
June 5, 1989
PostScript® Developer Support Group

Adobe Systems Incorporated
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400

PN LPS5002

ENCAPSULATED P OSTSCRIPT® FILES
Specification
Version 2.0

SC RRIPTTSOP

2 ©1989 Adobe Systems Incorporated. All rights reserved.

Copyright © 1989, 1988, 1987 by Adobe Systems Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

PostScript is a registered trademark of and the PostScript logo is a trademark of Adobe Systems Incor-
porated. Macintosh is a registered trademark of and QuickDraw is a trademark of Apple Computer,
Inc. Microsoft is a registered trademark of Microsoft Corporation.

The information herein is furnished for informational use only, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.
The software described in this book is furnished under license and may only be used or copied in ac-
cordance with the terms of such license.

©1989 Adobe Systems Incorporated. All rights reserved. 3

ENCAPSULATED P OSTSCRIPT® FILES
Specification
Version 2.0

June 5, 1989
PostScript® Developer Support Group
(415) 961-4111

This document specifies the format required for import of Encapsulated PostScript (EPS)
Files into an application. This specification suggests a standard for importing PostScript
language files in all environments, and contains specific information about both the
Macintosh® and MS-DOS environments. This format conforms to Adobe Systems’
Document Structuring Conventions, Version 2.0.

The rules that should be followed in creating importable PostScript language files are a
subset of the structuring conventions proposed by Adobe Systems Incorporated; refer to the
PostScript Language Reference Manual, Appendix C, and Document Structuring
Conventions, version 2.0, available from Adobe Systems. Files must also be "well-
behaved" in their use of certain PostScript language operators, manipulation of the graphics
state, and manipulation of the PostScript interpreter’s stacks and any global dictionaries.
These conventions are designed to allow cooperative sharing of files between many
systems using the PostScript language.

Fundamentally, an EPS file is a standard PostScript language file with a bitmap screen
preview included optionally in the format. The purpose of an EPS file is to be included into
other document makeup systems as an illustration, and the screen representation is intended
to aid in page composition. The bitmap is normally discarded when printing, and the
PostScript language segment of the file is used instead. Typically any manipulation of the
screen image that is performed by the user (such as scaling, translating, or rotation on
screen) should be tracked by the page layout application and an appropriate transformation
should precede the EPS file when it is sent to the printer.

1. EPS FILE FORMAT GUIDELINES

An EPS file should conform to at least Version 2.0 of the Adobe Document Structuring
Conventions. This does not explicitly require any of the structuring comments to be
employed, but if used, they should be in accordance with that specification. Additionally,
an EPS file is required to contain the %%BoundingBox comment, and is required to be
"well-behaved" (see pages 3-4). An EPS file may optionally contain a bitmap image
suitable for WYSIWYG screen display, as discussed herein.

The structure of an EPS file is marked by PostScript language comments, according to the
PostScript Document Structuring Conventions. These are covered briefly here for
reference. Structuring comment lines must begin with "%!" or "%%" and terminate with
a newline (either return or linefeed) character. EPS file conventions require that a comment
line be no longer than 256 bytes. A comment line may be continued by beginning the
continuation line with "%%+" . The EPS file should begin with a header of structuring
comments, as specified in the PostScript Structuring Conventions.

SC RRIPTTSOP

4 ©1989 Adobe Systems Incorporated. All rights reserved.

2. REQUIRED PARTICIPATION

In order to support Encapsulated PostScript files effectively, some cooperation is required
on the parts of those who produce EPS files and those who use EPS files (typically by
including them into other documents).

2.1 WHEN PRODUCING EPS FILES

There are certain required comments and several recommended ones that must be provided
in the EPS file. These are detailed in Section 3. The file must also be a single page (not a
multiple-page document) and must be a conforming PostScript language document.
Conformance requirements are mostly detailed here, but for the full specification, please
refer to the Document Structuring Conventions from Adobe Systems.

2.2 WHEN READING AND USING EPS FILES

When including an EPS file into your document, you should basically think of that piece of
code as having been generated by your program. After all, that is what all programs (and
users) who encounter your print file will think. In particular, you must find out enough
about the file to intelligently make it part of your document. The only tricky part of this
relates to font usage. This is also the most difficult part of this specification to understand.
Basically, you just have to figure out what the requirements of the illustration are and
incorporate them into your own requirements (pass them downstream). Then all issues of
font management are essentially the same as they were before you included the illustration
(and are beyond the scope of this document).

As long as you don’t remove relevant information from a file, and as long as you update
your global view of font usage and resource requirements to reflect those that you just
imported, the rest is fairly easy. The intent behind the EPS specification, in fact, is to make
the most of cooperation between producers and consumers of PostScript language files so
that neither has to do much, but the combined advantage is great.

3. REQUIRED COMMENTS

The first comment in the header (and the first line in the file) should be the version
comment:

%!PS-Adobe-2.0 EPSF-2.0
This indicates to an application that the PostScript language file conforms to this standard.
The version number following the word "Adobe-" indicates the level of adherence to the
standard PostScript Document Structuring Conventions. The version number following the
word "EPSF" indicates the level of EPSF-specific comments.

The following comment must be present in the header; if it is not present then an importing
application may issue an error message and abort the import:

%%BoundingBox: LLx LLy URx URy
The values are in the PostScript default user coordinate system, in points (1/72 of an inch,
or 0.3527 mm), with the origin at the lower left corner. The bounding box must be
expressed in default user coordinate space. This seems to be a big question among
implementors of this specification. Regardless of the coordinate system in which your

©1989 Adobe Systems Incorporated. All rights reserved. 5

application operates, here is a foolproof way of determining the correct bounding box:
print the page, get out a point ruler, and measure first to the lower left corner, then to the
upper right corner, using the lower-left corner of the physical paper as your origin. This
works because it measures the end result (the marks on the page), and none of the
computation matters.

4. OPTIONAL COMMENTS

The following header comments are strongly recommended in EPS files. They provide
extra information about the file that can be used to identify it on-screen or when printing.

%%Title: included_document_title
%%Creator: creator_name
%%CreationDate: date_and_time

The %%Creator , %%Title , and %%CreationDate comments may be used by an
application or spooler to provide human-readable information about a document, or to
display the file name and creator on the screen if no bitmapped screen representation was
included in the EPS file.

%%EndComments

This comment indicates an explicit end to the header comments, as specified in the
structuring conventions.

4.1 HOW TO USE THESE COMMENTS (PHILOSOPHY)

All of the comments in EPS files provide information of some sort or another. Exactly how
you use this information is up to you, but you are encouraged not to reduce the amount of
information in a file (when you import it or include it, for example) by removing or altering
comments. In general, the comments tell you what fonts and files are used, and where. Not
everybody cares about these things, but if you do care, then the information is available.

The whole issue of Encapsulated PostScript files is that they are “final form” print files that
may be far from the printer that they will actually be imaged on. If they have specific needs,
particularly in terms of font usage, these needs must be carefully preserved and passed on
downstream, and the program that actually prints the composite document must take pains
to make sure the fonts are available at print time.

Any piece of software that generates PostScript language code is potentially both a
consumer and a producer of Encapsulated PostScript files. It is probably best not to think
that you are at either end of the chain. In particular, if you import an Encapsulated
PostScript file, integrate it into your document somehow, and then go to print your
document, you are responsible for reading and understanding any of the font needs of the
EPS file you imported. These should then be reflected in your own font usage comments.
If the illustration on page 3 uses the Bodoni font but the rest of your document is set in
Times, suddenly your document now also uses the Bodoni font (you included the
illustration, after all). This should be reflected in the outermost %%DocumentFonts
comments and any other appropriate ones.

6 ©1989 Adobe Systems Incorporated. All rights reserved.

4.2 FONT MANAGEMENT COMMENTS

If fonts are used, the following two comments (which are defined in version 2.0 of the
PostScript Document Structuring Conventions) should be included in the header of the EPS
file. The %%IncludeFont and %%Begin/%%EndFont comments should be thought of
as inverses of one another. That is, if you encounter an %%IncludeFont comment and
actually include a font file at that point, you should enclose the font in %%BeginFont and
%%EndFont comments. Conversely, if you see fit to remove a font from a print file (one
that presumably had been delimited with comments), you should always replace it with an
%%IncludeFont comment rather than completely stripping it. This guarantees the
reversibility of your actions.

%%DocumentFonts: font1 font2
%%+ font3 font4
The %%DocumentFonts comment provides a full list of all fonts used in the file. Font
names should refer to non-reencoded printer font names and should be the valid PostScript
language names (without the leading slashes). An application that imports an EPS file
should be responsible for satisfying these font needs, or at least updating its own
%%DocumentFonts list to reflect any new fonts.

%%DocumentNeededFonts: font1 font2
The %%DocumentNeededFonts comment lists all fonts that are to be included at specific
points within the EPS file as a result of the %%IncludeFont comment. These fonts must
also be listed in the %%DocumentFonts comment, but an application may or may not pre-
load these at the beginning of the job. The responsibility should be taken, however, by any
program that thinks it is actually printing the file, to make sure the fonts requested will be
available when the file is printed. This may mean that the individual %%IncludeFont
comments may be satisfied and the fonts placed in-line, or they may simply be ignored, if
the fonts are determined to be already available on the printer. As a third possibility, there
may be enough memory to download all the fonts in front of the job and avoid processing
the individual requests. This %%DocumentNeededFonts comment provides
foreshadowing of the %%IncludeFont comments to follow, to give printing managers
enough information to make these choices intelligently.

%%IncludeFont: fontname
The %%IncludeFont comment signals to an application that the specified font is to be
loaded at that precise location in the file. It is analogous to the familiar #include syntax in
the C language. An application should load the specified font regardless of whether the
same font has been loaded already by other preceding %%IncludeFont comments, since
the font may have been embedded within a PostScript language save and restore construct.
However, if the font is determined to be available prior to the entire included EPS file (for
instance, it may be in ROM in the printer or might have been downloaded prior to the entire
print job) the %%IncludeFont comment may be ignored by printing manager software.

When an application satisfies an %%IncludeFont request, it should always bracket the
font itself with the %%BeginFont and %%EndFont comments.

A font that is wholly contained, defined, and used within the EPS file (a downloaded font)
should be noted in the %%DocumentFonts comment, but not the
%%DocumentNeededFonts comment. The font should follow conventions listed in the
Document Structuring Conventions in order to retain full compatibility with print spoolers.

©1989 Adobe Systems Incorporated. All rights reserved. 7

%%BeginFont: fontname
%%EndFont
The %%BeginFont and %%EndFont comments bracket an included downloadable font.
The fontname is the simple PostScript language name for the font. These fonts may be
stripped from the included file if they are determined to be available (but should be replaced
by an %%IncludeFont comment).

4.3 FILE MANAGEMENT COMMENTS

%%IncludeFile: filename
This comment, which can occur only in the body of an EPS file, allows a separate file to be
inserted at any point within the EPS file. The file might not be searched for or inserted until
printing actually occurs, so user care is required to ensure its availability. If it is used, the
%%DocumentFiles comment should be used as well. See the Structuring Conventions for
more information.

%%BeginFile: filename
%%EndFile
The %%BeginFile and %%EndFile comments bracket an included file. They are the
“inverse” of the %%IncludeFile comment. The filename is evaluated in the context of the
local file system. These files may not be stripped from the included file at print time,
because they undoubtedly contain executable code. However, they may be temporarily
removed, or “factored out” to save space during storage. They should always be replaced
by the %%IncludeFile comment.

4.4 COLOR COMMENTS

%%DocumentProcessColors: keyword keyword ...
This comment marks the use of process colors within the document. Process colors are
defined to be cyan, magenta, yellow, and black. These four colors are indicated in this
comment by the keywords Cyan, Magenta, Yellow, and Black. This comment is used
primarily when producing color separations. The (atend) conventions is allowed.

%%DocumentCustomColors: name name ...
This indicates the use of custom colors within a document. These colors are arbitrarily
named by an application, and their CMYK or RGB approximations are provided through
the %%CMYKCustomColor or %%RGBCustomColor comments within the body of
the document. The names are specified to be any arbitrary PostScript language string except
(Process Cyan), (Process Magenta), (Process Yellow), and (Process Black), which need to
be reserved for custom color implementation by applications. The (atend) specification is
permitted.

%%BeginProcessColor: keyword
%%EndProcessColor
The keyword here is either Cyan, Magenta, Yellow, or Black. During color separation,
the code between these comments should only be downloaded during the appropriate pass
for that process color. Intelligent printing managers can save considerable time by omitting
code within these bracketing comments on the other three separations. Extreme care must
be taken by the document composition software to correctly control overprinting and
“knockouts” if these comments are employed, since the code may or may not actually be
executed.

8 ©1989 Adobe Systems Incorporated. All rights reserved.

%%BeginCustomColor: keyword
%%EndCustomColor
The keyword here is any PostScript language string except (Process Cyan), (Process
Magenta), (Process Yellow), and (Process Black). During color separation, the code
between these comments should only be downloaded during the appropriate pass for that
custom color. Intelligent printing managers can save considerable time by omitting code
within these bracketing comments on the other three separations. Extreme care must be
taken by the document composition software to correctly control overprinting and
knockouts if these comments are employed, since the code may or may not be executed.

%%CMYKCustomColor: cyan magenta yellow black keyword
This provides an approximation to the custom color specified by keyword. The four
components of cyan, magenta, yellow, and black must be specified as numbers from 0 to
1 representing the percentage of that process color. These numbers are exactly analogous
to the arguments to the setcmykcolor PostScript language operator. The keyword follows
the same custom color naming conventions for the %%DocumentCustomColors
comment.

%%RGBCustomColor: red green blue keyword
This provides an approximation to the custom color specified by keyword. The three
components of red, green, and blue must be specified as numbers from 0 to 1 representing
the percentage of that process color. These numbers are exactly analogous to the arguments
to the setrgbcolor PostScript language operator. The keyword follows the same custom
color naming conventions for the %%DocumentCustomColors comment.

5. “WELL-BEHAVED” RULES

An application should encapsulate the imported EPS code in a save / restore construct,
which will allow all printer VM (memory) to be recovered and all graphics state restored.
Since the code in the imported EPS file will be embedded within the PostScript language
that an application will generate for the current page, it is necessary that it obey the
following rules, in order to keep from disrupting the enclosing document:

5.1 OPERATORS TO AVOID

The following PostScript operators should not be included in a PostScript language file for
import; the result of executing any of these is not guaranteed (see the PostScript Document
Structuring Conventions for more on this):

grestoreall initgraphics initmatrix initclip
erasepage copypage banddevice framedevice
nulldevice renderbands setpageparams note
exitserver setscreen* settransfer*

5.2 THE ‘SETSCREEN’ AND ‘SETTRANSFER’ OPERATORS

The setscreen operator is troublesome when one file is included within another. setscreen
is a system-level command that is appropriate for changing the halftone machinery to
compensate for marking engine tendencies, but when used for “special effects” can cause
problems. For EPS files, the setscreen and settransfer operators are permitted only under
restricted terms.

©1989 Adobe Systems Incorporated. All rights reserved. 9

THE ‘SETTRANSFER’ AND ‘SETCOLORTRANSFER’
OPERATORS
The settransfer operator changes the gray-level and color response curves over the interval
from 0 to 1. There are two basic uses of it: to invert an image (typically flipping blacks and
whites, less often colors), or to adjust the response curve for a particular output device.

The best (and required) approach for using settransfer is to combine your function with
the existing one. Here is the recommended way to do this:

{ dummy exec 1 exch sub } dup 0 currentransfer put settransfer

In this example, the desired transfer function is the code 1 exch sub. The dummy exec
essentially executes the existing transfer function before executing the new code. The name
dummy is replaced by the actual procedure body from the existing transfer function
through the put instruction. The result is conceptually equivalent to this:

{ { original proc } exec 1 exch sub } settransfer

This approach is better than “concatenating” procedures because it does not require the
existing transfer function to be duplicated (consuming memory).

5.3 THE ‘SHOWPAGE’ OPERATOR

The showpage operator is permitted in EPS files primarily because it is present in so many
PostScript language files. It is reasonable for an EPS file to use the showpage operator if
needed (although it is not necessary if the file is truly imported into another document). It
is the including application’s responsibility to disable showpage if needed. The
recommended method to accomplish this is as follows:

TEMPORARILY DISABLING ‘SHOWPAGE’

/BEGINEPSFILE { %def
/EPSFsave save def
0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit [] 0 setdash
newpath
/showpage { } def

} bind def
/ENDEPSFILE { %def

EPSFsave restore
} bind def

BEGINEPSFILE
 100 300 translate
 .5 .5 scale
 % include the EPS file here, which may execute showpage with no effect

ENDEPSFILE % restore state and continue

This method will only disable the showpage operator during the execution of the EPS file,
and will restore the previous semantics of showpage afterward. It is the responsibility of
the EPS file itself to avoid the operators listed in the previous section that might cause
unexpected behavior when imported. They need not be redefined along with showpage,
although it is permissible to do so.

10 ©1989 Adobe Systems Incorporated. All rights reserved.

5.4 STACKS AND DICTIONARIES

All of the PostScript interpreter’s stacks (including the dictionary stack) should be left in
the state that they were in before the imported PostScript language code was executed. This
is normally the case for well-written PostScript language programs, and this is still the best
way to keep unanticipated side-effects to a minimum. Please avoid unnecessary clear and
"countdictstack 2 sub { end } repeat" cleanup techniques. If you have accidentally left
something on one of the stacks, it is best to understand your program well enough to get rid
of it, rather than issuing a wholesale cleanup instruction at the end, which will not only clear
your operands from the stack, but perhaps will clear other objects as well.

It is recommended that the imported EPS file create its own dictionary instead of writing
into whatever the current dictionary might be. Make sure that this dictionary is removed
from the dictionary stack when through (using the PostScript language end operator) to
avoid the possibility of an invalidrestore error. Also, no global string bodies should be
changed (with either put or putinterval).

If a special dictionary (like statusdict) is required in order for the imported PostScript
language code to execute properly, then it should be included as part of the EPS file.
However, it should be enclosed in very specific %%BeginFeature and %%EndFeature
comments as specified in the Document Structuring Conventions. No dictionary should be
assumed to be present in the printer, and fonts should be reencoded as needed by the EPS
file itself.

5.5 THE GRAPHICS STATE

When a PostScript language program is imported into the middle of another executing
program, the state of the interpreter may not be exactly in its default state. The EPS file
should assume that the graphics state is in its default state, even though it may not be. An
importing application may choose to scale the coordinate system or to change the transfer
function to change the behavior of the EPS file somewhat. If the EPS file makes
assumptions about the graphics state (like the clipping path) or explicitly sets something it
shouldn’t (the transformation matrix), the results may not be what were expected.

The importing application is responsible for returning the color to be black, the current dash
pattern, line endings, and other miscellaneous aspects of the graphics state to their default
condition (as specified in the PostScript Language Reference Manual). This can be done in
either of two ways: the initial graphics state can be restored from variables, or the state can
be explicitly set:

/BEGINEPSFILE { %def
/EPSFsave save def
0 setgray 0 setlinecap 1 setlinewidth 0 setlinejoin 10 setmiterlimit [] 0 setdash
newpath
/showpage { } def

} bind def

/ENDEPSFILE { %def
EPSFsave restore

} bind def

©1989 Adobe Systems Incorporated. All rights reserved. 11

6. FILE TYPES AND FILE NAMING

APPLE MACINTOSH FILES
The Macintosh file type for application-created PostScript language files is EPSF. Files of
type TEXT will also be allowed, so that users can create EPS files with standard editors,
although the Structuring Conventions must still be strictly followed. A file of type EPSF
should contain a PICT resource in the resource fork of the file containing a screen
representation of the PostScript language code. The file name itself may follow any naming
convention as long as the file type is EPSF. If the file type is TEXT , the extensions .epsf
and .epsi, respectively, should be used for the Macintosh-specific format and EPSI
interchange format.

MS-DOS AND PC-DOS FILES
The recommended file extension is .EPS. For EPSI files, the extension should be .EPI.
Other file extensions also can be used, but it will be assumed that these files are text-only
files with no screen metafile included in them.

OTHER FILE SYSTEMS
In general, the extension .epsf is the preferred way to name an EPS file, and .epsi for the
interchange format. In systems where lower-case letters are not recognized or are not
significant, all upper-case can be used.

7. SCREEN REPRESENTATIONS

The EPS file will usually have a graphic screen representation so that it can be manipulated
and displayed on a workstation’s screen prior to printing. The user may position, scale,
crop or rotate this screen representation, and the composing software should keep track of
these manipulations and reflect them in the PostScript language code that is ultimately sent
to the printing device.

The exact format of this screen representation is machine-specific. That is, each computing
environment may have its own preferred bitmap format, and that is typically the appropriate
screen representation for that environment. An interchange representation is specified that
should be implemented by everyone, and any environment-specific formats can be
supported in addition, as deemed appropriate.

7.1 APPLE MACINTOSH: PICT RESOURCE

A QuickDraw™ representation of the PostScript language file can be created and stored as
a PICT in the resource fork of the file. It should be given resource number 256. If the PICT
exists, the importing application may use it for screen display. If the picframe is
transformed to PostScript language coordinates, it should agree with the
%%BoundingBox comment.

Given the size limitations on PICT images, this may not always agree for large illustrations.
If there is a discrepancy, the %%BoundingBox always should be taken as the "truth",
since it accurately describes the area that will be imaged by the PostScript language code
itself. In this situation, applications producing the preview PICT must all take the same
action so that the importing application knows what to do.

12 ©1989 Adobe Systems Incorporated. All rights reserved.

Since it is more important to have a reasonable facsimile of the image than it is to have any
particular part of it be high quality, the PICT image should be scaled to fit within the
constraints of the PICT format. That is, the picture will all be there (it will not be cropped),
but it will actually be smaller than the real image. The importing application should then
scale the PICT to a size which matches the bounding box as expressed in the
%%BoundingBox comment.

7.2 PC/DOS: WINDOWS METAFILE OR TIFF FILE

Either a Microsoft® Windows Metafile or a TIFF (Tag Image File Format) section can be
included as the screen representation of an EPS file.

The EPS file itself has a binary header added to the beginning that provides a sort of “table
of contents” to the file. This is necessary since there is not a second “fork” within the file
system as there is in the Macintosh file system.

NOTE:
It is always permissible to have a pure ASCII PostScript language file as an EPS
file in the DOS environment, as long as it does not contain the preview section.
The importing application should check the first three bytes of the file. If they
match the header as shown below, the binary header should be expected. If the
first two match %!, it should be taken to be an ASCII PostScript language file.

DOS EPS Binary File Header

Bytes Description
0-3 Must be hex C5D0D3C6 (byte 0=C5)
4-7 Byte position in file for start of

PostScript language code section.
8-11 Byte length of PostScript language section
12-15 Byte position in file for start of Metafile

screen representation.
16-19 Byte length of Metafile section (PSize)
20-23 Byte position of TIFF representation
24-27 Byte length of TIFF section
28-29 Checksum of header (XOR of bytes 0-27)

NOTE: if Checksum is FFFF then it is to be ignored.

Note:
It is assumed that either the Metafile or the TIFF position and length fields are
zero; that is, only one or the other of these two formats is included in the EPS file.

The Metafile should follow the guidelines set forth by the Windows specification. In
particular, it should not set the viewport or mapping mode, and it should set the window
origin and extent. The application should scale the picture to fit within the
%%BoundingBox comment specified in the PostScript language file.

8. DEVICE-INDEPENDENT INTERCHANGE FORMAT

This last screen representation is intended as an interchange format between widely varied
systems. In particular, the bitmap preview section of the file is very simple and is
represented as ASCII hexadecimal in order to be more easily transportable. This format is
dubbed Encapsulated PostScript Interchange format, or “EPSI.”

©1989 Adobe Systems Incorporated. All rights reserved. 13

This format wins no prizes for compactness, but it should be truly portable and requires no
special code for decompressing or otherwise understanding the bitmap portion, other than
the ability to understand hexadecimal notation.

It is expected that applications that support EPSF will gradually head toward supporting
only two formats: the first is the “native” format for the environment in which the
application runs (where the preview section is Macintosh PICT or TIFF or Sun raster files
or whatever); the second format should simply be this interchange format. Then files can
be interchanged between widely varying systems without each having to know the
preferred bitmap representation of the others.

%%BeginPreview: width height depth lines
%%EndPreview
These comments bracket the preview section of an EPS file in Interchange format (EPSI).
The width and height fields provide the number of image samples (pixels) for the preview.
The depth field provides how many bits of data are used to establish one sample pixel of
the preview (1, 2, 4, or 8). An image which is 100 pixels wide will always have 100 in the
width field, although the number of bytes of hexadecimal needed to build that line will vary
if depth varies. The lines field tells how many lines of hexadecimal are contained in the
preview, so that they may be easily skipped by an application that doesn’t care. All the
arguments are integers.

8.1 SOME RULES AND GUIDELINES FOR “EPSI” FILES

The following guidelines attempt to clarify a few basic assumptions about the EPSI format.
It is intended to be extremely simple, since its purpose is interchange. No system should
have to do much work to decipher one of these files, and the preview section is mostly just
a convenience to begin with. This format is accordingly deliberately kept simple and
option-free.

• The preview section must be after the header comment section but before the document
prologue definitions. That is, it should immediately follow the %%EndComments line
in the EPS file.

• In the preview section, 0 is white and 1 is black, in deference to the majority. Arbitrary
transfer functions and “flipping” black and white are not supported.

• The Preview image can be of any resolution. The size of the image is determined solely
by its bounding box, and the preview data should be scaled to fit that rectangle. Thus, the
width and height parameters from the image are not its measured dimensions, but
simply describe the amount of data supplied for the preview. The dimensions are
described only by the bounding rectangle.

• The hexadecimal lines must never exceed 255 bytes in length. In cases where the preview
is very wide, the lines must be broken. The line breaks can be made at any even number
of hex digits, since the dimensions of the finished preview are established by the width ,
height, and depth values.

• All non-hexadecimal characters should be ignored when collecting the data for the
preview, including tabs, spaces, newlines, percent characters, and other stray ASCII
characters. This is analogous to the PostScript language readhexstring operator.

14 ©1989 Adobe Systems Incorporated. All rights reserved.

• Each line of hexadecimal will begin with a percent sign (‘% ’). This makes the entire
preview section into a PostScript language comment, so that the file can be printed
without modification.

• If the %%IncludeFile or %%BeginFile / %%EndFile comments are ever used to
extract the preview section from the EPS file, then the lines argument to the
%%BeginPreview comment must be adjusted accordingly. The lines value specifies
only the number of lines to skip if you’re not the least bit interested.

• If the width of the image is not a multiple of 8 bits, the hexadecimal digits are padded
out to the next highest multiple of 8 bits.

©1989 Adobe Systems Incorporated. All rights reserved. 15

EXAMPLE “EPSI” FILE

Here is a sample file showing the EPS Interchange (EPSI) format. The preview section is
expressed in user space and the correct comments are included. Remember that there are 8
bits to a byte, and that it requires 2 hexadecimal digits to represent one binary byte.
Therefore the 80-pixel width of the image requires 20 bytes of hexadecimal data, which is
(80 / 8) * 2. The PostScript language segment itself simply draws a box, as can be seen in
the last few lines.

%! PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 80 24
%%Pages: 0
%%Creator: Glenn Reid
%%CreationDate: September 19, 1988
%%EndComments
%%BeginPreview: 80 24 1 24
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FF0000000000000000FF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
% FFFFFFFFFFFFFFFFFFFF
%%EndPreview
%%EndProlog
%%Page: "one" 1
 4 4 moveto 72 0 rlineto 0 16 rlineto -72 0 rlineto closepath
 8 setlinewidth stroke
%%Trailer

