
 Migrating Packages from Legacy to Modular Style

Introduction... 2
Abstract .. 2
Intended Audience ... 2
Related Documents ... 2
Terms and Definitions ... 2

Modular Packages... 3
Expected Usage of Modular Packages ... 4

New Serviceguard Installations .. 4
Existing Serviceguard Installations .. 4
Package Environment Variables (PEV) ... 4

Package Migration .. 4
Overview .. 4
Package Profiles .. 5

The following describes the package profiles which can be migrated using the automated tool.............. 5
The following packages must be manually migrated. .. 5
The following packages cannot be migrated.. 6

Migration Utility... 6
Checklist for Migrating a Legacy Package... 7

Serviceguard Control Script Parameters .. 8
Unsupported Package Parameters .. 9
Serviceguard Control Script Supported Functions ... 9
Replaced Control Script Functions Table.. 11
Unsupported Control Script Functions Table ... 11

Migrating a Simple Package... 11
Migrating a Package with Customer-Defined Functions... 14
Migrating a Package with Non-Serviceguard Parameters in the Control Script .. 15
Manual Steps for Migrating Legacy Packages ... 15
Appendix A .. 20

Introduction

Abstract
Modular packages provide a new interface for configuring Serviceguard packages. They modularize
both package configuration files and the control script, allowing easier integration and validation of
user-defined functions and parameters. This document describes how to migrate current (“legacy”)
packages to the new modular package configuration. For more information, see the latest edition of
the Managing Serviceguard manual at http://docs.hp.com -> High Availability -> Serviceguard (or
Serviceguard for Linux).

Intended Audience
This document is intended for Serviceguard cluster Administrators. It assumes the reader is familiar
with both the legacy package and the new modular package configuration, and with the basics of
HP-UX or Linux shell scripting.

Related Documents
Managing Serviceguard (fourteenth edition or later), chapters 3, 4, 6, and 7.
Man page for cmmigratepkg.

Terms and Definitions

Modular Package Single package configuration file, introduced in Serviceguard
A.11.18. The package configuration information is included in
only the package configuration (ASCII) file, whereas in pre-11.18
packages configuration information is in both the package ASCII
file and the package control script.

Legacy Package Package Configuration pre-11.18

Attribute A configurable parameter in the package configuration file

Module A building block that includes a specific set of attributes for
package configuration.

ADF Module File Attribute Definition File that defines a module. The ADF Modules
are used to build a modular package’s ASCII configuaration file.
They define the attributes which the package ASCII file includes.

PEV Package Environment Variable. A user-definable variable that can
be passed to external scripts.

External Script User-created script invoked by Serviceguard at
validation/start/stop of a package.

Toolkits The toolkits refers to the following products:
Enterprise Cluster Master Toolkit, Oracle Toolkit for SG/Linux,
Serviceguard Extensions for SAP/R3, Metroclusters and
ContinentalClusters

2

http://docs.hp.com/

Customer Defined
Area of control
script

The area where a user can add code in the legacy package control
script, defined by the comments “#START CUSTOMER DEFINED
FUNCTIONS” and “#END CUSTOMER DEFINED FUNCTIONS”.

Modular Packages
Serviceguard A.11.18 introduces a new style of package which differs from those used in earlier
releases.

The benefits of a modular package are:

• Simplified Package Configuration

o All configuration data for the package is now in the package configuration file.
Previously, configuration data was included in both the configuration file and in the
package control script.

• Modularized Approach to packages

o All package parameters are now configured in one place, the package configuration
file. You no longer need to create and distribute a separate package control file.

o External scripts offer an improved means of application integration. These replace the
Customer Defined Functions in the legacy package control script. You do need to
distribute these scripts to all the nodes that can run the package.

o The modular approach allows you to build a package from building blocks
containing only the functions needed by this package.

o Packages are built from a set of modules that define only the specific functionality
that each package needs; paramters that are not needed are not included.

o There are well-defined entry points for user-defined scripts

o Software partnerscan easily plug in custom modules for their products

• Support Benefit

o Modular packages can be enhanced in a patch without requiring re-integration.
Enhancements to the package scripts do not require an update to the package
configuration.

• Package Environment Variables allow you to add variables to the package configuration file.
These can be passed to external scripts that you create, maintaining the model of separating
configuration data and control scripts.

Note: Serviceguard A.11.18 continues to support legacy as well as modular packages.

3

Expected Usage of Modular Packages

Use of modular packages is preferred, keeping in mind the guidelines that follow.

New Serviceguard Installations
For new Serviceguard installations, modular packages are the preferred style. In this case, you can
immediately benefit from the new 11.18 features. See chapter 6 of Managing Serviceguard. In
subsequent Serviceguard releases, new package features may be available only in modular
packages.

Existing Serviceguard Installations
In existing installations, you may prefer not to redefine existing packages because they are well-tested
and operating as desired. You can continue to use and maintain your legacy packages on
Serviceguard A.11.18. See chapter 7 of Managing Serviceguard.

Whether or not you convert existing packages, HP recommends that you create new packages as
modular packages to take advantage of the new features. Modular Packages and legacy packages
can coexist on the same cluster.

Package Environment Variables (PEV)
You can add variables to the package using package environment variables (PEVs). PEVs allow
attributes to be added to the Modular Package configuration file. cmviewcl’s –f line displays the
packages’ PEVs and their value. PEVs are passed as environment variables to any external scripts that
you add to the package. Define these attributes in the package configuration file using the prefix
“PEV_”(uppercase with an underscore as shown).

For example if a legacy package control script has the variable APP_DIRECTORY, the corresponding
variable in the package configuration file would be PEV_APP_DIRECTORY:

PEV_APP_DIRECTORY /var/opt/app

You can add your own custom scripts to the package definition using two well-defined entry points,
external_script and external_pre_script. Any PEVs you define are passed into the script when it is
executed.

In the example above, the environment variable PEV_APP_DIRECTORY with the value of
“/var/opt/app” would be passed to the external script. All environment variables are passed to the
scripts in uppercase.

For more information about user-created scripts and PEVs, see chapters 4 and 6 of the Managing
Serviceguard manual.

Package Migration

Overview
The following sections describe the migration of different types of package, and provide instructions
for migrating legacy packages to modular packages.

The high-level steps are:

1. Determine the profile of the package from the tables that follow.

4

2. Determine from the package profile if the package can be migrated using the cmmigratepkg
command.

a. If it cannot be migrated using cmmigratepkg, follow instructions in the section on
“Manual steps for migrating a package”.

b. If it can be migrated using cmmigratepkg:
i. Check the control script for changed or obsolete functions.
ii. Select the options for the cmmigratepkg migration tool and migrate the

package following the examples for the profile that matches this package.

Package Profiles
The first step is to determine the profile of legacy package you want to migrate. Use the table that
follows.

The following describes the package profiles which can be migrated using the automated tool.

Profile Description

Simple Package A failover package that does not have any
additional code in the customer-defined user area
of the control script, and whose package control
script does not have any non-Serviceguard
variables defined or used.

Package with Customer Defined Script A failover package whose control script’s
customer-defined area has code which invokes
another script or includes functions that are not a
part of the Serviceguard control script template.

Package With Control Script with variables
defined

A failover package whose package control script
has user-defined environment variables that are
not Serviceguard parameters.

Package with Dependencies A package that depends on another package.

The package can be converted to a modular
package and the package which it depends
upon can remain a legacy package.

The following packages must be manually migrated.
Profile Description

Package with non-Serviceguard-generated
Control Script

A package whose control script was not
generated using the cmmakepkg –s command.

(The migration tool supports all Serviceguard-
generated versions created after 11.09).

Multi-Node and System Multi-Node Packages A package that runs on more than one node at
the same time.

5

These types of package can be automatically
migrated only if the control script is the same on
every node that the package runs on. Otherwise
the package should be manually migrated.

Packages created on versions of Serviceguard
older than A.11.09

The migration tool cannot be used on any
packages that were created on versions older
than A.11.09. These packages were created
using an older template for the control script.

If the package control script’s version number is
older than A.11.09, the migration tool will output
a message to that effect, and exit.

The following packages cannot be migrated.
Profile Description

CFS Package Veritas Cluster File System from Symantec.

No CFS-defined package should be migrated,
including all package named “SG-CFS-*”.

CVM 3.5 Packages A package used by the Veritas Cluster Volume
Manager, version 3.5.

No CVM 3.5 package should be migrated,
including the system nulti-node package VxVM-
CVM-pkg.

Toolkit Packages for (Oracle, Apache, Samba,
Tomcat, HA NFS, SGeSap, SGeRac 10g RAC,
Linux, HPVM toolkits) DTS (Plug-ins for XPCA,
SRDF, and EVA CA, used in Metrocluster and
Continentalclusterconfigurations)

A package generated by an HP toolkit.

Do not attempt to migrate such packages. Only
legacy packages are supported within the toolkits
in Serviceguard A.11.18. Serviceguard. The
next release of Serviceguard will support modular
packages within the toolkits.

Migration Utility
The cmmigratepkg command automates the migration of a legacy package to a modular package. It
creates a package configuration (ASCII) file for a modular package with the legacy package’s
information. The syntax is as follows:

cmmigratepkg –p <package_name> [-x <external_script_name>] [-e] –o <output_file>

The package must be a configured legacy package. It can be on-line or off-line. cmmigratepkg reads
the the package’s control script, so the control script must be located on the node where the command
is run. cmmigratepkg can migrate packages created by Serviceguard versions A.11.09 through
A.11.18.

The control script’s customer-defined area is any code between “#START CUSTOMER DEFINED
FUNCTIONS” and “#END CUSTOMER DEFINED FUNCTIONS”. If the customer-defined area has

6

code that needs to be migrated, cmmigratepkg can create an external script by inserting the shell
code from the control script into the external_script file. The external script is generated from the
external template found in $SGCONF/examples/external_script.template. (See chapter 4 of the
Managing Serviceguard manual for more information about the template.)

Non-Serviceguard variables defined in the legacy package control script can be converted to PEVs.
cmmigratepkg displays informational messages identifying variables which it cannot convert because
they are non-Serviceguard variables. If these non-Serviceguard variables are defined and used in the
customer-defined area, there is no need to convert them to PEVs. If they are defined in another
location in the control script, and the values should be part of the package, they can be converted to
PEVs using the –e option. These PEVs are defined in the new package configuration file.

If non-Serviceguard functions are defined in the legacy package control script, cmmigratepkg lists
them to STDOUT. These functions are not converted. You must determine if the functions are called
and how you want to migrate them to the modular package. You can then put them into the new
external script file.

Input Parameters

-p package_name

The name of an existing legacy package. Used to obtain the current configuration
information.

-x external_script_name

The name of the external-script file. cmmigratepkg reads the user-defined functions for start
and halt and creates an external script from them. The external_script_name is the full
pathname of the target file.

-o outputfile

The name of the taget file that will contain the configuration for the new modular package.

-e

Create PEVs from parameters found in the package control script. cmmigratepkg adds the
prefix “PEV_” to the parameter name and writes the resulting name to outputfile.

Checklist for Migrating a Legacy Package
Check legacy packages for the following to determine how to migrate the package:

1. Package parameters which are not supported in 11.18
 See the Unsupported Package Parameters table below.

2. Any of the following in the package control script:
 Non-Serviceguard parameters:

i. If any non-Serviceguard parameters are defined, note the parameter names.
Look at the Serviceguard Control Script Parameters tables below.
cmmigratepkg lists any parameters which are non-Serviceguard Parameters.
Determine where the non-Serviceguard parameters are defined in the control
script:

7

 If the parameters are defined between the “#START OF CUSTOMER
DEFINED” and “#END OF CUSTOMER DEFINED”, cmmigratepkg
can copy the code to the new external script if you use the –x option
to generate an external script.

 If the parameters are defined elsewhere in the script, they can be
converted to PEVs.

 User-created scripts must be modified to use the new environment
variable names.

 Non-Serviceguard functions:
i. Determine if there are any non-Serviceguard functions in the package control

script. If the package control script was generated using cmmakepkg –s and
no additional functions were added, then there are no non-Serviceguard
functions. Otherwise, check the Unsupported Control Script Functions and
Replaced Control Script Functions tables below. Check whether any of these
functions are in the package’s control script. Run cmmigratepkg and see if
the command lists any non-Serviceguard functions.

ii. If the functions are defined between the “#START OF CUSTOMER DEFINED
FUNCTIONS” and “#END of CUSTOMER DEFINED FUNCTIONS”,
cmmigratepkg can copy them to an external script if you use the –x option.

iii. If the functions are not in the customer-defined area of the control script, and
are listed under Unsupported Control Script Functions below, then you must
manually edit the external script.

iv. If the functions are not in the Customer defined area and are listed in the
Replaced Control Script Function Table below, then you must edit the
external script to use the new names.

v. If the functions are not covered by any of cases ii-iv above, then you must
manually add them to the external script.

 Modifications to Serviceguard functions
i. Determine if any modifications have been made to any Serviceguard

functions defined in the Serviceguard package control script template.
Someone well acquainted with the code in the package control script must
determine this; it entails reviewing the code and manually comparing the
Serviceguard template with this package’s control script.

ii. If there are modifications to any of the Serviceguard package control script
functions, and they must be included in the new package, then you can not
migrate the package.

3. Make sure the subnet and ip_address parameters defined in the legacy package’s control
script are defined in the cluster configuration file as STATIONARY_IP addresses for the nodes
in the cluster. If the package includes a subnet and ip_address which are not configured as a
STATIONARY_IP address in the cluster configuration file, add the subnet as a monitored
subnet by adding the address as a STATIONARY_IP to the cluster configuration file. Then
apply the new cluster configuration. (cmmigratepkg may complete successfully if you fail to
do this, but the resulting package will not run.) See chapter 4 of the Managing Serviceguard
manual for more information about the cluster configuration file, and chapter 5 for
information on applying the configuration.

The following are the Serviceguard parameters in the legacy control script.
Serviceguard Control Script Parameters
Parameter Name
CONCURRENT_FSCK_OPERATIONS
CONCURRENT_MOUNT_AND_UMOUNT_OPERATIONS
CONCURRENT_VGCHANGE_OPERATIONS

8

CVM_ACTIVATION_CMD
CVM_DG
DEACTIVATION_RETRY_COUNT
DEFERRED_RESOURCE_NAME
DTC_NAME
LV
FS
FS_MOUNT_OPT
FS_UMOUNT_OPT
FS_FSCK_OPT
FS_TYPE
FS_MOUNT_RETRY_COUNT
FS_UMOUNT_COUNT
IP
SUBNET
SERVICE_NAME
SERVICE_CMD
SERVICE_RESTART
VG
VGCHANGE
VXVM_DG
VXVOL
KILL_PROCESSES_ACCESSING_RAW_DEVICES

The following legacy package attributes are not supported by modular packages.
Unsupported Package Parameters
Package Attribute Description
STORAGE_GROUP If STORAGE_GROUP was defined for the legacy

package, then the corresponding modular
package must declare a dependency on the CVM
System Multi-Node package.

MD, RAIDTAB, RAIDSTART, RAIDSTOP,
DTC_NAME, DATA_REP

These parameters are obsolete in A.11.18.
cmmigratepkg gives a warning message if it finds
these parameters in the control script. If you
need to use them, consult Linux XDC Toolkit
support.

Serviceguard Control Script Supported Functions
activate_disk_group

activate_volume_group

add_ip_address

check_and_mount

check_dg

check_vxvm_vol_available

deactivate_disk_group

deactivate_volume_group

9

disown_dtc

freeup_busy_mountpoint_and_mount_fs

get_ownership_dtc

halt_services

remove_ip_address

retry_print

start_resources

start_services

umount_fs

verify_ha_nfs

verify_physical_data_replication

wait_for_cvm_dg_vols_enabled

stop_resources

ps_tree

show_users

disown_dtc

dg_fuser

test_return

activation_check

check_gfs

lvm_sanity_check

vg_tag

verify_evfs

get_md

activate_md

deactivate_md

wait_for_diskgroup_enable

deactivate_dg

deactivate_dg_with_retries

verify_ha_nfs

verify_ha_server

check_gfs

customer_defined_halt_cmds

customer_defined_run_cmds

10

If the control script’s customer-defined section calls any of the following functions, the external script
needs to be edited to update the names as follows.

Replaced Control Script Functions Table
Function Replacement
ps_tree sg_ps_tree
show_users sg_show_users

Unsupported Control Script Functions Table
Disown_dtc
get_ownership_dtc
ha_nfs_file_locks
Disown_dtc

Migrating a Simple Package
If a package does not have a customer defined user script and does not include any of its own
environment variables in the package control script, follow these broad steps (see the examples that
follows for details):

1. Run the cmmigratepkg command and generate a new modular package configuration file.
2. Run cmcheckconf with the new modular package configuration file.
3. Halt the package
4. Run cmapplyconf with the new modular package configuration file.
5. Run the package

The following example migrates the simple package pkg_simple.

Examine the package using cmviewcl.

$cmviewcl –v –l line –p
sandy:/etc/cmcluster/pkg/pkg-simple>cmviewcl -v -f line -p pkg-
simple
name=pkg-simple
type=failover
status=down
state=halted
highly_available=no
summary=critical
autorun=disabled
owner=unowned
id=41475
initial_autorun=enabled
failover_policy=configured_node
failback_policy=manual
local_lan_failover_allowed=enabled
failfast=disabled
run_script=/etc/cmcluster/pkg/pkg-simple/pkg-simple.control
run_script_timeout=320
halt_script=/etc/cmcluster/pkg/pkg-simple/pkg-simple.control
halt_script_timeout=320
priority=no_priority
successor_halt_timeout=no_timeout

11

script_log_file=/etc/cmcluster/pkg/pkg-simple/pkg-simple.log
node:sandy|name=sandy
node:sandy|status=down
node:sandy|switching=enabled
node:sandy|last_run_time=0
node:sandy|last_halt_time=0
node:sandy|available=yes
node:sandy|type=Primary
node:sandy|order=1
node:krabs|name=krabs
node:krabs|status=down
node:krabs|switching=enabled
node:krabs|last_run_time=0
node:krabs|last_halt_time=0
node:krabs|available=yes
node:krabs|type=Alternate
node:krabs|order=2
subnet:192.42.2.0|name=192.42.2.0
subnet:192.42.2.0|node:krabs|status=up
subnet:192.42.2.0|node:sandy|status=up
subnet:fec0:0:0:2a02::/64|name=fec0:0:0:2a02::/64
subnet:fec0:0:0:2a02::/64|node:krabs|status=up
subnet:fec0:0:0:2a02::/64|node:sandy|status=up
service:pkg-simple_srv_1|name=pkg-simple_srv_1
service:pkg-simple_srv_1|id=1
service:pkg-simple_srv_1|failfast=disabled
service:pkg-simple_srv_1|halt_timeout=5
service:pkg-simple_srv_1|node:krabs|status=down
service:pkg-simple_srv_1|node:krabs|restart_limit=unknown
service:pkg-simple_srv_1|node:krabs|restart_count=0
service:pkg-simple_srv_1|node:sandy|status=down
service:pkg-simple_srv_1|node:sandy|restart_limit=unknown
service:pkg-simple_srv_1|node:sandy|restart_count=0

Go to the directory where the package ascii and control scripts are stored. Run
cmmigratepkg on the package.

$cd /etc/cmcluster/pkg/pkg-simple
$cmmigrate –p pkg-simple –o pkg-simple.conf

Examine the output.

$cat pkg-simple.conf
Package generated by Migration Program
package_name pkg-simple
module_name sg/basic
module_version 1
module_name sg/failover
module_version 1
module_name sg/priority
module_version 1
module_name sg/dependency
module_version 1
module_name sg/monitor_subnet
module_version 1
module_name sg/package_ip
module_version 1

12

module_name sg/service
module_version 1
module_name sg/volume_group
module_version 1
module_name sg/filesystem
module_version 1
module_name sg/pev
module_version 1
module_name sg/external_pre
module_name sg/external_pre
module_version 1
module_name sg/external
module_version 1
module_name sg/acp
module_version 1
package_type FAILOVER
auto_run YES
node_fail_fast_enabled NO
run_script_timeout 320
halt_script_timeout 320
script_log_file /etc/cmcluster/pkg/pkg-simple/pkg-simple.log
failover_policy CONFIGURED_NODE
failback_policy MANUAL
local_lan_failover_allowed YES
node_name sandy
node_name krabs
operation_sequence
$SGCONF/scripts/sg/external_pre.sh
operation_sequence
$SGCONF/scripts/sg/volume_group.sh
operation_sequence
$SGCONF/scripts/sg/filesystem.sh
operation_sequence
$SGCONF/scripts/sg/package_ip.sh
operation_sequence
$SGCONF/scripts/sg/external.sh
operation_sequence
$SGCONF/scripts/sg/service.sh
service_name pkg-simple_srv_1
service_cmd "/usr/bin/X11/xclock -display 15.1.194.102"
service_fail_fast_enabled NO
service_halt_timeout 5

ip_subnet 192.42.2.0
ip_address "192.42.2.18"
ip_subnet fec0:0:0:2a02::/64
ip_address 3ffe:1000:0:2a02::11/64
vxvm_dg dg_sandy_dd0
fs_name /dev/vx/dsk/dg_sandy_dd0/lvol1
fs_directory
/var/opt/sgtest/tmp/mnt/dev/vx/dsk/dg_sandy_dd0/
lvol1
fs_type ""
fs_mount_opt ""
fs_umount_opt ""
fs_fsck_opt ""
fs_name /dev/vx/dsk/dg_sandy_dd0/lvol1

13

fs_directory
/var/opt/sgtest/tmp/mnt/dev/vx/dsk/dg_sandy_dd0/
lvol1
fs_type ""
fs_mount_opt ""
fs_umount_opt ""
fs_fsck_opt ""
vgchange "vgchange -a e"
cvm_activation_cmd "vxdg -g \$DiskGroup set
activation=excl
usivewrite"
deactivation_retry_count 2
kill_processes_accessing_raw_devices NO
vxvol "vxvol -g \$DiskGroup startall"
fs_umount_retry_count 1
fs_mount_retry_count 0
concurrent_vgchange_operations 1
concurrent_fsck_operations 1
concurrent_mount_and_umount_operations 1
script_log_file /var/opt/sgtest/tmp/cmcluster/pkg-
simple/pkg-simple.log

Halt the package.

$cmhaltpkg pkg-simple

Check the configuration of the new package.

$cmcheckconf –P pkg-simple.conf
cmcheckconf: Verification completed with no errors found.
Use the cmapplyconf command to apply the configuration.

Apply the new configuration.

$cmapplyconf –P pkg-simple.conf

Modify the package configuration ([y]/n)? y
Completed the cluster update

Start the package.
$cmrunpkg pkg-simple

Migrating a Package with Customer-Defined Functions
If the package includes a user-defined script, or the control script contains non-Serviceguard functions
in the customer-defined functions area, follow these steps:

1. Run the cmmigratepkg command and generate a new modular package configuration file
and external script file:

$cmmigratepkg –p pkgA –x /etc/cmcluster/pkg/pkgA/myexternal.sh –o pkgA.conf
2. Make sure that the location of the external script is correct in the output modular package

configuration file. (The –x option expects the full pathname of the external script.)
3. Copy the external script file to each node where the package can run and make sure that the

script is owned by root and permissions are set to 744.*
4. Run cmcheckconf with the new modular package configuration file.
5. Halt the package

14

6. Run cmapplyconf with the new modular package configuration file.
7. Run the package.

* Note: cmmigratepkg wrongly sets permissions to 555; you need to reset them manually to 744.

Migrating a Package with Non-Serviceguard Parameters in
the Control Script
If the package includes non-Serviceguard control-script parameters that are not defined in the
Customer Defined Functions section, or you want to convert these non-Serviceguard parameters to
PEVs, use the following steps:

1. Run cmmigratepkg command with the options for external script and generate PEV.
$cmmigratepkg –p pkgA –x /etc/cmcluster/pkg/pkgA/myexternal.sh –e –o pkgA.conf

2. Make sure that the location of the external script is correct in the output modular package
configuration file. (The –x option expects the full pathname of the external script.) Note that
the new variable are added with the prefix “PEV_”.

3. Edit the external script
a. Make sure that the script is using the PEV names in the code. Change the varaible

names to include the prefix “PEV_”.
4. Copy the external script file to each node where the package can run and make sure that the

script is owned by root and permissions are set to 744.*
5. Halt the package.
6. Run cmcheckconf with the new modular package configuration file.
7. Run cmapplyconf with the new modular package configuration file.
8. Run the package.

* Note: cmmigratepkg wrongly sets permissions to 555; you need to reset them manually to 744.

Manual Steps for Migrating Legacy Packages

1. Get a copy of the legacy package ASCII file by using the cmgetconf –p command. Modify the
following in the ASCII file:

a. Remove the RUN_SCRIPT, HALT_SCRIPT and STORAGE_GROUP attributes.
b. Add the script_log_file attribute
c. Add to the list of modules and versions after PACKAGE_NAME:

1. module_name sg/all
2. module_version 1

d. Add the operation_sequence information after Service information

1. operation_sequence $SGCONF/scripts/sg/external_pre.sh
2. operation_sequence $SGCONF/scripts/sg/volume_group.sh
3. operation_sequence $SGCONF/scripts/sg/filesystem.sh
4. operation_sequence $SGCONF/scripts/sg/package_ip.sh
5. operation_sequence $SGCONF/scripts/sg/external.sh
6. operation_sequence $SGCONF/scripts/sg/service.sh

If the package uses EMS resources add:
 operation_sequence $SGCONF/scripts/sg/resource.sh

15

Legacy Package ASCII file:
package_name pkg-nu-2
package_type FAILOVER
run_script_timeout 340
halt_script_timeout 340
successor_halt_timeout NO_TIMEOUT
priority 663
run_script /etc/cmcluster/pkg-nu-2/control.sh
halt_script /etc/cmcluster/pkg-nu-2/control.sh
node_name krabs
node_name sandy
service_name pkg-nu-2_srv_1
service_fail_fast_enabled NO
service_halt_timeout 5
service_name pkg-nu-2_srv_2
service_fail_fast_enabled NO
service_halt_timeout 5
subnet 192.42.2.0
subnet fec0:0:0:2a02::/64

Modified package ASCII File:
package_name pkg-nu-2
module_name sg/all
module_version 1
package_type FAILOVER
run_script_timeout 340
halt_script_timeout 340
successor_halt_timeout NO_TIMEOUT
priority 663
_script /etc/cmcluster/pkg-nu-2/control.sh
node_name krabs
node_name sandy
service_name pkg-nu-2_srv_1
service_fail_fast_enabled NO
service_halt_timeout 5
service_name pkg-nu-2_srv_2
service_fail_fast_enabled NO
service_halt_timeout 5
subnet 192.42.2.0
subnet fec0:0:0:2a02::/64
operation_sequence $SGCONF/scripts/sg/external_pre.sh
operation_sequence $SGCONF/scripts/sg/volume_group.sh
operation_sequence $SGCONF/scripts/sg/filesystem.sh
operation_sequence $SGCONF/scripts/sg/package_ip.sh
operation_sequence $SGCONF/scripts/sg/external.sh
operation_sequence $SGCONF/scripts/sg/service.sh

2. Modify a copy of the Package Control Script. Edit the file to:

 Remove lines from # START OF CUSTOMER DEFINED FUNCTIONS to the end of the
file.

 Remove the top lines up to VGCHANGE
 Remove the comment after VGCHANGE

16

 Change SUBNET to IP_SUBNET
 Move all IP_ADDRESSES under the appropriate IP_SUBNET’s.
 Change “-R” to “unlimited”
 Change in SERVICE_RESTART values of “-r <value>” to just <value>
 Remove all of the array values -
 Remove all “=”
 Remove “” from value for KILL_PROCESSES_ACCESSING_RAW_DEVICES
 Make sure all file system attributes are in separate lines
 Remove quotation marks from the values of FS and LV.

Package control script after the modifications:

VGCHANGE "vgchange -a e"
CVM_ACTIVATION_CMD "vxdg -g \$DiskGroup set activation exclusivewrite"
VG /dev/vglock2
DEACTIVATION_RETRY_COUNT 2
KILL_PROCESSES_ACCESSING_RAW_DEVICES NO
LV /dev/vglock2/lvol1
 FS /var/opt/tmp/mnt/dev/vglock2/lvol1
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol10
 FS /var/opt/tmp/mnt/dev/vglock2/lvol10
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol2
 FS /var/opt/tmp/mnt/dev/vglock2/lvol2
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol3
 FS /var/opt/tmp/mnt/dev/vglock2/lvol3
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol4
 FS /var/opt/tmp/mnt/dev/vglock2/lvol4
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol5
 FS /var/opt/tmp/mnt/dev/vglock2/lvol5
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol6
 FS /var/opt/tmp/mnt/dev/vglock2/lvol6
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""

17

LV /dev/vglock2/lvol7
 FS /var/opt/sgtest/tmp/mnt/dev/vglock2/lvol7
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol8
 FS /var/opt/sgtest/tmp/mnt/dev/vglock2/lvol8
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol9
 FS /var/opt/tmp/mnt/dev/vglock2/lvol9
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
VXVOL "vxvol -g \$DiskGroup startall"
FS_UMOUNT_COUNT 1
FS_MOUNT_RETRY_COUNT 0
CONCURRENT_VGCHANGE_OPERATIONS 1
CONCURRENT_FSCK_OPERATIONS 1
CONCURRENT_MOUNT_AND_UMOUNT_OPERATIONS 1
IP_SUBNET 192.42.2.0

IP 192.42.2.19
IP_SUBNET 3ffe:1000:0:2a02::
IP 3ffe:1000:0:2a02::11/64
SERVICE_NAME pkg-nu-2_srv_1
SERVICE_CMD "/etc/cmcluster/pkg-nu-2/service.pl >> /etc/cmcluster/pkg-nu-
2/pkg-nu-2_srv_1.log 2>&1"
SERVICE_RESTART 2
SERVICE_NAME pkg-nu-2_srv_2
SERVICE_CMD "/etc/cmcluster/pkg-nu-2/simple >> /etc/cmcluster/pkg-nu-
2/pkg-nu-2_srv_2.log 2>&1"
SERVICE_RESTART unlimited

3. Concatenate the modified package configuration (ASCII) file with the modified package control
script

4. Fix the Service attribute information, by moving the SERVICE_COMMAND, SERVICE_RESTART
up to the location where SERVICE_NAME is first defined. Remove extra SERVICE_NAME
attributes.

PACKAGE_NAME pkg-nu-26561_3
module_name sg/all
module_version 1

PACKAGE_TYPE FAILOVER
NODE_NAME plankton
NODE_NAME patrick
NODE_NAME krabs
NODE_NAME sandy
AUTO_RUN YES
NODE_FAIL_FAST_ENABLED NO

18

RUN_SCRIPT_TIMEOUT 340
HALT_SCRIPT_TIMEOUT 340
FAILOVER_POLICY CONFIGURED_NODE
FAILBACK_POLICY MANUAL
LOCAL_LAN_FAILOVER_ALLOWED YES
MONITORED_SUBNET 192.42.2.0
MONITORED_SUBNET fec0:0:0:2a02::/64
SERVICE_NAME pkg-nu-26561_3srv26561_1
SERVICE_CMD "/etc/cmcluster/pkg-nu-2/service.pl >> /etc/cmcluster/pkg-nu-
2/pkg-nu-2_srv_1.log 2>&1"
SERVICE_RESTART 2
SERVICE_FAIL_FAST_ENABLED NO
SERVICE_HALT_TIMEOUT 5
SERVICE_NAME pkg-nu-26561_3srv26561_2
SERVICE_CMD "/etc/cmcluster/pkg-nu-2/simple >> /etc/cmcluster/pkg-nu-
2/pkg-nu-2_srv_2.log 2>&1"
SERVICE_RESTART 2
SERVICE_FAIL_FAST_ENABLED NO
SERVICE_HALT_TIMEOUT 5
operation_sequence $SGCONF/scripts/sg/external_pre.sh
operation_sequence $SGCONF/scripts/sg/volume_group.sh
operation_sequence $SGCONF/scripts/sg/filesystem.sh
operation_sequence $SGCONF/scripts/sg/package_ip.sh
operation_sequence $SGCONF/scripts/sg/external.sh
operation_sequence $SGCONF/scripts/sg/service.sh

VGCHANGE "vgchange -a e"
CVM_ACTIVATION_CMD "vxdg -g \$DiskGroup set activation exclusivewrite"
VG /dev/vglock2
DEACTIVATION_RETRY_COUNT 2
KILL_PROCESSES_ACCESSING_RAW_DEVICES NO
LV /dev/vglock2/lvol1
 FS /var/opt/tmp/mnt/dev/vglock2/lvol1
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol10
 FS /var/opt/tmp/mnt/dev/vglock2/lvol10
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol2
 FS /var/opt/tmp/mnt/dev/vglock2/lvol2
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol3
 FS /var/opt/tmp/mnt/dev/vglock2/lvol3
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol4
 FS /var/opt/tmp/mnt/dev/vglock2/lvol4
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""

19

LV /dev/vglock2/lvol5
 FS /var/opt/tmp/mnt/dev/vglock2/lvol5
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol6
 FS /var/opt/tmp/mnt/dev/vglock2/lvol6
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol7
 FS /var/opt/tmp/mnt/dev/vglock2/lvol7
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol8
 FS /var/opt/tmp/mnt/dev/vglock2/lvol8
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
LV /dev/vglock2/lvol9
 FS /var/opt/tmp/mnt/dev/vglock2/lvol9
 FS_TYPE ""
 FS_MOUNT_OPT ""
 FS_UMOUNT_OPT ""
 FS_FSCK_OPT ""
VXVOL "vxvol -g \$DiskGroup startall"
FS_UMOUNT_RETRY_COUNT 1
FS_MOUNT_RETRY_COUNT 0
CONCURRENT_VGCHANGE_OPERATIONS 1
CONCURRENT_FSCK_OPERATIONS 1
CONCURRENT_MOUNT_AND_UMOUNT_OPERATIONS 1
IP_SUBNET 192.42.2.0
IP 192.42.2.19
IP_SUBNET 3ffe:1000:0:2a02::
IP 3ffe:1000:0:2a02::11/64

5. Run cmcheckconf on the new package ASCII file and resolve if there are any errors.
6. Halt the Package
7. Apply the new package ASCII file.

Appendix A
The following shell script modifies the package configuration (ASCII) file, making the changes
prescribed under “Manual Steps for Migrating a Legacy Package” earlier in this document.

#!/bin/sh
Input to script is packagename
The steps to convert are:
get the package controlscript name
get the package ascii file

get arguments - input is package name

20

if (($# == 0))
then
 echo "ERROR: Package name is required"
 exit 1;
fi

nupkg=$1
newpkg=$2

Extract package attributes from package configuration file
Remove run_script/halt_script and storage_group from ascii file
cmgetconf -v 0 -p $nupkg |
sed -e '/^$/d' \
 -e '/^RUN_SCRIPT /d' \
 -e '/^HALT_SCRIPT /d' > ./tmp/nu-pkg.ascii

Append the upcc module name, version and operation_sequence.
cat ./tmp/nu-pkg.ascii |
sed -e '/PACKAGE_NAME/a\
module_name sg/all \
module_version 1 \
' \
-e '$a\
operation_sequence $SGCONF/scripts/sg/external_pre.sh \
operation_sequence $SGCONF/scripts/sg/volume_group.sh \
operation_sequence $SGCONF/scripts/sg/filesystem.sh \
operation_sequence $SGCONF/scripts/sg/package_ip.sh \
operation_sequence $SGCONF/scripts/sg/external.sh \
operation_sequence $SGCONF/scripts/sg/service.sh \
' > $newpkg

The following script automates some of the changes needed to modify the package control script.

#!/bin/sh
Input to scrip is packagename
The steps to convert are:
get the package controlscript name
get the package ascii file

get arguments - input is package name
if (($# == 0))
then
 echo "ERROR: Package name is required"
 exit 1;
fi

nupkg=$1
nuscript=$2

get control script from pkg1
nupkgcntl=$(cmviewcl -v -fline -p $nupkg | grep "run_script=")
nupkgcntl=${nupkgcntl#*=}

echo "control script = $nupkgcntl"

Extract parameters from control script
Get only parameters from control script
cat $nupkgcntl |

21

22

sed -e '/# START OF CUSTOMER DEFINED FUNCTIONS/,$d' > ./tmp/nu-pkg.cntl.0

Extract package attributes from package control file
cat ./tmp/nu-pkg.cntl.0 | grep ^[A-Z_.-]*[*[0-9]*]*= |
egrep -v -i 'PATH|GFS|DATA_REP|RAID|HA_NFS_SCRIPT_EXTENSION' |
egrep -v -i 'DTC_NAME|^MD|HA_APP_SERVER|STORAGE_GROUP' |
sed -e 's/\[[0-9]*\]//g' \
 -e 's/=/ /g' \
 -e 's/# Default//' \
 -e 's/^SUBNET/IP_SUBNET/' \
 -e 's/\"-r\([0-9]*\)\"/\1/' \
 -e 's/\"-R\"/unlimited/'> ./tmp/nu-pkg.cntl.1

Put all parameters in separate lines
cat ./tmp/nu-pkg.cntl.1 |
tr '; ' '\012' > ./tmp/nu-pkg.cntl.2

remove extra quotation marks
cat ./tmp/nu-pkg.cntl.2 |
sed -e '/FS /s/"//g' \
 -e '/^LV /s/"//g' > $nuscript

© 2006 Hewlett-Packard Development Company, L.P. The information contained
herein is subject to change without notice. The only warranties for HP products and
services are set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

Itanium is a trademark or registered trademark of Intel Corporation or its
subsidiaries in the United States and other countries.

4AA0-XXXXENW, May 2007

	Introduction
	Abstract
	Intended Audience
	Related Documents
	Terms and Definitions

	Modular Packages
	Expected Usage of Modular Packages
	New Serviceguard Installations
	Existing Serviceguard Installations
	Package Environment Variables (PEV)

	Package Migration
	Overview
	Package Profiles
	The following describes the package profiles which can be mi
	The following packages must be manually migrated.
	The following packages cannot be migrated.

	Migration Utility
	Checklist for Migrating a Legacy Package
	Serviceguard Control Script Parameters
	Unsupported Package Parameters
	Serviceguard Control Script Supported Functions
	Replaced Control Script Functions Table
	Unsupported Control Script Functions Table

	Migrating a Simple Package
	Migrating a Package with Customer-Defined Functions
	Migrating a Package with Non-Serviceguard Parameters in the
	Manual Steps for Migrating Legacy Packages
	Appendix A

