
VERITAS File System 4.1 Administrator’s
Guide

HP-UX 11i v2

Third Edition
Manufacturing Part Number: 5991-1140

May 2005

United States

© Copyright 2004-2005 Hewlett-Packard Development Company L.P. All rights reserved.

Legal Notices
The information in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

Warranty

A copy of the specific warranty terms applicable to your Hewlett-Packard product and
replacement parts can be obtained from your local Sales and Service Office.

U.S. Government License

Proprietary computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Copyright Notice

Copyright 2004-2005 Hewlett-Packard Development Company L.P. All rights reserved.
Reproduction, adaptation, or translation of this document without prior written permission is
prohibited, except as allowed under the copyright laws.

Trademark Notices

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through The Open Group.

VERITAS is a registered trademark of VERITAS Software Corporation.

VERITAS File System is a trademark of VERITAS Software Corporation.
2

Publication History
The manual publication date and part number indicate its current edition. The publication
date will change when a new edition is released. The manual part number will change when
extensive changes are made.

To ensure that you receive the new editions, you should subscribe to the appropriate product
support service. See your HP sales representative for details.

• First Edition: December 2002, 5187-1879, HP-UX 11i (B.11.11)
CD-ROM (Software Pack 11i December 2002) and Web (http://docs.hp.com)

• Second Edition: August 2003, 5971-4772, HP-UX 11i (B.11.23)
Web (http://docs.hp.com)

• Third Edition: December 2003, B3929-90015, HP-UX 11i Version 2 (B.11.23)

Web (http://docs.hp.com)

• Fourth Edition: May 2005,5991-1140, HP-UX 11i Version 2 (B.11.23)
3

4

Contents
1. The VERITAS File System
Introduction . 15
VxFS Features . 16
Disk Layouts. 17
File System Performance Enhancements . 17
VERITAS Enterprise Administrator Graphical User Interface 19
Extent Based Allocation . 20

Typed Extents . 21
Extent Attributes . 22
Fast File System Recovery. 22

VxFS Intent Log . 22
Intent Log Resizing. 23

Online System Administration . 24
Defragmentation . 24
File System Resizing. 24

Application Interface . 25
Application Transparency . 25
Expanded Application Facilities . 25

Extended mount Options . 26
Enhanced Data Integrity Modes . 26
Enhanced Performance Mode. 27
Modes of Temporary File System . 27
Improved Synchronous Writes . 27
Support for Large Files. 28

Enhanced I/O Performance . 29
Enhanced I/O Clustering . 29
VxVM Integration . 29
Application-Specific Parameters . 29

Access Control Lists . 30
Storage Checkpoints . 31
Online Backup . 31
Quotas. 32
Cluster File Systems . 33
Cross-Platform Data Sharing . 34
File Change Log . 35
Multi-Volume Support . 36
5

Contents
Quality of Storage Service . 37

2. VxFS Performance: Creating, Mounting, and Tuning File Systems
Introduction . 40
Choosing mkfs Command Options . 42

Block Size . 42
Intent Log Size . 42

Choosing mount Command Options . 43
log. 43
delaylog . 43
tmplog . 44
logiosize . 45
nodatainlog . 46
blkclear . 46
mincache . 46
convosync. 48
ioerror . 50
largefiles | nolargefiles. 50
Combining mount Command Options . 53

Kernel Tunables. 54
Internal Inode Table Size . 54
VxFS Buffer Cache High Water Mark . 55
Number of Links to a File. 56
VxFS Inode Free Time Lag . 56
VxVM Maximum I/O Size. 58

Monitoring Free Space. 58
Monitoring Fragmentation. 58

I/O Tuning . 60
Tuning VxFS I/O Parameters. 60
Tunable VxFS I/O Parameters . 62

3. Extent Attributes
Introduction . 71
Attribute Specifics . 72

Reservation: Preallocating Space to a File . 73
Fixed Extent Size . 73
6

Contents
Other Controls . 74
Commands Related to Extent Attributes . 75

Failure to Preserve Extent Attributes . 76

4. Application Interface
Introduction . 77
Cache Advisories . 78

Direct I/O. 78
Unbuffered I/O . 79
Discovered Direct I/O . 80
Data Synchronous I/O. 80
Other Advisories . 80

Extent Information . 82
Space Reservation. 82
Fixed Extent Sizes . 85

Freeze and Thaw . 86
Get I/O Parameters ioctl . 86
Named Data Streams. 87
Named Data Streams Programmatic Interface . 88

Listing Named Data Streams . 88
Namespace for Named Data Streams . 89
Behavior Changes in Other System Calls . 89

5. Storage Checkpoints
What is Storage Checkpoint ? . 93
How a Storage Checkpoint Works. 95
Types of Storage Checkpoints . 98

Data Storage Checkpoints . 98
Nodata Storage Checkpoints . 98
Removable Storage Checkpoints . 98
Non-mountable Storage Checkpoints . 99

Storage Checkpoint Administration . 100
Creating a Storage Checkpoint . 101
Removing a Storage Checkpoint . 102
Accessing a Storage Checkpoint. 102
Converting a Data Storage Checkpoint to a Nodata Storage Checkpoint. 104
7

Contents
Space Management Considerations . 112
File System Restore From Storage Checkpoints . 113

Example of Restoring a File From a Storage Checkpoint. 113
Example of Restoring a File System From a Storage Checkpoint 114

Storage Checkpoint Quotas . 118

6. Online Backup Using File System Snapshots
. 119
Snapshot File Systems. 120
Using a Snapshot File System for Backup . 121
Creating a Snapshot File System . 122
Making a Backup . 123
Performance of Snapshot File Systems. 124
Differences Between Snapshots and Storage Checkpoints . 125
Snapshot File System Internals . 126

Snapshot File System Disk Structure . 126
How a Snapshot File System Works . 127

7. Quota
. 129
Quota Limits. 130
Quota Files on VxFS . 130
Quota Commands. 131
Using Quotas . 131

quotaon . 131
mount. 131
edquota . 132
quota . 132
quot . 132
quotaoff . 132

8. File Change Log
The File Change Log File. 135
File Change Log Administrative Interface . 136
File Change Log Programmatic Interface . 138
8

Contents
Reverse Path Name Lookup . 141

9. Multi-Volume File Systems
Features Implemented Using MVS. 145
Volume Sets . 146
Creating MVS File Systems . 148
Allocation Policies . 150
Volume Encapsulation . 152
Converting from QuickLog to MVS. 154

10. Quality of Storage Service
How File Relocation Works . 157
Configuring Relocation Policies. 158

Running fssweep . 158
Running fsmove . 159
Scheduling Example . 160

Customizing QoSS . 161
Mapping Relocation Policies to Allocation Policies . 161
Relocation List Format . 162

11. Quick I/O for Databases
Quick I/O Functionality and Performance . 165

Supporting Kernel Asynchronous I/O . 165
Supporting Direct I/O . 165
Avoiding Kernel Write Locks . 166
Avoiding Double Buffering . 166

Using VxFS Files as Raw Character Devices . 167
Quick I/O Naming Convention . 168
Use Restrictions . 169
Creating a Quick I/O File Using qiomkfile . 170
Accessing Regular VxFS Files Through Symbolic Links . 172

Using Absolute or Relative Path Names . 172
Preallocating Files Using the setext Command . 172

Using Quick I/O with Oracle Databases . 174
Using Quick I/O with Sybase Databases . 175
9

Contents
Enabling and Disabling Quick I/O . 176
Cached Quick I/O For Databases . 177

Enabling Cached Quick I/O . 177
Tuning Cached Quick I/O . 179

Quick I/O Statistics . 180
Quick I/O Summary . 181

A. VERITAS File System Quick Reference
Veritas File System Quick Reference . 184

Command Summary . 184
Online Manual Pages . 187
Creating a File System . 191
Converting a UFS File System to VxFS . 193
Mounting a File System . 193
Unmounting a File System. 196
Displaying Information on Mounted File Systems . 197
Identifying File System Types . 198
Resizing a File System . 199
Backing Up and Restoring a File System . 202
Using Quotas. 204

B. Kernel Messages
Kernel Messages . 208

File System Response to Problems . 208
Kernel Messages . 209

C. Disk Layout
Disk Layout . 258

Disk Space Allocation . 259
The VxFS Version 4 Disk Layout. 259
The VxFS Version 5 Disk Layout. 263
The VxFS Version 6 Disk Layout. 263

Glossary . 265
10

Preface
The VERITAS File System Administrator’s Guide provides information on the most
important aspects of VERITAS File System (VxFS) administration. This guide is for system
administrators who configure and maintain UNIX systems with the VERITAS File System,
and assumes that you have a:

• Basic understanding of system administration

• Working knowledge of the UNIX operating system

• General understanding of file systems

How This Guide Is Organized
• Chapter 1, “The VERITAS File System,” on page 15

• Chapter 2, “VxFS Performance: Creating, Mounting, and Tuning File Systems,” on
page 39

• Chapter 3, “Extent Attributes,” on page 71

• Chapter 4, “Application Interface,” on page 77

• Chapter 5, “Storage Checkpoints,” on page 91

• Chapter 6, “Online Backup Using File System Snapshots,” on page 119

• Chapter 7, “Quota,” on page 129

• Chapter 7, “Quota,” on page 129

• Chapter 8, “File Change Log,” on page 133

• Chapter 9, “Multi-Volume File Systems,” on page 143

• Chapter 10, “Quality of Storage Service,” on page 155

• Chapter 11, “Quick I/O for Databases,” on page 163

• Appendix A, “VERITAS File System Quick Reference,” on page 183

• Appendix B, “Kernel Messages,” on page 207

• Appendix C, “Disk Layout,” on page 257

• “Glossary”
11

Typographical Conventions
Table 1

Typeface Usage Examples

monospace Computer output, files,
directories, software
elements such as command
options, function names,
and parameters

Read tunables from the
/etc/vx/tunefstab file.

See the ls (1) manual page for
more information.

monospace
(bold)

User input # mount -F vxfs /h/filesys

italic New terms, book titles,
emphasis, variables
replaced with a name or
value

See the User’s Guide for details.

The variable ncsize determines
the value of...

Symbol Usage Examples

% C shell prompt

$ Bourne/Korn shell prompt

Superuser prompt (all
shells)

\ Continued input on the
following line; you do not
type this character

mount -F vxfs \
/h/filesys

 [] In a command synopsis,
brackets indicates an
optional argument

ls [-a]

 | In a command synopsis, a
vertical bar separates
mutually exclusive
arguments

mount [suid | nosuid]
12

 blue text Indicates an active
hypertext link

In PDF and HTML files, click on
links to move to the specified
location

Table 1 (Continued)

Typeface Usage Examples
13

Getting Help
For license information (U.S. and Canadian Customers):

• Phone: 650-960-5111

• Email: hplicense@mayfield.hp.com

For license information (Europe)

• Phone :+33.(0)4.76.14.15.29

• Email: codeword_europe@hp-france-gen1.om.hp.com

For the latest patch information :

• http://itrc.hp.com

HP Encourages Your Comments
HP encourages your comments concerning this document. We are truly committed to
providing documentation that meets your needs.

Please send comments to: netinfo_feedback@cup.hp.com

Please include document title, manufacturing part number, and any comment, error found, or
suggestion for improvement you have concerning this document. Also, please include what we
did right so we can incorporate it into other documents.
14

http://itrc.hp.com

1 The VERITAS File System
Introduction
VxFS is an extent based, intent logging file system. VxFS is designed for use in UNIX
environments that require high performance and availability and deal with large volumes of
data.

This chapter provides an overview of major VxFS features that are described in detail in later
chapters. The following topics are introduced in this chapter:

• VxFS Features

• Disk Layouts

• File System Performance Enhancements

• VERITAS Enterprise Administrator Graphical User Interface

• Extent Based Allocation

• Extent Attributes

• Fast File System Recovery

• Online System Administration

• Application Interface

• Extended mount Options

• Enhanced I/O Performance

• Access Control Lists

• Storage Checkpoints

• Online Backup

• Quotas

• Cross-Platform Data Sharing

• File Change Log

• Multi-Volume Support

• Quality of Storage Service

• Cluster File Systems
Chapter 1 15

The VERITAS File System
VxFS Features
VxFS Features
Basic features include:

• Extent based allocations

• Extent attributes

• Fast file system recovery

• Access control lists (ACLs)

• Online administration

• Online backup

• Enhanced application interface

• Enhanced mount options

• Improved synchronous write performance

• Support for file systems up to 32 terabytes in size

• Support for files up to 2 terabytes in size

• Enhanced I/O performance

• Quotas

• Cluster file systems

• Improved database performance

• Storage Checkpoints

• Cross-platform data sharing

• File Change Log

• Multi-volume support

• Quality of Storage Service

NOTE VxFS supports all HFS file system features and facilities except for the linking,
removing, or renaming of “.” and “..” directory entries. Such operations may
disrupt file system sanity.
Chapter 116

The VERITAS File System
Disk Layouts
Disk Layouts
The disk layout is the way file system information is stored on disk. On VxFS, five disk layout
versions, numbered 1 through 5, were created to support various new features and specific
UNIX environments. Currently, only Version 4 or Version 5 disk layouts can be created, but
file systems with Version 2 and Version 3 disk layouts can be mounted.

See “Disk Layout” on page 257 for a description of the disk layouts.

File System Performance Enhancements
Traditional file systems employ block based allocation schemes. This provides adequate
random access and latency for small files, but limits throughput for larger files As a result,
they are less than optimal for commercial environments.

VxFS addresses this file system performance issue through an alternative allocation method
and increased user control over allocation, I/O, and caching policies. An overview of the VxFS
allocation policy is provided in the section “Extent Based Allocation” on page 20.

VxFS provides the following performance enhancements:

• Extent based allocation

• Enhanced mount options

• Data synchronous I/O

• Direct I/O and discovered direct I/O

• Caching advisories

• Enhanced directory features

• Explicit file alignment, extent size, and preallocation controls

• Tunable I/O parameters

• Tunable indirect data extent size

• Integration with VERITAS Volume Manager™ (VxVM®)

• Support for improved database performance
Chapter 1 17

The VERITAS File System
File System Performance Enhancements
The rest of this chapter, as well as “VxFS Performance: Creating, Mounting, and Tuning File
Systems” on page 39 and “Application Interface” on page 77 provide details on many of these
features.
Chapter 118

The VERITAS File System
VERITAS Enterprise Administrator Graphical User Interface
VERITAS Enterprise Administrator Graphical User
Interface

The VERITAS Enterprise AdministratorTM (VEA) is a Java-based GUI that consists of a
server and a client. The server runs on a UNIX system that is running the VERITAS Volume
Manager and VxFS. The client runs on any platform that supports the Java Runtime
Environment. You can use VEA to perform a subset of VxFS administrative functions on a
local or remote system. These functions include:

• Creating a New File System on a Volume

• Creating a New File System on a Volume Set

• Removing a File System from the File System Table

• Mounting/Unmounting a File System

• Defragmenting a File System

• Monitoring File System Capacity

• Creating a Snapshot Copy of a File System

• Checking a File System

• Viewing File System Properties

• Using the QuickLog Feature

• Maintaining the File Change Log

• Maintaining Storage Checkpoints

• Using Multi-Volume File Systems

• Setting Intent Log Options

• Unmounting a File System from a Cluster Node

• Removing Resource Information for a Cluster File System

NOTE For instructions on how to use VEA, see the VERITAS Volume Manager User ‘s
Guide – VERITAS Enterprise Administrator.
Chapter 1 19

The VERITAS File System
Extent Based Allocation
Extent Based Allocation
Disk space is allocated in 1024-byte sectors to form logical blocks. VxFS supports logical block
sizes of 1024, 2048, 4096, and 8192 bytes. The default block size is IK.

An extent is defined as one or more adjacent blocks of data within the file system. An extent is
presented as an address-length pair, which identifies the starting block address and the
length of the extent (in file system or logical blocks). VxFS allocates storage in groups of
extents rather than a block at a time.

Extents allow disk I/O to take place in units of multiple blocks if storage is allocated in
consecutive blocks. For sequential I/O, multiple block operations are considerably faster than
block-at-a-time operations; almost all disk drives accept I/O operations of multiple blocks.

Extent allocation only slightly alters the interpretation of addressed blocks from the inode
structure compared to block based inodes. A VxFS inode references 10 direct extents, each of
which are pairs of starting block addresses and lengths in blocks. The VxFS inode also points
to two indirect address extents, which contain the addresses of other extents:

• The first indirect address extent is used for single indirection; each entry in the extent
indicates the starting block number of an indirect data extent.

• The second indirect address extent is used for double indirection; each entry in the extent
indicates the starting block number of a single indirect address extent.

Each indirect address extent is 8K long and contains 2048 entries. All indirect data extents
for a file must be the same size. This size is set when the first indirect data extent is allocated
and stored in the inode. By default, regular file inodes also use an 8K indirect data extent size
that can be altered with vxtunefs (see “Tuning VxFS I/O Parameters” on page 60). These
inodes allocate the indirect data extents in clusters to simulate larger extents.
Chapter 120

The VERITAS File System
Extent Based Allocation
Typed Extents

VxFS has an inode block map organization for indirect extents known as typed extents. Each
entry in the block map has a typed descriptor record containing a type, offset, starting block,
and number of blocks.

Indirect and data extents use this format to identify logical file offsets and physical disk
locations of any given extent. The extent descriptor fields are defined as follows:

• Indirect address blocks are fully typed and may have variable lengths up to a maximum
and optimum size of 8K. On a fragmented file system, indirect extents may be smaller
than 8K depending on space availability. VxFS always tries to obtain 8K indirect extents
but resorts to smaller indirects if necessary.

• Indirect Data extents are variable in size to allow files to allocate large, contiguous
extents and take full advantage of VxFS's optimized I/O.

• Holes in sparse files require no storage and are eliminated by typed records. A hole is
determined by adding the offset and length of a descriptor and comparing the result with
the offset of the next record.

• While there are no limits on the levels of indirection since data extents have variable
lengths lower levels are expected in this format.

• This format uses a type indicator that determines its record format and content and
accommodates new requirements and functionality for future types.

The current typed format is used on regular files only when indirection is needed. Typed
records are longer than the previous format and require less direct entries in the inode. Newly
created files start out using the old format which allows for ten direct extents in the inode.
The inode's block map is converted to the typed format when indirection is needed to offer the
advantages of both formats.

type Uniquely identifies an extent descriptor record and defines
the record's length and format.

offset Represents the logical file offset in blocks for a given
descriptor. Used to optimize lookups and eliminate hole
descriptor entries.

starting block The starting file system block of the extent.

number of blocks The number of contiguous blocks in the extent.
Chapter 1 21

The VERITAS File System
Extent Attributes
Extent Attributes
VxFS allocates disk space to files in groups of one or more extents. VxFS also allows
applications to control some aspects of the extent allocation. Extent attributes are the extent
allocation policies associated with a file.

The setext and getext commands allow the administrator to set or view extent attributes
associated with a file, as well as to preallocate space for a file. Refer to “Extent Attributes” on
page 71, “Application Interface” on page 77, and the setext (1M)and getext (1M) manual pages
for discussions on how to use extent attributes.

The vxtunefs command allows the administrator to set or view the default indirect data
extent size. Refer to “VxFS Performance: Creating, Mounting, and Tuning File Systems” on
page 39 and the vxtunefs (1M) manual page for discussions on how to use the indirect data
extent size feature.

Fast File System Recovery
Most file systems rely on full structural verification by the fsck utility as the only means to
recover from a system failure. For large disk configurations, this involves a time-consuming
process of checking the entire structure, verifying that the file system is intact, and correcting
any inconsistencies.

VxFS Intent Log

VxFS reduces system failure recovery times by tracking file system activity in the VxFS
intent log. This feature records pending changes to the file system structure in a circular
intent log. The intent log recovery feature is not readily apparent to users or a system
administrator except during a system failure. During system failure recovery, the VxFS fsck
utility performs an intent log replay, which scans the intent log and nullifies or completes file
system operations that were active when the system failed. The file system can then be
mounted without completing a full structural check of the entire file system. Replaying the
intent log may not completely recover the damaged file system structure if there was a disk
hardware failure.Hardware problems may require a complete system check using the fsck
utility provided with VxFS.
Chapter 122

The VERITAS File System
Fast File System Recovery
Intent Log Resizing

The VxFS intent log is allocated when the file system is first created. The size of the intent log
is based on the size of the file system-the larger the file system, the larger the intent log. The
maximum default intent log size of disk layout Versions 4, 5 and 6 is 16 megabytes.

With the Version 6 disk layout, you can dynamically increase or decrease the intent log size
using the log option of the fsadm command. Increasing the size of the intent log can
improve system performance because it reduces the number of times the log wraps around.
However, increasing the intent log size can lead to greater times required for a log replay if
there is a system failure.

NOTE Inappropriate sizing of the intent log can have a negative impact on system
performance.

See the mkfs_vxfs(1M) and the fsadm_vxfs(1M) manual pages for more information on
intent log size.
Chapter 1 23

The VERITAS File System
Online System Administration
Online System Administration
A VxFS file system can be defragmented and resized while it remains online and accessible to
users. The following sections provide an overview of these features.

Defragmentation

Free resources are initially aligned and allocated to files in the most efficient order possible to
provide optimal performance. On an active file system, the original order of free resources is
lost over time as files are created, removed, and resized. The file system is spread further and
further along the disk, leaving unused gaps or fragments between areas that are in use. This
process is also known as fragmentation and leads to degraded performance because the file
system has fewer options when assigning a file to an extent (a group of contiguous data
blocks).

VxFS provides the online administration utility fsadm to resolve the problem of
fragmentation. The fsadm utility defragments a mounted file system by:

• Removing unused space from directories.

• Making all small files contiguous.

• Consolidating free blocks for file system use.

This utility can run on demand and should be scheduled regularly as a cron job.

File System Resizing

A file system is assigned a specific size as soon as it is created; the file system may become too
small or too large as changes in file system usage take place over time.

Most large file systems with too much space try to reclaim the unused space by off-loading the
contents of the file system and rebuilding it to a preferable size. The VxFS utility fsadm can
expand or shrink a file system without unmounting the file system or interrupting user
productivity. However, to expand a file system, the underlying device on which it is mounted
must be expandable.

VxVM facilitates expansion using virtual disks that can be increased in size while in use. The
VxFS and VxVM packages complement each other to provide online expansion capability.Use
the vxresize command when resizing both the volume and the file system. The vxresize
command guarantees that the file system will shrink or grow along with the volume. Do not
use the vxassist and fsadm_vxfs commands for this purpose. Refer to the VERITAS Volume
Manager Administrator’s Guide for additional information about such capabilities.
Chapter 124

The VERITAS File System
Application Interface
Application Interface
VxFS conforms to the System V Interface Definition (SVID) requirements and supports user
access through the Network File System (NFS). Applications that require performance
features not available with other file systems can take advantage of VxFS enhancements that
are introduced in this section and covered in detail in “Application Interface” on page 77.

Application Transparency

In most cases, any application designed to run on native file systems will run transparently
on VxFS.

Expanded Application Facilities

VxFS provides some facilities frequently associated with commercial applications that make
it possible to:

• Preallocate space for a file

• Specify a fixed extent size for a file

• Bypass the system buffer cache for file I/O

• Specify the expected access pattern for a file

Because these facilities are provided using VxFS-specific ioctl system calls, most existing
UNIX system applications do not use them. The cp, cpio, and mv utilities use the facilities to
preserve extent attributes and allocate space more efficiently. The current attributes of a file
can be listed using the getext command or ls command. The facilities can also improve
performance for custom applications. For portability reasons, these applications must check
which file system type they are using before using these interfaces.
Chapter 1 25

The VERITAS File System
Extended mount Options
Extended mount Options
The VxFS file system supports extended mount options to specify:

• Enhanced data integrity modes

• Enhanced performance modes

• Temporary file system modes

• Improved synchronous writes

• Large file sizes

See “VxFS Performance: Creating, Mounting, and Tuning File Systems” on page 39 and the
mount_vxfs (1M) manual page for details on the VxFS mount options.

Enhanced Data Integrity Modes

NOTE See the mkfs_vxfs(1M) and the fsadm_vxfs(1M) manual pages for more
information on intent log size.

Most file systems are “buffered” in that resources are allocated to files and data is written
asynchronously to files. In general, the buffering schemes provide better performance without
compromising data integrity.

If a system failure occurs during space allocation for a file, uninitialized data or data from
another file may appear in the extended file after reboot. Data written shortly before the
system failure may also be lost.

Using blkclear Option for Data Integrity

In environments where performance is more important than absolute data integrity, the
preceding situation is not of great concern. However, VxFS supports environments that
emphasize data integrity by providing the mount -o blkclear option that ensures
uninitialized data does not appear in a file.

Using closesync Option for Data Integrity

VxFS provides the mount -o mincache=closesync option, which is useful in desktop
environments with users who are likely to shut off the power on machines without halting
them first. In closesync mode, only files that are written during the system crash or
shutdown can lose data. Any changes to a file are flushed to disk when the file is closed.
Chapter 126

The VERITAS File System
Extended mount Options
Using the log Option for Data Integrity

File systems are typically asynchronous in that structural changes to the file system are not
immediately written to disk, which provides better performance. However, recent changes
made to a system can be lost if a system failure occurs. Specifically, attribute changes to files
and recently created files may disappear.

The mount -o log intent logging option guarantees that all structural changes to the file
system are logged to disk before the system call returns to the application.With this option,
the rename(2) system call flushes the source file to disk to guarantee the persistent of the file
data before renaming it. The rename() call is also guaranteed to be persistent when the
system call returns. The changes to file system data and metadata caused by the fsync(2)
and fdatasync(2) system calls are guaranteed to be persistent once the calls return.

Enhanced Performance Mode

VxFS has several mount options that improve performance such as delaylog.

Using the delaylog Option for Enhanced Performance

The default VxFS logging mode, mount -o delaylog, increases performance by delaying the
logging of some structural changes, but does not provide the equivalent data integrity as the
previously described modes. That is because recent changes may be lost during a system
failure. This option provides at least the same level of data accuracy that traditional UNIX
file systems provide for system failures, along with fast file system recovery. delaylog is the
default mount option.

Modes of Temporary File System

On most UNIX systems, temporary file system directories (such as /tmp and /usr/tmp) often
hold files that do not need to be retained when the system reboots. The underlying file system
does not need to maintain a high degree of structural integrity for these temporary
directories.

Using the tmplog option For Temporary File Systems

VxFS provides a mount -o tmplog option which allows the user to achieve higher
performance on temporary file systems by delaying the logging of most operations.

Improved Synchronous Writes

VxFS provides superior performance for synchronous write applications. The default mount
datainlog option greatly improves the performance of small synchronous writes.
Chapter 1 27

The VERITAS File System
Extended mount Options
The mount convosync=dsync option improves the performance of applications that require
synchronous data writes but not synchronous inode time updates.

CAUTION The use of the convosync=dsyncoption violates POSIX semantics.

Support for Large Files

VxFS can support files up to two terabytes in size. See “largefiles | nolargefiles” on page 50 for
information on how to create, mount, and manage file systems containing large files.

CAUTION Some applications and utilities may not work on large files.
Chapter 128

The VERITAS File System
Enhanced I/O Performance
Enhanced I/O Performance
VxFS provides enhanced I/O performance by applying an aggressive I/O clustering policy,
integrating with VxVM, and allowing application specific parameters to be set on a per-file
system basis.

Enhanced I/O Clustering

I/O clustering is a technique of grouping multiple I/O operations together for improved
performance. VxFS I/O policies provide more aggressive clustering processes than other file
systems and offer higher I/O throughput when using large files; the resulting performance is
comparable to that provided by raw disk.

VxVM Integration

VxFS interfaces with VxVM to determine the I/O characteristics of the underlying volume and
perform I/O accordingly. VxFS also uses this information when using mkfs to perform proper
allocation unit alignments for efficient I/O operations from the kernel.

As part of VxFS/VxVM integration, VxVM exports a set of I/O parameters to achieve better
I/O performance. This interface can enhance performance for different volume configurations
such as RAID-5, striped, and mirrored volumes. Full stripe writes are important in a RAID-5
volume for strong I/O performance. VxFS uses these parameters to issue appropriate I/O
requests to VxVM.

Application-Specific Parameters

You can also set application specific parameters on a per-file system basis to improve I/O
performance.

• Discovered Direct I/O

All sizes above this value would be performed as direct I/O.

• Maximum Direct I/O Size

This value defines the maximum size of a single direct I/O.

For a discussion on VxVM integration and performance benefits, refer to “VxFS Performance:
Creating, Mounting, and Tuning File Systems” on page 39, “Application Interface” on page 77,
and the vxtunefs (1M) and tunefstab (1M) manual pages.
Chapter 1 29

The VERITAS File System
Access Control Lists
Access Control Lists
An Access Control List (ACL) stores a series of entries that identify specific users or groups
and their access privileges for a directory or file. A file may have its own ACL or may share an
ACL with other files. ACLs have the advantage of specifying detailed access permissions for
multiple users and groups. Refer to the getacl (1) and setacl (1) manual pages for information
on viewing and setting ACLs. For VxFS file systems created with the Version 5 disk layout, up
to 1024 ACL entries can be specified. ACLs are also supported on cluster file systems.
Chapter 130

The VERITAS File System
Storage Checkpoints
Storage Checkpoints
To increase availability, recoverability, and performance, the VERITAS File System offers
on-disk and online backup and restore capabilities that facilitate frequent and efficient
backup strategies. Backup and restore applications can leverage the VERITAS Storage
Checkpoint, a disk- and I/O-efficient copying technology for creating periodic frozen images of
a file system. Storage Checkpoints present a view of a file system at a point in time, and
subsequently identifies and maintains copies of the original file system blocks. Instead of
using a disk-based mirroring method, Storage Checkpoints save disk space and significantly
reduce I/O overhead by using the free space pool available to a file system.

See "Storage Checkpoints" on page 65 for information on using the Storage Checkpoint
feature. Storage Checkpoint functionality is a separately licensable feature.

Online Backup
VxFS provides online data backup using the snapshot feature. An image of a mounted file
system instantly becomes an exact read-only copy of the file system at a specific point in time.
The original file system is called the snapped file system, the copy is called the snapshot.

When changes are made to the snapped file system, the old data is copied to the snapshot.
When the snapshot is read, data that has not changed is read from the snapped file system,
changed data is read from the snapshot.

Backups require one of the following methods:

• Copying selected files from the snapshot file system (using find and cpio)

• Backing up the entire file system (using fscat)

• Initiating a full or incremental backup (using vxdump)

 See “Online Backup Using File System Snapshots” on page 119 for information on doing
backups using the snapshot feature.
Chapter 1 31

The VERITAS File System
Quotas
Quotas
VxFS supports quotas, which allocate per-user quotas and limit the use of two principal
resources: files and data blocks. You can assign quotas for each of these resources. Each quota
consists of two limits for each resource:

• The hard limit represents an absolute limit on data blocks or files. A user can never
exceed the hard limit under any circumstances.

• The soft limit is lower than the hard limit and can be exceeded for a limited amount of
time. This allows users to temporarily exceed limits as long as they fall under those limits
before the allotted time expires.

See “Quota Limits” on page 130 for details on using VxFS quotas.

NOTE Commercial database servers such as Oracle Server can issue kernel supported
asynchronous I/O calls (through the asyncdsk or Posix AIO interface) on these
pseudo devices but not on regular files.
Chapter 132

The VERITAS File System
Cluster File Systems
Cluster File Systems
Clustered file systems are an extension of VxFS that support concurrent direct media access
from multiple systems. CFS employs a master/slave protocol. All cluster file systems can read
file data directly from a shared disk. In addition, all systems can write "in-place" file data.
Operations that require changes to file system metadata, such as allocation, creation, and
deletion, can only be performed by the single primary file system node. To maintain file
system consistency, secondary nodes must send messages to the primary, and the primary will
perform the operations.

Installing VxFS and enabling the cluster feature does not create a cluster file system
configuration. File system clustering requires other VERITAS products to enable
communication services and provide storage resources. These products are packaged with
VxFS in the Storage Foundation Cluster File System to provide a complete clustering
environment.

See The VERITAS SANPoint Foundation Suite Installation and Configuration Guide,
included in the VERITAS SANPoint Foundation Suite product, for more information.

To be a cluster mount, a file system must be mounted using the mount -o cluster option.
File systems mounted without the -o cluster option are termed local mounts.

CFS functionality is a separately licensable feature.
Chapter 1 33

The VERITAS File System
Cross-Platform Data Sharing
Cross-Platform Data Sharing
Cross-platform data sharing allows data to be serially shared among heterogeneous systems
where each system has direct access to the physical devices that hold the data.This feature
can be used only in conjunction with VERITAS Volume Manager. See the VERITAS Storage
Foundation Cross-Platform Data Sharing Administrator’s Guide for more information.
Chapter 134

The VERITAS File System
File Change Log
File Change Log
The VxFS File Change Log (FCL) tracks changes to files and directories in a file system.The
File Change Log can be used by applications such as backup products, webcrawlers, search
and indexing engines, and replication software that typically scan an entire file system
searching for modifications since a previous scan. FCL functionality is a separately licensable
feature. See “File Change Log” on page 35" for more information.
Chapter 1 35

The VERITAS File System
Multi-Volume Support
Multi-Volume Support
The multi-volume support (MVS) feature allows several volumes to be represented by a single
logical object. All I/O to and from an underlying logical volume is directed by way of volume
sets. This feature can be used only in conjunction with VERITAS Volume Manager. MVS
functionality is a separately licensable feature. See Chapter 9, “Multi-Volume File Systems,”
on page 143 for more information.
Chapter 136

The VERITAS File System
Quality of Storage Service
Quality of Storage Service
The Quality of Storage Service (QoSS) option is built on the multi-volume support technology
introduced in this release. Using QoSS, you can map more than one volume to a single file
system. You can then configure policies that automatically relocate files from one volume to
another, or relocate files by running file relocation commands. Having multiple volumes lets
you determine where files are located, which can improve performance for applications that
access specific types of files. QoSS functionality is a separately licensable feature that is
available with the VRTSfppm package. See Chapter 9, “Multi-Volume File Systems,” on
page 143" for more information.
Chapter 1 37

The VERITAS File System
Quality of Storage Service
Chapter 138

2 VxFS Performance: Creating,
Mounting, and Tuning File Systems
Chapter 2 39

VxFS Performance: Creating, Mounting, and Tuning File Systems
Introduction
Introduction
For any file system, the ability to provide peak performance is important. Adjusting the
available VERITAS File System (VxFS) options provides a way to increase system
performance. This chapter describes the commands and practices you can use to optimize
VxFS. For information on optimizing an application for use with VxFS, see “Application
Interface” on page 77.

The following topics are covered in this chapter:

• Choosing mkfs Command Options

— Block Size

— Intent Log Size

• Choosing mount Command Options

— log

— delaylog

— tmplog

— logiosize

— nodatainlog

— blkclear

— mincache

— convosync

— ioerror

— largefiles | nolargefiles

— tranflush

— Combining mount Command Options

• Kernel Tunables

— Internal Inode Table Size

— VxFS Buffer Cache High Water Mark

— Number of Links to a File

— VxFS Inode Free Time Lag
Chapter 240

VxFS Performance: Creating, Mounting, and Tuning File Systems
Introduction
— VxVM Maximum I/O Size

• Monitoring Free Space

— Monitoring Fragmentation

• I/O Tuning

— Tuning VxFS I/O Parameters

— Tunable VxFS I/O Parameters
Chapter 2 41

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mkfs Command Options
Choosing mkfs Command Options
There are several characteristics that you can select when you create a file system. The most
important options pertaining to system performance are the block size and intent log size.

Block Size

The unit of allocation in VxFS is a block. Unlike some other UNIX file systems, VxFS does not
make use of block fragments for allocation because storage is allocated in extents that consist
of one or more blocks.

You specify the block size when creating a file system by using the mkfs-obsize option. The
block size cannot be altered after the file system is created. The smallest available block size
for VxFS is 1K, which is also the default block size.

Choose a block size based on the type of application being run. For example, if there are many
small files, a 1K block size may save space. For large file systems, with relatively few files, a
larger block size is more appropriate. Larger block sizes use less disk space in file system
overhead, but consume more space for files that are not a multiple of the block size. The
easiest way to judge which block sizes provide the greatest system efficiency is to try
representative system loads against various sizes and pick the fastest.

Intent Log Size

You specify the intent log size when creating a file system by using the mkfs-o logsize
option. With the Version 6 disk layout, you can dynamically increase or decrease the intent log
size using the log option of the fsadm command. The mkfs utilty uses a default intent log size
of 16 megabytes for disk layout Version 4, 5, and 6. The default size is sufficient for most
workloads. If the system is used as an NFS server or for intensive synchronous write
workloads, performance may be improved using a larger log size.

With larger intent log sizes, recovery time is proportionately longer and the file system may
consume more system resources (such as memory) during normal operation.

There are several system performance benchmark suites for which VxFS performs better with
larger log sizes. As with block sizes, the best way to pick the log size is to try representative
system loads against various sizes and pick the fastest.
Chapter 242

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
Choosing mount Command Options
In addition to the standard mount mode(delaylog mode), VxFS provides blkclear, log,
tmplog, and nodatainlog modes of operation. Caching behavior can be altered with the
mincache option, and the behavior of O_SYNC and D_SYNC (see the fcntl (2) manual page)
writes can be altered with the convosync option.

The delaylog and tmplog modes can significantly improve performance. The improvement
over log mode is typically about 15 to 20 percent with delaylog; with tmplog, the
improvement is even higher. Performance improvement varies, depending on the operations
being performed and the workload. Read/write intensive loads should show less improvement,
while file system structure intensive loads (such as mkdir, create, and rename) may show
over 100 percent improvement. The best way to select a mode is to test representative system
loads against the logging modes and compare the performance results.

Most of the modes can be used in combination. For example, a desktop machine might use
both the blkclear and mincache=closesync modes.

Additional information on mount options can be found in the mount_vxfs (1M) manual page.

In the following descriptions, the term "effects of system calls" refers to changes to file system
data and metadata caused by the system call, excluding changes to st_atime (see the stat(2)
manual page).

log

In log mode, all system calls other than write(2), writev(2), and pwrite(2) are guaranteed
to be persistent once the system call returns to the application.

The rename(2) system call flushes the source file to disk to guarantee the persistence of the
file data before renaming it. In both modes, the rename is also guaranteed to be persistent
when the system call returns. This benefits shell scripts and programs that try to update a file
atomically by writing the new file contents to a temporary file and then renaming it on top of
the target file.

delaylog

The default logging mode is delaylog. In delaylogmode, some system calls return before the
intent log is written. This logging delay improves the performance of the system, but some
changes are not guaranteed until a short time after the system call returns, when the intent
Chapter 2 43

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
log is written. If a system failure occurs, recent changes may be lost. This mode approximates
traditional UNIX guarantees for correctness in case of system failures. Fast file system
recovery works with this mode.

The rename(2) system call flushes the source file to disk to guarantee the persistence of the
file data before renaming it. In both modes, the rename is also guaranteed to be persistent
when the system call returns. This benefits shell scripts and programs that try to update a file
atomically by writing the new file contents to a temporary file and then renaming it on top of
the target file.

tmplog

In tmplog mode, the effects of system calls have persistence guarantees that are similar to
those in delaylog mode. In addition, enhanced flushing of delayed extending writes is
disabled, which results in better performance but increases the chances of data being lost or
unitialized data appearing in a file that was being actively written at the time of a system
failure. This mode is only recommended for temporary file systems. Fast file system recovery
works with this mode.

NOTE In all logging modes, VxFS is fully POSIX compliant. The effects of the
fsync(2) and fdatasync(2) system calls are guaranteed to be persistent once
the calls return. The persistence guarantees for data or metadata modified by
write(2), writev(2), or pwrite(2) are not affected by the logging mount
options. The effects of these system calls are guaranteed to be persistent only if
the O_SYNC, O_DSYNC, VX_DSYNC, or VX_DIRECT flag, as modified by the
convosync= mount option, has been specified for the file descriptor.

The behavior of NFS servers on a VxFS file system is unaffected by the log and
tmplog mount options, but not delaylog. In all cases except with delaylog,
VxFS complies with the persistency requirements of the NFS v2 and NFS v3
standard.

Unless a UNIX application has been developed specifically for the VxFS file
system in log mode, it will expect the persistence guarantees offered by most
other file systems and will experience improved robustness when used with a
VxFS file system mounted in delaylog mode. Applications that expect better
persistence guarantees than that offered by most other file systems can benefit
from the log, mincache=, and closesync mount options. However, most
commercially available applications will work well with the default VxFS
mount options, including the delaylog mode.
Chapter 244

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
logiosize

The logiosize=size option is provided to enhance the performance of storage devices that
employ a read-modify-write feature. If you specify logiosize when you mount a file system,
VxFS writes the intent log in at least size bytes to obtain the maximum performance from
such devices. The values for size can be 1024, 2048, or 4096.
Chapter 2 45

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
nodatainlog

Use the nodatainlog mode on systems with disks that do not support bad block revectoring.
Usually, a VxFS file system uses the intent log for synchronous writes. The inode update and
the data are both logged in the transaction, so a synchronous write only requires one disk
write instead of two. When the synchronous write returns to the application, the file system
has told the application that the data is already written. If a disk error causes the metadata
update to fail, then the file must be marked bad and the entire file is lost.

If a disk supports bad block revectoring, then a failure on the data update is unlikely, so
logging synchronous writes should be allowed. If the disk does not support bad block
revectoring, then a failure is more likely, so the nodatainlog mode should be used.

A nodatainlog mode file system is approximately 50 percent slower than a standard mode
VxFS file system for synchronous writes. Other operations are not affected.

blkclear

The blkclear mode is used in increased data security environments. The blkclear mode
guarantees that uninitialized storage never appears in files. The increased integrity is
provided by clearing extents on disk when they are allocated within a file. Extending writes
are not affected by this mode. A blkclear mode file system is approximately 10 percent
slower than a standard mode VxFS file system, depending on the workload.

mincache

The mincache mode has five suboptions:

• mincache=closesync

• mincache=direct

• mincache=dsync

• mincache=unbuffered

• mincache=tmpcache

The mincache=closesync mode is useful in desktop environments where users are likely to
shut off the power on the machine without halting it first. In this mode, any changes to the file
are flushed to disk when the file is closed.

To improve performance, most file systems do not synchronously update data and inode
changes to disk. If the system crashes, files that have been updated within the past minute
are in danger of losing data. With the mincache=closesync mode, if the system crashes or is
Chapter 246

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
switched off, only files that are currently open can lose data. A mincache=closesync mode
file system should be approximately 15 percent slower than a standard mode VxFS file
system, depending on the workload.

The mincache=direct, mincache=unbuffered, and mincache=dsync modes are used in
environments where applications are experiencing reliability problems caused by the kernel
buffering of I/O and delayed flushing of non-synchronous I/O. The mincache=direct and
mincache=unbufferedmodes guarantee that all non-synchronous I/O requests to files will be
handled as if the VX_DIRECT or VX_UNBUFFERED caching advisories had been specified. The
mincache=dsync mode guarantees that all non-synchronous I/O requests to files will be
handled as if the VX_DSYNC caching advisory had been specified. Refer to the vxfsio (7) manual
page for explanations of VX_DIRECT, VX_UNBUFFERED, and VX_DSYNC. The mincache=direct,
mincache=unbuffered, and mincache=dsync modes also flush file data on close as
mincache=closesync does.

Because the mincache=direct, mincache=unbuffered, and mincache=dsync modes change
non-synchronous I/O to synchronous I/O, there can be a substantial degradation in
throughput for small to medium size files for most applications. Since the VX_DIRECT and
VX_UNBUFFERED advisories do not allow any caching of data, applications that would normally
benefit from caching for reads will usually experience less degradation with the
mincache=dsync mode. mincache=direct and mincache=unbuffered require significantly
less CPU time than buffered I/O.

If performance is more important than data integrity, you can use the mincache=tmpcache
mode. The mincache=tmpcache mode disables special delayed extending write handling,
trading off less integrity for better performance. Unlike the other mincache modes, tmpcache
does not flush the file to disk when it is closed. When the mincache=tmpcache option is used,
bad data can appear in a file that was being extended when a crash occurred.
Chapter 2 47

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
convosync

NOTE Use of the convosync=dsync option violates POSIX guarantees for
synchronous I/O.

The convosync (convert osync) mode has five suboptions:

• convosync=closesync

• convosync=delay.

• convosync=direct

• convosync=dsync

• convosync=unbuffered

The convosync=closesync mode converts synchronous and data synchronous writes to
non-synchronous writes and flushes the changes to the file to disk when the file is closed.

The convosync=delay mode causes synchronous and data synchronous writes to be delayed
rather than to take effect immediately. No special action is performed when closing a file. This
option effectively cancels any data integrity guarantees normally provided by opening a file
with O_SYNC. See the open (2), fcntl (2), and vxfsio (7) manual pages for more information on
O_SYNC.

CAUTION Be very careful when using the convosync=closesync or convosync=delay
mode because they actually change synchronous I/O into non-synchronous I/O.
This may cause applications that use synchronous I/O for data reliability to fail
if the system crashes and synchronously written data is lost.

The convosync=direct and convosync=unbuffered mode convert synchronous and data
synchronous reads and writes to direct reads and writes.

The convosync=dsync mode converts synchronous writes to data synchronous writes.

As with closesync, the direct, unbuffered, and dsync modes flush changes to the file to
disk when it is closed. These modes can be used to speed up applications that use synchronous
I/O. Many applications that are concerned with data integrity specify the O_SYNC fcntl in
order to write the file data synchronously. However, this has the undesirable side effect of
updating inode times and therefore slowing down performance. The convosync=dsync,
convosync=unbuffered, and convosync=direct modes alleviate this problem by allowing
applications to take advantage of synchronous writes without modifying inode times as well.
Chapter 248

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
CAUTION Before using convosync=dsync, convosync=unbuffered, or
convosync=direct, make sure that all applications that use the file system do
not require synchronous inode time updates for O_SYNC writes.
Chapter 2 49

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
ioerror

Sets the policy for handling I/O errors on a mounted file system. I/O errors can occur while
reading or writing file data, or while reading or writing metadata. The file system can respond
to these I/O errors either by halting or by gradually degrading. The ioerror option provides
four policies that determine how the file system responds to the various errors. All four
policies limit data corruption, either by stopping the file system or by marking a corrupted
inode as bad. The four policies are disable, nodisable, wdisable, and mwdisable

If disable is selected, VxFS disables the file system after detecting any I/O error. You must
then unmount the file system and correct the condition causing the I/O error. After the
problem is repaired, run fsck and mount the file system again. In most cases, replay fsck is
sufficient to repair the file system. A full fsck is required only in cases of structural damage
to the file system’s metadata. Select disable in environments where the underlying storage is
redundant, such as RAID-5 or mirrored disks.

If nodisable is selected, when VxFS detects an I/O error, it sets the appropriate error flags to
contain the error, but continues running. Note that the “degraded” condition indicates
possible data or metadata corruption, not the overall performance of the file system.

For file data read and write errors, VxFS sets the VX_DATAIOERR flag in the superblock. For
metadata read errors, VxFS sets the VX_FULLFSCK flag in the superblock. For metadata
write errors, VxFS sets the VX_FULLFSCK and VX_METAIOERR flags in the superblock
and may mark associated metadata as bad on disk. VxFS then prints the appropriate error
messages to the console(see Appendix B, “Kernel Messages,” on page 207" for information on
actions to take for specific errors)..

You should stop the file system as soon as possible and repair the condition causing the I/O
error. After the problem is repaired, run fsck and mount the file system again. Select
nodisable if you want to implement the policy that most closely resembles the error
handling policy of the previous VxFS release.

If wdisable (write disable) or mwdisable (metadata-write disable) is selected, the file system
is disabled or degraded, depending on the type of error encountered. Select wdisable or
mwdisable for environments where read errors are more likely to persist than write errors,
such as when using non-redundant storage. mwdisable is the default ioerror mount option for
local mounts. See the mount_vxfs (1M) manual page for more information.

largefiles | nolargefiles

VxFS supports files up to 2 gigabytes in size. The maximum file size that can be created is 2
terabytes.
Chapter 250

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
NOTE Applications and utilities such as backup may experience problems if they are
not aware of large files. In such a case, create your file system without large file
capability.

Creating a File System with Large Files

You can create a file system with large file capability by entering the following command:

mkfs -F vxfs -o largefiles special_device size

Specifying largefiles sets the largefiles flag, which allows the file system to hold files up
to two terabytes in size. Conversely, the default nolargefiles option clears the flag and
prevents large files from being created:

mkfs -F vxfs -o nolargefiles special_device size

NOTE The largefiles flag is persistent and stored on disk.

Mounting a File System with Large Files

If a mount succeeds and nolargefiles is specified, the file system cannot contain or create
any large files. If a mount succeeds and largefiles is specified, the file system may contain
and create large files.

The mount command fails if the specified largefiles|nolargefiles option does not match
the on-disk flag.

The mount command defaults to match the current setting of the on-disk flag if specified
without the largefiles or nolargefiles option, so it’s best not to specify either option. After a file
system is mounted, you can use the fsadm utility to change the large files option.

Managing a File System with Large Files

You can determine the current status of the largefiles flag using the fsadm command:

mkfs -F vxfs -m special_device

fsadm -F vxfs mount_point | special_device

You can switch capabilities on a mounted file system using the fsadm command:

fsadm -F vxfs -o [no]largefiles mount_point

You can also switch capabilities on an unmounted file system:

fsadm -F vxfs -o [no]largefiles special_device
Chapter 2 51

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
You cannot change a file system to nolargefiles if it holds large files.

See the mount_vxfs (1M), fsadm_vxfs (1M), and (1M) manual pages.
Chapter 252

VxFS Performance: Creating, Mounting, and Tuning File Systems
Choosing mount Command Options
Combining mount Command Options

Although mount options can be combined arbitrarily, some combinations do not make sense.
The following examples provide some common and reasonable mount option combinations.

Example 1 - Desktop File System

mount -F vxfs -o log,mincache=closesync /dev/dsk/c1t3d0 /mnt

This guarantees that when a file is closed, its data is synchronized to disk and cannot be lost.
Thus, once an application is exited and its files are closed, no data will be lost even if the
system is immediately turned off.

Example 2 - Temporary File System or Restoring from Backup

mount -F vxfs -o tmplog,convosync=delay,mincache=tmpcache \
/dev/dsk/c1t3d0 /mnt

This combination might be used for a temporary file system where performance is more
important than absolute data integrity. Any O_SYNC writes are performed as delayed writes
and delayed extending writes are not handled specially (which could result in a file that
contains garbage if the system crashes at the wrong time). Any file written 30 seconds or so
before a crash may contain garbage or be missing if this mount combination is in effect.
However, such a file system will do significantly less disk writes than a log file system, and
should have significantly better performance, depending on the application.

Example 3 - Data Synchronous Writes

mount -F vxfs -o log,convosync=dsync /dev/dsk/c1t3d0 /mnt

This combination would be used to improve the performance of applications that perform
O_SYNC writes, but only require data synchronous write semantics. Their performance can be
significantly improved if the file system is mounted using convosync=dsync without any loss
of data integrity.
Chapter 2 53

VxFS Performance: Creating, Mounting, and Tuning File Systems
Kernel Tunables
Kernel Tunables
This section describes the kernel tunable parameters in VxFS.

Internal Inode Table Size

VxFS caches inodes in an inode table. There is a dynamic tunable in VxFS called vx_ninode
that determines the number of entries in the inode table.

A VxFS file system obtains the value of vx_ninode from the system configuration file used for
making the HP-UX kernel (/stand/system for example). This value is used to determine the
number of entries in the VxFS inode table. By default, vx_ninode initializes at zero; the file
system then computes a value based on the system memory size. To change the computed
value of vx_ninode, you can add an entry to the system configuration file. For example:

vxfs_inode_table vx_ninode1000000

sets the inode table size to 1,000,000 inodes after making a new HP-UX kernel using
mk_kernel. You can also change the value of vx_ninode by using the sam or kctune
commands (see the sam(1M) and kctune(1M) manual pages).

Increasing the value of vx_ninode increases the inode table size immediately, allowing a
higher number of inodes to be cached. Decreasing the value of vx_ninode decreases the inode
table size to the specified value. After the tunable is decreased, VxFS attempts to free excess
cached objects so that the resulting number of inodes in the table is less than or equal to the
specified value of vx_ninode. If this attempt fails, the value of the vx_ninode tunable is not
changed. In such a case, the kctune command can be specified with the -h option so that the
new value of vx_ninode takes effect after a system reboot.

Be careful when changing the value of vx_ninode, as the value can affect file system
performance. Typically, the default value determined by VxFS based on the amount of system
memory ensures good system performance across a wide range of applications. However, if it
is determined that the default value is not suitable, vx_ninode can be set to an appropriate
value based on the expected file system usage. The vxfsstat command can be used to
monitor inode cache usage and statistics to determine the optimum value of vx_ninode for
the system.
Chapter 254

VxFS Performance: Creating, Mounting, and Tuning File Systems
Kernel Tunables
Changing the value of a tunable does not resize the internal hash tables and structures of the
caches. These sizes are determined at system boot up based on either the system memory size,
which is the default, or the value of the tunable if explicitly set, whichever is larger. Thus,
dynamically increasing the tunable to a value that is more than two times either the default
value or the user-defined value, if larger, may cause performance degradation unless the
system is rebooted.

Examples of Changing the vx_inode Tunable Value

The following are examples of changing the vx_ninode tunable value.

Example 1 - Reporting the Current Value of vx_ninode

kctune vx_ninode

This command displays the current value of vx_ninode.

Example 2 - Setting vx_ninode

kctune -s vx_ninode=10000

This command sets vx_ninode to 10000, the specified value.

Example 3 - Restoring vx_ninode to Its Default Value

kctune -s vx_ninode=

This command restores vx_ninode to its default value by clearing the user-specified value.
The default value is the value determined by VxFS to be optimal based on the amount of
system memory, which is used if vx_ninode is not explicitly set.

Example 4 - Delaying a Change to vx_ninode Until After a Reboot

kctune -h -s vx_ninode=10000

If the -h option is specified, the specified value for vx_ninode will not take effect until after a
system reboot.

VxFS Buffer Cache High Water Mark

VxFS maintains its own buffer cache in the kernel for frequently accessed file system
metadata. This cache is different from the HP-UX kernel buffer cache that caches file data.
The vx_bc_bufhwm global tunable parameter lets you change the VxFS buffer cache high
water mark, that is, the maximum amount of memory that can be used to cache VxFS
metadata.
Chapter 2 55

VxFS Performance: Creating, Mounting, and Tuning File Systems
Kernel Tunables
The initial value of vx_bc_bufhwm is zero. When the operating system reboots, VxFS sets the
value of vx_bc_bufhwm based on the amount of system memory. You can explicitly reset the
value of vx_bc_bufhwm by changing the value of vxfs_bc_bufhwm using the sam or kctune
commands (see the sam(1M) and kctune(1M) manual pages). You can also set the value by
adding an entry to the system configuration file. For example, the following entry:

vxfs_bc_bufhwm vx_bc_bufhwm 300000

sets the high water mark to 300 megabytes. The change takes effect after you rebuild the
HP-UX kernel using the mk_kernel command. You specify the vx_bc_bufhwm tunable in units
of kilobytes. The minimum value is 6144.

Increasing the value of vx_bc_bufhwm increases the VxFS buffer cache immediately, allowing
a greater amount of memory to be used to cache VxFS metadata. Decreasing the value of
vx_bc_bufhwm decreases the VxFS buffer cache to the specified value. This frees memory
such that the amount of memory used for buffer cache is lower than the specified value of
vx_bc_bufhwm.

Typically, the default value computed by VxFS based on the amount of system memory
ensures good system performance across a wide range of applications. For application loads
that cause frequent file system metadata changes on the system (for example, a high rate of
file creation or deletion, or accessing large directories), changing the value of vx_bc_bufhwm
may improve performance.

You can use the vxfsstat command to monitor buffer cache statistics and inode cache usage
(see the vxfsstat(1M) manual page).

Number of Links to a File

In VxFS, the number of possible links to a file is determined by the vx_maxlink global
tunable. The default value of vx_maxlink is 32767, the maximum value is 65535. This is a
static tunable.

You can set the value of vx_maxlink using the sam or kctune commands (see the sam(1M)
and kctune(1M) manual pages), or by adding an entry to the system configuration file as
shown in the following example:

vxfs_maxlink vx_maxlink 40000

This sets the value of vx_maxlink to 40,000 links.

VxFS Inode Free Time Lag

In VxFS, an inode is put on a freelist if it is not being used. The memory space for this unused
inode can be freed it it stays on the freelist for a specified amount of time.
Chapter 256

VxFS Performance: Creating, Mounting, and Tuning File Systems
Kernel Tunables
 The vxfs_ifree_timelag tunable specifies the minimum amount of time an unused inode
spends on a freelist before its memory space is freed.vxfs_ifree_timelag is a dynamic
tunable. Any changes to vxfs_ifree_timelag take affect immediately.

The default value of vxfs_ifree_timelag is 0. By setting vxfs_ifree_timelag to 0, the
inode free timelag is autotuned to 1800 seconds. Specifying negative one (–1) stops the freeing
of inode space; no further inode allocations are freed until the value is changed back to a value
other than negative one.

You can change the value of vx_ifree_timelag using the sam or kctune commands (see the
sam(1M) and kctune(1M) manual pages), or by adding an entry to the system configuration
file. The following example changes the value of vx_ifree_timelag to 2400 seconds:

kctune –s vxfs_ifree_timelag=2400

NOTE The default value vxfs_ifree_timelag typically provides optimal VxFS
performance. Be careful when adjusting the tunable because incorrect tuning
can adversely affect system performance.
Chapter 2 57

VxFS Performance: Creating, Mounting, and Tuning File Systems
Monitoring Free Space
VxVM Maximum I/O Size

When using VxFS with the VERITAS Volume Manager (VxVM), VxVM by default breaks up
I/O requests larger than 256K. When using striping, to optimize performance, the file system
issues I/O requests that are up to a full stripe in size. If the stripe size is larger than 256K,
those requests are broken up.

See the VERITAS Volume Manager Administrator’s Guide for more information on avoiding
I/O breakup by setting the maximum I/O tunable parameter.

Monitoring Free Space
In general, VxFS works best if the percentage of free space in the file system does not get
below 10 percent. This is because file systems with 10 percent or more free space have less
fragmentation and better extent allocation. Regular use of the df command (see the df_vxfs
(1M) manual page) to monitor free space is desirable. Full file systems may have an adverse
effect on file system performance. Full file systems should therefore have some files removed,
or should be expanded (see the fsadm_vxfs (1M) manual page for a description of online file
system expansion).

Monitoring Fragmentation

Fragmentation reduces performance and availability. Regular use of fsadm’s fragmentation
reporting and reorganization facilities is therefore advisable.

The easiest way to ensure that fragmentation does not become a problem is to schedule
regular defragmentation runs using the cron command.

Defragmentation scheduling should range from weekly (for frequently used file systems) to
monthly (for infrequently used file systems). Extent fragmentation should be monitored with
fsadm or the df -o s commands. There are three factors which can be used to determine the
degree of fragmentation:

• Percentage of free space in extents of less than eight blocks in length

• Percentage of free space in extents of less than 64 blocks in length

• Percentage of free space in extents of length 64 blocks or greater

An unfragmented file system will have the following characteristics:

• Less than 1 percent of free space in extents of less than eight blocks in length
Chapter 258

VxFS Performance: Creating, Mounting, and Tuning File Systems
Monitoring Free Space
• Less than 5 percent of free space in extents of less than 64 blocks in length

• More than 5 percent of the total file system size available as free extents in lengths of 64
or more blocks

A badly fragmented file system will have one or more of the following characteristics:

• Greater than 5 percent of free space in extents of less than 8 blocks in length

• More than 50 percent of free space in extents of less than 64 blocks in length

• Less than 5 percent of the total file system size available as free extents in lengths of 64 or
more blocks

The optimal period for scheduling of extent reorganization runs can be determined by
choosing a reasonable interval, scheduling fsadm runs at the initial interval, and running the
extent fragmentation report feature of fsadm before and after the reorganization.

The “before” result is the degree of fragmentation prior to the reorganization. If the degree of
fragmentation is approaching the figures for bad fragmentation, reduce the interval between
fsadm runs. If the degree of fragmentation is low, increase the interval between fsadm runs.

The “after” result is an indication of how well the reorganizer has performed. The degree of
fragmentation should be close to the characteristics of an unfragmented file system. If not, it
may be a good idea to resize the file system; full file systems tend to fragment and are difficult
to defragment. It is also possible that the reorganization is not being performed at a time
during which the file system in question is relatively idle.

Directory reorganization is not nearly as critical as extent reorganization, but regular
directory reorganization will improve performance. It is advisable to schedule directory
reorganization for file systems when the extent reorganization is scheduled. The following is a
sample script that is run periodically at 3:00 A.M. from cron for a number of file systems:

outfile=/usr/spool/fsadm/out.‘/bin/date +’%m%d’‘

 for i in /home /home2 /project /db

 do

/bin/echo "Reorganizing $i"

 /bin/timex fsadm -F vxfs -e -E -s $i

 /bin/timex fsadm -F vxfs -s -d -D $i

 done > $outfile 2>&1
Chapter 2 59

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
I/O Tuning

NOTE The tunables and the techniques described in this section work on a per file
system basis. Use them judiciously based on the underlying device properties
and characteristics of the applications that use the file system.

Performance of a file system can be enhanced by a suitable choice of I/O sizes and proper
alignment of the I/O requests based on the requirements of the underlying special device.
VxFS provides tools to tune the file systems.

Tuning VxFS I/O Parameters

VxFS provides a set of tunable I/O parameters that control some of its behavior. These I/O
parameters are useful to help the file system adjust to striped or RAID-5 volumes that could
yield performance superior to a single disk. Typically, data streaming applications that access
large files see the largest benefit from tuning the file system.

If VxFS is being used with the VERITAS Volume Manager, the file system queries VxVM to
determine the geometry of the underlying volume and automatically sets the I/O parameters.
The mount command also queries VxVM when the file system is mounted and downloads the
I/O parameters.

If the default parameters are not acceptable or the file system is being used without VxVM,
then the /etc/vx/tunefstab file can be used to set values for I/O parameters. The mount
command reads the /etc/vx/tunefstab file and downloads any parameters specified for a
file system. The tunefstab file overrides any values obtained from VxVM. While the file
system is mounted, any I/O parameters can be changed using the vxtunefs command which
can have tunables specified on the command line or can read them from the
/etc/vx/tunefstab file. For more details, see the vxtunefs (1M) and tunefstab (4) manual
pages. The vxtunefs command can be used to print the current values of the I/O parameters:

vxtunefs -p mount_point

If the default alignment from mkfs is not acceptable, the -o align=n option can be used to
override alignment information obtained from VxVM. The following is an example tunefstab
file:

/dev/vx/dsk/userdg/netbackup

read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4

/dev/vx/dsk/userdg/opt

read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
Chapter 260

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
/dev/vx/dsk/userdg/metasave

read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4

/dev/vx/dsk/userdg/solbuild

read_pref_io=64k,write_pref_io=64k,read_nstream=4,write_nstream=4

/dev/vx/dsk/userdg/solrelease

read_pref_io=64k,write_pref_io=64k,read_nstream=4,write_nstream=4

/dev/vx/dsk/userdg/solpatch

read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
Chapter 2 61

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
Tunable VxFS I/O Parameters

read_pref_io The preferred read request size. The file system uses this in
conjunction with the read_nstream value to determine how
much data to read ahead. The default value is 64K.

write_pref_io The preferred write request size. The file system uses this
in conjunction with the write_nstream value to determine
how to do flush behind on writes. The default value is 64K.

read_nstream The number of parallel read requests of size read_pref_io
to have outstanding at one time. The file system uses the
product of read_nstream multiplied by read_pref_io to
determine its read ahead size. The default value for
read_nstream is 1.

write_nstream The number of parallel write requests of size
write_pref_io to have outstanding at one time. The file
system uses the product of write_nstream multiplied by
write_pref_io to determine when to do flush behind on
writes. The default value for write_nstream is 1.

discovered_direct

_iosz

Any file I/O requests larger than the
discovered_direct_iosz are handled as discovered direct
I/O. A discovered direct I/O is unbuffered similar to direct
I/O, but it does not require a synchronous commit of the
inode when the file is extended or blocks are allocated. For
larger I/O requests, the CPU time for copying the data into
the page cache and the cost of using memory to buffer the
I/O data becomes more expensive than the cost of doing the
disk I/O. For these I/O requests, using discovered direct I/O
is more efficient than regular I/O. The default value of this
parameter is 256K.
Chapter 262

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
default_indir_
size

On VxFS, files can have up to ten direct extents of variable
size stored in the inode. Once these extents are used up, the
file must use indirect extents which are a fixed size that is
set when the file first uses indirect extents. These indirect
extents are 8K by default. The file system does not use
larger indirect extents because it must fail a write and
return ENOSPC if there are no extents available that are the
indirect extent size. For file systems with many large files,
the 8K indirect extent size is too small. The files that get
into indirect extents use many smaller extents instead of a
few larger ones. By using this parameter, the default
indirect extent size can be increased so large that files in
indirects use fewer larger extents. The tunable
default_indir_size should be used carefully. If it is set
too large, then writes will fail when they are unable to
allocate extents of the indirect extent size to a file. In
general, the fewer and the larger the files on a file system,
the larger the default_indir_size can be set. This
parameter should generally be set to some multiple of the
read_pref_io parameter. default_indir_size is not
applicable on Version 4 and Version 5 disk layouts.

fcl_keeptime Specifies the minimum amount of time, in seconds, that the
VxFS file change log (FCL) keeps records in the log. When
the oldest 8K block of FCL records have been kept longer
than the value of fcl_keeptime, they are purged from the
FCL and the extents, nearest to the beginning of the FCL
file are freed. This process is referred to as "punching a
hole." Holes are punched in the FCL file in 8K chunks.

If the fcl_maxalloc parameter is set, records are purged
from the FCL if the amount of space allocated to the FCL
exceeds fcl_maxalloc, even if the elapsed time the records
have been in the log is less than the value of fcl_keeptime.
If the file system runs out of space before fcl_keeptime is
reached, the FCL is deactivated.

Either or both of the fcl_keeptime or fcl_maxalloc
parameters must be set before the file change log can be
activated. fcl_keeptime does not apply to disk layout
Versions 1 through 5.
Chapter 2 63

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
fcl_maxalloc Specifies the maximum amount of space that can be
allocated to the VxFS file change log (FCL). The FCL file is
a sparse file that grows as changes occur in the file system.
When the space allocated to the FCL file reaches the
fcl_maxalloc value, the oldest FCL records are purged
from the FCL and the extents nearest to the beginning of
the FCL file are freed. This process is referred to as
"punching a hole." Holes are punched in the FCL file in 8K
chunks. If the file system runs out of space before
fcl_maxalloc is reached, the FCL is deactivated.

Either or both of the fcl_maxalloc or fcl_keeptime
parameters must be set before the file change log can be
activated. fcl_maxalloc does not apply to disk lay out
Versions 1 through 5

fcl_winterval Specifies the time, in seconds, that must elapse before the
VxFS file change log (FCL) records a data overwrite, data
extending write, or data truncate for a file. The ability to
limit the number of repetitive FCL records for continuous
writes to the same file is important for file system
performance and for applications processing the FCL.
fcl_winterval is best set to an interval less than the
shortest interval between reads of the FCL by any
application. This way all applications using the FCL can be
assured of finding at least one FCL record for any file
experiencing continuous data changes.

fcl_winterval is enforced for all files in the file
system.Each file maintains its own time stamps, and the
elapsed time between FCL records is per file. This elapsed
time can be overridden using the VxFS FCL sync public API
(see the vxfsu_fcl_sync(3) manual page). fcl_winterval
does not apply to disk layout Versions 1 through 5.
Chapter 264

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
hsm_write_
prealloc

For a file managed by a hierarchical storage management
(HSM) application, hsm_write_prealloc preallocates disk
blocks before data is migrated back into the file system. An
HSM application usually migrates the data back through a
series of writes to the file, each of which allocates a few
blocks. By setting hsm_write_prealloc
(hsm_write_prealloc=1), a sufficient number of disk
blocks are allocated on the first write to the empty file so
that no disk block allocation is required for subsequent
writes. This improves the write performance during
migration.

The hsm_write_prealloc parameter is implemented
outside of the DMAPI specification, and its usage has
limitations depending on how the space within an
HSM-controlled file is managed. It is advisable to use
hsm_write_prealloc only when recommended by the HSM
application controlling the file system.

initial_extent_
size

Changes the default initial extent size. VxFS determines,
based on the first write to a new file, the size of the first
extent to be allocated to the file. Normally the first extent is
the smallest power of 2 that is larger than the size of the
first write. If that power of 2 is less than 8K, the first extent
allocated is 8K. After the initial extent, the file system
Chapter 2 65

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
inode_aging_count Specifies the maximum number of inodes to place on an
inode aging list. Inode aging is used in conjunction with file
system Storage Checkpoints to allow quick restoration of
large, recently deleted files. The aging list is maintained in
first-in-first-out (fifo) order up to maximum number of
inodes specified by inode_aging_count. As newer inodes
are placed on the list, older inodes are removed to complete
their aging process. For best performance, it is advisable to
age only a limited number of larger files before completion
of the removal process. The default maximum number of
inodes to age is 2048.

inode_aging_size Specifies the minimum size to qualify a deleted inode for
inode aging. Inode aging is used in conjunction with file
system Storage Checkpoints to allow quick restoration of
large, recently deleted files. For best performance, it is
advisable to age only a limited number of larger files before
completion of the removal process. Setting the size too low
can push larger file inodes out of the aging queue to make
room for newly removed smaller file inodes.

max_direct_iosz The maximum size of a direct I/O request that will be
issued by the file system. If a larger I/O request comes in,
then it is broken up into max_direct_iosz chunks. This
parameter defines how much memory an I/O request can
lock at once, so it should not be set to more than 20 percent
of memory.

max_diskq Limits the maximum disk queue generated by a single file.
When the file system is flushing data for a file and the
number of buffers being flushed exceeds max_diskq,
processes will block until the amount of data being flushed
decreases. Although this doesn't limit the actual disk queue,
it prevents flushing processes from making the system
unresponsive. The default value is 1 MB.
Chapter 266

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
max_seqio_extent_
size

Increases or decreases the maximum size of an extent.
When the file system is following its default allocation
policy for sequential writes to a file, it allocates an initial
extent which is large enough for the first write to the file.
When additional extents are allocated, they are
progressively larger (the algorithm tries to double the size
of the file with each new extent) so each extent can hold
several writes worth of data. This is done to reduce the total
number of extents in anticipation of continued sequential
writes. When the file stops being written, any unused space
is freed for other files to use. Normally this allocation stops
increasing the size of extents at 2048 blocks which prevents
one file from holding too much unused space.
max_seqio_extent_size is measured in file system blocks.

qio_cache_enable Enables or disables caching on Quick I/O files. The default
behavior is to disable caching. To enable caching, set
qio_cache_enable to 1. On systems with large memories,
the database cannot always use all of the memory as a
cache. By enabling file system caching as a second level
cache, performance may be improved. If the database is
performing sequential scans of tables, the scans may run
faster by enabling file system caching so the file system will
perform aggressive read-ahead on the files.
Chapter 2 67

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
read_ahead The default for all VxFS read operations is to perform
sequential read ahead. You can specify the read_ahead
cache advisory to implement the VxFS enhanced read
ahead functionality. This allows read aheads to detect more
elaborate patterns (such as increasing or decreasing read
offsets or multithreaded file accesses) in addition to simple
sequential reads. You can specify the following values for
read_ahead:

 0—Disables read ahead functionality

 1—Retains traditional sequential read ahead behavior

 2—Enables enhanced read ahead for all reads

The default is 1—VxFS detects only sequential patterns.

read_ahead detects patterns on a per-thread basis, up to a
maximum determined by vx_era_nthreads parameter. The
default number of threads is 5, but you can change the
default value by setting the vx_era_nthreads parameter in
the /etc/system configuration file.
Chapter 268

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
If the file system is being used with VxVM, it is advisable to let the VxFS I/O parameters get
set to default values based on the volume geometry.

If the file system is being used with a hardware disk array or volume manager other than
VxVM, try to align the parameters to match the geometry of the logical disk. With striping or
RAID-5, it is common to set read_pref_io to the stripe unit size and read_nstream to the

write_throttle The write_throttle parameter is useful in special
situations where a computer system has a combination of a
large amount of memory and slow storage devices. In this
configuration, sync operations (such as fsync()) may take
long enough to complete that a system appears to hang.
This behavior occurs because the file system is creating
dirty buffers (in-memory updates) faster than they can be
asynchronously flushed to disk without slowing system
performance.

Lowering the value of write_throttle limits the number
of dirty buffers per file that a file system will generate
before flushing the buffers to disk. After the number of dirty
buffers for a file reaches the write_throttle threshold, the
file system starts flushing buffers to disk even if free
memory is still available.

The default value of write_throttle is zero, which puts no
limit on the number of dirty buffers per file. If non-zero,
VxFS limits the number of dirty buffers per file to
write_throttle buffers.

The default value typically generates a large number of
dirty buffers, but maintains fast user writes. Depending on
the speed of the storage device, if you lower
write_throttle, user write performance may suffer, but
the number of dirty buffers is limited, so sync operations
will complete much faster.

Because lowering write_throttlemay in some cases delay
write requests (for example, lowering write_throttle
may increase the file disk queue to the max_diskq value,
delaying user writes until the disk queue decreases), it is
advisable not to change the value of write_throttle
unless your system has a combination of large physical
memory and slow storage devices.
Chapter 2 69

VxFS Performance: Creating, Mounting, and Tuning File Systems
I/O Tuning
number of columns in the stripe. For striped arrays, use the same values for write_pref_io
and write_nstream, but for RAID-5 arrays, set write_pref_io to the full stripe size and
write_nstream to 1.

For an application to do efficient disk I/O, it should issue read requests that are equal to the
product of read_nstream multiplied by read_pref_io. Generally, any multiple or factor of
read_nstream multiplied by read_pref_io should be a good size for performance. For
writing, the same rule of thumb applies to the write_pref_io and write_nstream
parameters. When tuning a file system, the best thing to do is try out the tuning parameters
under a real life workload.

If an application is doing sequential I/O to large files, it should try to issue requests larger
than the discovered_direct_iosz. This causes the I/O requests to be performed as
discovered direct I/O requests, which are unbuffered like direct I/O but do not require
synchronous inode updates when extending the file. If the file is larger than can fit in the
cache, using unbuffered I/O avoids removing useful data out of the cache and lessens CPU
overhead.
Chapter 270

3 Extent Attributes
Introduction
The VERITAS File System (VxFS) allocates disk space to files in groups of one or more
adjacent blocks called extents. VxFS defines an application interface that allows programs to
control various aspects of the extent allocation for a given file (see “Extent Information” on
page 82). The extent allocation policies associated with a file are referred to as extent
attributes.

The VxFS getext(1M) and setext(1M) commands let you view or manipulate file extent
attributes. In addition, the vxdump, vxrestore, mv, cp, and cpio commands preserve extent
attributes when a file is backed up, moved, copied, or archived.

The following topics are covered in this chapter:

• Attribute Specifics

— Reservation: Preallocating Space to a File

— Fixed Extent Size

— Other Controls

• Commands Related to Extent Attributes

— Failure to Preserve Extent Attributes
Chapter 3 71

Extent Attributes
Attribute Specifics
Attribute Specifics
The two basic extent attributes associated with a file are its reservation and its fixed extent
size. You can preallocate space to the file by manipulating a file’s reservation, or override the
default allocation policy of the file system by setting a fixed extent size.

Other policies determine the way these attributes are expressed during the allocation process.
You can specify that:

• The space reserved for a file must be contiguous

• No allocations are made for a file beyond the current reservation

• An unused reservation is released when the file is closed

• Space is allocated, but no reservation is assigned

• The file size is changed to immediately incorporate the allocated space

Some of the extent attributes are persistent and become part of the on-disk information about
the file, while other attributes are temporary and are lost after the file is closed or the system
is rebooted. The persistent attributes are similar to the file’s permissions and are written in
the inode for the file. When a file is copied, moved, or archived, only the persistent attributes
of the source file are preserved in the new file (see “Other Controls” on page 74 for more
information).

In general, the user will only set extent attributes for reservation. Many of the attributes are
designed for applications that are tuned to a particular pattern of I/O or disk alignment (see
the mkfs_vxfs (1M) manual page and “Application Interface” on page 77 for more information).
Chapter 372

Extent Attributes
Attribute Specifics
Reservation: Preallocating Space to a File

VxFS makes it possible to preallocate space to a file at the time of the request rather than
when data is written into the file. This space cannot be allocated to other files in the file
system. VxFS prevents any unexpected out-of-space condition on the file system by ensuring
that a file’s required space will be associated with the file before it is required.

Persistent reservation is not released when a file is truncated. The reservation must be
cleared or the file must be removed to free reserved space.

Fixed Extent Size

The VxFS default allocation policy uses a variety of methods to determine how to make an
allocation to a file when a write requires additional space. The policy attempts to balance the
two goals of optimum I/O performance through large allocations and minimal file system
fragmentation through allocation from space available in the file system that best fits the
data.

Setting a fixed extent size overrides the default allocation policies for a file and always serves
as a persistent attribute. Be careful to choose an extent size appropriate to the application
when using fixed extents. An advantage of VxFS’s extent based allocation policies is that they
rarely use indirect blocks compared to block based file systems; VxFS eliminates many
instances of disk access that stem from indirect references. However, a small extent size can
eliminate this advantage.

Files with aggressive allocation sizes tend to be more contiguous and have better I/O
characteristics. However, the overall performance of the file system degrades because the
unused space fragments free space by breaking large extents into smaller pieces. By erring on
the side of minimizing fragmentation for the file system, files may become so non-contiguous
that their I/O characteristics would degrade.

Fixed extent sizes are particularly appropriate in the following situations:

• If a file is large and sparse and its write size is fixed, a fixed extent size that is a multiple
of the write size can minimize space wasted by blocks that do not contain user data as a
result of misalignment of write and extent sizes.

• If a file is large and contiguous, a large fixed extent size can minimize the number of
extents in the file.

Custom applications may also use fixed extent sizes for specific reasons, such as the need to
align extents to cylinder or striping boundaries on disk.
Chapter 3 73

Extent Attributes
Attribute Specifics
Other Controls

The auxiliary controls on extent attributes determine:

• Whether allocations are aligned

• Whether allocations are contiguous

• Whether the file can be written beyond its reservation

• Whether an unused reservation is released when the file is closed

• Whether the reservation is a persistent attribute of the file

• When the space reserved for a file will actually become part of the file

Alignment

Specific alignment restrictions coordinate a file’s allocations with a particular I/O pattern or
disk alignment (see the mkfs_vxfs (1M) manual page and “Application Interface” on page 77
for details). Alignment can only be specified if a fixed extent size has also been set. Setting
alignment restrictions on allocations is best left to well designed applications.

Contiguity

A reservation request can specify that its allocation remain contiguous (all one extent).
Maximum contiguity of a file optimizes its I/O characteristics.

NOTE Fixed extent sizes or alignment cause a file system to return an error message
reporting insufficient space if no suitably sized (or aligned) extent is available.
This can happen even if the file system has sufficient free space and the fixed
extent size is large.

Write Operations Beyond Reservation

A reservation request can specify that no allocations can take place after a write operation
fills up the last available block in the reservation. This specification can be used in a similar
way to ulimit to prevent a file’s uncontrolled growth.

Reservation Trimming

A reservation request can specify that any unused reservation be released when the file is
closed. The file is not completely closed until all processes open against the file have closed it.
Chapter 374

Extent Attributes
Commands Related to Extent Attributes
Reservation Persistence

A reservation request can ensure that the reservation does not become a persistent attribute
of the file. The unused reservation is discarded when the file is closed.

Including Reservation in the File

A reservation request can make sure the size of the file is adjusted to include the reservation.
Normally, the space of the reservation is not included in the file until an extending write
operation requires it. A reservation that immediately changes the file size can generate large
temporary files. Unlike a ftruncate operation that increases the size of a file, this type of
reservation does not perform zeroing of the blocks included in the file and limits this facility to
users with appropriate privileges. The data that appears in the file may have been previously
contained in another file.

Commands Related to Extent Attributes
The VxFS commands for manipulating extent attributes are setext and getext; they allow
the user to set up files with a given set of extent attributes or view any attributes that are
already associated with a file. See the getext (1M) and setext (1M) manual pages for details on
using these commands.

The VxFS-specific commands vxdump and vxrestore, and the mv, cp, and cpio commands,
preserve extent attributes when backing up, restoring, moving, or copying files.

Most of these commands include a command line option (-e) for maintaining extent attributes
on files. This option specifies dealing with a VxFS file that has extent attribute information
including reserved space, a fixed extent size, and extent alignment. The extent attribute
information may be lost if the destination file system does not support extent attributes, has a
different block size than the source file system, or lacks free extents appropriate to satisfy the
extent attribute requirements.

The -e option takes any of the following keywords as an argument:

warn Issues a warning message if extent attribute information cannot
be maintained (the default)

force Fails the copy if extent attribute information cannot be
maintained

ignore Ignores extent attribute information entirely
Chapter 3 75

Extent Attributes
Commands Related to Extent Attributes
Failure to Preserve Extent Attributes

Whenever a file is copied, moved, or archived using commands that preserve extent
attributes, there is nevertheless the possibility of losing the attributes. Such a failure might
occur for three reasons:

• The file system receiving a copied, moved, or restored file from an archive is not a VxFS
type. Since other file system types do not support the extent attributes of the VxFS file
system, the attributes of the source file are lost during the migration.

• The file system receiving a copied, moved, or restored file is a VxFS type but does not have
enough free space to satisfy the extent attributes. For example, consider a 50K file and a
reservation of 1 MB. If the target file system has 500K free, it could easily hold the file but
fail to satisfy the reservation.

• The file system receiving a copied, moved, or restored file from an archive is a VxFS type
but the different block sizes of the source and target file system make extent attributes
impossible to maintain. For example, consider a source file system of block size 1024, a
target file system of block size 4096, and a file that has a fixed extent size of 3 blocks (3072
bytes). This fixed extent size adapts to the source file system but cannot translate onto the
target file system.

The same source and target file systems in the preceding example with a file carrying a
fixed extent size of 4 could preserve the attribute; a 4 block (4096 byte) extent on the
source file system would translate into a 1 block extent on the target.

On a system with mixed block sizes, a copy, move, or restoration operation may or may not
succeed in preserving attributes. It is recommended that the same block size be used for
all file systems on a given system.
Chapter 376

4 Application Interface
Introduction
The VERITAS File System (VxFS) provides enhancements that can be used by applications
that require certain performance features. This chapter describes cache advisories and
provides information about fixed extent sizes and reservation of space for a file.

If you are writing applications, you can optimize them for use with the VxFS. To optimize
VxFS for use with applications, see Chapter 2, “VxFS Performance: Creating, Mounting, and
Tuning File Systems,” on page 39.

The following topics are covered in this chapter:

• Cache Advisories

— Direct I/O

— Unbuffered I/O

— Discovered Direct I/O

— Data Synchronous I/O

— Other Advisories

• Extent Information

— Space Reservation

— Fixed Extent Sizes

• Freeze and Thaw

• Get I/O Parameters ioctl

• Named Data Streams

• Named Data Streams Programmatic Interface

— Listing Named Data Streams

— Namespace for Named Data Streams

— Behavior Changes in Other System Calls
Chapter 4 77

Application Interface
Cache Advisories
Cache Advisories
VxFS allows an application to set cache advisories for use when accessing files. These
advisories are in memory only and they do not persist across reboots. Some advisories are
currently maintained on a per-file, not a per-file-descriptor, basis. This means that only one
set of advisories can be in effect for all accesses to the file. If two conflicting applications set
different advisories, both use the last advisories that were set.

All advisories are set using the VX_SETCACHE ioctl command. The current set of advisories
can be obtained with the VX_GETCACHE ioctl command. For details on the use of these ioctl
commands, see the vxfsio (7) manual page.

Direct I/O

Direct I/O is an unbuffered form of I/O. If the VX_DIRECT advisory is set, the user is requesting
direct data transfer between the disk and the user-supplied buffer for reads and writes. This
bypasses the kernel buffering of data, and reduces the CPU overhead associated with I/O by
eliminating the data copy between the kernel buffer and the user’s buffer. This also avoids
taking up space in the buffer cache that might be better used for something else. The direct
I/O feature can provide significant performance gains for some applications.

For an I/O operation to be performed as direct I/O, it must meet certain alignment criteria.
The alignment constraints are usually determined by the disk driver, the disk controller, and
the system memory management hardware and software. The requirements for direct I/O are
as follows:

• The starting file offset must be aligned to a 512-byte boundary.

• The ending file offset must be aligned to a 512-byte boundary, or the length must be a
multiple of 512 bytes.

• The memory buffer must start on an 8-byte boundary.

If the I/O is performed using the readv(2) and writev(2) system calls, these restrictions
apply to each element of the array of structiovec.

The requirements to perform direct I/O on a given platform and operating system release may
be less restrictive than above, but these requirements are met, then direct I/O will work on
any platform. In particular, Solaris and HP-UX do not require any alignment of the memory
buffer.

Also note that on HP-UX, direct I/O will be the most efficient if the starting and ending file
offsets are aligned on file system block boundaries, as reported in the field f_frsize of
statvfs(2).
Chapter 478

Application Interface
Cache Advisories
Unbuffered I/O

If the VX_UNBUFFERED advisory is set, I/O behavior is the same as direct I/O with the
VX_DIRECT advisory set, so the alignment constraints that apply to direct I/O also apply to
unbuffered I/O. For unbuffered I/O, however, if the file is being extended, or storage is being
allocated to the file, inode changes are not updated synchronously before the write returns to
the user. The VX_UNBUFFERED advisory is maintained on a per-file-descriptor basis.
Chapter 4 79

Application Interface
Cache Advisories
Discovered Direct I/O

Discovered Direct I/O is a file system tunable you can set using the vxtunefs command.
When the file system gets an I/O request larger than the discovered_direct_iosz, it tries to
use direct I/O on the request. For large I/O sizes, Discovered Direct I/O can perform much
better than buffered I/O.

Discovered Direct I/O behavior is similar to direct I/O and has the same alignment
constraints, except writes that allocate storage or extend the file size do not require writing
the inode changes before returning to the application.

For information on how to set the discovered_direct_iosz, see “I/O Tuning” on page 60.

Data Synchronous I/O

If the VX_DSYNC advisory is set, the user is requesting data synchronous I/O. In synchronous
I/O, the data is written, and the inode is written with updated times and (if necessary) an
increased file size. In data synchronous I/O, the data is transferred to disk synchronously
before the write returns to the user. If the file is not extended by the write, the times are
updated in memory, and the call returns to the user. If the file is extended by the operation,
the inode is written before the write returns.

Like direct I/O, the data synchronous I/O feature can provide significant application
performance gains. Because data synchronous I/O maintains the same data integrity as
synchronous I/O, it can be used in many applications that currently use synchronous I/O. If
the data synchronous I/O does not allocate storage or extend the file, the inode is not
immediately written. The data synchronous I/O does not have any alignment constraints, so
applications that find it difficult to meet the alignment constraints of direct I/O should use
data synchronous I/O.

If the file is being extended or storage is allocated, data synchronous I/O must write the inode
change before returning to the application. This case eliminates the performance advantage of
data synchronous I/O.

The direct I/O and VX_DSYNC advisories are maintained on a per-file-descriptor basis.

Other Advisories

The VX_SEQ advisory indicates that the file is being accessed sequentially. When the file is
being read, the maximum read-ahead is always performed. When the file is written, instead of
trying to determine whether the I/O is sequential or random by examining the write offset,
sequential I/O is assumed. The buffers for the write are not immediately flushed. Instead,
buffers are flushed some distance behind the current write point.
Chapter 480

Application Interface
Cache Advisories
The VX_RANDOM advisory indicates that the file is being accessed randomly. For reads, this
disables read-ahead. For writes, this disables the flush-behind. The data is flushed at a rate
based on memory contention.

If VX_NOREUSE is set when doing sequential I/O, buffers are also freed when they are
flushed to disk.The VX_NOREUSE advisory is used as a modifier. If both VX_RANDOM and
VX_NOREUSE are set, VxFS notifies the operating system that the buffers are free and may be
reclaimed. If VX_NOREUSE is set when doing sequential I/O, buffers are also freed when they
are flushed to disk. The VX_NOREUSE advisory may slow down access to the file, but it can
reduce the cached data held by the system. This can allow more data to be cached for other
files and may speed up those accesses.
Chapter 4 81

Application Interface
Extent Information
If the VX_TRIM flag is set, when the last close occurs on the inode, the reservation is trimmed
to match the file size and the VX_TRIM flag is cleared. Any unused space is freed. This can be
useful if an application needs enough space for a file, but it is not known how large the file will
become. Enough space can be reserved to hold the largest expected file, and when the file has
been written and closed, any extra space will be released.

If the VX_NOEXTEND flag is set, an attempt to write beyond the current reservation, which
requires the allocation of new space for the file, fails instead. To allocate new space to the file,
the space reservation must be increased. This can be used like ulimit to prevent a file from
using too much space.

If the VX_CONTIGUOUS flag is set, any space allocated to satisfy the current reservation request
is allocated in one extent. If there is not one extent large enough to satisfy the request, the
request fails. For example, if a file is created and a 1 MB contiguous reservation is requested,
the file size is set to zero and the reservation to 1 MB. The file will have one extent that is 1
MB long. If another reservation request is made for a 3 MB contiguous reservation, the new
request will find that the first 1 MB is already allocated and allocate a 2 MB extent to satisfy
the request. If there are no 2 MB extents available, the request fails. Extents are, by
definition, contiguous.

NOTE Because VX_CONTIGUOUS is not a persistent flag, space will not be allocated
contiguously after doing a file system restore.

If the VX_NORESERVE flag is set, the reservation value in the inode is not changed. This flag is
used by applications to do temporary reservation. Any space past the end of the file is given
up when the file is closed. For example, if the cp command is copying a file that is 1 MB long,
it can request a 1 MB reservation with the VX_NORESERVE flag set. The space is allocated, but
the reservation in the file is left at 0. If the program aborts for any reason or the system
crashes, the unused space past the end of the file is released. When the program finishes,
there is no cleanup because the reservation was never recorded on disk.

If the VX_CHGSIZE flag is set, the file size is increased to match the reservation amount. This
flag can be used to create files with uninitialized data. Because this allows uninitialized data
in files, it is restricted to users with appropriate privileges.

It is possible to use these flags in combination. For example, using VX_CHGSIZE and
VX_NORESERVE changes the file size but does not set any reservation. When the file is
truncated, the space is freed. If the VX_NORESERVE flag had not been used, the reservation
would have been set on disk along with the file size.
Chapter 4 83

Application Interface
Extent Information
Space reservation is used to make sure applications do not fail because the file system is out
of space. An application can preallocate space for all the files it needs before starting to do any
work. By allocating space in advance, the file is optimally allocated for performance, and file
accesses are not slowed down by the need to allocate storage. This allocation of resources can
be important in applications that require a guaranteed response time.

With very large files, use of space reservation can avoid the need to use indirect extents. It can
also improve performance and reduce fragmentation by guaranteeing that the file consists of
large contiguous extents. Sometimes when critical file systems run out of space, cron jobs,
mail, or printer requests fail. These failures are harder to track if the logs kept by the
application cannot be written due to a lack of space on the file system.

By reserving space for key log files, the logs will not fail when the system runs out of space.
Process accounting files can also have space reserved so accounting records will not be lost if
the file system runs out of space. In addition, by using the VX_NOEXTEND flag for log files, the
maximum size of these files can be limited. This can prevent a runaway failure in one
component of the system from filling the file system with error messages and causing other
failures. If the VX_NOEXTEND flag is used for log files, the logs should be cleaned up before they
reach the size limit in order to avoid losing information.
Chapter 484

Application Interface
Extent Information
Fixed Extent Sizes

VxFS uses the I/O size of write requests, and a default policy, when allocating space to a file.
For some applications, this may not work out well. These applications can set a fixed extent
size, so that all new extents allocated to the file are of the fixed extent size.

By using a fixed extent size, an application can reduce allocations and guarantee good extent
sizes for a file. An application can reserve most of the space a file needs, and then set a
relatively large fixed extent size. If the file grows beyond the reservation, any new extents are
allocated in the fixed extent size.

Another use of a fixed extent size occurs with sparse files. The file system usually does I/O in
page size multiples. When allocating to a sparse file, the file system allocates pages as the
smallest default unit. If the application always does sub-page I/O, it can request a fixed extent
size to match its I/O size and avoid wasting extra space.

When setting a fixed extent size, an application should not select too large a size. When all
extents of the required size have been used, attempts to allocate new extents fail: this failure
can happen even though there are blocks free in smaller extents.

Fixed extent sizes can be modified by the VX_ALIGN flag. If the VX_ALIGN flag is set, then any
future extents allocated to the file are aligned on a fixed extent size boundary relative to the
start of the allocation unit. This can be used to align extents to disk striping boundaries or
physical disk boundaries.

The VX_ALIGN flag is persistent and is returned by the VX_GETEXT ioctl.
Chapter 4 85

Application Interface
Freeze and Thaw
Freeze and Thaw
The VX_FREEZE ioctl command is used to freeze a file system. Freezing a file system
temporarily blocks all I/O operations to a file system and then performs a sync on the file
system. When the VX_FREEZE ioctl is issued, all access to the file system is blocked at the
system call level. Current operations are completed and the file system is synchronized to
disk. Freezing provides a stable, consistent file system.

When the file system is frozen, any attempt to use the frozen file system, except for a VX_THAW
ioctl command, is blocked until a process executes the VX_THAW ioctl command or the
time-out on the freeze expires.

Get I/O Parameters ioctl
VxFS provides the VX_GET_IOPARAMETERS ioctl to get the recommended I/O sizes to use on
a file system. This ioctl can be used by the application to make decisions about the I/O sizes
issued to VxFS for a file or file device. For more details on this ioctl, refer to the vxfsio (7)
manual page. For a discussion on various I/O parfCameters, refer to Chapter 2, “VxFS
Performance: Creating, Mounting, and Tuning File Systems,” on page 39 and the vxtunefs
(1M) manual page.
Chapter 486

Application Interface
Named Data Streams
Named Data Streams
Named data streams associate multiple data streams with a file. Access to the named data
stream can be done through a file descriptor using the named data stream library functions.
Applications can open the named data stream to obtain a file descriptor and perform read(),
write(), and mmap() operations using the file descriptor. These system calls would work as
though they are operating on a regular file. The named data streams of a file are stored in a
hidden named data stream directory inode associated with the file. The hidden directory inode
for the file can be accessed only through the named data stream application programming
interface.

NOTE Named data streams are also known as named attributes.
Chapter 4 87

Application Interface
Named Data Streams Programmatic Interface
Named Data Streams Programmatic Interface
VxFS named data stream functionality is available only through the following application
programming interface (API) functions:

vxfs_nattr_link Links to a named data stream.

vxfs_nattr_open Open a named data stream.

vxfs_nattr_rename Renames a named data stream.

vxfs_nattr_unlink Removes a named data stream.

The vxfs_nattr_open() function works similar to the open() system call, except that the path
is interpreted as a named data stream to a file descriptor. If the vxfs_nattr_open() operation
completes successfully, the return value is the file descriptor associated with the named data
stream. The file descriptor can be used by other input/output functions to refer to that named
data stream. If the path of the named datastream is set to "." the file descriptor returned
points to the named data stream directory vnode.

The vxfs_nattr_link() function creates a new directory entry for the existing named data
stream and increments its link count by one. There is a pointer to an existing named data
stream in the named data stream namespace and a pointer to the new directory entry created
in the named data stream namespace.

The vxfs_nattr_unlink() function removes the named data stream at a specified path. The
calling function must have write permission to remove the directory entry for the named data
stream.

The vxfs_nattr_rename() function changes a specified namespace entry at path1 to a second
specified namespace at path2. The specified paths are resolved relative to a pointer to the
named data stream directory vnodes.

See the vxfs_nattr_open(3), vxfs_nattr_link(3), vxfs_nattr_unlink(3), and
vxfs_nattr_rename(3) manual pages for more information.

Listing Named Data Streams

The named data streams for a file can be listed by calling getdents() on the named data

stream directory inode. For example:

fd = open("foo", O_RDWR); /* open file foo */

afd = vxfs_nattr_open(fd, "attribute1",
Chapter 488

Application Interface
Named Data Streams Programmatic Interface
O_RDWR|O_CREAT, 0777); /* create attribute

attribute1 for file foo */

write(afd, buf, 1024); /* writes to attribute file */

read(afd, buf, 1024); /* reads from attribute file */

dfd = vxfs_nattr_open(fd, ".", O_RDONLY);/* opens attribute

directory for file foo */

getdents(dfd, buf, 1024); /* reads directory entries for

attribute directory */

Namespace for Named Data Streams

Names starting with $vxfs: are reserved for VxFS. Creating a data stream where the name
starts with $vxfs: fail with an EINVAL error.

Behavior Changes in Other System Calls

Though the named data stream directory is hidden from the namespace, it is possible to open
the name data stream directory inode with a fchdir() or fchroot() call. Some of the
attributes (such as "..") are not defined for a named data streams directory.Any operation that
accesses these fields can fail. Attempts to create directories, symbolic links, or device files on a
named data stream directory will fail. VOP_SETATTR() done on a named data stream
directory or named data stream inode will also fail.
Chapter 4 89

Application Interface
Named Data Streams Programmatic Interface
Chapter 490

5 Storage Checkpoints

Storage Checkpoints are a feature of the VERITAS File System (VxFS) provide point-in-time
images of file system contents. These frozen images of VxFS file systems can be used in a
variety of applications such as full and incremental online backups, fast error recovery, and
product development testing. Storage Checkpoint replicas of real time databases can also be
Chapter 5 91

Storage Checkpoints
used for decision support and an assortment of database analyses.

This chapter discusses the following topics:

• “What is Storage Checkpoint ?” on page 93

• “How a Storage Checkpoint Works” on page 95

• “Types of Storage Checkpoints” on page 98

— “Data Storage Checkpoints” on page 98

— “Nodata Storage Checkpoints” on page 98

— “Removable Storage Checkpoints” on page 98

— “Non-mountable Storage Checkpoints” on page 99

• “Storage Checkpoint Administration” on page 100

— “Creating a Storage Checkpoint” on page 101

— “Removing a Storage Checkpoint” on page 102

— “Accessing a Storage Checkpoint” on page 102

— “Converting a Data Storage Checkpoint to a Nodata Storage Checkpoint” on page 104

• “Space Management Considerations” on page 112

• “File System Restore From Storage Checkpoints” on page 113

• “Storage Checkpoint Quotas” on page 118
Chapter 592

Storage Checkpoints
What is Storage Checkpoint ?
What is Storage Checkpoint ?
VERITAS File System provides a unique Storage Checkpoint facility that quickly creates a
persistent image of a file system at an exact point in time. Storage Checkpoints significantly
reduce I/O overhead by identifying and maintaining only the file system blocks that have
changed since the last Storage Checkpoint or backup through a copy-on-write technique (See
“How a Storage Checkpoint Works” on page 95). Unlike a disk-based mirroring technology
that requires a separate storage space, this VERITAS technology minimizes the use of disk
space by creating a Storage Checkpoint within the same free space available to the file
system.

Storage Checkpoints are data objects that are managed and controlled by the file system. As a
result, Storage Checkpoints are persistent across system reboots and crashes.You can create,
remove, and rename Storage Checkpoints because they are data objects with associated
names(See “Storage Checkpoint Administration” on page 100).After you create a Storage
Checkpoint of a mounted file system, you can also continue to create, remove, and update files
on the file system without affecting the logical image of the Storage Checkpoint. This
technology preserves not only the name space (directory hierarchy) ofthe file system, but also
the user data as it existed at the moment the Storage Checkpoint was taken.

Storage Checkpoints differ from VERITAS File System snapshots in the following ways
because they:

• Allow write operations to the Storage Checkpoint itself.

• Persist after a system reboot or failure.

• Share the same pool of free space as the file system.

• Maintain a relationship with other Storage Checkpoints by identifying changed file blocks
since the last Storage Checkpoint.

• Have multiple, read-only Storage Checkpoints that reduce I/O operations and required
storage space because the most recent Storage Checkpoint is the only one that
accumulates updates from the primary file system.

Various backup and replication solutions can take advantage of Storage Checkpoints. The
ability of Storage Checkpoints to track the file system blocks, which have changed since the
last Storage Checkpoint, facilitates backup and replication applications that need to retrieve
the changed data. Storage Checkpoints significantly minimize data movement and may
promote higher availability and data integrity by increasing the frequency of backup and
replication solutions.
Chapter 5 93

Storage Checkpoints
What is Storage Checkpoint ?
Storage Checkpoints can be taken in environments with a large number of files (for example,
file servers with millions of files) with little adverse impact on performance. Because the file
system does not remain frozen during Storage Checkpoint creation, applications can access
the file system even while the Storage Checkpoint is taken. However, Storage Checkpoint
creation may take several minutes to complete depending on the number of files in the file
system.
Chapter 594

Storage Checkpoints
How a Storage Checkpoint Works
How a Storage Checkpoint Works
The Storage Checkpoint facility freezes the mounted file system (known as the primary
fileset), initializes the Storage Checkpoint, and thaws the file system. Specifically, the file
system is first brought to a stable state where all of its data is written to disk, and the
freezing process momentarily blocks all I/O operations to the file system. A Storage
Checkpoint is then created without any actual data; the Storage Checkpoint instead points to
the block map (described below) of the primary fileset. The thawing process that follows
restarts I/O operations to the file system.

You can create a Storage Checkpoint on a single file system or a list of file systems. A Storage
Checkpoint of multiple file systems simultaneously freezes the file systems, creates a Storage
Checkpoint on all of the file systems, and thaws the file systems. As a result, the Storage
Checkpoints for multiple file systems have the same creation timestamp. The Storage
Checkpoint facility guarantees that multiple file system Storage Checkpoints are created on
all or none of the specified file systems (unless there is a system crash while the operation is
in progress).

NOTE The calling application is responsible for cleaning up Storage Checkpoints
after a system crash.

As mentioned above, a Storage Checkpoint of the primary fileset initially contains a pointer to
the file system block map rather than to any actual data. The block map points to the data on
the primary fileset. The figure below shows the file system /database and its Storage
Checkpoint. The Storage Checkpoint is logically identical to the primary fileset when the
Storage Checkpoint is created, but it does not contain any actual data blocks.
Chapter 5 95

Storage Checkpoints
How a Storage Checkpoint Works
Figure 5-1 Primary Fileset and its Storage Checkpoint

In the figure below, each block of the file system is represented by a square. Similar to the
previous figure, this figure shows a Storage Checkpoint containing pointers to the primary
fileset at the time the Storage Checkpoint is taken.

Figure 5-2 Initializing a Storage Checkpoint

The Storage Checkpoint presents the exact image of the file system by finding the data from
the primary fileset. As the primary fileset is updated, the original data is copied to the Storage
Checkpoint before the new data is written. When a write operation changes a specific data
block in the primary fileset, the old data is first read and copied to the Storage Checkpoint
before the primary fileset is updated. Subsequent writes to the specified data block on the
Chapter 596

Storage Checkpoints
How a Storage Checkpoint Works
primary fileset do not result in additional updates to the Storage Checkpoint because the old
data needs to be saved only once. As blocks in the primary fileset continue to change, the
Storage Checkpoint accumulates the original data blocks.

In the following figure, the third block originally containing C is updated. Before the block is
updated with new data, the original data is copied to the Storage Checkpoint. This is called
the copy-on-write technique, which allows the Storage Checkpoint to preserve the image of
the primary fileset when the Storage Checkpoint is taken.

Every update or write operation does not necessarily result in the process of copying data to
the Storage Checkpoint. In this example, subsequent updates to this block, now containing C,
are not copied to the Storage Checkpoint because the original image of the block containing C
is already saved.

Figure 5-3 Updates to the Primary Fileset
Chapter 5 97

Storage Checkpoints
Types of Storage Checkpoints
Types of Storage Checkpoints
You can create the following types of Storage Checkpoints:

• Data Storage Checkpoints

• Nodata Storage Checkpoints

• Removable Storage Checkpoints

• Non-mountable Storage Checkpoints

Data Storage Checkpoints

A data Storage Checkpoint is a complete image of the file system at the time the Storage
Checkpoint is created. This type of Storage Checkpoint contains the file system metadata and
file data blocks. You can mount, access, and write to a data Storage Checkpoint just as you
would to a file system. Data Storage Checkpoints are useful for backup applications that
require a consistent and stable image of an active file system. Data Storage Checkpoints
introduce some overhead to the system and to the application performing the write operation.
For best results, limit the life of data Storage Checkpoints to minimize the impact on system
resources. (See “Difference Between a Data and a Nodata Storage Checkpoint” on page 105)

Nodata Storage Checkpoints

A nodata Storage Checkpoint only contains file system metadata-no file data blocks. As the
original file system changes, the nodata Storage Checkpoint records the location of every
changed block. Nodata Storage Checkpoints use minimal system resources and have little
impact on the performance of the file system because the data itself does not have to be
copied. See(“Difference Between a Data and a Nodata Storage Checkpoint” on page 105).

Removable Storage Checkpoints

A removable Storage Checkpoint can "self-destruct" under certain conditions when Data
Storage Checkpoints the file system runs out of space (See “Space Management
Considerations” on page 112). After encountering certain out-of-space (ENOSPC) conditions,
the kernel removes Storage Checkpoints to free up space for the application to continue
running on the file system. In almost all situations, you should create Storage Checkpoints
with the removable attribute.
Chapter 598

Storage Checkpoints
Types of Storage Checkpoints
Non-mountable Storage Checkpoints

A non-mountable Storage Checkpoint cannot be mounted. You can use this type of Storage
Checkpoint as a security feature which prevents other applications from accessing the
Storage Checkpoint and modifying it.
Chapter 5 99

Storage Checkpoints
Storage Checkpoint Administration
Storage Checkpoint Administration
Storage Checkpoint administrative operations require the utility (see the fsckptadm(1M)
manual page). You can use the fsckptadm utility to create and remove Storage Checkpoints,
change attributes, and ascertain statistical data. Every Storage Checkpoint has an associated
name, which allows you to manage Storage Checkpoints; this name is limited to 127
characters and cannot contain a colon (:).

Storage Checkpoints require some space for metadata on the volume or set of volumes
specified by the file system allocation policy or Storage Checkpoint allocation policy. The
fsckptadm utility displays an error if the volume or set of volumes does not have enough free
space to contain the metadata. You can roughly approximate the amount of space required by
the metadata using a method that depends on the disk layout version of the file system.

For disk layout Version 5 or prior, multiply the number of inodes (# of inodes) by the inode
size (inosize) in bytes, and add 1 or 2 megabytes to get the approximate amount of space
required. You can determine the number of inodes with the fsckptadm utility, and the inode
size with the mkfs command:

fsckptadm -v info ’’ /mnt0
UNNAMED:

ctime = Mon Jan 01 12:20:54 2004
mtime = Mon Jan 01 13:37:06 2004
flags = largefiles, mounted,
of inodes = 23872
of blocks = 27867

.
.
.

of overlay bmaps = 0
mkfs -m /mnt0
mkfs -F vxfs -o bsize=1024,version=6,inosize=256,logsize=16384,
largefiles /mnt0

In this example, the approximate amount of space required by the metadata is 7 or 8
megabytes (23,872 x 256 bytes, plus 1 or 2 megabytes).

For disk layout Version 6, multiply the number of inodes by 1 byte, and add 1 or 2 megabytes
to get the approximate amount of space required. You can determine the number of inodes
using the fsckptadm utility as above. Using the output from the example for disk layout
Version 5 or prior, the approximate amount of space required by the metadata is just over one
or two megabytes (23,872 x 1 byte, plus 1 or 2 megabytes).
Chapter 5100

Storage Checkpoints
Storage Checkpoint Administration
Use the fsvoladm command to determine if the volume set has enough free space (seethe
fsvoladm(1M) manual page):

fsvoladm list /mnt0

devid size used avail name

0 20971520 8497658 12473862 mnt1

1 20971520 6328993 14642527 mnt2

2 20971520 4458462 16513058 mnt3

Creating a Storage Checkpoint

You can create a Storage Checkpoint using the fsckptadm utility. In these examples, /mnt0 is
a mounted VxFS file system with a Version 4 or Version 5 disk layout.

This example shows the creation of a nodata Storage Checkpoint (See “Space Management
Considerations” on page 112) named thu_7pm on /mnt0 and lists all Storage Checkpoints of
the /mnt0 file system:

fsckptadm -n create thu_7pm /mnt0

fsckptadm list /mnt0

/mnt0

thu_7pm:

ctime= Thu 3 Mar 2005 7:00:17 PM PST

mtime= Thu 3 Mar 2005 7:00:17 PM PST

flags= nodata, largefiles

This example shows the creation of a removable Storage Checkpoint named thu_8pm on
/mnt0 and lists all Storage Checkpoints of the /mnt0 file system:

fsckptadm -r create thu_8pm /mnt0

fsckptadm list /mnt0

/mnt0

thu_8pm:

ctime= Thu 3 Mar 2005 8:00:19 PM PST

mtime= Thu 3 Mar 2005 8:00:19 PM PST

flags= largefiles, removable

thu_7pm:
Chapter 5 101

Storage Checkpoints
Storage Checkpoint Administration
ctime= Thu 3 Mar 2005 7:00:17 PM PST

mtime= Thu 3 Mar 2005 7:00:17 PM PST

flags= nodata, largefiles

Removing a Storage Checkpoint

You can delete a Storage Checkpoint by specifying the remove keyword of the fsckptadm
command. Specifically, you can use either the synchronous or asynchronous method of
removing a Storage Checkpoint; the asynchronous method is the default method. The
synchronous method entirely removes the Storage Checkpoint and returns all of the blocks to
the file system before completing the fsckptadm operation.The asynchronous method simply
marks the Storage Checkpoint for removal and causes fsckptadm to return immediately. At a
later time, an independent kernel thread completes the removal operation and releases the
space used by the Storage Checkpoint.

In this example, /mnt0 is a mounted VxFS file system with a Version 4 disk layout. This
example shows the asynchronous removal of the Storage Checkpoint named thu_8pm and
synchronous removal of the Storage Checkpoint named thu_7pm. This example also lists all
the Storage Checkpoints remaining on the /mnt0 file system after the specified Storage
Checkpoint is removed:

fsckptadm remove thu_8pm /mnt0

fsckptadm list /mnt0

/mnt0

thu_7pm:

ctime= Thu 3 Mar 2005 7:00:17 PM PST

mtime= Thu 3 Mar 2005 7:00:17 PM PST

flags= nodata, largefiles

fsckptadm -s remove thu_7pm /mnt0

fsckptadm list /mnt0

/mnt0

Accessing a Storage Checkpoint

You can mount Storage Checkpoints using the mount command (see the mount_vxfs(1M)
manual page) with the mount option -o ckpt=ckpt_name. Observe the following rules when
mounting Storage Checkpoints:

• Storage Checkpoints are mounted as read-only Storage Checkpoints by default. If you
need to write to a Storage Checkpoint, mount it using the -o rw option.
Chapter 5102

Storage Checkpoints
Storage Checkpoint Administration
• If a Storage Checkpoint is originally mounted as a read-only Storage Checkpoint, you can
remount it as a writable Storage Checkpoint using the -o remount option.

• To mount a Storage Checkpoint of a file system, first mount the file system itself.

• To unmount a file system, first unmount all of its Storage Checkpoints.

WARNING If you create a Storage Checkpoint for backup purposes, do not mount
it as a writable Storage Checkpoint. You will lose the point-in-time
image if you accidently write to the Storage Checkpoint.

A Storage Checkpoint is mounted on a special pseudo device. This pseudo device does not
exist in the system name space; the device is internally created by the system and used while
the Storage Checkpoint is mounted. The pseudo device is removed after you unmount the
Storage Checkpoint. A pseudo device name is formed by appending the Storage Checkpoint
name to the file system device name using the colon character (:) as the separator.

For example, if a Storage Checkpoint named may_23 belongs to the file system residing on the
special device /dev/vx/dsk/fsvol/vol1, the Storage Checkpoint pseudo device name is:

/dev/vx/dsk/fsvol/vol1:may_23

To mount the Storage Checkpoint named may_23 as a read-only (default) Storage Checkpoint
on directory /fsvol_may_23, type:

mount -F vxfs -o ckpt=may_23 /dev/vx/dsk/fsvol/vol1:may_23 \

/fsvol_may_23

The /fsvol file system must already be mounted before the Storage Checkpoint can be
mounted. To remount the Storage Checkpoint named may_23 as a writable Storage
Checkpoint, type:

mount -F vxfs -o ckpt=may_23,remount,rw \

/dev/vx/dsk/fsvol/vol1:may_23 /fsvol_may_23

To mount this Storage Checkpoint automatically when the system starts up, put the following
entries in the /etc/fstab file:

Device Special
File

device

to fsck

mount

point

FS

type

fsck

pass

mount

at boot

mount

options

/dev/vx/dsk/fsol/
vol1

/dev/vx/rdsk/
fsvol/vol1

/fsvol vxfs 1 yes -
Chapter 5 103

Storage Checkpoints
Storage Checkpoint Administration
To mount a Storage Checkpoint of a cluster file system, you must also use the -o cluster
option:

mount -F vxfs -o cluster,ckpt=may_23 \

/dev/vx/dsk/fsvol/vol1:may_23 /fsvol_may_23

You can only mount a Storage Checkpoint clusterwide if the file system that the Storage
Checkpoint belongs to is also mounted clusterwide. Similarly, you can only mount a Storage
Checkpoint locally if the file system that the Storage Checkpoint belongs to is mounted locally.

You can unmount Storage Checkpoints using the umount command (see the
umount_vxfs(1M) manual page). Storage Checkpoints can be unmounted by the mount point
or pseudo device name:

umount /fsvol_may_23

umount /dev/vx/dsk/fsvol/vol1:may_23

/dev/vx/dsk/fsvol/vol1 /fsvol vxfs defaults 0 2

/dev/vx/dsk/fsvol/vol1:may_23 /fsvol_may_23 vxfs clone=may_23 0 0

NOTE You do not need to run the fsck utility on Storage Checkpoint pseudo devices
because pseudo devices are part of the actual file system

Converting a Data Storage Checkpoint to a Nodata Storage
Checkpoint

A nodata Storage Checkpoint does not contain actual file data. Instead, this type of Storage
Checkpoint contains a collection of markers indicating the location of all the changed blocks
since the Storage Checkpoint was created (“Types of Storage Checkpoints” on page 98)

You can use either the synchronous or asynchronous method to convert a data Storage
Checkpoint to a nodata Storage Checkpoint; the asynchronous method is the default method.
In a synchronous conversion, fsckptadm waits for all files to undergo the conversion process
to "nodata" status before completing the operation. In an asynchronous conversion,
fsckptadm returns immediately and marks the StorageCheckpoint as a nodata Storage
Checkpoint even though the Storage Checkpoint’s data blocks are not immediately returned

/dev/vx/dsk/fsvol
/

vol1:may_23

- /fsvol_
may_2
3

vxfs 0 yes ckpt=

may_23
Chapter 5104

Storage Checkpoints
Storage Checkpoint Administration
to the pool of free blocks in the file system. The Storage Checkpoint deallocates all of its file
data blocks in the background and eventually returns them to the pool of free blocks in the file
system.

If all of the older Storage Checkpoints in a file system are nodata Storage Chekpoints, use the
synchronous method to convert a data Storage Checkpoint to a nodata Storage Checkpoint. If
an older data Storage Checkpoint exists in the file system, use the asynchronous method to
mark the Storage Checkpoint you want to convert for a delayed conversion. In this case, the
actual conversion will continue to be delayed until the Storage Checkpoint becomes the oldest
Storage Checkpoint in the file system, or all of the older Storage Checkpoints have been
converted to nodata Storage Checkpoints.

NOTE You cannot convert a nodata Storage Checkpoint to a data Storage Checkpoint
because a nodata Storage Checkpoint only keeps track of the location of block
changes and does not save the content of file data blocks

Difference Between a Data and a Nodata Storage Checkpoint

The following example shows the difference between data Storage Checkpoints and nodata
Storage Checkpoints:

1. Create a file system and mount it on /mnt0:

mkfs -F vxfs /dev/vx/rdsk/dg1/test0

version 6 layout

1024000 sectors, 512000 blocks of size 1024, log size 1024

blocks, largefiles supported

mount -F vxfs /dev/vx/dsk/dg1/test0 /mnt0

2. Create a small file with a known content. Create a Storage Checkpoint and mount it on
/mnt0@5_30pm:

echo "hello, world" > /mnt0/file

fsckptadm create ckpt@5_30pm /mnt0

mkdir /mnt0@5_30pm

mount -F vxfs -o ckpt=ckpt@5_30pm \

/dev/vx/dsk/dg1/test0:ckpt@5_30pm /mnt0@5_30pm

3. Examine the content of the original file and the Storage Checkpoint file:

cat /mnt0/file
Chapter 5 105

Storage Checkpoints
Storage Checkpoint Administration
hello, world

cat /mnt0@5_30pm/file

hello, world

4. Change the content of the original file:

echo "goodbye" > /mnt0/file

5. Examine the content of the original file and the Storage Checkpoint file. The original file
contains the latest data while the Storage Checkpoint file still contains the data at the
time of the Storage Checkpoint creation:

cat /mnt0/file

goodbye

cat /mnt0@5_30pm/file

hello, world

6. Unmount the Storage Checkpoint, convert the Storage Checkpoint to a nodata Storage
Checkpoint, and mount the Storage Checkpoint again.

umount /mnt0@5_30pm

fsckptadm -s set nodata ckpt@5_30pm /mnt0

mount -F vxfs -o ckpt=ckpt@5_30pm \

/dev/vx/dsk/dg1/test0:ckpt@5_30pm /mnt0@5_30pm

7. Examine the content of both files. The original file must contain the latest data:

cat /mnt0/file

goodbye

You can traverse and read the directories of the nodata Storage Checkpoint; however, the files
contain no data, only markers to indicate which block of the file has been changed since the
Storage Checkpoint was created:

ls -l /mnt0@5_30pm/file

-rw-r--r-- 1 root other 13 Jul 13 17:13 /mnt0@5_30pm/file

cat /mnt0@5_30pm/file

cat: /mnt0@5_30pm/file: Input/output error
Chapter 5106

Storage Checkpoints
Storage Checkpoint Administration
Conversion with Multiple Storage Checkpoints

The following example highlights the conversion of data Storage Checkpoints to nodata
Storage Checkpoints, particularly when dealing with older Storage Checkpoints on the same
file system:

To convert Storage Checkpoints :

1. Create a file system and mount it on /mnt0:

mkfs -F vxfs /dev/vx/rdsk/dg1/test0

version 6 layout

1024000 sectors, 512000 blocks of size 1024, log size 1024 blocks

largefiles supported

mount -F vxfs /dev/vx/dsk/dg1/test0 /mnt0

2. Create four data Storage Checkpoints on this file system, note the order of creation, and
list them:

fsckptadm create oldest /mnt0

fsckptadm create older /mnt0

fsckptadm create old /mnt0

fsckptadm create latest /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 11:56:55 2004

mtime = Mon 26 Jul 11:56:55 2004

flags = largefiles

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004
Chapter 5 107

Storage Checkpoints
Storage Checkpoint Administration
flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

3. Try to convert synchronously the "latest" Storage Checkpoint to a nodata Storage
Checkpoint. The attempt will fail because the Storage Checkpoints older than the "latest"
Storage Checkpoint are data Storage Checkpoints, namely the Storage Checkpoints "old",
"older", and "oldest":

fsckptadm -s set nodata latest /mnt0 UX:vxfs fsckptadm: ERROR: V-3-24632:
storage checkpoint set failed on latest. File exists (17)

4. You can instead convert the "latest" Storage Checkpoint to a nodata Storage Checkpoint
in a delayed or asynchronous manner. If you list the Storage Checkpoints, you will see
that the "latest" Storage Checkpoint is marked for conversion in the future

fsckptadm set nodata latest /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 11:56:55 2004

mtime = Mon 26 Jul 11:56:55 2004

flags = nodata, largefiles, delayed

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004
Chapter 5108

Storage Checkpoints
Storage Checkpoint Administration
flags = largefiles

5. You can combine the three previous steps and create the "latest" Storage Checkpoint as a
nodata Storage Checkpoint. The creation process will detect the presence of the older data
Storage Checkpoints and create the "latest" Storage Checkpoint as a delayed nodata
Storage Checkpoint. First remove the "latest" Storage Checkpoint:

fsckptadm remove latest /mnt0

fsckptadm list /mnt0

/mnt0

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

Then recreate it as a nodata Storage Checkpoint:

fsckptadm -n create latest /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 12:06:42 2004

mtime = Mon 26 Jul 12:06:42 2004

flags = nodata, largefiles, delayed

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004
Chapter 5 109

Storage Checkpoints
Storage Checkpoint Administration
flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

6. You can synchronously convert the "oldest" Storage Checkpoint to a nodata Storage
Checkpoint because no older Storage Checkpoints exist that contain data in the file
system:

fsckptadm -s set nodata oldest /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 12:06:42 2004

mtime = Mon 26 Jul 12:06:42 2004

flags = nodata, largefiles, delayed

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = nodata, largefiles
Chapter 5110

Storage Checkpoints
Storage Checkpoint Administration
7. Remove the "older" and "old" Storage Checkpoints. After you remove the "older" and "old"
Storage Checkpoints, the "latest" Storage Checkpoint is automatically converted to a
nodata Storage Checkpoint because the only remaining older Storage Checkpoint
("oldest") is already a nodata Storage Checkpoint:

fsckptadm remove older /mnt0

fsckptadm remove old /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 12:06:42 2004

mtime = Mon 26 Jul 12:06:42 2004

flags = nodata, largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = nodata, largefiles
Chapter 5 111

Storage Checkpoints
Space Management Considerations
Space Management Considerations
Several operations, such as removing or overwriting a file, can fail when a file system
containing Storage Checkpoints runs out of space. Usually these operations do not fail
because of insufficient space on the file system, but these operations on a file system
containing Storage Checkpoints can cause a data block copy that, in turn, may require extent
allocation. If the system cannot allocate sufficient space, the operation will fail.

Database applications usually preallocate storage for their files and may not expect a write
operation to fail. If a file system runs out of space, the kernel automatically removes Storage
Checkpoints and attempts to complete the write operation after sufficient space becomes
available. The kernel removes Storage Checkpoints to prevent commands, such as rm (see the
rm(1) manual page), from failing under an out-of-space (ENOSPC) condition.

The kernel will follow these policies when automatically removing Storage Checkpoints:

• Remove as few Storage Checkpoints as possible to complete the operation.

• Never select a non-removable Storage Checkpoint.

• Select a nodata Storage Checkpoint only when data Storage Checkpoints no longer exist.

• Remove the oldest Storage Checkpoint first.
Chapter 5112

Storage Checkpoints
File System Restore From Storage Checkpoints
File System Restore From Storage Checkpoints
Mountable data Storage Checkpoints on a consistent and undamaged file system can be used
by backup and restore applications to restore either individual files or an entire file system.
Restoration from Storage Checkpoints can also help recover incorrectly modified files, but
typically cannot recover from hardware damage or other file system integrity problems.

NOTE Note For hardware or other integrity problems, Storage Checkpoints must be
supplemented by backups from other media.

Files can be restored by copying the entire file from a mounted Storage Checkpoint back to the
primary fileset. To restore an entire file system, you can designate a mountable data Storage
Checkpoint as the primary fileset using the fsckpt_restore command (see the
fsckpt_restore(1M) manual page). When using the fsckpt_restore command to restore a
file system from a Storage Checkpoint, all changes made to that file system after that Storage
Checkpoint’s creation date are permanently lost. The only Storage Checkpoints and data
preserved are those that were created at the same time, or before, the selected Storage
Checkpoint’s creation. The file system cannot be mounted when fsckpt_restore is invoked.

NOTE Note Files can be restored very efficiently by applications using the
fsckpt_fbmap(3) library function to restore only modified portions of a files
data.

Example of Restoring a File From a Storage Checkpoint

The following example restores a file, MyFile.txt, which resides in your home directory, from
the Storage Checkpoint "CKPT1" to the device /dev/vx/dsk/vol-01.The mount point for the
device is /home.

1. Create the Storage Checkpoint CKPT1 of /home.

$ fckptadm create CKPT1 /home

2. Mount Storage Checkpoint CKPT1 on the directory /home/checkpoints/mar_4.

$ mount -F vxfs -o ckpt=CKPT1 /dev/vx/dsk/vol-01:CKPT1 \

/home/checkpoints/mar_4
Chapter 5 113

Storage Checkpoints
File System Restore From Storage Checkpoints
3. Delete the file MyFile.txt from your home directory.

$ cd /home/users/me

$ rm MyFile.txt

4. Go to the /home/checkpoints/mar_4/users/me directory, which contains the image of
your home directory.

$ cd /home/checkpoints/mar_4/users/me

$ ls -l

-rw-r--r-- 1 me staff 14910 Mar 4 17:09 MyFile.txt

5. Copy the file MyFile.txt to your home directory.

$ cp MyFile.txt /home/users/me

$ cd /home/users/me

$ ls -l

-rw-r--r-- 1 me staff 14910 Mar 4 18:21 MyFile.txt

Example of Restoring a File System From a Storage Checkpoint

The following example restores a file system from the Storage Checkpoint "CKPT3." The
filesets listed before the restoration show an unnamed root fileset and six Storage
Checkpoints.

Figure 5-4 Example of Restoring a File System From a Storage Checkpoint

1. Run the fsckpt_restore command:

fsckpt_restore -l /dev/vx/dsk/dg1/vol2
Chapter 5114

Storage Checkpoints
File System Restore From Storage Checkpoints
/dev/vx/dsk/dg1/vol2:

UNNAMED:

ctime = Thu 08 May 2004 06:28:26 PM PST

mtime = Thu 08 May 2004 06:28:26 PM PST

flags = largefiles, file system root

CKPT6:

ctime = Thu 08 May 2004 06:28:35 PM PST

mtime = Thu 08 May 2004 06:28:35 PM PST

flags = largefiles

CKPT5:

ctime = Thu 08 May 2004 06:28:34 PM PST

mtime = Thu 08 May 2004 06:28:34 PM PST

flags = largefiles, nomount

CKPT4:

ctime = Thu 08 May 2004 06:28:33 PM PST

mtime = Thu 08 May 2004 06:28:33 PM PST

flags = largefiles

CKPT3:

ctime = Thu 08 May 2004 06:28:36 PM PST

mtime = Thu 08 May 2004 06:28:36 PM PST

flags = largefiles

CKPT2:

ctime = Thu 08 May 2004 06:28:30 PM PST

mtime = Thu 08 May 2004 06:28:30 PM PST

flags = largefiles

CKPT1:

ctime = Thu 08 May 2004 06:28:29 PM PST

mtime = Thu 08 May 2004 06:28:29 PM PST

flags = nodata, largefiles

2. In this example, select the Storage Checkpoint "CKPT3" as the new root fileset:
Chapter 5 115

Storage Checkpoints
File System Restore From Storage Checkpoints
Select Storage Checkpoint for restore operation

or <Control/D> (EOF) to exit

or <Return> to list Storage Checkpoints: CKPT3

CKPT3:

ctime = Thu 08 May 2004 06:28:31 PM PST

mtime = Thu 08 May 2004 06:28:36 PM PST

flags = largefiles

UX:vxfs fsckpt_restore: WARNING: V-3-24640: Any file system

changes or Storage Checkpoints made after

Thu 08 May 2004 06:28:31 PM PST will be lost.

3. Enter "y" to restore the file system from CKPT3:

Restore the file system from Storage Checkpoint CKPT3 ? (ynq) y (Yes)

UX:vxfs fsckpt_restore: INFO: V-3-23760: File system restored

If the filesets are listed at this point, it shows that the former UNNAMED root fileset and
CKPT6, CKPT5, and CKPT4 were removed, and that CKPT3 is now the primary fileset.
CKPT3 is now the fileset that will be mounted by default.

Figure 5-5 Restored File Sets

4. Run the fsckpt_restore command:

fsckpt_restore -l /dev/vx/dsk/dg1/vol2

/dev/vx/dsk/dg1/vol2:

CKPT3:
Chapter 5116

Storage Checkpoints
File System Restore From Storage Checkpoints
ctime = Thu 08 May 2004 06:28:31 PM PST

mtime = Thu 08 May 2004 06:28:36 PM PST

flags = largefiles, file system root

CKPT2:

ctime = Thu 08 May 2004 06:28:30 PM PST

mtime = Thu 08 May 2004 06:28:30 PM PST

flags = largefiles

CKPT1:

ctime = Thu 08 May 2004 06:28:29 PM PST

mtime = Thu 08 May 2004 06:28:29 PM PST

flags = nodata, largefiles

Select Storage Checkpoint for restore operation

or <Control/D> (EOF) to exit

or <Return> to list Storage Checkpoints:
Chapter 5 117

Storage Checkpoints
Storage Checkpoint Quotas
Storage Checkpoint Quotas
VxFS provides options to the fsckptadm command interface to administer Storage
Checkpoint quotas. Storage Checkpoint quotas set limits on the number of blocks used by a
primary fileset and all of its related Storage Checkpoints.

hard limit An absolute limit that cannot be exceeded. If a hard limit is exceeded, all
further allocations on any of the Storage Checkpoints fail, but existing
Storage Checkpoints are preserved.

soft limit Must be lower than the hard limit. If a soft limit is exceeded, no new Storage
Checkpoints can be created. The number of blocks used must return below
the soft limit before more Storage Checkpoints can be created. An alert and
console message are generated.

In case of a hard limit violation, two solutions are possible, enacted by specifying or not
specifying the -f option for the fsckptadm utility (see the fsckptadm(1M) manual page):

1. If the -f option not is specified, one or many removable Storage Checkpoints are deleted
to make space for the operation to succeed. This is the default solution.

2. If the -f option is specified, all further allocations on any of the Storage Checkpoints fail,
but existing Storage Checkpoints are preserved.

NOTE Sometimes if a file is removed while it is opened by another process, the
removal process is deferred until the last close. Because the removal of a file
may trigger pushing data to a "downstream" Storage Checkpoint (that is, the
next older Storage Checkpoint), a fileset hard limit quota violation may occur.
In this scenario, the hard limit is relaxed to prevent an inode from being
marked bad. This is also true for some asynchronous inode operations.
Chapter 5118

6 Online Backup Using File System
Snapshots
This chapter describes the online backup facility provided with the VERITAS File System
(VxFS). The snapshot feature of VxFS can be used to create a snapshot image of a mounted
file system, which becomes a duplicate read-only copy of the mounted file system. This
chapter also provides a description of how to create a snapshot file system and some examples
of backing up all or part of a file system using the snapshot mechanism.

The following topics are covered in this chapter:

• Snapshot File Systems

• Using a Snapshot File System for Backup

• Creating a Snapshot File System

• Making a Backup

• Performance of Snapshot File Systems

• Differences Between Snapshots and Storage Checkpoints

• Snapshot File System Internals

— Snapshot File System Disk Structure

— How a Snapshot File System Works
Chapter 6 119

Online Backup Using File System Snapshots
Snapshot File Systems
Snapshot File Systems
A snapshot file system is an exact image of a VxFS file system, referred to as the snapped file
system, that provides a mechanism for making backups. The snapshot is a consistent view of
the file system “snapped” at the point in time the snapshot is made. You can select files to
back up from the snapshot (using a standard utility such as cpio or cp), or back up the entire
file system image (using the vxdump or fscat utilities).

You use the mount command to create a snapshot file system (the mkfs command is not
required). A snapshot file system is always read-only. A snapshot file system exists only as
long as it and the snapped file system are mounted and ceases to exist when unmounted. A
snapped file system cannot be unmounted until all of its snapshots are unmounted. Although
it is possible to have multiple snapshots of a file system made at different times, it is not
possible to make a snapshot of a snapshot.

NOTE A snapshot file system ceases to exist when unmounted. If mounted again, it is
actually a fresh snapshot of the snapped file system.

A snapshot file system must be unmounted before its dependent snapped file
system can be unmounted. Neither the fuser command nor the mount
command will indicate that a snapped file system cannot be unmounted
because a snapshot of it exists.

On cluster file systems, snapshots can be created on any node in the cluster, and backup
operations can be performed from that node. The snapshot of a cluster file system is accessible
only on the node where it is created, that is, the snapshot file system itself cannot be cluster
mounted. See the VERITAS SANPoint Foundation Suite Installation and Configuration
Guide for more information on creating snapshots on cluster file systems.
Chapter 6120

Online Backup Using File System Snapshots
Using a Snapshot File System for Backup
Using a Snapshot File System for Backup
After a snapshot file system is created, the snapshot performs a consistent backup of data in
the snapped file system.

Backup programs (such as cpio) that back up a standard file system tree can be used without
modification on a snapshot file system because the snapshot presents the same data as the
snapped file system. Backup programs (such as vxdump) that access the disk structures of a
file system require some modifications to handle a snapshot file system.

VxFS utilities recognize snapshot file systems and modify their behavior so that they operate
the same way on snapshots as they do on standard file systems. Other backup programs that
typically read the raw disk image cannot work on snapshots without altering the backup
procedure.

These other backup programs can use the fscat command to obtain a raw image of the entire
file system that is identical to an image obtainable by running a dd command on the disk
device containing the snapped file system at the exact moment the snapshot was created. The
snapread ioctl takes arguments similar to those of the read system call and returns the
same results that are obtainable by performing a read on the disk device containing the
snapped file system at the exact time the snapshot was created. In both cases, however, the
snapshot file system provides a consistent image of the snapped file system with all activity
complete—it is an instantaneous read of the entire file system. This is much different than
the results that would be obtained by a dd or read command on the disk device of an active
file system.

If you create a complete backup of a snapshot file system using a utility such as vxdump and
later restore it, you must run the fsck command on the restored file system because the
snapshot file system is consistent, but not clean. That is, the file system may have some
extended inode operations to complete, but there should be no other changes. Because a
snapshot file system is not writable, it cannot be fully checked, but the fsck -n command can
be used to report any inconsistencies.
Chapter 6 121

Online Backup Using File System Snapshots
Creating a Snapshot File System
Creating a Snapshot File System
You create a snapshot file system by using the -o snapof= option of the mount command.
The -o snapsize= option may also be required if the device you are mounting does not
identify the device size in its disk label, or if you want a size smaller than the entire device.
Use the following syntax to create a snapshot file system:

 # mount -F vxfs -o snapof=special,snapsize=snapshot_size \
snapshot_special snapshot_mount_point

You must make the snapshot file system large enough to hold any blocks on the snapped file
system that may be written to while the snapshot file system exists. If a snapshot runs out of
blocks to hold copied data, it is disabled and further attempts to access the snapshot file
system fail.

During periods of low activity (such as nights and weekends), a snapshot typically requires
about two to six percent of the blocks of the snapped file system. During a period of high
activity, the snapshot of a typical file system may require 15 percent of the blocks of the
snapped file system. Most file systems do not turn over 15 percent of data in a single day.
These approximate percentages tend to be lower for larger file systems and higher for smaller
file systems. You can allocate blocks to a snapshot based on characteristics such as file system
usage and duration of backups.

CAUTION Any existing data on the device used for the snapshot is overwritten.
Chapter 6122

Online Backup Using File System Snapshots
Making a Backup
Making a Backup
Here are some typical examples of making a backup of a 300,000 block file system named
/home using a snapshot file system on /dev/vx/dsk/fsvol/vol1 with a snapshot mount
point of /backup/home:

• To back up files changed within the last week using cpio:

mount -F vxfs -o snapof=/home,snapsize=100000 \
/dev/vx/dsk/fsvol/vol1 /backup/home

cd /backup

find home -ctime -7 -depth -print | cpio -oc > /dev/rmt/0m

umount /backup/home

• To do a full backup of /home, which exists on disk /dev/vx/dsk/fsvol/vol1, and use dd
to control blocking of output onto tape device using vxdump:

vxdump f - /dev/vx/dsk/fsvol/vol1 | dd bs=128k > /dev/rmt/0m

• To do a level 3 backup of /dev/vx/dsk/fsvol/vol1 and collect those files that have
changed in the current directory:

vxdump 3f - /dev/vx/dsk/fsvol/vol1 | vxrestore -xf -

• To do a full backup of a snapshot file system:

mount -F vxfs -o snapof=/home,snapsize=100000 \
/dev/vx/dsk/fsvol/vol1 /backup/home

vxdump f - /dev/vx/dsk/fsvol/vol1 | dd bs=128k > /dev/rmt/0m

The vxdump utility ascertains whether /dev/vx/dsk/fsvol/vol1 is a snapshot mounted as
/backup/home and do the appropriate work to get the snapshot data through the mount point.
Chapter 6 123

Online Backup Using File System Snapshots
Performance of Snapshot File Systems
Performance of Snapshot File Systems
Snapshot file systems maximize the performance of the snapshot at the expense of writes to
the snapped file system. Reads from a snapshot file system typically perform at nearly the
throughput rates of reads from a standard VxFS file system.

The performance of reads from the snapped file system are generally not affected. However
writes to the snapped file system, however, typically average two to three times as long as
without a snapshot. This is because the initial write to a data block requires reading the old
data, writing the data to the snapshot, and then writing the new data to the snapped file
system. If there are multiple snapshots of the same snapped file system, writes are even
slower. Only the initial write to a block experiences this delay, so operations such as writes to
the intent log or inode updates proceed at normal speed after the initial write.

Reads from the snapshot file system are impacted if the snapped file system is busy because
the snapshot reads are slowed by the disk I/O associated with the snapped file system.

The overall impact of the snapshot is dependent on the read to write ratio of an application
and the mixing of the I/O operations. For example, a database application running an online
transaction processing (OLTP) workload on a snapped file system was measured at about 15
to 20 percent slower than a file system that was not snapped.
Chapter 6124

Online Backup Using File System Snapshots
Differences Between Snapshots and Storage Checkpoints
Differences Between Snapshots and Storage Checkpoints
While snapshots and Storage Checkpoints both create a point-in-time image of a file system
and only the changed data blocks are updated, there are significant differences between the
two technologies:

• Snapshots require a separate device for storage. Storage Checkpoints reside on the same
device as the original file system.

• Snapshots are read-only. Storage Checkpoints can be read-only or read-write.

• Snapshots are transient. Storage Checkpoints are persistent.

• Snapshots cease to exist after being unmounted. Storage Checkpoints can exist and be
mounted on their own.

• Snapshots track changed blocks on the file system level. Storage Checkpoints track
changed blocks on each file in the file system.

• Although there can be more than one snapshot of a file system, they are all based on
a single, parent file system. Storage Checkpoints can be based on other Storage
Checkpoints.

Storage Checkpoints also serve as the enabling technology for two other VERITAS features:
Block-Level Incremental Backups and Storage Rollback, which are used extensively for
backing up databases. See Chapter 5, “Storage Checkpoints,” on page 91 for more
information.
Chapter 6 125

Online Backup Using File System Snapshots
Snapshot File System Internals
Snapshot File System Internals
The following sections describe the internal structure of a snapshot file system and how it
copies changed data blocks from the original snapped file system.

Snapshot File System Disk Structure

A snapshot file system consists of:

• A super-block

• A bitmap

• A blockmap

• Data blocks copied from the snapped file system

The following figure shows the disk structure of a snapshot file system:

Figure 6-1 The Snapshot Disk Structure

The super-block is similar to the super-block of a standard VxFS file system, but the magic
number is different and many of the fields are not applicable.

The bitmap contains one bit for every block on the snapped file system. Initially, all bitmap
entries are zero. A set bit indicates that the appropriate block was copied from the snapped
file system to the snapshot. In this case, the appropriate position in the blockmap references
the copied block.

 super-block

 bitmap

 blockmap

 data block
Chapter 6126

Online Backup Using File System Snapshots
Snapshot File System Internals
The blockmap contains one entry for each block on the snapped file system. Initially, all
entries are zero. When a block is copied from the snapped file system to the snapshot, the
appropriate entry in the blockmap is changed to contain the block number on the snapshot file
system that holds the data from the snapped file system.

The data blocks are filled by data copied from the snapped file system, starting from the
beginning of the data block area.

How a Snapshot File System Works

A snapshot file system is created by mounting an empty disk slice as a snapshot of a currently
mounted file system. The bitmap, blockmap and super-block are initialized and then the
currently mounted file system is frozen (see “Freeze and Thaw” on page 86, for a description of
the VX_FREEZE ioctl). After the file system to be snapped is frozen, the snapshot is enabled
and mounted and the snapped file system is thawed. The snapshot appears as an exact image
of the snapped file system at the time the snapshot was made.

Initially, the snapshot file system satisfies read requests by finding the data on the snapped
file system and returning it to the requesting process. When an inode update or a write
changes the data in block n of the snapped file system, the old data is first read and copied to
the snapshot before the snapped file system is updated. The bitmap entry for block n is
changed from 0 to 1 (indicating that the data for block n can be found on the snapped file
system). The blockmap entry for block n is changed from 0 to the block number on the
snapshot file system containing the old data.

A subsequent read request for block n on the snapshot file system will be satisfied by checking
the bitmap entry for block n and reading the data from the indicated block on the snapshot file
system, instead of from block n on the snapped file system. This technique is called
copy-on-write. Subsequent writes to block n on the snapped file system do not result in
additional copies to the snapshot file system, since the old data only needs to be saved once.

All updates to the snapped file system for inodes, directories, data in files, extent maps, and so
forth, are handled in this fashion so that the snapshot can present a consistent view of all file
system structures on the snapped file system for the time when the snapshot was created. As
data blocks are changed on the snapped file system, the snapshot gradually fills with data
copied from the snapped file system.

The amount of disk space required for the snapshot depends on the rate of change of the
snapped file system and the amount of time the snapshot is maintained. In the worst case, the
snapped file system is completely full and every file is removed and rewritten. The snapshot
file system would need enough blocks to hold a copy of every block on the snapped file system,
plus additional blocks for the data structures that make up the snapshot file system. This is
approximately 101 percent of the size of the snapped file system. Normally, most file systems
do not undergo changes at this extreme rate. During periods of low activity, the snapshot
Chapter 6 127

Online Backup Using File System Snapshots
Snapshot File System Internals
should only require two to six percent of the blocks of the snapped file system. During periods
of high activity, the snapshot might require 15 percent of the blocks of the snapped file
system. These percentages tend to be lower for larger file systems and higher for smaller ones.

CAUTION If a snapshot file system runs out of space for changed data blocks, it is disabled
and all further access to it fails. This does not affect the snapped file system.
Chapter 6128

7 Quota
The VERITAS File System (VxFS) supports user quotas. The quota system limits the use of
two principal resources of a file system: files and data blocks. For each of these resources, you
can assign quotas to individual users to limit their usage.

The following topics are covered in this chapter:

• Quota Limits

• Quota Files on VxFS

• Quota Commands

• Using Quotas

For more information on VxFS quotas, see .See “Storage Checkpoints” on page 91
Chapter 7 129

Quota
Quota Limits
Quota Limits
You can set limits for individual users to file and data block usage on a file system. You can set
two kinds of limits for each of the two resources:

• The hard limit is an absolute limit that cannot be exceeded under any circumstances.

• The soft limit, which must be lower than the hard limit, can be exceeded, but only for a
limited time. The time limit can be configured on a per-file system basis only. The VxFS
default limit is seven days.

A typical use of soft limits is when a user must run an application that could generate large
temporary files. In this case, you can allow the user to exceed the quota limit for a limited
time. No allocations are allowed after the expiration of the time limit. Use the edquota
command to set limits (see “Using Quotas” on page 131 for an example).

Although file and data block limits can be set individually for each user, the time limits apply
to the file system as a whole. The quota limit information is associated with user IDs and is
stored in a user quota file (see “Quota Files on VxFS” on page 130).

The quota soft limit can be exceeded when VxFS preallocates space to a file. See “Attribute
Specifics” on page 72 for information on extent allocation policies.

Quota limits cannot exceed two terabytes on a Version 5 disk layout.

Quota Files on VxFS
A quotas file (named quotas) must exist in the root directory of a file system for any of the
quota commands to work. The files in the root directory are referred to as the external quotas
file. VxFS also maintains an internal quotas file for its own use.

The quota administration commands read and write to the external quotas file to obtain or
change usage limits. VxFS uses the internal file to maintain counts of data blocks and inodes
used by each user. When quotas are turned on, the quota limits are copied from the external
quotas file into the internal quotas file. While quotas are on, all the changes in the usage
information and changes to quotas are registered in the internal quotas file. When quotas are
turned off, the contents of the internal quotas file are copied into the external quotas file so
that all data between the two files is synchronized.
Chapter 7130

Quota
Quota Commands
Quota Commands
Most of the quotas commands in VxFS are similar to BSD quotas commands. In general,
quota administration for VxFS is performed using commands similar to HFS quota
commands. The VxFS mount command supports a special mount option (–o quota), that can
be used to turn on quotas at mount time.

NOTE For additional information on the quota commands, see the corresponding
manual pages.When VxFS file systems are exported via NFS, the VxFS quota
commands on the NFS client cannot query or edit quotas. You can use the VxFS
quota commands on the server to query or edit quotas.

Using Quotas
This section shows usage examples of the VxFS quota commands.

quotaon

To use the quota functionality on a file system, quotas must be turned on. You can turn them
on at mount time or after a file system is mounted.

NOTE Before turning on quotas, the root directory of the file system must contain a
file for user quotas named quotas owned by root.

To turn on quotas for a VxFS file system, enter:

quotaon /mount_point

mount

You can also turn on quotas for a file system at mount time by specifying the –o quota option
to the mount command:

mount –F vxfs –o quota special|mount_point
Chapter 7 131

Quota
Using Quotas
edquota

You can set up user quotas using the edquota command. You must have superuser privileges
to edit quotas:

edquota username

edquota creates a temporary file for the given user; this file contains on–disk quotas for each
mounted file system that has a quotas file. It is not necessary that quotas be turned on for
edquota to work. However, the quota limits are applicable only after quotas are turned on for
a given file system.

The soft and hard limits can be modified or assigned values. For any user, usage can never
exceed the hard limit after quotas are turned on. Time limits can be modified using the
command:

edquota –t

Modified time limits apply to the entire file system and cannot be set selectively for each user.

quota

Use the quota command to view a user’s disk quotas and usage on VxFS file systems:

quota –v username

This displays the user's quotas and disk usage on all mounted VxFS file systems where the
quotas file exists.

quot

Use the quot command to display the number of blocks owned by each user in a file system.
The following command displays the number of files and the space owned by each user:

quot –f filesystem

quotaoff

To turn off quotas for a mounted file system, enter:

quotaoff /mount_point
Chapter 7132

8 File Change Log

CAUTION File Change Log is currently not officially supported, and VERITAS strongly
cautions against using it in a production environment. Although FCL is not
Chapter 8 133

File Change Log
100% complete, it is functional and can be used to begin developing new
applications. File Change Log will be fully operational in the next VERITAS
File System maintenance release.

The VxFS File Change Log (FCL) tracks changes to files and directories in a file system.
Applications that can make use of FCL are those that are typically required to scan an entire
file system to discover changes since the last scan, such as backup utilities, webcrawlers,
search engines, and replication programs.

The File Change Log records file system changes such as creates, links, unlinks, renaming,
data appended, data overwritten, data truncated, extended attribute modifications, holes
punched, and miscellaneous file property updates.

NOTE FCL records only changed not the actual data. It is the responsibility of the
application to examine the files that have changed data to determine which
data has changed.

FCL functionality is a separately licensable feature. See the VERITAS File System Release
Notes for more information.
Chapter 8134

File Change Log
The File Change Log File
The File Change Log File
FCL stores changes in a sparse file in the file system namespace. The FCL log file is always
located in mount_point/lost+found/changelog. The FCL file behaves like a regular file, but
some operations are prohibited.The standard system calls open(2), lseek(2), read(2)
and close(2) can access the data in the FCL. The system calls write(2), mmap(2) and
rename(2) are not allowed.

The FCL log file contains both the information about the FCL (stored in the FCL superblock),
and the changes to files and directories in the file system, stored as FCL records. Details on
the structure and semantics of the FCL superblock and FCL records, and the types of changes
trackedby the FCL, are located in the header file /opt/VRTSvxfs/include/fcl.h (See "“File
Change Log Programmatic Interface” on page 138").
Chapter 8 135

File Change Log
File Change Log Administrative Interface
File Change Log Administrative Interface
The FCL can be set up and tuned through the VxFS administrative commands fcladm and
vxtunefs. The FCL tunable parameters are:

fcl_keeptime Specifies the duration in seconds that FCL records stay in the FCL file
before they can be purged. The first records to be purged are the oldest ones,
which are located at the beginning of the file. Additionally, records at the
beginning of the file can be purged if allocation to the FCL file exceeds
fcl_maxalloc bytes. The default value is 0. Note that fcl_keeptime takes
precedence over fcl_maxalloc. No hole is punched if the FCL file exceeds
fcl_maxalloc bytes but the life of the oldest record has not reached
fcl_keeptime seconds.

fcl_maxalloc Specifies the maximum number of spaces in bytes to be allocated to the FCL
file. When the space allocated exceeds fcl_maxalloc, a hole is punched at the
beginning of the file. As a result, records are purged and the first valid offset
(fc_foff) is updated. The minimum value of fcl_maxalloc is 4MB. The default
value is fs_size/33.

fcl_winterval Specifies the time in seconds that must elapse before the FCL records an
overwrite, extending write, or a truncate. This helps to reduce the number of
repetitive records in the FCL. fcl_winterval time-out is per inode. If an inode
happens to go out of cache and returns, its write interval is reset. As a
result, there could be more than one write record for that file in the same
write interval. The default value is 3600 seconds.

Either or both fcl_maxalloc/fcl_keeptime must be set to activate the FCL. The following
are examples of using the FCL administration command.

To activate the FCL for a mounted file system, enter:

fcladm on mount_point

To deactivate the FCL for a mounted file system, enter:

fcladm off mount_point

To remove the FCL file for a mounted file system (the FCL must be OFF before it can be
removed), enter:

fcladm rm mount_point

To obtain the current FCL state for a mounted file system, enter:

fcladm state mount_point
Chapter 8136

File Change Log
File Change Log Administrative Interface
Print the on-disk FCL super-block in text format to obtain information about the FCL by
using offset 0. Because the FCL on-disk super-block occupies the first block of the FCL file, the
first and last valid offsets into the FCL file can be determined by reading the FCL super-block
and checking the fc_foff field. Enter:

fcladm print 0 mount_point

To print the contents of the FCL in text format (the offset used must be 32-byte aligned),
enter:

fcladm print offset mount_point
Chapter 8 137

File Change Log
File Change Log Programmatic Interface
File Change Log Programmatic Interface
The standard system calls open(2), lseek(2), read(2) and close(2) can be used on the
FCL file at mount_point/lost+found/changelog. Only one programmatic interface is
exposed through libvxfsutil, the vxfsu_fcl_sync API (see the vxfsu_fcl_sync(3) manual
page). The prototype is available at /opt/VRTSfssdk/4.0/include/vxfsutil.h.

The following sample code fragment reads the FCL superblock, checks that the state of the
FCL is VX_FCLS_ON, issues a call to vxfsu_fcl_sync to obtain a finishing offset to read to,
determines the first valid offset in the FCL file, then reads the entries in 8K chunks from this
offset. The section process fcl entries is what an application developer must supply to process
the entries in the FCL.

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/fcntl.h>

#include <errno.h>

#include <fcl.h>

#include <vxfsutil.h>

#define FCL_READSZ 8192

char* fclname = "/mnt/lost+found/changelog";

int

read_fcl(fclname)

char* fclname;

{

struct fcl_sb fclsb;

uint64_t off, lastoff;

size_t size;

char buf[FCL_READSZ], *bufp = buf;

int fd;

int err = 0;
Chapter 8138

File Change Log
File Change Log Programmatic Interface
if ((fd = open(fclname, O_RDONLY)) < 0) {

return ENOENT;

}

if ((off = lseek(fd, 0, SEEK_SET)) != 0) {

close(fd);

return EIO;

}

size = read(fd, &fclsb, sizeof (struct fcl_sb));

if (size < 0) {

close(fd);

return EIO;

}

if (fclsb.fc_state == VX_FCLS_OFF) {

close(fd);

return 0;

}

if (err = vxfsu_fcl_sync(fclname, &lastoff)) {

close(fd);

return err;

}

if ((off = lseek(fd, fclsb.fc_foff)) != fclsb.fc_foff) {

close(fd);

return EIO;

}

while (off < lastoff) {

if ((size = read(fd, bufp, FCL_READSZ)) <= 0) {

close(fd);

return errno;

}

/* process fcl entries */

off += size;

}

Chapter 8 139

File Change Log
File Change Log Programmatic Interface
close(fd);

return 0;

}

Chapter 8140

File Change Log
Reverse Path Name Lookup
Reverse Path Name Lookup
The reverse path name lookup feature obtains the full path name of a file or directory from
the inode number of that file or directory. The inode number is provided as an argument to the
vxlsino administrative command, or the vxfs_inotopath application programming
interface library function.

The reverse path name lookup feature can be useful for a variety of applications, such as for
clients of the VxFS file change log feature, in backup and restore utilities, and for replication
products. Typically, these applications store information by inode numbers because a path
name for a file or directory can be very long, thus the need for an easy method of obtaining a
path name.

An inode is a unique identification number for each file in a file system. An inode contains the
data and metadata associated with that file, but does not include the file name to which the
inode corresponds. It is therefore relatively difficult to determine the name of a file from an
inode number. The ncheck command provides a mechanism for obtaining a file name from an
inode identifier by scanning each directory in the file system, but this process can take a long
period of time. The VxFS reverse path name lookup feature obtains path names relatively
quickly.

NOTE Because symbolic links do not constitute a path to the file, the reverse path
name lookup feature cannot track symbolic links to files.

Because of the possibility of errors with processes renaming or unlinking and creating new
files, it is advisable to perform a lookup (or open) with the path name and verify that the inode
number matches the path names obtained.

See the vxlsino(1M) and vxfs_inotopath(3) online manual pages for more information.
Chapter 8 141

File Change Log
Reverse Path Name Lookup
Chapter 8142

9 Multi-Volume File Systems

VxFS provides support for multi-volume file systems when used in conjunction with the
VERITAS Volume Manager.Using the multi-volume support (MVS) feature, you can create a
single file system over multiple volumes and set the properties for each volume. For example,
it is possible to place metadata on mirrored storage while placing file data on better
Chapter 9 143

Multi-Volume File Systems
performing volume types such as RAID5.

The MVS feature also allows you to create file systems on different classes of devices, so that
VxFS can support a file system from both inexpensive disks and expensive arrays.Using the
MVS administrative interface, you can control the data to be stored on the different volume
types available.

This chapter discusses the following topics:

• “Features Implemented Using MVS” on page 145

• “Volume Sets” on page 146

• “Creating MVS File Systems” on page 148

• “Allocation Policies” on page 150

• “Volume Encapsulation” on page 152

• “Converting from QuickLog to MVS” on page 154
Chapter 9144

Multi-Volume File Systems
Features Implemented Using MVS
Features Implemented Using MVS
You can implement the following features using multi-volume support:

• Controlling where files are stored can be selected at multiple levels so that specific files or
file hierarchies can be assigned to different volumes. This functionality is available in the
VERITAS File System Quality of Storage Service (QoSS) feature (see Chapter 10,
“Quality of Storage Service,” on page 155).

• Placing the VxFS intent log on its own volume to minimize disk head movement and
thereby increase performance. This functionality can be used to migrate from the
VERITAS QuickLogT feature.

• Separating Storage Checkpoints so that data allocated to a Storage Checkpoint is isolated
from the rest of the file system.

• Separating metadata from file data.

• Encapsulating volumes so that a volume appears in the file system as a file. This is
particularly useful for databases that are running on raw volumes.

To use the multi-volume file system features, you must install VERITAS Volume Manager
and enable the Volume Set feature.
Chapter 9 145

Multi-Volume File Systems
Volume Sets
Volume Sets
The VERITAS Volume Manager exports a feature called Volume Sets to VxFS. Unlike a
Volume Manager volume, which is used for accessing raw I/O or contain a file system, a
volume set is a container for multiple different volumes. Each volume in a volume set has its
own internal structure.

The Volume Manager vxvset is used to create and manage volume sets. For example, the
following command creates a new volume set from an existing volume named vol1:

vxvset make myvset vol1

The following command allows you to create two new volumes and add them to the volume
set:

vxassist make vol2 50m

vxassist make vol3 50m

vxvset addvol myvset vol2

vxvset addvol myvset vol3

The following command lists the component volumes of the previously created volume:

vxvset list myvset

VOLUME INDEX LENGTH STATE CONTEXT

vol1 0 20480 ACTIVE -

vol2 1 102400 ACTIVE -

vol3 2 102400 ACTIVE -

When a volume set is created, the volumes contained in the volume set are removed from the
namespace and are instead accessed through the volume set name, as shown by the output of
the ls command:

ls -l /dev/vx/rdsk/rootdg/myvset

1 root root 108,70009 May 21 15:37 /dev/vx/rdsk/rootdg/myvset

However, when a volume is added to the volume set, it is no longer visible in the namespace,
as shown in the following example:

vxassist make vol4 50m

ls -l /dev/vx/rdsk/rootdg/vol4

crw-- 1 root root 108,70012 May 21 15:43 /dev/vx/rdsk/rootdg/vol4
Chapter 9146

Multi-Volume File Systems
Volume Sets
vxvset addvol myvset vol4

ls -l /dev/vx/rdsk/rootdg/vol4

/dev/vx/rdsk/rootdg/vol4: No such file or directory

Volume sets cannot be empty. So, a volume set is removed when the last entry in that set is
removed.
Chapter 9 147

Multi-Volume File Systems
Creating MVS File Systems
Creating MVS File Systems
After a volume set is created, creating a VxFS file system is the same as creating a file system
on a raw device or volume. You must specify the volume set name as an argument to mkfs as
shown in the following example:

mkfs -F vxfs /dev/vx/rdsk/rootdg/myvset

version 6 layout

327680 sectors, 163840 blocks of size 1024, log size 1024 blocks

largefiles supported

NOTE MVS is available only on file systems that use disk layout version 6. See
Appendix C, "Disk Layout" for more information about disk layout versions.

After the file system is created, VxFS allocates space from the volumes within the volume set.
You can list the component volumes of the volume set using the fsvoladm.

mount -F vxfs /dev/vx/dsk/rootdg/myvset /mnt1

fsvoladm list /mnt1

devid size used avail name

0 10240 1280 8960 vol1

1 51200 16 51184 vol2

2 51200 16 51184 vol3

3 51200 16 51184 vol4

To add a new volume, first add the volume to the volume set, then add it to the file system:

vxassist make vol5 50m

vxvset addvol myvset vol5

fsvoladm add /mnt1 vol5 50m

fsvoladm list /mnt1

devid size used avail name

0 10240 1300 8940 vol1

1 51200 16 51184 vol2

2 51200 16 51184 vol3
Chapter 9148

Multi-Volume File Systems
Creating MVS File Systems
3 51200 16 51184 vol4

4 51200 16 51184 vol5

You must empty a volume before you remove it from the file system. All the file system
commands except volume addition and deletion work alike on volumes within a volume set.
Chapter 9 149

Multi-Volume File Systems
Allocation Policies
Allocation Policies
To make full use of the MVS features, VxFS supports allocation policies that allow assigning
files or groups of files to specified volumes within the volume set.

A policy specifies a list of volumes and the order of allocations. You can assign a policy to a file,
to a file system, or to a Storage Checkpoint created from a file system. When assigning
policies to objects in the file system, specify how the policy maps to both metadata and file
data. For example, if a policy is assigned to a single file, the file system must know where to
place both the file data and metadata. If no policies are specified, the file system places data
randomly.

The following example shows how allocation policies work.Assume that there are two volumes
from different classes of storage:

vxvset -g mdsdg list myvset

VOLUME INDEX LENGTH STATE CONTEXT

vol1 0 102400 ACTIVE -

vol2 1 102400 ACTIVE -

Create a file system on the myvset volume set and mount it:

mkfs -F vxfs /dev/vx/rdsk/rootdg/myvset

version 6 layout

204800 sectors, 102400 blocks of size 1024, log size 1024 blocks

largefiles supported

mount -F vxfs /dev/vx/dsk/rootdg/myvset /mnt1

Use the following fsapadm commands to define two allocation policies called datapolicy and
metadatapolicy to refer to the vol1 and vol2 volumes:

fsapadm define /mnt1 datapolicy vol1

fsapadm define /mnt1 metadatapolicy vol2

Assign these policies at the file system level. The data policy must be specified before the
metadata policy:

fsapadm assignfs /mnt1 datapolicy metadatapolicy

fsvoladm list /mnt1

devid size used avail name
Chapter 9150

Multi-Volume File Systems
Allocation Policies
0 51200 1250 49950 vol1

1 51200 16 51184 vol2

The assignment of policies on a file system-wide basis ensures that any metadata allocated is
stored on the device with the policy metadatapolicy (vol2) and all the user data is stored on
vol1 with the associated datapolicy policy.

The effects of creating a number of files is shown in the following script:

i=1

while [$i -lt 1000]

do

dd if=/dev/zero of=/mnt1/$i bs=65536 count=1

i=’expr $i + 1’

done

Before the script completes, it runs out of space even though space is still available on the
vol2 volume:

fsvoladm list /mnt1

devid size used avail name

0 51200 51200 0 vol1

1 51200 221 50979 vol2

To allocate user data from the vol1 volume and then use vol2 if space runs out, assign the
allocation policy as follows:

fsapadm define /mnt1 datapolicy vol1 vol2

You must have system administrator privileges to create, remove, or change policies, and set
file system or Storage Checkpoint level policies. Users can assign a pre-existing policy to their
files if the policy allows. Policies can be inherited for new files.
Chapter 9 151

Multi-Volume File Systems
Volume Encapsulation
Volume Encapsulation
Multi-volume support enables the ability to encapsulate an existing raw volume and make the
volume contents appear as a file in the file system. There are two steps required to achieve
this:

• Add the volume to an existing volume set.

• Add the volume to the file system using fsvoladm.

As an example:

Assume that the following volume set and new volume exist. The vxvset list command
gives you the following output:

vxvset list myvset

VOLUME INDEX LENGTH STATE CONTEXT

vol1 0 102400 ACTIVE -

vol2 1 102400 ACTIVE -

The volume set has two volumes. Create a third volume as part of the passwd file and write it
to the volume.This is to demonstrate how you can access the volume as a file as shown below:

vxassist make dbvol 100m

dd if=/etc/passwd of=/dev/vx/rdsk/rootdg/dbvol count=1

1+0 records in

1+0 records out

Create a file system on the volume set and mount it. The new volume is added to the volume
set:

mkfs -F vxfs /dev/vx/rdsk/rootdg/myvset

version 6 layout

204800 sectors, 102400 blocks of size 1024, log size 1024 blocks

largefiles not supported

mount -F vxfs /dev/vx/dsk/rootdg/myvset /mnt1

vxvset addvol myvset dbvol

The final step is to call fsvoladm to perform the encapsulation:

fsvoladm encapsulate /mnt1/dbfile dbvol 100m
Chapter 9152

Multi-Volume File Systems
Volume Encapsulation
ls -l /mnt1/dbfile

-rw------- 1 root other 104857600 May 22 11:30 /mnt1/dbfile

head -2 /mnt1/dbfile

root:x:0:1:Super-User:/:/sbin/sh

daemon:x:1:1::/:

Now, you can view the passwd file that was written to the raw volume .

NOTE If the encapsulated file is changed in any way, for example, extended,
truncated, or moved with an allocation policy or resized volume, or the volume
is encapsulated with a bias, the file cannot be de-encapsulated.
Chapter 9 153

Multi-Volume File Systems
Converting from QuickLog to MVS
Converting from QuickLog to MVS
The 4.0 release of the VERITAS File System is the last to support Quicklog. The Version 6
disk layout does not support QuickLog. The functionality provided by the VERITAS
Multi-Volume Support feature replaces most of the functionality provided by QuickLog.

The following procedure describes how to migrate from QuickLog to MVS.Unlike QuickLog,
which allowed logging of up to 31 VxFS file systems to one device, MVS allows intent logging
of only one file system per device. Therefore, the following procedure must be performed for
each file system that is logged to a QuickLog device if Version 6 disk layout is used.

NOTE The QuickLog device did not need to be related to the file system. For MVS, the
log volume and the file system volume must be in the same disk group.

To convert from QuickLog to MVS

1. Select a QuickLog-enabled file system to convert to MVS and unmount it.

umount myfs

2. Detach one of the QuickLog volumes from the QuickLog device that the file system had
been using. This volume will be used as the new intent log volume for the filesystem.

qlogdetach -g diskgroup log_vol

3. Create the volume set.

vxvset make myvset myfs

4. Mount the volume set.

mount -F vxfs /dev/vx/dsk/rootdg/myvset /mnt1

5. Upgrade the volume set’s file system to Version 6 disk layout.

vxupgrade -n 6 /mnt1

6. Add the log volume from step 2 to the volume set.

vxvset addvol myvset log_vol

7. Add the log volume to the file system. The size of the volume must be specified.

fsvoladm add /mnt1 log_vol 50m

8. Move the log to the new volume.

fsadm -o logdev=log_vol,logsize=16m /mnt1
Chapter 9154

10 Quality of Storage Service

The VERITAS File System allows you to create a file system that spans multiple volumes
,known as a multi-volume file system. The component volumes compose a volume set. See
“Quality of Storage Service” on page 155. On top of this basic capability is a set of services
known as Quality of Storage Service (QoSS).
Chapter 10 155

Quality of Storage Service
Using different volumes you can enhance the performance of applications, that access specific
types of files, using different volumes and managing where the types of files are located.For
example, if you have files that are infrequently accessed, you can place them on slower media
that is relatively inexpensive, but which has a slower access time.

You can configure policies that automatically relocate files from one volume to another, or you
can relocate files by running file relocation commands.The QoSS has two parts:

• Relocation policies: Policies that you configure to determine which files to move to a
different component volume.

• File relocation: The fssweep utility recursively examines a multi-volume file system by
searching for files that match configured relocation policies. After searching a file system,
fssweep passes information about files that match policies to the fsmove utility. The
fsmove utility reads a list of file names and locations that fssweep has created and
relocates files based on that relocation list.

NOTE VERITAS Quality of Storage Service is a licensed feature.You must purchase a
separate license key to enable the QoSS feature.See the VERITAS File System
Release Notes for current product information.
Chapter 10156

Quality of Storage Service
How File Relocation Works
How File Relocation Works
File relocation is the process of searching a file system to select files listed in a relocation
policy for relocation, then relocating the selected files.

The volume on which files are originally located is referred to as a source component volume,
and the volume to which files are relocated is referred to as a destination component volume.

Figure 10-1 File Relocation Example

To use file relocation, configure policies to determine the files to relocate.The fssweep utility
traverses a directory structure applying selection rules from the configuration file, selects
eligible files,and relocates the files from the source component volumes to the destination
component volumes.
Chapter 10 157

Quality of Storage Service
Configuring Relocation Policies
Configuring Relocation Policies
Relocation policies define the files to relocate and the physical devices on which the files are
located. Relocation policies are based on the following properties of a file:

• Age: The time since the file was last accessed or last modified.

• File size

• Path: The location of a file in a directory structure.

• File name pattern: The similarly named output files of an application or a common
extension such as *.gif.All shell wild cards may be specified.

• Source component volume

• Destination component volume

If a file has multiple component volumes, you can configure relocation policies using the
VERITAS Enterprise Administrator (VEA) GUI or the command-line interface. See the
VERITAS Volume Manager User’s Guide-VERITAS Enterprise Administrator for information
on configuring QoSS using the VEA GUI.

NOTE You must install the VRTSfppm package to use the QoSS feature.

Running fssweep

The fssweep command uses the following syntax:

fssweep [-n count -s size -t time] [-p policy] [-r] [filesystem]

The fssweep utility traverses the directory structure of one or more file systems, selecting
files that meet criteria specified in relocation policies. The fssweep utility writes either a list
of selected file names and destination volumes, or a statistical summary of selected files, to
standard output.

The list of volumes that can be used for file relocation is based on the destination component
volumes defined by the QoSS configuration. By default, fssweep writes the files and
destination volumes to standard output.

You can specify the criteria for selecting files for relocation using Command Options.
Following are the fssweep Command Options.
Chapter 10158

Quality of Storage Service
Configuring Relocation Policies
Option Description

-n count Sets a limit for the maximum number of files for the fsmove utility to
relocate.

-p policy Evaluates files based on the specified policy only. If not specified, fssweep
evaluates files based on all configured policies.

-r Reports a statistical summary of files that can be relocated to standard
output without actually relocating any files. The report is the same as the
fsmove statistical summary.

-s size Sets a limit for the cumulative size of all files in kilobytes for the fsmove
utility to relocate.

-t time Sets a limit for the cumulative time in seconds for running fssweep.

filesystem Evaluates files only in the specified filesystem. If you do not specify
filesystem, fssweep evaluates all multi-volume file systems defined in the
configuration file, starting at their mount points.

Running fsmove

The fsmove command uses the following syntax:

fsmove [destination path1 [path2,path3,...]

The fsmove utility relocates files to a destination component volume. The destination
component volume and the files or directories are specified by the fssweep utility. The
fsmove utility reads standard input and moves all files it reads from the output stream.

If you specify an optional destination and one or more path names, the fsmove utility moves
the specified file or files to the destination component volume and exits. If you specify a
directory, fsmove recursively searches through all files and subdirectories in the specified
directory and moves all the files to the specified destination component volume.

The fsmove Command Options

Option Description

destination Specifies a destination component volume for the specified file or directory.

path Specifies directory or file names to relocate to a destination volume.

After the command completes processing, it writes a statistical summary with the following
headings to standard output:
Chapter 10 159

Quality of Storage Service
Configuring Relocation Policies
source_volume The source component volume where the file originally resided.

destination_volume The destination component volume to which to relocate the file.

number_of_files_relocated The cumulative number of all files relocated.

size_of_all_files_relocated The cumulative size of all files relocated.

Scheduling Example

You can use crontab for schedule file selection and relocation at specified intervals.

To schedule automatic relocations, run crontab to include an example such as the following
in a crontab file. The example crontab file entry selects files eligible for relocation and moves
them to destination component volumes. The relocation process occurs once every three days
at 12:30 A.M.

30 0 1,4,7,10,13,16,19,22,25,28 * * /opt/VRTS/bin/fssweep |

/opt/VRTS/bin/fsmove

The first two fields specify the time to run the job. 30 0 is 12:30 A.M.

The next field defines how often to run the process. The list of digits is the days of the month
on which to run. The first asterisk (*) specifies that the process runs every month.The second
asterisk specifies that days of the week are not used as criteria for when to run. See the
crontab(5) manual page for more information.

 The last two fields specify the commands to run, which are the fssweep and fsmove
commands.
Chapter 10160

Quality of Storage Service
Customizing QoSS
Customizing QoSS
The following information is not essential to QoSS daily operation and management. This
section describes the relationship between the fssweep/fsmove utilities and the allocation
policies and how files and volumes are selected for relocation.

Mapping Relocation Policies to Allocation Policies

The fssweep and fsmove utilities use relocation policies to relocate existing files. Relocation
uses the file system’s allocation policies to determine the current location of each file and to
move files to new locations. Allocation policies also control newly created files. You can
manage allocation policies using the fsapadm utility (see the fsapadm(1M) manual page). In
addition, some allocation policies are automatically managed by the fssweep and fsmove
utilities.

The fssweep and fsmove utilities create allocation policies that have names starting with the
characters fsmove_.

Each component volume has an allocation policy with a name created by appending the
volume name to the string fsmove_. For example, a volume named qoss1a has an allocation
policy named fsmove_qoss1a. The file system also has an allocation policy named
fsmove_ALL that includes all component volumes. VxFS default behavior is to assign
fsmove_ALL to the file system’s mount point as the allocation policy to be used for the newly
created files.

By convention, fssweep and fsmove use volume names, so you need not specify the string
fsmove_ when using these utilities.

The fsmove_ALL allocation policy allows newly created files to reside on any volume. The
order in which volumes are used is by ascending device index numbers. When the fssweep
utility compares a newly created file’s residence against a relocation policy’s list of source
volumes, fssweep treats the files as if they reside on the volume of lowest device index.

When you use the fssweep and fsmove utilities for the first time, the file system can already
contain files that have no allocation policies. The fssweep utility treats such files as though
they reside in the fsmove_ALL allocation policy.

If you use the fssweep and fsmove utilities infrequently, the default allocation policy
allows overflow as each volume becomes full. To the extent that this happens, it becomes
ambiguous where the recently created files really reside.
Chapter 10 161

Quality of Storage Service
Customizing QoSS
You can use the fsapadm utility to create allocation policies. Avoid using names that would
be created by fsmove. If a file was moved using fsapadm into an allocation policy whose name
is something other than the allocation policies used by fssweep and fsmove, the fssweep
utility disregards the file when it searches the file system.

You can use the fsapadm utility to create a special allocation policy named fsmove_SITE.
The fssweep and fsmove utilities never create an allocation policy named fsmove_SITE. If
this allocation policy exists and was established as the file system’s default allocation policy,
fssweep considers any file in this allocation policy as residing in any of the volumes that
belong to the policy. For example, if you create fsmove_SITE to specify devices whose index
numbers are 4 and 6, and if a relocation policy looks for source volume indexes of 2 and 4, files
can be searched. The index 4 is common to both the relocation policy and the allocation policy.
The purpose of the fsmove_SITE allocation policy is to allow allocating newly created files
differently from way the fsmove_ALL allocation policy is defined, and still allow the files to be
recognizable by the fssweep utility.

Relocation List Format

The relocation list is standard output from the fssweep utility that may be piped to the
fsmove utility as standard input. The list consists of multiple lines of text, each of which
describes one file to be moved and its destination component volume. The following is the
format of the text fields:

safe_filename destination_volumes

The safe_filename is ordinary text if the file name does not embed special characters or if it is
provided on the fsmove command line. If special characters are included in the file name that
fssweep provides to fsmove, the exclamation mark (!) escape character delimits the special
character. The exclamation marks are followed and preceded by the two hexadecimal digits
providing the internal value of the special character. This conversion allows fsmove to read
special characters from fssweep correctly.

The fssweep utility provides the destination_volumes for the file to be relocated based on
the policy manager’s configuration policy. If there is more than one destination component
volume, fsmove tries to relocate a file to each component volume, in the order specified, until
the file is successfully written to one of the volumes.
Chapter 10162

11 Quick I/O for Databases

VERITAS Quick I/O for Databases (referred to as Quick I/O) allows applications access
preallocated VxFS files as raw character devices. This provides the administrative benefits of
running databases on file systems without the performance degradation usually associated
with databases created on file systems.
Chapter 11 163

Quick I/O for Databases
Quick I/O is part of the VRTSvxfs package, but is available for use only with other VERITAS
products. See the VERITAS File System Release Notes for current product information.

This chapter discusses the following topics:

• “Quick I/O Functionality and Performance” on page 165

• “Using VxFS Files as Raw Character Devices” on page 167

• “Creating a Quick I/O File Using qiomkfile” on page 170

• “Accessing Regular VxFS Files Through Symbolic Links” on page 172

• “Using Quick I/O with Oracle Databases” on page 174

• “Using Quick I/O with Sybase Databases” on page 175

• “Enabling and Disabling Quick I/O” on page 176

• “Cached Quick I/O For Databases” on page 177

• “Quick I/O Statistics” on page 180

• “Quick I/O Summary” on page 181
Chapter 11164

Quick I/O for Databases
Quick I/O Functionality and Performance
Quick I/O Functionality and Performance
Many database administrators (DBAs) create databases on file systems because it makes
common administrative tasks (such as moving, copying, and backup) much simpler. However,
putting databases on file systems significantly reduces database performance. By using
VERITAS Quick I/O, you can retain the advantages of having databases on file systems
without performance degradation.

Quick I/O uses a special naming convention to allow database applications to access regular
files as raw character devices. This provides higher database performance in the following
ways:

• Supporting kernel asynchronous I/O

• Supporting direct I/O

• Avoiding kernel write locks

• Avoiding double buffering

Supporting Kernel Asynchronous I/O

Some operating systems provide kernel support for asynchronous I/O on raw devices, but not
on regular files. As a result, even if the database server is capable of using asynchronous I/O,
it cannot issue asynchronous I/O requests when the database is built on a file system. Lack of
asynchronous I/O significantly degrades performance. Quick I/O lets the database server take
advantage of kernel supported asynchronous I/O (through the asyncdsk or Posix AIO
interface) on file system files accessed via the Quick I/O interface by providing a character
device node that is treated by the OS as a raw device.

Supporting Direct I/O

I/O on files using the read() and write() system calls typically results in data being copied
twice: once between user and kernel space, and later between kernel space and disk. In
contrast, I/O on raw devices is direct. That is, data is copied directly between user space and
disk, saving one level of copying. As with I/O on raw devices, Quick I/O avoids the extra
copying.
Chapter 11 165

Quick I/O for Databases
Quick I/O Functionality and Performance
Avoiding Kernel Write Locks

When database I/O is performed via the write() system call, each system call acquires and
releases a write lock inside the kernel. This lock prevents simultaneous write operations on
the same file. Because database systems usually implement their own locks for managing
concurrent access to files, write locks unnecessarily serialize I/O operations. Quick I/O
bypasses file system locking and lets the database server control data access.

Avoiding Double Buffering

Most database servers implement their own buffer cache and do not need the system buffer
cache. So the memory used by the system buffer cache is wasted, and results in data being
cached twice: first in the database cache and then in the system buffer cache. By using direct
I/O, Quick I/O does not waste memory on double buffering. This frees up memory, which the
database server buffer cache can use, and thereby increasing performance.
Chapter 11166

Quick I/O for Databases
Using VxFS Files as Raw Character Devices
Using VxFS Files as Raw Character Devices
When VxFS with Quick I/O is installed, there are two ways of accessing a file:

• The VxFS interface treats the file as a regular VxFS file

• The Quick I/O interface treats the same file as if it were a raw character device, having
performance similar to a raw device

This allows a database server to use the Quick I/O interface while a backup server uses the
VxFS interface.
Chapter 11 167

Quick I/O for Databases
Quick I/O Naming Convention
Quick I/O Naming Convention
To treat a file as a raw character device, Quick I/O requires a file name extension to create an
alias for a regular VxFS file. Quick I/O recognizes the alias when you add the following suffix
to a file name:

::cdev:vxfs:

Whenever an application opens an existing VxFS file with the suffix ::cdev:vxfs (the cdev
portion is an acronym for character device), Quick I/O treats the file as if it were a raw device.
For example, if the file xxx is a regular VxFS file, then an application can access xxx as a raw
character device by opening it with the name:

xxx::cdev:vxfs:

NOTE When Quick I/O is enabled, you cannot create a regular VxFS file with a name
that uses the ::cdev:vxfs: extension. If an application tries to create a
regular file named xxx::cdev:vxfs:, the create fails. If Quick I/O is not
available, it is possible to create a regular file with the ::cdev:vxfs: extension,
but this could cause problems if Quick I/O is later enabled. It is advisable to
reserve the extension only for Quick I/O files.
Chapter 11168

Quick I/O for Databases
Use Restrictions
Use Restrictions

• The name xxx::cdev:vxfs: is recognized as a special name by VxFS only when:

— VxFS with Quick I/O has a valid license

— the regular file xxx is physically present on the VxFS file system

— there is no regular file named xxx::cdev:vxfs: on the system

• If the file xxx is being used for memory mapped I/O, it cannot be accessed as a Quick I/O
file.

• An I/O fails if the file xxx has a logical hole and the I/O is done to that hole on
xxx::cdev:vxfs:.

• The size of the file cannot be extended by writes through the Quick I/O interface.
Chapter 11 169

Quick I/O for Databases
Creating a Quick I/O File Using qiomkfile
Creating a Quick I/O File Using qiomkfile
The best way to make regular files accessible to the Quick I/O interface and preallocate space
for them is to use the qiomkfile command. Unlike the VxFS setext command, which
requires superuser privileges, any user who has read/write permissions can run qiomkfile to
create the files. The qiomkfile command has five options:

-a Creates a symbolic link with an absolute path name for a specified file. The
default is to create a symbolic link with a relative path name.

-e Extends the file size by the specified amount.(For Oracle database files to
allow tablespace resizing.)

-h Creates a file with additional space allocated for the Oracle header.(For
Oracle database files.)

-r Creates a file with additional space allocated for the Oracle header.(For
Oracle database files.)

-s Preallocates space for a file.

You can specify file size in terms of bytes (the default), or in kilobytes, megabytes, gigabytes,
or sectors (512 bytes) by adding, a k, K, m, M, g, G, s or S suffix. If the size of the file
including the header is not a multiple of file system block size, it is rounded to a multiple of
the file system block size before preallocation.

The qiomkfile command creates two files: a regular file with preallocated, contiguous space
and a symbolic link pointing to the Quick I/O name extension. For example, to create a 100
MB file named dbfile in /database, enter:

$ qiomkfile -s 100m /database/dbfile

In this example, the first file created is a regular file named /database/.dbfile (whichhas
the real space allocated).

The second file is a symbolic link named /database/dbfile. This is a relative link to
/database/dbfile via the Quick I/O interface, that is, to .dbfile::cdev:vxfs:. This
allows .dbfile to be accessed by any database or application as a raw character device. To
check the results, enter:

$ ls -al

-rw-r--r-- 1 oracle dba 104857600 Oct 22 15:03 .dbfile

lrwxrwxrwx 1 oracle dba 19 Oct 22 15:03 dbfile -> \

.dbfile::cdev:vxfs:
Chapter 11170

Quick I/O for Databases
Creating a Quick I/O File Using qiomkfile
or:

$ ls -lL

crw-r----- 1oracle dba 43,0 Oct 22 15:04 dbfile

-rw-r--r-- 1oracle dba 10485760 Oct 22 15:04 .dbfile

If you specify the -a option to qiomkfile, an absolute path name (See “Using Absolute or
Relative Path Names” on page 172) is used so /database/dbfile points to
/database/.dbfile::cdev:vxfs:. To check the results, enter:

$ ls -al

-rw-r--r-- 1 oracle dba 104857600 Oct 22 15:05 .dbfile

lrwxrwxrwx 1 oracle dba 31 Oct 22 15:05 dbfile ->

/database/.dbfile::cdev:vxfs:

See the qiomkfile(1)manual page for more information.
Chapter 11 171

Quick I/O for Databases
Accessing Regular VxFS Files Through Symbolic Links
Accessing Regular VxFS Files Through Symbolic Links
Another way to use Quick I/O is to create a symbolic link for each file in your database and
use the symbolic link to access the regular files as Quick I/O files.

The following commands create a 100 MB Quick I/O file named dbfile on the VxFS file
system /database. The dd command preallocates the file space:

$ cd /database

$ dd if=/dev/zero of=/database/.dbfile bs=128k count=800

$ ln -s .dbfile::cdev:vxfs: /database/dbfile

Any database or application can then access the file dbfile as a raw character device. See the
VERITAS Editions product documentation for more information.

Using Absolute or Relative Path Names

It is usually better to use relative path names instead of absolute path names when creating
symbolic links to access regular files as Quick I/O files. Using relative path names prevents
copies of the symbolic link from referring to the original file. This is important if you are
backing up or moving database files with a command that preserves the symbolic link.
However, some applications, such as SAP, require absolute path names.

If you create a symbolic link using a relative path name, both the symbolic link and the file
are under the same parent directory. If you want to relocate the file, both the file and the
symbolic link must be moved.

It is also possible to use the absolute path name when creating a symbolic link. If the
database file is relocated to another directory, you must change the symbolic link to use the
new absolute path. You can put all the symbolic links in a directory separate from the data
directories. For example, you can create a directory named /database and put in all the
symbolic links, with the symbolic links pointing to absolute path names.

Preallocating Files Using the setext Command

You can use the VxFS setext command to preallocate file space, but the setext command
requires superuser privileges. You may need to use the chown and chgrp commands to change
the owner and group permissions on the file after it is created. The following example shows
how to use setext to create a 100 MB database file for an Oracle database:

cd /database
Chapter 11172

Quick I/O for Databases
Accessing Regular VxFS Files Through Symbolic Links
touch .dbfile

setext -r 102400 -f noreserve -f chgsize .dbfile

ln -s .dbfile::cdev:vxfs: dbfile

chown oracle dbfile

chgrp dba dbfile

See the setext(1M) manual page for more information.
Chapter 11 173

Quick I/O for Databases
Using Quick I/O with Oracle Databases
Using Quick I/O with Oracle Databases
The following example shows how a file can be used by an Oracle database to create a
tablespace. This command would be run by the Oracle DBA (Using the user ID oracle):

$ qiomkfile -h headersize -s 100m /database/dbfile

$ sqlplus /nolog

SQL> connect / as sysdba

SQL> create tablespace ts1 datafile ’/database/dbfile’ size 100M;

SQL> exit;

The following example shows how the file can be used by an Oracle database to create a
tablespace. Oracle requires additional space for one Oracle header size. So in this example,
although 100 MB was allocated to /database/dbfile, the Oracle database can use only up to
100 MB minus the Oracle parameter db_block_size.

$ sqlplus /nolog

SQL> connect / as sysdba

SQL> create tablespace ts1 datafile ’/database/dbfile’ size 99M;

SQL> exit;
Chapter 11174

Quick I/O for Databases
Using Quick I/O with Sybase Databases
Using Quick I/O with Sybase Databases
Quick I/O works similarly on Sybase database devices.

To create a new database device, preallocate space on the file system by using the qiomkfile
command, then use the Sybase buildmaster command for a master device, or the Transact
SQL disk init command for a database device. qiomkfile creates two files: a regular file
using preallocated, contiguous space, and a symbolic link pointing to the ::cdev:vxfs: name
extension. For example, to create a 100 megabyte master device masterdev on the file system
/sybmaster, enter:

$ cd /sybmaster

$ qiomkfile -s 100m masterdev

You can use this master device while running the sybsetup program or sybinit script. If you
are creating the master device directly, type:

$ buildmaster -d masterdev -s 51200

To add a new 500 megabyte database device datadev to the file system /sybdata on your
dataserver, enter:

$ cd /sybdata

$ qiomkfile -s 500m datadev

...

$ isql -U sa -P sa_password -S dataserver_name

1> disk init

2> name = "logical_name",

3> physname = "/sybdata/datadev",

4> vdevno = "device_number",

5> size = 256000

6> go
Chapter 11 175

Quick I/O for Databases
Enabling and Disabling Quick I/O
Enabling and Disabling Quick I/O
If the Quick I/O feature is licensed and installed, Quick I/O is enabled by default when a file
system is mounted. Alternatively, the VxFS mount -o qio command enables Quick I/O. The
mount -o noqio command disables Quick I/O.

If Quick I/O is not installed or licensed, a file system mounts by default without Quick I/O and
no error message is displayed. However, if you specify the -o qio option, the mount command
terminates without mounting the file system.
Chapter 11176

Quick I/O for Databases
Cached Quick I/O For Databases
Cached Quick I/O For Databases
32-bit applications (such as 32-bit databases) can use a maximum of only 4 GB of memory
because of the 32-bit address limitation. The Cached Quick I/O feature improves database
performance on machines with sufficient memory by also using the file system cache to store
data.

For read operations through the Quick I/O interface, data is cached in the system buffer
cache, so subsequent reads of the same data can access this cached copy and avoid doing disk
I/O. To maintain the correct data in its buffer for write operations, Cached Quick I/O keeps
the buffer cache in sync with the data written to disk.

With 64-bit applications, for which limited memory is not a critical problem, using the
filesystem cache still provides performance benefits by using the read-ahead functionality.
Because of the read-ahead functionality, sequential table scans will benefit the most from
using Cached Quick I/O by significantly reducing the query response time.

To use this feature, set the qio_cache_enable system parameter with the vxtunefs utility,
and use the qioadmin command to turn the per-file cache advisory on or off. See the
vxtunefs(1M) and qioadmin(1) man pages for more information.

Enabling Cached Quick I/O

You can enable caching for Quick I/O files online when the database is running as follows:

1. Set the qio_cache_enable parameter of vxtunefs to enable caching on a file system.

2. Enable the Cached Quick I/O feature for specific files using the qioadmin command.

NOTE You must enable Quick I/O on the file system to enable Cached Quick I/O.

Enabling Cached Quick I/O for File Systems

Caching is initially disabled on a file system. You enable Cached Quick I/O for a file system by
setting the qio_cache_enable option of the vxtunefs command after the file system is
mounted. For example, to enable Cached Quick I/O for the file system /database01, enter:

vxtunefs -s -o qio_cache_enable=1 /database01

where /database01 is a VxFS file system containing the Quick I/O files.
Chapter 11 177

Quick I/O for Databases
Cached Quick I/O For Databases
NOTE This command enables caching for all the Quick I/O files on this file system.

You can make this setting persistent across mounts by adding a file system entry in the file
/etc/vx/tunefstab. For example:

/dev/vx/dsk/datadg/database01 qio_cache_enable=1

/dev/vx/dsk/datadg/database02 qio_cache_enable=1

For information on how to add tuning parameters, see the tunefstab(4) manual page.

Enabling Cached Quick I/O for Individual Files

There are several ways to enable caching for a Quick I/O file.Use the following syntax to
enable caching on an individual file:

$ qioadmin -S filename=on mount_point

To enable caching for the Quick I/O file /database01/names.dbf, enter:

$ qioadmin -S names.dbf=ON /database01

To disable the caching for that file, enter:

$ qioadmin -S names.dbf=OFF /database01

To make the setting persistent across mounts, create a qiotab file, /etc/vx/qioadmin, to list
files and their caching advisories. Based on the following example, the file
/database/sell.dbf will have caching turned on whenever the file system /database is
mounted:

device=/dev/vx/dsk/datadg/database01

dates.dbf,off

names.dbf,off

sell.dbf,on

NOTE The cache advisories operate only if Cached Quick I/O is enabled for the file
system. If the qio_cache_enable flag is zero, Cached Quick I/O is OFF for all
the files in that file system even if the individual file cache advisory for a file is
ON.

To check on the current cache advisory settings for a file, enter:

$ qioadmin -P names.dbf /database01
Chapter 11178

Quick I/O for Databases
Cached Quick I/O For Databases
names.dbf,OFF

To check the setting of the qio_cache_enable flag for a file system, enter:

$ vxtunefs -p /database01

qio_cache_enable = 1

For more information on the format of the /etc/vx/qioadmin file and the command syntax,
see the qioadmin(1) manual page.

NOTE Check the setting of the flag qio_cache_enable using the vxtunefs command,
and the individual cache advisories for each file, to verify caching.

Tuning Cached Quick I/O

Not all database files can take advantage of caching. Performance may even degrade in some
instances (due to double buffering, for example). Determining which files and applications can
benefit from Cached Quick I/O requires that you first collect and analyze the caching
statistics.

See the qiostat(1) manpage for information on gathering statistics, and the VERITAS
Editions products documentation for a description of the Cached Quick I/O tuning
methodology.
Chapter 11 179

Quick I/O for Databases
Quick I/O Statistics
Quick I/O Statistics
Quick I/O provides the qiostat utility to collect database I/O statistics generated over a
period of time. qiostat reports statistics such as the number of read and write operations,
the number of blocks read or written, and the average time spent on read and write
operations during an interval. See the qiostat(1) manpage for more information.
Chapter 11180

Quick I/O for Databases
Quick I/O Summary
Quick I/O Summary
To increase database performance on a VxFS file system using Quick I/O:

1. Make sure that the VERITAS Editions product is installed:

swinstall | grep VRTSdbed

2. Make sure that the VERITAS Quick I/O package is licensed:

vxlicrep | VXFDD

3. Create a regular VxFS file and preallocate it to required size, or use the qiomkfile
command. The size of this preallocation depends on the size requirement of the database
server.

4. Create and access the database using the file name xxx::cdev:vxfs:.

For information on how to configure VxFS and set up file devices for use with new and
existing Oracle databases, see the VERITAS Editions product documentation, and the
qioadmin(1) and vxtunefs(1M) manpages.
Chapter 11 181

Quick I/O for Databases
Quick I/O Summary
Chapter 11182

A VERITAS File System Quick
Reference
Appendix A 183

VERITAS File System Quick Reference
Veritas File System Quick Reference
Veritas File System Quick Reference
This appendix lists the VERITAS File System (VxFS) commands and manual pages.

• Command Summary

• Online Manual Pages

This appendix provides instructions and examples on performing the following VxFS
operations:

• Creating a File System

• Mounting a File System

• Unmounting a File System

• Displaying Information on Mounted File Systems

• Identifying File System Types

• Resizing a File System

• Backing Up and Restoring a File System

• Using Quotas

Command Summary

Symbolic links to all VxFS command executables are installed in the /opt/VRTS/bin
directory. Add this directory to the end of your PATH environment variable to access the
commands.

Table A-1

Command Description

cfscluster3 CFS cluster configuration command.

cfsdgadm3 Adds or deletes shared disk groups to/from a
cluster configuration.

cfsmntadm3 Adds, deletes, modifies, and sets policy on
cluster mounted file systems.
Appendix A184

VERITAS File System Quick Reference
Veritas File System Quick Reference
cfsmount,cfsumount
3

Mounts or unmounts a cluster file system.

df Reports the number of free disk blocks and
inodes for a VxFS file system.

fcladm5 VxFS File Change Log administration utility.

ff Lists file names and inode information for a
VxFS file system.

fsadm Resizes or defragments a VxFS file system.

fsapadm5 VxFS allocation policy administration utility.

fscat Cats a VxFS file system.

fscdsconv Converts the byte order of a file system.

fscdstask Performs various CDS operations.

fsck Checks and repairs a VxFS file system.

fsckpt_restore5 VxFS Storage Checkpoint file system
restoration utility.

fsckptadm VxFS Storage Checkpoint administration
utility.

fsclustadm3 Manages cluster-mounted VxFS file systems.

fsdb VxFS file system debugger.

fsdbencap Database encapsulation utility.

fsmove4,5 Relocates files to a destination component
volume.

fsrpadm VxFS relocation policy administration utility.

fssweep4,5 Sweep a multiple-volume VxFS file system for
files to relocate.

Table A-1 (Continued)

Command Description
Appendix A 185

VERITAS File System Quick Reference
Veritas File System Quick Reference
fstyp Returns the type of file system on a specified
disk partition.

fsvoladm5 VxFS device administration utility.

getext Gets extent attributes for a VxFS file system.

glmconfig3 Group Lock Manager (GLM) configuration
utility.

mkfs Constructs a VxFS file system.

mount Mounts a VxFS file system.

ncheck Generates path names from inode numbers for
a VxFS file system.

qioadmin1 VxFS Quick I/O for Databases cache
administration utility.

qiomkfile1 Creates a VxFS Quick I/O device file.

qiostat1 VxFS Quick I/O for Databases statistics utility.

setext Sets extent attributes on a file in a VxFS file
system.

umount_vxfs Unmounts a VxFS file system.

vxdump Incremental file system dump.

vxfsconvert Converts an unmounted file system to VxFS or
upgrades a VxFS disk layout

version.

vxfsstat Displays file system statistics.

vxlsino5 VxFS reverse path name lookup utility.

vxrestore Restores a file system incrementally.

vxtunefs Tunes a VxFS file system.

Table A-1 (Continued)

Command Description
Appendix A186

VERITAS File System Quick Reference
Veritas File System Quick Reference
Online Manual Pages

This release includes the following online manual pages as part of the VRTSvxfs package.
These are installed in the appropriate directories under /opt/VRTS/man (addthis to your
MANPATH environment variable), but does not update the windex database. To ensure that
new VxFS manual pages display correctly, update the windex database after installing
VRTSvxfs. See the catman(1M) manual page for more information.

vxupgrade Upgrades the disk layout of a mounted VxFS
file system.

1 Functionality available only with VERITAS Quick I/O for Databases
feature

2 Functionality available only with VERITAS QuickLog feature

3 Functionality available only with the VERITAS Cluster File System
product

4 Functionality available only with the VERITAS Quality of Storage
Service option

5 New in VxFS 4.0

Table A-2

Section1 Description

qioadmin1 VxFS Quick I/O for Databases cache
administration utility.

qiomkfile1 Creates a VxFS Quick I/O device file.

qiostat1 VxFS Quick I/O for Databases statistics utility.

Section 1M Description

getext Gets extent attributes for a VxFS file system.

cfscluster3 CFS cluster configuration command.

Table A-1 (Continued)

Command Description
Appendix A 187

VERITAS File System Quick Reference
Veritas File System Quick Reference
cfsdgadm3 Adds or deletes shared disk groups to/from a
cluster configuration.

cfsmntadm3 Adds, deletes, modifies, and sets policy on cluster
mounted file systems.

cfsmount, cfsumount3 Mounts or unmounts a cluster file system.

df_vxfs Reports the number of free disk blocks and inodes
for a VxFS file system.

fcladm5 VxFS File Change Log administration utility.

ff_vxfs Lists file names and inode information for a VxFS
file system.

fsadm_vxfs Resizes or reorganizes a VxFS file system.

fsapadm5 VxFS allocation policy administration utility.

fscat_vxfs Cats a VxFS file system.

fscdsconv Converts the byte order of a file system.

fscdstask Performs various CDS operations.

fsck_vxfs Checks and repairs a VxFS file system.

fsckptadm VxFS Storage Checkpoint administration utility.

fsckpt_restore5 VxFS Storage Checkpoint restore utility.

fsclustadm3 Manages cluster-mounted VxFS file systems.

fsvoladm5 VxFS device administration utility.

fsdb_vxfs VxFS file system debugger.

fsmove4,5 Relocates files to a destination component volume.

fssweep4,5 Traverses the directory structure of one or more
file systems.

Table A-2 (Continued)

Section1 Description
Appendix A188

VERITAS File System Quick Reference
Veritas File System Quick Reference
fstyp_vxfs Returns the type of file system on a specified disk
partition.

glmconfig3 Group Lock Manager (GLM) configuration utility.

mkfs_vxfs Constructs a VxFS file system.

mount_vxfs Mounts a VxFS file system.

ncheck_vxfs Generates path names from inode numbers for a
VxFS file system.

setext Sets extent attributes on a file in a VxFS file
system.

vxdump Incremental file system dump.

vxfsconvert Converts an unmounted file system to VxFS or
upgrades a VxFS disk layout version.

vxfsstat Displays file system statistics.

vxlsino5 VxFS reverse path name lookup utility.

vxrestore Restores a file system incrementally.

vxtunefs Tunes a VxFS file system.

vxupgrade Upgrades the disk layout of a mounted VxFS file
system.

Section 3 Description

vxfs_ap_assign_ckpt5 Assign an allocation policy to file data in a
Storage Checkpoint.

vxfs_ap_assign_file5 Assign an allocation policy for file data and
metadata.

vxfs_ap_assign_fs5 Assign an allocation policy for all file data and
metadata within a specified file system.

vxfs_ap_define5 Define a new allocation policy.

Table A-2 (Continued)

Section1 Description
Appendix A 189

VERITAS File System Quick Reference
Veritas File System Quick Reference
vxfs_ap_enforce_file5 Ensures that all blocks in a specified file match
the file allocation policy.

vxfs_ap_enumerate5 Returns information about all allocation policies.

vxfs_ap_query5 Returns information about a specific allocation
policy.

vxfs_ap_query_ckpt5 Returns information about allocation policies for
each Storage Checkpoint.

vxfs_ap_query_file5 Returns information about allocation policies
assigned to a specified file.

vxfs_ap_query_fs5 Retrieves allocation policies assigned to a
specified file system.

vxfs_ap_remove5 Deletes a specified allocation policy.

vxfs_fcl_sync5 Sets a synchronization point in the VxFS File
Change Log.

vxfs_get_ioffsets Obtains VxFS inode field offsets.

vxfs_inotopath5 Returns path names for a given inode number.

vxfs_nattr_link Links to a named data stream.

vxfs_nattr_open Opens a named data stream.

vxfs_nattr_rename Renames a named data stream.

vxfs_nattr_unlink Removes a named data stream.

vxfs_nattr_utimes Sets access and modification times for named data
streams.

vxfs_vol_add5 Adds a volume to a multi-volume file system.

vxfs_vol_deencapsulate5 De-encapsulates a volume from a multi-volume
file system.

vxfs_vol_encapsulate5 Encapsulates a volume within a multi-volume file
system.

Table A-2 (Continued)

Section1 Description
Appendix A190

VERITAS File System Quick Reference
Veritas File System Quick Reference
Creating a File System

The mkfs command creates a VxFS file system by writing to a special character device
file.The special character device is a raw disk device or a VERITAS Volume Manager (VxVM)
volume. mkfs builds a file system with a root directory and a lost+found directory.

vxfs_vol_encapsulate _bias5 Encapsulates a volume within a multi-volume file
system.

vxfs_vol_enumerate5 Returns information about the volumes within a
multi-volume file system.

vxfs_vol_remove5 Removes a volume from a multi-volume file
system.

vxfs_vol_resize5 Resizes a specific volume within a multi-volume
file system.

vxfs_vol_stat5 Returns free space information about a
component volume within a multi-volume file
system.

Section 4 Description

fs_vxfs Format of a VxFS file system volume.

inode_vxfs Format of a VxFS file system inode.

tunefstab VxFS file system tuning parameters table.

Section 7 Description

vxfsio VxFS file system control functions.

1 Functionality available only with VERITAS Quick I/O for Databases feature

3 Functionality available only with the VERITAS Cluster File System product

4 Functionality available only with the VERITAS Quality of Storage Service
option

5 New in VxFS 4.0

Table A-2 (Continued)

Section1 Description
Appendix A 191

VERITAS File System Quick Reference
Veritas File System Quick Reference
Before running mkfs, you must create the target device. Refer to your operating system
documentation for more information. If you are using a logical device (such as a VxVM
volume), see the VxVM documentation for instructions on device initialization.

How to Create a File System

To create a file system, use the mkfs command:

mkfs [-F vxfs] [generic_options] [-o specific_options] special [size]

vxfs The file system type.

generic_options Options common to most other file system types.

specific_options Options specific to VxFS.

-o N Displays the geometry of the file system and does not write to the

device.

-o largefiles Allows users to create files larger than two gigabytes. The default

option is largefiles.

special The character (raw) device or VERITAS Volume Manager volume.

size The size of the new file system (in sectors).

See the following manual pages for more information about creating VxFS file systems:

• mkfs(1M)

• mkfs_vxfs(1M)

Example A-1 To create a VxFS file system 12288 sectors in size on VxVM
volume

Enter:

mkfs -F vxfs /dev/vx/rdsk/diskgroup/volume 12288

Information similar to the following displays:

version 6 layout

262144 sectors, 262144 blocks of size 1024, log size 1024 blocks

largefiles supported

At this point, you can mount the newly created file system.
Appendix A192

VERITAS File System Quick Reference
Veritas File System Quick Reference
Converting a UFS File System to VxFS

The vxfsconvert command can be used to convert a UFS file system to a VxFS file system.

How to Convert a File System

To convert a UFS file system, use the vxfsconvert command:

vxfsconvert [-l logsize] [-s size] [-efnNvyY] special

-e Estimates the amount of space required to complete the conversion.

-f Displays the list of supported file system types.

-l logsize Specifies the size of the file system intent log.

-n|N Assumes a no response to all questions asked by vxfsconvert.

-s size Directs vxfsconvert to use free disk space past the current end of the file
system to store VxFS metadata.

-v Specifies verbose mode.

-y|Yspecial Assumes a yes response to all questions asked by vxfsconvert.

See the vxfsconvert(1M) manual page for more information about converting a UFS file
system to a VxFS file system.

Example

To convert a UFS file system to a VxFS file system with an intent log size of 4096 blocks,
enter:

vxfsconvert -l 4096 /dev/vx/rdsk/diskgroup/volume

Mounting a File System

You can mount a VxFS file system by using the mount command. If you enter this command,
the generic mount command parses the arguments and the -F fstype option executes the
mount command specific to that file system type. For VxFS and VERITAS-installed products,
the generic mount command executes the VxFS mount command from the directory
/sbin/fs/vxfs3.5. If the -F option is not supplied, the command searches the file /etc/fstab for a
file system and an fstype matching the special file or mount point provided. If no file system
type is specified, mount uses the default file system type (VxFS).

How to Mount a File System

After you create a VxFS file system, you can use the mount command to mount the file
system:
Appendix A 193

VERITAS File System Quick Reference
Veritas File System Quick Reference
mount [-F vxfs] [generic_options] [-r] [-o specific_options] \special
mount_point

vxfs The file system type.

generic_options Options common to most other file system types.

specific_options Options specific to VxFS.

-o ckpt=ckpt_name Mounts a VERITAS Storage Checkpoint.

-o cluster Mounts a file system in shared mode. Available only with the VxFS cluster
file system feature.

special Block special device.

mount_point Directory on which to mount the file system.

-r Mounts the file system as read-only.

Mount Options

The mount command has numerous options to tailor a file system for various functions and
environments. Some specific_options are listed below.

• Security feature

If security is important, use blkclear to ensure that deleted files are completely erased
before the space is reused.

• Support for large files

If you specify the largefiles option, you can create files larger than two gigabytes on the
file system. The default option is largefiles.

• Support for cluster file systems

If you specify the cluster option, the file system is mounted in shared mode. Cluster file
systems depend on several other VERITAS products that must be correctly configured
before a complete clustering environment is enabled.

• Using Storage Checkpoints

The ckpt=checkpoint_name option mounts a Storage Checkpoint of a mounted file
system that was previously created by the fsckptadm command.

• Using databases

If you are using databases with VxFS and if you have installed a license key for the
VERITAS Quick I/O for Databases feature, the mount command enables Quick I/O by
default (the same as specifying the qio option). The noqio option disables Quick I/O. If you
Appendix A194

VERITAS File System Quick Reference
Veritas File System Quick Reference
do not have Quick I/O, mount ignores the qio option. Alternatively, you can increase
database performance using the mount option convosync=direct, which utilizes direct
I/O. See “Quick I/O Functionality and Performance” on page 165 for more information.

• News file systems

If you are using cnews, use delaylog (or tmplog),mincache=closesync because cnews does
an fsync() on each news file before marking it received. The fsync() is performed
synchronously as required, but other options are delayed.

• Temporary file systems

For a temporary file system such as /tmp, where performance is more important than
data integrity, use tmplog,mincache=tmpcache.

See “Choosing mount Command Options” on page 43” and the following manual pages for
more information about the mount command and its available options:

• fstab(4)

• fsckptadm(1M)

• mount(1M)

• mount_vxfs(1M)

Example A-2 To mount the file system /dev/vx/dsk/fsvol/vol1 on the /ext
directory with read/write access and delayed logging

Enter:

mount -F vxfs -o delaylog /dev/vx/dsk/fsvol/vol1 /ext

How to Edit the fstab File

You can edit the /etc/fstab file to automatically mount a file system at boot time. You must
specify:

• the special block device name to mount

• the mount point

• the file system type (vxfs)

• the mount options

• the backup frequency

• which fsck pass looks at the file system
Appendix A 195

VERITAS File System Quick Reference
Veritas File System Quick Reference
Each entry must be on a single line. See the fstab(4) manual page for more information
about the /etc/fstab file format.

Here is a typical fstab file with the new file system on the last line:

System /etc/fstab file. Static

information about the file systems

See fstab(4) and sam(1M) for further

details on configuring devices.

/dev/vg00/lvol3 / vxfs delaylog 0 1

/dev/vg00/lvol1 /stand hfs defaults 0 1

/dev/vg00/lvol4 /tmp vxfs delaylog 0 2

/dev/vg00/lvol5 /home vxfs delaylog 0 2

/dev/vg00/lvol6 /opt vxfs delaylog 0 2

/dev/vg00/lvol7 /usr vxfs delaylog 0 2

/dev/vg00/lvol8 /var vxfs delaylog 0 2

/dev/vx/dsk/fsvol /ext vxfs delaylog 0 2

Unmounting a File System

Use the umount command to unmount a currently mounted file system.

How to Unmount a File System

To unmount a file system, use the following syntax:

umount special | mount_point

Specify the file system to be unmounted as a mount_point or special (the device on which the
file system resides). See the umount_vxfs(1M) manual page for more information about this
command and its available options.

Example A-3 To unmount the file system /dev/vx/dsk/fsvol/vol1

Enter:

umount /dev/vx/dsk/fsvol/vol1

Example A-4 To unmount all file systems not required by the system

Enter:
Appendix A196

VERITAS File System Quick Reference
Veritas File System Quick Reference
umount -a

This unmounts all file systems except /(root), /usr, /var, /opt, and /tmp.

Displaying Information on Mounted File Systems

You can use the mount command to display a list of currently mounted file systems.

How to Display File System Information

To view the status of mounted file systems, use the syntax:

mount -v

This shows the file system type and mount options for all mounted file systems. The -v option
specifies verbose mode.

See the following manual pages for more information about the mount command and its
available options:

• mount(1M)

• mount_vxfs(1M)

Example A-5 When invoked without options, the mount command displays file
system information similar to the following:

mount

/dev/vg00/lvol3 on / type vxfs ioerror=mwdisable,delaylog Wed Jun 5 \

3:23:40 2004

/dev/vg00/lvol8 on /var type vxfs ioerror=mwdisable,delaylog Wed Jun 5 \

3:23:56 2004

/dev/vg00/lvol7 on /usr type vxfs ioerror=mwdisable,delaylog Wed Jun 5 \

3:23:56 2004

/dev/vg00/lvol6 on /tmp type vxfs ioerror=mwdisable,delaylog Wed Jun 5 \

3:23:56 2004

/dev/vg00/lvol5 on /opt type vxfs ioerror=mwdisable,delaylog Wed Jun 5 \

3:23:57 2004

/dev/vg00/lvol1 on /stand type hfs defaults on Thu Jun 6 4:17:20 2004 \

/dev/vgdb/lvol13 on /oracle type vxfs ioerror=mwdisable,delaylog Thu \
Appendix A 197

VERITAS File System Quick Reference
Veritas File System Quick Reference
Jun 6 4:17:20 2004

/dev/vg00/lvol4 on /home type vxfs ioerror=mwdisable,delaylog on Thu \

Jun 6 4:17:20 2004

/dev/vgdb/lvol9 on /bench type vxfs ioerror=mwdisable,delaylog on Thu \

Jun 6 4:17:11 2004

Identifying File System Types

Use the fstyp command to determine the file system type for a specified file system. This is
useful when a file system was created elsewhere and you want to know its type.

How to Identify a File System

To determine the status of mounted file systems, use the syntax:

fstyp -v special

special The character (raw) device.

-v Specifies verbose mode.

See the following manual pages for more information about the fstyp command and its
available options:

• fstyp(1M)

Example A-6 To find out what kind of file system is on the device
/dev/vx/dsk/fsvol/vol1

Enter:

fstyp -v /dev/vx/dsk/fsvol/vol1

The output indicates that the file system type is vxfs, and displays file system information
similar to the following:

vxfs

version: 6

f_bsize: 8192

f_frsize: 1024

f_blocks: 1027432

f_bfree: 1026075

f_bavail: 961946
Appendix A198

VERITAS File System Quick Reference
Veritas File System Quick Reference
f_files: 256548

f_ffree: 256516

f_favail: 256516

f_fsid: 520114176

f_basetype: vxfs

f_namemax: 254

f_magic: a501fcf5

f_featurebits: 0

f_flag: 0

f_fsindex: 7

f_size: 4194304

Resizing a File System

You can extend or shrink mounted VxFS file systems using the fsadm command. Use the
extendfs command to extend the size of an unmounted file system. A file system using the
Version 4 disk layout can be up to two terabytes in size. A file system using the Version 5 disk
layout can be up to 32 terabytes in size. A file system using the Version 6 disk layout can be up
to 256 terabytes in size. The size to which a Version 5 or Version 6 disk layout file system can
be increased depends on the file system block size (as shown in the tables under "VxFS
Version5 Disk Layout" on page 208 and "VxFS Version 6 Disk Layout" on page 209). See the
following manual pages for more information about resizing file systems:

• extendfs(1M)

• fsadm_vxfs(1M)

How to Extend a File System Using fsadm

If a VxFS file system is not large enough, you can increase its size. The size of the file system
is specified in units of 1024-byte blocks (or sectors).

NOTE If a file system is full, busy, or too fragmented, the resize operation may fail.

To extend a VxFS file system, use the syntax:

fsadm [-F vxfs] [-b newsize] [-r rawdev] mount_point

vxfs The file system type.
Appendix A 199

VERITAS File System Quick Reference
Veritas File System Quick Reference
newsize The size (in sectors) to which the file system will increase.

mount_point The file system’s mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in /etc/fstab
and fsadm cannot determine the raw device.

NOTE The device must have enough space to contain the larger file system. See the
format (1M) manual page or the VERITAS Volume Manager’s Administrator’s
Guide for more information.

Example A-7 To extend the VxFS file system mounted on /ext to 22528 sectors

Enter:

fsadm -F vxfs -b 22528 /ext

How to Shrink a File System

You can decrease the size of the file system using fsadm, even while the file system is
mounted.

NOTE In cases where data is allocated towards the end of the file system, shrinking
may not be possible. If a file system is full, busy, or too fragmented, the resize
operation may fail.

To decrease the size of a VxFS file system, use the syntax:

fsadm [-F vxfs] [-b newsize] [-r rawdev] mount_point

vxfs The file system type.

newsize The size (in sectors) to which the file system will shrink.

mount_point The file system’s mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in /etc/fstab
and fsadm cannot determine the raw device.

Example A-8 To shrink a VxFS file system mounted at /ext to 20480 sectors

Enter:

fsadm -F vxfs -b 20480 /ext
Appendix A200

VERITAS File System Quick Reference
Veritas File System Quick Reference
NOTE After this operation, there is unused space at the end of the device. You can
then resize the device, but be careful not to make the device smaller than the
new size of the file system.

How to Reorganize a File System

You can reorganize (or compact) a fragmented file system using fsadm, even while the file
system is mounted. This may help shrink a file system that could not previously be decreased.

NOTE If a file system is full or busy, the reorg operation may fail.

To reorganize a VxFS file system, use the syntax:

fsadm [-F vxfs] [-e] [-d] [-E] [-D] [-r rawdev] mount_point

vxfs The file system type

-d Reorders directory entries to put subdirectory entries first, then all other
entries in decreasing order of time of last access. Also compacts directories
to remove free space.

-D Reports on directory fragmentation.

-e Minimizes file system fragmentation. Files are reorganized to have the
minimum number of extents.

-E Reports on extent fragmentation.

mount_point The file system’s mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in /etc/fstab
and fsadm cannot determine the raw device.

Example A-9 To reorganize the VxFS file system mounted at /ext

Enter:

fsadm -F vxfs -EeDd /ext

How to Extend a File System Using extendfs

If a VxFS file system is not mounted, you can use the extendfs command to increase the size
of the file system.

To extend a VxFS file system, use the syntax:
Appendix A 201

VERITAS File System Quick Reference
Veritas File System Quick Reference
extendfs [-F vxfs] [-q] [-v] [-s size] special

vxfs The file system type

-q Displays the size of special without resizing it

-v Specifies verbose mode

-s size Specifies the number of blocks to add to the file system (maximum if not
specified)

special Either a logical volume or a disk partition

NOTE The device must have enough space to hold the new larger file system.

When the file system size is grown with the extendfs command, the intent log
size is not automatically increased. This issue is most visible when upgrading
file systems with disk layout Versions prior to 3 and of a size smaller than 8
MB. When such a file system is upgraded to disk layout Version 4 and then
extended to a size greater than 8 MB with the extendfs command, the file
system cannot be mounted since the minimum allowed intent log size is 256K.

Example A-10 To increase the capacity of a file system on an VM volume

Enter:

umount /dev/vg00/lvol7

lvextend -L larger_size /dev/vg00/lvol7

extendfs -F vxfs /dev/vg00/rlvol7

mount -F vxfs /dev/vg00/lvol7 mount_point

Backing Up and Restoring a File System

To back up a VxFS file system, you first create a read-only snapshot file system, then back up
the snapshot. This procedure lets you keep the main file system on line. The snapshot is a
copy of the snapped file system that is frozen at the moment the snapshot is created.

See Chapter 6, “Online Backup Using File System Snapshots,” on page 119 and the following
manual pages for more information about the mount, vxdump, and vxrestore commands and
their available options:

• mount(1M)

• mount_vxfs(1M)
Appendix A202

VERITAS File System Quick Reference
Veritas File System Quick Reference
• vxdump(1M)

• vxrestore(1M)

How to Create and Mount a Snapshot File System

The first step in backing up a VxFS file system is to create and mount a snapshot file system.
To create and mount a snapshot of a VxFS file system, use the syntax:

mount [-F vxfs] -o snapof=source,[snapsize=size] \destination
snap_mount_point

source The special device name or mount point of the file system to copy.

destination The name of the special device on which to create the snapshot.

size The size of the snapshot file system in sectors.

snap_mount_point Location where to mount the snapshot; snap_mount_point must exist
before you enter this command.

Example A-11 To create a snapshot file system of the file system at /home on
/dev/vx/dsk/fsvol/vol1 and mount it at /snapmount

Enter:

mount -F vxfs -o snapof=/home, \snapsize=32768 /dev/vx/dsk/fsvol/vol1
/snapmount

You can now back up the file system, as described in the following section.

How to Back Up a File System

After creating a snapshot file system as described in the previous section, you can use vxdump
to back it up. To back up a VxFS snapshot file system, use the syntax:

vxdump [-c] [-f backupdev] snap_mount_point

-c Specifies using a cartridge tape device.

backupdev The device on which to back up the file system.

snap_mount_point The snapshot file system’s mount point.

Example A-12 To back up the VxFS snapshot file system mounted at /snapmount
to the tape drive with device name /dev/rmt

Enter:

vxdump -cf /dev/rmt /snapmount
Appendix A 203

VERITAS File System Quick Reference
Veritas File System Quick Reference
How to Restore a File System

After backing up the file system, you can restore it using the vxrestore command. First,
create and mount an empty file system. To restore a VxFS snapshot file system, use the
syntax:

vxrestore [-v] [-x] [filename]

-v Specifies verbose mode.

-x Extracts the named files from the tape.

filename The file or directory to restore. If filename is omitted, the root directory (and
thus the entire tape) is extracted.

Example A-13 To restore a VxFS snapshot file system from the tape /dev/st1
into the mount point /restore

Enter:

cd /restore

vxrestore -v -x -f /dev/st1

Using Quotas

You can use quotas to allocate per-user quotas on VxFS file systems.

See Chapter 7, “Quota,” on page 129 and the following manual pages for more information
about the quota, quotaon, quotaoff, and edquota commands and their available options:

• edquota(1M)

• quota(1M)

• quotaon(1M)

• quotaoff(1M)

How to Turn On Quotas

You can enable quotas at mount time or after a file system is mounted. The root directory of
the file system must contain a file named quotas that is owned by root.

To turn on quotas for a mounted file system, use the syntax:

quotaon mount_point

To mount a file system and turn on quotas at the same time, use the syntax:

mount -F vxfs -o quota special mount_point
Appendix A204

VERITAS File System Quick Reference
Veritas File System Quick Reference
If the root directory does not contain a quotas file, the mount command succeeds, but quotas
are not turned on.

Example A-14 To create a quotas file (if it does not already exist) and turn on
quotas for a VxFS file system mounted at /mnt

Enter:

touch /mnt/quotas

quotaon /mnt

Example A-15 To turn on quotas for a file system at mount time

Enter:

mount -F vxfs -o quota /dev/vx/dsk/fsvol/vol1 /mnt

How to Set Up User Quotas

You can set user quotas with the edquota command if you have superuser privileges. User
quotas can have a soft limit and/or hard limit. You can modify the limits or assign them
specific values. Users are allowed to exceed the soft limit, but only for a specified time. Disk
usage can never exceed the hard limit. The default time limit for exceeding the soft limit is
seven days on VxFS file systems.

edquota creates a temporary file for a specified user. This file contains on-disk quotas for
each mounted VxFS file system that has a quotas file. The temporary file has one or more
lines similar to:

fs /mnt blocks (soft = 0, hard = 0) inodes (soft=0, hard=0)

fs /mnt1 blocks (soft = 100, hard = 200) inodes (soft=10, hard=20)

Quotas do not need to be turned on for edquota to work. However, the quota limits apply only
after quotas are turned on for a given file system.

edquota has an option to modify time limits. Modified time limits apply to the entire
filesystem; you cannot set time limits for an individual user.

To invoke the quota editor, use the syntax:

edquota username

To modify the time limit, use the syntax:

edquota -t
Appendix A 205

VERITAS File System Quick Reference
Veritas File System Quick Reference
How to View Quotas

The superuser or individual user can view disk quotas and usage on VxFS file systems using
the quota command. To view quotas for a specific user, use the syntax:

quota -v username

This command displays the user’s quotas and disk usage on all mounted VxFS file systems
where the quotas file exists. You will see all established quotas regardless of whether or not
the quotas are actually turned on.

How to Turn Off Quotas

You can turn off quotas for a mounted file system using the quotaoff command. To turn off
quotas for a file system, use the syntax:

quotaoff mount_point

Example A-16 To turn off quotas for a VxFS file system mounted at /mnt

Enter:

quotaoff /mnt
Appendix A206

B Kernel Messages
Appendix B 207

Kernel Messages
Kernel Messages
Kernel Messages
This appendix contains a listing of diagnostic or error messages generated by the VERITAS
File System (VxFS) kernel. Each message has a description and a suggestion on how to
handle or correct the underlying problem.

The following topics are covered in this chapter:

• File System Response to Problems

— Marking an Inode Bad

— Disabling Transactions

— Disabling a File System

— Recovering a Disabled File System

• Kernel Messages

— Global Message IDs

File System Response to Problems

When the file system encounters problems, it responds in one of three ways:

• Marks an inode bad

• Disables transactions

• Disables the file system

Marking an Inode Bad

Inodes can be marked bad if an inode update or a directory-block update fails. In these types
of failures, the file system does not know what information is on the disk, and considers all
the information that it finds to be invalid. After an inode is marked bad, the kernel still
permits access to the file name, but any attempt to access the data in the file or change the
inode fails.

Disabling Transactions

If the file system detects an error while writing the intent log, it disables transactions. After
transactions are disabled, the files in the file system can still be read or written, but no block
or inode frees or allocations, structural changes, directory entry changes, or other changes to
metadata are allowed.
Appendix B208

Kernel Messages
Kernel Messages
Disabling a File System

If an error occurs that compromises the integrity of the file system, VxFS disables itself. If the
intent log fails or an inode-list error occurs, the super-block is ordinarily updated (setting the
VX_FULLFSCK flag) so that the next fsck does a full structural check. If this super-block
update fails, any further changes to the file system can cause inconsistencies that are
undetectable by the intent log replay. To avoid this situation, the file system disables itself.

Recovering a Disabled File System

When the file system is disabled, no data can be written to the disk. Although some minor file
system operations still work, most simply return EIO. The only thing that can be done when
the file system is disabled is to do a umount and run a full fsck.

Although a log replay may produce a clean file system, do a full structural check to be safe. To
execute a full structural check, enter:

fsck -F vxfs -o full -y /dev/vx/rdsk/diskgroup/volume

NOTE Be careful when running this command. By specifying the -y option, all fsck
user prompts are answered with a yes, which can make irreversible changes if
it performs a full file system check.

The file system usually becomes disabled because of disk errors. Disk failures that disable a
file system should be fixed as quickly as possible (see the fsck_vxfs(1M) manual page).

Kernel Messages

This section lists the VxFS kernel error messages in numerical order. The Description
subsection for each message describes the problem, the Action subsection suggests possible
solutions.

Global Message IDs

When a VxFS kernel message displays on the system console, it is preceded by a numerical ID
shown in the msgcnt field. This ID number increases with each instance of the message to
guarantee that the sequence of events is known when analyzing file system problems.

Each message is also written to an internal kernel buffer that you can view in the file
/var/adm/syslog/syslog.log.
Appendix B 209

Kernel Messages
Kernel Messages
In some cases, additional data is written to the kernel buffer. For example, if an inode is
marked bad, the contents of the bad inode are written. When an error message is displayed on
the console, you can use the unique message ID to find the message in
/var/adm/syslog/syslog.log and obtain the additional information.

Table B-1

Message
Number Message and Definition

001 NOTE: msgcnt x: mesg 001: V-2-01: vx_nospace - mount_point file system full
(nblock extent)

• Description

The file system is out of space.

Often, there is plenty of space and one runaway process used up all the
Appendix B210

Kernel Messages
Kernel Messages
002 WARNING: msgcnt x: mesg 002: V-2-02: vx_snap_strategy - mount_point file
system write attempt to read-only file system

WARNING: msgcnt x: mesg 002: V-2-02: vx_snap_copyblk - mount_point file
system write attempt to read-only file system

• Description

The kernel tried to write to a read-only file system. This is an unlikely
problem, but if it occurs, the file system is disabled.

• Action

The file system was not written, so no action is required. Report this as a
bug to your customer support organization.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 211

Kernel Messages
Kernel Messages
003, 004,
005

WARNING: msgcnt x: mesg 003: V-2-03: vx_mapbad - mount_point file
system free extent bitmap in au aun marked bad.

WARNING: msgcnt x: mesg 004: V-2-04: vx_mapbad - mount_point file
system free inode bitmap in au aun marked bad.

WARNING: msgcnt x: mesg 005: V-2-05: vx_mapbad - mount_point file
system inode extended operation bitmap in au aun marked bad.

• Description

If there is an I/O failure while writing a bitmap, the map is marked bad.
The kernel considers the maps to be invalid, so does not do any more
resource allocation from maps. This situation can cause the file system to
report out of space or out of inode error messages even though df may
report an adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails
a consistency check, or blocks are freed that are already free in the
bitmap, the file system has been corrupted. This may have occurred
because a user or process wrote directly to the device or used fsdb to
change the file system.

The VX_FULLFSCK flag is set. If the map that failed was a free extent
bitmap, and the VX_FULLFSCK flag can’t be set, then the file system is
disabled.

• Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk. If the problem is not related to an I/O failure, find out
how the disk became corrupted. If no user or process was writing to the
device, report the problem to your customer support organization.
Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B212

Kernel Messages
Kernel Messages
006, 007 WARNING: msgcnt x: mesg 006: V-2-06: vx_sumupd - mount_point file
system summary update in au aun failed

WARNING: msgcnt x: mesg 007: V-2-07: vx_sumupd - mount_point file
system summary update in inode au iaun failed

• Description

An I/O error occurred while writing the allocation unit or inode allocation
unit bitmap summary to disk. This sets the VX_FULLFSCK flag on the
file system. If the VX_FULLFSCK flag can’t be set, the file system is
disabled.

• Action

Check the console log for I/O errors. If the problem was caused by a disk
failure, replace the disk before the file system is mounted for write access,
and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 213

Kernel Messages
Kernel Messages
008, 009 WARNING: msgcnt x: mesg 008: V-2-08: vx_direrr - mount_point file system
inode inumber block blkno error errno

WARNING: msgcnt x: mesg 009: V-2-09: vx_direrr - mount_point file system
inode inumber immediate directory error errno

• Description

A directory operation failed in an unexpected manner. The mount point,
inode, and block number identify the failing directory. If the inode is an
immediate directory, the directory entries are stored in the inode, so no
block number is reported. If the error is ENOENT or ENOTDIR, an
inconsistency was detected in the directory block. This inconsistency
could be a bad free count, a corrupted hash chain, or any similar directory
structure error. If the error is EIO or ENXIO, an I/O failure occurred
while reading or writing the disk block.

The VX_FULLFSCK flag is set in the super-block so that fsck will do a
full structural check the next time it is run.

• Action

Check the console log for I/O errors. If the problem was caused by a disk
failure, replace the disk before the file system is mounted for write access.
Unmount the file system and use fsck to run a full structural check.

010 WARNING: msgcnt x: mesg 010: V-2-10: vx_ialloc - mount_point file
system inode inumber not free

• Description

When the kernel allocates an inode from the free inode bitmap, it checks
the mode and link count of the inode. If either is non-zero, the free inode
bitmap or the inode list is corrupted.

The VX_FULLFSCK flag is set in the super-block so that fsck will do a
full structural check the next time it is run.

• Action

Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B214

Kernel Messages
Kernel Messages
011 NOTE: msgcnt x: mesg 011: V-2-11: vx_noinode - mount_point file system out
of inodes

• Description

The file system is out of inodes.

• Action

Monitor the free inodes in the file system. If the file system is getting full,
create more inodes either by removing files or by expanding the file
system. File system resizing is described in“Online System
Administration” on page 24 and in the fsadm_vxfs(1M) online manual
page.

012 WARNING: msgcnt x: mesg 012: V-2-12: vx_iget - mount_point file
system invalid inode number inumber

• Description

When the kernel tries to read an inode, it checks the inode number
against the valid range. If the inode number is out of range, the data
structure that referenced the inode number is incorrect and must be
fixed.

The VX_FULLFSCK flag is set in the super-block so that fsck will do a
full structural check the next time it is run.

• Action

Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 215

Kernel Messages
Kernel Messages
013 WARNING: msgcnt x: mesg 013: V-2-13: vx_iposition - mount_point file
system inode inumber invalid inode list extent

• Description

For a Version 2 and above disk layout, the inode list is dynamically
allocated. When the kernel tries to read an inode, it must look up the
location of the inode in the inode list file. If the kernel finds a bad extent,
the inode can’t be accessed. All of the inode list extents are validated
when the file system is mounted, so if the kernel finds a bad extent, the
integrity of the inode list is questionable. This is a very serious error.

The VX_FULLFSCK flag is set in the super-block and the file system is
disabled.

• Action

Unmount the file system and use fsck to run a full structural check.

014 WARNING: msgcnt x: mesg 014: V-2-14: vx_iget - inode table overflow

• Description

All the system in-memory inodes are busy and an attempt was made to
use a new inode.

• Action

NOTE: The tunable parameter vx_ninode is used to set the value of
vxfs_ninode.

Look at the processes that are running and determine which processes
are using inodes. If it appears there are runaway processes, they might be
tying up the inodes. If the system load appears normal, increase the
vx_ninode parameter in the kernel (See “Kernel Tunables” on page 54) .

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B216

Kernel Messages
Kernel Messages
015 WARNING: msgcnt x: mesg 015: V-2-15: vx_ibadinactive - mount_point
file system can’t mark inode inumber bad

msgcnt x: mesg 015: V-2-15: vx_ilisterr - mount_point file system can’t
mark inode inumber bad

• Description

An attempt to mark an inode bad on disk, and the super-block update to
set the VX_FULLFSCK flag, failed. This indicates that a catastrophic
disk error may have occurred since both an inode list block and the
super-block had I/O failures. The file system is disabled to preserve file
system integrity.

• Action

Unmount the file system and use fsck to run a full structural check.
Check the console log for I/O errors. If the disk failed, replace it before
remounting the file system.

016 WARNING: msgcnt x: mesg 016: V-2-16: vx_ilisterr - mount_point file
system error reading inode inumber

• Description

An I/O error occurred while reading the inode list. The VX_FULLFSCK
flag is set.

• Action

Check the console log for I/O errors. If the problem was caused by a disk
failure, replace the disk before the file system is mounted for write access.
Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 217

Kernel Messages
Kernel Messages
017 WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_getblk - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_iget - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_iget - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_indadd - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_indtrunc -
mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_iremove - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_bmap - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_bmap_indirect_ext4 -
mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_delbuf_flush - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dio_iovec - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dirbread - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dircreate - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dirlook - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_doextop_iau - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_doextop_now - mount_point
file system inode inumber marked bad in core

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B218

Kernel Messages
Kernel Messages
017 WARNING: msgcnt x: mesg 017: V-2-17: vx_enter_ext4 - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_exttrunc - mount_point file
systeminode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_get_alloc - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_ilisterr - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_indtrunc - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iread - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iremove - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iremove_attr - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_logwrite_flush -
mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_oltmount_iget -
mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_overlay_bmap -
mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_readnomap - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_reorg_trunc - mount_point
file system inode inumber marked bad in core

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 219

Kernel Messages
Kernel Messages
017 WARNING: msgcnt x: mesg 017: V-2-17: vx_stablestore - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_tranitimes - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_trunc - mount_point file
system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_write_alloc2 - mount_point
file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_write_default -
mount_point file system inode inumber marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_zero_alloc - mount_point
file system inode inumber marked bad in core

• Description

When inode information is no longer dependable, the kernel marks it bad
in memory. This is followed by a message to mark it bad on disk as well
unless the mount command ioerror option is set to disable, or there is
subsequent I/O failure when updating the inode on disk. No further
operations can be performed on the inode.

The most common reason for marking an inode bad is a disk I/O failure. If
there is an I/O failure in the inode list, on a directory block, or an indirect
address extent, the integrity of the data in the inode, or the data the
kernel tried to write to the inode list, is questionable. In these cases, the
disk driver prints an errormessage and one or more inodes are marked
bad.

The kernel also marks an inode bad if it finds a bad extent address,
invalid inode fields, or corruption in directory data blocks during a
validation check. A validation check failure indicates the file system has
been corrupted. This usually occurs because a user or process has written
directly to the device or used fsdb to change the file system.

The VX_FULLFSCK flag is set in the super-block so fsck will do a full
structural check the next time it is run.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B220

Kernel Messages
Kernel Messages
017 • Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk. If the problem is not related to an I/O failure, find out
how the disk became corrupted. If no user or process is writing to the
device, report the problem to your customer support organization. In
either case, unmount the file system. The file system can be remounted
without a full fsck unless the VX_FULLFSCK flag is set for the file
system.

019 WARNING: msgcnt x: mesg 019: V-2-19: vx_log_add - mount_point file
system log overflow

• Description

Log ID overflow. When the log ID reaches VX_MAXLOGID
(approximately one billion by default), a flag is set so the file system
resets the log ID at the next opportunity. If the log ID has not been reset,
when the log ID reaches VX_DISLOGID (approximately VX_MAXLOGID
plus 500 million by default), the file system is disabled. Since a log reset
will occur at the next 60 second sync interval, this should never happen.

• Action

Unmount the file system and use fsck to run a full structural check.

020 WARNING: msgcnt x: mesg 020: V-2-20: vx_logerr - mount_point file
system log error errno

• Description

Intent log failed. The kernel will try to set the VX_FULLFSCK and
VX_LOGBAD flags in the super-block to prevent running a log replay. If
the super-block can’t be updated, the file system is disabled.

• Action

Unmount the file system and use fsck to run a full structural check.
Check the console log for I/O errors. If the disk failed, replace it before
remounting the file system.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 221

Kernel Messages
Kernel Messages
021 WARNING: msgcnt x: mesg 021: V-2-21: vx_fs_init - mount_point file
system validation failure

• Description

When a VxFS file system is mounted, the structure is read from disk. If
the file system is marked clean, the structure is correct and the first block
of the intent log is cleared.

If there is any I/O problem or the structure is inconsistent, the kernel sets
the VX_FULLFSCK flag and the mount fails.

If the error isn’t related to an I/O failure, this may have occurred because
a user or process has written directly to the device or used fsdb to change
the file system.

• Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk. If the problem is not related to an I/O failure, find out
how the disk became corrupted. If no user or process is writing to the
device, report the problem to your customer support organization. In
either case, unmount the file system and use fsck to run a full structural
check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B222

Kernel Messages
Kernel Messages
022 WARNING: msgcnt x: mesg 022: V-2-22: vx_mountroot - root file system
remount failed

• Description

The remount of the root file system failed. The system will not be usable if
the root file system can’t be remounted for read/write access.

When a VERITAS root file system is first mounted, it is mounted for
read-only access. After fsck is run, the file system is remounted for
read/write access. The remount fails if fsck completed a resize operation
or modified a file that was opened before the fsck was run. It also fails if
an I/O error occurred during the remount.

Usually, the system halts or reboots automatically.

• Action

Reboot the system. The system either remounts the root cleanly or runs a
full structural fsck and remounts cleanly. If the remount succeeds, no
further action is necessary.

Check the console log for I/O errors. If the disk has failed, replace it before
the file system is mounted for write access.

If the system won’t come up and a full structural fsck hasn’t been run,
reboot the system on a backup root and manually run a full structural
fsck. If the problem persists after the full structural fsck and there are
no I/O errors, contact your customer support organization

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 223

Kernel Messages
Kernel Messages
023 WARNING: msgcnt x: mesg 023: V-2-23: vx_unmountroot - root file
system is busy and can’t be unmounted cleanly

• Description

There were active files in the file system and they caused the unmount to
fail.

When the system is halted, the root file system is unmounted. This
happens occasionally when a process is hung and it can’t be killed before
unmounting the root.

• Action

fsck will run when the system is rebooted. It should clean up the file
system. No other action is necessary.

If the problem occurs every time the system is halted, determine the
cause and contact your customer support organization.

024 WARNING: msgcnt x: mesg 024: V-2-24: vx_cutwait - mount_point file
system current usage table update error

• Description

Update to the current usage table (CUT) failed.

For a Version 2 disk layout, the CUT contains a fileset version number
and total number of blocks used by each fileset.

The VX_FULLFSCK flag is set in the super-block. If the super-block can’t
be written, the file system is disabled.

• Action

Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B224

Kernel Messages
Kernel Messages
025 WARNING: msgcnt x: mesg 025: V-2-25: vx_wsuper - mount_point file
system super-block update failed

• Description

An I/O error occurred while writing the super-block during a resize
operation. The file system is disabled.

• Action

Unmount the file system and use fsck to run a full structural check.
Check the console log for I/O errors. If the problem is a disk failure,
replace the disk beforethe file system is mounted for write access.

026 WARNING: msgcnt x: mesg 026: V-2-26: vx_snap_copyblk -
mount_point primary file system read error

• Description

Snapshot file system error.

When the primary file system is written, copies of the original data must
be written to the snapshot file system. If a read error occurs on a primary
file system during the copy, any snapshot file system that doesn’t already
have a copy of the data is out of date and must be disabled.

• Action

An error message for the primary file system prints. Resolve the error on
the primary file system and rerun any backups or other applications that
were using the snapshot that failed when the error occurred.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 225

Kernel Messages
Kernel Messages
027 WARNING: msgcnt x: mesg 027: V-2-27: vx_snap_bpcopy - mount_point
snapshot file system write error

• Description

A write to the snapshot file system failed.

As the primary file system is updated, copies of the original data are read
from the primary file system and written to the snapshot file system. If
one of these writes fails, the snapshot file system is disabled.

• Action

Check the console log for I/O errors. If the disk has failed, replace it.
Resolve the error on the disk and rerun any backups or other applications
that were using the snapshot that failed when the error occurred.

028 WARNING: msgcnt x: mesg 028: V-2-28: vx_snap_alloc - mount_point
snapshot file system out of space

• Description

The snapshot file system ran out of space to store changes.

During a snapshot backup, as the primary file system is modified, the
original data is copied to the snapshot file system. This error can occur if
the snapshot file system is left mounted by mistake, if the snapshot file
system was given too little disk space, or the primary file system had an
unexpected burst of activity. The snapshot file system is disabled.

• Action

Make sure the snapshot file system was given thot T s* a mount o.
Appendix B226

Kernel Messages
Kernel Messages
029,030 WARNING: msgcnt x: mesg 029: V-2-29: vx_snap_getbp - mount_point
snapshot file system block map write error

msgcnt x: mesg 030: V-2-30: vx_snap_getbp - mount_point snapshot
file system block map read error

• Description

During a snapshot backup, each snapshot file system maintains a block
map on disk. The block map tells the snapshot file system where data
from the primary file system is stored in the snapshot file system. If an
I/O operation to the block map fails, the snapshot file system is disabled.

• Action

Check the console log for I/O errors. If the disk has failed, replace it.
Resolve the error on the disk and rerun any backups that failed when the
error occurred.

031 WARNING: msgcnt x: mesg 031: V-2-31: vx_disable - mount_point file
system disabled

• Description

File system disabled, preceded by a message that specifies the reason.
This usually indicates a serious disk problem.

• Action

Unmount the file system and use fsck to run a full structural check. If
the problem is a disk failure, replace the disk before the file system is
mounted for write access.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 227

Kernel Messages
Kernel Messages
032 WARNING: msgcnt x: mesg 032: V-2-32: vx_disable - mount_point
snapshot file

system disabled

• Description

Snapshot file system disabled, preceded by a message that specifies the
reason.

• Action

Unmount the snapshot file system, correct the problem specified by the
message, and rerun any backups that failed due to the error.

033 WARNING: msgcnt x: mesg 033: V-2-33: vx_check_badblock -
mount_point file system had an I/O error, setting VX_FULLFSCK

• Description

When the disk driver encounters an I/O error, it sets a flag in the
super-block structure. If the flag is set, the kernel will set the
VX_FULLFSCK flag as a precautionary measure. Since no other error
has set the VX_FULLFSCK flag, the failure probably occurred on a data
block.

• Action

Unmount the file system and use fsck to run a full structural check.
Check the console log for I/O errors. If the problem is a disk failure,
replace the disk before the file system is mounted for write access.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B228

Kernel Messages
Kernel Messages
034 WARNING: msgcnt x: mesg 034: V-2-34: vx_resetlog - mount_point file
system can’t reset log

• Description

The kernel encountered an error while resetting the log ID on the file
system. This happens only if the super-block update or log write
encountered a device failure. The file system is disabled to preserve its
integrity.

• Action

Unmount the file system and use fsck to run a full structural check.
Check the console log for I/O errors. If the problem is a disk failure,
replace the disk before the file system is mounted for write access.

035 WARNING: msgcnt x: mesg 035: V-2-35: vx_inactive - mount_point file
system inactive of locked inode inumber

• Description

VOP_INACTIVE was called for an inode while the inode was being used.
This should never happen, but if it does, the file system is disabled.

• Action

Unmount the file system and use fsck to run a full structural check.
Report as a bug to your customer support organization.

036 WARNING: msgcnt x: mesg 036: V-2-36: vx_lctbad - mount_point file
system link count table lctnumber bad

• Description

Update to the link count table (LCT) failed.

For a Version 2 and above disk layout, the LCT contains the link count for
all the structural inodes. The VX_FULLFSCK flag is set in the
super-block. If the super-block can’t be written, the file system is disabled.

• Action

Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 229

Kernel Messages
Kernel Messages
038 WARNING: msgcnt x: mesg 038: V-2-38: vx_dataioerr - file system file
data error

• Description

A read or a write error occurred while accessing file data. The message
specifies whether the disk I/O that failed was a read or a write. File data
includes data currently in files and free blocks. If the message is printed
because of a read or write error to a file, another message that includes
the inode number of the file will print. The message may be printed as the
result of a read or write error to a free block, since some operations
allocate an extent and immediately perform I/O to it. If the I/O fails, the
extent is freed and the operation fails. The message is accompanied by a
message from the disk driver regarding the disk I/O error.

• Action

Resolve the condition causing the disk error. If the error was the result of
a temporary condition (such as accidentally turning off a disk or a loose
cable), correct the condition. Check for loose cables, etc. If any file data
was lost, restore the files from backups. Determine the file names from
the inode number (see the ncheck(1M) manual page for more
information.)

If an actual disk error occurred, make a backup of the file system, replace
or reformat the disk drive, and restore the file system from the backup.
Consult the documentation specific to your system for information on how
to recover from disk errors. The disk driver should have printed a
message that may provide more information.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 231

Kernel Messages
Kernel Messages
039 WARNING: msgcnt x: mesg 039: V-2-39: vx_writesuper - file system
super-block write error

• Description

An attempt to write the file system super block failed due to a disk I/O
error. If the file system was being mounted at the time, the mount will
fail. If the file system was mounted at the time and the full fsck flag was
being set, the file system will probably be disabled and Message 031 will
also be printed. If the super-block was being written as a result of a sync
operation, no other action is taken.

• Action

Resolve the condition causing the disk error. If the error was the result of
a temporary condition (such as accidentally turning off a disk or a loose
cable), correct the condition. Check for loose cables, etc. Unmount the file
system and use fsck to run a full structural check.

If an actual disk error occurred, make a backup of the file system, replace
or reformat the disk drive, and restore the file system from backups.
Consult the documentation specific to your system for information on how
to recover from disk errors. The disk driver should have printed a
message that may provide more information.

040 WARNING: msgcnt x: mesg 040: V-2-40: vx_dqbad - mount_point file
system user quota file update error for id id

• Description

An update to the user quotas file failed for the user ID.

The quotas file keeps track of the total number of blocks and inodes used
by each user, and also contains soft and hard limits for each user ID. The
VX_FULLFSCK flag is set in the super-block. If the super-block cannot be
written, the file system is disabled.

• Action

Unmount the file system and use fsck to run a full structural check.
Check the console log for I/O errors. If the disk has a hardware failure, it
should be repaired before the file system is mounted for write access.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B232

Kernel Messages
Kernel Messages
041 WARNING: msgcnt x: mesg 041: V-2-41: vx_dqget - mount_point file
system user quota file can’t read quota for id id

• Description

A read of the user quotas file failed for the uid.

The quotas file keeps track of the total number of blocks and inodes used
by each user, and contains soft and hard limits for each user ID. The
VX_FULLFSCK flag is set in the super-block. If the super-block cannot be
written, the file system is disabled.

• Action

Unmount the file system and use fsck to run a full structural check.
Check the console log for I/O errors. If the disk has a hardware failure,
it should be repaired before the file system is mounted for write access.

042 WARNING: msgcnt x: mesg 042: V-2-42: vx_bsdquotaupdate -
mount_point file system user id disk limit reached

• Description

The hard limit on blocks was reached. Further attempts to allocate blocks
for files owned by the user will fail.

• Action

Remove some files to free up space.

043 WARNING: msgcnt x: mesg 043: V-2-43: vx_bsdquotaupdate -
mount_point file system user id disk quota exceeded too long

• Description

The soft limit on blocks was exceeded continuously for longer than the
soft quota time limit. Further attempts to allocate blocks for files will fail.

• Action

Remove some files to free up space.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 233

Kernel Messages
Kernel Messages
044 WARNING: msgcnt x: mesg 044: V-2-44: vx_bsdquotaupdate -
mount_point file system user id disk quota exceeded

• Description

The soft limit on blocks is exceeded. Users can exceed the soft limit for a
limited amount of time before allocations begin to fail. After the soft
quota time limit has expired, subsequent attempts to allocate blocks for
files fail.

• Action

Remove some files to free up space.

045 WARNING: msgcnt x: mesg 045: V-2-45: vx_bsdiquotaupdate -
mount_point file system user id inode limit reached

• Description

The hard limit on inodes was exceeded. Further attempts to create files
owned by the user will fail.

• Action

Remove some files to free inodes.

046 WARNING: msgcnt x: mesg 046: V-2-46: vx_bsdiquotaupdate -
mount_point file system user id inode quota exceeded too long

• Description

The soft limit on inodes has been exceeded continuously for longer than
the soft quota time limit. Further attempts to create files owned by the
user will fail.

• Action

Remove some files to free inodes.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B234

Kernel Messages
Kernel Messages
047 WARNING: msgcnt x: mesg 047: V-2-47: vx_bsdiquotaupdate - warning:
mount_point file system user id inode quota exceeded

• Description

The soft limit on inodes was exceeded. The soft limit can be exceeded for a
certain amount of time before attempts to create new files begin to fail.
Once the time limit has expired, further attempts to create files owned by
the user will fail.

• Action

Remove some files to free inodes.

048, 049 WARNING: msgcnt x: mesg 048: V-2-48: vx_dqread - warning:
mount_point file system external user quota file read failed

msgcnt x: mesg 049: V-2-49: vx_dqwrite - warning: mount_point file
system external user quota file write failed

• Description

To maintain reliable usage counts, VxFS maintains the user quotas files
as structural files in the structural fileset. These files are updated as part
of the transactions that allocate and free blocks and inodes. For
compatibility with the quota administration utilities, VxFS also supports
the standard user visible quota files.

When quotas are turned off, synced, or new limits are added, VxFS tries
to update the external quotas files. When quotas are enabled, VxFS
tries to read the quota limits from the external quotas file. If these
reads or writes fail, the external quotas file is out of date.

• Action

Determine the reason for the failure on the external quotas file and
correct it. Recreate the quotas file.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 235

Kernel Messages
Kernel Messages
056 WARNING: msgcnt x: mesg 056: V-2-56: vx_mapbad - mount_point file
system extent allocation unit state bitmap number number marked
bad

• Description

If there is an I/O failure while writing a bitmap, the map is marked bad.
The kernel considers the maps to be invalid, so does not do any more
resource allocation from maps. This situation can cause the file system to
report "out of space" or "out of inode" error messages even though df may
report an adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails
a consistency check, or blocks are freed that are already free in the
bitmap, the file system has been corrupted. This may have occurred
because a user or process wrote directly to the device or used fsdb to
change the file system.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag can’t be set,
the file system is disabled.

• Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk. If the problem is not related to an I/O failure, find out
how the disk became corrupted. If no user or process was writing to the
device, report the problem to your customer support organization.
Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B236

Kernel Messages
Kernel Messages
057 WARNING: msgcnt x: mesg 057: V-2-57: vx_esum_bad - mount_point
file system extent allocation unit summary number number marked
bad

• Description

An I/O error occurred reading or writing an extent allocation unit
summary.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag can’t be set,
the file system is disabled.

• Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk. If the problem is not related to an I/O failure, find out
how the disk became corrupted. If no user or process was writing to the
device, report the problem to your customer support organization.
Unmount the file system and use fsck to run a full structural check.

058 WARNING: msgcnt x: mesg 058: V-2-58: vx_isum_bad - mount_point file
system inode allocation unit summary number number marked bad

• Description

An I/O error occurred reading or writing an inode allocation unit
summary.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set,
the file system is disabled.

• Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk. If the problem is not related to an I/O failure, find out
how the disk became corrupted. If no user or process was writing to the
device, report the problem to your customer support organization.
Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 237

Kernel Messages
Kernel Messages
059 WARNING: msgcnt x: mesg 059: V-2-59: vx_snap_getbitbp -
mount_point snapshot file system bitmap write error

• Description

An I/O error occurred while writing to the snapshot file system bitmap.
There is no problem with the snapped file system, but the snapshot file
system is disabled.

• Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk. If the problem is not related to an I/O failure, find out
how the disk became corrupted. If no user or process was writing to the
device, report the problem to your customer support organization. Restart
the snapshot on an error free disk partition. Rerun any backups that
failed when the error occurred.

060 WARNING: msgcnt x: mesg 060: V-2-60: vx_snap_getbitbp -
mount_point snapshot file system bitmap read error

• Description

An I/O error occurred while reading the snapshot file system bitmap.
There is no problem with snapped file system, but the snapshot file
system is disabled.

• Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk. If the problem is not related to an I/O failure, find out
how the disk became corrupted. If no user or process was writing to the
device, report the problem to your customer support organization. Restart
the snapshot on an error free disk partition. Rerun any backups that
failed when the error occurred.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B238

Kernel Messages
Kernel Messages
061 WARNING: msgcnt x: mesg 061: V-2-61: vx_resize - mount_point file
system remount failed

• Description

During a file system resize, the remount to the new size failed. The
VX_FULLFSCK flag is set and the file system is disabled.

• Action

Unmount the file system and use fsck to run a full structural check.
After the check, the file system shows the new size.

062 NOTE: msgcnt x: mesg 062: V-2-62: vx_attr_creatop - invalid disposition
returned by attribute driver

• Description

A registered extended attribute intervention routine returned an invalid
return code to the VxFS driver during extended attribute inheritance.

• Action

Determine which vendor supplied the registered extended attribute
intervention routine and contact their customer support organization.

063 WARNING: msgcnt x: mesg 063: V-2-63: vx_fset_markbad -
mount_point file system mount_point fileset (index number) marked
bad

• Description

An error occurred while reading or writing a fileset structure.
VX_FULLFSCK flag is set. If the VX_FULLFSCK flag can’t be set, the
file system is disabled.

• Action

Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 239

Kernel Messages
Kernel Messages
064 WARNING: msgcnt x: mesg 064: V-2-64: vx_ivalidate - mount_point file
system inode number version number exceeds fileset’s

• Description

During inode validation, a discrepancy was found between the inode
version number and the fileset version number. The inode may be marked
bad, or the fileset version number may be changed, depending on the
ratio of the mismatched version numbers.

VX_FULLFSCK flag is set. If the VX_FULLFSCK flag can’t be set, the
file system is disabled.

• Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk. If the problem is not related to an I/O failure, find out
how the disk became corrupted. If no user or process is writing to the
device, report the problem to your customer support organization. In
either case, unmount the file system and use fsck to run a full structural
check.

066 NOTE: msgcnt x: mesg 066: V-2-66: DMAPI mount event - buffer

• Description

An HSM (Hierarchical Storage Management) agent responded to a
DMAPI mount event and returned a message in buffer.

• Action

Consult the HSM product documentation for the appropriate response to
the message.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B240

Kernel Messages
Kernel Messages
067 WARNING: msgcnt x: mesg 067: V-2-67: mount of device_path requires
HSM agent

• Description

The file system mount failed because the file system was marked as being
under the management of an HSM agent, and no HSM agent was found
during the mount.

• Action

Restart the HSM agent and try to mount the file system again.

069 WARNING: msgcnt x: mesg 069: V-2-69: memory usage specified by the
vxfs:vxfs_ninode and vxfs:vx_bc_bufhwm parameters exceeds
available memory; the system may hang under heavy load

• Description

The value of the system tunable parameters-vx_ninode and
vx_bc_bufhwm-add up to a value that is more than 66% of the kernel
virtual address space or more than 50% of the physical system memory.
VxFS inodes require approximately one kilobyte each, so both values can
be treated as if they are in units of one kilobyte.

• Action

To avoid a system hang, reduce the value of one or both parameters to
less than 50% of physical memory or to 66% of kernel virtual memory. For
more information on performance and tuning, see Chapter 2, “VxFS
Performance: Creating, Mounting, and Tuning File Systems,” on page 39S

NOTE: The tunable parameter vx_ninode is used to set the value of
vxfs_ninode.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 241

Kernel Messages
Kernel Messages
070 WARNING: msgcnt x: mesg 070: V-2-70: checkpoint checkpoint_name
removed from file system mount_point

• Description

The file system ran out of space while updating a Storage Checkpoint.
The Storage Checkpoint was removed to allow the operation to complete.

• Action

Increase the size of the file system. If the file system size cannot be
increased, remove files to create sufficient space for new Storage
Checkpoints. Monitor capacity of the file system closely to ensure it does
not run out of space. See the fsadm_vxfs(1M) manual page more
information.

071 WARNING: msgcnt x: mesg 071: V-2-71: cleared data I/O error flag in
mount_point file system

• Description

The user data I/O error flag was reset when the file system was mounted.
This message indicates that a read or write error occurred (see Message
Number 038) while the file system was previously mounted.

• Action

Informational only, no action required.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B242

Kernel Messages
Kernel Messages
072 WARNING: msgcnt x: vxfs: mesg 072: vx_iaualloc - mount_point file
system mount_point fileset (index number) fileset header checksum
bad

• Description

An incorrect fileset header checksum was found while adding a new inode
allocation unit. The VX_FULLFSCK flag is set and the file system is
disabled to preserve integrity. This message is typically generated after a
message 003 or message 004 (see Message Number 003, 004, 005).

• Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk, otherwise save a metadata image and contact your
customer support organization. Use fsck to run a full structural check
before remounting the file system.

074 WARNING:

msgcnt x: mesg 074: V-2-74: vx_rcfg - fileset not found while remounting
mount_point

• Description

This message is specific to the cluster file system. The message indicates
a problem in a scenario where a node failure has occurred in the cluster
and the newly selected primary node encounters a failure.

• Action

Save the core dump of the node and contact your customer support
organization. The node can be rebooted to join the cluster.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 243

Kernel Messages
Kernel Messages
075 WARNING: msgcnt x: mesg 075: V-2-75: replay fsck failed for
mount_point file system

• Description

The log replay failed during a failover or while migrating the CFS
primary-ship to one of the secondary cluster nodes. The file system was
disabled.

• Action

Unmount the file system from the cluster. Use fsck to run a full
structural check and mount the file system again.

076 WARNING: msgcnt x: mesg 076: V-2-76: checkpoint asynchronous
operation on mount_point file system still in progress

• Description

An EBUSY message was received while trying to unmount a file system.
The unmount failure was caused by a pending asynchronous fileset
operation, such as a fileset removal or fileset conversion to a nodata
Storage Checkpoint.

• Action

The operation may take a considerable length of time. You can do a forced
unmount (see the umount_vxfs(1M) manual page), or simply wait for the
operation to complete so file system can be unmounted cleanly.

077 msgcnt x: mesg 077: V-2-77: vx_fshdchange - mount_point file system number
fileset, fileset header: checksum failed

• Description

Disk corruption was detected while changing fileset headers. This can
occur when writing a new inode allocation unit, preventing the allocation
of new inodes in the fileset.

• Action

Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B244

Kernel Messages
Kernel Messages
078 WARNING: msgcnt x: mesg 078: V-2-78: vx_ilealloc - mount_point file
system mount_point fileset (index number) ilist corrupt

• Description

The inode list for the fileset was corrupted and the corruption was
detected while allocating new inodes. The failed system call returns an
ENOSPC error. Any subsequent inode allocations will fail unless a
sufficient number of files are removed.

• Action

Unmount the file system and use fsck to run a full structural check.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 245

Kernel Messages
Kernel Messages
079 WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_getblk - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_iget - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_indadd - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_indtrunc -
mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_iremove - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_bmap - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_bmap_indirect_ext4 -
mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_delbuf_flush - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dio_iovec - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dirbread - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dircreate - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_dirlook - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_doextop_iau - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_doextop_now - mount_point
filesystem inode inumber marked bad on disk

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B246

Kernel Messages
Kernel Messages
079 WARNING: msgcnt x: mesg 017: V-2-79: vx_do_getpage - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_enter_ext4 - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_exttrunc - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_get_alloc - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_ilisterr - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_indtrunc - mount_point file
systeminode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_iread - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_iremove - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_iremove_attr - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_logwrite_flush -
mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_oltmount_iget -
mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_overlay_bmap -
mount_point file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_readnomap - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_reorg_trunc - mount_point
file system inode inumber marked bad on disk

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 247

Kernel Messages
Kernel Messages
079 WARNING: msgcnt x: mesg 017: V-2-79: vx_stablestore - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_tranitimes - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_trunc - mount_point file
system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_write_alloc2 - mount_point
file system inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_write_default -
mount_point filesystem inode inumber marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_zero_alloc - mount_point
file system inode inumber marked bad on disk

• Description

When inode information is no longer dependable, the kernel marks it bad
on disk. The most common reason for marking an inode bad is a disk I/O
failure. If there is an I/O failure in the inode list, on a directory block, or
an indirect address extent, the integrity of the data in the inode, or the
data the kernel tried to write to the inode list, is questionable. In these
cases, the disk driver prints an error message and one or more inodes are
marked bad.

The kernel also marks an inode bad if it finds a bad extent address,
invalid inode fields, or corruption in directory data blocks during a
validation check. A validation check failure indicates the file system has
been corrupted. This usually occurs because a user or process has written
directly to the device or used fsdb to change the file system.

The VX_FULLFSCK flag is set in the super-block so fsck will do a full
structural check the next time it is run.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B248

Kernel Messages
Kernel Messages
079 • Action

Check the console log for I/O errors. If the problem is a disk failure,
replace the disk. If the problem is not related to an I/O failure, find out
how the disk became corrupted. If no user or process is writing to the
device, report the problem to your customer support organization. In
either case, unmount the file system and use fsck to run a full structural
check.

080 WARNING: msgcnt x: vxfs: mesg 080: Disk layout versions older than
Version 4 will not be supported in the next release. It is advisable to
upgrade to the latest disk layout version now. See vxupgrade(1M) for
information on upgrading a VxFS file system and see the VxFS
Release Notes for information on disk layout support.

• Action

Use the vxupgrade command to begin upgrading file systems using older
disk layouts to Version 4. Consider the following when planning disk
layout upgrades:

— Version 2 disk layout file systems have an 8 million inode limit.

— Images of Version 2 disk layout file systems created by copy utilities,
such as dd or volcopy, will become unusable after a disk layout
upgrade. Offline conversions tools will be provided in the next VxFS
feature release to aid in migrating volume-image backup copies of
Version 2 disk layout file systems to a Version 4 disk layout.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 249

Kernel Messages
Kernel Messages
081 WARNING: msgcnt x: mesg 081: V-2-81: possible network partition
detected

• Description

This message displays when CFS detects a possible network partition
and disables the file system locally, that is, on the node where the
message appears.

• Action

There are one or more private network links for communication between
the nodes in a cluster. At least one link must be active to maintain the
integrity of the cluster. If all the links go down, after the last network link
is broken, the node can no longer communicate with other nodes in the
cluster.

Check the network connections. After verifying that the network
connections is operating correctly, unmount the disabled file system and
mount it again.

082 WARNING: msgcnt x: mesg 082: V-2-82: mount_point file system is on a
shared volume and may become corrupted if the cluster is in a
partitioned state

• Description

If a cluster node is in a partitioned state, and if the file system is on a
shared VxVM volume, this volume may become corrupted by accidental
access from another node in the cluster.

• Action

These shared disks can also be seen by nodes in a different partition, so
they can inadvertently be corrupted. So the second message 082 tells that
the device mentioned is on shared volume and damage can happen only if
it is a real partition problem. Do not use it on any other node until the file
system is unmounted from the mounted nodes.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B250

Kernel Messages
Kernel Messages
083 WARNING: msgcnt x: mesg 083: V-2-83: mount_point file system log is
not compatible with the specified intent log I/O size

• Description

Either the specified mount logiosize size is not compatible with the file
system layout, or the file system is corrupted.

• Action

Mount the file system again without specifying the logiosize option, or
use a logiosize value compatible with the intent log specified when the
file system was created. If the error persists, unmount the file system and
use fsck to run a full structural check.

084 WARNING: msgcnt x: mesg 084: V-2-84: In mount_point, during
reconfiguration continuity of quota enforcement has failed.

• Description

In a cluster file system, when the primary of the file system fails, a
secondary file system is chosen to assume the role of the primary. The
assuming node will be able to enforce quotas after becoming the primary.

If the new primary is unable to enforce quotas this message will be
displayed.

• Action

Issue the quotaon command from any of the nodes that have the file
system mounted.

085 WARNING: msgcnt x: mesg 085: V-2-85: Checkpoint quota - warning:
file_system file system fileset quota hard limit exceeded

• Description

The system administrator sets the quotas for checkpoints in the form of
a soft limit and hard limit. This message displays when the hard limit is
exceeded.

• Action

Delete checkpoints or increase the hard limit.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 251

Kernel Messages
Kernel Messages
086 WARNING: msgcnt x: mesg 086: V-2-86: Checkpoint quota - warning:
file_system file system fileset quota soft limit exceeded

• Description

The system administrator sets the quotas for checkpoints in the form of a
soft limit and hard limit. This message displays when the soft limit is
exceeded.

• Action

Delete checkpoints or increase the soft limit. This is not a mandatory
action, but is recommended.

087 WARNING: msgcnt x: mesg 087: V-2-87: vx_dotdot_manipulate:
file_system file system inumber inode ddnumber dotdot inode error

• Description

When performing an operation that changes an inode entry, if the inode is
incorrect, this message will display.

• Action

Run a full file system check using fsck to correct the errors.

088 WARNING: msgcnt x: mesg 088: V-2-88: quotaon on file_system failed;
limits exceed limit

• Description

The external quota file, quotas, contains the quota values, which range
from 0 up to 2147483647. When quotas are turned on by the quotaon
command, this message displays when a user exceeds the quota limit.

• Action

Correct the quota values in the quotas file.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B252

Kernel Messages
Kernel Messages
089 WARNING: msgcnt x: mesg 089: V-2-89: quotaon on file_system invalid;
disk usage for group/user id uid exceeds sectors sectors

• Description

The supported quota limit is up to 2147483647 sectors. When quotas are
turned on by the quotaon command, this message displays when a user
exceeds the supported quota limit.

• Action

Ask the user to delete files to lower the quota below the limit.

090 WARNING: msgcnt x: mesg 090: V-2-90: quota on file_system failed;
soft limits greater than hard limits

• Description

One or more users or groups has a soft limit set greater than the hard
limit, preventing the BSD quota from being turned on.

• Action

Check the soft limit and hard limit for every user and group and confirm
that the soft limit is not set greater than the hard limit.

091 WARNING: msgcnt x: mesg 091: V-2-91: vx_fcl_truncate - failure to
punch hole at offset offset for bytes bytes in File Change Log file;
error error_number

• Description

The vxfs kernel has experienced an error while trying to manage the
space consumed by the File Change Log file. Because the space cannot
be actively managed at this time, the FCL has been deactivated and has
been truncated to 1file system block, which contains the FCL superblock.

• Action

Re-activate the FCL.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 253

Kernel Messages
Kernel Messages
092 WARNING: msgcnt x: mesg 092: V-2-92: vx_mkfcltran - failure to map
offset offset in File Change Log file

• Description

The vxfs kernel was unable to map actual storage to the next offset in the
File Change Log file. This is mostly likely caused by a problem with
allocating to the FCL file. Because no new FCL records can be written to
the FCL file, the FCL has been deactivated.

• Action

Re-activate the FCL.

093 WARNING: msgcnt x: mesg 093: V-2-93: Disk layout versions older
than Version 6 will not be supported for shared mounts in the next
release. It is advisable to upgrade to the latest layout version now.
See vxupgrade(1M) for information on upgrading a VxFS file system
and see the VxFS Release Notes for information on disk layout
support.

• Action

Upgrade your disk layout to Version 6 for shared mounts. This is not a
mandatory action, but is recommended. Disk layout Versions 4 and 5 will
still be supported for local mounts in the next release of the VxFS.

Use the vxupgrade command to begin upgrading file systems using older
disk layouts to Version 6.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B254

Kernel Messages
Kernel Messages
095 WARNING: msgcnt x: mesg 095: V-2-95: Setting vxfs_ifree_timelag to
time since the specified value for vxfs_ifree_timelag is less than the
recommended minimum value of time.

• Description

The value for vxfs_ifree_timelag specified by the system
administrator is less than the recommended minimum value, time, and
so the value of vxfs_ifree_timelag has been automatically changed to
time.

• Action

No corrective action required on the file system.

096 WARNING: msgcnt x: mesg 096: V-2-96: file_system file system fullfsck
flag set - function_name.

• Description

The next time the file system is mounted, a full fsck must be performed.

• Action

No immediate action required. When the file system is unmounted, run a
full file system check using fsck before mounting it again.

Table B-1 (Continued)

Message
Number Message and Definition
Appendix B 255

Kernel Messages
Kernel Messages
Appendix B256

C Disk Layout
Appendix C 257

Disk Layout
Disk Layout
Disk Layout
The disk layout is the way file system information is stored on disk. On VxFS, six different
disk layout versions were created to take advantage of evolving technological developments.
The disk layout versions used on VxFS were:

Table C-1

Version 1 The Version 1 disk layout is the original VxFS disk
layout provided with pre-2.0 versions of VxFS.

Not Supported

Version 2 The Version 2 disk layout supports features such as
filesets, dynamic inode allocation, and enhanced
security. The Version 2 layout is available with and
without quotas support.

Not Supported

Version 3 The Version 3 disk layout encompasses all file system
structural information in files, rather than at fixed
locations on disk, allowing for greater scalability.
Version 3 supports files and file systems up to one
terabyte in size.

Not Supported

Version 4 The Version 4 disk layout encompasses all file system
structural information in files, rather than at fixed
locations on disk, allowing for greater scalability.
Version 4 supports files and file systems up to two
terabytes in size.

Supported

Version 5 Version 5 enables the creation of file system sizes up to
32 terabytes. Files can be a maximum of two
terabytes. File systems larger than 2 TB must be
created on a VERITAS Volume Manager volume.
Version 5 also enables setting up to 1024 access
control list (ACL) entries.

Supported

Version 6 The Version 6 disk layout enables features such as
multi-volume support, cross-platform data sharing,
named data streams, and file change log.

Supported
Appendix C258

Disk Layout
Disk Layout
Some of the disk layout versions were not supported on all UNIX operating systems. Version 2
and 3 file systems can still be mounted, but this will be disallowed in future releases.
Currently, the Version 4, Version 5, and Version 6 disk layouts can be created and mounted.
Version 6 is the default disk layout version.

The vxupgrade command is provided to upgrade an existing VxFS file system to the Version
4, Version 5, or Version 6 disk layout while the file system remains online. You must do an
upgrade in steps from older to newer layouts. See the vxupgrade(1M) manual page for details
on upgrading VxFS file systems.

The vxfsconvert command is provided to upgrade Version 2 and 3 disk layouts to the Version
4 disk layout while the file system is not mounted. Using vxfsconvert, the file system can be
converted to the Version 4 layout while offline, then using vxupgrade, you can convert it to
Version 5 while online. See the vxfsconvert(1M) manual page for details on upgrading VxFS
disk layouts.

The following additional topics are covered in this appendix:

• Disk Space Allocation

• The VxFS Version 4 Disk Layout

• The VxFS Version 5 Disk Layout

• The VxFS Version 6 Disk Layout

Disk Space Allocation

Disk space is allocated by the system in 1024-byte sectors. An integral number of sectors are
grouped together to form a logical block. VxFS supports logical block sizes of 1024, 2048, 4096,
and 8192 bytes. The default block size is 1024 bytes. The block size may be specified as an
argument to the mkfs utility and may vary between VxFS file systems mounted on the same
system. VxFS allocates disk space to files in extents. An extent is a set of contiguous blocks.

The VxFS Version 4 Disk Layout

The Version 4 disk layout allows the file system to scale easily to accommodate large files and
large file systems.

The original disk layouts divided up the file system space into allocation units. The first AU
started part way into the file system which caused potential alignment problems depending
on where the first AU started. Each allocation unit also had its own summary, bitmaps, and
data blocks. Because this AU structural information was stored at the start of each AU, this
also limited the maximum size of an extent that could be allocated. By replacing the allocation
unit model of previous versions, the need for alignment of allocation units and the restriction
on extent sizes was removed.
Appendix C 259

Disk Layout
Disk Layout
The VxFS Version 4 disk layout divides the entire file system space into fixed size allocation
units. The first allocation unit starts at block zero and all allocation units are a fixed length of
32K blocks. (An exception may be the last AU, which occupies whatever space remains at the
end of the file system). Because the first AU starts at block zero instead of part way through
the file system as in previous versions, there is no longer a need for explicit AU alignment or
padding to be added when creating a file system.

The Version 4 file system also moves away from the model of storing AU structural data at the
start of an AU and puts all structural information in files. So expanding the file system
structures simply requires extending the appropriate structural files. This removes the extent
size restriction imposed by the previous layouts.

All Version 4 structural files reside in the structural fileset. The structural files in the Version
4 disk layout are:

object location table file Contains the object location table (OLT). The OLT, which is
referenced from the super-block, is used to locate the other structural files.

label file Encapsulates the super-block and super-block replicas. Although the
location of the primary super-block is known, the label file can be used to
locate super-block copies if there is structural damage to the file system.

device file Records device information such as volume length and volume label, and
contains pointers to other structural files.

fileset header file Holds information on a per-fileset basis. This may include the inode of the
fileset’s inode list file, the maximum number of inodes allowed, an indication
of whether the file system supports large files, and the inode number of the
quotas file if the fileset supports quotas. When a file system is created,
there are two filesets-the structural fileset defines the file system structure,
the primary fileset contains user data.

inode list file Both the primary fileset and the structural fileset have their own set of
inodes stored in an inode list file. Only the inodes in the primary fileset are
visible to users. When the number of inodes is increased, the kernel
increases the size of the inode list file.

inode allocation unit file Holds the free inode map, extended operations map, and a summary
of inode resources.

log file Maps the block used by the file system intent log.

extent allocation unit state file Indicates the allocation state of each AU by defining whether
each AU is free, allocated as a whole (no bitmaps allocated), or expanded, in
which case the bitmaps associated with each AU determine which extents
are allocated.
Appendix C260

Disk Layout
Disk Layout
extent allocation unit summary file Contains the AU summary for each allocation unit, which
contains the number of free extents of each size. The summary for an extent
is created only when an allocation unit is expanded for use.

free extent map file Contains the free extent maps for each of the allocation units.

quotas files There is a quotas file which is used to track the resources allocated to each
user and a quotas.grp file to track the resources allocated to each group.

The following figure shows how the kernel and utilities build information about the structure
of the file system. The super-block location is in a known location from which the OLT can be
located. From the OLT, the initial extents of the structural inode list can be located along with
the inode number of the fileset header file. The initial inode list extents contain the inode for
the fileset header file from which the extents associated with the fileset header file are
obtained.

As an example, when mounting the file system, the kernel needs to access the primary fileset
in order to access its inode list, inode allocation unit, quotas file and so on. The required
information is obtained by accessing the fileset header file from which the kernel can locate
the appropriate entry in the file and access the required information.

The Version 4 disk layout supports Access Control Lists and Block-Level Incremental (BLI)
Backup. BLI Backup is a backup method that stores and retrieves only the datablocks
changed since the previous backup, not entire files. This saves times, storage space, and
computing resources required to backup large databases. This file system technology is
implemented in other VERITAS products. For information on how to use this feature, contact
your sales channel.
Appendix C 261

Disk Layout
Disk Layout
Figure C-1 VxFS Version 4 Disk Layout
Appendix C262

Disk Layout
Disk Layout
The VxFS Version 5 Disk Layout

VxFS disk layout Version 5 is similar to Version 4. Structural files in Version 5 are the same
in Version 4. However, the Version 5 disk layout supports file systems up to 32 terabytes. For
a file system to take advantage of VxFS 32-terabyte support, it must be created on a
VERITAS Volume Manager volume, and only on a 64-bit kernel operating system. The
maximum file system size on a 32-bit kernel is still one terabyte. Files cannot exceed two
terabytes in size. For 64-bit kernels, the maximum size of the file system you can create
depends on the block size:

If you specify the file system size when creating a file system, the block size defaults to the
appropriate value as shown above (see the mkfs(1M) manual page for more information).

The Version 5 disk layout also supports group quotas (See “Quota Files on VxFS” on
page 130). Quota limits cannot exceed one terabyte.

The Version 5 disk layout also supports up to 1024 access control list entries.

The VxFS Version 6 Disk Layout

VxFS disk layout Version 6 is similar to Version 5. Structural files in Version 6 are the same
in Version 5. However, the Version 6 disk layout supports files and file systems up to 8
exabytes (263). For a file system to take advantage of VxFS 8-exabyte support, it must be
created on a VERITAS Volume Manager volume, and only on a 64-bit kernel operating
system. The maximum file system size on a 32-bit kernel is still one terabyte. For 64-bit
kernels, the maximum size of the file system you can create depends on the block size:

Table C-2

Block Size Maximum File System Size

1024 bytes 4,294,967,039 sectors (~ 4 TB)

2048 bytes 8,589,934,078 sectors (~ 8 TB)

4096 bytes 17,179,868,156 sectors (~ 16 TB)

8192 bytes 34,359,736,312 sectors (~ 32 TB)

Table C-3

Block Size Maximum File System Size

1024 bytes 4,294,967,039 sectors (~ 4 TB)

2048 bytes 8,589,934,078 sectors (~ 8 TB)
Appendix C 263

Disk Layout
Disk Layout
If you specify the file system size when creating a file system, the block size defaults to the
appropriate value as shown above. See the mkfs(1M) manual page for more information.

The Version 6 disk layout also supports group quotas (See “Quota Files on VxFS” on page 130)

4096 bytes 17,179,868,156 sectors (~ 16 TB)

8192 bytes 34,359,736,312 sectors (~ 32 TB)

Note: Sector size in bytes specified by the DEV_BSIZE
system parameter.

Table C-3 (Continued)

Block Size Maximum File System Size
Appendix C264

Glossary
A

Acess Control Lists The information that
identifies specific users or groups and their
access privileges for a particular file or
directory.

agent A process that manages predefined
VERITAS Cluster Server (VCS) resource
types. Agents bring resources online, take
resources offline, and monitor resources to
report any state changes to VCS. When an
agent is started, it obtains configuration
information from VCS and periodically
monitors the resources and updates VCS
with the resource status.

allocation unit A group of consecutive
blocks on a file system that contain resource
summaries, free resource maps, and data
blocks. Allocation units also contain copies of
the super-block.

API Application Programming Interface.

asynchronous writes A delayed write in
which the data is written to a page in the
system’s page cache, but is not written to
disk before the write returns to the caller.
This improves per formance, but carries the
risk of data loss if the system crashes before
the data is flushed to disk.

atomic operation An operation that either
succeeds completely or fails and leaves
everything as it was before the operation
was started. If the operation succeeds, all
aspects of the operation take effect at once
and the intermediate states of change are
invisible. If any aspect of the operation fails,
then the operation aborts without leaving
partial changes.

B

Block-Level Incremental Backup (BLI
Backup) A VERITAS backup capability
that does not store and retrieve entire files.
Instead, only the data blocks that have
changed since the previous backup are
backed up.

buffered I/O During a read or write
operation, data usually goes through an
intermediate kernel buffer before being
copied between the user buffer and disk. If
the same data is repeatedly read or written,
this kernel buffer acts as a cache, which can
improve performance. See unbuffered I/O
and direct I/O.

C

CFS VERITAS Cluster File System.

cluster mounted file system A shared file
system that enables multiple hosts to mount
and perform file operations on the same file.
A cluster mount requires a shared storage
device that can be accessed by other cluster
mounts of the same file system. Writes to the
shared device can be done concurrently from
any host on which the cluster file system is
mounted. To be a cluster mount, a file
system must be mounted using the mount -o
cluster option. See also local mounted file
system.

contiguous file A file in which data blocks
are physically adjacent on the underlying
media.

CVM The cluster functionality of VERITAS
Volume Manager.
Glossary 265

Glossary
data block
D

data block A block that contains the actual
data belonging to files and directories.

data synchronous writes A form of
synchronous I/O that writes the file data to
disk before the write returns, but only marks
the inode for later update. If the file size
changes, the inode will be written before the
write returns. In this mode, the file data is
guaranteed to be on the disk before the write
returns, but the inode modification times
may be lost if the system crashes.

defragmentation The process of
reorganizing data on disk by making file
data blocks physically adjacent to reduce
access times.

direct extent An extent that is referenced
directly by an inode.

direct I/O An unbuffered form of I/O that
bypasses the kernel’s buffering of data. With
direct I/O,the file system transfers data
directly between the disk and the
user-supplied buffer. See also buffered I/O
and unbuffered I/O.

discovered direct I/O Discovered Direct
I/O behavior is similar to direct I/O and has
the same alignment constraints, except
writes that allocate storage or extend the file
size do not require writing the inode changes
before returning to the application.

E

encapsulation A process that converts
existing partitions on a specified disk to
volumes. If any partitions contain file
systems, /etc/fstab entries are modified so
that the file systems are mounted on
volumes instead. Encapsulation is not
applicable on some systems.

extent A group of contiguous file system
data blocks treated as a single unit. An
extent is defined by the address of the
starting block and a length.

extent attribute A policy that determines
how a file allocates extents.

external quotas file A quotas file (named
quotas) must exist in the root directory of a
file system for quota-related commands to
work. See also quotas file and internal
quotas file..

F

file system block The fundamental
minimum size of allocation in a file system.
This is equivalent to the fragment size on
some UNIX file systems.

fileset A collection of files within a file
system.

fixed extent size An extent attribute used
to override the default allocation policy of
the file system and set all allocations for a
file to a specific fixed size.
Glossary266

Glossary
local mounted file system
fragmentation The on-going process on an
active file system in which the file system is
spread further and further along the disk,
leaving unused gaps or fragments between
areas that are in use. This leads to degraded
performance because the file system has
fewer options when assigning a file to an
extent.

G

GB Gigabyte (230 bytes or 1024 megabytes).

H

hard limit The hard limit is an absolute
limit on system resources for individual
users for file and data block usage on a file
system. See also quota.

I

indirect address extent An extent that
contains references to other extents, as
opposed to file data itself. A single indirect
address extent references indirect data
extents. A double indirect address extent
references single indirect address extents.

indirect data extent An extent that
contains file data and is referenced via an
indirect address extent.

inode A unique identifier for each file
within a file system that contains the data
and metadata associated with that file.

inode allocation unit A group of
consecutive blocks containing inode
allocation information for a given fileset.

This information is in the form of a resource
summary and a free inode map.

intent logging A method of recording
pending changes to the file system structure.
These changes are recorded in a circular
intent log file.

internal quotas file VxFS maintains an
internal quotas file for its internal usage.
The internal quotas file maintains counts of
blocks and indices used by each user. See
also quotas and external quotas file.

K

Kilobyte Kilobyte (210 bytes or 1024 bytes).

L

large file A file larger than two terabytes.
VxFS supports files up to 8 exabytes in size.

large file system A file system larger than
two terabytes. VxFS supports file systems up
to 8 hexabytes in size.

latency For file systems, this typically
refers to the amount of time it takes a given
file system operation to return to the user.

local mounted file system A file system
mounted on a single host. The single host
mediates all file system writes to storage
from other clients. To be a local mount, a file
system cannot be mounted using the mount
-o cluster option. See also cluster mounted
file system.
Glossary 267

Glossary
metadata
M

metadata Structural data describing the
attributes of files on a disk.

MB Megabyte (220 bytes or 1024 kilobytes).

mirror A duplicate copy of a volume and the
data therein (in the form of an ordered
collection of subdisks). Each mirror is one
copy of the volume with which the mirror is
associated.

multi-volume file system A single file
system that has been created over multiple
volumes, with each volume having its own
properties.

MVS Multi-volume support.

N

node One of the hosts in a cluster.

node abort A situation where a node leaves
a cluster (on an emergency basis) without
attempting to stop ongoing operations.

node join The process through which a
node joins a cluster and gains access to
shared disks.

O

object location table (OLT) The
information needed to locate important file
system structural elements. The OLT is
written to a fixed location on the underlying
media (or disk).

object location table replica A copy of the
OLT in case of data corruption. The OLT
replica is written to a fixed location on the
underlying media (or disk).

P

page file A fixed-size block of virtual
address space that can be mapped onto any
of the physical addresses available on a
system.

preallocation A method of allowing an
application to guarantee that a specified
amount of space is available for a file, even if
the file system is otherwise out of space.

primary fileset The files that are visible
and accessible to the user.

Q

Quick I/O file A regular VxFS file that is
accessed using the ::cdev:vxfs: extension.

Quick I/O for Databases Quick I/O is a
VERITAS File System feature that improves
database performance by minimizing
read/write locking and eliminating double
buffering of data. This allows online
transactions to be processed at speeds
equivalent to that of using raw disk devices,
while keeping the administrative benefits of
file systems.

quotas Quota limits on system resources for
individual users for file and data block usage
on a file system. See also hard limit and
soft limit..
Glossary268

Glossary
Unbuffered I/O
quotas file The quotas commands read and
write the external quotas file to get or
change usage limits. When quotas are
turned on, the quota limits are copied from
the external quotas file to the internal
quotas file. See also quotas, internal quotas
file, and external quotas file..

R

reservation An extent attribute used to
preallocate space for a file.

root disk group A special private disk
group that always exists on the system. The
root disk group is named rootdg.

S

shared disk group A disk group in which
the disks are shared by multiple hosts (also
referred to as a cluster-shareable disk
group).

shared volume A volume that belongs to a
shared disk group and is open on more than
one node at the same time.

snapshot file system An exact copy of a
mounted file system at a specific point in
time. Used to do online backups.

snapped file system A file system whose
exact image has been used to create a
snapshot file system.

soft limit The soft limit is lower than a hard
limit. The soft limit can be exceeded for a
limited time. There are separate time
limits for files and blocks. See also hard
limit and quota..

Storage Checkpoint A facility that
provides a consistent and stable view of a file
system or database image and keeps track of
modified data blocks since the last Storage
Checkpoint.

structural fileset The files that define the
structure of the file system. These files are
not visible or accessible to the user.

super-block A block containing critical
information about the file system such as the
file system type, layout, and size. The VxFS
super-block is always located 8192 bytes
from the beginning of the file system and is
8192 bytes long.

synchronous writes A form of
synchronous I/O that writes the file data to
disk, updates the inode times, and writes the
updated inode to disk. When the write
returns to the caller, both the data and the
inode have been written to disk.

T

TB Terabyte (240 bytes or 1024 gigabytes).

transaction Updates to the file system
structure that are grouped together to
ensure they are all completed

throughput For file systems, this typically
refers to the number of I/O operations in a
given unit of time.

U

Unbuffered I/O I/O that bypasses the
kernel cache to increase I/O performance.
This is similar to direct I/O, except when a
Glossary 269

Glossary
volume
file is extended; for direct I/O, the inode is
written to disk synchronously, for unbuffered
I/O, the inode update is delayed. See also
buffered I/O and direct I/O.

volume A virtual disk which represents an
addressable range of disk blocks used by
applications such as file systems or
databases.

volume set A container for multiple
different volumes. Each volume can have its
own geometry.

vxfs The VERITAS File System type. Used
as a parameter in some commands.

VxFS The VERITAS File System.

VxVM The VERITAS Volume Manager.
Glossary270

	Preface
	1 The VERITAS File System
	Introduction
	VxFS Features
	Disk Layouts
	File System Performance Enhancements
	VERITAS Enterprise Administrator Graphical User Interface
	Extent Based Allocation
	Typed Extents

	Extent Attributes
	Fast File System Recovery
	VxFS Intent Log
	Intent Log Resizing
	Defragmentation
	File System Resizing

	Application Interface
	Application Transparency
	Expanded Application Facilities

	Extended mount Options
	Enhanced Data Integrity Modes
	Using
	Using
	Using the

	Enhanced Performance Mode
	Using the

	Modes of Temporary File System
	Using the tmplog option For Temporary File Systems

	Improved Synchronous Writes
	Support for Large Files

	Enhanced I/O Performance
	Enhanced I/O Clustering
	VxVM Integration
	Application-Specific Parameters

	Access Control Lists
	Storage Checkpoints
	Online Backup
	Quotas
	Cluster File Systems
	Cross-Platform Data Sharing
	File Change Log
	Multi-Volume Support
	Quality of Storage Service

	2 VxFS Performance: Creating, Mounting, and Tuning File Systems
	Introduction
	Choosing mkfs Command Options
	Block Size
	Intent Log Size

	Choosing mount Command Options
	log
	delaylog
	tmplog
	logiosize
	nodatainlog
	blkclear
	mincache
	convosync
	ioerror
	largefiles | nolargefiles
	Creating a File System with Large Files
	Mounting a File System with Large Files
	Managing a File System with Large Files

	Combining mount Command Options
	Example 1 - Desktop File System
	Example 2 - Temporary File System or Restoring from Backup
	Example 3 - Data Synchronous Writes

	Kernel Tunables
	Internal Inode Table Size
	Examples of Changing the vx_inode Tunable Value

	VxFS Buffer Cache High Water Mark
	Number of Links to a File
	VxFS Inode Free Time Lag
	VxVM Maximum I/O Size

	Monitoring Free Space
	Monitoring Fragmentation

	I/O Tuning
	Tuning VxFS I/O Parameters
	Tunable VxFS I/O Parameters

	3 Extent Attributes
	Introduction
	Attribute Specifics
	Reservation: Preallocating Space to a File
	Fixed Extent Size
	Other Controls
	Alignment
	Contiguity
	Write Operations Beyond Reservation
	Reservation Trimming
	Reservation Persistence
	Including Reservation in the File

	Commands Related to Extent Attributes
	Failure to Preserve Extent Attributes

	4 Application Interface
	Introduction
	Cache Advisories
	Direct I/O
	Unbuffered I/O
	Discovered Direct I/O
	Data Synchronous I/O
	Other Advisories

	Extent Information
	Space Reservation
	Fixed Extent Sizes

	Freeze and Thaw
	Get I/O Parameters ioctl
	Named Data Streams
	Named Data Streams Programmatic Interface
	Listing Named Data Streams
	Namespace for Named Data Streams
	Behavior Changes in Other System Calls

	5 Storage Checkpoints
	What is Storage Checkpoint ?
	How a Storage Checkpoint Works
	Types of Storage Checkpoints
	Data Storage Checkpoints
	Nodata Storage Checkpoints
	Removable Storage Checkpoints
	Non-mountable Storage Checkpoints

	Storage Checkpoint Administration
	Creating a Storage Checkpoint
	Removing a Storage Checkpoint
	Accessing a Storage Checkpoint
	Converting a Data Storage Checkpoint to a Nodata Storage Checkpoint
	Difference Between a Data and a Nodata Storage Checkpoint
	Conversion with Multiple Storage Checkpoints

	Space Management Considerations
	File System Restore From Storage Checkpoints
	Example of Restoring a File From a Storage Checkpoint
	Example of Restoring a File System From a Storage Checkpoint

	Storage Checkpoint Quotas

	6 Online Backup Using File System Snapshots
	Snapshot File Systems
	Using a Snapshot File System for Backup
	Creating a Snapshot File System
	Making a Backup
	Performance of Snapshot File Systems
	Differences Between Snapshots and Storage Checkpoints
	Snapshot File System Internals
	Snapshot File System Disk Structure
	How a Snapshot File System Works

	7 Quota
	Quota Limits
	Quota Files on VxFS
	Quota Commands
	Using Quotas
	quotaon
	mount
	edquota
	quota
	quot
	quotaoff

	8 File Change Log
	The File Change Log File
	File Change Log Administrative Interface
	File Change Log Programmatic Interface
	Reverse Path Name Lookup

	9 Multi-Volume File Systems
	Features Implemented Using MVS
	Volume Sets
	Creating MVS File Systems
	Allocation Policies
	Volume Encapsulation
	Converting from QuickLog to MVS

	10 Quality of Storage Service
	How File Relocation Works
	Configuring Relocation Policies
	Running fssweep
	Running fsmove
	Scheduling Example

	Customizing QoSS
	Mapping Relocation Policies to Allocation Policies
	Relocation List Format

	11 Quick I/O for Databases
	Quick I/O Functionality and Performance
	Supporting Kernel Asynchronous I/O
	Supporting Direct I/O
	Avoiding Kernel Write Locks
	Avoiding Double Buffering

	Using VxFS Files as Raw Character Devices
	Quick I/O Naming Convention
	Use Restrictions
	Creating a Quick I/O File Using qiomkfile
	Accessing Regular VxFS Files Through Symbolic Links
	Using Absolute or Relative Path Names
	Preallocating Files Using the setext Command

	Using Quick I/O with Oracle Databases
	Using Quick I/O with Sybase Databases
	Enabling and Disabling Quick I/O
	Cached Quick I/O For Databases
	Enabling Cached Quick I/O
	Enabling Cached Quick I/O for File Systems
	Enabling Cached Quick I/O for Individual Files

	Tuning Cached Quick I/O

	Quick I/O Statistics
	Quick I/O Summary
	Veritas File System Quick Reference
	Command Summary
	Online Manual Pages
	Creating a File System
	How to Create a File System

	Converting a UFS File System to VxFS
	How to Convert a File System

	Mounting a File System
	How to Mount a File System
	Mount Options
	How to Edit the fstab File

	Unmounting a File System
	How to Unmount a File System

	Displaying Information on Mounted File Systems
	How to Display File System Information

	Identifying File System Types
	How to Identify a File System

	Resizing a File System
	How to Extend a File System Using
	How to Shrink a File System
	How to Reorganize a File System
	How to Extend a File System Using

	Backing Up and Restoring a File System
	How to Create and Mount a Snapshot File System
	How to Back Up a File System
	How to Restore a File System

	Using Quotas
	How to Turn On Quotas
	How to Set Up User Quotas
	How to View Quotas
	How to Turn Off Quotas

	Kernel Messages
	File System Response to Problems
	Marking an Inode Bad
	Disabling Transactions
	Disabling a File System
	Recovering a Disabled File System

	Kernel Messages
	Global Message IDs

	Disk Layout
	Disk Space Allocation
	The VxFS Version 4 Disk Layout
	The VxFS Version 5 Disk Layout
	The VxFS Version 6 Disk Layout

	Glossary

