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type mancommandname.

User-Level Man Pages

The following user-level man pages are provided with Miser software:

User-level man page Description

miser(1) Miser resource manager; starts the
miser daemon.

miser_jinfo(1) Queries Miser about the schedule
and description of a submitted job.

miser_kill(1) Kills a Miser job.

48 007–3700–015

IRIX® Admin: Resource Administration

miser_move(1) Moves a block of resources from
one queue to another.

miser_qinfo(1) Queries information on miser
queues, queue resource status, and
list of jobs scheduled against a
queue.

miser_reset(1) Resets miser with a new
configuration file.

miser_submit(1) Submits a job to a miser queue.

File Format Man Pages

The following file format descriptions man pages are provided with Miser software:

File Format man page Description

miser(4) Miser configuration files

miser_move(4) Miser resource transfer list

miser_submit(4) Miser resource schedule list

Miscellaneous Man Pages

The following miscellaneous man pages are provided with Miser software:

Miscellaneous man page Description

miser(5) Miser Resource Manager overview

007–3700–015 49

Chapter 4

Cpuset System

A cpuset is a named set of CPUs, which may be defined to be restricted or open. A
restricted cpuset allows only processes that are members of the cpuset to run on the
set of CPUs. An open cpuset allows any process to run on its CPUs, but a process
that is a member of the cpuset can run only on the CPUs belonging to the cpuset. A
cpuset is defined by a cpuset configuration file and a name.

The Cpuset System is primarily a workload manager tool permitting a system
administrator to restrict the number of processors that a process or set of processes
may use. Cpusets may optionally restrict both kernel and user memory.

When the memory restriction feature is enabled, a set of nodes, each containing a set
of CPUs, is computed from the list of CPUs supplied and memory allocations can be
limited to the CPUs assigned to the nodes. Allocation limits can be restricted to the
available physical memory or overflow can be swapped to the swap file.

A system administrator can use cpusets to create a division of CPUs within a larger
system. Such a divided system allows a set of processes to be contained to specific
CPUs, reducing the amount of interaction and contention those processes have with
other work on the system. In the case of a restricted cpuset, the processes that are
attached to that cpuset will not be affected by other work on the system; only those
processes attached to the cpuset can be scheduled to run on the CPUs assigned to the
cpuset. An open cpuset can be used to restrict processes to a set of CPUs so that the
effect these processes have on the rest of the system is minimized.

A system administrator might want to restrict normal system usage of a large system
to part of the machine and use the rest of the system for special purposes. The
boot_cpuset(4) tool provides a method to restrict all normal start-up processes
(including init, inetd, and so on) to some portion of the machine and allow
specific users to use the other portion of the machine for their special purpose
applications. The kernel maintains strict processor and memory separation between
the two system portions. An administrator, for example, might choose to divide a
system into two halves, with one half supporting normal system usage and the other
half dedicated to a particular application. The advantage this mechanism has over
physical reconfiguration is that the configuration may be changed with a simple
reboot and does not need to be aligned on a hardware module boundary.

The syntax of the Cpuset System has been extended to allow you to explicitly specify
the memory associated with a logical node as belonging to a specific cpuset. This
allows you to assign memory-only nodes (a Cx brick can contain node boards that

007–3700–015 51

4: Cpuset System

lack CPU packages and cache) to a particular cpuset to increase the memory resources
available to a particular application. For more information on memory-only nodes in
cpusets, see "Cpusets and Memory-Only Nodes", page 69.

Kernel system threads and interrupt threads can be confined to the boot cpuset by
using the XThread Control Interface (XTCI). This keeps the system and interrupt
threads from competing with applications outside of the boot cpuset for resources. By
default, if the boot cpuset exists, kernel threads that are not forced to run on specific
CPUs, run within the boot cpuset. For more information on XTCI, see the
realtime(5) man page and the REACT Real-Time Programmer’s Guide. For more
information on the boot cpuset, see "Boot Cpuset", page 61.

The cpuset -q cpuset_name -p command allows you to see the properties of
particular cpuset, such as the number of processes and CPUs associated with a
specified cpuset. For more information on cpuset properties, see "Obtaining the
Properties Associated with a Cpuset", page 70 and the cpuset(1) man page.

Static cpusets are defined by an administrator after a system had been started. Users
can attach processes to these existing cpusets. The cpusets continue to exist after jobs
are finished executing.

Dynamic cpusets are created by a workload manager when required by a job. The
workload manager attaches a job to a newly created cpuset and destroys the cpuset
when the job has finished executing.

Cpusets can be used in conjunction with a batch processing system, like the Load
Sharing Facility (LSF) or Portable Batch System (PBS), for data center resource
management to improve the performance of large applications. Using cpusets with
applications such as LSF or PBS enables your SGI Origin system to run more
efficiently, reduces interference between jobs, and can substantially improve the
consistency and predictability of system run times.

The Cpuset library routines, cpusetMove(3x) and cpusetMoveMigrate(3x), can be
used to move processes between cpusets and optionally migrate their memory. They
allow you to move specific processes, or groups of processes, between existing
cpusets, and out of a named cpuset into the pool of CPUs not assigned to any specific
named cpuset. This pool of unused CPUs is called the global cpuset.

Using this functionality, you can easily destroy existing cpusets to free resources to
run a prime job and then easily reconstitute cpusets to continue prior jobs. Because
memory used by a process can be migrated to the node associated with the new
cpuset, memory locality is improved. For more information on the cpusetMove(3x)
and cpusetMoveMigrate(3x) routines, see "Using the cpusetMove and

52 007–3700–015

IRIX® Admin: Resource Administration

cpusetMoveMigrate Functions", page 74 and "Application Programming Interface
for the Cpuset System", page 195.

For more information on dividing a system, see Chapter 4, “Configuring the IRIX
Operating System” in the IRIX Admin: System Configuration and Operation manual.

The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain the properties associated
with a cpuset, and to attach a process and all of its children to a cpuset.

This chapter contains the following sections:

• "Using Cpusets", page 53

• "Restrictions on CPUs within Cpusets", page 56

• "Cpuset System Tutorial", page 56

• "Boot Cpuset", page 61

• "Cpuset Command and Configuration File", page 62

• "Cpusets and Memory-Only Nodes", page 69

• "Installing the Cpuset System", page 70

• "Obtaining the Properties Associated with a Cpuset", page 70

• "Cpuset System and Trusted IRIX", page 71

• "Using the Cpuset Library", page 72

• "Cpuset System Man Pages", page 76

Using Cpusets
This section describes the basic steps for using cpusets and the cpuset(1) command.
For a detailed example, see "Cpuset System Tutorial", page 56.

To install the Cpuset System software, see "Installing the Cpuset System", page 70.

To use cpusets, perform the following steps:

007–3700–015 53

4: Cpuset System

1. Create a cpuset configuration file and give it a name. For the format of this file,
see "Cpuset Configuration File", page 63. For restrictions that apply to CPUs
belonging to cpusets, see "Restrictions on CPUs within Cpusets", page 56.

2. Create the cpuset with the configuration file specified by the -f parameter and
the name specified by the -q parameter.

The cpuset(1) command is used to create and destroy cpusets, to retrieve
information about existing cpusets, and to attach a process and all of its children to a
cpuset. The syntax of the cpuset command is as follows:

cpuset [-q cpuset_name[,cpuset_name_dest] [-A command]|[-c -f filename]|
[-d]|[-i]|[-l][-m]|[-M]|[-Q]|[-p]]|[-T]| -C | -Q | -h

The cpuset command accepts the following options:

-q cpuset_name [-A command] Runs the specified command on the
cpuset identified by the -q
parameter. If the user does not have
access permissions or the cpuset
does not exist, an error is returned.

-q cpuset_name [-c -f filename] Creates a cpuset with the
configuration file specified by the
-f parameter and the name
specified by the -q parameter. The
operation fails if the cpuset name
already exists, a CPU specified in
the cpuset configuration file is
already a member of a cpuset, or
the user does not have the requisite
permissions.

-q cpuset_name -d Destroys the specified cpuset. A
cpuset can only be destroyed if
there are no processes currently
attached to it.

-q cpuset_name -l Lists all the processes in the cpuset.

-q cpuset_name -m Moves all the attached processes
out of the cpuset.

-q cpuset_name -d Destroys the specified cpuset. A
cpuset can only be destroyed if

54 007–3700–015

IRIX® Admin: Resource Administration

there are no processes currently
attached to it.

-q cpuset_name -Q Prints a list of the CPUs that belong
to the cpuset.

-q cpuset_name -p Prints out the permissions, ACLs,
MAC labels, flags, number of
processes, and the CPUs associated
with the specified cpuset.

-q cpuset_name,cpuset_name_dest
-M suboption

The -M option moves a process or a
group of processes and their
associated memory from
cpuset_name to cpuset_name_dest.
The valid suboptions are PID, ASH,
JID, SID, and PGID indicate the ID
type to be moved. The -M option
also requires the -i option.

-q cpuset_name,cpuset_name_dest
-T suboption

The -T option moves a proces or a
group of processes but not their
memory from cpuset_name to
cpuset_name_dest. The valid
suboptions PID, ASH, JID, SID,
and PGID indicate the ID type to be
moved. The -T option also requires
the -i option.

-q cpuset_name,cpuset_name_dest [-M |
-T] suboption -i id

The -i option tells the command
what ID needs to be moved.

-C Prints the name of the cpuset to
which the process is currently
attached.

-Q Lists the names of all the cpusets
currently defined.

-h Print the command’s usage
message.

3. Execute the cpuset command to run a command on the cpuset you created as
follows:

cpuset -q cpuset_name -A command

007–3700–015 55

4: Cpuset System

For more information on using cpusets, see the cpuset(1) man page, "Restrictions on
CPUs within Cpusets", page 56, and "Cpuset System Tutorial", page 56.

Restrictions on CPUs within Cpusets
The following restrictions apply to CPUs belonging to cpusets:

• A CPU can belong to only one cpuset.

• CPU 0 cannot belong to an EXCLUSIVE cpuset.

• A CPU cannot be both restricted and isolated (see mpadmin(1) and sysmp(2)) and
also be a member of a cpuset.

• Only the superuser can create or destroy cpusets.

• The runon(1) command cannot run a command on a CPU that is part of a cpuset
unless the user has write or group write permission to access the configuration file
of the cpuset.

For a description of cpuset command arguments and additional information, see the
cpuset(1), cpuset(4), and cpuset(5) man pages.

Cpuset System Tutorial
This section gives a detailed example of how to divide a system using cpusets. It
contains a simple procedure to follow to divide the example system into cpusets with
references to additional explanatory information.

Figure 4-1, page 57, shows a block diagram of a system with 16 processors and three
cpusets. This section provides examples of configuration files and the commands
used to create a boot cpuset containing half of the system’s CPUs for normal system
usage, and two cpusets named Green and Blue, respectively, for specified purposes.
The Green cpuset specifies a closed cpuset restricted to a specific application to be
executed by members of group artists. The Blue cpuset specifies a second closed
cpuset restricted to a specific application to be executed by members of group
writers.

56 007–3700–015

IRIX® Admin: Resource Administration

CPU 0 CPU 1

CPU 2 CPU 3

CPU 4 CPU 5

CPU 6 CPU 7

CPU 8 CPU 9

CPU 10 CPU 11

CPU 12 CPU 13

CPU 14 CPU 15

CPUSET = Boot

CPUSET = Green CPUSET = Blue

Figure 4-1 Dividing a System Using Cpusets

Perform the following steps to divide a system with 16 processors into three cpusets,
as shown in Figure 4-1, page 57:

1. Create a file named boot_cpuset.config to create a boot cpuset and divide
half of a 16 CPU system dedicated to normal system usage. The boot cpuset

007–3700–015 57

4: Cpuset System

contains all standard processes on the system such as daemons, interactive or
background processing, scripts, and so on. The contents of this file are as follows:

boot

MEMORY_LOCAL

MEMORY_MANDATORY

CPU 0

CPU 1
CPU 2

CPU 3

CPU 4

CPU 5

CPU 6
CPU 7

Note: For this release, you can only designate one CPU on a single line in the
boot_cpuset.config file. For more information on the
boot_cpuset.config file, see "Boot Cpuset", page 61.

For an explanation of the MEMORY_LOCAL and MEMORY_MANDATORY flags, see
"Cpuset Configuration File", page 63.

2. Use the chkconfig(1M) command with the -f option to create an
/etc/config/boot_cpuset file that contains the following:

chkconfig boot_cpuset on

For more information on the /etc/config/boot_cpuset file, see "Boot
Cpuset", page 61.

When the system is rebooted, the boot cpuset will be created.

3. Create a dedicated cpuset called Green and assign a specific application, in this
case, MovieMaker to run on it. Perform the following steps to accomplish this:

a. Create a cpuset configuration file called cpuset_1 with the following
contents:

the cpuset configuration file called cpuset_1 that shows

a cpuset dedicated to a specific application

EXCLUSIVE

58 007–3700–015

IRIX® Admin: Resource Administration

MEMORY_LOCAL
MEMORY_MANDATORY

CPU 8

CPU 9

CPU 10
CPU 11

Note: You can designate more than one CPU or a range of CPUs on a single
line in the cpuset configuration file. In this example, you could designate
CPUs 8 through 11 on a single line as follows: CPU 8-11. For more
information on the cpuset configuration file, see "Cpuset Configuration File",
page 63.

For an explanation of the EXCLUSIVE, MEMORY_LOCAL, and
MEMORY_MANDATORY flags, see "Cpuset Configuration File", page 63.

b. Use the chmod(1) command to set the file permissions on the cpuset_1
configuration file so that only members of group artists can execute the
application moviemaker on the Green cpuset.

c. Use the cpuset(1) command to create the Green cpuset with the
configuration file cpuset_1 specified by the -f parameter and the name
Green specified by the -q parameter.

cpuset -q Green -f cpuset_1

d. Execute the cpuset command as follows to run MovieMaker on a dedicated
cpuset:

cpuset -q Green -A moviemaker

For more information on the cpuset(1) command, see "cpuset Command",
page 63.

The moviemaker job threads will run only on CPUs in this cpuset.
MovieMaker jobs will use memory from system nodes containing the CPUs in
the cpuset. Jobs running on other cpusets will not use memory from these
nodes. You could use the cpuset command to run additional applications on
the same cpuset using the syntax shown in this example.

4. Create a third cpuset file called Blue and specify an application that will run
only on this cpuset. Perform the following steps to accomplish this:

007–3700–015 59

4: Cpuset System

a. Create a cpuset configuration file called cpuset_2 with the following
contents:

the cpuset configuration file called cpuset_2 that shows

a cpuset dedicated to a specific application

EXCLUSIVE

MEMORY_LOCAL

MEMORY_MANDATORY

CPU 12

CPU 13

CPU 14

CPU 15

b. Use the chmod(1) command to set the file permissions on the cpuset_2
configuration file so that only members of group writers can execute the
application bookmaker on the Blue cpuset.

c. Use the cpuset(1) command to create the Blue cpuset with the
configuration file cpuset_2 specified by the -f parameter and the name
specified by the -q parameter.

cpuset -q Blue -f cpuset_2

d. Execute the cpuset(1) command as follows to run bookmaker on CPUs in
the Green cpuset.

cpuset -q Blue -A bookmaker

The bookmaker job threads will run only on this cpuset. BookMaker jobs
will use memory from system nodes containing the CPUs in the cpuset. Jobs
running on other cpusets will not use memory from these nodes.

Note: The syntax of the Cpuset System has been extended to allow you to explicitly
specify the memory associated with a logical node as belonging to a specific cpuset.
This allows you to assign memory-only nodes to a particular cpuset to increase the
memory resources available to a particular application. For detailed information on
memory-only nodes and cpusets, see "Cpusets and Memory-Only Nodes", page 69.

60 007–3700–015

IRIX® Admin: Resource Administration

Boot Cpuset
The boot_cpuset.so(4) library provides a method for containing the init(1M)
process and all of its descendents within a cpuset. Because all standard processes are
descendents of the init process, this means that all standard processes on the system
such as daemons, interactive or background processing, scripts, and so on, are
confined to this cpuset. This cpuset is named boot.

Kernel system threads and interrupt threads can be confined to the boot cpuset by
using the XThread Control Interface (XTCI), which is documented in the realtime(5)
man page and the REACT Real-Time Programmer’s Guide. If the boot cpuset exists,
kernel threads that are not forced to run on specific CPUs, run within the boot cpuset.

Note:

The boot_cpuset.so library is provided only on SGI 2000, SGI Origin 300, and SGI
Orgin 3000 series of systems, that is, systems that are based on ccNUMA or
NUMAflex architecture.

The SGI Origin 3000 series of servers uses the NUMAflex interconnect fabric and
modular components, or "bricks," to isolate the CPU and memory, I/O, and storage
into separate bricks. A CPU brick, called a C-brick, contains four CPUs and up to 8
Gbytes of local memory. The SGI 2000 series of servers uses the earlier ccNUMA
interconnect fabric. The smallest building block of the scalable ccNUMA architecture
is the node board, consisting of two CPUs with associated cache and memory. The
description of cpusets in this manual applies to both the NUMAflex and ccNUMA
architectures.

The boot_cpuset.so library is located in the /lib32 directory and its behavior is
controlled by the following files:

• /etc/config/boot_cpuset

• /etc/config/boot_cpuset.config

Use chkconfig(1M) command to create the /etc/config/boot_cpuset file as
follows:

chkconfig -f boot_cpuset on

You can use the chkconfig(1M) command to configure the boot_cpuset.so(4)
library on or off. If the library is configured on by init during system startup, the

007–3700–015 61

4: Cpuset System

boot_cpuset.so library is loaded and executed and the cpuset is created. If the
library is configured off, the library will exit and init will resume normal processing.

The /etc/config/boot_cpuset.config file is the configuration file specifying
the cpuset. It follows the same conventions as the cpuset(4) configuration file.

The following example shows a boot_cpuset.config file that would divide half of
an eight CPU system for normal system usage:

the boot_cpuset

MEMORY_LOCAL

MEMORY_MANDATORY

CPU 0

CPU 1

CPU 2

CPU 3

Note: CPU 0 cannot belong to an EXCLUSIVE cpuset. For restrictions that apply to
CPUs belonging to cpusets, see "Restrictions on CPUs within Cpusets", page 56.

The second configuration file shows a cpuset that could be dedicated to a specific
application:

the cpuset dedicated to a specific application

EXCLUSIVE

MEMORY_LOCAL

MEMORY_MANDATORY

CPU 4

CPU 5

CPU 6

CPU 7

For more information, see "Cpuset Command and Configuration File", page 62 and
the cpuset(4) man page.

Cpuset Command and Configuration File
This section describes the cpuset(1) command and the cpuset configuration file.

62 007–3700–015

IRIX® Admin: Resource Administration

cpuset Command

The cpuset(1) command is used to define and manage a set of CPUs called a cpuset.
A cpuset is a named set of CPUs, which may be defined as restricted or open. The
cpuset command creates and destroys cpusets, retrieves information about existing
cpusets, and attaches a process to a cpuset. Attachment to a cpuset is inherited across
the fork(2) system call. Consequently, all processes that are children of an attached
process will also be attached to the same cpuset.

Note: The cpuset command does not require the use of the Miser batch processing
system.

A restricted cpuset allows only processes that are attached to the cpuset to run on the
set of CPUs. An open cpuset allows any process to run on its CPUs, but a process
that is attached to the cpuset can run only on the CPUs belonging to the cpuset.

For the SGI 2000, SGI Origin 300, and SGI Origin 3000 series of systems— systems that
are based on ccNUMA architecture—the administrator can restrict memory allocation
to the nodes that contain the CPUs defined in the cpuset. For more information, see
the MEMORY_MANDATORY flag description that follows and the cpuset(4) man page.

Cpuset Configuration File

A cpuset is defined by a cpuset configuration file and a name. See the cpuset(4)
man page for a definition of the file format. The cpuset configuration file is used to
list the CPUs that are members of the cpuset. It also contains any additional
arguments required to define the cpuset. A cpuset name is between 3 and 8
characters long; names of 2 or fewer characters are reserved. You can designate one
or more CPUs or a range of CPUs as part of a cpuset on a single line in the cpuset
configuration file. CPUs in a cpuset do not have to be specified in a particular order.
Each cpuset on your system must have a separate cpuset configuration file.

Note: In a cluster environment, the cpuset configuration file should reside on the root
file system. If the cpuset configuration file resides on a file system other than the root
file system and you attempt to unmount the file system, the vnode for the cpuset
remains active and the unmount command fails. For more information, see the
mount(1M) man page.

007–3700–015 63

4: Cpuset System

The file permissions of the configuration file define access to the cpuset. When
permissions need to be checked, the current permissions of the file are used. It is
therefore possible to change access to a particular cpuset without having to tear it
down and recreate it, simply by changing the access permission. Read access allows a
user to retrieve information about a cpuset, while execute permission allows a user to
attach a process to the cpuset.

By convention, CPU numbering on SGI systems ranges between zero and the number
of processors on the system minus one. The mpadmin -n command reports which
processors are physically configured on a system. You can also use the hinv -vm
command to show the hardware configuration of your system. For more information
on the CPU naming convention and system hardware configuration, see Chapter 4,
“Configuring the IRIX Operating System”, in the IRIX Admin: System Configuration
and Operation manual and the mpadmin(1) and hinv(1) man pages.

The following is a sample configuration file that describes an exclusive cpuset
containing three CPUs:

cpuset configuration file

EXCLUSIVE

MEMORY_LOCAL

MEMORY_EXCLUSIVE

CPU 1

CPU 5

CPU 10

This specification will create a cpuset containing three CPUs. When the EXCLUSIVE
flag is set, it restricts those CPUs to running threads that have been explicitly
assigned to the cpuset. When the MEMORY_LOCAL flag is set, the jobs running on the
cpuset will use memory from the nodes containing the CPUs in the cpuset. When the
MEMORY_EXCLUSIVE flag is set, jobs running on other cpusets or on the global cpuset
will normally not use memory from these nodes.

When the MEMORY_MANDATORY flag is set, the jobs running on the cpuset can only
use memory from nodes containing the CPUs in this cpuset. The MEMORY_LOCAL flag
is only an advisory but the MEMORY_MANDATORY flag is enforced by the kernel.

Note: On a system with both Miser and cpuset configured, conflicts may occur
between a CPU that a Miser queue is using and a CPU assigned to a cpuset. Miser
does not have access to CPUs that belong to a cpuset configured with the EXCLUSIVE
flag set. Avoid running Miser and cpusets on the same system.

64 007–3700–015

IRIX® Admin: Resource Administration

The following is a sample configuration file that describes an exclusive cpuset
containing seven CPUs:

cpuset configuration file

EXCLUSIVE

MEMORY_LOCAL

MEMORY_EXCLUSIVE

CPU 16

CPU 17-19, 21

CPU 27

CPU 25

Commands are newline terminated; characters following the comment delimiter, #,
are ignored; case matters; and tokens are separated by whitespace, which is ignored.

The valid tokens are as follows:

Valid tokens Description

EXCLUSIVE Defines the CPUs in the cpuset to be restricted. It can
occur anywhere in the file. Anything else on the line is
ignored.

EXPLICIT By default, if a CPU is part of a cpuset, the memory on
the node where the CPU is located, is also part of the
cpuset. This flag overrides the default behavior. If this
directive is present, the nodes with memory that are to
be included in the cpuset must be specified using the
MEM or NODE directives.

MEMORY_LOCAL Threads assigned to the cpuset will attempt to assign
memory only from nodes within the cpuset.
Assignment of memory from outside the cpuset will
occur only if no free memory is available from within
the cpuset. No restrictions are made on memory
assignment to threads running outside the cpuset.

MEMORY_EXCLUSIVE Threads not assigned to the cpuset will not use memory
from within the cpuset unless no memory outside the
cpuset is available.

When a cpuset is created and memory is occupied by
threads that are already running on the cpuset nodes,

007–3700–015 65

4: Cpuset System

no attempt is made to explicitly move this memory. If
page migration is enabled, the pages will be migrated
when the system detects the most references to the
pages that are nonlocal.

MEMORY_KERNEL_AVOID The kernel avoids allocating memory from nodes
contained in this cpuset. If kernel memory requests
cannot be satisfied from outside this cpuset, this option
is ignored and allocations occur from within the cpuset.
Currently, this option prevents only the system buffer
cache from being placed on the specified nodes.

!
Caution: Most sites running cpusets should not use
this option. The use of this option can degrade system
performance because kernel memory allocations
become concentrated on the remaining system nodes.
This option is effective only for certain workload
patterns and can cause severe performance penalties in
other situations. Do not use this option unless it is
indicated by SGI support staff.

This option was introduced in the IRIX 6.5.7 release.

MEMORY_MANDATORY The kernel will limit all memory allocations to nodes
that are contained in this cpuset. If memory requests
cannot be satisfied, the allocating process will sleep
until memory is available. The process will be killed if
no more memory can be allocated.

POLICY_PAGE Requires the MEMORY_MANDATORY token. This is the
default policy if no policy is specified. This policy will
cause the kernel to move user pages to the swap file
(see swap(1M)) to free physical memory on the nodes
contained in this cpuset. If swap space is exhausted, the
process will be killed.

POLICY_KILL Requires the MEMORY_MANDATORY token. The kernel
will attempt to free as much space as possible from
kernel heaps, but will not page user pages to the swap

66 007–3700–015

IRIX® Admin: Resource Administration

file. If all physical memory on the nodes contained in
this cpuset are exhausted, the process will be killed.

POLICY_SHARE_WARN When creating a cpuset, if it is possible for the new
cpuset to share memory on a node with another cpuset,
the new cpuset will be created but a warning message
will be issued. The POLICY_SHARE_WARN and
POLICY_SHARE_FAIL tokens cannot be used together.

POLICY_SHARE_FAIL When creating a cpuset, if it is possible for the new
cpuset to share memory on a node with another cpuset,
the new cpuset fails to be created and an error message
will be issued. The POLICY_SHARE_WARN and
POLICY_SHARE_FAIL tokens cannot be used together.

CPU cpuid or cpuids Specifies a single CPU or a list of CPUs that will be
part of the cpuset. The user can mix a single CPU line
with a CPU list line. For example:

CPU 2

CPU 3-4,5,7,9-12

MEM nodeid or nodeids Specifies the CPUs and memory of a single node or a
list of CPUs and memory of a node that will be part of
the cpuset. The specification of nodes follows the same
syntax as the CPU specification.

NODE nodeid or
nodeids

Specifies the CPUs and memory of a single node or the
CPUs and memory of a list of nodes that will be part of
the cpuset. This directive is used to specify that all
node resources (CPU and memory) are to be included
in the cpuset. The specification of nodes follows the
same syntax as the CPU specification.

MEMORY_SIZE_ADVISORY
size

Upon creation of a new cpuset, if the memory to be
included is below the specified size, a warning message
is issued and the cpuset continues to be created. The
value for size is specified as an integer suffixed by a size
factor, as follows:

• B indicates bytes

• K indicates kilobytes

• M indicates megabytes

007–3700–015 67

4: Cpuset System

• G indicates gigabytes

• T indicates terabytes

For example,

MEMORY_SIZE_ADVISORY 130965K # 130.964 MegaBytes
MEMORY_SIZE_ADVISORY 8192M # 8.192 GigaBytes

MEMORY_SIZE_ADVISORY 4G # 4 GigaBytes

MEMORY_SIZE_ADVISORY 1T # 1 TeraByte

The MEMORY_SIZE_ADVISORY and
MEMORY_SIZE_MANDATORY tokens can be used
together.

MEMORY_SIZE_MANDATORY
size

Upon creation of a new cpuset, if the memory to be
included is below the specified size, an error message is
issued and the cpuset fails to be created. The value for
size is specified as an integer suffixed by a size factor, as
follows:

• B indicates bytes

• K indicates kilobytes

• M indicates megabytes

• G indicates gigabytes

• T indicates terabytes

The MEMORY_SIZE_ADVISORY and
MEMORY_SIZE_MANDATORY tokens can be used
together.

An example of the syntax for specifying size is in the
example for the MEMORY_SIZE_ADVISORY token.

CPU_COUNT_ADVISORY
count

Upon creation of a new cpuset, if the number of CPUs
to be included is below the specified count, a warning
message is issued and the cpuset continues to be
created. The CPU_COUNT_ADVISORY and

68 007–3700–015

IRIX® Admin: Resource Administration

CPU_COUNT_MANDATORY tokens can be used together.
An example is, as follows:

CPU_COUNT_ADVISORY 128 # If number CPUs < 128 warn

CPU_COUNT_MANDATORY
count

Upon creation of a new cpuset, if the number of CPUs
to be included is below the specified count, an error
message is issued and the cpuset fails to be created. The
CPU_COUNT_ADVISORY and CPU_COUNT_MANDATORY
tokens can be used together. An example is, as follows:

CPU_COUNT_MANDATORY 96 # If number CPUs < 96 fail

Cpusets and Memory-Only Nodes
In an SGI Origin 3900 system, a Cx-brick contains node boards without CPU packages
or cache that are referred to as a memory-only nodes. The Cx-brick is a "super" CPU
brick. It contains multiple node cards. One of those node cards must be a CPU node,
but any of the other nodes can be memory-only nodes. Memory-only nodes,
sometimes called headless nodes, allow you to expand the memory capabilities of your
system without the cost or overhead of adding unnecessary additional processors.

Memory placement is a significant factor in the performance of nearly all applications
running on a shared-memory system. The syntax of the Cpuset System has been
extended to allow you to explicitly specify the memory associated with a logical node
as belonging to a specific cpuset. This allows you to assign memory-only nodes to a
particular cpuset to increase the memory resources available to a particular
application.

Prior to the IRIX 6.5.21 release, when using cpusets, you could only specify CPU
resources by logical CPU number. The memory attached to those CPUs was implied
to be part of the cpuset. With the 6.5.21 release, the cpuset syntax allows you to
explicitly specify both memory and nodes available to a cpuset. This section describes
the changes to the cpuset syntax to support memory-only nodes.

The new keyword directives for use in the cpuset configuration file (there are
equivalent structures or flags for the cpuset API) to support memory-only nodes are
as follows:

• POLICY_SHARE_WARN

• POLICY_SHARE_FAIL

007–3700–015 69

4: Cpuset System

• NODE nodeid or nodeids

• MEM nodeid or nodeids

• MEMORY_SIZE_ADVISORY size

• MEMORY_SIZE_MANDATORY size

• CPU_COUNT_ADVISORY count

• CPU_COUNT_MANDATORY count

For a detailed descriptions of these keywords and all cpuset keywords, see "Cpuset
Configuration File", page 63.

The cpuset API has been extended to support memory-only nodes. For more
information, see "Application Programming Interface for the Cpuset System", page
195.

Installing the Cpuset System
Although the Cpuset System is functionally separate from the Miser batch processing
system, the current Cpuset System was developed in conjunction with the software
development of Miser. The Cpuset System software is contained within the Miser
subsystem software. To install the Cpuset System software, see "Enabling or Disabling
Miser", page 44.

Obtaining the Properties Associated with a Cpuset
The cpuset -q cpuset_name -p command allows you to see the various properties
associated with a particular cpuset as follows:

• Permissions on the configuration file that define access to the cpuset

• Access control lists (ACLs)

• Mandatory access control (MAC) labels

• Flags such as MEMORY_EXCLUSIVE

For more information on flags associated with a cpuset, see "Cpuset Configuration
File", page 63, and the cpuset(4) man page.

70 007–3700–015

IRIX® Admin: Resource Administration

• Number of processes

• CPUs

The cpusetGetProperties(3x) function in the cpuset library is used retrieve
various properties of the specified cpuset. The cpusetFreeProperties(3x) function
is used to release memory used by the cpuset_Properties_t structure. For more
information, see "Retrieval Functions", page 241, and "Clean-up Functions", page 271,
and the cpusetGetProperties(3x) and cpusetFreeProperties(3x) man pages.

Cpuset System and Trusted IRIX
This section describes how to run cpusets in a Trusted IRIX environment.

The file permissions of the configuration file define access to the cpuset. When
permissions need to be checked, the current permissions of the file are used.

Read access allows a user to retrieve information about a cpuset and execute
permission allows the user to attach a process to the cpuset.

Cpusets on IRIX require two user classes: root and user. The root class creates,
destroys, moves a process, and adds a process to the cpuset. The user class is
governed by the file permissions of the configuration file for the given cpuset.

Given a configuration file with the following characteristics:

Permissions Owner Group Size Filename

-rwxr----- root cpuset 512 cpuset.test

Group read permission allows a user belonging to the group cpuset to list all cpusets
in the cpuset defined by the cpuset.test file and get a listing of all processes in
this cpuset. In order for the user to add processes to the cpuset governed by the
cpuset.test file, you would need to change the permissions as follows:

Permissions Owner Group Size Filename

-rwxr-x--- root cpuset 512 cpuset.test

In a Trusted IRIX environment, permissions are governed by the /etc/capability
file. See the capability(4) and capabilities(4) man pages for more information

007–3700–015 71

4: Cpuset System

on the capability mechanism that provides fine grained control over the privileges of
a process. Each user in the capability file has a set of minimum and maximum
permissions. Consequently, root does not have any special abilities except to be able
to use the suattr(1M) call so that it may assume any capabilities and permissions.
Capabilities and permissions are also narrowed by the use of mandatory access
control (MAC) labels and access control lists (ACLs).

In Trusted IRIX, to allow a user belonging to the group cpuset to list all cpusets in
the cpuset defined by the cpuset.test file and get a listing of all processes in this
cpuset, you must perform the following:

• Assign the user with a MAC label of userlow.

• Make the following entry in the /etc/capability file: cpuuser1:all=:all=

You cannot assign a user all capabilities with effective, inherited, and permissive
rights (+eip) added. If you add +eip, the user will gain more privileges than
allowed by the Cpuset System.

A Trusted IRIX user with a cpuuser1:all=:all= entry in the /etc/capability
file has the same permissions as the user class in IRIX.

The root class in Trusted IRIX must have the CAP_SCHED_MGT+eip capability to
create and destroy cpusets and to move process out of the cpuset.

In Trusted IRIX, you can use ACLs to control group permissions. With ACLs, you can
easily select which users in the group can add a process to the cpuset. You can use
ACLs to control a user’s access to a cpuset without that user belonging to the group
owner of the configuration file.

Using the Cpuset Library
The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain the properties associated
with an existing cpuset, and to attach a process and all of its children to a cpuset.

For information on using the Cpuset Library, see "Application Programming Interface
for the Cpuset System", page 195.

This section describes the following topics:

• "Using the cpusetAttachPID and cpusetDetachPID Functions", page 73

72 007–3700–015

IRIX® Admin: Resource Administration

• "Using the cpusetMove and cpusetMoveMigrate Functions", page 74

Using the cpusetAttachPID and cpusetDetachPID Functions

The cpusetAttachPID(3x) function in the cpuset library allows a specific process,
identified by its PID value, to be attached to a cpuset. The new cpusetDetachPID
function allows a specific process, identified by its PID value, to be detached from a
cpuset. The ability to attach and detach specific processes to or from a cpuset is
controlled by the permissions of the cpuset configuration file and the ownership of
the processes involved. For more information on the cpuset configuration file, see
"Cpuset Configuration File", page 63.

The cpusetAttachPID(3x) and cpusetDetachPID(3x) functions should not be
used with the MEMORY_MANDATORY flag set to avoid memory latency problems.
Because a cpuset will use memory only from the original compute nodes, use the
cpusetAttachPID and cpusetDetachPID functions as follows:

Figure 4-2, page 74, shows several jobs running in two cpusets each containing four
CPUs. A prime job requires a new cpuset using all eight CPUs. To create the new
cpuset, perform the following steps:

1. Use the cpusetDetachPID function to move all jobs out of cpuset A and cpuset
B.

2. Suspend the jobs running on cpuset A and B.

3. Use the cpusetDestroy(3x) function to destroy cpuset A and cpuset B.

4. Use the cpusetCreate(3x) function to create the new cpuset for the prime job.

5. Run the prime job in the new cpuset.

6. Destroy the new cpuset when the prime job has completed running.

7. Recreate cpuset A and B exactly as before.

8. Restart the suspended jobs.

9. Use the cpusetAttachPID function to reattach each job to its respective cpuset.

007–3700–015 73

4: Cpuset System

Cpuset A

Job 1

Job 1

Cpuset A

Cpuset B

Job 2

Job 2

Cpuset B

NEW Cpuset

Prime job

Figure 4-2 Using the cpusetAttachPID and cpusetDetachPID Functions

Using the cpusetMove and cpusetMoveMigrate Functions

Figure 4-3, page 75, shows an example of using the cpusetMove(3x) and
cpusetMoveMigrate(3x) functions.

74 007–3700–015

IRIX® Admin: Resource Administration

0 1

A

2 3

B

4 5

C D

6 7

Global Cpuset

2 3 4 5 6 7

cpusetM
ove()

cp
us

et
M

ov
eM

igr
at

e(
)

Move PIDs to global Cpuset
but do not move memory

Change CPU assignments
Move memory

Four existing Cpusets

cpusetDestroy()
cpusets A - D

cpusetCreate()
New Cpuset

2 3

B

4 5

C D

6 7

Figure 4-3 Moving Processes From One Cpuset to Another

The cpusetMoveMigrate function is used to directly move a specific process and its
associated memory—identified by its process ID (PID), process group ID (PGID), job
ID (JID), session ID (SID), or array services handle (ASH) —to a specified cpuset. The
cpusetMove function is used to temporarily move a process, identified by its PID,
PGID, JID, or ASH—out of a specified cpuset to another cpuset or the global cpuset.
In this case, the memory is not migrated (moved). Recall that global cpuset is a term
used to describe all the CPUs that are not in a cpuset. Unlike the
cpusetMoveMigrate function, the cpusetMove function does not move the
memory associated with a process. One example of using these functions is shown in
Figure 4-3, page 75. To move a process into a global cpuset from a cpuset you plan to
destroy, use the cpusetMove function and specify the destination as NULL. You can
then use the cpusetMoveMigrate function to move the process from the global
cpuset into a newly created cpuset.

007–3700–015 75

4: Cpuset System

Cpuset System Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type man commandname. For printed versions of the cpuset
library man pages, see "Application Programming Interface for the Cpuset System",
page 195 in Appendix A.

User-Level Man Pages

The following user-level man pages are provided with Cpuset System software:

User-level man page Description

cpuset(1) Defines and manages a set of CPUs

Cpuset Library Man Pages

The following cpuset Lcibrary man pages are provided with Cpuset System software:

Cpuset library man page Description

cpusetAllocQueueDef(3x) Allocates a cpuset_QueueDef_t
structure

cpusetAttach(3x) Attaches the current process to a
cpuset

cpusetAttachPID(3x) Attaches a specific process to a
cpuset

cpusetCreate(3x) Creates a cpuset

cpusetDestroy(3x) Destroys a cpuset

cpusetDetachAll(3x) Detaches all threads from a cpuset

cpusetDetachPID(3x) Detaches a specific process from a
cpuset

cpusetFreeCPUList(3x) Releases memory used by a
cpuset_CPUList_t structure

cpusetFreeNameList(3x) Releases memory used by a
cpuset_NameList_t structure

76 007–3700–015

IRIX® Admin: Resource Administration

cpusetFreePIDList(3x) Releases memory used by a
cpuset_PIDList_t structure

cpusetFreeProperties(3x) Releases memory used by a
cpuset_Properties_t structure

cpusetFreeQueueDef(3x) Releases memory used by a
cpuset_QueueDef_t structure

cpusetGetCPUCount(3x) Obtains the number of CPUs
configured on the system

cpusetGetCPULimits(3x) Gets the list of all CPUs assigned to
a cpuset

cpusetGetCPUList(3x) Gets the list of all CPUs assigned to
a cpuset

cpusetGetFlags(3x) Gets the mask of flags for a cpuset

cpusetGetMemLimits(3x) Gets the memory size limits for a
cpuset

cpusetGetMemList(3x) Get the list of all nodes with
memory assigned to a cpuset

cpusetGetName(3x) Gets the name of the cpuset to
which a process is attached

cpusetGetNameList(3x) Gets a list of names for all defined
cpusets

cpusetGetNodeList(3x) Gets the list of nodes assigned to a
cpuset

cpusetGetPIDList(3x) Gets a list of all PIDs attached to a
cpuset

cpusetGetProperties(3x) Retrieves various properties
associated with a cpuset

cpusetGetTrustPerm(3x) Gets the Trusted Security
permissions for a cpuset

cpusetGetUnixPerm(3x) Gets the UNIX file permissions for
a cpuset

007–3700–015 77

4: Cpuset System

cpusetMove(3x) Temporarily moves a process,
identified by its PID, PGID, JID,
SID, or ASH, out of specified cpuset

cpusetMoveMigrate(3x) Moves a specific process, identified
by its PID, PGID, JID, SID, or ASH,
and its associated memory, from
one cpuset to another

cpusetSetCPUList(3x) Sets the list of all nodes with
memory assigned to a cpuset

cpusetSetCPULimits(3x) Sets the count limits for a cpuset

cpusetSetNodeList(3x) Sets the list of nodes assigned to a
cpuset

cpusetSetFlags(3x) Sets the mask of flags for a cpuset

cpusetSetMemLimits(3x) Sets the memory size limits for a
cpuset

cpusetSetMemList(3x) Sets the list of all nodes with
memory assigned to a cpuset

cpusetSetPermFile(3x) Sets the name of the file used to
define the access permissions for a
cpuset

File Format Man Pages

The following file format description man pages are provided with Cpuset System
software:

File Format man page Description

cpuset(4) Cpuset configuration files

Miscellaneous Man Pages

The following miscellaneous man pages are provided with Cpuset System software:

78 007–3700–015

IRIX® Admin: Resource Administration

Miscellaneous man page Description

cpuset(5) Overview of the Cpuset System

007–3700–015 79

Chapter 5

Comprehensive System Accounting

The IRIX system has three types of accounting: basic accounting, extended
accounting, and Comprehensive System Accounting (CSA). You can use either one
type of accounting or a combination of them, depending on your site’s accounting
needs. This chapter contains detailed information about CSA.

You can use the three types of IRIX accounting to log and charge for certain types of
system activity. Using accounting data, you can determine how system resources
were used and if a particular user has used more than a reasonable share; trace
significant system events, such as security breaches, by examining the list of all
processes invoked by a particular user at a particular time; and set up billing systems
to charge login accounts for using system resources.

Basic accounting consists of standard UNIX accounting features. Basic accounting is
process oriented; a new accounting record is produced for each process that has been
run, containing statistics about the resources used by that individual process. The
runacct(1M) command is the main daily accounting shell script usually initiated by
cron(1M). The runacct(1M) command processes accounting records written into the
process accounting data file.

Extended accounting is an IRIX feature that has extended process accounting
capabilities, along with project and array session accounting features. Unlike basic
processing accounting and CSA, which write accounting data directly to an
accounting data file, extended accounting writes data files using the system audit trail
(SAT) facility. Audit data is collected directly from the kernel by the satd(1M)
program. The extended accounting data is a superset of the data collected and
reported by basic accounting.

CSA provides additional capabilities that provide more detailed and accurate
accounting data per job. It also contains data from some daemons. The csarun(1M)
command, usually initiated by the cron(1M) command, directs the processing of the
CSA daily accounting files. The csarun(1M) command processes accounting records
written into the CSA accounting data file.

For more detailed information on basic accounting and extended accounting, see
“About the Process Accounting System” and “IRIX Extended Accounting”,
respectively, in Chapter 7, “System Accounting” of the IRIX Admin: Backup, Security
and Accounting manual.

007–3700–015 81

5: Comprehensive System Accounting

Note: CSA is now supported on both the IRIX feature and maintenance streams.

This chapter contains the following sections:

• "Read Me First", page 82

• "CSA Overview", page 83

• "Concepts and Terminology", page 84

• "Enabling or Disabling CSA", page 86

• "CSA Files and Directories", page 87

• "Comprehensive System Accounting Expanded Description", page 95

• "CSA Reports", page 131

• "CSA and Existing IRIX Software", page 137

• "Migrating Accounting Data", page 138

• "CSA Man Pages", page 138

Read Me First
The sections in this chapter contain information about installing CSA software on
your system. You should reference them in the order they are listed here:

1. For a general description of CSA, see "CSA Overview", page 83.

2. To install the CSA package and job limits package used by CSA, see "Enabling or
Disabling CSA", page 86.

3. For information about CSA directories and files, see "CSA Files and Directories",
page 87.

4. For detailed information about CSA, such as, setting CSA up on your system,
daily operation, tailoring CSA to your system, see "Comprehensive System
Accounting Expanded Description", page 95.

5. For a list of CSA man pages, see "CSA Man Pages", page 138.

82 007–3700–015

IRIX® Admin: Resource Administration

6. For information about the types of reports you can generate using CSA, see "CSA
Reports", page 131.

CSA Overview
Comprehensive System Accounting (CSA) is a set of C programs and shell scripts
that, like the other accounting packages, provide methods for collecting per-process
resource usage data, monitoring disk usage, and charging fees to specific login
accounts. CSA provides:

• Per-job accounting

• Daemon accounting (tape, NQS and workload management systems)

• Flexible accounting periods (daily and periodic (monthly) accounting reports can
be generated as often as desired and are not restricted to once per day or once per
month)

• Flexible system billing units (SBUs)

• Offline archiving of accounting data

• User exits for site specific customizing of daily and periodic (monthly) accounting

• Configurable parameters within the /etc/csa.conf file

• User job accounting (ja(1) command)

CSA takes this per-process accounting information and combines it by job identifier
(jid) within system boot uptime periods. CSA accounting for a job consists of all
accounting data for a given job identifier during a single system boot period.
However, since NQS jobs or workload management jobs may span multiple reboots
and thereby consist of multiple job identifiers, CSA accounting for these jobs includes
the accounting data associated with the NQS identifier or the workload management
identifier.

Daemon accounting records are written at the completion of daemon specific events.
These records are combined with per-process accounting records associated with the
same job.

By default, CSA only reports accounting data for terminated jobs. Interactive jobs,
cron jobs and at jobs terminate when the last process in the job exits, which is
normally the login shell. An NQS or workload management job is recognized as

007–3700–015 83

5: Comprehensive System Accounting

terminated by CSA based upon daemon accounting records and an end-of-job record
for that job. Jobs which are still active are recycled into the next accounting period.
This behavior can be changed through use of the csarun command -A option.

A system billing unit (SBU) is a unit of measure that reflects use of machine
resources. SBUs are defined in the CSA configuration file /etc/csa.conf and are
set to 0.0 by default. The weighting factor associated with each field in the CSA
accounting records can be altered to obtain an SBU value suitable for your site. For
more information on SBUs, see "System Billing Units (SBUs)", page 116.

The CSA accounting records are not written into the basic accounting pacct file but
are written into a separate CSA /var/adm/acct/day/pacct file. The CSA
commands can only be used with CSA generated accounting records. Similarly, the
basic accounting commands can only be used with the records generated by basic
accounting.

There are four user exits available with the csarun(1M) daily accounting script.
There is one user exit available with the csaperiod(1M) monthly accounting script.
These user exits allow sites to tailor the daily and monthly run of accounting to their
specific needs by creating user exit scripts to perform any additional processing and
to allow archiving of accounting data. See the csarun(1M) and csaperiod(1M) man
pages for further information.

CSA provides two user accounting commands, csacom(1) and ja(1). The csacom
command reads the CSA pacct file and writes selected accounting records to
standard output. The csacom command is very similar to the basic accounting
acctcom(1) command. The ja command provides job accounting information for the
current job of the caller. This information is obtained from a separate user job
accounting file to which the kernel writes. See the csacom(1) and ja(1) man pages
for further information.

The /etc/csa.conf file contains CSA configuration variables. These variables are
used by the CSA commands.

Like any accounting or monitoring package, the CSA features do contribute to overall
system overhead. For this reason, CSA is disabled in the kernel by default. To enable
CSA, see "Enabling or Disabling CSA", page 86.

Concepts and Terminology
The following concepts and terms are important to understand when using the
accounting features:

84 007–3700–015

IRIX® Admin: Resource Administration

Term Description

Daily accounting Daily accounting is the processing, organizing, and
reporting of the raw accounting data, generally
performed once per day.

In basic accounting, daily accounting can only be run
once a day. With CSA, it can be run as many times as
necessary during a day; however, this feature is still
referred to as daily accounting.

Job A job is a grouping of processes that the system treats
as a single entity and is identified by a unique job
identifier (job ID).

CSA is the only accounting type to organize accounting
data by jobs and boot times and then place the data
into a sorted pacct file.

For non-NQS or non-workload management jobs, a job
consists of all accounting data for a given job ID during
a single boot period.

An NQS job consists of the accounting data for all job
IDs associated with the job’s NQS sequence number,
and a workload management job consists of the
accounting data for all job IDs associated with the
workload management request ID. NQS or workload
management jobs may span multiple boot periods. If a
job is restarted, it has the same job ID associated with it
during all boot periods in which it runs. Rerun NQS or
workload management jobs have multiple job IDs. CSA
treats all phases of an NQS job or workload
management job as being in the same job.

Periodic accounting Periodic (monthly) accounting further processes,
reports, and summarizes the daily accounting reports to
give a higher level view of how the system is being
used.

In basic accounting, this refers to accounting that is run
on a monthly basis. CSA, however, lets system
administrators specify the time periods for which
monthly or cumulative accounting is to be run. Thus,

007–3700–015 85

5: Comprehensive System Accounting

periodic accounting can be run more than once a month,
but sometimes is still referred to as monthly accounting.

Daemon accounting Daemon accounting is the processing, organizing, and
reporting of the raw accounting data, performed at the
completion of daemon specific events.

Recycled data Recycled data is data left in the raw accounting data
file, saved for the next accounting report run.

By default, accounting data for active jobs is recycled
until the job terminates. CSA reports only data for
terminated jobs unless csarun is invoked with the -A
option. csarun places recycled data into the
/var/adm/acct/day/pacct0 data file.

The following abbreviations and definitions are used throughout this chapter:

Abbreviation Definition

MMDD Month, day

hhmm Hour, minute

Enabling or Disabling CSA
The following steps are required to set up CSA job accounting:

1. Use the inst(1M) utility to install the eoe.sw.csaacct subsystem from your
IRIX distribution media. Installing CSA also requires that the eoe.sw.acct and
eoe.sw.jlimits subsystems are installed.

2. Enable CSA within the kernel by using the systune(1M) utility to set
do_csaacct to a nonzero value. It will be necessary to reboot the system after
completing this step.

3. Configure CSA on across system reboots by using the chkconfig(1M) utility as
follows:

chkconfig csaacct on

4. Modify the CSA configuration variables in /etc/csa.conf as desired.

86 007–3700–015

IRIX® Admin: Resource Administration

5. Use the csaswitch(1M) command to configure on the accounting record types
and thresholds defined in /etc/csa.conf as follows:

csaswitch -c on

This step will be done automatically for subsequent system reboots when CSA is
configured on via the chkconfig(1M) utility.

For information on adding entries to the crontabs file so that the cron(1M)
command automatically runs daily accounting, see "Setting Up CSA", page 96.

The following steps are required to disable CSA job accounting:

1. To turn off CSA, use the csaswitch(1M) command:

csaswitch -c halt

2. To stop CSA from initiating after a system reboot, use the chkconfig(1M)
command:

chkconfig csaacct off

3. Disable CSA within the kernel by using the systune(1M) utility to set
do_csaacct to a zero value. It will be necessary to reboot the system after
completing this step.

CSA Files and Directories
The following sections describe the CSA files and directories.

Files in the /var/adm/acct Directory

The /var/adm/acct directory contains CSA data and report files within various
subdirectories. /var/adm/acct contains data collection files used by CSA. CSA and
IRIX basic accounting access separate pacct files. The following diagram shows the
directory and file layout for CSA:

007–3700–015 87

5: Comprehensive System Accounting

/var/adm

workday sum fiscal nite

Raw data files
pacct (CSA)

cacct.MMDDhhmm
dacct.MMDDhhmm
cms.MMDDhhmm
rprt.MMDDhhmm
login log

pdacct.MMDDhhmm
cms.MMDDhhmm
rprt.MMDDhhmm

Logs
pdact
Misc files
Error files

spacct

Temporary
files

acct

csa csa csa

Figure 5-1 The /var/adm/acct Directory

Each data and report file for CSA has a month-day-hour-minute suffix.

Warning: On a IRIX security-enhanced system, the csacom(1) command is
considered to be a covert channel. You may want to consider restricting access to this
command to the adm group.

Files in the /var/adm/acct/ Directory

The /var/adm/acct directory contains the following directories:

Directory Description

day Contains the current raw accounting data files in pacct format.

work Used by CSA as a temporary work area. Contains raw files that were
moved from /var/adm/acct/day at the start of an CSA daily
accounting run and the spacct file.

88 007–3700–015

IRIX® Admin: Resource Administration

sum/csa Contains the cumulative daily accounting summary files and reports
created by csarun(1M). The ASCII format is in
/var/adm/acct/sum/csa/rprt.MMDDhhmm.

The binary data is in
/var/adm/acct/sum/csa/cacct.MMDDhhmm,
/var/adm/acct/sum/csa/cms.MMDDhhmm, and
/var/adm/acct/sum/csa/dacct.MMDDhhmm.

fiscal/csa Contains periodic accounting summary files and reports created by
csaperiod(1M). The ASCII format is in
/var/adm/acct/fiscal/csa/rprt.MMDDhhmm.

The binary data is in
/usr/adm/acct/fiscal/csa/cms.MMDDhhmm and
/usr/adm/acct/fiscal/csa/pdacct.MMDDhhmm.

nite/csa Contains log files, csarun state, and execution times files.

Files in the /var/adm/acct/day Directory

The following files are located in the /var/adm/acct/day directory:

File Description

dodiskerr Disk accounting error file.

pacct Process and daemon accounting data.

pacct0 Recycled process and daemon accounting data.

dtmp Disk accounting data (ASCII) created by dodisk.

Files in the /var/adm/acct/work Directory

The following files are located in the /var/adm/acct/work/MMDD/hhmm directory:

File Description

BAD.Wpacct* Unprocessed accounting data containing invalid records
(verified by csaverify(1M)).

Ever.tmp1 Data verification work file.

Ever.tmp2 Data verification work file.

007–3700–015 89

5: Comprehensive System Accounting

Rpacct0 Process and daemon accounting data to be recycled in
the next accounting run.

Wdiskcacct Disk accounting data (cacct.h format) created by
dodisk(1M) (See the dodisk(1M) man page).

Wdtmp Disk accounting data (ASCII) created by dodisk(1M).

Wpacct* Raw process and daemon accounting data.

spacct sorted pacct file.

Files in the /var/adm/acct/sum/csa Directory

The following data files are located in the /var/adm/acct/sum/csa directory:

File Description

cacct.MMDDhhmm Consolidated daily data in cacct.h format. This file is
deleted by csaperiod if the -r option is specified.

cms.MMDDhhmm Daily command usage data in command summary
(cms) record format. This file is deleted by csaperiod
if the -r option is specified.

dacct.MMDDhhmm Daily disk usage data in cacct.h format. This file is
deleted by csaperiod if the -r option is specified.

loginlog Login record file created by lastlogin.

rprt.MMDDhhmm Daily accounting report.

Files in the /var/adm/acct/fiscal/csa Directory

The following files are located in the /var/adm/acct/fiscal/csa directory:

File Description

cms.MMDDhhmm Periodic command usage data in command summary
(cms) record format.

pdacct.MMDDhhmm Consolidated periodic data.

90 007–3700–015

IRIX® Admin: Resource Administration

rprt.MMDDhhmm Periodic accounting report.

Files in the /var/adm/acct/nite/csa Directory

The following files are located in the /var/adm/acct/nite/csa directory:

File Description

active Used by the csarun(1M) command to record progress
and print warning and error messages.
activeMMDDhhmm is the same as active after
csarun detects an error.

clastdate Last two times csarun was executed; in MMDDhhmm
format.

dk2log Diagnostic output created during execution of dodisk
(see the cron entry for dodisk in "Setting Up CSA",
page 96).

diskcacct Disk accounting records in cacct.h format, created by
dodisk.

EaddcMMDDhhmm Error/warning messages from the csaaddc(1M)
command for an accounting run done on MMDD at
hhmm.

Earc1MMDDhhmm Error/warning messages from the csa.archive1(1M)
command for an accounting run done on MMDD at
hhmm.

Earc2MMDDhhmm Error/warning messages from the csa.archive2(1M)
command for an accounting run done on MMDD at
hhmm.

Ebld.MMDDhhmm Error/warning messages from the csabuild(1M)
command for an accounting run done on MMDD at
hhmm.

Ecmd.MMDDhhmm Error/warning messages from the csacms(1M)
command when generating an ASCII report for an
accounting run done on MMDD at hhmm.

Ecms.MMDDhhmm Error/warning messages from the csacms(1M)
command when generating binary data for an
accounting run done on MMDD at hhmm.

007–3700–015 91

5: Comprehensive System Accounting

Econ.MMDDhhmm Error/warning messages from the csacon(1M)
command for an accounting run done on MMDD at
hhmm.

Ecrep.MMDDhhmm Error/warning messages from the csacrep(1M)
command for an accounting run done on MMDD at
hhmm.

Ecrpt.MMDDhhmm Error/warning messages from the csacrep(1M)
command for an accounting run done on MMDD at
hhmm.

Edrpt.MMDDhhmm Error/warning messages from the csadrep(1M)
command for an accounting run done on MMDD at
hhmm.

Erec.MMDDhhmm Error/warning messages from the csarecy(1M)
command for an accounting run done on MMDD at
hhmm.

Euser.MMDDhhmm Error/warning messages from the csa.user(1M) user
exit for an accounting run done on MMDD at hhmm.

Epuser.MMDDhhmm Error/warning messages from the csa.puser(1M) user
exit for an accounting run done on MMDD at hhmm.

Ever.tmp1MMDDhhmm Output file from invalid record offsets from the
csaverify(1M) command for an accounting run done
on MMDD at hhmm.

Ever.tmp2MMDDhhmm Error/warning messages from the csaverify(1M)
command for an accounting run done on MMDD at
hhmm.

Ever.MMDDhhmm Error/warning messages from the csaedit(1M) and
csaverify(1M) command (from the Ever.tmp2 file)
for an accounting run done on MMDD at hhmm.

fd2log Diagnostic output created during execution of csarun
(see cron entry for csarun in "Setting Up CSA", page
96).

lock lock1 Used to control serial use of the csarun(1M) comand.

pd2log Diagnostic output created during execution of
csaperiod (see cron entry for csaperiod in "Setting
Up CSA", page 96).

92 007–3700–015

IRIX® Admin: Resource Administration

pdact Progress and status of csaperiod.
pdact.MMDDhhmm is the same as pdact after
csaperiod detects an error.

statefile Used to record current state during execution of the
csarun command.

/usr/lib/acct Directory

The /usr/lib/acct directory contains the following commands and shell scripts
used by CSA:

Command Description

csaaddc Combines cacct records.

csabuild Organizes accounting records into job records.

csachargefee Charges a fee to a user.

csackpacct Checks the size of the CSA process accounting file.

csacms Summarizes command usage from per-process
accounting records.

csacon Condenses records from the sorted pacct file.

csacrep Reports on consolidated accounting data.

csadrep Reports daemon usage.

csaedit Displays and edits the accounting information.

csagetconfig Searches the accounting configuration file for the
specified argument.

csajrep Prints a job report from the sorted pacct file.

csaperiod Runs periodic accounting.

csarecy Recycles unfinished job records into next accounting
run.

csarun Processes the daily accounting files and generates
reports.

csaswitch Checks the status of, enables or disables the different
types of Comprehensive System Accounting (CSA), and
switches accounting files for maintainability.

007–3700–015 93

5: Comprehensive System Accounting

csaverify Verifies that the accounting records are valid.

The /usr/bin directory contains user commands associated with CSA:

Command Description

ja Starts and stops user job accounting information.

csacom Searches and prints the CSA process accounting files.

User exits allow you to tailor the csarun or csaperiod procedures to the specific
needs of your site by creating scripts to perform additional site-specific processing
during daily accounting. You need to create user exit files owned by adm with
execute permission if your site uses the accounting user exits. User exits need to be
recreated when you upgrade your system. For information on setting up user exits at
your site and some example user exit scripts, see "Setting up User Exits", page 123.

The /usr/lib/acct directory may also contain the following scripts if your site
uses the accounting user exits:

Script Description

csa.archive1 Site-generated user exit for csarun.

csa.archive2 Site-generated user exit for csarun.

csa.fef Site-generated user exit for csarun.

csa.user Site-generated user exit for csarun.

csa.puser Site-generated user exit for csaperiod.

/etc Directory

The /etc directory is the location of the csa.conf file that contains the parameter
labels and values used by CSA software.

/etc/config Directory

The /etc/config directory is the location of the csaacct file used by the
chkconfig(1M) command. The csaacct.options contains options passed to the
csaswitch(1M) command. Use a text editor to add any csaswitch(1M) options to
be passed to csaswitch during system startup only.

94 007–3700–015

IRIX® Admin: Resource Administration

Comprehensive System Accounting Expanded Description
This section contains detailed information about CSA and covers the following topics:

• "Daily Operation Overview", page 95

• "Setting Up CSA", page 96

• "The csarun Command", page 100

• "Verifying and Editing Data Files", page 104

• "CSA Data Processing", page 105

• "Data Recycling", page 109

• "Tailoring CSA", page 115

Daily Operation Overview

When the IRIX operating system is run in multiuser mode, accounting behaves in a
manner similar to the following process. However, because sites may customize CSA,
the following may not reflect the actual process at a particular site:

1. When CSA accounting is enabled and the system is switched to multiuser mode,
the /usr/lib/acct/csaswitch (see the csaswitch(1M) man page) command
is called by /etc/rc2.

2. By default, csa, memory, and I/O record types are enabled in /etc/csa.conf.
However, to run NQS, workload management, or tape daemon accounting you
must modify the /etc/csa.conf file and the appropriate subsystem. For more
information, see "Setting Up CSA", page 96.

3. The amount of disk space used by each user is determined periodically. The
/usr/lib/acct/dodisk command (see dodisk(1M)) is run periodically by the
cron command to generate a snapshot of the amount of disk space being used by
each user. The dodisk command should be run at most once for each time
/usr/lib/acct/csarun is run (see csarun(1M)). Multiple invocations of
dodisk during the same accounting period write over previous dodisk output.

4. A fee file is created. Sites desiring to charge fees to certain users can do so by
invoking /usr/lib/acct/csachargefee (see csachargefee(1M)). Each
accounting period’s fee file (/var/adm/acct/day/fee) is merged into the

007–3700–015 95

5: Comprehensive System Accounting

consolidated accounting records by /usr/lib/acct/csaperiod (see
csaperiod(1M)).

5. Daily accounting is run. At specified times during the day, csarun is executed
by the cron command to process the current accounting data. The output from
csarun is daily accounting files and an ASCII report.

6. Periodic (monthly) accounting is run. At a specific time during the day, or on
certain days of the month, /usr/lib/acct/csaperiod (see csaperiod) is
executed by the cron command to process consolidated accounting data from
previous accounting periods. The output from csaperiod is periodic (monthly)
accounting files and an ASCII report.

7. Accounting is disabled. When the system is shut down gracefully, the
csaswitch(1M) command is executed to halt all CSA process and daemon
accounting.

Setting Up CSA

The following is a brief description of setting up CSA. Site-specific modifications are
discussed in detail in "Tailoring CSA", page 115. As described in this section, CSA is
run by a person with superuser permissions. CSA also can be run by users who are
in the adm group and have the CAP_ACCT_MGT capability. See the capability(4)
and capabilities(4) man pages for more information on the capability mechanism
that provides fine grained control over the privileges of a process. See "Allowing Non
Superusers to Execute CSA", page 129, for the necessary modifications.

1. Change the default system billing unit (SBU) weighting factors, if necessary. By
default, no SBUs are calculated. If your site wants to report SBUs, you must
modify the configuration file /etc/csa.conf.

2. Modify any necessary parameters in the /etc/csa.conf file, which contains
configurable parameters for the accounting system.

3. If you want daemon accounting, you must enable daemon accounting at system
startup time by performing the following steps:

a. Ensure that the variables in /etc/csa.conf for the subsystems for which
you want to enable daemon accounting are set to on. Set NQS_START to on
to enable NQS accounting. Set WKMG_START to on to enable workload
management accounting. Set TAPE_START to on to enable tape accounting.

96 007–3700–015

IRIX® Admin: Resource Administration

b. If necessary, enable accounting from the daemon’s side. Specifically, NQS,
workload management, and tape accounting must also be enabled by the
associated daemon. Use the qmgr set accounting on command to turn
on NQS accounting. To enable tape daemon accounting, execute tmdaemon
with the -c option. For more information on the tmdaemon command, see
the TMF Administrator’s Guide. To enable the workload management
accounting, see the appropriate workload management guide for your system.

4. As root, use the crontab(1) command with the - e option to add entries similar
to the following:

Note: If you do not use the crontab(1) command to update the crontab file
(for example, using the vi(1) editor to update the file), you must signal cron(1M)
after updating the file. The crontab command automatically updates the
crontab file and signals cron(1M) when you save the file and exit the editor.
For more information on the crontab command, see the crontab(1) man page.

0 4 * * 1-6 if /etc/chkconfig csaacct; then /usr/lib/acct/csarun 2> /var/adm/acct/nite/csa/fd2log; fi

0 2 * * 4 if /etc/chkconfig csaacct; then /usr/lib/acct/dodisk -c > /var/adm/acct/nite/csa/dk2log; fi

5 * * * 1-6 if /etc/chkconfig csaacct; then /usr/lib/acct/csackpacct; fi

0 5 1 * * if /etc/chkconfig csaacct; then /usr/lib/acct/csaperiod -r \

2> /var/adm/acct/nite/csa/pd2log; fi

These entries are described in the following steps:

a. For most installations, entries similar to the following should be made in
/var/spool/cron/crontabs/root so that cron(1M) automatically runs daily
accounting:

0 4 * * 1-6 if /etc/chkconfig csaacct; then /usr/lib/acct/csarun 2> /var/adm/acct/nite/csa/fd2log; fi

0 2 * * 4 if /etc/chkconfig csaacct; then /usr/lib/acct/dodisk -c > /var/adm/acct/nite/csa/dk2log; fi

The csarun(1m) command should be executed at such a time that dodisk
has sufficient time to complete. If dodisk does not complete before csarun
executes, disk accounting information may be missing or incomplete.

The dodisk command must be invoked with the -c option. For more
information, see the dodisk(1M) man page.

b. Periodically check the size of the pacct files. An entry similar to the
following should be made in /var/spool/cron/crontabs/root:

007–3700–015 97

5: Comprehensive System Accounting

5 * * * 1-6 if /etc/chkconfig csaacct; then /usr/lib/acct/csackpacct; fi

The cron command should periodically execute the csackpacct(1m) shell
script. If the pacct file grows larger than 4000 1K blocks (default),
csackpacct calls the command /usr/lib/acct/csaswitch -c switch
to start a new pacct file. The csackpacct command also makes sure that
there are at least 2000 1K blocks free on the file system containing
/var/adm/acct (located in the /var directory by default). If there are not
enough blocks, CSA accounting is turned off. The next time csackpacct is
executed, it turns CSA accounting back on if there are enough free blocks.

Ensure that the MIN_BLKS variable has been set correctly in the
/etc/csa.conf configuration file. MIN_BLKS is the minimum number of
free 1K blocks needed on the file system on which the var/adm/acct
directory resides. The default is 2000.

It is very important that csackpacct be run periodically so that an
administrator is notified when the accounting file system (located in the /var
directory by default) runs out of disk space. After the file system is cleaned
up, the next invocation of csackpacct enables process and daemon
accounting. You can manually re-enable accounting by invoking csaswitch
-c on.

If csackpacct is not run periodically, and the accounting file system runs
out of space, an error message is written to the console stating that a write
error occurred and that accounting is disabled. If you do not free disk space
as soon as possible, a vast amount of accounting data can be lost
unnecessarily. Additionally, lost accounting data can cause csarun to abort
or report erroneous information.

c. To run monthly accounting, an entry similar to the command shown below
should be made in /var/spool/cron/crontabs/root. This command
generates a monthly report on all consolidated data files found in
/var/adm/acct/sum/csa/* and then deletes those data files:

0 5 1 * * if /etc/chkconfig csaacct; then /usr/lib/acct/csaperiod -r \

2> /var/adm/acct/nite/csa/pd2log; fi

This entry is executed at such a time that csarun has sufficient time to
complete. This example results in the creation of a periodic accounting file
and report on the first day of each month. These files contain information
about the previous month’s accounting.

98 007–3700–015

IRIX® Admin: Resource Administration

5. On Trusted IRIX systems, perform the following steps:

a. Ensure that user adm has the CAP_ACCT_MGT capability.

b. Ensure that the following user exits (if they exist) are both readable and
executable by user adm:

• /usr/lib/acct/csa.archive1

• /usr/lib/acct/csa.archive2

• /usr/lib/acct/csa.fef

• /usr/lib/acct/csa.puser

c. Include an entry similar to the one shown below in
/var/spool/cron/crontabs/root:

2 * * 4 suattr -M dbadmin -C CAP_DAC_READ_SEARCH,CAP_DAC_WRITE,

CAP_FOWNER,CAP_MAC_READ+eip -c "if /etc/chkconfig csaacct;

then /usr/lib/acct/dodisk -c 2> /var/adm/acct/nite/csa/dk2log; fi"

d. Include entries similar to the ones shown below in
/var/spool/cron/crontabs/adm:

0 4 * * 1-6 su adm -C CAP_ACCT_MGT+pi -c "if /etc/chkconfig csaacct;

then /usr/lib/acct/csarun 2> /var/adm/acct/nite/csa/fd2log; fi"

5 * * * 1-6 su adm -C CAP_ACCT_MGT+pi -c "if /etc/chkconfig csaacct;
then /usr/lib/acct/csackpacct; fi"

0 5 1 * * if /etc/chkconfig csaacct;

then /usr/lib/acct/csaperiod -r 2> /var/adm/acct/nite/csa/pd2log; fi

6. Update the holidays file. The file /usr/lib/acct/holidays contains the
prime/nonprime table for the accounting system. The table should be edited to
reflect your location’s holiday schedule for the year. The format is composed of
three types of entries:

• Comment Lines, which may appear anywhere in the file as long as the first
character in the line is an asterisk.

• Year Designation Line, which should be the first data line (noncomment line)
in the file and must appear only once. The line consists of three fields of four
digits each (leading white space is ignored). For example, to specify the year

007–3700–015 99

5: Comprehensive System Accounting

as 1992, prime time at 9:00 a.m., and nonprime time at 4:30 p.m., the following
entry is appropriate:

1992 0900 1630

A special condition allowed for in the time field is that the time 2400 is
automatically converted to 0000

• Company Holidays Lines, which follow the year designation line and have the
following general format:

day-of-year Month Day Description of Holiday

The day-of-year field is a number in the range of 1 through 366, indicating the
day for the corresponding holiday (leading white space is ignored). The other
three fields are actually commentary and are not currently used by other
programs.

The csarun Command

The /usr/lib/acct/csarun command, usually initiated by cron(1), directs the
processing of the daily accounting files. csarun processes accounting records written
into the pacct file. It is normally initiated by cron during nonprime hours.

The csarun command also contains four user-exit points, allowing sites to tailor the
daily run of accounting to their specific needs.

The csarun command does not damage files in the event of errors. It contains a
series of protection mechanisms that attempt to recognize an error, provide intelligent
diagnostics, and terminate processing in such a way that csarun can be restarted
with minimal intervention.

Daily Invocation

The csarun command is invoked periodically by cron. It is very important that you
ensure that the previous invocation of csarun completed successfully before
invoking csarun for a new accounting period. If this is not done, information about
unfinished jobs will be inaccurate.

Data for a new accounting period can also be interactively processed by executing the
following:

nohup csarun 2> /var/adm/acct/nite/csa/fd2log &

100 007–3700–015

IRIX® Admin: Resource Administration

Before executing csarun in this manner, ensure that the previous invocation
completed successfully. To do this, look at the files active and statefile in
/var/adm/acct/nite/csa. Both files should specify that the last invocation
completed successfully. See "Restarting csarun", page 103.

Error and Status Messages

The csarun error and status messages are placed in the /var/adm/acct/nite/csa
directory. The progress of a run is tracked by writing descriptive messages to the file
active. Diagnostic output during the execution of csarun is written to fd2log.
The lock and lock1 files prevent concurrent invocations of csarun; csarun will
abort if these two files exist when it is invoked. The clastdate file contains the
month, day, and time of the last two executions of csarun.

Errors and warning messages from programs called by csarun are written to files
that have names beginning with E and ending with the current date and time. For
example, Ebld.11121400 is an error file from csabuild for a csarun invocation
on November 12, at 14:00.

If csarun detects an error, it writes a message to the SYSLOG file, removes the locks,
saves the diagnostic files, and terminates execution. When csarun detects an error, it
will send mail either to MAIL_LIST if it is a fatal error, or to WMAIL_LIST if it is a
warning message, as defined in the configuration file /etc/csa.conf.

States

Processing is broken down into separate reentrant states so that csarun can be
restarted. As each state completes, /var/adm/acct/nite/csa/statefile is
updated to reflect the next state. When csarun reaches the CLEANUP state, it
removes various data files and the locks, and then terminates.

The following describes the events that occur in each state. MMDD refers to the
month and day csarun was invoked. hhmm refers to the hour and minute of
invocation.

State Description

SETUP The current accounting file is switched via csaswitch. The accounting
file is then moved to the /var/adm/acct/work/MMDD/hhmm
directory. File names are prefaced with W.
/var/adm/acct/nite/csa/diskcacct is also moved to this
directory.

007–3700–015 101

5: Comprehensive System Accounting

VERIFY The accounting files are checked for valid data. Records with invalid
data are removed. Names of bad data files are prefixed with BAD. in
the /var/adm/acct/work/MMDD/hhmm directory. The corrected files
do not have this prefix.

ARCHIVE1 First user exit of the csarun script. If a script named
/usr/lib/acct/csa.archive1 exists, it will be executed through
the shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. You might use this user
exit to archive the accounting files in ${WORK}.

BUILD The pacct accounting data is organized into a sorted pacct file.

ARCHIVE2 Second user exit of the csarun script. If a script named
/usr/lib/acct/csa.archive2 exists, it will be executed through
the shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. You might use this exit
to archive the sorted pacct file.

CMS Produces a command summary file in cms.h format. The cms file is
written to /var/adm/acct/sum/csa/cms.MMDDhhmm for use by
csaperiod.

REPORT Generates the daily accounting report and puts it into
/var/adm/acct/sum/csa/rprt.MMDDhhmm. A consolidated data
file, /var/adm/acct/sum/csa/cacct.MMDDhhmm, is also
produced from the sorted pacct file. In addition, accounting data
for unfinished jobs is recycled.

DREP Generates a daemon usage report based on the sorted pacct file.
This report is appended to the daily accounting report,
/var/adm/acct/sum/csa/rprt.MMDDhhmm.

FEF Third user exit of the csarun script. If a script named
/var/lib/acct/csa.fef exists, it will be executed through the shell
. (dot) command. The . (dot) command will not execute a compiled
program, but the user exit script can. The csarun variables are
available, without being exported, to the user exit script. You might use
this exit to convert the sorted pacct file to a format suitable for a
front-end system.

USEREXIT Fourth user exit of the csarun script. If a script named
/usr/lib/acct/csa.user exists, it will be executed through the
shell . (dot) command. The . (dot) command will not execute a
compiled program, but the user exit script can. The csarun variables

102 007–3700–015

IRIX® Admin: Resource Administration

are available, without being exported, to the user exit script. You might
use this exit to run local accounting programs.

CLEANUP Cleans up temporary files, removes the locks, and then exits.

Restarting csarun

If csarun is executed without arguments, the previous invocation is assumed to have
completed successfully.

The following operands are required with csarun if it is being restarted:

csarun [MMDD [hhmm [state]]]

MMDD is month and day, hhmm is hour and minute, and state is the csarun entry
state.

To restart csarun, follow these steps:

1. Remove all lock files, by using the following command line:

rm -f /var/adm/acct/nite/csa/lock*

2. Execute the appropriate csarun restart command, using the following examples
as guides:

a. To restart csarun using the time and the state specified in clastdate and
statefile, execute the following command:

nohup csarun 0601 2> /var/adm/acct/nite/csa/fd2log &

In this example, csarun will be rerun for June 1, using the time and state
specified in clastdate and statefile.

b. To restart csarun using the state specified in statefile, execute the
following command:

nohup csarun 0601 0400 2> /var/adm/acct/nite/csa/fd2log &

In this example, csarun will be rerun for the June 1 invocation that started at
4:00 A.M., using the state found in statefile.

c. To restart csarun using the specified date, time, and state, execute the
following command:

nohup csarun 0601 0400 BUILD 2> /var/adm/acct/nite/csa/fd2log &

007–3700–015 103

5: Comprehensive System Accounting

In this example, csarun will be restarted for the June 1 invocation that
started at 4:00 A.M., beginning with state BUILD.

Before csarun is restarted, the appropriate directories must be restored. If the
directories are not restored, further processing is impossible. These directories are as
follows:

/var/adm/acct/work/MMDD/hhmm
/var/adm/acct/sum/csa

If you are restarting at state ARCHIVE2, CMS, REPORT, DREP, or FEF, the sorted
pacct file must be in /var/adm/acct/work/MMDD/hhmm. If the file does not
exist, csarun automatically will restart at the BUILD state. Depending on the tasks
performed during the site-specific USEREXIT state, [the sorted pacct file may or
may not need to exist.] This may or may not be acceptable.

Verifying and Editing Data Files

This section describes how to remove bad data from various accounting files.

The csaverify(1M) command verifies that the accounting records are valid and
identifies invalid records. The accounting file can be a pacct or sorted pacct file.
When csaverify finds an invalid record, it reports the starting byte offset and
length of the record. This information can be written to a file in addition to standard
output. A length of -1 indicates the end of file. The resulting output file can be used
as input to csaedit(1M) to delete pacct or sorted pacct records.

1. The pacct file is verified with the following command line, and the following
output is received:

$ /usr/lib/acct/csaverify -P pacct -o offsetfile

acct.cat-330 /usr/lib/acct/csaverify: CAUTION
readacctent(): An error was returned from the ’readpacct()’ routine.

2. The file offsetfile from csaverify is used as input to csaedit to delete the
invalid records as follows (remaining valid records are written to pacct.NEW):

/usr/lib/acct/csaedit -b offsetfile -P pacct -o pacct.NEW

104 007–3700–015

IRIX® Admin: Resource Administration

3. The new pacct file is reverified as follows to ensure that all the bad records have
been deleted:

/usr/lib/acct/csaverify -P pacct.NEW

You can use the csaedit -A option to produce an abbreviated ASCII version of
pacct or sorted pacct files.

CSA Data Processing

The flow of data among the various CSA programs is explained in this section and is
illustrated in Figure 5-2.

007–3700–015 105

5: Comprehensive System Accounting

a11927

CSA system diagram

1

2

3

4

5

6

7

8

9

10

11

13 14

6

csachargefee

csarun

csarecy

csacon

csaaddc

diskusg

Periodic
report

csabuild

csadrep

pacct

spacct

Job
report

Daemon
usage
report

Daily
report

csajrep

cms cms

cms

csacms

cacct
csacrep

csacms

cms

cacctcacct

12

pdacct

dacct

fee

dtmp
acctdisk

csacrep

Figure 5-2 CSA Data Processing

1. Generate raw accounting files. Various daemons and system processes write to
the raw pacct accounting files.

106 007–3700–015

IRIX® Admin: Resource Administration

2. Create a fee file. Sites that want to charge fees to certain users can do so with the
csachargefee(1m) command. The csachargefee command creates a fee file
that is processed by csaaddc(1m).

3. Produce disk usage statistics. The dodisk(1m) shell script allows sites to take
snapshots of disk usage. dodisk does not report dynamic usage; it only reports
the disk usage at the time the command was run. Disk usage is processed by
csaaddc.

4. Organize accounting records into job records. The csabuild(1M) command
reads accounting records from the CSA pacct file and organizes them into job
records by job ID and boot times. It writes these job records into the sorted
pacct file. This sorted pacct file contains all of the accounting data available
for each job. The configuration records in the pacct files are associated with the
job ID 0 job record within each boot period. The information in the sorted
pacct file is used by other commands to generate reports and for billing.

5. Recycle information about unfinished jobs. The csarecy(1M) command retrieves
job information from the sorted pacct file of the current accounting period
and writes the records for unfinished jobs into a pacct0 file for recycling into the
next accounting period. csabuild(1M) marks unfinished accounting jobs (those
are jobs without an end-of-job record). csarecy takes these records from the
sorted pacct file and puts them into the next period’s accounting files
directory. This process is repeated until the job finishes.

Sometimes data for terminated jobs are continually recycled. This can occur when
accounting data is lost. To prevent data from recycling forever, edit csarun so
that csabuild is executed with the -o nday option, which causes all jobs older
than nday days to terminate. Select an appropriate nday value (see the csabuild
man page for more information and "Data Recycling", page 109).

6. Generate the daemon usage report, which is appended to the daily report.
csadrep(1m) reports usage of the NQS, workload management, and tape
daemons. Input is either from a sorted pacct file created by csabuild(1M) or
from a binary file created by csadrep with the -o option. The files operand
specifies the binary files.

7. Summarize command usage from per-process accounting records. The
csacms(1m) command reads the sorted pacct files. It adds all records for
processes that executed identically named commands, and it sorts and writes
them to var/adm/acct/sum/csa/cms.MMDDhhmm, using the cms format.
The csacms(1m) command can also create an ASCII file.

007–3700–015 107

5: Comprehensive System Accounting

8. Condense records from the sorted pacct file. The csacon(1M) command
condenses records from the sorted pacct file and writes consolidated records
in cacct format to var/adm/acct/sum/csa/cacct.MMDDhhmm.

9. Generate an accounting report based on the consolidated data. The csacrep(1m)
command generates reports from data in cacct format, such as output from the
csacon(1M) command. The report format is determined by the value of
CSACREP in the /etc/csa.conf file. Unless modified, it will report the CPU
time, total KCORE minutes total KVIRTUAL minutes, block I/O wait time, and raw
I/O wait time. The report will be sorted first by user ID and then by the
secondary key of project ID and the headers will be printed.

10. Create the daily accounting report. The daily accounting report includes the
following:

• Consolidated information report (step 11)

• Unfinished recycled jobs (step 5)

• Disk usage report (step 3)

• Daily command summary (step 7)

• Last login information

• Daemon usage report (step 6)

11. Combine cacct records. The csaaddc(1M) command combines cacct records
by specified consolidation options and writes out a consolidated record in cacct
format.

12. Summarize command usage from per-process accounting records. The
csacms(1m) command reads the cms files created in step 7. Both an ASCII and a
binary file are created.

13. Produce a consolidated accounting report. csacrep(1m) is used to generate a
report based on a periodic accounting file.

14. The periodic accounting report layout is as follows:

• Consolidated information report

• Command summary report

Steps 4 through 11 are performed during each accounting period by csarun(1m).
Periodic (monthly) accounting (steps 12 through 14) is initiated by the

108 007–3700–015

IRIX® Admin: Resource Administration

csaperiod(1m) command. Daily and periodic accounting, as well as fee and disk
usage generation (steps 2 through 3), can be scheduled by cron(1m) to execute
regularly. See "Setting Up CSA", page 96, for more information.

Data Recycling

A system administrator must correctly maintain recycled data to ensure accurate
accounting reports. The following sections discuss data recycling and describe how
an administrator can purge unwanted recycled accounting data.

Data recycling allows CSA to properly bill jobs that are active during multiple
accounting periods. By default, csarun reports data only for jobs that terminate
during the current accounting period. Through data recycling, CSA preserves data for
active jobs until the jobs terminate.

In the sorted pacct file, csabuild flags each job as being either active or
terminated. csarecy reads the sorted pacct file and recycles data for the active
jobs. csacon consolidates the data for the terminated jobs, which csaperiod uses
later. csabuild, csarecy, and csacon are all invoked by csarun.

csarun puts recycled data in the /var/adm/acct/day/pacct0 file.

Normally, an administrator should not have to manually purge the recycled
accounting data. This purge should only be necessary if accounting data is missing.
Missing data can cause jobs to recycle forever and consume valuable CPU cycles and
disk space.

How Jobs Are Terminated

Interactive jobs, cron jobs, and at jobs terminate when the last process in the job
exits. Normally, the last process to terminate is the login shell. The kernel writes an
end-of-job (EOJ) record to the pacct file when the job terminates.

When the NQS daemon or workload management daemon delivers an NQS or
workload management request’s output, the request terminates. The daemon then
writes an NQ_DISP record type for NQS or WM_TERM record type for workload
management to the pacct accounting file, while the kernel writes an EOJ record to
the pacct file.

Unlike interactive jobs, NQS or workload management requests can have multiple
EOJ records associated with them. In addition to the request’s EOJ record, there can
be EOJ records for pipe clients (NQS only), net clients, and checkpointed portions of

007–3700–015 109

5: Comprehensive System Accounting

the request. The pipe client and net client perform NQS or workload management
processing on behalf of the request. The Load Sharing Facility (LSF) system currently
does not support net clients.

The csabuild command flags jobs in the sorted pacct file as being terminated if
they meet one of the following conditions:

• The job is an interactive, cron, or at job, and there is an EOJ record for the job in
the pacct file.

• The job is an NQS request, and there is both an EOJ record for the request and an
NQ_DISP record type in the pacct file.

• The job is a workload management request, and there is both an EOJ record for
the request and an WM_TERM record type in the pacct file.

• The job is an interactive, cron, or at job and is active at the time of a system crash.

• The job is manually terminated by the administrator using one of the methods
described in "How to Remove Recycled Data", page 111.

Why Recycled Sessions Should Be Scrutinized

Recycling unnecessary data can consume large amounts of disk space and CPU time.
The sorted pacct file and recycled data can occupy a vast amount of disk space on
the file system containing /var/adm/acct/day. Sites that archive data also require
additional offline media. Wasted CPU cycles are used by csarun to reexamine and
recycle the data. Therefore, to conserve disk space and CPU cycles, unnecessary
recycled data should be purged from the accounting system.

Any of the following situations can cause CSA erroneously to recycle terminated jobs:

• Kernel or daemon accounting is turned off.

The kernel or csackpacct(1m) command can turn off accounting when there is
not enough space on the file system containing /var/adm/acct/day.

• Accounting files are corrupt. Accounting data can be lost or corrupted during a
system or disk crash.

• Recycled data is erroneously deleted in a previous accounting period.

110 007–3700–015

IRIX® Admin: Resource Administration

How to Remove Recycled Data

Before choosing to delete recycled data, you should understand the repercussions, as
described in "Adverse Effects of Removing Recycled Data", page 112. Data removal
can affect billing and can alter the contents of the consolidated data file, which is used
by csaperiod.

You can remove recycled data from CSA in the following ways:

• Interactively execute the csarecy -A command. Administrators can select the
active jobs that are to be recycled by running csarecy with the -A option. Users
are not billed for the resources used in the jobs terminated in this manner. Deleted
data is also not included in the consolidated data file.

The following example is one way to execute csarecy -A (which generates two
accounting reports and two consolidated files):

1. Run csarun at the regularly scheduled time.

2. Edit a copy of /usr/lib/acct/csarun. Change the -r option on the
csarecy invocation line to -A. Also, do not redirect standard output to
${SUM_DIR}/recyrpt. The result should be similar to the following:

csarecy -A -s ${SPACCT} -P ${WTIME_DIR}/Rpacct \ 2> ${NITE_DIR}/Erec.${DTIME}

Since both the -A and -r options write output to stdout, the -r option is not
invoked and stdout is not redirected to a file. As a result, the recycled job
report is not generated.

3. Execute the jstat command, as follows, to display a list of currently active
jobs:

jstat -a > jstat.out

4. Execute the qstat command to display a list of NQS requests. The qstat
command is used for seeing whether there are requests that are not currently
running. This includes requests that are checkpointed, held, queued, or
waiting.

To list all NQS requests, execute the qstat command, as follows, using a
login that has either NQS manager or NQS operator privilege:

qstat -a > qstat.out

007–3700–015 111

5: Comprehensive System Accounting

5. Interactively run the modified version of csarun. If you execute the modified
csarun soon after the first step is complete, little data is lost because not very
much data exists.

For each active job, csarecy asks you if you want to preserve the job.
Preserve the active and nonrunning NQS jobs found in the third and fourth
steps. All other jobs are candidates for removal.

• Execute csabuild with the -o ndays option, which terminates all active jobs
older than the specified number of days. Resource usage for these terminated jobs
is reported by csarun, and users are billed for the jobs. The consolidated data file
also includes this resource usage.

To execute csabuild with the -o option, edit a copy of
/usr/lib/acct/csarun. Add the -o ndays option to the csabuild invocation
line. Specify for ndays an appropriate value for your site.

Recycled data for currently active jobs will be removed if you specify an
inappropriate value for ndays.

• Execute csarun with the -A option. It reports resource usage for both active and
terminated jobs, so users are billed for recycled sessions. This data is also included
in the consolidated data file.

None of the data for the active jobs, including the currently active jobs, is recycled.
No recycled data file is generated in the /var/adm/acct/day directory.

• Remove the recycled data file from the /var/adm/acct/day directory. You can
delete data for all of the recycled jobs, both terminated and active, by executing
the following command:

rm /var/adm/acct/day/pacct0

The next time csarun is executed, it will not find data for any recycled jobs.
Thus, users are not billed for the resources used in the recycled jobs, and this data
is not included in the consolidated data file. csarun recycles the data for
currently active jobs.

Adverse Effects of Removing Recycled Data

CSA assumes that all necessary accounting information is available to it, which means
that CSA expects kernel and daemon accounting to be enabled and recycled data not
to have been mistakenly removed. If some data is unavailable, CSA may provide

112 007–3700–015

IRIX® Admin: Resource Administration

erroneous billing information. Sites should be aware of the following facts before
removing data:

• Users may or may not be billed for terminated recycled jobs. Administrators must
understand which of the previously described methods cause the user to be billed
for the terminated recycled jobs. It is up to the site to decide whether or not it is
valid for the user to be billed for these jobs.

For those methods that cause the user to be billed, both csarun and csaperiod
report the resource usage.

• It may be impossible to reconstruct a terminated recycled job. If a recycled job is
terminated by the administrator, but the job actually terminates in a later
accounting period, information about the job is lost. If a user questions the
resource billing, it may be extremely difficult or impossible for the administrator
to correctly reassemble all accounting information for the job in question.

• Manually terminated recycled jobs may be improperly billed in a future billing
period. If the accounting data for the first portion of a job has been deleted, CSA
may be unable to correctly identify the remaining portion of the job. Errors may
occur, such as NQS or workload management requests being flagged as interactive
jobs, or NQS or workload management requests being billed at the wrong queue
rate. This is explained in detail in "NQS or Workload Management Requests and
Recycled Data", page 114.

• CSA programs may detect data inconsistencies. When accounting data is missing,
CSA programs may detect errors and abort.

The following table summarizes the effects of using the methods described in "How
to Remove Recycled Data", page 111.

007–3700–015 113

5: Comprehensive System Accounting

Table 5-1 Possible Effects of Removing Recycled Data

Method Underbilling? Incorrect billing? Consolidated data file

csarecy -A Yes. Users are not billed for
the portion of the job that was
terminated by csarecy -A.

Possible. Manually
terminated recycled jobs
may be billed improperly
in a future billing period.

Does not include data for
jobs terminated by
csarecy -A.

csabuild -o No. Users are billed for the
portion of the job that was
terminated by csabuild -o.

Possible. Manually
terminated recycled jobs
may be billed improperly
in a future billing period.

Includes data for jobs
terminated by
csabuild -o.

csarun -A No. All active and recycled
jobs are billed.

Possible. All active and
recycled jobs that
eventually terminate may
be billed improperly in a
future billing period,
because no data is recycled.

Includes data for all active
and recycled jobs.

rm Yes. All users are not billed
for the portion of the job that
was recycled.

Possible. All recycled jobs
that eventually terminate
may be billed improperly
in a future billing period.

Does not include data for
any recycled job.

By default, the consolidated data file contains data only for terminated jobs. Manual
termination of recycled data may cause some of the recycled data to be included in
the consolidated file.

NQS or Workload Management Requests and Recycled Data

For CSA to identify all NQS or workload management requests, data must be
properly recycled. When an administrator manually purges recycled data for an NQS
or workload management request, errors such as the following can occur:

• CSA fails to flag the job as an NQS or workload management job. This causes the
request to be billed at standard rates instead of an NQS or workload management
queue rate (see "NQS SBUs", page 119 or "Workload Management SBUs", page 120).

• The request is billed at the wrong queue rate.

• The wrong queue wait time is associated with the request.

114 007–3700–015

IRIX® Admin: Resource Administration

These errors occur because valuable NQS or workload management accounting
information was purged by the administrator. Only a few NQS or workload
management accounting records are written by the NQS or workload management
daemon, and all of the records are needed for CSA to properly bill NQS or workload
management requests.

NQS or workload management accounting records are only written under the
following circumstances:

• The NQS or workload management daemon receives a request.

• A request is routed to a queue. (NQS only)

• A request executes. This includes executing a request for the first time, restarting,
and rerunning a request.

• A request terminates. An NQS request can terminate because it is completed,
requeued, preempted, held, or rerun. A workload management request can
terminate because it is completed, requeued, held, rerun, or migrated.

• Output is delivered.

Thus, for long running requests that span days, there can be days when no NQS or
workload management data is written. Consequently, it is extremely important that
accounting data be recycled. If the site administrator manually terminates recycled
jobs, care must be taken to be sure that only nonexistent NQS or workload
management requests are terminated.

Tailoring CSA

This section describes the following actions in CSA:

• Setting up SBUs

• Setting up daemon accounting

• Setting up user exits

• Writing a user exit

• Modifying the charging of NQS or workload management jobs based on NQS or
workload management termination status

• Tailoring CSA shell scripts

007–3700–015 115

5: Comprehensive System Accounting

• Using at(1) instead of cron(1m) to periodically execute csarun

• Allowing users without superuser permissions to run CSA

• Using an alternate configuration file

System Billing Units (SBUs)

A system billing unit (SBU) is a unit of measure that reflects use of machine resources.
You can alter the weighting factors associated with each field in each accounting
record to obtain an SBU value suitable for your site. SBUs are defined in the
accounting configuration file, /etc/csa.conf. By default, all SBUs are set to 0.0.

Accounting allows different periods of time to be designated either prime or
nonprime time (the time periods are specified in /usr/lib/acct/holidays).

Following is an example of how the prime/nonprime algorithm works:

Assume a user uses 10 seconds of CPU time, and executes for 100 seconds of prime
wall-clock time, and pauses for 100 seconds of nonprime wall-clock time. Therefore,
elapsed time is 200 seconds (100+100). If

prime = prime time / elapsed time
nonprime = nonprime time / elapsed time
cputime[PRIME] = prime * CPU time
cputime[NONPRIME] = nonprime * CPU time

then

cputime[PRIME] == 5 seconds

cputime[NONPRIME] == 5 seconds

Under CSA, an SBU value is associated with each record in the sorted pacct file
when that file is assembled by csabuild. Final summation of the SBU values is
done by csacon during the creation of the cacct record file.

The following examples show how a site can bill different NQS or workload
management queues at differing rates.

Total SBU = (NQS queue SBU value) * (sum of all process record SBUs
+ sum of all tape record SBUs)

or

116 007–3700–015

IRIX® Admin: Resource Administration

Total SBU = (Workload management queue SBU value) * (sum of all process record SBUs
+ sum of all tape record SBUs)

Process SBUs

The SBUs for process data are separated into prime and nonprime values. Prime and
nonprime use is calculated by a ratio of elapsed time. If you do not want to make a
distinction between prime and nonprime time, set the nonprime time SBUs and the
prime time SBUs to the same value. Prime time is defined in
/usr/lib/acct/holidays. By default, Saturday and Sunday are considered
nonprime time.

The following is a list of prime time process SBU weights. Descriptions and factor
units for the nonprime time SBU weights are similar to those listed here. SBU weights
are defined in /etc/csa.conf.

Value Description

P_BASIC Prime-time weight factor. P_BASIC is multiplied by the
sum of prime time SBU values to get the final SBU
factor for the process record.

P_TIME General-time weight factor. P_TIME is multiplied by
the time SBUs (made up of P_STIME, P_UTIME,
P_QTIME, P_BWTIME, and P_RWTIME) to get the time
contribution to the process record SBU value.

P_STIME System CPU-time weight factor. The unit used for this
weight is billing units per second. P_STIME is
multiplied by the system CPU time.

P_UTIME User CPU-time weight factor. The unit used for this
weight is billing units per second. P_UTIME is
multiplied by the user CPU time.

P_QTIME Run queue wait time weight factor. The unit used for
this weight is billing units per second. P_QTIME is
multiplied by the run queue wait time.

P_BWTIME Block I/O wait time weight factor. The unit used for
this weight is billing units per second. P_BWTIME is
multiplied by the block I/O wait time.

007–3700–015 117

5: Comprehensive System Accounting

P_RWTIME Raw I/O wait time weight factor. The unit used for this
weight is billing units per second. P_RWTIME is
multiplied by the raw I/O wait time.

P_MEM General-memory-integral weight factor. P_MEM is
multiplied by the memory SBUs (made up of P_XMEM
and P_VMEM) to get the memory contribution to the
process record SBU value.

P_XMEM CPU-time-core-physical memory-integral weight factor.
The unit used for this weight is billing units per
Mbyte-minute P_XMEM is multiplied by the
core-memory integral.

P_VMEM CPU-time-virtual-memory-integral weight factor. The
unit used for this weight is billing units per
Mbyte-minute. P_VMEM is multiplied by the virtual
memory integral.

P_IO General-I/O weight factor. P_IO is multiplied by the
I/O SBUs (made up of P_BIO, P_CIO, and P_LIO) to
get the I/O contribution to the process record SBU
value.

P_BIO Blocks-transferred weight factor. The unit used for this
weight is billing units per block transferred. P_BIO is
multiplied by the number of I/O blocks transferred.

P_CIO Characters-transferred weight factor. The unit used for
this weight is billing units per character transferred.
P_CIO is multiplied by the number of I/O characters
transferred.

P_LIO Logical-I/O-request weight factor. The unit used for
this weight is billing units per logical I/O request.
P_LIO is multiplied by the number of logical I/O
requests made. The number of logical I/O requests is
total number of read and write system calls.

The formula for calculating the whole process record SBU is as follows:

PSBU = (P_TIME * (P_STIME * stime + P_UTIME * utime + P_QTIME * qwtime +

P_BWTIME * bwtime + P_RWTIME * rwtime)) + (P_MEM * (P_XMEM * coremem + P_VMEM

* virtmem)) + (P_IO * (P_BIO * bio + P_CIO * cio + P_LIO * lio));

118 007–3700–015

IRIX® Admin: Resource Administration

NSBU = (NP_TIME * (NP_STIME * stime + NP_UTIME * utime + NP_QTIME * qwtime +

NP_BWTIME * bwtime + NP_RWTIME * rwtime)) + (NP_MEM * (NP_XMEM * coremem +

NP_VMEM * virtmem)) + (NP_IO * (NP_BIO * bio + NP_CIO * cio + NP_LIO * lio));

SBU = P_BASIC * PSBU + NP_BASIC * NSBU;

The variables in this formula are described as follows:

Variable Description

stime System CPU time in seconds

utime User CPU time in seconds

bwtime Block I/O wait time in seconds

rwtime Raw I/O wait time in seconds

coremem Core (physical) memory integral in Mbyte-minutes

virtmem Virtual memory integral in Mbyte-minutes

bio Number of blocks of data transferred

cio Number of characters of data transferred

lio Number of logical I/O requests

NQS SBUs

The /etc/csa.conf file contains the configurable parameters that pertain to NQS
SBUs.

The NQS_NUM_QUEUES parameter sets the number of queues for which you want to
set SBUs (the value must be set to at least 1). Each NQS_QUEUE x variable in the
configuration file has a queue name and an SBU pair associated with it (the total
number of queue/SBU pairs must equal NQS_NUM_QUEUES). The queue/SBU pairs
define weights for the queues. If an SBU value is less than 1.0, there is an incentive to
run jobs in the associated queue; if the value is 1.0, jobs are charged as though they
are non-NQS jobs; and if the SBU is 0.0, there is no charge for jobs running in the
associated queue. SBUs for queues not found in the configuration file are
automatically set to 1.0.

The NQS_NUM_MACHINES parameter sets the number of originating machines for
which you want to set SBUs (the value must be at least 1). Each NQS_MACHINE x
variable in the configuration file has an originating machine and an SBU pair
associated with it (the total number of machine/SBU pairs must equal

007–3700–015 119

5: Comprehensive System Accounting

NQS_NUM_MACHINES). SBUs for originating machines not specified in
/etc/csa.conf are automatically set to 1.0.

The queue and machine SBUs are multiplied together to give an NQS multiplier. If
the SBUs are set to less than 1.0, there is an incentive to run jobs in these queues or
from these machines. SBUs of 1.0 indicate that jobs in the queues or from associated
hosts are billed normally.

Workload Management SBUs

The /etc/csa.conf file contains the configurable parameters that pertain to
workload management SBUs.

The WKMG_NUM_QUEUES parameter sets the number of queues for which you want to
set SBUs (the value must be set to at least 1). Each WKMG_QUEUE x variable in the
configuration file has a queue name and an SBU pair associated with it (the total
number of queue/SBU pairs must equal WKMG_NUM_QUEUES). The queue/SBU pairs
define weights for the queues. If an SBU value is less than 1.0, there is an incentive to
run jobs in the associated queue; if the value is 1.0, jobs are charged as though they
are non-workload management jobs; and if the SBU is 0.0, there is no charge for jobs
running in the associated queue. SBUs for queues not found in the configuration file
are automatically set to 1.0.

The WKMG_NUM_MACHINES parameter sets the number of originating machines for
which you want to set SBUs (the value must be at least 1). Each WKMG_MACHINE x
variable in the configuration file has an originating machine and an SBU pair
associated with it (the total number of machine/SBU pairs must equal
WKMG_NUM_MACHINES). SBUs for originating machines not specified in
/etc/csa.conf are automatically set to 1.0.

Tape SBUs

There is a set of weighting factors for each group of tape devices. By default, there
are only two groups, tape and cart. The TAPE_SBU i parameters in
/etc/csa.conf define the weighting factors for each group. There are SBUs
associated with the following:

• Number of mounts

• Device reservation time (seconds)

120 007–3700–015

IRIX® Admin: Resource Administration

• Number of bytes read

• Number of bytes written

Example SBU Settings

The following shows how you could set up the SBU system. This example is
restricted to the process records.

All time is considered prime time. Therefore, the nonprime time SBUs should be set
to the same values as their prime time counterparts.

Users are charged $10 per hour of user CPU time. This is equal to $10 per 3600
seconds, which is $0.002777777777777 per second (P_UTIME).

Therefore, the charges are as follows (the nonprime time SBUs are set to the same
values as their prime time counterparts):

Weight Factor Charge

P_BASIC 1.0

P_TIME 1.0

P_STIME 0.0

P_UTIME 0.002777777777777

P_QTIME 0.0

P_BWTIME 0.0

P_RWTIME 0.0

P_MEM 0.0

P_XMEM 0.0

P_VMEM 0.0

P_IO 0.0

P_BIO 0.0

P_CIO 0.0

P_LIO 0.0

007–3700–015 121

5: Comprehensive System Accounting

Daemon Accounting

Accounting information is available from the NQS, workload management, and
online tape daemons. Data is written to the pacct file in the /var/adm/acct/day
directory.

In most cases, daemon accounting must be enabled by both the CSA subsystem and
the daemon. "Setting Up CSA", page 96, describes how to enable daemon accounting
at system startup time. You can also enable daemon accounting after the system has
booted.

You can enable accounting for a specified daemon by using the csaswitch
command. For example, to start tape accounting, you should do the following:

/usr/lib/acct/csaswitch -c on -n tape

The NQS or workload management, and online tape daemon, also, must enable
accounting. Use the qmgr set accounting on command to turn on NQS
accounting. Tape daemon accounting is enabled when tmdaemon(1m) is executed
with the -c option.See the appropriate workload management guide for information
on how to enable workload management accounting.

Note: If you are running the Load Sharing Facility (LSF) system and want to enable
workload management accounting, you must set two LSF configuration variables in
the lsf.conf file as follows:

LSF_ENABLE_CSA=y
LSF_ULDB_DOMAIN = <ULDB_domain_name>

If LSF_ENABLE_CSA is defined in the lsf.conf file, LSF writes LSF batch job events
to the pacct file for processing through CSA. For LSF job accounting, records are
written to pacct at the start and end of each LSF job.

If a ULDB domain for LSF is defined in the lsf.conf file, LSF creates an IRIX job
and applies the configured resource limits to it. LSF resource limits defined in
lsb.queues or at job submission override IRIX job limits defined in the ULDB.

For more information on the Load Sharing Facility (LSF) system and workload
management accounting, see the appropriate LSF documentation.

122 007–3700–015

IRIX® Admin: Resource Administration

Daemon accounting is disabled at system shutdown (see "Setting Up CSA", page 96).
It can also be disabled at any time by the csaswitch command when used with the
off operand. For example, to disable NQS accounting, execute the following
command:

/usr/lib/acct/csaswitch -c off -n nqs

These dynamic changes using csaswitch are not saved across a system reboot.

Setting up User Exits

CSA accommodates the following user exits, which can be called from certain
csarun states:

csarun state User exit

ARCHIVE1 /usr/lib/acct/csa.archive1

ARCHIVE2 /usr/lib/acct/csa.archive2

FEF /var/lib/acct/csa.fef

USEREXIT /usr/lib/acct/csa.user

CSA accommodates the following user exit, which can be called from certain
csaperiod states:

csaperiod state User exit

USEREXIT /usr/lib/acct/csa.puser

These exits allow an administrator to tailor the csarun procedure (or csaperiod
procedure) to the individual site’s needs by creating scripts to perform additional
site-specific processing during daily accounting. (Note that the following comments
also apply to csaperiod).

While executing, csarun checks in the ARCHIVE1, ARCHIVE2, FEF and USEREXIT
states for a shell script with the appropriate name.

If the script exists, it is executed via the shell . (dot) command. If the script does not
exist, the user exit is ignored. The . (dot) command will not execute a compiled
program, but the user exit script can. csarun variables are available, without being
exported, to the user exit script. csarun checks the return status from the user exit
and if it is nonzero, the execution of csarun is terminated.

007–3700–015 123

5: Comprehensive System Accounting

If CSA is run by a user without superuser permissions, the user exits must be both
readable and executable by this user (see "Allowing Non Superusers to Execute CSA",
page 129).

Some examples of user exits are as follows:

rain1# cd /usr/lib/acct

rain1# cat csa.archive1

#!/bin/sh
mkdir -p /tmp/acct/pacct${DTIME}

cp ${WTIME_DIR}/${PACCT}* /tmp/acct/pacct${DTIME}

rain1# cat csa.archive2

#!/bin/sh

cp ${SPACCT} /tmp/acct

rain1# cat csa.fef

#!/bin/sh

mkdir -p /tmp/acct/jobs

/usr/lib/acct/csadrep -o /tmp/acct/jobs/dbin.${DTIME} -s ${SPACCT}

/usr/lib/acct/csadrep -n -V3 /tmp/acct/jobs/dbin.${DTIME}

Writing a User Exit

This section provides information about writing a user exit. The first example shows
a user exit that saves the sorted pacct file after a daily accounting run. The second
example shows a user exit that consolidates information for a daily report by project
rather than by user.

Example 5-1 Save a sorted pacct File During a Daily Accounting Run

The csarun(1M) and csaperiod(1M) scripts use shell variables that are available
for use within a user exit script. For example, the sorted pacct file is deleted after
a successful daily accounting run. However, if you want to save that file, you could

124 007–3700–015

IRIX® Admin: Resource Administration

use any of the user exits that are executed after the sorted pacct file is created (see
the csarun(1M) man page). Here is a simple user exit script to do just that:

#! /bin/sh

echo "Copying spacct file to /tmp/spacct"

cp ${SPACCT} /tmp/spacct

Example 5-2 Consolidated Information Report by Project Rather than by User

The default output for consolidated information from a daily report is as follows:

CONSOLIDATED INFORMATION REPORT BETWEEN 08/09 04:00 AND 08/09 14:48

PROJECT USER LOGIN CPU-TIM KCORE * KVIRT * IOWAIT [SECS]

NAME ID NAME [SECS] CPU-MIN CPU-MIN BLOCK RAW
======== ======== ======== ======== ======== ======== ======== ========

sysadm 0 root 30 536 1177 48 0

root 4 sys 0 5 11 0 0

csa 5 adm 5 24 194 1 0

root 1461 security 1 2 16 0 0
nqe 10320 user12 2 5 68 1 0

To show consolidated information for a daily report by project rather than by user,
use the csacon(1M) and csacrep(1M) commands with the project option as follows:

/usr/lib/acct/csacon -Ap -s /tmp/spacct > /tmp/cacct_p

/usr/lib/acct/csacrep -hpcw < /tmp/cacct_p > /tmp/csacrep.out.p

The output is as follows:

PROJECT USER LOGIN CPU-TIM KCORE * KVIRT * IOWAIT [SECS]

NAME ID NAME [SECS] CPU-MIN CPU-MIN BLOCK RAW

======== ======== ======== ======== ======== ======== ======== ========

root Unknown Unknown 1 8 28 0 0
sysadm Unknown Unknown 31 537 1187 49 0

csa Unknown Unknown 5 24 194 1 0

nqe Unknown Unknown 2 7 83 1 0

The example /usr/lib/acct/csa.user script below performs the same operation
as the csacon(1M) and csacrep(1M) commands example above to include a
consolidated information by project report within the daily report:

007–3700–015 125

5: Comprehensive System Accounting

#!/sbin/sh
#

csacon ${ALLJOBS} -p -s ${SPACCT} > ${SUM_DIR}/cacct_p.${DTIME} \

2> ${NITE_DIR}/Econ.${DTIME}

if [${?} -ne 0]

then
CSAERRMSG="REPORT - csacon errors \

\n\tSee ${NITE_DIR}/Econ.${DTIME} and/or ${NITE_DIR}/fd2log"

ERROR_EXIT

fi

chgrp ${CHGRP} ${SUM_DIR}/cacct_p.${DTIME}

#
csacrep -hpcw < ${SUM_DIR}/cacct_p.${DTIME} \

> ${SUM_DIR}/conrpt_p.${DTIME} 2> ${NITE_DIR}/Ecrpt_p.${DTIME}

if [${?} -ne 0]

then

CSAERRMSG="REPORT - csacrep errors \
\n\tSee ${NITE_DIR}/Ecrep_p.${DTIME} and/or ${NITE_DIR}/fd2log"

ERROR_EXIT

fi

#

cd ${SUM_DIR}

echo "${RPTHDR}\n" > tmprprt
echo "Put some header message here\n" >> tmprprt

cat conrpt_p.${DTIME} >> tmprprt

pr -h "${DAYHDR} ${SYSNAME} ${RELMSG}" tmprprt >> rprt.${DTIME}

#

If you want the new binary data files (cacct_p in the user exit example, above) to be
used with the periodic report, you need to create a user exit for
/usr/lib/acct/csaperiod.

Charging for NQS Jobs

By default, SBUs are calculated for all NQS jobs regardless of the job’s NQS
termination code. If you do not want to bill portions of an NQS request, set the
appropriate NQS_TERM_xxxx variable (termination code) in the /etc/csa.conf file
to 0, which sets the SBU for this portion to 0.0. By default, all portions of a request
are billed.

The following table describes the termination codes:

126 007–3700–015

IRIX® Admin: Resource Administration

Code Description

NQS_TERM_EXIT Generated when the request finishes running and is no
longer in a queued state. At NQS shutdown time,
requests that specified both the -nc (no checkpoint)
and -nr (no rerun) options for qsub also have
NQS_TERM_EXIT records written. In addition, this
record is written for requests that specified the -nr
option for qsub and were running at the time of a
system crash.

NQS_TERM_REQUEUE Written for running requests that are checkpointed and
then requeued when NQS shuts down.

NQS_TERM_PREEMPT Written when a request is preempted with the qmgr
preempt request command.

NQS_TERM_HOLD Written for a request that is checkpointed with the
qmgr hold request command. The hold request
command differs from the checkpoint done at daemon
shutdown time because a "hold" keeps the job from
being scheduled until a qmgr release command is
executed.

NQS_TERM_OPRERUN Written when a request is rerun with the qmgr rerun
request command.

At NQS shutdown time, jobs that cannot be
checkpointed and do not have the -nr (no rerun) option
for qsub specified have this type of termination record
written. The requests are requeued with this status.

NQS_TERM_RERUN Written when a request is a non-operator rerun request.

Charging for Workload Management Jobs

By default, SBUs are calculated for all workload management jobs regardless of the
workload management termination code of the job. If you do not want to bill
portions of a workload management request, set the appropriate WKMG_TERM_xxxx
variable (termination code) in the /etc/csa.conf file to 0, which sets the SBU for
this portion to 0.0. By default, all portions of a request are billed.

The following table describes the termination codes:

007–3700–015 127

5: Comprehensive System Accounting

Code Description

WKMG_TERM_EXIT Generated when the request finishes running and is no
longer in a queued state.

WKMG_TERM_REQUEUE Written for a request that is requeued.

WKMG_TERM_HOLD Written for a request that is checkpointed and held.

WKMG_TERM_RERUN Written when a request is rerun.

WKMG_TERM_MIGRATE Written when a request is migrated.

Note: The above descriptions of the termination codes are very generic. Different
workload managers will tailor the meaning of these codes to suit their products. LSF
currently only uses the WKMG_TERM_EXIT termination code.

Tailoring CSA Shell Scripts and Commands

Modify the following variables in /etc/csa.conf if necessary:

Variable Description

MAIL_LIST List of users to whom mail is sent if fatal errors are
detected in the accounting shell scripts. The default is
root and adm.

WMAIL_LIST List of users to whom mail is sent if warning errors are
detected by the accounting scripts at cleanup time. The
default is root and adm.

MIN_BLKS Minimum number of free blocks needed on the file
system on which the var/adm/acct directory resides
to run csarun or csaperiod. The default is 2000 free
blocks. Block size is 1024 bytes.

Using at to Execute csarun

You can use the at command instead of cron to execute csarun periodically. If your
system is down when csarun is scheduled to run via cron, csarun will not be
executed until the next scheduled time. On the other hand, at jobs execute when the
machine reboots if their scheduled execution time was during a down period.

You can execute csarun by using at in several ways. For example, a separate script
can be written to execute csarun and then resubmit the job at a specified time. Also,

128 007–3700–015

IRIX® Admin: Resource Administration

an at invocation of csarun could be placed in a user exit script,
/usr/lib/acct/csa.user, that is executed from the USEREXIT section of csarun.
For more information, see "Setting up User Exits", page 123.

Allowing Non Superusers to Execute CSA

Your site may want to allow users without superuser permissions to run CSA
accounting. CSA can be run by users who are in the group adm and have the
CAP_ACCT_MGT capability. See the capability(4) and capabilities(4) man
pages for more information on the capability mechanism that provides fine grained
control over the privileges of a process.

The following steps describe the process of setting up CSA so it is executed
automatically on a daily and periodic basis by a user without superuser permissions.
In this example, the user without superuser permissions is adm:

1. Ensure that user adm is a member of group adm and has the CAP_ACCT_MGT
capability.

2. Ensure that the following user exits (if they exist) are both readable and
executable by user adm:

• /usr/lib/acct/csa.archive1

• /usr/lib/acct/csa.archive2

• /usr/lib/acct/csa.fef

• /usr/lib/acct/csa.user

• /usr/lib/acct/csa.puser

3. Follow steps 1 through 5 of "Setting Up CSA", page 96, to set up system billing
units, record system boot times, and turn off accounting before system shutdown.

4. Include an entry similar to the one shown below in
/var/spool/cron/crontabs/root so that cron automatically runs
dodisk(1m):

0 2 * * 4 if /etc/chkconfig csaacct; then /usr/lib/acct/dodisk -c 2> /var/adm/acct/nite/csa/dk2log; fi

The dodisk command must be executed by root, because no other user has the
correct permissions to read /dev/dsk/*. For more information on the
dodisk(1M) command, see the dodisk(1M) man page.

007–3700–015 129

5: Comprehensive System Accounting

5. Include entries similar to the ones shown below in
/var/spool/cron/crontabs/adm so that user adm automatically runs daily
accounting by using cron:

0 4 * * 1-6 su adm -C CAP_ACCT_MGT+pi -c "if /etc/chkconfig csaacct;

then /usr/lib/acct/csarun 2> /var/adm/acct/nite/csa/fd2log; fi"

5 * * * 1-6 su adm -C CAP_ACCT_MGT+pi -c "if /etc/chkconfig csaacct;

then /usr/lib/acct/csackpacct; fi"

The csarun command should be executed at a time that allows dodisk to
complete. If dodisk does not complete before csarun executes, disk accounting
information may be missing or incomplete.

6. To run monthly accounting, place an entry similar to the one below in
/var/spool/cron/crontabs/adm (this command generates a monthly report
on all consolidated data files found in /var/adm/acct/sum/csa and then
deletes those data files):

Change the crontab entry for #6 to the following:

0 5 1 * * if /etc/chkconfig csaacct;

then /usr/lib/acct/csaperiod -r 2> /var/adm/acct/nite/csa/pd2log; fi

7. Update the holidays file as described in "Setting Up CSA", page 96.

Note: The cron entries listed above only work when the login shell of user adm is sh
or ksh.

Using an Alternate Configuration File

By default, the /etc/csa.conf configuration file is used when any of the CSA
commands are executed. You can specify a different file by setting the shell variable
CSACONFIG to another configuration file, and then executing the CSA commands.

For example, you would execute the following commands to use the configuration file
/tmp/myconfig while executing csarun:

CSACONFIG=/tmp/myconfig

/usr/lib/acct/csarun 2> /var/adm/acct/nite/fd2log

130 007–3700–015

IRIX® Admin: Resource Administration

CSA Reports
You can use CSA to create accounting reports. The reports can be used to help track
system usage, monitor performance, and charge users for their time on the system.

The CSA daily reports are located in the /var/adm/acct/sum/csa directory;
periodic reports are located in the /var/adm/acct/fiscal/csa directory. To view
the reports, go to the ASCII file rprt.MMDDhhmm in the report directories.

The CSA reports contain more detailed data than the other accounting reports. For
CSA accounting, daily reports are generated by the csarun command. The daily
report includes the following:

• disk usage statistics

• unfinished job information

• command summary data

• consolidated accounting report

• last login information

• daemon usage report

Periodic reports are generated by the csaperiod command. You can also create a
disk usage report using the diskusg command.

CSA Daily Report

This section describes the following reports:

• "Consolidated Information Report", page 132

• "Unfinished Job Information Report", page 132

• "Disk Usage Report", page 132

• "Command Summary Report", page 133

• "Last Login Report", page 133

• "Daemon Usage Report", page 134

007–3700–015 131

5: Comprehensive System Accounting

Consolidated Information Report

The Consolidated Information Report is sorted by user ID and then project ID. The
following usage values are the total amount of resources used by all processes for the
specified user and project during the reporting period.

Heading Description

PROJECT NAME Project associated with this resource usage information

USER ID User identifier

LOGIN NAME Login name for the user identifier

CPU_TIME Total accumulated CPU time in seconds

KCORE * CPU-MIN Total accumulated amount of Kbytes of core (physical)
memory used per minute of CPU time

KVIRT * CPU-MIN Total accumulated amount of Kbytes of virtual memory
used per minute of CPU time

IOWAIT BLOCK Total accumulated block I/O wait time in seconds

IOWAIT RAW Total accumulated raw I/O wait time in seconds

Unfinished Job Information Report

The Unfinished Job Information Report describes jobs which have not terminated and
are recycled into the next accounting period.

Heading Description

JOB ID Job identifier

USERS Login name of the owner of this job

PROJECT ID Project identifier associated with this job

STARTED Beginning time of this job

Disk Usage Report

The Disk Usage Report describes the amount of disk resource consumption by login
name.

There are no column headings for this report. The first column gives the user
identifier. The second column gives the login name associated with the user identifier.
The third column gives the number of disk blocks used by this user.

132 007–3700–015

IRIX® Admin: Resource Administration

Command Summary Report

The Command Summary Report summarizes command usage during this reporting
period. The usage values are the total amount of resources used by all invocations of
the specified command. Commands which were run only once are combined together
in the "***other" entry. Only the first 44 command entries are displayed in the daily
report. The periodic report displays all command entries.

Heading Description

COMMAND NAME Name of the command (program)

NUMBER OF
COMMANDS

Number of times this command was executed

TOTAL
KCORE-MINUTES

Total amount of Kbytes of core (physical) memory used
per minute of CPU time

TOTAL
KVIRT-MINUTES

Total amount of Kbytes of virtual memory used per
minute of CPU time

TOTAL CPU Total amount of CPU time used in minutes

TOTAL REAL Total amount of real (wall clock) time used in minutes

MEAN SIZE KCORE Average amount of core (physical) memory used in
Kbytes

MEAN SIZE KVIRT Average amount of virtual memory used in Kbytes

MEAN CPU Average amount of CPU time used in minutes

HOG FACTOR Total CPU time used divided by the total real time
(elapsed time)

K-CHARS READ Total number of characters read in Kbytes

K-CHARS WRITTEN Total number of characters written in Kbytes

BLOCKS READ Total number of blocks read

BLOCKS WRITTEN Total number of blocks written

Last Login Report

The Last Login Report shows the last login date for each login account listed.

There are no column headings for this report. The first column is the last login date.
The second column is the login account name.

007–3700–015 133

5: Comprehensive System Accounting

Daemon Usage Report

Daemon Usage Report shows reports usage of the NQS or workload management, and
tape daemons. This report has several individual reports depending upon if there was
NQS, workload management, or tape daemon activity within this reporting period.

The Job Type Report gives the NQS and interactive job usage count.

Heading Description

Job Type Type of job (interactive or NQS or workload
management)

Total Job Count Number and percentage of jobs per job type

Tape Jobs Number and percentage of tape jobs associated with
these interactive and NQS or workload management
jobs

The CPU Usage Report gives the NQS or workload management and interactive job
usage related to CPU usage.

Heading Description

Job Type Type of job (interactive or NQS or workload
management)

Total CPU Time Total amount of CPU time used in seconds and
percentage of CPU time

System CPU Time Amount of system CPU time used of the total and the
percentage of the total time which was system CPU
time usage

User CPU Time Amount of user CPU time used of the total and the
percentage of the total time which was user CPU time
usage

The Tape Usage Report gives the NQS or workload management and interactive job
usage related to tape activity for these jobs.

Heading Description

Job Type Type of job (interactive or NQS or workload
management)

Device Group Tape device group name

134 007–3700–015

IRIX® Admin: Resource Administration

Rsv Time Tape reservation time in seconds

Mounts Number of tape mounts

KBytes Read Tape amount read in Kbytes

KBytes Written Tape amount written in Kbytes

User CPU Amount of user CPU time used in seconds

Sys CPU Amount of system CPU time used in seconds

The Batch Queue Report gives the following information for each NQS or workload
management queue.

Queue Name Name of the NQS or workload management queue

Number of Jobs Number of jobs initiated from this queue

CPU Time Amount of system and user CPU times used by jobs
from this queue and percentage of CPU time used

Used Tapes How many jobs from this queue used tapes

Ave Queue Wait Average queue wait time before initiation in seconds

Periodic Report

This section describes two periodic reports as follows:

• "Consolidated accounting report", page 135

• "Command summary report", page 136

Consolidated accounting report

The following usage values for the Consolidated accounting report are the total
amount of resources used by all processes for the specified user and project during
the reporting period.

Heading Description

PROJECT NAME Project associated with this resource usage information

USER ID User identifier

LOGIN NAME Login name for the user identifier

CPU_TIME Total accumulated CPU time in seconds

007–3700–015 135

5: Comprehensive System Accounting

KCORE * CPU-MIN Total accumulated amount of Kbytes of core (physical)
memory used per minute of CPU time of processes

KVIRT * CPU-MIN Total accumulated amount of Kbytes of virtual memory
used per minute of CPU time

IOWAIT BLOCK Total accumulated block I/O wait time in seconds

IOWAIT RAW Total accumulated raw I/O wait time in seconds

DISK BLOCKS Total number of disk blocks used

DISK SAMPLES Number of times disk accounting was run to obtain the
disk blocks used value

FEE Total fees charged to this user from csachargefee(1M)

SBUs System billing units charged to this user and project

Command summary report

The following information summarizes command usage during the defined reporting
period. The usage values are the total amount of resources used by all invocations of
the specified command. Unlike the daily command summary report, the periodic
command summary report displays all command entries. Commands executed only
once are not combined together into an "***other" entry but are listed individually in
the periodic command summary report.

Heading Description

COMMAND NAME Name of the command (program)

NUMBER OF
COMMANDS

Number of times this command was executed

TOTAL
KCORE-MINUTES

Total amount of Kbytes of core (physical) memory used
per minute of CPU time

TOTAL
KVIRT-MINUTES

Total amount of Kbytes of virtual memory used per
minute of CPU time

TOTAL CPU Total amount of CPU time used in minutes

TOTAL REAL Total amount of real (wall clock) time used in minutes

MEAN SIZE KCORE Average amount of core (physical) memory used in
Kbytes

MEAN SIZE KVIRT Average amount of virtual memory used in Kbytes

MEAN CPU Average amount of CPU time used in minutes

136 007–3700–015

IRIX® Admin: Resource Administration

HOG FACTOR Total CPU time used divided by the total real time
(elapsed time)

K-CHARS READ Total number of characters read in Kbytes

K-CHARS WRITTEN Total number of characters written in Kbytes

BLOCKS READ Total number of blocks read

BLOCKS WRITTEN Total number of blocks written

CSA and Existing IRIX Software
This section describes some changes and additions to existing documentation for the
IRIX operating system.

acct(1M) Man Page

The acctdisk command contains a -c option that reads standard input and
converts records to cacct format, which it writes to standard output.

acctsh(1M) Man Page

The lastlogin(1M) command contains a -c option with an infile argument that
specifies that lastlogin should process infile, which is a consolidated accounting file
in cacct format.

The dodisk command information is now contained in a new dodisk(1M) man page.

dodisk(1M) Man Page

The IRIX 6.5.8 release introduced a new dodisk(1M) man page. The dodisk
command information was previously in the acctsh(1M) man page.

explain(1) Man Page

CSA uses the message catalog system. There are two files that CSA uses for the
message catalog:

007–3700–015 137

5: Comprehensive System Accounting

• /usr/lib/locale/C/LC_MESSAGES/acct.cat

• /usr/lib/locale/C/LC_MESSAGES/acct.exp

The group code acct for the CSA Software Product has been added to the
explain(1) page in the 6.5.8f release of the IRIX operating system.

capabilities(4) Man Page

Basic accounting and CSA require the same capability. CAP_ACCT_MGT is the
privilege required to use accounting setup system calls, acct(2). The same privilege
is required to use the new acctctl(3c) call. acctctl(3c) has been added to the
capabilities(4) man page in the 6.5.8f release of the IRIX operating system.

Migrating Accounting Data
No changes have been made to basic accounting or extended accounting records.
There is no migration of accounting data between these two IRIX accounting methods
and CSA. That is, basic accounting commands should continue to be used with basic
accounting, and third party packages should continue to be used with extended
accounting data.

CSA accounting commands can only be used with CSA accounting data. CSA
commands cannot process basic accounting or extended accounting records. Basic
accounting commands cannot process CSA generated accounting data.

CSA Man Pages
The man command provides online help on all resource management commands. To
view a man page online, type man commandname.

User-Level Man Pages
The following user-level man pages are provided with CSA software:

138 007–3700–015

IRIX® Admin: Resource Administration

User-level man page Description

csacom(1) Searches and prints the CSA process accounting files.

ja(1) Starts and stops user job accounting information.

Administrator Man Pages
The following administrator man pages are provided with CSA software:

Administrator man page Description

csaaddc(1m) Combines cacct records.

csabuild(1m) Organizes accounting records into
job records.

csachargefee(1m) Charges a fee to a user.

csackpacct(1m) Checks the size of the CSA process
accounting file.

csacms(1m) Summarizes command usage from
per-process accounting records.

csacon(1m) Condenses records from the
sorted pacct file.

csacrep(1m) Reports on consolidated accounting
data.

csadrep(1m) Reports daemon usage.

csaedit(1m) Displays and edits the accounting
information.

csagetconfig(1m) Searches the accounting
configuration file for the specified
argument.

csajrep(1m) Prints a job report from the sorted
pacct file.

csarecy(1m) Recycles unfinished jobs into the
next accounting run.

007–3700–015 139

5: Comprehensive System Accounting

csaswitch(1m) Checks the status of, enables or
disables the different types of CSA,
and switches accounting files for
maintainability.

csaverify(1m) Verifies that the accounting records
are valid.

140 007–3700–015

Chapter 6

IRIX Memory Usage

This section describes commands that provide information about physical and virtual
memory usage on the IRIX operating system.

This chapter contains the following sections:

• "Memory Usage Commands", page 141

• "Shared Memory", page 143

• "Physical Memory", page 144

• "Virtual Memory", page 144

Memory Usage Commands
Most of the memory usage commands provide a snapshot view of the current
memory usage either on a per process basis or a per job basis.

Examples of per process commands are as follows:

• gmemusage(1)

• pmem(1)

• top(1)

• ps(1)

For more information on these commands, see the appropriate man page.

Per job commands include the following:

• jstat(1)

The Comprehensive System Accounting (CSA) commands, such as, csacom(1) and
ja(1), provide historical memory usage information after a process or job terminates.

The jstat(1) command reports the current usage and highwater memory values of
all concurrently running processes within a job.

007–3700–015 141

6: IRIX Memory Usage

If the -l option is specified, the jstat command will print out the current usage,
high usage, current limit, and maximum limit information for the current job. (Note
that vmemory is virtual memory and ressetsize is resident set size).

The following example shows the output of the jstat -l option:

% jstat -l

JID OWNER COMMAND

------------------ -------------- --------------
0x106f user1 -tcsh

LIMIT NAME USAGE HIGH USAGE CURRENT LIMIT MAX LIMIT
------------------ -------------- -------------- -------------- --------------

cputime 0 0 unlimited unlimited

datasize 272k 544k unlimited unlimited

files 8 32 400 5000

vmemory 4224k 14112k unlimited unlimited
ressetsize 3520k 6384k unlimited unlimited

threads 1 1 unlimited unlimited

processes 2 7 1024 1024

physmem 3520k 6384k unlimited unlimited

The -s option of the ja(1) command reports the highwater memory value of the
single largest process memory within a job.

It is not a cumulative highwater mark of all processes within the job since this value
is gathered from the accounting records of terminated processes.

The following example shows the output of the ja -s option:

% ja -s

Job CSA Accounting - Summary Report

====================================

Job Accounting File Name : /tmp/ja.username

Operating System : IRIX64 snow 6.5 10120733 IP27
User Name (ID) : username (10320)

Group Name (ID) : resmgmt (16061)

142 007–3700–015

IRIX® Admin: Resource Administration

Project Name (ID) : CSA(40)
Array Session Handle : 0x000000000000034b

Job ID : 0x310

Report Starts : 01/23/00 18:13:38

Report Ends : 01/23/00 18:17:05

Elapsed Time : 207 Seconds
User CPU Time : 0.9340 Seconds

System CPU Time : 0.0643 Seconds

Run Queue Wait Time : 0.6463 Seconds

Block I/O Wait Time : 0.1888 Seconds

Raw I/O Wait Time : 0.1323 Seconds

CPU Time Core Memory Integral : 0.4305 Mbyte-seconds
CPU Time Virtual Memory Integral : 4.3298 Mbyte-seconds

Maximum Core Memory Used : 0.1094 Mbytes

Maximum Virtual Memory Used : 38.0000 Mbytes

Characters Read : 0.0603 Mbytes

Characters Written : 0.0023 Mbytes
Blocks Read : 7

Blocks Written : 0

Logical I/O Read Requests : 35

Logical I/O Write Requests : 42

Number of Commands : 7

System Billing Units : 0.0000

The CSA memory integrals report the amount of memory used over CPU time,
measured at clock intervals.

CSA, extended accounting, and the jstat(1) command all access the same kernel
counters for per process memory size. Additional kernel counters accumulate these
per process memory size values into job memory size values as reported by the
jstat command. CSA does its accumulation into job values outside of the kernel.

Shared Memory
Both job limits and CSA report memory usage values for all processes in a job.
Processes in the job can access shared memory segments. Those segments can be
shared between processes in the job or with processes outside the job, depending on
the type of shared memory segment involved. When determining the memory usage
for the job as a whole, shared memory segments are counted once for each process
that accesses the segment. This can result in a usage value that is much larger than

007–3700–015 143

6: IRIX Memory Usage

expected. This is particularly true for parallel applications where a large number of
processes share one or more memory segments.

Shared memory between processes is not prorated by CSA or the jstat command.
The shared memory pages, both physical and virtual, are counted in the memory size
for each process accessing the pages.

Physical Memory
The kernel calculates the physical highwater memory value, current usage value, and
memory integral value at periodic intervals. These values are the resident set size for
the process or job, but do not include pages associated with mapped devices (for
example, a graphics device).

Virtual Memory
Unlike physical memory usage values, the kernel keeps virtual memory values
continuously current in kernel counters. The kernel increments the CSA highwater
value when the process virtual memory size increases. The jstat current usage and
highwater value are set, as applicable, at periodic intervals in the kernel. The kernel
also calculates the CSA virtual memory integral at periodic intervals.

These values include the virtual memory size (text, data, stack, shared memory,
mapped files, shared libraries) for the process or job, but do not include pages
associated with mapped devices (for example, a graphics device).

144 007–3700–015

Chapter 7

Array Services

Array Services includes administrator commands, libraries, daemons, and kernel
extensions that support the execution of programs across an array.

A central concept in Array Services is the array session handle (ASH), a number that
is used to logically group related processes that may be distributed across multiple
systems. The ASH creates a global process namespace across the Array, facilitating
accounting and administration

Array Services also provides an array configuration database, listing the nodes
comprising an array. Array inventory inquiry functions provide a centralized,
canonical view of the configuration of each node. Other array utilities let the
administrator query and manipulate distributed array applications.

The Array Services package comprises the following primary components:

array daemon Allocates ASH values and maintain information about
node configuration and the relation of process IDs to
ASHs. Array daemons reside on each node and work
in cooperation.

array configuration
database

Describes the array configuration used by array
daemons and user programs. One copy at each node.

ainfo command Lets the user or administrator query the Array
configuration database and information about ASH
values and processes.

array command Executes a specified command on one or more nodes.
Commands are predefined by the administrator in the
configuration database.

arshell command Starts a command remotely on a different node using
the current ASH value.

aview command Displays a multiwindow, graphical display of each
node’s status.

007–3700–015 145

7: Array Services

libarray library Library of functions that allow user programs to call on
the services of array daemons and the array
configuration database.

The use of the ainfo, array, arshell, and aview commands is covered in "Using
an Array", page 146. The use of the libarray library is covered in"Array Services
Library", page 176 .

Using an Array
An Array system is an aggregation of nodes, which are servers bound together with a
high-speed network and Array Services 3.5 software. Array users have the advantage
of greater performance and additional services. Array users access the system with
familiar commands for job control, login and password management, and remote
execution.

Array Services 3.5 augments conventional facilities with additional services for array
users and for array administrators. The extensions include support for global session
management, array configuration management, batch processing, message passing,
system administration, and performance visualization.

This section introduces the extensions for Array use, with pointers to more detailed
information. The main topics are as follows:

• "Using an Array System", page 147, summarizes what a user needs to know and
the main facilities a user has available.

• "Managing Local Processes", page 149, reviews the conventional tools for listing
and controlling processes within one node.

• "Using Array Services Commands", page 150, describes the common concepts,
options, and environment variables used by the Array Services commands.

• "Interrogating the Array", page 155, summarizes how to use Array Services
commands to learn about the Array and its workload, with examples.

• "Summary of Common Command Options", page 152

• "Managing Distributed Processes", page 158, summarizes how to use Array
Services commands to list and control processes in multiple nodes.

146 007–3700–015

IRIX® Admin: Resource Administration

Using an Array System

The array system allows you to run distributed sessions on multiple nodes of an
array. You can access the Array from either:

• A workstation

• An X terminal

• An ASCII terminal

In each case, you log in to one node of the Array in the way you would log in to any
remote UNIX host. From a workstation or an X terminal you can of course open more
than one terminal window and log into more than one node.

Finding Basic Usage Information

In order to use an Array, you need the following items of information:

• The name of the Array.

You use this arrayname in Array Services commands.

• The login name and password you will use on the Array.

You use these when logging in to the Array to use it.

• The hostnames of the array nodes.

Typically these names follow a simple pattern, often arrayname1, arrayname2, and
so on.

• Any special resource-distribution or accounting rules that may apply to you or
your group under a job scheduling system.

You can learn the hostnames of the array nodes if you know the array name, using
the ainfo command as follows:

ainfo -a arrayname machines

Logging In to an Array

Each node in an Array has an associated hostname and IP network address. Typically,
you use an Array by logging in to one node directly, or by logging in remotely from
another host (such as the Array console or a networked workstation). For example,

007–3700–015 147

7: Array Services

from a workstation on the same network, this command would log you in to the
node named hydra6 as follows:

rlogin hydra6

For details of the rlogin command, see the rlogin(1) man page.

The system administrators of your array may choose to disallow direct node logins in
order to schedule array resources. If your site is configured to disallow direct node
logins, your administrators will be able to tell you how you are expected to submit
work to the array–perhaps through remote execution software or batch queueing
facilities.

Invoking a Program

Once you have access to an array, you can invoke programs of several classes:

• Ordinary (sequential) applications

• Parallel shared-memory applications within a node

• Parallel message-passing applications within a node

• Parallel message-passing applications distributed over multiple nodes (and
possibly other servers on the same network running Array Services 3.5

If you are allowed to do so, you can invoke programs explicitly from a logged-in shell
command line; or you may use remote execution or a batch queueing system.

Programs that are X Windows clients must be started from an X server, either an X
Terminal or a workstation running X Windows.

Some application classes may require input in the form of command line options,
environment variables, or support files upon execution. For example:

• X client applications need the DISPLAY environment variable set to specify the X
server (workstation or X-terminal) where their windows will display.

• A multithreaded program may require environment variables to be set describing
the number of threads.

For example, C and Fortran programs that use parallel processing directives test
the MP_SET_NUMTHREADS variable.

148 007–3700–015

IRIX® Admin: Resource Administration

• Message Passing Interface (MPI) and Parallel Virtual Machine (PVM)
message-passing programs may require support files to describe how many tasks
to invoke on specified nodes.

Some information sources on program invocation are listed in Table 7-1, page 149.

Table 7-1 Information Sources for Invoking a Program
standard

Topic Man Page

Remote login rlogin(1)

Setting environment variables environ(5), env(1)

Managing Local Processes
Each UNIX process has a process identifier (PID), a number that identifies that process
within the node where it runs. It is important to realize that a PID is local to the node;
so it is possible to have processes in different nodes using the same PID numbers.

Within a node, processes can be logically grouped in process groups. A process group
is composed of a parent process together with all the processes that it creates. Each
process group has a process group identifier (PGID). Like a PID, a PGID is defined
locally to that node, and there is no guarantee of uniqueness across the Array.

Monitoring Local Processes and System Usage

You query the status of processes using the system command ps. To generate a full
list of all processes on a local system, use a command such as the following:

ps -elfj

You can monitor the activity of processes using the command top (an ASCII display
in a terminal window).

007–3700–015 149

7: Array Services

Scheduling and Killing Local Processes

You can start a process at a reduced priority, so that it interferes less with other
processes, using the nice command. If you use the csh shell, specify
/usr/bin/nice to avoid the built-in shell command nice. To start a whole shell at
low priority, use a command like the one that follows:

/bin/nice /bin/sh

You can schedule commands to run at specific times using the at command. You can
kill or stop processes using the kill command. To destroy the process with PID
13032, use a command such as the following:

kill -KILL 13032

Summary of Local Process Management Commands

Table 7-2, page 150, summarizes information about local process management.

Table 7-2 Information Sources: Local Process Management
standard

Topic Man Page

Process ID and process group intro(2)

Listing and monitoring processes ps(1), top(1)

Running programs at low priority nice(1), batch(1)

Running programs at a scheduled time at(1)

Terminating a process kill(1)

Using Array Services Commands
When an application starts processes on more than one node, the PID and PGID are
no longer adequate to manage the application. The commands of Array Services 3.5
give you the ability to view the entire array, and to control the processes of multinode
programs.

150 007–3700–015

IRIX® Admin: Resource Administration

Note: You can use Array Services commands from any workstation connected to an
array system. You don’t have to be logged in to an array node.

The following commands are common to Array Services operations as shown in Table
7-3, page 151.

Table 7-3 Common Array Services Commands
standard

Topic Man Page

Array Services Overview array_services(5)

ainfo command ainfo(1)

array command Use array(1); configuration:
arrayd.conf(4)

arshell command arshell(1)

aview command aview(1)

newsess command newsess (1)

About Array Sessions

Array Services is composed of a daemon–a background process that is started at boot
time in every node–and a set of commands such as ainfo(1). The commands call on
the daemon process in each node to get the information they need.

One concept that is basic to Array Services is the array session, which is a term for all
the processes of one application, wherever they may execute. Normally, your login
shell, with the programs you start from it, constitutes an array session. A batch job is
an array session; and you can create a new shell with a new array session identity.

Each session is identified by an array session handle (ASH), a number that identifies
any process that is part of that session. You use the ASH to query and to control all
the processes of a program, even when they are running in different nodes.

007–3700–015 151

7: Array Services

About Names of Arrays and Nodes

Each node is server, and as such has a hostname. The hostname of a node is returned
by the hostname(1) command executed in that node as follows:

% hostname

tokyo

The command is simple and documented in the hostname(1) man page. The more
complicated issues of hostname syntax, and of how hostnames are resolved to
hardware addresses are covered in hostname(5).

An Array system as a whole has a name too. In most installations there is only a
single Array, and you never need to specify which Array you mean. However, it is
possible to have multiple Arrays available on a network, and you can direct Array
Services commands to a specific Array.

About Authentication Keys

It is possible for the Array administrator to establish an authentication code, which is
a 64-bit number, for all or some of the nodes in an array (see "Configuring
Authentication Codes" on page 58). When this is done, each use of an Array Services
command must specify the appropriate authentication key, as a command option, for
the nodes it uses. Your system administrator will tell you if this is necessary.

Summary of Common Command Options
The following Array Services commands have a consistent set of command options:
ainfo(1), array(1), arshell(1), aview(1), and newsess(1). Table 7-4 is a summary
of these options. Not all options are valid with all commands; and each command
has unique options besides those shown. The default values of some options are set
by environment variables listed in the next topic.

152 007–3700–015

IRIX® Admin: Resource Administration

Table 7-4 Array Services Command Option Summary

Option Used In Description

-a array ainfo, array, aview Specify a particular
Array when more
than one is accessible.

-D ainfo, array,
arshell, aview

Send commands to
other nodes directly,
rather than through
array daemon.

-F ainfo, array,
arshell, aview

Forward commands to
other nodes through
the array daemon.

-Kl number ainfo, array, aview Authentication key (a
64-bit number) for the
local node.

-Kr number ainfo, array, aview Authentication key (a
64-bit number) for the
remote node.

-l (letter ell) ainfo, array Execute in context of
the destination node,
not necessarily the
current node.

-l port ainfo, array,
arshell, aview

Nonstandard port
number of array
daemon.

-s hostname ainfo, array, aview Specify a destination
node.

Specifying a Single Node

The -l and -s options work together. The -l (letter ell for “local”) option restricts
the scope of a command to the node where the command is executed. By default, that
is the node where the command is entered. When -l is not used, the scope of a
query command is all nodes of the array. The -s (server, or node name) option

007–3700–015 153

7: Array Services

directs the command to be executed on a specified node of the array. These options
work together in query commands as follows:

• To interrogate all nodes as seen by the local node, use neither option.

• To interrogate only the local node, use only -l.

• To interrogate all nodes as seen by a specified node, use only -s.

• To interrogate only a particular node, use both -s and -l.

Common Environment Variables

The Array Services commands depend on environment variables to define default
values for the less-common command options. These variables are summarized in
Table 7-5.

Table 7-5 Array Services Environment Variables

Variable Name Use Default When Undefined

ARRAYD_FORWARD When defined with a string
starting with the letter y, all
commands default to
forwarding through the array
daemon (option -F).

Commands default to
direct communication
(option -D).

ARRAYD_PORT The port (socket) number
monitored by the array daemon
on the destination node.

The standard number of
5434, or the number
given with option -p.

ARRAYD_LOCALKEY Authentication key for the local
node (option -Kl).

No authentication unless
-Kl option is used.

ARRAYD_REMOTEKEY Authentication key for the
destination node (option -Kr).

No authentication unless
-Kr option is used.

ARRAYD The destination node, when
not specified by the -s option.

The local node, or the
node given with -s.

154 007–3700–015

IRIX® Admin: Resource Administration

Interrogating the Array
Any user of an Array system can use Array Services commands to check the
hardware components and the software workload of the Array. The commands
needed are ainfo, array, and aview.

Learning Array Names

If your network includes more than one Array system, you can use ainfo arrays
at one array node to list all the Array names that are configured, as in the following
example.

homegrown% ainfo arrays

Arrays known to array services daemon

ARRAY DevArray

IDENT 0x3381
ARRAY BigDevArray

IDENT 0x7456

ARRAY test

IDENT 0x655e

Array names are configured into the array database by the administrator. Different
Arrays might know different sets of other Array names.

Learning Node Names

You can use ainfo machines to learn the names and some features of all nodes in
the current Array, as in the following example.

homegrown 175% ainfo -b machines

machine homegrown homegrown 5434 192.48.165.36 0

machine disarray disarray 5434 192.48.165.62 0
machine datarray datarray 5434 192.48.165.64 0

machine tokyo tokyo 5434 150.166.39.39 0

In this example, the -b option of ainfo is used to get a concise display.

007–3700–015 155

7: Array Services

Learning Node Features

You can use ainfo nodeinfo to request detailed information about one or all nodes
in the array. To get information about the local node, use ainfo -l nodeinfo.
However, to get information about only a particular other node, for example node
tokyo, use -l and -s, as in the following example. (The example has been edited for
brevity.)

homegrown 181% ainfo -s tokyo -l nodeinfo
Node information for server on machine "tokyo"

MACHINE tokyo

VERSION 1.2

8 PROCESSOR BOARDS

BOARD: TYPE 15 SPEED 190
CPU: TYPE 9 REVISION 2.4

FPU: TYPE 9 REVISION 0.0

...

16 IP INTERFACES HOSTNAME tokyo HOSTID 0xc01a5035

DEVICE et0 NETWORK 150.166.39.0 ADDRESS 150.166.39.39 UP

DEVICE atm0 NETWORK 255.255.255.255 ADDRESS 0.0.0.0 UP
DEVICE atm1 NETWORK 255.255.255.255 ADDRESS 0.0.0.0 UP

...

0 GRAPHICS INTERFACES

MEMORY

512 MB MAIN MEMORY
INTERLEAVE 4

If the -l option is omitted, the destination node will return information about every
node that it knows.

Learning User Names and Workload

The system commands who(1), top(1), and uptime(1) are commonly used to get
information about users and workload on one server. The array(1) command offers
Array-wide equivalents to these commands.

Learning User Names

To get the names of all users logged in to the whole array, use array who. To learn
the names of users logged in to a particular node, for example tokyo, use -l and -s,
as in the following example. (The example has been edited for brevity and security.)

156 007–3700–015

IRIX® Admin: Resource Administration

homegrown 180% array -s tokyo -l who
joecd tokyo frummage.eng.sgi -tcsh

joecd tokyo frummage.eng.sgi -tcsh

benf tokyo einstein.ued.sgi. /bin/tcsh

yohn tokyo rayleigh.eng.sg vi +153 fs/procfs/prd

...

Learning Workload

Two variants of the array command return workload information. The array-wide
equivalent of uptime is array uptime, as follows:

homegrown 181% array uptime

homegrown: up 1 day, 7:40, 26 users, load average: 7.21, 6.35, 4.72

disarray: up 2:53, 0 user, load average: 0.00, 0.00, 0.00

datarray: up 5:34, 1 user, load average: 0.00, 0.00, 0.00

tokyo: up 7 days, 9:11, 17 users, load average: 0.15, 0.31, 0.29
homegrown 182% array -l -s tokyo uptime

tokyo: up 7 days, 9:11, 17 users, load average: 0.12, 0.30, 0.28

The command array top lists the processes that are currently using the most CPU
time, with their ASH values, as in the following example.

homegrown 183% array top

ASH Host PID User %CPU Command

--

0x1111ffff00000000 homegrown 5 root 1.20 vfs_sync

0x1111ffff000001e9 homegrown 1327 guest 1.19 atop
0x1111ffff000001e9 tokyo 19816 guest 0.73 atop

0x1111ffff000001e9 disarray 1106 guest 0.47 atop

0x1111ffff000001e9 datarray 1423 guest 0.42 atop

0x1111ffff000000c0 homegrown 29683 kchang 0.37 ld

0x1111ffff0000001e homegrown 1324 root 0.17 arrayd

0x1111ffff00000000 homegrown 229 root 0.14 routed
0x1111ffff00000000 homegrown 19 root 0.09 pdflush

0x1111ffff000001e9 disarray 1105 guest 0.02 atopm

The -l and -s options can be used to select data about a single node, as usual.

007–3700–015 157

7: Array Services

Browsing With ArrayView

The ArrayView window shows the status of an array. You can start it with the
command aview and it displays a window similar to the one shown in Figure 7-1.
The top window shows one line per node. There is a window for each node, headed
by the node name and its hardware configuration. Each window contains a snapshot
of the busiest processes in that node.

Figure 7-1 Typical Display from ArrayView

Managing Distributed Processes
Using commands from Array Services 3.5, you can create and manage processes that
are distributed across multiple nodes of the Array system.

158 007–3700–015

IRIX® Admin: Resource Administration

About Array Session Handles (ASH)

In an Array system you can start a program with processes that are in more than one
node. In order to name such collections of processes, Array Services 3.5 software
assigns each process to an array session handle (ASH).

An ASH is a number that is unique across the entire array (unlike a PID or PGID). An
ASH is the same for every process that is part of a single array session—no matter
which node the process runs in. You display and use ASH values with Array Services
commands. Each time you log in to an Array node, your shell is given an ASH,
which is used by all the processes you start from that shell.

The command ainfo ash returns the ASH of the current process on the local node,
which is simply the ASH of the ainfo command itself.

homegrown 178% ainfo ash

Array session handle of process 10068: 0x1111ffff000002c1

homegrown 179% ainfo ash

Array session handle of process 10069: 0x1111ffff000002c1

In the preceding example, each instance of the ainfo command was a new process:
first PID 10068, then PID 10069. However, the ASH is the same in both cases. This
illustrates a very important rule: every process inherits its parent’s ASH. In this case,
each instance of array was forked by the command shell, and the ASH value shown
is that of the shell, inherited by the child process.

You can create a new global ASH with the command ainfo newash, as follows:

homegrown 175% ainfo newash

Allocating new global ASH

0x11110000308b2f7c

This feature has little use at present. There is no existing command that can change
its ASH, so you cannot assign the new ASH to another command. It is possible to
write a program that takes an ASH from a command-line option and uses the Array
Services function setash() to change to that ASH (however such a program must be
privileged). No such program is distributed with Array Services 3.5 (but see
"Managing Array Service Handles", page 181).

007–3700–015 159

7: Array Services

Listing Processes and ASH Values

The command array ps returns a summary of all processes running on all nodes in
an array. The display shows the ASH, the node, the PID, the associated username, the
accumulated CPU time, and the command string.

To list all the processes on a particular node, use the -l and -s options. To list
processes associated with a particular ASH, or a particular username, pipe the
returned values through grep, as in the following example. (The display has been
edited to save space.)

homegrown 182% array -l -s tokyo ps | fgrep wombat

0x261cffff0000054c tokyo 19007 wombat 0:00 -csh

0x261cffff0000054a tokyo 17940 wombat 0:00 csh -c (setenv...

0x261cffff0000054c tokyo 18941 wombat 0:00 csh -c (setenv...

0x261cffff0000054a tokyo 17957 wombat 0:44 xem -geometry 84x42

0x261cffff0000054a tokyo 17938 wombat 0:00 rshd
0x261cffff0000054a tokyo 18022 wombat 0:00 /bin/csh -i

0x261cffff0000054a tokyo 17980 wombat 0:03 /usr/gnu/lib/ema...

0x261cffff0000054c tokyo 18928 wombat 0:00 rshd

Controlling Processes

The arshell command lets you start an arbitrary program on a single other node.
The array command gives you the ability to suspend, resume, or kill all processes
associated with a specified ASH.

Using arshell

The arshell command is an Array Services extension of the familiar rsh command;
it executes a single system command on a specified Array node. The difference from
rsh is that the remote shell executes under the same ASH as the invoking shell (this
is not true of simple rsh). The following example demonstrates the difference.

homegrown 179% ainfo ash

Array session handle of process 8506: 0x1111ffff00000425

homegrown 180% rsh guest@tokyo ainfo ash
Array session handle of process 13113: 0x261cffff0000145e

homegrown 181% arshell guest@tokyo ainfo ash

Array session handle of process 13119: 0x1111ffff00000425

160 007–3700–015

IRIX® Admin: Resource Administration

You can use arshell to start a collection of unrelated programs in multiple nodes
under a single ASH; then you can use the commands described under "Managing
Session Processes", page 162 to stop, resume, or kill them.

Both MPI and PVM use arshell to start up distributed processes.

Tip: The shell is a process under its own ASH. If you use the array command to
stop or kill all processes started from a shell, you will stop or kill the shell also. In
order to create a group of programs under a single ASH that can be killed safely,
proceed as follows:

1. Create a nested shell with a new ASH using newsess. Note the ASH value.

2. Within the new shell, start one or more programs using arshell.

3. Exit the nested shell.

Now you are back to the original shell. You know the ASH of all programs started
from the nested shell. You can safely kill all jobs that have that ASH because the
current shell is not affected.

About the Distributed Example

The programs launched with arshell are not coordinated (they could of course be
written to communicate with each other, for example using sockets), and you must
start each program individually.

The array command is designed to permit the simultaneous launch of programs on
all nodes with a single command. However, array can only launch programs that
have been configured into it, in the Array Services configuration file. (The creation and
management of this file is discussed under "About Array Configuration", page 164.)

In order to demonstrate process management in a simple way from the command
line, the following command was inserted into the configuration file
/usr/lib/array/arrayd.conf:

007–3700–015 161

7: Array Services

#
Local commands

#

command spin # Do nothing on multiple machines

invoke /usr/lib/array/spin

user %USER
group %GROUP

options nowait

The invoked command, /usr/lib/array/spin, is a shell script that does nothing
in a loop, as follows:

#!/bin/sh

Go into a tight loop

#

interrupted() {

echo "spin has been interrupted - goodbye"

exit 0
}

trap interrupted 1 2

while [! -f /tmp/spin.stop]; do

sleep 5

done
echo "spin has been stopped - goodbye"

exit 1

With this preparation, the command array spin starts a process executing that
script on every processor in the array. Alternatively, array -l -s nodename spin
would start a process on one specific node.

Managing Session Processes

The following command sequence creates and then kills a spin process in every
node. The first step creates a new session with its own ASH. This is so that later,
array kill can be used without killing the interactive shell.

homegrown 175% ainfo ash

Array session handle of process 8912: 0x1111ffff0000032d

homegrown 176% newsess
homegrown 175% ainfo ash

Array session handle of process 8941: 0x11110000308b2fa6

162 007–3700–015

IRIX® Admin: Resource Administration

In the new session with ASH 0x11110000308b2fa6, the command array spin starts the
/usr/lib/array/spin script on every node. In this test array, there were only two
nodes on this day, homegrown and tokyo.

homegrown 176% array spin

After exiting back to the original shell, the command array ps is used to search for
all processes that have the ASH 0x11110000308b2fa6.

homegrown 177% exit

homegrown 178% homegrown 177%

homegrown 177% ainfo ash

Array session handle of process 9257: 0x1111ffff0000032d
homegrown 179% array ps | fgrep 0x11110000308b2fa6

0x11110000308b2fa6 homegrown 9033 guest 0:00 /bin/sh /usr/lib/array/spin

0x11110000308b2fa6 homegrown 9618 guest 0:00 sleep 5

0x11110000308b2fa6 tokyo 26021 guest 0:00 /bin/sh /usr/lib/array/spin

0x11110000308b2fa6 tokyo 26072 guest 0:00 sleep 5
0x1111ffff0000032d homegrown 9642 guest 0:00 fgrep 0x11110000308b2fa6

There are two processes related to the spin script on each node. The next command
kills them all.

homegrown 180% array kill 0x11110000308b2fa6
homegrown 181% array ps | fgrep 0x11110000308b2fa6

0x1111ffff0000032d homegrown 10030 guest 0:00 fgrep 0x11110000308b2fa6

The command array suspend 0x11110000308b2fa6 would suspend the
processes instead (however, it is hard to demonstrate that a sleep command has
been suspended).

About Job Container IDs

Array systems that are running IRIX 6.5.7f (or later) and Array Services version 3.4
(or later) have the capability to forward job IDs (JIDs) from the initiating host. All of
the processes running in the ASH across one or more nodes in an array also belong to
the same job. For a complete description of the job container and it usage, see the
job_limits(5) man page or IRIX Admin: Resource Administration.

When processes are running on the initiating host, they belong to the same job as the
initiating process and operate under the limits established for that job. On remote
nodes, a new job is created using the same JID as the initiating process. Job limits for

007–3700–015 163

7: Array Services

a job on remote nodes use the systune defaults and are set using the systune(1M)
command on the initiating host.

About Array Configuration
The system administrator has to initialize the Array configuration database, a file that
is used by the Array Services daemon in executing almost every ainfo and array
command. For details about array configuration, see the man pages cited in Table 7-6.

Table 7-6 Information Sources: Array Configuration
standard

Topic Man Page

Array Services overview array_services(5)

Array Services user
commands

ainfo(1) , array(1)

Array Services daemon
overview

arrayd(1m)

Configuration file format arrayd.conf(4) ,
/usr/lib/array/arrayd.conf.template

Configuration file
validator

ascheck(1)

Array Services simple
configurator

arrayconfig(1m)

About the Uses of the Configuration File

The configuration files are read by the Array Services daemon when it starts.
Normally it is started in each node during the system startup. (You can also run the
daemon from a command line in order to check the syntax of the configuration files.)

The configuration files contain data needed by ainfo and array:

• The names of Array systems, including the current Array but also any other Arrays
on which a user could run an Array Services command (reported by ainfo).

164 007–3700–015

IRIX® Admin: Resource Administration

• The names and types of the nodes in each named Array, especially the hostnames
that would be used in an Array Services command (reported by ainfo).

• The authentication keys, if any, that must be used with Array Services commands
(required as -Kl and -Kr command options, see "Summary of Common
Command Options", page 152).

• The commands that are valid with the array command.

About Configuration File Format and Contents

A configuration file is a readable text file. The file contains entries of the following
four types, which are detailed in later topics.

Array definition Describes this array and other known arrays, including
array names and the node names and types.

Command definition Specifies the usage and operation of a command that
can be invoked through the array command.

Authentication Specifies authentication numbers that must be used to
access the Array.

Local option Options that modify the operation of the other entries
or arrayd.

Blank lines, white space, and comment lines beginning with “#” can be used freely for
readability. Entries can be in any order in any of the files read by arrayd.

Besides punctuation, entries are formed with a keyword-based syntax. Keyword
recognition is not case-sensitive; however keywords are shown in uppercase in this
text and in the man page. The entries are primarily formed from keywords, numbers,
and quoted strings, as detailed in the man page arrayd.conf(4) .

Loading Configuration Data

The Array Services daemon, arrayd, can take one or more filenames as arguments. It
reads them all, and treats them like logical continuations (in effect, it concatenates
them). If no filenames are specified, it reads /usr/lib/array/arrayd.conf and
/usr/lib/array/arrayd.auth. A different set of files, and any other arrayd
command-line options, can be written into the file /etc/config/arrayd.options,
which is read by the startup script that launches arrayd at boot time.

007–3700–015 165

7: Array Services

Since configuration data can be stored in two or more files, you can combine different
strategies, for example:

• One file can have different access permissions than another. Typically,
/usr/lib/array/arrayd.conf is world-readable and contains the available
array commands, while /usr/lib/array/arrayd.auth is readable only by
root and contains authentication codes.

• One node can have different configuration data than another. For example, certain
commands might be defined only in certain nodes; or only the nodes used for
interactive logins might know the names of all other nodes.

• You can use NFS-mounted configuration files. You could put a small configuration
file on each machine to define the Array and authentication keys, but you could
have a larger file defining array commands that is NFS-mounted from one node.

After you modify the configuration files, you can make arrayd reload them by
killing the daemon and restarting it in each machine. The script
/etc/init.d/array supports this operation:

To kill daemon, execute this command:

/etc/init.d/array stop

To kill and restart the daemon in one operation; peform the following command:

/etc/init.d/array restart

Note: On Linux systems, the script path name is /etc/rc.d/init.d/array.

The Array Services daemon in any node knows only the information in the
configuration files available in that node. This can be an advantage, in that you can
limit the use of particular nodes; but it does require that you take pains to keep
common information synchronized. (An automated way to do this is summarized
under "Designing New Array Commands", page 174.)

About Substitution Syntax

The man page arrayd.conf(4) details the syntax rules for forming entries in the
configuration files. An important feature of this syntax is the use of several kinds of
text substitution, by which variable text is substituted into entries when they are
executed.

166 007–3700–015

IRIX® Admin: Resource Administration

Most of the supported substitutions are used in command entries. These substitutions
are performed dynamically, each time the array command invokes a subcommand.
At that time, substitutions insert values that are unique to the invocation of that
subcommand. For example, the value %USER inserts the user ID of the user who is
invoking the array command. Such a substitution has no meaning except during
execution of a command.

Substitutions in other configuration entries are performed only once, at the time the
configuration file is read by arrayd. Only environment variable substitution makes
sense in these entries. The environment variable values that are substituted are the
values inherited by arrayd from the script that invokes it, which is
/etc/init.d/array.

Testing Configuration Changes

The configuration files contain many sections and options (detailed in the section that
follow this one). The Array Services command ascheck performs a basic sanity
check of all configuration files in the array.

After making a change, you can test an individual configuration file for correct syntax
by executing arrayd as a command with the -c and -f options. For example,
suppose you have just added a new command definition to
/usr/lib/array/arrayd.local. You can check its syntax with the following
command:

arrayd -c -f /usr/lib/array/arrayd.local

When testing new commands for correct operation, you need to see the warning and
error messages produced by arrayd and processes that it may spawn. The stderr
messages from a daemon are not normally visible. You can make them visible by the
following procedure:

1. On one node, kill the daemon.

2. In one shell window on that node, start arrayd with the options -n -v. Instead
of moving into the background, it remains attached to the shell terminal.

Note: Although arrayd becomes functional in this mode, it does not refer to
/etc/config/arrayd.options, so you need to specify explicitly all
command-line options, such as the names of nonstandard configuration files.

007–3700–015 167

7: Array Services

3. From another shell window on the same or other nodes, issue ainfo and array
commands to test the new configuration data. Diagnostic output appears in the
arrayd shell window.

4. Terminate arrayd and restart it as a daemon (without -n).

During steps 1, 2, and 4, the test node may fail to respond to ainfo and array
commands, so users should be warned that the Array is in test mode.

Configuring Arrays and Machines
Each ARRAY entry gives the name and composition of an Array system that users
can access. At least one ARRAY must be defined at every node, the array in use.

Note: ARRAY is a keyword.

Specifying Arrayname and Machine Names

A simple example of an ARRAY definition is a follows:

array simple

machine congo
machine niger

machine nile

The arrayname simple is the value the user must specify in the -a option (see
"Summary of Common Command Options", page 152). One arrayname should be
specified in a DESTINATION ARRAY local option as the default array (reported by
ainfo dflt). Local options are listed under "Configuring Local Options", page 173.

It is recommended that you have at least one array called me that just contains the
localhost. The default arrayd.conf file has the me array defined as the default
destination array.

The MACHINE subentries of ARRAY define the nodenames that the user can specify
with the -s option. These names are also reported by the command ainfo
machines.

168 007–3700–015

IRIX® Admin: Resource Administration

Specifying IP Addresses and Ports

The simple MACHINE subentries shown in the example are based on the assumption
that the hostname is the same as the machine’s name to Domain Name Services
(DNS). If a machine’s IP address cannot be obtained from the given hostname, you
must provide a HOSTNAME subentry to specify either a completely qualified domain
name or an IP address, as follows:

array simple
machine congo

hostname congo.engr.hitech.com

port 8820

machine niger

hostname niger.engr.hitech.com
machine nile

hostname "198.206.32.85"

The preceding example also shows how the PORT subentry can be used to specify that
arrayd in a particular machine uses a different socket number than the default 5434.

Specifying Additional Attributes

Under both ARRAY and MACHINE you can insert attributes, which are named string
values. These attributes are not used by Array Services, but they are displayed by
ainfo and can be returned to programs using the Array Services library (see "Array
Services Library", page 176). Some examples of attributes would be as follows:

array simple

array_attribute config_date="04/03/96"

machine a_node
machine_attribute aka="congo"

hostname congo.engr.hitech.com

Tip: You can write code that fetches any arrayname, machine name, or attribute
string from any node in the array. See "Database Interrogation", page 180.

007–3700–015 169

7: Array Services

Configuring Authentication Codes
In Array Services 3.5 only one type of authentication is provided: a simple numeric
key that can be required with any Array Services command. You can specify a single
authentication code number for each node. The user must specify the code with any
command entered at that node, or addressed to that node using the -s option (see
"Summary of Common Command Options", page 152).

The arshell command is like rsh in that it runs a command on another machine
under the userid of the invoking user. Use of authentication codes makes Array
Services somewhat more secure than rsh.

Configuring Array Commands
The user can invoke arbitrary system commands on single nodes using the arshell
command (see "Using arshell", page 160). The user can also launch MPI and PVM
programs that automatically distribute over multiple nodes. However, the only way
to launch coordinated system programs on all nodes at once is to use the array
command. This command does not accept any system command; it only permits
execution of commands that the administrator has configured into the Array Services
database.

You can define any set of commands that your users need. You have complete control
over how any single Array node executes a command (the definition can be different
in different nodes). A command can simply invoke a standard system command, or,
since you can define a command as invoking a script, you can make a command
arbitrarily complex.

Operation of Array Commands

When a user invokes the array command, the subcommand and its arguments are
processed by the destination node specified by -s. Unless the -l option was given,
that daemon also distributes the subcommand and its arguments to all other array
nodes that it knows about (the destination node might be configured with only a
subset of nodes). At each node, arrayd searches the configuration database for a
COMMAND entry with the same name as the array subcommand.

In the following example, the subcommand uptime is processed by arrayd in node
tokyo:

array -s tokyo uptime

170 007–3700–015

IRIX® Admin: Resource Administration

When arrayd finds the subcommand valid, it distributes it to every node that is
configured in the default array at node tokyo.

The COMMAND entry for uptime is distributed in this form (you can read it in the
file /usr/lib/array/arrayd.conf).

command uptime # Display uptime/load of all nodes in array

invoke /usr/lib/array/auptime %LOCAL

The INVOKE subentry tells arrayd how to execute this command. In this case, it
executes a shell script /usr/lib/array/auptime , passing it one argument, the
name of the local node. This command is executed at every node, with %LOCAL
replaced by that node’s name.

Summary of Command Definition Syntax

Look at the basic set of commands distributed with Array Services 3.5
(/usr/lib/array/arrayd.conf). Each COMMAND entry is defined using the
subentries shown in Table 7-7. (These are described in great detail in the man page
arrayd.conf(4).)

Table 7-7 Subentries of a COMMAND Definition

Keyword Meaning of Following Values

COMMAND The name of the command as the user gives it to array.

INVOKE A system command to be executed on every node. The argument
values can be literals, or arguments given by the user, or other
substitution values.

MERGE A system command to be executed only on the distributing node, to
gather the streams of output from all nodes and combine them into a
single stream.

USER The user ID under which the INVOKE and MERGE commands run.
Usually given as USER %USER, so as to run as the user who invoked
array.

GROUP The group name under which the INVOKE and MERGE commands
run. Usually given as GROUP %GROUP, so as to run in the group of
the user who invoked array (see the groups(1) man page).

007–3700–015 171

7: Array Services

Keyword Meaning of Following Values

PROJECT The project under which the INVOKE and MERGE commands run.
Usually given as PROJECT %PROJECT, so as to run in the project of
the user who invoked array (see the projects(5) man page).

OPTIONS A variety of options to modify this command; see Table 7-9.

The system commands called by INVOKE and MERGE must be specified as full
pathnames, because arrayd has no defined execution path. As with a shell script,
these system commands are often composed from a few literal values and many
substitution strings. The substitutions that are supported (which are documented in
detail in the arrayd.conf(4) man page) are summarized in Table 7-8.

Table 7-8 Substitutions Used in a COMMAND Definition

Substitution Replacement Value

%1..%9;
%ARG(n);
%ALLARGS;
%OPTARG(n)

Argument tokens from the user’s subcommand. %OPTARG does
not produce an error message if the specified argument is
omitted.

%USER,
%GROUP,
%PROJECT

The effective user ID, effective group ID, and project of the user
who invoked array.

%REALUSER,
%REALGROUP

The real user ID and real group ID of the user who invoked
array.

%ASH The ASH under which the INVOKE or MERGE command is to
run.

%PID(ash) List of PID values for a specified ASH. %PID(%ASH) is a
common use.

%ARRAY The array name, either default or as given in the -a option.

%LOCAL The hostname of the executing node.

172 007–3700–015

IRIX® Admin: Resource Administration

Substitution Replacement Value

%ORIGIN The full domain name of the node where the array command
ran and the output is to be viewed.

%OUTFILE List of names of temporary files, each containing the output from
one node’s INVOKE command (valid only in the MERGE
subentry).

The OPTIONS subentry permits a number of important modifications of the
command execution; these are summarized in Table 7-9.

Table 7-9 Options of the COMMAND Definition

Keyword Effect on Command

LOCAL Do not distribute to other nodes (effectively forces the -l option).

NEWSESSION Execute the INVOKE command under a newly created ASH.
%ASH in the INVOKE line is the new ASH. The MERGE
command runs under the original ASH, and %ASH substitutes as
the old ASH in that line.

SETRUID Set both the real and effective user ID from the USER subentry
(normally USER only sets the effective UID).

SETRGID Set both the real and effective group ID from the GROUP
subentry (normally GROUP sets only the effective GID).

QUIET Discard the output of INVOKE, unless a MERGE subentry is
given. If a MERGE subentry is given, pass INVOKE output to
MERGE as usual and discard the MERGE output.

NOWAIT Discard the output and return as soon as the processes are
invoked; do not wait for completion (a MERGE subentry is
ineffective).

Configuring Local Options

The LOCAL entry specifies options to arrayd itself. The most important options are
summarized in Table 7-10.

007–3700–015 173

7: Array Services

Table 7-10 Subentries of the LOCAL Entry

Subentry Purpose

DIR Pathname for the arrayd working directory, which is
the initial, current working directory of INVOKE and
MERGE commands. The default is /usr/lib/array.

DESTINATION ARRAY Name of the default array, used when the user omits the
-a option. When only one ARRAY entry is given, it is
the default destination.

USER, GROUP,
PROJECT

Default values for COMMAND execution when USER,
GROUP, or PROJECT are omitted from the COMMAND
definition.

HOSTNAME Value returned in this node by %LOCAL. Default is the
hostname.

PORT Socket to be used by arrayd.

If you do not supply LOCAL USER, GROUP, and PROJECT values, the default values
for USER and GROUP are “guest.”

The HOSTNAME entry is needed whenever the hostname command does not return
a node name as specified in the ARRAY MACHINE entry. In order to supply a
LOCAL HOSTNAME entry unique to each node, each node needs an individualized
copy of at least one configuration file.

Designing New Array Commands

A basic set of commands is distributed in the file
/usr/lib/array/arrayd.conf.template . You should examine this file
carefully before defining commands of your own. You can define new commands
which then become available to the users of the Array system.

Typically, a new command will be defined with an INVOKE subentry that names a
script written in sh, csh, or Perl syntax. You use the substitution values to set up
arguments to the script. You use the USER, GROUP, PROJECT, and OPTIONS
subentries to establish the execution conditions of the script. For one example of a
command definition using a simple script, see "About the Distributed Example", page
161.

174 007–3700–015

IRIX® Admin: Resource Administration

Within the invoked script, you can write any amount of logic to verify and validate
the arguments and to execute any sequence of commands. For an example of a script
in Perl, see /usr/lib/array/aps, which is invoked by the array ps command.

Note: Perl is a particularly interesting choice for array commands, since Perl has
native support for socket I/O. In principle at least, you could build a distributed
application in Perl in which multiple instances are launched by array and coordinate
and exchange data using sockets. Performance would not rival the highly tuned MPI
and PVM libraries, but development would be simpler.

The administrator has need for distributed applications as well, since the configuration
files are distributed over the Array. Here is an example of a distributed command to
reinitialize the Array Services database on all nodes at once. The script to be executed
at each node, called /usr/lib/array/arrayd-reinit would read as follows:

#!/bin/sh

Script to reinitialize arrayd with a new configuration file
Usage: arrayd-reinit <hostname:new-config-file>

sleep 10 # Let old arrayd finish distributing

rcp $1 /usr/lib/array/

/etc/init.d/array restart

exit 0

The script uses rcp to copy a specified file (presumably a configuration file such as
arrayd.conf) into /usr/lib/array (this will fail if %USER is not privileged).
Then the script restarts arrayd (see /etc/init.d/array) to reread configuration
files.

The command definition would be as follows:

command reinit
invoke /usr/lib/array/arrayd-reinit %ORIGIN:%1

user %USER

group %GROUP

options nowait # Exit before restart occurs!

The INVOKE subentry calls the restart script shown above. The NOWAIT option
prevents the daemon’s waiting for the script to finish, since the script will kill the
daemon.

007–3700–015 175

7: Array Services

Array Services Library
Array Services consists of a configuration database, a daemon (arrayd) that runs in
each node to provide services, and several user-level commands. The facilities of
Array Services are also available to developers through the Array Services library, a
set of functions through which you can interrogate the configuration database and
call on the services of arrayd.

The commands of Array Services are covered in "Using Array Services Commands",
page 150. The administration of Array Services is described in "About Array
Configuration", page 164, and the sections that follow it. These sections provide
useful background information for understanding the Array Services library.

The programming interface to Array Services is declared in the header file
/usr/include/arraysvcs.h. The object code is located in
/usr/lib/libarray.so, included in a program by specifying -larray during
compilation. The library is distributed in o32, n32, and 64-bit versions on IRIX and
IA-64 versions on Linux (not all need to be installed).

The library functions can be grouped into these categories:

• Functions to connect to Array Services daemons in the local or other nodes, and to
get and set arrayd options.

• Functions to interrogate the Array Services configuration database, listing arrays,
nodes, and attributes of arrays and nodes.

• Functions to allocate Array Session Handles (ASHs), to query active ASHs, and to
change the relationship between PIDs and ASHs.

• A function to execute a command for the array command (see "Operation of
Array Commands", page 170).

• A function to execute any arbitrary user command on an array node.

These functions are examined in following sections.

Data Structures

The Array Services functions work with a number of data structures that are declared
in arraysvcs.h. In general, each data structure is allocated by one particular
function, which returns a pointer to the structure as the function’s result. Your code
uses the returned structure, possibly passing it as an argument to other functions.

176 007–3700–015

IRIX® Admin: Resource Administration

When your code is finished with a structure, it is expected to call a specific function
that frees that type of structure. If your code does not free each structure, a memory
leak results.

The data structures and their contents are summarized in Table 7-11.

Table 7-11 Array Services Data Structures

Structure Contents Freed By Function

asarray_t Name and attributes of an Array. asfreearray()

asarraylist_t List of asarray_t structures. asfreearraylist()

asashlist_t List of ASH values. asfreeashlist()

ascmdrslt_t Describes output of executing an array command on one
node, including temporary files and socket numbers.

Freed as part of a list

ascmdrsltlist_t List of command results, one ascmdrslt_t per node where an
array command was executed.

asfreecmdrsltlist()

asmachine_t Configuration data about one node: machine name and
attributes.

Freed as part of a list

asmachinelist_t List of asmachine_t structures, one per machine in the
queried array

asfreemachinelist()

aspidlist_t List of PID values. asfreepidlist()

Error Message Conventions

The functions of the Array Services library have a complicated convention for error
return codes. The man pages related to this convention are listed in Table 7-12.

007–3700–015 177

7: Array Services

Table 7-12 Error Message Functions

Function Operation

aserrorcode(3X) Discusses the error code conventions and some macro
functions used to extract subfields from an error code.

asmakeerror(3X) Constructs an error code value from its component parts.

asstrerror(3X) Returns a descriptive string for a given error code value.

asperror(3X) Prints a descriptive string, with a specified heading string, on
stderr.

In general, each function sets a value in the global aserrorcode structure, which has type
aserror_t (not necessarily an int). An error code is a structured value with these parts:

• aserrno is a general error number similar to those declared in sys/errno.h.

• aserrwhy documents the cause of the error.

• aserrwhat documents the component that detected the error.

• aserrextra may give additional information.

Macro functions to extract these subfields from the global aserrorcode structure are
provided.

Connecting to Array Services Daemons

The functions listed in Table 7-13 are used to open a connection between the node
where your program runs and an instance of arrayd in the same or another node.

178 007–3700–015

IRIX® Admin: Resource Administration

Table 7-13 Functions for Connections to Array Services Daemons

Function Operation

asopenserver(3X) Establishes a logical connection to arrayd
in a specified node, returning a token that
represents that connection for use in other
functions.

ascloseserver(3X) Closes an arrayd connection created by
asopenserver().

asgetserveropt(3X) Returns the local options currently in use
by an instance of arrayd.

asdfltserveropt(3X) Returns the default options in effect at an
instance of arrayd.

assetserveropt(3X) Sets new options for an instance of arrayd.

The key function is asopenserver(). It takes a node name as a character string (as
a user would give it in the -s option; see "Summary of Common Command Options",
page 152), and optionally a socket number to override the default arrayd socket
number. This function opens a socket connection to the specified instance of arrayd.
The returned token (type asserver_t) stands for that connection and is passed to other
functions.

The functions for getting and setting server options can change the configured
options shown in Table 7-14. To set these options is the programmatic equivalent of
passing command line options in an Array Services command (see "About Array
Configuration", page 164, and "Using Array Services Commands", page 150).

Table 7-14 Server Options That Functions Can Query or Change

Constant Changeable? Meaning

AS_SO_TIMEOUT yes Timeout interval for any request to this server

AS_SO_CTIMEOUT yes Timeout interval for connecting to this server

AS_SO_FORWARD yes Whether or not Array Services requests should
be forwarded through the local arrayd or sent
directly (using the -F option)

007–3700–015 179

7: Array Services

Constant Changeable? Meaning

AS_SO_LOCALKEY yes The local authentication key (the -Kl
command option)

AS_SO_REMOTEKEY yes The remote authentication key (-Kr command
option)

AS_SO_PORTNUM no In default options only, the default socket
number

AS_SO_HOSTNAME no The hostname for this connection

Database Interrogation

The functions summarized in Table 7-15 are used to interrogate the configuration
database used by arrayd in a specified node (see "About Array Configuration", page
164).

Table 7-15 Functions for Interrogating the Configuration

Function Operation

asgetdfltarray(3X) Returns the array name and all
attribute strings for the default
array known to a specified server
in an asarray_t structure

aslistarrays(3X) Returns the names of all arrays,
with their attribute strings, from a
specified server as an asarraylist_t
structure

aslistmachines(3X) Returns the names of all machines,
with their attribute strings, from a
specified server as an
asmachinelist_t structure

asgetattr(3X) Searches for a particular attribute
name in a list of attribute strings
and return its value

180 007–3700–015

IRIX® Admin: Resource Administration

Using these functions you can extract any array name, node name, or attribute that is
known to an arrayd instance you have opened.

Managing Array Service Handles

The functions summarized in Table 7-16 are used to create and interrogate ASH
values.

Table 7-16 Functions for Managing Array Service Handles

Function Operation

asallocash(3X) Allocates a new ASH value. The value is
only created, it is not applied to any
process.

aspidsinash(3X) Returns a list of PID values associated
with an ASH at a specified server, as an
aspidlist_t structure.

asashofpid(3X) Returns the ASH associated with a
specified PID.

setash(2) Changes the ASH of the calling process.

The asallocash() function is like the command ainfo newash (see "About Array
Session Handles (ASH)", page 159). Only a program with root privilege can use the
setash() system function to change the ASH of the current process. Unprivileged
processes can create new ASH values but cannot change their ASH.

The functions summarized in Table 7-17 are used to enumerate the active ASH values
at a specified node. In each case, the list of ASH values is returned in an asashlist_t
structure.

007–3700–015 181

7: Array Services

Table 7-17 Functions for ASH Interrogation

Function Operation

aslistashs(3X) Returns active ASH values
from one node or all nodes
of a specified Array via a
specified server

aslistashs_array(3X) Returns active ASH values
from an Array by name

aslistashs_server(3X) Returns active ASH values
known to a specified server
node

aslistashs_local(3X) Returns active ASH values
in the local node

asashisglobal(3X) Tests to see if an ASH is
global

Executing an Array Command

The ascommand() function is the programmatic equivalent of the array command
(see "Operation of Array Commands", page 170 and the array(1) man page). This
command has many options and can be used to execute commands in three distinct
modes.

The command to be executed must be prepared in an ascmdreq_t structure, which
contains the following fields:

typedef struct ascmdreq {

char *array; /* Name of target array */

int flags; /* Option flags */

int numargs; /* Number of arguments */

char **args; /* Cmd arguments (ala argv) */

int ioflags; /* I/O flags for interactive commands */
char rsrvd[100]; /* reserved for expansion: init to 0’s */

} ascmdreq_t;

Your program must prepare this structure in order to execute a command. The option
flags allow for the same controls as the command line options of array.

182 007–3700–015

IRIX® Admin: Resource Administration

The result of the command is returned as an ascmdrsltlist_t structure, which is a vector
of ascmdrslt_t structures, one for each node at which the command was executed.
Each ascmdrslt_t contains the following fields:

typedef struct ascmdrslt {

char *machine; /* Name of responding machine */

ash_t ash; /* ASH of running command */
int flags; /* Result flags */

aserror_t error; /* Error code for this command */

int status; /* Exit status */

char *outfile; /* Name of output file */

int ioflags; /* I/O connections (see ascmdreq_t) */
int stdinfd; /* File descriptor for command’s stdin */

int stdoutfd; /* File descriptor for command’s stdout */

int stderrfd; /* File descriptor for command’s stderr */

int signalfd; /* File descriptor for sending signals */

} ascmdrslt_t;

The fields machine, ash, flags, error, and status reflect the result of the
command execution in that machine. The other fields depend on the mode of
execution.

Normal Batch Execution

To execute a command in the normal way, waiting for it to complete and collecting its
output, you do not set either ASCMDREQ_NOWAIT or ASCMDREQ_INTERACTIVE in the
command option flags.

Control returns from ascommand() when the command is complete on all nodes. If
the ASCMDREQ_OUTPUT flag was specified, and if the command definition does not
specify a MERGE subentry (see "Summary of Command Definition Syntax", page
171), the outfile result field contains the name of a temporary file containing one
node’s output stream.

When the command is implemented with a MERGE subentry, there is only one
output file no matter how many nodes are invoked. In this case, the returned list
contains only one ascmdrslt_t structure. It contains the ASCMDRSLT_MERGED and
ASCMDREQ_OUTPUT flags, and the outfile result field contains the name of a
temporary file containing the merged output.

007–3700–015 183

7: Array Services

Immediate Execution

When a command has no useful output and should execute concurrently with the
calling program, you specify the ASCMDREQ_NOWAIT option. In this case, output
cannot be collected because no program will be waiting to use it. Control returns as
soon as the command has been distributed. The result structures do not reflect the
command’s result but only the result of trying to start it.

Interactive Execution

You can start a command in such a way that your program has direct interaction with
the input and output streams of the command process in every node. When you do
this, your program can supply input and inspect output in near real time.

To establish interactive execution, specify ASCMDREQ_INTERACTIVE in the command
option flag. Also set one or more of the following flags in the ioflags field:

ASCMDIO_STDIN Requests a socket attached to the command’s stdin.

ASCMDIO_STDOUT Requests a socket attached to the command’s stdout.

ASCMDIO_STDERR Requests a socket attached to the command’s stderr.

ASCMDIO_SIGNAL Requests a socket that can be used to deliver signals.

As with ASCMDREQ_NOWAIT, control returns as soon as the command has been
distributed. Each result structure contains file descriptors for the requested sockets for
the command process in that node.

Your program writes data into the stdinfd file descriptor of one node in order to send
data to the stdin stream in that node. Your program reads data from the stdoutfd file
descriptor to read one node’s output stream.

You will typically use either the select() or the poll() system function to learn
when one of the sockets is ready for use. You may choose to start one or more
subprocesses using fork() to handle I/O to the sockets of each node (see the
select(2) , poll(2), and sproc(2) man pages). (You may also use sproc() to make
subprocesses, but keep in mind that the libarray is not thread-safe, so it should
only be used from one process in a share group.)

Executing a User Command

The asrcmd() function allows a program to initiate any user command string on a
specified node. This provides a powerful facility for remote execution that does not

184 007–3700–015

IRIX® Admin: Resource Administration

require root privilege, as the standard rcmd() function does (compare the asrcmd(3)
and rcmd(3) man pages).

The asrcmd() function takes arguments specifying:

• The array node to use, as returned by asopenserver() (see "Connecting to
Array Services Daemons", page 178).

• The user name to use on the remote node.

• The command line to be executed.

The returned value (as with rcmd()) is a socket that represents the standard input
and output streams of the executing command. Optionally, a separate socket for the
standard error stream can be obtained.

007–3700–015 185

Appendix A

Programming Guide for Resource Management

This appendix contains information for job limits, the User Limits DataBase (ULDB),
and cpusets system programming.

This appendix contains the following sections:

• "Application Programming Interface for Job Limits", page 187

• "Application Programming Interface for the ULDB", page 192

• "Application Programming Interface for the Cpuset System", page 195

Application Programming Interface for Job Limits
This section describes the data types and function calls used by the library interface
to the application programming interface (API) functions.

Data Types

This section describes the specific data types that are used in the library interface to
the API functions.

All limit values are specified by the rlimit structure defined for process limits in the
/usr/include/sys/resource.h system include file:

typedef unsigned long rlim_t;

struct rlimit_t {

rlim_t rlim_cur;

rlim_t rlim_max;
};

The job ID is defined as a signed 64 bit value. It is treated opaquely by applications.
The definition of jid_t resides in the sys/types.h system include file.

typedef int64_t jid_t;

007–3700–015 187

A: Programming Guide for Resource Management

Note: Job limit values (rlim_t) are 64-bit in both n32 and n64 binaries. Consequently,
n32 binaries can set 64-bit limits. o32 binaries cannot set 64-bit limits because rlim_t
is 32-bits in o32 binaries. IRIX supports three Application Binary Interfaces (ABIs):
o32, n64, and n32 (for more information on ABIs, see the abi(5) man page).

For more information on rlimit_* values, see "Using systune to Display and Set
Process Limits", page 2 and "showlimits", page 19.

Function Calls

The API for job limits is defined by a set of functions defined in the libc.a library.
Each of the functions invokes the syssgi(2) system interface to perform the
necessary operations. The function prototypes reside in the
/usr/include/sys/resource.h system include file.

getjlimit and setjlimit

The getjlimit function retrieves limits on the consumption of a variety of system
resources by a job and the setjlimit function sets these limits:

#include <sys/resource.h>

int getjlimit(jid_t jid, int resource, struct rlimit *rlp)

int setjlimit(jid_t jid, int resource, struct rlimit *rlp)

For additional information, see the getjlimit(2) man page.

getjusage

The getjusage function retrieves the resource usage values for the specified job ID:

#include <sys/resource.h>
int getjusage(jid_t jid, int resource, struct jobrusage *up)

If the jid parameter is zero, usage values for the current job will be returned. If jid is
non-zero, it represents the job ID of the job for which usages values are retrieved. The
resource parameter specifies the resource for which the usage values are returned.
Allowable values are taken from the JLIMIT_xxx macros found in the
sys/resource.h file. For example, the JLIMIT_CPU macro is for CPU time. The
up parameter points to a rusage structure in the user program where the usage
values will be returned.

188 007–3700–015

IRIX® Admin: Resource Administration

For additional information, see the getjusage(2) man page.

getjid

The getjid function returns the job ID associated with the current process:

#include <sys/resource.h>

jid_t getjid(void);

For additional information, see the getjid(2) man page.

killjob

The killjob function sends a signal to all processes of the specified job ID:

#include <sys/resource.h>

int killjob(jid_t jid, int signal)

For additional information, see the killjob(2) man page.

jlimit_startjob

The jlimit_startjob function creates a new job and sets the job limits to the limit
values in the ULDB.

The jlimit_startjob function follows:

#include <sys/resource.h>
jid_t jlimit_startjob(char *username, uid_t uid, char *domainname);

For additional information, see the jlimit_startjob(2) man page.

makenewjob

The makenewjob function creates a new job container:

#include <sys/resource.h>

jid_t makenewjob(uid_t user, jid_t rjid)

For additional information, see the makenewjob(2) man page.

007–3700–015 189

A: Programming Guide for Resource Management

setjusage

The setjusage function updates the resource usage values for the specified job ID.

The setjusage function follows:

#include <sys/resource.h>

int setjusage(jid_t jid, int resource, struct jobrusage *up)

The setjusage function updates the resource usage values for the specified job ID.
If the jid parameter is zero, usage values for the current job are updated. If jid is
non-zero, it represents the job ID of the job for which usages values are updated. The
resource parameter specifies the resource for which the usage values are to be
updated. Allowable values are taken from the JLIMIT_xxx macros found in the
sys/resource.h file. For example, the JLIMIT_CPU macro is for CPU time. The
up parameter points to a jobrusage structure in the user program where the usage
values are stored.

To be able to update resource usage values using setjusage, the job must be
ignoring the accumulation and enforcement of the limits for the specified resource. It
is determined at job creation if it will be ignoring specific resource limits, based upon
the values of the following system tunable parameters:

[jlimit_numproc_ign] Ignore the accumulation and enforcement of limits on
the number of processes in the job.

[jlimit_pmem_ign] Ignore the accumulation and enforcement of the total
aggregate physical memory usage for the job.

[jlimit_pthread_ign] Ignore the accumulation and enforcement of the
number of pthreads in the job.

[jlimit_nofile_ign] Ignore the accumulation and enforcement of the
number of open files in the job.

[jlimit_rss_ign] Ignore the accumulation and enforcement of the total
aggregate resident set size for the job.

[jlimit_vmem_ign] Ignore the accumulation and enforcement of total
aggregate virtual memory size for the job.

[jlimit_data_ign] Ignore the accumulation and enforcement of total
aggregate data segment size for the job.

190 007–3700–015

IRIX® Admin: Resource Administration

[jlimit_cpu_ign] Ignore the accumulation and enforcement of CPU time
usage for the job.

The values for these tunable parameters can be changed at run-time. By default, these
values are set so that the accumulation and enforcement of resource usage limits are
not ignored. Changing these values at run-time will only affect the behavior of jobs
created after the parameter was changed. Those jobs that existed prior to the
parameter being changed will continue with unchanged concerning the accumulation
and enforcement of job limits for resource usage.

For additional information about system tunable parameters, see the systune(1M)
man page.

The process attempting to use setjusage must have the CAP_PROC_MGT capability.
See the capability(4) and capabilities(4) man pages for more information on
the capability mechanism that provides fine grained control over the privileges of a
process.

For additional information, see the setjusage(2) man page.

setwaitjobpid

The setwaitjobpid function sets a job to wait for a specified pid to call the
waitjob function.

The setwaitjobpid function follows:

#include <sys/resource.h>

int setwaitjobpid(jid_t rjid, pid_t wpid)

For additional information, see the setwaitjobpid(2) man page.

waitjob

The waitjob function obtains information about a terminated job that has been set
with setwaitjobpid argument to wait.

The waitjob function follows:

#include <sys/resource.h>

jid_t waitjob(job_info_t *jobinfo)

For additional information, see the waitjob(2) man page.

007–3700–015 191

A: Programming Guide for Resource Management

Error Messages

For error message information, see the appropriate man pages and "Error Messages",
page 29.

Application Programming Interface for the ULDB
This section describes the data types and function calls used by the library interface
to the ULDB.

Data Types

This section defines the specific data types that are used by the library interface to the
user limits information. All ULDB definitions are in the /usr/include/uldb.h
include file.

Binary limit values are held as unsigned 64 bit values as follows:

typedef rlim_t uldb_limit_t;

uldb_namelist_t

The uldb_namelist_t data type is used to contain name lists such as limit names,
domain names, and so on. The namelist structure contains a count of the items and
a pointer to a list of pointers to the names. The uldb_namelist_t data type is as
follows:

typedef struct uldb_namelist_s {
int uldb_nitems, # number of names in the list

char **uldb_names # list of name pointers

} uldb_namelist_t;

uldb_limitlist_t

The uldb_limitlist_t data type is used to contain a list of binary limit values.
The limit list structure contains a count of the items and a pointer to an array of limit
values. The uldb_limitlist_t data type follows:

typedef struct uldb_limitlist_s {

int uldb_nitems, # number of limit values in the list

192 007–3700–015

IRIX® Admin: Resource Administration

uldb_limit_t *uldb_limits # list of limit pointers
} uldb_limitlist_t;

Function Calls

This section defines the function calls that are used by the library interface to the user
limits information.

The functions that retrieve limit values are as follows:

• uldb_get_limit_values

• uldb_get_value_units

• uldb_get_limit_names

• uldb_get_domain_names

uldb_get_limit_values

The uldb_get_limit_values function retrieves a set of limit values for a domain
or user. If there is no explicit entry for the specified user, the domain defaults are
returned. The set of limits requested is provided using the uldb_namelist_t
structure. The returned limit list pointer references a new uldb_limitlist_t
structure created by a call to the malloc routine that the application is responsible
for freeing when the structure is no longer needed. The order of limit values in the
returned uldb_limitlist_t structure corresponds to the order of limit names in
the input uldb_namelist_t structure. If the user name is NULL, the list of limits
for the domain are retrieved instead of the user limits.

An example of uldb_get_limit_values follows:

#include include/uldb.h

uldb_limitlist_t * # returns pointer to limit list or NULL if error
uldb_get_limit_values (#

char *domain_name, # pointer to domain name

char *user_name, # name of user

uldb_namelist_t *limits); # namelist containing limit names

007–3700–015 193

A: Programming Guide for Resource Management

uldb_get_value_units

The uldb_get_value_units function returns a limit list structure containing the
modifier values or units for the specified list of limits. The accepted modifier values
are defined in the uldb.h header file. The returned list of names is provided by the
uldb_namelist_t structure created by a call to the malloc function. The
application is responsible for freeing this structure when it is no longer needed.

An example of uldb_get_value_units follows:

#include <include/uldb.h>

uldb_limitlist_t * # returns pointer to limit list or NULL if error

uldb_get_value_units (#
char *domain_name, # pointer to domain name

char *user_name, # name of user

uldb_namelist_t *limits); # namelist containing limit names

uldb_get_limit_names

The uldb_get_limit_names function retrieves the complete list of limit names
defined for a domain. The returned list of names is provided by the
uldb_namelist_t structure created by a call to the malloc function. The
application is responsible for freeing this structure when it is no longer needed.

An example of uldb_get_limit_names follows:

#include <include/uldb.h>

uldb_namelist_t * # returns pointer to name list or NULL if error

uldb_get_limit_names (

char *domain_name); # pointer to domain name

uldb_get_domain_names

The uldb_get_domain_names function retrieves the complete list of domain names
defined in the ULDB. The returned list of names is provided the uldb_namelist_t
structure created by a call to the malloc function. The application is responsible for
freeing this structure when it is no longer needed.

#include <include/uldb.h>

uldb_namelist_t * # returns pointer to name list or NULL if error

uldb_get_domain_names (
void);

194 007–3700–015

IRIX® Admin: Resource Administration

The functions that manage memory are as follows:

• uldb_free_namelist

• uldb_free_limit_list

uldb_free_namelist

The uldb_free_namelist function deletes a namelist structure and all its
components.

An example of uldb_free_namelist follows:

#include <include/uldb.h>

void # returns 0 if okay, -1 on error

uldb_free_namelist (#

uldb_namelist_t *names); # pointer to namelist to be freed

uldb_free_limit_list

The uldb_free_limit_list function deletes a limitlist structure and all its
components.

An example of uldb_free_limit_list follows:

#include <include/uldb.h>

void # returns 0 if okay, -1 on error

uldb_free_limit_list (#

uldb_limit_list_t *limits); # pointer to limit list to be freed

Error Messages

For error message information, see the uldb_get_limit_values(3c) and
jlimit_startjob(3c) man pages or "Error Messages", page 29.

Application Programming Interface for the Cpuset System
The cpuset library provides interfaces that allow a programmer to create and destroy
cpusets, retrieve information about existing cpusets, obtain information about the
properties associated with existing cpusets, and to attach a process and all of its
children to a cpuset.

007–3700–015 195

A: Programming Guide for Resource Management

The cpuset library requires that a permission file be defined for a cpuset that is
created. The permissions file may be an empty file, since it is only the file permissions
for the file that define access to the cpuset. When permissions need to be checked, the
current permissions of the file are used. It is therefore possible to change access to
particular cpuset without having to tear it down and recreate it, simply by changing
the access permissions. Read access allows a user to retrieve information about a
cpuset while execute permission allows the user to attach a process to the cpuset.

The cpuset library is provided as a N32 Dynamic Shared Object (DSO) library. The
library file is libcpuset.so, and it is normally located in the directory /lib32.
Users of the library must include the cpuset.h header file which is located in
/usr/include. The function interfaces provided in the cpuset library are declared as
optional interfaces to allow for backwards compatibility as new interfaces are added
to the library.

Note: The Cpuset library is only available on IRIX 6.5.8 and later releases.

It is possible to compile and run a program that uses this DSO and its interfaces if
they are available, but continues to execute if they are missing. To do this, a
replacement library for libcpuset.so must be made available. For an example of
how to create a replacement library, see the cpuset(5) man page. For more
information on DSO, see the DSO(5) man page.

The function interfaces within the cpuset library include:

Function interface Description

"cpusetAllocQueueDef(3x)" Allocates a cpuset_QueueDef_t
structure (see
"cpusetAllocQueueDef(3x)",
page 202)

"cpusetAttach(3x)" Attaches the current process to a
cpuset (see "cpusetAttach(3x)",
page 208)

"cpusetAttachPID(3x)" Attaches a specific process to a
cpuset (see
"cpusetAttachPID(3x)", page 210)

"cpusetCreate(3x)" Creates a cpuset (see
"cpusetCreate(3x)", page 212)

196 007–3700–015

IRIX® Admin: Resource Administration

"cpusetDestroy(3x)" Destroys a cpuset (see
"cpusetDestroy(3x)", page 221)

"cpusetDetachAll(3x)" Detaches all threads from a cpuset
(see "cpusetDetachAll(3x)", page
217)

"cpusetDetachPID(3x)" Detaches a specific process from a
cpuset (see
"cpusetDetachPID(3x)", page 219)

"cpusetFreeCPUList(3x)" Releases memory used by a
cpuset_CPUList_t structure (see
"cpusetFreeCPUList(3x)", page
272)

"cpusetFreeNameList(3x)" Releases memory used by a
cpuset_NameList_t structure
(see "cpusetFreeNameList(3x)",
page 273)

"cpusetFreeNodeList(3x)" Releases memory used by a
cpuset_NodeList_t structure
(see "cpusetFreeNodeList(3x)",
page 274)

"cpusetFreePIDList(3x)" Releases memory used by a
cpuset_PIDList_t structure (see
"cpusetFreePIDList(3x)", page
275)

"cpusetFreeProperties(3x)", page 276 Release memory used by a
cpuset_Properties_t structure
(see
"cpusetFreeProperties(3x)",
page 276)

"cpusetFreeQueueDef(3x)" Releases memory used by a
cpuset_QueueDef_t structure
(see "cpusetFreeQueueDef(3x)",
page 277)

"cpusetGetCPUCount(3x)" Obtains the number of CPUs
configured on the system (see

007–3700–015 197

A: Programming Guide for Resource Management

"cpusetGetCPUCount(3x)", page
243)

"cpusetGetCPULimits(3x)" Gets the CPU count limits for a
cpuset (see
"cpusetGetCPULimits(3x)", page
244

"cpusetGetCPUList(3x)" Gets the list of all CPUs assigned to
a cpuset (see
"cpusetGetCPUList(3x)", page
246)

"cpusetGetFlags(3x)" Gets the mask of flags for a cpuset
(see "cpusetGetFlags(3x)", page
248)

"cpusetGetMemLimits(3x)" Gets the memory size limits for a
cpuset (see
"cpusetGetMemLimits(3x)", page
252)

"cpusetGetMemList(3x)" Gets the list of all nodes with
memory assigned to a cpuset
("cpusetGetMemList(3x)", page
254)

"cpusetGetName(3x)" Gets the name of the cpuset to
which a process is attached (see
"cpusetGetName(3x)", page 256)

"cpusetGetNameList(3x)" Gets a list of names for all defined
cpusets (see
"cpusetGetNameList(3x)", page
259)

"cpusetGetNodeList(3x)" Gets the list of nodes assigned to a
cpuset (see
"cpusetGetNodeList(3x)", page
261)

"cpusetGetPIDList(3x)" Gets a list of all PIDs attached to a
cpuset (see
"cpusetGetPIDList(3x)", page
263)

198 007–3700–015

IRIX® Admin: Resource Administration

"cpusetGetProperties(3x)" Retrieve various properties
associated with a cpuset (see
"cpusetGetProperties(3x)",
page 265)

"cpusetGetTrustPerm (3x)" Gets the Trusted Security
permissions for a cpuset (see
"cpusetGetTrustPerm (3x)", page
267)

"cpusetGetUnixPerm(3x)" Gets the UNIX file permissions for
a cpuset (see
"cpusetGetUnixPerm(3x)", page
269)

"cpusetMove(3x)" Temporarily moves a process,
identified by its PID or ASH, out of
specified cpuset (see
"cpusetMove(3x)", page 222)

"cpusetMoveMigrate(3x)" Move a specific process, identified
by its PID or ASH, and its
associated memory, from one
cpuset to another (see
"cpusetMoveMigrate(3x)", page
224)

"cpusetSetCPULimits(3x)" Sets the count limits for a cpuset
(see "cpusetSetCPULimits(3x)",
page 226)

"cpusetSetCPUList(3x)" Set the list of all nodes with
memory assigned to a cpuset (see
"cpusetSetCPUList(3x)", page
228)

"cpusetSetFlags(3x)" Sets the mask of flags for a cpuset
(see "cpusetSetFlags(3x)", page
230)

"cpusetSetMemLimits(3x)" Sets the memory size limits for a
cpuset (see
"cpusetSetMemLimits(3x)", page
234)

007–3700–015 199

A: Programming Guide for Resource Management

"cpusetSetMemList(3x)" Sets the list of all nodes with
memory assigned to a cpuset (see
"cpusetSetMemList(3x)", page
236)

"cpusetSetNodeList(3x)" Sets the list of nodes assigned to a
cpuset (see
"cpusetSetNodeList(3x)", page
238)

"cpusetSetPermFile(3x)" Sets the name of the file used to
define access permissions for a
cpuset (see
"cpusetSetPermFile(3x)", page
240)

Management functions

This section contains the man pages for the following Cpuset System library functions:

"cpusetAllocQueueDef(3x)"Allocates a cpuset_QueueDef_t structure (see
"cpusetAllocQueueDef(3x)", page 202)

"cpusetAttach(3x)" Attaches the current process to a cpuset (see
"cpusetAttach(3x)", page 208)

"cpusetAttachPID(3x)" Attaches a specific process to a cpuset (see
"cpusetAttachPID(3x)", page 210)

"cpusetCreate(3x)" Creates a cpuset (see "cpusetCreate(3x)", page 212)

"cpusetDestroy(3x)" Destroys a cpuset (see "cpusetDestroy(3x)", page 221)

"cpusetDetachAll(3x)" Detaches all threads from a cpuset (see
"cpusetDetachAll(3x)", page 217)

"cpusetDetachPID(3x)" Detaches a specific process from a cpuset (see
"cpusetDetachPID(3x)", page 219)

"cpusetMove(3x)" Temporarily moves a process, identified by its PID, JID,
or ASH, out of specified cpuset (see "cpusetMove(3x)",
page 222)

200 007–3700–015

IRIX® Admin: Resource Administration

"cpusetMoveMigrate(3x)" Moves a specific process, identified by its PID, JID, or
ASH, and its associated memory, from one cpuset to
another (see "cpusetMoveMigrate(3x)", page 224)

"cpusetSetCPULimits(3x)" Sets the count limits for a cpuset (see
"cpusetSetCPULimits(3x)", page 226)

"cpusetSetCPUList(3x)" Set the list of all nodes with memory assigned to a
cpuset (see "cpusetSetCPUList(3x)", page 228)

"cpusetSetFlags(3x)" Sets the mask of flags for a cpuset (see
"cpusetSetFlags(3x)", page 230)

"cpusetSetMemLimits(3x)" Sets the memory size limits for a cpuset (see
"cpusetSetMemLimits(3x)", page 234)

"cpusetSetMemList(3x)" Sets the list of all nodes with memory assigned to a
cpuset (see "cpusetSetMemList(3x)", page 236)

"cpusetSetNodeList(3x)" Sets the list of nodes assigned to a cpuset (see
"cpusetSetNodeList(3x)", page 238)

"cpusetSetPermFile(3x)" Sets the name of the file used to define the access
permissions for a cpuset (see
"cpusetSetPermFile(3x)", page 240)

007–3700–015 201

A: Programming Guide for Resource Management

cpusetAllocQueueDef(3x)

NAME

cpusetAllocQueueDef - allocates a cpuset_QueueDef_t structure

SYNOPSIS

#include <cpuset.h>

cpuset_QueueDef_t *cpusetAllocQueueDef(int count)

DESCRIPTION

The cpusetAllocQueueDef function is used to allocate memory for a
cpuset_QueueDef_t structure. This memory can then be released using the
cpusetFreeQueueDef(3x) function.

The count argument indicates the number of CPUs that will be assigned to the
cpuset definition structure. The cpuset_QueueDef_t structure is defined as follows:

typedef struct {

int flags;

char *permfile;
cpuset_CPUList_t *cpu;

} cpuset_QueueDef_t;

The flags member is used to specify various control options for the cpuset queue. It
is formed by applying the bitwise exclusive-OR operator to zero or more of the
following values:

CPUSET_CPU_EXCLUSIVE Defines a cpuset to be restricted.
Only threads attached to the cpuset
queue (descendents of an attached
thread inherit the attachement) may
execute on the CPUs contained in
the cpuset.

CPUSET_MEMORY_LOCAL Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. No restrictions

202 007–3700–015

IRIX® Admin: Resource Administration

are made on memory assignment to
threads running outside the cpuset.

CPUSET_MEMORY_EXCLUSIVE Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. Threads not
assigned to the cpuset will not use
memory from within the cpuset
unless no memory outside the
cpuset is available. If, at the time a
cpuset is created, memory is
already assigned to threads that are
already running, no attempt will be
made to explicitly move this
memory. If page migration is
enabled, the pages will be migrated
when the system detects that most
references to the pages are nonlocal.

CPUSET_MEMORY_KERNEL_AVOID The kernel should attempt to avoid
allocating memory from nodes
contained in this cpuset. If kernel
memory requests cannot be satisfied
from outside this cpuset, this option
will be ignored and allocations will
occur from within the cpuset. (This
avoidance currently extends only to
keeping buffer cache away from the
protected nodes.)

CPUSET_MEMORY_MANDATORY The kernel will limit all memory
allocations to nodes that are
contained in this cpuset. If memory
requests cannot be satisfied, the
allocating process will sleep until
memory is available. The process
will be killed if no more memory
can be allocated. See policies below.

007–3700–015 203

A: Programming Guide for Resource Management

CPUSET_POLICY_PAGE Requires MEMORY_MANDATORY.
This is the default policy if no
policy is specified. This policy will
cause the kernel to page user pages
to the swap file (see swap(1M)) to
free physical memory on the nodes
contained in this cpuset. If swap
space is exhausted, the process will
be killed.

CPUSET_POLICY_KILL Requires MEMORY_MANDATORY. The
kernel will attempt to free as much
space as possible from kernel
heaps, but will not page user pages
to the swap file. If all physical
memory on the nodes contained in
this cpuset are exhausted, the
process will be killed.

CPUSET_POLICY_SHARE_WARN When creating a cpuset, if it is
possible for the new cpuset to share
memory on a node with another
cpuset the new cpuset will be
created but a warning message will
be issued. The
POLICY_SHARE_WARN and
POLICY_SHARE_FAIL tokens
cannot be used together.

CPUSET_POLICY_SHARE_FAIL When creating a cpuset, if it is
possible for the new cpuset to share
memory on a node with another
cpuset, the new cpuset fails to be
created and an error message is
issued. The POLICY_SHARE_WARN
and POLICY_SHARE_FAIL tokens
cannot be used together.

The permfile member is the name of the file that defines the access permissions for
the cpuset queue. The file permissions of filename referenced by permfile
define access to the cpuset. Every time permissions need to be checked, the current
permissions of this file are used. Thus, it is possible to change the access to a
particular cpuset without having to tear it down and recreate it, simply by changing

204 007–3700–015

IRIX® Admin: Resource Administration

the access permissions. Read access to the permfile allows a user to retrieve
information about a cpuset, while execute permission allows the user to attach a
process to the cpuset.

The cpu member is a pointer to a cpuset_CPUList_t structure. The memory for
the cpuset_CPUList_t structure is allocated and released when the
cpuset_QueueDef_t structure is allocated and released (see
cpusetFreeQueueDef(3x)). The cpuset_CPUList_t structure contains the list of
CPUs assigned to the cpuset. The cpuset_CPUList_t structure (defind in the
cpuset.h include file) is defined as follows:

typedef struct {

int count;

int *list;

} cpuset_CPUList_t;

The count member defines the number of CPUs contained in the list.

The list member is the pointer to the list (an allocated array) of the CPU IDs. The
memory for the list array is allocated and released when the cpuset_CPUList_t
structure is allocated and released. The size of the list is determined by the count
argument passed into the function cpusetAllocQueueDef.

EXAMPLES

This example creates a cpuset queue using the cpusetCreate(3x) function and
provides an example of how the cpusetAllocQueueDef function might be used.
The cpuset created will have access controlled by the file /usr/tmp/mypermfile; it
will contain CPU IDs 4, 8, and 12; and it will be CPU exclusive and memory exclusive:

cpuset_QueueDef_t *qdef;

char *qname = "myqueue";

/* Alloc queue def for 3 CPU IDs */

qdef = cpusetAllocQueueDef(3);

if (!qdef) {

perror("cpusetAllocQueueDef");
exit(1);

}

/* Define attributes of the cpuset */

qdef->flags = CPUSET_CPU_EXCLUSIVE

| CPUSET_MEMORY_EXCLUSIVE;

007–3700–015 205

A: Programming Guide for Resource Management

qdef->permfile = "/usr/tmp/mypermfile";
qdef->cpu->count = 3;

qdef->cpu->list[0] = 4;

qdef->cpu->list[1] = 8;

qdef->cpu->list[2] = 12;

/* Request that the cpuset be created */

if (!cpusetCreate(qname, qdef)) {

perror("cpusetCreate");

exit(1);

}

cpusetFreeQueueDef(qdef);

As of the IRIX 6.5.21 release, this cpuset_QueueDef_t structure references and is
part of an extended data structure. The extended data structure is hidden, which
allows future feature enhancements to cpusets, while not impacting existing programs
that make use of the cpuset API. To set cpuset queue definition attributes in the
extended data structure, you must use the API interfaces. You can continue to to set
the flags, permfile, and CPUs as previously described, but it is suggested that
you begin using the new interfaces for setting such information. These interfaces are
used for setting the cpuset queue definition attributes, as follows:

cpusetSetFlags(3x) Sets the attribute flags

cpusetSetPermFile(3x) Sets the name of the permissions
file

cpusetSetCPUList(3X) Sets the list of CPUs to be assigned
to the cpuset

cpusetSetMemList(3x) Sets the list of nodes whose
memory will be assigned to the
cpuset

cpusetSetNodeList(3x) Sets the nodes whose CPUs and
memory will be assigned to the
cpuset

cpusetSetCPULimits(3x) Sets advisory and mandatory limits
on the number of CPUs in the
cpuset

206 007–3700–015

IRIX® Admin: Resource Administration

cpusetSetMemLimits(3x) Sets advisory and mandatory limits
on the amount of memory that will
be included in the cpuset

NOTES

The cpusetAllocQueueDef function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetFreeQueueDef(3x), cpusetSetCPULimits(3x),
cpusetSetFlags(3x), cpusetSetPermFile(3x), cpusetSetMemList(3x),
cpusetSetNodeList(3x), cpusetSetMemLimits(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetAllocQueueDef function returns a pointer to a
cpuset_QueueDef_t structure. If the cpusetAllocQueueDef function fails, it
returns NULL and errno is set to indicate the error. The possible values for errno
values include those returned by sbrk(2) and the following:

EINVAL Invalid argument was supplied. The user must supply
a value greater than or equal to 0.

007–3700–015 207

A: Programming Guide for Resource Management

cpusetAttach(3x)

NAME

cpusetAttach - attaches the current process to a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetAttach(char *qname);

DESCRIPTION

The cpusetAttach function is used to attach the current process to the cpuset
identified by qname. Every cpuset queue has a file that defines access permissions to
the queue. The execute permissions for that file will determine if a process owned by
a specific user can attach a process to the cpuset queue.

The qname argument is the name of the cpuset to which the current process should
be attached.

EXAMPLES

This example show how to attach the current process to a cpuset queue named
mpi_set, as follows:

char *qname = "mpi_set";

/* Attach to cpuset, if error - print error & exit */

if (!cpusetAttach(qname)) {

perror("cpusetAttach");

exit(1);

}

NOTES

The cpusetAttach function is found in the libcpuset.so library and is loaded if
the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetCreate(3x), and cpuset(5).

208 007–3700–015

IRIX® Admin: Resource Administration

DIAGNOSTICS

If successful, the cpusetAttach function returns a value of 1. If the cpusetAttach
function fails, it returns the value 0 and errno is set to indicate the error. The
possible values for errno are the same as those used by sysmp(2).

007–3700–015 209

A: Programming Guide for Resource Management

cpusetAttachPID(3x)

NAME

cpusetAttachPID - attach a specific process to a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetAttachPID(qname, pid);

char *qname;

pid_t pid;

DESCRIPTION

The cpusetAttachPID function is used to attach a specific process identified by its
PID to the cpuset identified by qname. Every cpuset queue has a file that defines
access permissions to the queue. The execute permissions for that file will determine
if a process owned by a specific user can attach a process to the cpuset queue.

The qname argument is the name of the cpuset to which the specified process should
be attached.

EXAMPLES

This example shows how to attach the current process to a cpuset queue named
mpi_set, as follows.

char *qname = "mpi_set";

/* Attach to cpuset, if error - print error & exit */

if (!cpusetAttachPID(qname, pid)) {

perror("cpusetAttachPID");

exit(1); }

NOTES

cpusetAttachPID is found in the library libcpuset.so, and will be loaded if the
option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1) cpusetCreate(3x)cpusetDetachPID(3x), and cpuset(5).

210 007–3700–015

IRIX® Admin: Resource Administration

DIAGNOSTICS

If successful, cpusetAttachPID returns a 1. If cpusetAttachPID fails, it returns
the value 0 and errno is set to indicate the error. The possible values for errno are
the same as those used by sysmp(2).

007–3700–015 211

A: Programming Guide for Resource Management

cpusetCreate(3x)

NAME

cpusetCreate - creates a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetCreate(char *qname, cpuset_QueueDef_t *qdef);

DESCRIPTION

The cpusetCreate function is used to create a cpuset queue. Only processes
running root user ID are allowed to create cpuset queues.

The qname argument is the name that will be assigned to the new cpuset. The name
of the cpuset must be a three to eight character string. Queue names having one or
two characters are reserved for use by the IRIX operating system.

The qdef argument is a pointer to a cpuset_QueueDef_t structure (defined in the
cpuset.h include file) that defines the attributes of the queue to be created. The
memory for cpuset_QueueDef_t is allocated using cpusetAllocQueueDef(3x)
and it is released using cpusetFreeQueueDef(3x). The cpuset_QueueDef_t
structure is defined as follows:

typedef struct {

int flags;

char *permfile;

cpuset_CPUList_t *cpu;

} cpuset_QueueDef_t;

The flags member is used to specify various control options for the cpuset queue. It
is formed by applying the bitwise Exclusive-OR operator to zero or more of the
following values:

CPUSET_CPU_EXCLUSIVE Defines a cpuset to be restricted.
Only threads attached to the cpuset
queue (descendents of an attached
thread inherit the attachment) may
execute on the CPUs contained in
the cpuset.

CPUSET_MEMORY_LOCAL Threads assigned to the cpuset will
attempt to assign memory only

212 007–3700–015

IRIX® Admin: Resource Administration

from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. No restrictions
are made on memory assignment to
threads running outside the cpuset.

CPUSET_MEMORY_EXCLUSIVE Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. Threads not
assigned to the cpuset will not use
memory from within the cpuset
unless no memory outside the
cpuset is available. If, at the time a
cpuset is created, memory is
already assigned to threads that are
already running, no attempt will be
made to explicitly move this
memory. If page migration is
enabled, the pages will be migrated
when the system detects that most
references to the pages are nonlocal.

CPUSET_MEMORY_KERNEL_AVOID The kernel should attempt to avoid
allocating memory from nodes
contained in this cpuset. If kernel
memory requests cannot be satisfied
from outside this cpuset, this option
will be ignored and allocations will
occur from within the cpuset. (This
avoidance currently extends only to
keeping buffer cache away from the
protected nodes.)

CPUSET_MEMORY_MANDATORY The kernel will limit all memory
allocations to nodes that are
contained in this cpuset. If memory

007–3700–015 213

A: Programming Guide for Resource Management

requests cannot be satisfied, the
allocating process will sleep until
memory is available. The process
will be killed if no more memory
can be allocated. See policies below.

CPUSET_POLICY_PAGE Requires MEMORY_MANDATORY.
This is the default policy if no
policy is specified. This policy will
cause the kernel to page user pages
to the swap file (see swap(1M)) to
free physical memory on the nodes
contained in this cpuset. If swap
space is exhausted, the process will
be killed.

CPUSET_POLICY_KIL Requires MEMORY_MANDATORY. The
kernel will attempt to free as much
space as possible from kernel
heaps, but will not page user pages
to the swap file. If all physical
memory on the nodes contained in
this cpuset are exhausted, the
process will be killed.

The permfile member is the name of the file that defines the access permissions for
the cpuset queue. The file permissions of filename referenced by permfile define
access to the cpuset. Every time permissions need to be checked, the current
permissions of this file are used. Thus, it is possible to change the access to a
particular cpuset without having to tear it down and recreate it, simply by changing
the access permissions. Read access to the permfile allows a user to retrieve
information about a cpuset, while execute permission allows the user to attach a
process to the cpuset.

The cpu member is a pointer to a cpuset_CPUList_t structure. The memory for
the cpuset_CPUList_t structure is allocated and released when the
cpuset_QueueDef_t structure is allocated and released (see
cpusetAllocQueueDef(3x)). The cpuset_CPUList_t structure contains the list of
CPUs assigned to the cpuset. The cpuset_CPUList_t structure (defined in the
cpuset.h include file) is defined as follows:

typedef struct {

int count;

214 007–3700–015

IRIX® Admin: Resource Administration

int *list;
} cpuset_CPUList_t;

The count member defines the number of CPUs contained in the list.

The list member is pointer to the list (an allocated array) of the CPU IDs. The
memory for the list array is allocated and released when the cpuset_CPUList_t
structure is allocated and released.

EXAMPLES

This example shows how to create a cpuset queue that has access controlled by the
file /usr/tmp/mypermfile; contains CPU IDs 4, 8, and 12; and is CPU exclusive
and memory exclusive, as follows:

cpuset_QueueDef_t *qdef;

char *qname = "myqueue";

/* Alloc queue def for 3 CPU IDs */

qdef = cpusetAllocQueueDef(3);

if (!qdef) {

perror("cpusetAllocQueueDef");
exit(1);

}

/* Define attributes of the cpuset */

qdef->flags = CPUSET_CPU_EXCLUSIVE

| CPUSET_MEMORY_EXCLUSIVE;
qdef->permfile = "/usr/tmp/mypermfile";

qdef->cpu->count = 3;

qdef->cpu->list[0] = 4;

qdef->cpu->list[1] = 8;

qdef->cpu->list[2] = 12;

/* Request that the cpuset be created */

if (!cpusetCreate(qname, qdef)) {

perror("cpusetCreate");

exit(1);
}

cpusetFreeQueueDef(qdef);

007–3700–015 215

A: Programming Guide for Resource Management

NOTES

The cpusetCreate function is found in the libcpuset.so library and is loaded if
the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), cpusetFreeQueueDef(3x), and
cpuset(5).

DIAGNOSTICS

If successful, the cpusetCreate function returns a value of 1. If the cpusetCreate
function fails, it returns the value 0 and errno is set to indicate the error. The possible
values for errno include those values set by fopen(3S), sysmp(2), and the following:

ENODEV Request for CPU IDs that do not exist on the system.

EPERM Request for CPU 0 as part of an exclusive cpuset is not
permitted.

216 007–3700–015

IRIX® Admin: Resource Administration

cpusetDetachAll(3x)

NAME

cpusetDetachAll - detaches all threads from a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetDetachAll(char *qname);

DESCRIPTION

The cpusetDetachAll function is used to detach all threads currently attached to
the specified cpuset. Only a process running with root user ID can successfully
execute cpusetDetachAll.

The qname argument is the name of the cpuset that the operation will be performed
upon.

EXAMPLES

This example shows how to detach the current process from a cpuset queue named
mpi_set, as follows.

char *qname = "mpi_set";

/* Detach all members of cpuset, if error - print error & exit */
if (!cpusetDetachAll(qname)) {

perror("cpusetDetachAll");

exit(1);

}

NOTES

The cpusetDetachAll function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetAttach(3x), and cpuset(5).

007–3700–015 217

A: Programming Guide for Resource Management

DIAGNOSTICS

If successful, the cpusetDetachAll function returns a value of 1. If the
cpusetDetachAll function fails, it returns the value 0 and errno is set to indicate
the error. The possible values for errno are the same as those used by sysmp(2).

218 007–3700–015

IRIX® Admin: Resource Administration

cpusetDetachPID(3x)

NAME

cpusetDetachPID - detaches a specific process from a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetDetachPID(qname, pid);

char *qname;

pid_t pid;

DESCRIPTION

The cpusetDetachPID function is used to detach a specific process identified by its
PID to the cpuset identified by qname. Every cpuset queue has a file that defines
access permissions to the queue. The execute permissions for that file will determine
if a process owned by a specific user can detach a process from the cpuset queue.

The qname argument is the name of the cpuset to which the specified process should
be detached.

EXAMPLES

This example shows how to detach the current process from a cpuset queue named
mpi_set, as follows:

char *qname = "mpi_set";

/* Detach from cpuset, if error - print error & exit */

if (!cpusetDetachPID(qname, pid)) {

perror("cpusetDetachPID");

exit(1); }

NOTES

cpusetDetachPID is found in the library libcpuset.so, and will be loaded if the
option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1) cpusetCreate(3x)cpusetAttachPID(3x), and cpuset(5).

007–3700–015 219

A: Programming Guide for Resource Management

DIAGNOSTICS

If successful, cpusetDetachPID returns a 1. If cpusetAttachPID fails, it returns
the value 0 and errno is set to indicate the error. The possible values for errno are
the same as those used by sysmp(2).

220 007–3700–015

IRIX® Admin: Resource Administration

cpusetDestroy(3x)

NAME

cpusetDestroy - destroys a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetDestroy(char *qname);

DESCRIPTION

The cpusetDestroy function is used to destroy the specified cpuset. The qname
argument is the name of the cpuset that will be destroyed. Only processes running
with root user ID are allowed to destroy cpuset queues. A cpuset can only be
destroyed if there are no threads currently attached to it.

EXAMPLES

This example shows how to destroy the cpuset queue named mpi_set, as follows.

char *qname = "mpi_set";

/* Destroy, if error - print error & exit */

if (!cpusetDestroy(qname)) {
perror("cpusetDestroy");

exit(1);

}

NOTES

The cpusetDestroy function is found in the libcpuset.so library and is loaded
if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetCreate(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetDestroy function returns a value of 1. If the
cpusetDestroy function fails, it returns the value 0 and errno is set to indicate the
error. The possible values for errno are the same as those used by sysmp(2).

007–3700–015 221

A: Programming Guide for Resource Management

cpusetMove(3x)

NAME

cpusetMove - moves processes, associated with an ID, to another cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetMove(char *from_qname, char *to_qname, int idtype, int64_t id);

DESCRIPTION

The cpusetMove function is used to temporarily move processes, associated with an
ID, identified by id from one cpuset to another. This function does not move the
memory associated with the processes. This function should be used in conjunction
with cpusetMoveMigrate.

The from_qname argument is the name of the cpuset from which the processes are
moved. Using a NULL for this argument, results in having all the processes identified
by id to be moved into the global cpuset. Global cpuset is a term used to describe all
the CPUs that are not in a cpuset.

The to_qname argument is the name of the destination cpuset for the specified ID.
Using a NULL for this argument, will result in having all the processes identified by
id to be moved into the global cpuset.

The idType argument defines the type of number passed in as id. The possible
options for idType are CPUSET_PID (Process ID), CPUSET_PGID (Process Group ID),
CPUSET_JID (Job ID), CPUSET_SID (Session ID), or CPUSET_ASH (Array Session
Handle).

This function requires the processes associated with id to be stopped before it can
enact the move. A test is made to see if all the processes are stopped. If id has
processes A, B, and C, and B is stopped, A and C are stopped. Then, after the move,
A and C are restarted (but not B).

This function requires root privileges on standard IRIX and CAP_SCHED_MGMT on
Trusted IRIX (TRIX).

222 007–3700–015

IRIX® Admin: Resource Administration

EXAMPLES

This example moves a process ID from the cpuset queue named mpi_set to the
cpuset queue named my_set.

char *from_qname = "mpi_set";

char *to_qname = "my_set";

int64_t id = 1534;

/* move from mpi_set to my_set,

* if error - print error & exit
*/

if (!cpusetMove(from_qname, to_qname, CPUSET_PID, id)) {

perror("cpusetMove");

exit(1);

}

NOTES

The cpusetMove function is found in the library libcpuset.so, and will be loaded
if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetCreate(3x), cpusetMoveMigrate(3x) and cpuset(5).

DIAGNOSTICS

If successful, the cpusetMove function returns a value of 1. If the cpusetMove
function fails, it returns the value 0 and errno is set to indicate the error. The
possible values for errno are the same as those used by sysmp(2).

007–3700–015 223

A: Programming Guide for Resource Management

cpusetMoveMigrate(3x)

NAME

cpusetMoveMigrate - moves processes, identified by an ID, and their associated
memory, from one cpuset to another

SYNOPSIS

#include <cpuset.h>
int cpusetMoveMigrate(char *from_qname, char *to_qname, int idtype,

int64_t id);

DESCRIPTION

The cpusetMoveMigrate function is used to move processes, and their associated
memory, identified by id from one cpuset to another.

The from_qname argument is the name of the cpuset from which the processes are
moved. Using a NULL for this argument, results in having all the processes identified
by id to be moved into the global cpuset. The global cpuset is a term used to
describe all the CPUs that are not in a cpuset.

The to_qname argument is the name of the destination cpuset for the specified ID.
Using a NULL for this argument, results in having all the processes identified by id
to be moved into the global cpuset.

The idtype argument defines the type of number passed in as id. The possible
options for idtype are CPUSET_PID (Process ID), CPUSET_PGID (Process Group ID),
CPUSET_JID (Job ID), CPUSET_SID (Session ID), or CPUSET_ASH (Array Session
Handle).

This function requires the processes associated with id to be stopped before it can
enact the move. A test is made to see if all the processes are stopped. If id has
processes A, B, and C, and B is stopped, A and C are stopped. Then, after the move,
A and C are restarted (but not B).

This function requires root privileges on standard IRIX, and CAP_SCHED_MGMT on
Trusted IRIX (TRIX).

224 007–3700–015

IRIX® Admin: Resource Administration

EXAMPLES

This example moves a process ID from the cpuset queue named mpi_set to the
cpuset queue named my_set.

char *from_qname = "mpi_set";

char *to_qname = "my_set";

int64_t id = 1534;

/* move from mpi_set to my_set,

* if error - print error & exit
*/

if (!cpusetMoveMigrate(from_qname, to_qname, CPUSET_PID, id)) {

perror("cpusetMoveMigrate");

exit(1);

}

NOTES

The cpusetMoveMigrate function is found in the library libcpuset.so, and will
be loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetCreate(3x), cpusetMove(3x) and cpuset(5).

DIAGNOSTICS

If successful, the cpusetMoveMigrate function returns a value of 1. If the
cpusetMoveMigrate function fails, it returns the value 0 and errno is set to
indicate the error. The possible values for errno are the same as those used by
sysmp(2).

007–3700–015 225

A: Programming Guide for Resource Management

cpusetSetCPULimits(3x)

NAME

cpusetSetCPULimits - sets the count limits for a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetSetCPULimits(cpuset_QueueDef_t *qdef, int advisory,

int mandatory);

DESCRIPTION

The cpusetSetCPULimits function is used to set the advisory and mandatory CPU
counts that constrain the conditions under which the cpuset are created. The advisory
and mandatory CPU count limits are copied into a memory location referenced by the
qdef argument. See the cpusetAllocQueueDef(3x) man page for additional
information about the cpuset_QueueDef_t type.

The advisory limit indicates that if the total number of CPUs is below that limit, a
warning is set in errno but the cpuset is created. The mandatory limit indicates that
if the total number of CPUs in the cpuset is below that limit, it results in a failure
condition that is set in errno and the cpuset fails to be created. Both of these limit
conditions are checked at the time of cpuset creation and the warning or error
condition occurs during the call to cpusetCreate(3x).

The return value of the function indicates if the function was successfully executed.

EXAMPLES

This example shows how to print out the advisory and mandatory memory sizes
used when creating the cpuset mpi_set, as follows:

char *qname = "mpi_set";

cpuset_QueueDef_t *qdef = NULL;

int cpuadv = 128;

int cpuman = 64;

/* Alloc queue definition structure, for 10 CPUs */

qdef = cpusetAllocQueueDef(128);

/* Set the limits else print error & exit */

if (!cpusetSetCPULimits(qdef, cpuadv, cpuman))) {

perror("cpusetSetCPULimits");

226 007–3700–015

IRIX® Admin: Resource Administration

exit(1);
}

...... /* Set all the other attributes for cpuset */

if (!cpusetCreate(qdef)) {

perror("cpusetCreate");

exit(1);
}

if (errno == ECPUWARN) {

printf("Memory: %s\n", strerror(errno));

}

NOTES

The cpusetSetCPULimits function is found in the library libcpuset.so, and will
be loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), cpusetCreate(3x),
cpusetGetCPULimits(3x), and cpuset(5).

DIAGNOSTICS

If successful, cpusetSetCPULimits returns 1. If cpusetSetCPULimits fails, it
returns 0 and errno is set to indicate the error.

007–3700–015 227

A: Programming Guide for Resource Management

cpusetSetCPUList(3x)

NAME

cpusetSetCPUList - sets the list of all nodes with memory assigned to a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetSetCPUList(cpuset_QueueDef_t *qdef, int count,

cnodeid_t *mem;

DESCRIPTION

The cpusetSetCPUList function is used to set the list of the CPU IDs that are
assigned to the cpuset. The list of CPUs is copied into memory reference by the qdef
argument that must be allocated by the cpusetAllocQueueDef(3x) function. For
additional information on the cpuset_QueueDef_t type, see the
cpusetAllocQueueDef(3x) man page.

The count argument is the number of CPU IDs in the list. The list argument
references the memory array that holds the list of CPU IDs that will be included in
the cpuset.

This list of CPUs is used when the cpuset is created, using the cpusetCreate(3x)
function to determine what CPUs to include in the cpuset.

EXAMPLES

This example shows how to set the list of CPUs for the cpuset mpi_set, as follows:

cpuset_QueueDef_t *qdef = NULL;

int count = 4;

cnodeid_t cpus[] = {2,3,4,5}

/* Create qdef struct, zero CPUs specified */

qdef = cpusetAllocQueueDef(0);

/* Set the list of CPUs */

if (!cpusetSetCPUList(qdef, count, mems))) {
perror("cpusetSetCPUList");

exit(1);

}

/* After setting other cpuset queue attributes */

228 007–3700–015

IRIX® Admin: Resource Administration

/* Create the cpuset */
if (!cpusetCreate("mpi_set", qdef)) {

perror("cpusetCreate");

exit(1);

}

NOTES

The cpusetSetCPUList function is found in the library libcpuset.so, and will
be loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x)cpusetCreate(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetSetCPUList function returns a value of 1. If the
cpusetSetCPUList function fails, it returns the value 0 and errno is set to indicate
the error.

007–3700–015 229

A: Programming Guide for Resource Management

cpusetSetFlags(3x)

NAME

cpusetSetFlags - sets the mask of flags for a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetSetFlags(cpuset_QueueDef_t *qdef, int flags);

DESCRIPTION

The cpusetSetFlags function is used to set the mask of attribute flags to be used
when creating a cpuset. The qdef argument is a pointer to a structure allocated by a
call to cpusetAllocQueueDef(3x) and the mask of attribute flags is set in this
structure.

The referenced qdef structure is used later as an argument to the function
cpusetCreate(3x) when creating the cpuset.

The flags member is used to specify various control options for the cpuset queue. It
is formed by applying the bitwise exclusive-OR operator to zero or more of the
following values:

CPUSET_CPU_EXCLUSIVE Defines a cpuset to be restricted.
Only threads attached to the cpuset
queue (descendents of an attached
thread inherit the attachement) may
execute on the CPUs contained in
the cpuset.

CPUSET_EXPLICIT By default, if a CPU is part of a
cpuset, the memory on the node
where the CPU is located, is also
part of the cpuset. This flag
overrides the default behavior. If
this directive is present, the nodes
with memory to be included in the
cpuset must be specified using the
MEM or NODE directives.

CPUSET_MEMORY_LOCAL Threads assigned to the cpuset will
attempt to assign memory only

230 007–3700–015

IRIX® Admin: Resource Administration

from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. No restrictions
are made on memory assignment to
threads running outside the cpuset.

CPUSET_MEMORY_EXCLUSIVE Threads assigned to the cpuset will
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset will occur only if
no free memory is available from
within the cpuset. Threads not
assigned to the cpuset will not use
memory from within the cpuset
unless no memory outside the
cpuset is available. If, at the time a
cpuset is created, memory is
already assigned to threads that are
already running, no attempt will be
made to explicitly move this
memory. If page migration is
enabled, the pages will be migrated
when the system detects that most
references to the pages are nonlocal.

CPUSET_MEMORY_KERNEL_AVOID The kernel should attempt to avoid
allocating memory from nodes
contained in this cpuset. If kernel
memory requests cannot be satisfied
from outside this cpuset, this option
is ignored and allocations occur
from within the cpuset. (This
avoidance currently extends only to
keeping buffer cache away from the
protected nodes.)

CPUSET_MEMORY_MANDATORY The kernel limits all memory
allocations to nodes that are
contained in this cpuset. If memory

007–3700–015 231

A: Programming Guide for Resource Management

requests cannot be satisfied, the
allocating process sleeps until
memory is available. The process is
killed if no more memory can be
allocated. See policies below.

CPUSET_POLICY_PAGE Requires MEMORY_MANDATORY.
This is the default policy if no
policy is specified. This policy
causes the kernel to page user
pages to the swap file (see
swap(1M)) to free physical memory
on the nodes contained in this
cpuset. If swap space is exhausted,
the process is killed.

CPUSET_POLICY_KILL Requires MEMORY_MANDATORY. The
kernel attempts to free as much
space as possible from kernel heaps,
but will not page user pages to the
swap file. If all physical memory on
the nodes contained in this cpuset
are exhausted, the process is killed.

CPUSET_POLICY_SHARE_WARN When creating a cpuset, if it is
possible for the new cpuset to share
memory on a node with another
cpuset, the new cpuset is created
but a warning message will be
issued. POLICY_SHARE_WARN and
POLICY_SHARE_FAIL cannot be
used together.

CPUSET_POLICY_SHARE_FAIL When creating a cpuset, if it is
possible for the new cpuset to share
memory on a node with another
cpuset, the new cpuset fails to be
created and an error message will
be issued. POLICY_SHARE_WARN
and POLICY_SHARE_FAIL cannot
be used together. The return value

232 007–3700–015

IRIX® Admin: Resource Administration

of the function indicates if the
function was successfully executed.

EXAMPLES

This example shows how to set the flags for a new cpuset queue definition, as follows:

cpuset_QueueDef_t *qdef;

qdef = cpusetAllocQueueDef(numcpus);

/* Set the mask of flags */

if (!cpusetSetFlags(qdef,

CPU_EXCLUSIVE|EXPLICIT
|MEMORY_MANDATORY))) {

perror("cpusetSetFlags");

exit(1);

}

.......
cpusetCreate("set1", qdef);

NOTES

The cpusetSetFlags function is found in the library libcpuset.so, and will be
loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), cpusetCreate(3x), cpusetGetFlags(3x),
and cpuset(5).

DIAGNOSTICS

If successful, cpusetSetFlags returns 1. If cpusetSetFlags fails, it returns 0 and
errno is set to indicate the error.

007–3700–015 233

A: Programming Guide for Resource Management

cpusetSetMemLimits(3x)

NAME

cpusetSetMemLimits - sets the memory size limits for a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetSetMemLimits(cpuset_QueueDef_t *qdef, uint64_t advisory,

uint64_t mandatory);

DESCRIPTION

The cpusetSetMemLimits function is used to set the advisory and mandatory
memory sizes that constrain the conditions under which the cpuset is created. The
advisory and mandatory memory size limits are copied into a memory location
referenced by the qdef argument. See the cpusetAllocQueueDef(3x) man page for
additional information about the cpuset_QueueDef_t type.

The advisory limit indicates that if the aggregrate amount of memory on all the nodes
in the cpuset is below that limit, a warning is set in errno, but the cpuset is created.
The mandatory limit indicates that if the aggregate amount of memory on all the
nodes in the cpuset is below that limit, this results in a failure condition that is set in
errno and the cpuset fails to be created. Both of these limit conditions are checked at
cpuset creation time and the warnning or error condition occurs during the call to the
cpusetCreate(3x) function.

The return value of the function indicates if the function was successfully executed.

This example shows how to print out the advisory and mandatory memory sizes
used when creating the cpuset mpi_set.

char *qname = "mpi_set";

cpuset_QueueDef_t *qdef = NULL;

int memadv = 128000000;

int memman = 64000000;

/* Alloc queue definition structure, for 10 CPUs */

qdef = cpusetAllocQueueDef(10);

/* Set the limits else print error & exit */

if (!cpusetSetMemLimits(qdef, memadv, memman))) {

perror("cpusetSetMemLimits");

234 007–3700–015

IRIX® Admin: Resource Administration

exit(1);
}

...... /* Set all the other attributes for cpuset */

if (!cpusetCreate(qdef)) {

perror("cpusetCreate");

exit(1);
}

if (errno == EMEMWARN) {

printf("Memory: %s\n", strerror(errno));

}

NOTES

The cpusetSetMemLimits function is found in the library libcpuset.so, and will
be loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), cpusetCreate(3x),
cpusetGetMemLimits(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetSetMemLimits function returns a value of 1. If the
cpusetSetMemLimits function fails, it returns the value 0 and errno is set to
indicate the error.

007–3700–015 235

A: Programming Guide for Resource Management

cpusetSetMemList(3x)

NAME

cpusetSetMemList - sets the list of all nodes with memory assigned to a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetSetMemList(cpuset_QueueDef_t *qdef, int count,

cnodeid_t *mem;

DESCRIPTION

The cpusetSetMemList function is is used to set the list of the nodes with memory
that will be assigned to a cpuset. The list of nodes IDs is copied into memory
reference by the qdef argument, which must be allocated by the
cpusetAllocQueueDef(3x) function. For additional information on the
cpuset_QueueDef_t type, see the cpusetAllocQueueDef(3x) man page.

The count argument is the number of node IDs in the list. The list argument
references the memory array that holds the list of node IDs whose memory will be
included in the cpuset.

This list of nodes will then be used when the cpuset is created, using the
cpusetCreate(3x) function, to determine what memory to include in the cpuset.

EXAMPLES

This example shows how to set the list of nodes with memory assigned to the cpuset
mpi_set.

cpuset_QueueDef_t *qdef = NULL;

int count = 4;
cnodeid_t mems[] = {2,3,4,5}

/* Create qdef struct for 4 CPUs */

qdef = cpusetAllocQueueDef(4);

/* Set the list of memory nodes */
if (!cpusetSetMemList(qdef, count, mems))) {

perror("cpusetSetMemList");

exit(1);

}

236 007–3700–015

IRIX® Admin: Resource Administration

/* After setting other cpuset queue attributes */
/* Create the cpuset */

if (!cpusetCreate("mpi_set", qdef)) {

perror("cpusetCreate");

exit(1);

}

NOTES

The cpusetSetMemList function is found in the library libcpuset.so, and will
be loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), cpusetCreate(3x),
cpusetGetMemList(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetSetMemList function returns a value of 1. If the
cpusetSetMemList function fails, it returns the value 0 and errno is set to indicate
the error.

007–3700–015 237

A: Programming Guide for Resource Management

cpusetSetNodeList(3x)

NAME

cpusetSetNodeList - sets the list of nodes assigned to a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetSetNodeList(cpuset_QueueDef_t *qdef, int count,

cnodeid_t *nodes);

DESCRIPTION

The cpusetSetNodeList function is used to set the list of nodes that will be
assigned to a cpuset. The assignment of a node to a cpuset results in the assignment
of all of the CPU and memory resources on the node to the cpuset. The benefit of
specifying resource assignments by node is that it ensures none of the resources on
the nodes will be shared by multiple cpusets provided that the cpuset attribute flags
indicate the resources should be exclusive to the cpuset (see cpusetSetFlags(3x).

The count argument is the number of node IDs provided in the list. The nodes
argument is the list of node IDs provided in a memory array. The qdef argument
references a block of memory that stores the various attributes and resource lists that
describe a cpuset. It must be allocated using the cpusetAllocQueueDef(3x)
function in order to use the cpusetSetNodeList function. The list of nodes will be
copied into the memory referenced by the qdef argument.

The list of nodes will be used during a subsequent call to cpusetCreate(3x) to
determine what CPU and memory resources should be assigned to the cpuset being
created.

EXAMPLES

This example shows how to set the list of nodes assigned to the cpuset mpi_set, as
follows:

238 007–3700–015

IRIX® Admin: Resource Administration

cpuset_QueueDef_t *qdef;
int count = 4;

int nodes = {2,3,4,5}

/* Create a cpuset definition with 0 CPUs defined */

qdef = cpusetAllocQueueDef(0);
/* Get the list of nodes else print error & exit */

if (!cpusetSetNodeList(qdef, count, nodes)) {

perror("cpusetSetNodeList");

exit(1);

}

/* Set other cpuset attributes */

if (!cpusetCreate("mpi_set", qdef)) {

perror("cpusetCreate");

exit(1);

}

NOTES

The cpusetSetNodeList function is found in the library libcpuset.so, and will
be loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), cpusetCreate(3x), cpusetSetFlags(3x),
and cpuset(5).

DIAGNOSTICS

If successful, cpusetSetNodeList returns 1. If cpusetSetNodeList fails, it
returns 0 and errno is set to indicate the error.

007–3700–015 239

A: Programming Guide for Resource Management

cpusetSetPermFile(3x)

NAME

cpusetSetPermFile - sets the name of the file used to define the access
permissions for a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetSetPermFile(cpuset_QueueDef_t *qdef, char *name);

DESCRIPTION

The cpusetSetPermFile function is used to set the name of the file used to define
access permissions for a cpuset. The qdef argument is a pointer to a structure
allocated by a call to the cpusetAllocQueueDef(3x) function and the name of the
file is set in this structure.

The referenced qdef structure is used as an argument to the cpusetCreate(3x)
function to provide a description of the cpuset to be created.

The return value of the function indicates if the function was successfully executed.

NOTES

The cpusetSetPermFile function is found in the library libcpuset.so, and will
be loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), cpusetCreate(3x), and cpuset(5).

DIAGNOSTICS

If successful, cpusetSetPermFile returns 1. If cpusetSetPermFile fails, it
returns 0 and errno is set to indicate the error. The possible values for errno
include those values as set by sysmp(2) and sbrk(2).

240 007–3700–015

IRIX® Admin: Resource Administration

Retrieval Functions

This section contains the man pages for the following Cpuset System library retrieval
functions:

"cpusetGetCPUCount(3x)" Obtains the number of CPUs
configured on the system (see
"cpusetGetCPUCount(3x)", page
243)

"cpusetGetCPUList(3x)" Gets the CPU count limits for a
cpuset (see
"cpusetGetCPUList(3x)", page
246)

"cpusetGetFlags(3x)" Gets the mask of flags for a cpuset
(see "cpusetGetFlags(3x)", page
248)

"cpusetGetMemLimits(3x)" Gets the memory size limits for a
cpuset (see
"cpusetGetMemLimits(3x)", page
252)

"cpusetGetMemList(3x)" Gets the list of all nodes with
memory assigned to a cpuset
("cpusetGetMemList(3x)", page
254)

"cpusetGetName(3x)" Gets the name of the cpuset to
which a process is attached (see
"cpusetGetName(3x)", page 256)

"cpusetGetNameList(3x)" Gets a list of names for all defined
cpusets (see
"cpusetGetNameList(3x)", page
259)

"cpusetGetNodeList(3x)" Gets the list of nodes assigned to a
cpuset (see
"cpusetGetNodeList(3x)", page
261)

007–3700–015 241

A: Programming Guide for Resource Management

"cpusetGetPIDList(3x)" Gets a list of all PIDs attached to a
cpuset (see
"cpusetGetPIDList(3x)", page
263)

"cpusetGetProperties(3x)" Retrieves various properties
associated with a cpuset (see
"cpusetGetProperties(3x)",
page 265)

"cpusetGetTrustPerm (3x)" Gets the Trusted Security
permissions for a cpuset (see
"cpusetGetTrustPerm (3x)", page
267)

"cpusetGetUnixPerm(3x)" Gets the UNIX file permissions for
a cpuset (see
"cpusetGetUnixPerm(3x)", page
269)

242 007–3700–015

IRIX® Admin: Resource Administration

cpusetGetCPUCount(3x)

NAME

cpusetGetCPUCount - obtains the number of CPUs configured on the system

SYNOPSIS

#include <cpuset.h>

int cpusetGetCPUCount(void);

DESCRIPTION

The cpusetGetCPUCount function returns the number of CPUs that are configured
on the system.

EXAMPLES

This example obtains the number of CPUs configured on the system and then prints
out the result.

int ncpus;

if (!(ncpus = cpusetGetCPUCount())) {

perror("cpusetGetCPUCount");

exit(1);
}

printf("The systems is configured for %d CPUs\n",

ncpus);

NOTES

The cpusetGetCPUCount function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1) and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetCPUCount function returns a value greater than or equal
to the value of 1. If the cpusetGetCPUCount function fails, it returns the value 0
and errno is set to indicate the error. The possible values for errno are the same as
those used by sysmp(2) and the following:

ERANGE Number of CPUs configured on the system is not a
value greater than or equal to 1.

007–3700–015 243

A: Programming Guide for Resource Management

cpusetGetCPULimits(3x)

NAME

cpusetGetCPULimits - gets the CPU count limits for a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetGetCPULimits(char *qname, int *advisory, int *mandatory);

DESCRIPTION

The cpusetGetCPULimits function is used to obtain the advisory and mandatory
CPU counts that constrained the conditions under which the cpuset could be created.
The advisory CPU count limit is copied into the memory referenced by the advisory
argument. The mandatory CPU count limit is copied into the memory referenced by
the mandatory argument.

Only processes running with a user ID or group ID that has read access permissions
on the permissions file can successfully execute this function. The qname argument is
the name of the specified cpuset.

The return value of the function indicates if the function was successfully executed.

This example show how to print out the advisory and mandatory CPU counts used
when creating the cpuset mpi_set, as follows:

char *qname = "mpi_set";

int cpuadv = 0;

int cpuman = 0;

/* Get the list of CPUs else print error & exit */

if (!cpusetGetCPULimits(qname, &cpuadv, &cpuman))) {

perror("cpusetGetCPULimits");

exit(1);

}
printf("CPU count, advisory limit: %d\n", cpuadv);

printf("CPU count, mandatory limit: %d\n", cpuman);

NOTES

The cpusetGetCPULimits function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

244 007–3700–015

IRIX® Admin: Resource Administration

SEE ALSO

cpuset(1), cpusetSetCPULimits(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetCPULimits function returns a value of 1. If the
cpusetGetCPULimits function fails, it returns the value 0 and errno is set to
indicate the error. The possible values for errno include those values as set by
sysmp(2) and sbrk(2).

007–3700–015 245

A: Programming Guide for Resource Management

cpusetGetCPUList(3x)

NAME

cpusetGetCPUList - gets the list of all CPUs assigned to a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_CPUList_t *cpusetGetCPUList(char *qname);

DESCRIPTION

The cpusetGetCPUList function is used to obtain the list of the CPUs assigned to
the specified cpuset. Only processes running with a user ID or group ID that has read
access permissions on the permissions file can successfully execute this function. The
qname argument is the name of the specified cpuset.

The function returns a pointer to a structure of type cpuset_CPUList_t (defined in
the cpuset.h include file). The function cpusetGetCPUList allocates the memory
for the structure and the user is responsible for freeing the memory using the
cpusetFreeCPUList(3x) function. The cpuset_CPUList_t structure looks similar
to this:

typedef struct {

int count;

cpuid_t *list;

} cpuset_CPUList_t;

The count member is the number of CPU IDs in the list. The list member
references the memory array that holds the list of CPU IDs. The memory for list is
allocated when the cpuset_CPUList_t structure is allocated and it is released when
the cpuset_CPUList_t structure is released.

EXAMPLES

This example obtains the list of CPUs assigned to the cpuset mpi_set and prints out
the CPU ID values.

char *qname = "mpi_set";

cpuset_CPUList_t *cpus;

/* Get the list of CPUs else print error & exit */
if (!(cpus = cpusetGetCPUList(qname))) {

perror("cpusetGetCPUList");

246 007–3700–015

IRIX® Admin: Resource Administration

exit(1);

}

if (cpus->count == 0) {

printf("CPUSET[%s] has 0 assigned CPUs\n",

qname);
} else {

int i;

printf("CPUSET[%s] assigned CPUs:\n",

qname);

for (i = 0; i < cpuset->count; i++)
printf("CPU_ID[%d]\n", cpuset->list[i]);

}

cpusetFreeCPUList(cpus);

NOTES

The cpusetGetCPUList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetFreeCPUList(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetCPUList function returns a pointer to a
cpuset_CPUList_t structure. If the cpusetGetCPUList function fails, it returns
NULL and errno is set to indicate the error. The possible values for errno include
those values as set by sysmp(2) and sbrk(2).

007–3700–015 247

A: Programming Guide for Resource Management

cpusetGetFlags(3x)

NAME

cpusetGetFlags - gets the mask of flags for a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetGetFlags(char *qname, int *flags);

DESCRIPTION

The cpusetGetFlags function is used to obtain the attribute flags when creating a
cpuset. The mask of flags is copied into the memory referenced by the flags argument.

Only processes running with a user ID or group ID that has read access permissions
on the permissions file can successfully execute this function. The qname argument is
the name of the specified cpuset.

The return value of the function indicates if the function was successfully executed.

The mask of flags can be set to any of the following values:

CPUSET_CPU_EXCLUSIVE Defines a cpuset to be restricted.
Only threads attached to the cpuset
queue (descendents of an attached
thread inherit the attachement) may
execute on the CPUs contained in
the cpuset.

CPUSET_MEMORY_LOCAL Threads assigned to the cpuset
attempt to assign memory only
from nodes within the cpuset.
Assignment of memory from
outside the cpuset occurs only if no
free memory is available from
within the cpuset. No restrictions
are made on memory assignment to
threads running outside the cpuset.

CPUSET_MEMORY_EXCLUSIVE Threads assigned to the cpuset
attempts to assign memory only

248 007–3700–015

IRIX® Admin: Resource Administration

from nodes within the cpuset.
Assignment of memory from
outside the cpuset occurs only if no
free memory is available from
within the cpuset. Threads not
assigned to the cpuset are will not
use memory from within the cpuset
unless no memory outside the
cpuset is available. If, at the time a
cpuset is created, memory is already
assigned to threads that are already
running, no attempt is made to
explicitly move this memory. If
page migration is enabled, the
pages is migrated when the system
detects that most references to the
pages are non-local.

CPUSET_MEMORY_KERNEL_AVOID The kernel should attempt to avoid
allocating memory from nodes
contained in this cpuset. If kernel
memory requests cannot be satisfied
from outside this cpuset, this option
is ignored and allocations occur
from within the cpuset. (This
avoidance currently extends only to
keeping buffer cache away from the
protected nodes.)

CPUSET_MEMORY_MANDATORY The kernel limits all memory
allocations to nodes that are
contained in this cpuset. If memory
requests cannot be satisfied, the
allocating process sleeps until
memory is available. The process is
killed if no more memory can be
allocated. See policies below.

CPUSET_POLICY_PAGE Requires MEMORY_MANDATORY.
This is the default policy if no
policy is specified. This policy
causes the kernel to page user

007–3700–015 249

A: Programming Guide for Resource Management

pages to the swap file (see
swap(1M)) to free physical memory
on the nodes contained in this
cpuset. If swap space is exhausted,
the process is killed.

CPUSET_POLICY_KILL Requires MEMORY_MANDATORY. The
kernel attempts to free as much
space as possible from kernel heaps,
but does not page user pages to the
swap file. If all physical memory on
the nodes contained in this cpuset
is exhausted, the process is killed.

CPUSET_POLICY_SHARE_WARN When creating a cpuset, if it is
possible for the new cpuset to share
memory on a node with another
cpuset, the new cpuset is created
but a warning message is issued.
POLICY_SHARE_WARN and
POLICY_SHARE_FAIL cannot be
used together.

CPUSET_POLICY_SHARE_FAIL When creating a cpuset, if it is
possible for the new cpuset to share
memory on a node with another
cpuset, the new cpuset fails to be
created and an error message is
issued. POLICY_SHARE_WARN and
POLICY_SHARE_FAIL cannot be
used together.

EXAMPLES

This example shows you how to print out the flags defined for the cpuset mpi_set,
as follows:

char *qname = "mpi_set";

int flags;

/* Get the limits else print error & exit */
if (!cpusetGetFlags(qname, &flags))) {

perror("cpusetGetFlags");

250 007–3700–015

IRIX® Admin: Resource Administration

exit(1);
}

if (flags & CPUSET_CPU_EXCLUSIVE)

printf(" CPU_EXCLUSIVE0);

if (flags & CPUSET_EXPLICIT)

printf(" CPU)_EXPLICIT0);
if (flags & CPUSET_KERN)

printf(" KERN0);

if (flags & CPUSET_MEMORY_LOCAL)

printf(" MEMORY_LOCAL0);

if (flags & CPUSET_MEMORY_EXCLUSIVE)

printf(" MEMORY_EXCLUSIVE0);
if (flags & CPUSET_MEMORY_KERNEL_AVOID)

printf(" MEMORY_KERNEL_AVOID0);

if (flags & CPUSET_MEMORY_MANDATORY)

printf(" MEMORY_MANDATORY0);

if (flags & CPUSET_POLICY_PAGE)
printf(" POLICY_PAGE0);

if (flags & CPUSET_POLICY_KILL)

printf(" POLICY_KILL0);

if (flags & CPUSET_POLICY_SHARE_WARN)

printf(" POLICY_SHARE_WARN0);

if (flags & CPUSET_POLICY_SHARE_FAIL)
printf(" POLICY_SHARE_FAIL0);

NOTES

The cpusetGetFlags function is found in the libcpuset.so library and is loaded
if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetSetFlags(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetFlags function returns 1. If cpusetGetFlags fails, it
returns 0 and errno is set to indicate the error. The possible values for errno
include those values set by sysmp(2) and sbrk(2).

007–3700–015 251

A: Programming Guide for Resource Management

cpusetGetMemLimits(3x)

NAME

cpusetGetMemLimits - gets the memory size limits for a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetGetMemLimits(char *qname, uint64_t *advisory,

uint64_t *mandatory);

DESCRIPTION

The cpusetGetMemLimits function is used to obtain the advisory and mandatory
memory sizes that constrained the conditions under which the cpuset was created.
The advisory memory size limit is copied into the memory referenced by the
advisory argument. The mandatory memory size limit is copied into the memory
referenced by the mandatory argument.

Only processes running with a user ID or group ID that have read access permissions
on the permissions file can successfully execute this function. The qname argument is
the name of the specified cpuset.

The return value of the function indicates if the function was successfully executed.

EXAMPLES

This example shows how to print out the advisory and mandatory memory sizes
used when creating the cpuset mpi_set.

char *qname = "mpi_set";

int memadv = 0;

int memman = 0;

/* Get the limits else print error & exit */

if (!cpusetGetMemLimits(qname, &memadv, &memman))) {

perror("cpusetGetMemLimits");

exit(1);
}

printf("Memory size, advisory limit: %llu\n", memadv);

printf("Memory size, mandatory limit: %llu\n", memman);

252 007–3700–015

IRIX® Admin: Resource Administration

NOTES

The cpusetGetMemLimits function is found in the library libcpuset.so, and will
be loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetSetMemLimits(3x), and cpuset(5).

DIAGNOSTICS

If successful, cpusetGetMemLimits returns a value of 1. If cpusetGetMemLimits
fails, it returns 0 and errno is set to indicate the error. The possible values for errno
include those values as set by sysmp(2) and sbrk(2).

007–3700–015 253

A: Programming Guide for Resource Management

cpusetGetMemList(3x)

NAME

cpusetGetMemList - gets the list of all nodes with memory assigned to a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_NodeList_t *cpusetGetMemList(char *qname);

DESCRIPTION

The cpusetGetMemList function is used to obtain the list of the nodes with
memory assigned to the specified cpuset. Only processes running with a user ID or
group ID that has read access permissions on the permissions file can successfully
execute this function. The qname argument is the name of the specified cpuset.

The function returns a pointer to a structure of type cpuset_NodeList_t (defined in
<cpuset.h>). The cpusetGetMemList function allocates the memory for the
structure and the user is responsible for freeing the memory using the
cpusetFreeNodeList(3x) function. The cpuset_NodeList_t structure is defined
as follows:

typedef struct {

int count;

cnodeid_t *list;

} cpuset_NodeList_t;

The count member is the number of node IDs in the list.The list member
references the memory array that holds the list of node IDs. The memory for list is
allocated when the cpuset_NodeList_t is allocated and it is released when the
cpuset_NodeList_t structure is released.

EXAMPLES

This example shows how to obtain the list of nodes with memory assigned to the
cpuset mpi_set and prints out the node ID values, as follows:

This example obtains the list of nodes with memory assigned

to the cpuset mpi_set and prints out the node ID values.

char *qname = "mpi_set";

cpuset_NodeList_t *mems;

254 007–3700–015

IRIX® Admin: Resource Administration

int i;

/* Get the list of memory else print error & exit */

if (!(mems = cpusetGetMemList(qname))) {

perror("cpusetGetMemList");

exit(1);
}

printf("CPUSET[%s] assigned Node memories:\n",

qname);

for (i = 0; i < memss->count; i++)

printf("MEM_NODE_ID[%d]\n", mems->list[i]);

cpusetFreeMemList(mems);

NOTES

The cpusetGetMemList function is found in the library libcpuset.so, and will
be loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetFreeNodeList(3x), cpusetSetMemList(3x) and cpuset(5).

DIAGNOSTICS

If successful, cpusetGetMemList returns a pointer to a cpuset_MemList_t
structure. If cpusetGetMemList fails, it returns NULL and errno is set to indicate
the error. The possible values for errno include those values as set by sysmp(2) and
sbrk(2).

007–3700–015 255

A: Programming Guide for Resource Management

cpusetGetName(3x)

NAME

cpusetGetName - gets the name of the cpuset to which a process is attached

SYNOPSIS

#include <cpuset.h>

cpuset_NameList_t *cpusetGetName(pid_t pid);

DESCRIPTION

The cpusetGetName function is used to obtain the name of the cpuset to which the
specified process has been attached. The pid argument specifies the process ID.
Currently, the only valid value for pid is 0, which returns the name of the cpuset to
which the current process is attached.

The function returns a pointer to a structure of type cpuset_NameList_t (defined
in the cpuset.h include file). The cpusetGetName function allocates the memory
for the structure and all of its associated data. The user is responsible for freeing the
memory using the cpusetFreeNameList(3x) function. The cpuset_NameList_t
structure is defined as follows:

typedef struct {

int count;

char **list;

int *status;

} cpuset_NameList_t;

The count member is the number of cpuset names in the list. In the case of
cpusetGetName function, this member should only contain the values of 0 and 1.

The list member references the list of names.

The status member is a list of status flags that indicate the status of the
corresponding cpuset name in list. The following flag values may be used:

CPUSET_QUEUE_NAME Indicates that the corresponding name in list is the
name of a cpuset queue

256 007–3700–015

IRIX® Admin: Resource Administration

CPUSET_CPU_NAME Indicates that the corresponding name in list is the
CPU ID for a restricted CPU

The memory for list and status is allocated when the cpuset_NameList_t
structure is allocated and it is released when the cpuset_NameList_t structure is
released.

EXAMPLES

This example obtains the cpuset name or CPU ID to which the current process is
attached:

cpuset_NameList_t *name;

/* Get the list of names else print error & exit */
if (!(name = cpusetGetName(0))) {

perror("cpusetGetName");

exit(1);

}

if (name->count == 0) {
printf("Current process not attached\n");

} else {

if (name->status[0] == CPUSET_CPU_NAME) {

printf("Current process attached to"

" CPU_ID[%s]\n",

name->list[0]);
} else {

printf("Current process attached to"

" CPUSET[%s]\n",

name->list[0]);

}
}

cpusetFreeNameList(name);

NOTES

The cpusetGetName function is found in the libcpuset.so library and is loaded
if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetFreeNameList(3x), cpusetGetNameList(3x), and cpuset(5).

007–3700–015 257

A: Programming Guide for Resource Management

DIAGNOSTICS

If successful, the cpusetGetName function returns a pointer to a
cpuset_NameList_t structure. If the cpusetGetName function fails, it returns
NULL and errno is set to indicate the error. The possible values for errno include
those values as set by sysmp(2), sbrk(2), and the following:

EINVAL Invalid value for pid was supplied. Currently, only 0 is
accepted to obtain the cpuset name that the current
process is attached to.

ERANGE Number of CPUs configured on the system is not a
value greater than or equal to 1.

258 007–3700–015

IRIX® Admin: Resource Administration

cpusetGetNameList(3x)

NAME

cpusetGetNameList - gets the list of names for all defined cpusets

SYNOPSIS

#include <cpuset.h>

cpuset_NameList_t *cpusetGetNameList(void);

DESCRIPTION

The cpusetGetNameList function is used to obtain a list of the names for all the
cpusets on the system.

The function returns a pointer to a structure of type cpuset_NameList_t (defined
in the cpuset.h include file). The cpusetGetNameList function allocates the
memory for the structure and all of its associated data. The user is responsible for
freeing the memory using the cpusetFreeNameList(3x) function. The
cpuset_NameList_t structure is defined as follows:

typedef struct {
int count;

char **list;

int *status;

} cpuset_NameList_t;

The count member is the number of cpuset names in the list.

The list member references the list of names.

The status member is a list of status flags that indicate the status of the
corresponding cpuset name in list. The following flag values may be used:

CPUSET_QUEUE_NAME Indicates that the corresponding name in list is the
name of a cpuset queue.

CPUSET_CPU_NAME Indicates that the corresponding name in list is the
CPU ID for a restricted CPU.

The memory for list and status is allocated when the cpuset_NameList_t
structure is allocated and it is released when the cpuset_NameList_t structure is
released.

007–3700–015 259

A: Programming Guide for Resource Management

EXAMPLES

This example obtains the list of names for all cpuset queues configured on the system.
The list of cpusets or restricted CPU IDs is then printed.

cpuset_NameList_t *names;

/* Get the list of names else print error & exit */

if (!(names = cpusetGetNameList())) {

perror("cpusetGetNameList");

exit(1);
}

if (names->count == 0) {

printf("No defined CPUSETs or restricted CPUs\n");

} else {

int i;

printf("CPUSET and restricted CPU names:\n");

for (i = 0; i < names->count; i++) {

if (names->status[i] == CPUSET_CPU_NAME) {

printf("CPU_ID[%s]\n", names->list[i]);
} else {

printf("CPUSET[%s]\n", names->list[i]);

}

}

}

cpusetFreeNameList(names);

NOTES

The cpusetGetNameList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetFreeNameList(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetNameList function returns a pointer to a
cpuset_NameList_t structure. If the cpusetGetNameList function fails, it
returns NULL and errno is set to indicate the error. The possible values for errno
include those values set by sysmp(2) and sbrk(2).

260 007–3700–015

IRIX® Admin: Resource Administration

cpusetGetNodeList(3x)

NAME

cpusetGetNodeList - gets the list of nodes assigned to a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_NodeList_t *cpusetGetNodeList(char *qname);

DESCRIPTION

The cpusetGetNodeList function is used to obtain the list of nodes assigned to a
cpuset on which all CPU and memory resources reside. Only processes running with
a user ID or group ID that have read access permissions on the permissions file can
successfully execute this function. The qname argument is the name of the specified
cpuset.

The function returns a pointer to a structure of the type cpuset_NodeList_t
(defined in <cpuset.h>). The cpusetGetNodeList function allocates the memory
for the structure and you must free the memory using the cpusetFreeNodeList(3x)
function. The cpuset_NodeList_t structure looks similar to the following:

typedef struct {

int count;

cnodeid_t *list;

} cpuset_NodeList_t;

The count parameter is the number of node IDs in the list. The list parameter
references the memory array that holds the list of node IDs. The memory for list is
allocated when the cpuset_NodeList_t is allocated and it is released when the
cpuset_NodeList_t structure is released.

EXAMPLES

This example shows how to obtain the list of nodes assigned to the cpuset mpi_set
and prints out the node ID values as follows:

char *qname = "mpi_set";

cpuset_NodeList_t *nodes;

/* Get the list of nodes else print error & exit */

if (!(nodes = cpusetGetNodeList(qname))) {

007–3700–015 261

A: Programming Guide for Resource Management

perror("cpusetGetNodeList");
exit(1);

}

if (nodes->count == 0) {

printf("CPUSET[%s] has 0 assigned nodes\n",

qname);
} else {

int i;

printf("CPUSET[%s] assigned nodes:\n",

qname);

for (i = 0; i < nodes->count; i++)

printf("NODE_ID[%d]\n", nodes->list[i]);
}

cpusetFreeNodeList(nodes);

NOTES

The cpusetGetNodeList function is found in the library libcpuset.so, and will
be loaded if the option -l cpuset is used with cc(1) or ld(1).

SEE ALSO

cpuset(1), cpusetFreeNodeList(3x), and cpuset(5).

DIAGNOSTICS

If successful, cpusetGetNodeList returns a pointer to a cpuset_NodeList_t
structure. If the cpusetGetNodeList function fails, it returns NULL and errno is
set to indicate the error. The possible values for errno include those values as set by
sysmp(2) and sbrk(2).

262 007–3700–015

IRIX® Admin: Resource Administration

cpusetGetPIDList(3x)

NAME

cpusetGetPIDList - gets a list of all PIDs attached to a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_PIDList_t *cpusetGetPIDList(char *qname);

DESCRIPTION

The cpusetGetPIDList function is used to obtain a list of the PIDs for all processes
currently attached to the specified cpuset. Only processes with a user ID or group ID
that has read permissions on the permissions file can successfully execute this
function.

The qname argument is the name of the cpuset to which the current process should
be attached.

The function returns a pointer to a structure of type cpuset_PIDList_t (defined in
the cpuset.h) include file. The cpusetGetPIDList function allocates the memory
for the structure and the user is responsible for freeing the memory using the
cpusetFreePIDList(3x) function. The cpuset_PIDList_t structure looks similar
to this:

typedef struct {

int count;

pid_t *list;

} cpuset_PIDList_t;

The count member is the number of PID values in the list. The list member
references the memory array that hold the list of PID values. The memory for list is
allocated when the cpuset_PIDList_t structure is allocated and it is released when
the cpuset_PIDList_t structure is released.

EXAMPLES

This example obtains the list of PIDs attached to the cpuset mpi_set and prints out
the PID values.

(char *qname = "mpi_set";)

cpuset_PIDList_t *pids;

007–3700–015 263

A: Programming Guide for Resource Management

/* Get the list of PIDs else print error & exit */
if (!(pids = cpusetGetPIDList(qname))) {

perror("cpusetGetPIDList");

exit(1);

}

if (pids->count == 0) {
printf("CPUSET[%s] has 0 processes attached\n",

qname);

} else {

int i;

printf("CPUSET[%s] attached PIDs:\n",

qname);
for (i=o; i<pids->count; i++)

printf("PID[%d]\n", pids->list[i]);

}

cpusetFreePIDList(pids);

NOTES

The cpusetGetPIDList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetFreePIDList(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetPIDList function returns a pointer to a
cpuset_PIDList_t structure. If the cpusetGetPIDList function fails, it returns
NULL and errno is set to indicate the error. The possible values for errno are the
same as the values set by sysmp(2) and sbrk(2).

264 007–3700–015

IRIX® Admin: Resource Administration

cpusetGetProperties(3x)

NAME

cpusetGetProperties - retrieves various properties associated with a cpuset

SYNOPSIS

#include <cpuset.h>

cpuset_Properties_t * cpusetGetProperties(char *qname);

DESCRIPTION

The cpusetGetProperties function is used retrieve various properties identified
by qname and returns a pointer to a cpuset_Properties_t structure as follows:

/* structure to return cpuset properties */

typedef struct {

cpuset_CPUList_t *cpuInfo; /* cpu count and list */

int pidCnt; /* number of process in cpuset */

uid_t owner; /* owner id of config file */

gid_t group; /* group id of config file */

mode_t DAC; /* Standard permissions of

config file*/

int flags; /* Config file flags for cpuset */

int extFlags; /* Bit flags indicating valid

ACL & MAC */

struct acl accAcl; /* structure for valid access

ACL */

struct acl defAcl; /* structure for valid default

ACL */

mac_label macLabel; /* structure for valid MAC

label */

} cpuset_Properties_t;

Every cpuset queue has a file that defines access permissions to the queue. The read
permissions for that file will determine if a process owned by a specific user can
retrieve the properties from the cpuset.

The qname argument is the name of the cpuset to which the properties should be
retrieved.

007–3700–015 265

A: Programming Guide for Resource Management

EXAMPLES

This example retrieves the properties of a cpuset queue named mpi_set.

char *qname = "mpi_set";
cpuset_Properties_t *csp;

/* Get properties, if error - print error & exit */

csp=cpusetGetProperties(qname);

if (!csp) {
perror("cpusetGetProperties");

exit(1);

}

.

.

.

cpusetFreeProperties(csp);

Once a valid pointer is returned, a check against the extFlags member of the
cpuset_Properties_t structure must be made with the flags
CPUSET_ACCESS_ACL, CPUSET_DEFAULT_ACL, and CPUSET_MAC_LABEL to see if
any valid ACLs or a valid MAC label was returned. The check flags can be found in
the sys\cpuset.h file.

NOTES

The cpusetGetProperties function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetFreeProperties(3x), and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetProperties function returns a pointer to a
cpuset_Properties_t structure. If the cpusetGetProperties function fails, it
returns NULL and errno is set to indicate the error. The possible values for errno
include those values set by sysmp(2).

266 007–3700–015

IRIX® Admin: Resource Administration

cpusetGetTrustPerm (3x)

NAME

cpusetGetTrustPerm - Gets the Trusted Security permissions for a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetGetTrustPerm(char *qname, struct acl *acc,

struct acl *def, mac_label *mac);

DESCRIPTION

The cpusetGetTrustPerm function is used to obtain the trusted security attributes
of the cpuset permissions file. The permissions of this file are used to define the
access permission for the cpuset. The ACL that defines access to the cpuset is
returned in the memory location specified by the acc argument. The ACL that
defines default security attributes is returned in the memory location specified by the
def argument. The MAC label is returned in the memory location specified by the
mac argument. Only processes running with a user ID or group ID that has read
access permissions on the permissions file can successfully execute this function. The
qname argument is the name of the specified cpuset.

The function returns a status to indicate success or failure.

EXAMPLES

This example shows how to obtain the trusted security attributes of a cpuset.

char *qname = "mpi_set";

struct acl acc, def;
mac_label mac;

char *macstr;

memset(acc, 0, sizeof(struct acl));

memset(def, 0, sizeof(struct acl));
memset(mac, 0, sizeof(mac_label));

/* Get the list of CPUs else print error & exit */

if (!cpusetGetTrustPerm(qname, &acc, &def, &mac)) {

perror("cpusetGetTrustPerm");

exit(1);

}

007–3700–015 267

A: Programming Guide for Resource Management

if (acc.acl_cnt != ACL_NOT_PRESENT) {
printf("Access ACL mode (%s)0, ACL_to_str(acc));

}

if (def.acl_cnt != ACL_NOT_PRESENT) {

printf("Default ACL mode (%s)0, ACL_to_str(def));

}
if (mac.ml_msen_type) {

printf("MAC label (%s)0, mac_to_text(&mac, (size_t

*) NULL);

}

NOTES

The cpusetGetTrustPerm function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1) and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetTrustPerm function returns 1. If the
cpusetGetTrustPerm function fails, it returns 0 and errno is set to indicate the
error. The possible values for errno include those values set by sysmp(2) and
sbrk(2).

268 007–3700–015

IRIX® Admin: Resource Administration

cpusetGetUnixPerm(3x)

NAME

cpusetGetUnixPerm - Gets the UNIX file permissions for a cpuset

SYNOPSIS

#include <cpuset.h>

int cpusetGetUnixPerm(char *qname, uid_t *owner, gid_t *group,

mode_t *mode);

DESCRIPTION

The cpusetGetUnixPerm function is used to obtain the standard UNIX file
permissions of a cpuset. The permissions for a file that are specified at cpuset creation
time are used as the access permissions for the cpuset. The user and group that owns
the cpuset is the user and group that owns the file used to specify the access
permissions. The user ID of the owner is returned in the memory location referenced
by the owner argument. The group ID of the group owner is returned in the memory
location referenced by the group argument. The mode of the access permissions is
returned in the memory location referenced by the mode argument. The qname
argument is the name of the specified cpuset.

The function returns a status to indicate success of failure.

EXAMPLES

This example shows how to obtain the list of CPUs asigned to the cpuset mpi_set
and prints out the CPU ID values, as follows:

char *qname = "mpi_set";
uid_t owner = 0;

gid_t group = 0;

mod_t mode = 0;

/* Get the Unix file permission for the cpuset */
if (!cpusetGetUnixPerm(qname, &owner, &group, &mode)) {

perror("cpusetGetUnixPerm");

exit(1);

}

printf("Owner ID: %d0, ACL_to_str(acc));

printf("Group ID: %d0, ACL_to_str(def));

007–3700–015 269

A: Programming Guide for Resource Management

printf("Permissions: %s0, mode_to_text(mode);

NOTES

The cpusetGetUnixPerm function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1) and cpuset(5).

DIAGNOSTICS

If successful, the cpusetGetUnixPerm function returns 1. If the
cpusetGetUnixPerm function fails, it returns 0 and errno is set to indicate the error.
The possible values for errno include those values set by sysmp(2) and sbrk(2).

270 007–3700–015

IRIX® Admin: Resource Administration

Clean-up Functions

This section contains the man pages for Cpuset System library clean-up functions:

"cpusetFreeQueueDef(3x)" Releases memory used by a
cpuset_QueueDef_t structure
(see "cpusetFreeQueueDef(3x)",
page 277)

"cpusetFreeCPUList(3x)" Releases memory used by a
cpuset_CPUList_t structure (see
"cpusetFreeCPUList(3x)", page
272)

"cpusetFreeNameList(3x)" Releases memory used by a
cpuset_NameList_t structure
(see "cpusetFreeNameList(3x)",
page 273)

"cpusetFreePIDList(3x)" Releases memory used by a
cpuset_PIDList_t structure (see
"cpusetFreePIDList(3x)", page
275)

"cpusetFreeProperties(3x)", page 276 Release memory used by a
cpuset_Properties_t structure
(see
"cpusetFreeProperties(3x)",
page 276)

007–3700–015 271

A: Programming Guide for Resource Management

cpusetFreeCPUList(3x)

NAME

cpusetFreeCPUList - releases memory used by a cpuset_CPUList_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreeCPUList(cpuset_CPUList_t *cpu);

DESCRIPTION

The cpusetFreeCPUList function is used to release memory used by a
cpuset_CPUList_t structure. This function releases all memory associated with the
cpuset_CPUList_t structure.

The cpu argument is the pointer to the cpuset_CPUList_t structure that will have
its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetCPUList(3x) function.

NOTES

The cpusetFreeCPUList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetGetCPUList(3x), and cpuset(5).

272 007–3700–015

IRIX® Admin: Resource Administration

cpusetFreeNameList(3x)

NAME

cpusetFreeNameList - releases memory used by a cpuset_NameList_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreeNameList(cpuset_NameList_t *name);

DESCRIPTION

The cpusetFreeNameList function is used to release memory used by a
cpuset_NameList_t structure. This function releases all memory associated with
the cpuset_NameList_t structure.

The name argument is the pointer to the cpuset_NameList_t structure that will
have its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetNameList(3x) function or cpusetGetName(3x) function.

NOTES

The cpusetFreeNameList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetGetName(3x), cpusetGetNameList(3x), and cpuset(5).

007–3700–015 273

A: Programming Guide for Resource Management

cpusetFreeNodeList(3x)

NAME

cpusetFreeNodeList - Releases memory used by a cpuset_NodeList_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreeNodeList(cpuset_NodeList_t *node);

DESCRIPTION

The cpusetFreeNodeList function is used to release memory used by a
cpuset_NodeList_t structure. This function releases all memory associated with
the cpuset_NodeList_t structure.

The node argument is the pointer to the cpuset_NodeList_t structure that will
have it’s memory released.

This function should be used to release the memory allocated during a previous call
to the function cpusetGetNodeList(3x).

NOTES

The cpusetFreeNodeList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetGetNodeList(3x), and cpuset(5).

274 007–3700–015

IRIX® Admin: Resource Administration

cpusetFreePIDList(3x)

NAME

cpusetFreePIDList - releases memory used by a cpuset_PIDList_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreePIDList(cpuset_PIDList_t *pid);

DESCRIPTION

The cpusetFreePIDList function is used to release memory used by a
cpuset_PIDList_t structure. This function releases all memory associated with the
cpuset_PIDList_t structure.

The pid argument is the pointer to the cpuset_PIDList_t structure that will have
its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetPIDList(3x) function.

NOTES

The cpusetFreePIDList function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetGetPIDList(3x), and cpuset(5).

007–3700–015 275

A: Programming Guide for Resource Management

cpusetFreeProperties(3x)

NAME

cpusetFreeProperties - releases memory used by a cpuset_Properties_t
structure

SYNOPSIS

#include <cpuset.h>
void cpusetFreeProperties(cpuset_Properties_t *csp);

DESCRIPTION

The cpusetFreeProperties function is used to release memory used by a
cpuset_Properties_t structure. This function releases all memory associated with
the cpuset_Properties_t structure.

The csp argument is the pointer to the cpuset_Properties_t structure that will
have its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetGetProperties(3x)) function.

NOTES

The cpusetFreeProperties function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetGetProperties(3x), and cpuset(5).

276 007–3700–015

IRIX® Admin: Resource Administration

cpusetFreeQueueDef(3x)

NAME

cpusetFreeQueueDef - releases memory used by a cpuset_QueueDef_t structure

SYNOPSIS

#include <cpuset.h>

void cpusetFreeQueueDef(cpuset_QueueDef_t *qdef);

DESCRIPTION

The cpusetFreeQueueDef function is used to release memory used by a
cpuset_QueueDef_t structure. This function releases all memory associated with
the cpuset_QueueDef_t structure.

The qdef argument is the pointer to the cpuset_QueueDef_t structure that will
have its memory released.

This function should be used to release the memory allocated during a previous call
to the cpusetAllocQueueDef(3x)) function.

NOTES

The cpusetFreeQueueDef function is found in the libcpuset.so library and is
loaded if the -lcpuset option is used with either the cc(1) or ld(1) command.

SEE ALSO

cpuset(1), cpusetAllocQueueDef(3x), and cpuset(5).

007–3700–015 277

A: Programming Guide for Resource Management

Using the Cpuset Library

This section provides an example of how to use the Cpuset library functions to create a
cpuset and an example of creating a replacement library for /lib32/libcpuset.so.

Example A-1 Example of Creating a Cpuset

This example creates a cpuset named myqueue containing CPUs 4, 8, and 12. The
example uses the interfaces in the cpuset library, /lib32/libcpuset.so, if they are
present. If the interfaces are not present, it attempts to use the cpuset(1) command
to create the cpuset.

#include <cpuset.h>

#include <stdio.h>

#include <errno.h>

#define PERMFILE "/usr/tmp/permfile"

int

main(int argc, char **argv)
{

cpuset_QueueDef_t *qdef;

char *qname = "myqueue";

FILE *fp;

/* Alloc queue def for 3 CPU IDs */
if (_MIPS_SYMBOL_PRESENT(cpusetAllocQueueDef)) {

printf("Creating cpuset definition\n");

qdef = cpusetAllocQueueDef(3);

if (!qdef) {

perror("cpusetAllocQueueDef");
exit(1);

}

/* Define attributes of the cpuset */

qdef->flags = CPUSET_CPU_EXCLUSIVE

| CPUSET_MEMORY_LOCAL
| CPUSET_MEMORY_EXCLUSIVE;

qdef->permfile = PERMFILE;

qdef->cpu->count = 3;

qdef->cpu->list[0] = 4;

qdef->cpu->list[1] = 8;

qdef->cpu->list[2] = 12;

278 007–3700–015

IRIX® Admin: Resource Administration

} else {
printf("Writing cpuset command config"

" info into %s\n", PERMFILE);

fp = fopen(PERMFILE, "a");

if (!fp) {

perror("fopen");
exit(1);

}

fprintf(fp, "EXCLUSIVE\n");

fprintf(fp, "MEMORY_LOCAL\n");

fprintf(fp, "MEMORY_EXCLUSIVE\n\n");

fprintf(fp, "CPU 4\n");
fprintf(fp, "CPU 8\n");

fprintf(fp, "CPU 12\n");

fclose(fp);

}

/* Request that the cpuset be created */

if (_MIPS_SYMBOL_PRESENT(cpusetCreate)) {

printf("Creating cpuset = %s\n", qname);

if (!cpusetCreate(qname, qdef)) {

perror("cpusetCreate");

exit(1);
}

} else {

char command[256];

fprintf(command, "/usr/sbin/cpuset -q %s -c"
"-f %s", qname,

[PERMFILE];

if (system(command) < 0) {

perror("system");

exit(1);
}

}

/* Free memory for queue def */

if (_MIPS_SYMBOL_PRESENT(cpusetFreeQueueDef)) {

printf("Finished with cpuset definition,"
" releasing memory\n");

cpusetFreeQueueDef(qdef);

007–3700–015 279

A: Programming Guide for Resource Management

}
return 0;

}

Example A-2 Example of Creating a Replacement Library

This example shows how to create a replacement library for /lib32/libcpuset.so
so that a program built to use the cpuset library interfaces will execute if the library is
not present.

1. Create the replace.c file that contains the following line of code:

static void cpusetNULL(void) { }

2. Compile the replace.c file:

cc -mips3 -n32 -c replace.c

3. Place the replace.o object created in the previous step in a library:

ar ccrl libcpuset.a replace.o

4. Convert the library into a DSO:

ld -mips3 -n32 -quickstart_info -nostdlib \

-elf -shared -all -soname libcpuset.so \

-no_unresolved -quickstart_info -set_version \

sgi1.0 libcpuset.a -o libcpuset.so

5. Install the DSO on the system:

install -F /opt/lib32 -m 444 -src libcpuset.so \
libcpuset.so

The replacement library can be installed in a directory defined by the
LD_LIBRARYN32_PATH environment variable (see rld(1)). If the replacement library
must be installed in a directory that is in the default search path for shared libraries,
it should be installed in /opt/lib32.

280 007–3700–015

Index

A

accounting, 81
basic accounting, 81
concepts, 84
CSA, 81
csarun, 81
daily accounting, 85
extended accounting, 81
job, 85
jobs, 85
runacct, 81
terminology, 84

Array Services, 145
acessing an array, 147
array configuration database, 145
array daemon, 145
array name, 147
array session handle, 145, 159
ASH

See " array session handle", 145
authentication key, 152
commands, 145

ainfo, 145, 147, 151, 152
array, 145, 152
arshell, 145, 152
aview, 145, 152
newsess, 152

common command options, 152
common environment variables, 154
concepts

array session, 151
array session handle, 151
ASH

See "array session handle", 151
finding basic usage information, 147
global process namespace, 145

hostname command, 152
ibarray, 145
invoking a program, 148

information sources, 149
ordinary (sequential) applications, 148
parallel message-passing applications

distributed over multiple nodes , 148
parallel message-passing applications

within a node, 148
parallel shared-memory applications within

a node, 148
local process management commands, 150

at, 150
batch, 150
intro, 150
kill, 150
nice, 150
ps, 150
top, 150

logging into an array, 147
managing local processes, 149
monitoring processes and system usage, 149
names of arrays and nodes, 152
overview, 145
scheduling and killing local processes, 150
specifying a single node, 153
using an array, 146
using array services commands, 150

C

ccNUMA memory architecture, 61
Comprehensive System Accounting

accounting commands, 138
administrator commands, 93
capabilities required

007–3700–015 281

Index

CAP_ACCT_MGT, 96
charging for workload management jobs, 127
charging for NQS jobs, 126
commands

csaaddc, 107
csachargefee, 96, 107
csackpacct, 98
csacms, 107
csacom, 84
csacon, 108
csadrep, 107
csaedit, 104, 107
csaperiod, 84, 96
csarecy, 107
csarun, 84, 95, 100
csaswitch, 95, 96
csaverify, 104
dodisk, 95
ja, 84

configuration file
See also "/etc/csa.conf", 84, 96

configuration variables
See also "/etc/csa.conf", 84

daemon accounting, 122
daily operation overview, 95
data processing, 105
data recycling, 109
enabling or disabling, 86
/etc/csa.conf

See also "configuration file", 84
files and directories, 87
migrating accounting data, 138
overview, 83
read me first, 82
recycled data

NQS or workload management requests, 114
recycled sessions, 110
removing recycled data, 111
reports

daily, 131
periodic, 135

SBUs

NQS
See also "system billing units", 119

process
See also "system billing units", 117

See "system billing units", 116
tape

See also "system billing units", 120
workload management

See also "system billing units", 120
setting up CSA, 96
system billing units, 116
tailoring CSA, 115

commands, 128
shell scripts, 128

terminating jobs, 109
user commands, 94
user exits, 123
verifying and editing data files, 104

Cpuset System
boot cpuset, 61
commands

cpuset, 54, 63
configuration flags

CPU, 67
CPU_COUNT_ADVISORY, 69
CPU_COUNT_MANDATORY, 69
EXCLUSIVE, 65
MEM, 67
MEMORY_EXCLUSIVE, 66
MEMORY_KERNEL_AVOID, 66
MEMORY_LOCAL, 65
MEMORY_MANDATORY, 66
MEMORY_SIZE_ADVISORY, 68
MEMORY_SIZE_MANDATORY, 68
POLICY_KILL, 67
POLICY_PAGE, 66
POLICY_SHARE_FAIL, 67
POLICY_SHARE_WARN, 67

CPU restrictions, 56
cpuset configuration file, 63

flags

282 007–3700–015

IRIX® Admin: Resource Administration

See also "valid tokens", 65
Cpuset library, 72, 195
Cpuset library functions

, 196
cpusetAllocQueueDef, 196, 202
cpusetAttach, 196, 208
cpusetAttachPID, 210
cpusetCreate, 196, 212
cpusetDestroy, 196, 221
cpusetDetachAll, 196, 217
cpusetDetachPID, 219
cpusetFreeCPUList, 196, 272
cpusetFreeNameList, 196, 273
cpusetFreeNodeList, 274
cpusetFreePIDList, 196, 275
cpusetFreeProperties, 196, 276
cpusetFreeQueueDef, 196, 277
cpusetGetCPUCount, 196, 243
cpusetGetCPULimits, 244
cpusetGetCPUList, 196, 246
cpusetGetFlags, 248
cpusetGetMemLimits, 252
cpusetGetMemList, 254
cpusetGetName, 196, 256
cpusetGetNameList, 196, 259
cpusetGetNodeList, 261
cpusetGetPIDList, 196, 263
cpusetGetProperties, 196, 265
cpusetGetTrustPermc, 267
cpusetGetUnixPerm, 269
cpusetMove, 196, 222
cpusetMoveMigrate, 196, 224
cpusetSetCPULimits, 226
cpusetSetCPUList, 228
cpusetSetFlags, 230
cpusetSetMemLimits, 234
cpusetSetMemList, 236
cpusetSetNodeList, 238
cpusetSetPermFile, 240

enabling or disabling, 70
library

overview, 53

Obtaining the properties associated with a
cpuset, 70

restricting memory allocation, 63
system division, 51

J

Job Limits
applications programming interface, 187

data types, 187
function calls, 188

applications programming interface for the
ULDB, 192

data types, 192
function calls, 193

commands
cpr, 25
genlimits, 13
jlimit, 22
jstat, 23
ps, 24
showlimits, 19
systune, 18

definition, 7
domain

definition, 8
error messages, 192
function calls

getjid, 189
getjlimit, 188
getjusage, 188
jlimit_startjob, 189
killjob, 189
makenewjob, 189
setjlimit, 188
setjusage, 190
setwaitjobpid, 191
waitjob, 191

introduction, 5
job characteristics, 7

007–3700–015 283

Index

job initiators
See also "point of entry processes", 7

limits supported, 9
overview, 6
point of entry processes

See also "job initiators", 7
read me first, 6
software

how to install, 26
troubleshooting, 27

system tunable parametes
jlimit_cpu_ign, 191
jlimit_data_ign, 190
jlimit_nofile_ign, 190
jlimit_pmem_ign, 190
jlimit_pthread_ign, 190
jlimit_rss_ign, 190
jlimit_vmem_ign, 190

ULDB
how to create, 13
See also "user limits database", 12

user limits database
See also "ULDB", 12

user limits directives input file
domain directives, 15
example, 16
how to create, 14
numeric limit values, 14
user directives, 15

jobs
accounting, in, 85

M

Memory
physical, 141
shared, 141
usage commands, 141
virtual, 141

Memory architecture
ccNUMA, 61

NUMAflex, 61
Memory usage

commands
csacom, 141
gmemusage, 141
ja, 141
jstat, 141
pmem, 141
ps, 141
top, 141

Memory usage overview, 141
Miser

checking job status, 46
checking queue status, 46, 47
command-line options file setup, 39
configuration, 35
configuration examples, 41
configuration file setup, 39
configuration recommendations, 40
CPU allocation, 33
differences between Miser and batch

management systems, 48
enabling or disabling, 44
logical number of CPUs, 33
logical swap space, 34
memory management, 34
overview, 31
pools, 32
queue, 32
read me first, 31
starting, 45
stopping, 45
submitting jobs, 45
system pool, 32
system queue definition file setup, 35
terminating a job, 47
user queue definition file setup, 37

284 007–3700–015

IRIX® Admin: Resource Administration

N

Network Queuing Environment, 48
NQE, 48
NUMAflex memory architecture, 61

P

Physical memory
CSA and job limits, 144

Process Limits
commands

limit -h, 1
systune resource, 3

limits supported, 2
parameters

grace period, 4
number of processes, 4

resource limits
currrent (soft) limits, 1
maximum (hard) limits, 1

system calls
getrlimit, 1
setrlimit, 1

S

Shared memory
CSA and job limits, 143

U

using the cpuset library, 278

V

Virtual memory
CSA and job limits, 144

007–3700–015 285

	New Features in This Manual
	New Features Documented
	Major Documentation Changes

	Table of Contents
	List of Figures
	List of Tables
	List of Examples

	About This Manual
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Process Limits
	Process Limits Overview
	Using csh and sh to Limit Resource Consumption
	Using systune to Display and Set Process Limits
	Additional Process Limits Parameters

	2. Job Limits
	Read Me First
	Job Limits Overview
	Job Limits Supported
	getjlimit and setjlimit
	waitjob
	systune
	cpulimit_gracetime

	User Limits Database
	Creating the User Limits Database
	Creating the User Limits Directives Input File
	Using systune to Display and Set Job Limits
	User Commands for Viewing and Setting Job Limits

	Job Limits and Existing IRIX software
	Running Job Limits with Message Passing Interface (MPI) Jobs
	Installing Job Limits
	Troubleshooting Job Limits
	Job Limits Man Pages
	User-Level Man Pages
	Administrator Man Pages
	Application Interface Man Pages

	Error Messages

	3. Miser Batch Processing System
	Read Me First
	Miser Overview
	About Logical Number of CPUs
	The Effect of Reservation of CPUs on Interactive Processes
	About Miser Memory Management
	How Miser Management Affects Users

	Miser Configuration
	Setting Up the Miser System Queue Definition File
	Setting Up the Miser User Queue Definition FIle
	Setting Up the Miser Configuration FIle
	Setting Up the Miser CommandLine Options File
	Configuration Recommendations

	Miser Configuration Examples
	Enabling or Disabling Miser
	Submitting Miser Jobs
	Querying Miser About Job Schedule/Description
	Querying Miser About Queues
	Moving a Block of Resources
	Resetting Miser
	Terminating a Miser Job
	Miser and Batch Management Systems

	Miser Man Pages
	User-Level Man Pages
	File Format Man Pages
	Miscellaneous Man Pages

	4. Cpuset System
	Using Cpusets
	Restrictions on CPUs within Cpusets
	Cpuset System Tutorial
	Boot Cpuset
	Cpuset Command and Configuration File
	cpuset Command
	Cpuset Configuration File

	Cpusets and Memory-Only Nodes
	Installing the Cpuset System
	Obtaining the Properties Associated with a Cpuset
	Cpuset System and Trusted IRIX
	Using the Cpuset Library
	Using the cpusetAttachPID and cpusetDetachPID Functions
	Using the cpusetMove and cpusetMoveMigrate Functions

	Cpuset System Man Pages
	User-Level Man Pages
	Cpuset Library Man Pages
	File Format Man Pages
	Miscellaneous Man Pages

	5. Comprehensive System Accounting
	Read Me First
	CSA Overview
	Concepts and Terminology
	Enabling or Disabling CSA
	CSA Files and Directories
	Files in the /var/adm/acct Directory

	Comprehensive System Accounting Expanded Description
	Daily Operation Overview
	Setting Up CSA
	The csarun Command
	Verifying and Editing Data Files
	CSA Data Processing
	Data Recycling
	Tailoring CSA

	CSA Reports
	CSA Daily Report
	Periodic Report

	CSA and Existing IRIX Software
	acct(1M) Man Page
	acctsh(1M) Man Page
	dodisk(1M) Man Page
	explain(1) Man Page
	capabilities(4) Man Page

	Migrating Accounting Data
	CSA Man Pages
	User-Level Man Pages
	Administrator Man Pages

	6. IRIX Memory Usage
	Memory Usage Commands
	Shared Memory
	Physical Memory
	Virtual Memory

	7. Array Services
	Using an Array
	Using an Array System

	Managing Local Processes
	Monitoring Local Processes and System Usage
	Scheduling and Killing Local Processes
	Summary of Local Process Management Commands

	Using Array Services Commands
	About Array Sessions
	About Names of Arrays and Nodes
	About Authentication Keys

	Summary of Common Command Options
	Specifying a Single Node
	Common Environment Variables

	Interrogating the Array
	Learning Array Names
	Learning Node Names
	Learning Node Features
	Learning User Names and Workload
	Browsing With ArrayView

	Managing Distributed Processes
	About Array Session Handles (ASH)
	Listing Processes and ASH Values
	Controlling Processes

	About Array Configuration
	About the Uses of the Configuration File
	About Configuration File Format and Contents
	Loading Configuration Data
	About Substitution Syntax
	Testing Configuration Changes

	Configuring Arrays and Machines
	Specifying Arrayname and Machine Names
	Specifying IP Addresses and Ports
	Specifying Additional Attributes

	Configuring Authentication Codes
	Configuring Array Commands
	Operation of Array Commands
	Summary of Command Definition Syntax
	Configuring Local Options
	Designing New Array Commands

	Array Services Library
	Data Structures
	Error Message Conventions
	Connecting to Array Services Daemons
	Database Interrogation
	Managing Array Service Handles
	Executing an Array Command
	Executing a User Command

	A. Programming Guide for Resource Management
	Application Programming Interface for Job Limits
	Data Types
	Function Calls
	Error Messages

	Application Programming Interface for the ULDB
	Data Types
	Function Calls

	Application Programming Interface for the Cpuset System
	Management functions
	Retrieval Functions
	Clean-up Functions
	Using the Cpuset Library

	Index

