
HP OpenView Operations Developer’s
Toolkit

Application Integration Guide

Software Version: A.08.10

UNIX
Manufacturing Part Number: B7492-90009

September 2004

© Copyright 1999-2004 Hewlett-Packard Development Company, L.P.

Legal Notices
Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product can be obtained from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Copyright Notices.

©Copyright 1999-2004 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated to
another language without the prior written consent of Hewlett-Packard
Company. The information contained in this material is subject to
change without notice.

Trademark Notices.

Adobe is a trademark of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in
both 32 and 64-bit configurations) on all HP 9000 computers are Open
Group UNIX 95 branded products.

Intel386, Intel80386, Intel486 , and Intel80486 are U.S. trademarks of
Intel Corporation.
2

Intel Itanium Logo: Intel, Intel Inside and Itanium are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries and are used under license.

Java is a U.S. trademark of Sun Microsystems, Inc.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

MS-DOS is a U.S. registered trademark of Microsoft Corporation.

Netscape and Netscape Navigator are U.S. trademarks of Netscape
Communications Corporation.

OpenView is a registered U.S. trademark of Hewlett-Packard Company.

Oracle is a registered U.S. trademark of Oracle Corporation, Redwood
City, California.

OSF, OSF/1, OSF/Motif, Motif, and Open Software Foundation are
trademarks of the Open Software Foundation in the U.S. and other
countries.

Pentium is a U.S. registered trademark of Intel Corporation.

SQL*Plus is a registered U.S. trademark of Oracle Corporation,
Redwood City, California.

UNIX is a registered trademark of the Open Group.

Windows NT is a U.S. registered trademark of Microsoft Corporation.

Windows and MS Windows are U.S. registered trademarks of
Microsoft Corporation.
3

4

1. An Introduction to Integrating Partner Applications with OVO
Why Integrate with OVO? . 28

HP OpenView Partnerships . 31
A Word about Licenses . 31

Integrating Partner Solutions with OVO . 32
OVO Conceptual Overview . 34

The HP OpenView Product Family and OVO . 34
OVO Concept and Key Features . 34
OVO Implementation . 36
Problem Management with OVO. 37

Collecting Management Information . 38
Processing and Consolidating Information . 40
Presenting the Information to the User. 41
Acting on the Information Provided. 47
Customizing OVO . 48
The OVO Java-based Operator User Interface . 49

Integration Benefits to Partners . 50
OVO as an INSM Framework . 50
Specific Benefits for Integrators in the NIM, NSM, and INSM Markets 51

NIM Market Segment . 51
NSM Market Segment . 52
INSM Market Segment. 52
Service Management Market Segment . 53

Integration Facilities Provided by OVO . 54
Integrating Events Using Messages . 54

Threshold Monitoring . 55
Working with Message Templates . 57
Adding Instructions, Annotations, and Actions to a Message Template 59

Integrating Events using Trouble Ticket and Notification Services 61
Integrating Applications into the Application Bank. 62
Integrating via APIs . 63
NNM Integration Through the OVO GUI . 65
Integrating via NNM Functionality. 66

2. Integrating Solutions with OVO
Deciding Which Integration Capabilities to Use . 68
Defining an Integration Strategy . 71

Adapting an Existing OVO Integration for OVO A.08.10. 72
5

Leveraging From an Integration into NNM . 73
SNMP Event Configuration . 74
Powerful GUI Application Integration. 75
Monitoring Facilities . 76
Alternative Message Sources . 77
User Role Concept . 77
Advantages of an INSM Solution . 77

Starting from Scratch . 78
Obtaining Coexistence of NNM and OVO Integrations . 79

Strategy 1: Use Transformed NNM Integration in OVO . 81
Strategy 2: Develop a Separate OVO Integration . 81

Summary of the Integration Process . 82
The Role of Configuration Data in an Integration . 84

3. Using the Integration Capabilities of the OVO Motif-based GUI
In This Chapter . 88
Event Integration Through Messages. 89

Configuring Messages in the Message Source Templates Window 89
Defining Templates for Logfile Encapsulation . 92

Using the Logfile Monitoring Options . 94
Defining Templates for SNMP Trap Interception. 96
Defining Templates for MPE/iX Console Message Interception. 97
Defining Templates for Messages Sent to the OVO Message Interface opcmsg(1|3) 98
Defining Templates for Threshold Monitors . 100

Overview of OVO Monitoring Capabilities . 100
Using Threshold Monitoring to Generate Messages . 103
Message Generation Policies and Message Filtering . 105
Types of OVO Monitor Available . 108
Integrating Monitors into OVO . 111
Sending Values Over the OVO Monitoring API or Command 113
MIB Data Collection . 115

Setting Advanced Options for a Message Source Template 116
Output to Agent and Server Message Stream Interface (MSI) 117

Setting Message Correlation Options for a Message Source Template 118
Suppression of Duplicate Messages . 120

Setting Options for a Message Source Template. 122
6

Adding Instructions to a Message Source Template. 123
Setting Message and Suppress Conditions . 124

Setting Conditions for Incoming Messages . 124
Setting Custom Message Attributes for a Message Condition 127
Setting Conditions for Incoming SNMP Traps . 129
Using SNMP Trap Templates Converted from NNM SNMP Trap
Configuration Files . 130
Converting NNM SNMP Trap Configuration Files to OVO Trap Templates . . . 131

Hints and Tips for Event Integration from Message Sources 133
Adding Instructions, Annotations, Automatic- and Operator-initiated Actions. 136

Adding Instructions for Solving Known Problems . 136
Adding Actions and Annotations to a Message . 139

External Notification and Trouble-ticket Service . 140
Example Script . 140
Guidelines for Writing Scripts and Programs. 141
Defining Notification Services . 141
Defining Trouble Ticket Services . 145
Manually Forwarding to Trouble Ticket or Notification Services 145

Integrating External Applications into the OVO GUI . 146
GUI Integration Points and Methods . 146

Advantages Gained by Integrating OVO Applications . 151
Integrating OVO Applications . 152
Integrating HP OpenView Windows Applications . 155

HP OpenView Applications. 156
HP OpenView Services . 156

Integrating Applications into the Application Desktop . 157
Adding OVO Applications . 158
Adding OpenView Applications . 159
Adding an OpenView Service . 160

Using NNM-integrated Applications With OVO. 161
NNM Applications in OVO . 161
Structure of NNM Applications in OVO . 163
Integrating Additional NNM Applications into OVO . 163

4. Using the OVO Application Programming Interfaces
In This Chapter . 166
Overview of the OVO APIs . 167
The OVO Interfaces . 173
7

Overview of the Server Message-Stream Interface . 175
Access to the Server Message-stream Interface . 176
OVO’s Serial MSI Configuration File . 177
Modifying Message IDs. 178
Serial MSI Configuration: Example Scenario . 179

Overview of the Agent Message Stream Interface . 180
Overview of the Legacy Link Interface . 180

Structure of the Legacy Link Process . 182
Overview of the Message Event Interface . 184

Access to Message Events. 185
Overview of the Application Response Interface . 186

Access to Action Responses. 186
Read and Write Access to the OVO Message Stream . 187

The OVO Operator APIs . 190
The OVO Interfaces and the OVO Operator API —
A Comparison . 191

The OVO Configuration APIs . 192
Summary of OVO API Functions . 194

Functions of the OVO Data API. 194
Functions to Manipulate OVO Data Structures . 194
Functions of the OVO Iterator . 196
The OVO Data Structures . 197

Functions of the OVO Service APIs . 199
Functions to Access the OVO Interface . 199
Functions to Access the Registration Conditions . 199

Functions of the Server Message API . 200
Functions to Manipulate Messages . 200

Functions of the Agent Message API. 201
Functions to Send/Acknowledge Messages . 201

Functions of the Agent Monitor API . 202
Functions to Send Monitor Values . 202

Functions of the Connection API . 203
Functions to Connect to the Management Server . 203

Functions of the Application Configuration API. 204
Functions to Configure OVO Applications. 204

Functions of the Application Group Configuration API . 205
Functions to Configure OVO Application Groups . 205
8

Functions of the Message Group Configuration API . 206
Functions to Configure OVO Message Groups . 206

Functions of the Message Regroup Condition Configuration API 207
Function to Configure OVO Message Regroup Conditions 207

Functions of the Node Configuration API . 208
Function to Configure OVO Managed Nodes. 208
Function to Configure OVO Node Groups . 209

Functions of the Node Hierarchy Configuration API . 210
Functions to Configure OVO Node Hierarchies. 210

Functions of the Template Configuration API . 211
Function to Configure OVO Templates . 211
Functions to Configure OVO Template Groups . 212

Functions of the User Profile Configuration API . 213
Functions to Configure OVO User Profiles . 213

Functions of the User Configuration API . 214
Functions to Configure OVO Users . 214

Functions of the Distribution API . 215
Functions to Distribute Configuration to Managed Nodes 215

Functions of the Server Synchronization API. 216
Functions to Modify and Update Configuration Data. 216

Using APIs in Internationalized Environments. 217

5. Integrating with Java GUI
In This Chapter . 220
Overview of the Java GUI Remote APIs . 221

Calling the Java GUI Remote APIs . 222
Configuring the Java GUI Remote APIs . 223

Enabling the Java GUI Remote APIs . 223
Creating the Client . 223

Example of the Basic Client Implementation . 225
Example of Creating the Client with Automatic Java GUI Startup on a Localhost .
226
To Compile the Client . 228
To Run the Client . 229

Connecting to Java GUI. 230
The Port Repository File. 230
Assigning a Session ID to Java GUI . 231

Specifying the Session ID Manually . 232
9

Summary of Java GUI Remote APIs Methods . 233
OV_JGUI_RemoteProxy Class Methods . 233
OV_JGUI_JavaBridge Class Methods . 235

6. Integrating with Service Navigator
In This Chapter . 238
The Service Navigator Architecture . 240
The XML Data Interface . 242
The C++ APIs . 244

The Service Operations Interface . 244
The Registration Interface for Service Status Changes . 245

The Registration Conditions. 245

7. Integration Facilities of the HP OpenView NNM Core Platform
In This Chapter . 248
Overview. 249
The OpenView Windows API. 250

Maps, Submaps, and Symbols . 252
ClusterView: An Example of an Integrated Map Application 254
HP OpenView Data: Objects and Fields . 256

The OpenView SNMP API . 260
SNMP Communications API and Related Commands . 261
SNMP Configuration API . 266
Topology Data . 271

8. Creating and Distributing an Integration Package
In This Chapter . 274
Structure of OVO Configuration Files . 276
Downloading Configuration Information . 278

Preparing to Download: Adding Executables . 282
Warnings . 284

Uploading Configuration Information . 285
Example 1: Uploading in Add Mode (Default) . 286
Example 2: Uploading in Replace Mode . 287
Example 3: Uploading and Replacing Information at a Subentity Level 287
10

A. Syntax Used in OVO Configuration Files
In This Chapter . 292
Notation Used. 293
General OVO Syntax Rules . 294
Configuration Files for Templates. 295
Template Examples . 303

Example of an OVO Logfile Template . 303
Example of an OVO Message Source Specification. 305
Example of an SNMP Trap Template File . 306

Configuration Files for Monitors . 308
Example of an OVO Monitor Template . 312

Syntax for Message Pattern Matching . 314
Pattern Matching . 320

Separator Characters . 321
Case Insensitive Mode . 321
Pattern Matching Examples. 322

Configuration Files for Applications . 323
Example of an OVO Application Configuration File. 326

Syntax and Length of OVO Object Names . 327

B. Symbols for Application Integration
Available Symbols for Application Integration . 330

C. About OVO Man Pages
In this Appendix. 332
Accessing and Printing Man Pages . 333

To Access an OVO Man Page from the Command Line . 333
To Print a Man Page from the Command Line . 333
To Access the Man Pages in HTML Format . 333

Man Pages in OVO. 334
Man Pages for OVO APIs. 338
Man Pages for HP OpenView Service Navigator . 339
Man Pages for the OVO Developer’s Kit APIs . 340
11

12

Printing History
The manual printing date and part number indicate its current edition.
The printing date will change when a new edition is printed. Minor
changes may be made at reprint without changing the printing date. the
manual part number will change when extensive changes are made.

Manual updates may be issued between editions to correct errors or
document product changes. To ensure that you receive the updated or
new editions, you should subscribe to the appropriate product support
service. See your HP sales representative for details.

First Edition: October 1996

Second Edition: August 1997

Third Edition: February 1999

Fourth Edition: June 2000

Fifth Edition: January 2002

Sixth Edition: April 2002

Sixth Edition: May 2004

Seventh Edition: September 2004
13

14

Conventions
The following typographical conventions are used in this manual.

Table 1 Typographical Conventions

Font Meaning Example

Italic Book or manual titles, and man page
names

Refer to the OVO Administrator’s
Reference and the opc(1M) manpage
for more information.

Emphasis You must follow these steps.

Variable that you must supply when
entering a command

At the prompt, enter rlogin
username .

Parameters to a function The oper_name parameter returns
an integer response.

Bold New terms The HTTPS agent observes...

Computer Text and other items on the
computer screen

The following system message
displays:

Are you sure you want to
remove current group?

Command names Use the grep command ...

Function names Use the opc_connect() function to
connect ...

File and directory names /opt/OV/bin/OpC/

Process names Check to see if opcmona is running.

Window/dialog box names In the Add Logfile window ...

Menu name followed by a colon (:)
means that you select the menu,
then the item. When the item is
followed by an arrow (->), a
cascading menu follows.

Select Actions: Filtering ->
All Active Messages from the
menu bar.
15

Computer
Bold

Text that you enter At the prompt, enter ls -l

Keycap Keyboard keys Press Return .

[Button] Buttons in the user interface Click [OK] .

Table 1 Typographical Conventions (Continued)

Font Meaning Example
16

OVO Documentation Map
HP OpenView Operations (OVO) provides a set of manuals and online
help that help you use the product and understand the concepts
underlying the product. This section describes what information is
available and where you can find it.

Electronic Versions of the Manuals
All manuals are available as Adobe Portable Document Format (PDF)
files in the documentation directory on the OVO product CD-ROM.

With the exception of the OVO Software Release Notes, all manuals are
also available in the following OVO web server directory:

http://< management_server >:3443/ITO_DOC/< lang >/manuals/*.pdf

In this URL, <management_server > is the fully qualified hostname of
your management server, and <lang > stands for your system language,
for example C for English and japanese for Japanese environments.

Alternatively, you can download the manuals from the following website:

http://ovweb.external.hp.com/lpe/doc_serv

Watch this website regularly for the latest edition of the OVO Software
Release Notes, which gets updated every 2-3 months with the latest
news such as additionally supported OS versions, latest patches and so
on.
17

OVO Manuals
This section provides an overview of the OVO manuals and their
contents.

Table 2 OVO Manuals

Manual Description Media

OVO Installation Guide for
the Management Server

Designed for administrators who install OVO software
on the management server and perform initial
configuration.

This manual describes:

• Software and hardware requirements

• Software installation and de-installation
instructions

• Configuration defaults

Hardcopy

PDF

OVO Concepts Guide Provides you with an understanding of OVO on two
levels. As an operator, you learn about the basic
structure of OVO. As an administrator, you gain insight
into the setup and configuration of OVO in your own
environment.

Hardcopy

PDF

OVO Administrator’s
Reference

Designed for administrator’s who install OVO on the
managed nodes and are responsible for OVO
administration and troubleshooting. Contains
conceptual and general information about the OVO
DCE/NCS-based managed nodes.

PDF only

OVO DCE Agent Concepts
and Configuration Guide

Provides platform-specific information about each
DCE/NCS-based managed node platform.

PDF only

OVO HTTPS Agent
Concepts and Configuration
Guide

Provides platform-specific information about each
HTTPS-based managed node platform.

PDF only

OVO Reporting and
Database Schema

Provides a detailed description of the OVO database
tables, as well as examples for generating reports from
the OVO database.

PDF only

OVO Entity Relationship
Diagrams

Provides you with an overview of the relationships
between the tables and the OVO database.

PDF only
18

OVO Java GUI Operator’s
Guide

Provides you with a detailed description of the OVO
Java-based operator GUI and Service Navigator. This
manual contains detailed information about general
OVO and Service Navigator concepts and tasks for OVO
operators, as well as reference and troubleshooting
information.

PDF only

Service Navigator Concepts
and Configuration Guide

Provides information for administrators who are
responsible for installing, configuring, maintaining, and
troubleshooting the HP OpenView Service Navigator.
This manual also contains a high-level overview of the
concepts behind service management.

Hardcopy

PDF

OVO Software Release Notes Describes new features and helps you:

• Compare features of the current software with
features of previous versions.

• Determine system and software compatibility.

• Solve known problems.

PDF only

OVO Supplementary Guide
to MPE/iX Templates

Describes the message source templates that are
available for MPE/iX managed nodes. This guide is not
available for OVO on Solaris.

PDF only

Managing Your Network
with HP OpenView Network
Node Manager

Designed for administrators and operators. This manual
describes the basic functionality of HP OpenView
Network Node Manager, which is an embedded part of
OVO.

Hardcopy

PDF

OVO Database Tuning This ASCII file is located on OVO management server on
the following location:

/opt/OV/ReleaseNotes/opc_db.tuning

ASCII

Table 2 OVO Manuals (Continued)

Manual Description Media
19

Additional OVO-related Products
This section provides an overview of the OVO-related manuals and their
contents.

Table 3 Additional OVO-related Manuals

Manual Description Media

HP OpenView Operations for UNIX Developer’s Toolkit

If you purchase the HP OpenView Operations for UNIX Developer’s Toolkit, you receive the full OVO
documentation set, as well as the following manuals:

OVO Application
Integration Guide

Suggests several ways external applications can be
integrated into OVO.

Hardcopy

PDF

OVO Developer’s Reference Provides an overview of all available application
programming interfaces (APIs).

Hardcopy

PDF

HP OpenView Event Correlation Designer for NNM and OVO

If you purchase HP OpenView Event Correlation Designer for NNM and OVO, you receive the
following additional documentation. Note that HP OpenView Event Correlation Composer is an
integral part of NNM and OVO. OV Composer usage in the OVO context is described in the OS-SPI
documentation.

HP OpenView ECS
Configuring Circuits for

NNM and OVO

Explains how to use the ECS Designer product in the
NNM and OVO environments.

Hardcopy

PDF
20

OVO Online Information
The following information is available online.

Table 4 OVO Online Information

Online Information Description

HP OpenView Operations
Administrator’s Guide to
Online Information

Context-sensitive help system contains detailed help for each window
of the OVO administrator Motif GUI, as well as step-by-step
instructions for performing administrative tasks.

HP OpenView Operations
Operator’s Guide to Online
Information

Context-sensitive help system contains detailed help for each window
of the OVO operator Motif GUI, as well as step-by-step instructions
for operator tasks.

HP OpenView Operations
Java GUI Online
Information

HTML-based help system for the OVO Java-based operator GUI and
Service Navigator. This help system contains detailed information
about general OVO and Service Navigator concepts and tasks for
OVO operators, as well as reference and troubleshooting information.

HP OpenView Operations
Man Pages

Manual pages available online for OVO. These manual pages are also
available in HTML format.

To access these pages, go to the following location (URL) with your
web browser:

http://< management_server >:3443/ITO_MAN

In this URL, the variable <management_server > is the fully qualified
hostname of your management server. Note that the man pages for
the OVO HTTPS-agent are installed on each managed node.
21

22

About OVO Online Help
This preface describes online documentation for the HP OpenView
Operations (OVO) Motif and Java operator graphical user interfaces
(GUIs).

Online Help for the Motif GUI
Online information for HP OpenView Operations (OVO) Motif graphical
user interface (GUI) consists of two separate volumes, one for operators
and one for administrators. In the operator’s volume, you will find the
HP OpenView OVO Quick Start describing the main operator windows.

Types of Online Help
The operator and administrator volumes include the following types of
online help:

❏ Task Information

Information you need to perform tasks, whether you are an operator
or an administrator.

❏ Icon Information

Popup menus and reference information about OVO icons. You access
this information with a right-click of your mouse button.

❏ Error Information

Information about errors displayed in the OVO Error Information
window. You can access context-sensitive help when an error occurs.
Or you can use the number provided in an error message to perform
a keyword search within the help system.

❏ Search Utility

Index search utility that takes you directly to topics by name.

❏ Glossary

Glossary of OVO terminology.

❏ Help Instructions

Instructions about the online help system itself for new users.
23

❏ Printing Facility

Printing facility, which enables you to print any or all topics in the
help system. (An HP LaserJet printer or a compatible printer device
is required to print graphics.)

To Access Online Help
You can access the help system in any of the following ways:

❏ F1 Key

Press F1 while the cursor is in any active text field or on any active
button.

❏ Help Button

Click [Help] in the bottom of any window.

❏ Help Menu

Open the drop-down Help menu from the menu bar.

❏ Right Mouse Click

Click a symbol, then right-click the mouse button to access the Help
menu.

You can then select task lists, which are arranged by activity, or window
and field lists. You can access any topic in the help volume from every
help screen. Hyperlinks provide related information on other help topics.

You can also access context-sensitive help in the Message Browser and
Message Source Templates window. After selecting Help: On Context
from the menu, the cursor changes into a question mark, which you can
then position over the area about which you want help. When you click
the mouse button, the corresponding help page is displayed in its help
window.

Online Help for the Java GUI and Service
Navigator
The online help for the HP OpenView Operations (OVO) Java graphical
user interface (GUI), including Service Navigator, helps operators to
become familiar with and use the OVO product.
24

Types of Online Help

The online help for the OVO Java GUI includes the following
information:

❏ Tasks

Step-by-step instructions.

❏ Concepts

Introduction to the key concepts and features.

❏ References

Detailed information about the product.

❏ Troubleshooting

Solutions to common problems you may encounter while using the
product.

❏ Index

Alphabetized list of topics to help you find the information you need
quickly and easily.

To View a Topic
To view any topic, open a folder in the left frame of the online
documentation window, then click the topic title. Hyperlinks provide
access to related help topics.

To Access Online Help
To access the help system, select Help: Contents from the menu bar of
the Java GUI. A web browser opens and displays the help contents.

NOTE To access online help for the Java GUI, you must first configure OVO to
use your preferred browser.
25

26

1 An Introduction to Integrating
Partner Applications with OVO
Chapter 1 27

An Introduction to Integrating Partner Applications with OVO
Why Integrate with OVO?
Why Integrate with OVO?
A successful system management solution must satisfy a customer’s
requirements for unified management across all platforms and all
applications in a distributed environment. These requirements can
seldom be satisfied by a single vendor, making partnerships essential to
extend the functions and scope of a system management solution. With
the HP OpenView HP OpenView Operations Developer’s Toolkit
you have a powerful tool at your disposal to integrate your network
solutions into HP OpenView HP OpenView Operations. By employing
the standard integration capabilities of OVO, and the extended
capabilities of the OVO Developer’s Toolkit, you can create a solution
that addresses a wider range of requirements, and that the customer
perceives as a single, unified product.

The standard HP OpenView HP OpenView Operations (OVO) product
provides operations and problem management for multivendor
distributed systems, and combines:

❏ Management of databases, applications, and networks;

❏ Detection of events occurring on managed nodes or SNMP devices;

❏ Filtering mechanisms to separate relevant events from irrelevant
events;

❏ Generation of meaningful messages that include automatic and
operator-initiated actions, and instructions for operators;

❏ Sophisticated Motif-based GUIs for operators and administrators, as
well as a Java-based operator GUI.

For more information about the standard integration capabilities of
OVO, see Chapter 3, “Using the Integration Capabilities of the OVO
Motif-based GUI,” on page 87.
Chapter 128

An Introduction to Integrating Partner Applications with OVO
Why Integrate with OVO?
In addition to the standard functionality of OVO, the Developer’s Toolkit
provides a powerful C-library of Application Programming
Interfaces (APIs), including:

❏ Operator APIs to operate on OVO messages, message events, and
applications responses, for example to own or disown a message.

Interface API to access OVO by opening an instance to the following
interfaces:

• Server Message Stream Interface

• Agent Message Stream Interface

• Legacy Link Interface

• Application Response Interface

• Message Event Interface

❏ Configuration APIs to configure OVO data directly in the database.
The functions allow you, for example, to configure new OVO
templates or managed nodes, or to modify existing applications or
users. In addition, functions are available to control access to OVO
data, and to distribute configuration changes to the managed nodes.

For more information about the OVO User APIs, see Chapter 4, “Using
the OVO Application Programming Interfaces,” on page 165.

The OpenView Windows API and SNMP API of Network Node Manager
are also available for use in generating an integrated solution. For
information on these APIs, see Chapter 7, “Integration Facilities of the
HP OpenView NNM Core Platform,” on page 247.
Chapter 1 29

An Introduction to Integrating Partner Applications with OVO
Why Integrate with OVO?
These features make OVO ideally suited as an integration framework for
other applications or solutions which address the system and network
management market. Integration with OVO is especially attractive to
partners who provide solutions in the following areas:

❏ Other system management functional areas, such as backup,
spooling, job scheduling, security, or accounting.

❏ Problem management for specific applications, for example, database
systems.

❏ Problem management for platforms on which OVO intelligent agents
are not available.

❏ Enhanced problem handling, such as event correlation, helpdesk
systems, and trouble-ticket systems.

❏ Service management to monitor business-relevant services.
Chapter 130

An Introduction to Integrating Partner Applications with OVO
Why Integrate with OVO?
HP OpenView Partnerships

The major benefit resulting from an integration with OVO is the
increased customer value of the integrated solution. OVO is the
industrial standard for problem management and supports a wide range
of platforms which have either been developed internally, or by partners.
When you integrate a solution with OVO, it becomes part of a
comprehensive management solution which meets customers’
requirements for a unified system management approach. This increases
the value your solution provides to customers, making it attractive to
market segments that it couldn’t previously address. A partner
program has been established by Hewlett-Packard to support your
integration efforts.

Integrations created by solution partners can be validated and certified
by Hewlett-Packard to achieve the status of HP OpenView Premier
Partner. Validation ensures that the integration is well-behaved and
does not conflict with other integrated solutions. As an HP OpenView
Premier Partner, your solution is recommended by HP sales channels,
you can leverage from the well-established HP OpenView brand name,
and you receive immediate market exposure for your solution through
HP market awareness and selling tools.

For more information about the HP OpenView partner programs, see our
web site at http://www.openview.hp.com , and select partners .

HP OpenView Developer Assist

HP OpenView Developer Assist support that increases the speed, ease,
and cost effectiveness of integrating with OVO. For additional
documentation and ordering information, see our web site at
http://www.openview.hp.com , select partners , developers’ and
third-party applications , and developer support services .

A Word about Licenses

The Development Kit license contains a limited OVO management
server license with five nodes and one user. NNM can manage a
maximum of 25 objects with this license.
Chapter 1 31

An Introduction to Integrating Partner Applications with OVO
Integrating Partner Solutions with OVO
Integrating Partner Solutions with OVO
The ultimate goal of any integration must be to create an integration
package that enables OVO and the partner solution to work so closely
together that they are perceived by the customer as one powerful,
integrated solution.

Figure 1-1 shows an overview of the integration process. It starts by
analyzing the OVO functionality and integration capabilities available,
and the characteristics of the partner solution. You can then design and
implement an integration strategy based on this analysis. As a result of
this activity an additional product part is created, referred to as the
integration package. An integration package may consist solely of
configuration files, or it may include new code for additional processes.

Figure 1-1 Integration with HP OpenView HP OpenView Operations

Partner
Solution

OVO Provides
Integration
Capabilities

Partner
Solution

OVO Integration
Package

Integrated Solution

Define Integration
Strategy

Implement
Integration

Integration
Package

Desired
Result

Users Perceive
Integrated Solution

as Uniform
Chapter 132

An Introduction to Integrating Partner Applications with OVO
Integrating Partner Solutions with OVO
We use the term tight integration if the capabilities offered by OVO are
fully exploited to maximize the uniformity of the integrated solution. For
example, consider integrating a business solution with OVO. To achieve
tight integration status, OVO capabilities should be employed to ensure
that the application is constantly monitored so that OVO operators are
immediately notified of problems related to the application. Whenever
possible, corrective automatic and operator-initiated actions should be
provided, and instruction text should help operators to solve any
problems. All mechanisms underlying OVO functionality are highly
configurable to enable a high degree of customization, and to provide
unique opportunities for the tight integration of partner solutions.

OVO also provides many capabilities to help the integration process and
to allow different integration strategies to be tailored to the type of
solution, including:

❏ Event integration using messages.

• Message generation is based on numerous message sources,
including logfiles, SNMP traps, threshold monitor values,
MPE/iX console messages, calls to opcmsg(1|3), Event
Correlation Services (ECS), etc.

• Instructions for operators, and automatic- and operator-initiated
actions can be associated with messages.

• Messages can be flagged to be forwarded to trouble-ticket and
notification services.

❏ Powerful and versatile threshold monitoring and graphing
capabilities.

❏ Predefined interfaces to trouble-ticket and notification systems.

❏ Integration of tools for operators and administrators in the OVO
application desktop, menu bar, submenus, or toolbar.

❏ APIs and command line interfaces to the agents and to the
management server.

❏ Access to NNM maps, submaps, symbols and the SNMP event
system from either ASCII files or programs.

To make integration as straightforward as possible, most definitions can
be done by way of the OVO GUIs. Tools to download configuration data
required for the integration, and then upload it at the customer’s site are
also available.
Chapter 1 33

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
OVO Conceptual Overview
This section introduces the key concepts behind the operation of OVO, to
help clarify more detailed discussions of the OVO integration capabilities
in later chapters.

The HP OpenView Product Family and OVO

HP OpenView is a family of integrated network and system management
solutions for managing the complete information technology enterprise,
including networks, distributed systems, applications, databases, and
services. OVO is one of the key components of the HP OpenView Solution
Framework that has become a leading Integrated Network and System
Management (INSM) solution.

OVO Concept and Key Features

The most important tasks of operations management are to monitor the
use of all systems and contributing resources, and to keep them under
surveillance and operational control. Operations management is the
central integration point for any INSM solution and includes the
detection and reporting of problems, and the actions required to recover
from these problems.

IT staff can use OVO to control the following elements and resources:

❏ Servers and clients

❏ Networks

❏ Operating systems

❏ Middleware

❏ Applications

❏ Databases

❏ Business services (with HP OpenView Service Navigator)
Chapter 134

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
To achieve efficient operation and problem management, information
must be gathered from the controlled elements and resources. OVO
Agents are installed on managed nodes throughout the management
domain which gather status information, messages, and monitoring
values from a range of sources. SNMP agents, hosted on any system or IP
device, are also fully supported by OVO. Message filters and thresholds
are used to ensure that only the relevant information is sent to the
management server and presented to the responsible OVO operators.

After collecting data, OVO combines all events received from the
managed environment into a single procedural flow, or message
stream. In addition to conditional event filtering and the suppression of
unwanted messages, the HP OpenView Event Correlation Services
(ECS) can tap the message stream on both the management server and
the intelligent agents to reduce the volume of messages reaching the
OVO Message Browser. This guarantees the maximum possible
efficiency in local and central event analysis and handling. OVO provides
multiple mechanisms, such as automatic actions, predefined
operator-initiated actions, or problem-specific help text and instructions,
to help the operator resolve critical conditions. The agent can even
initiate and execute corrective actions without any involvement from the
management server.

Besides configuration data, all status information gathered, including
records that document completed actions, are stored in a central SQL
database. The database offers an excellent starting point for future
audits and analyses, and provides a central configuration of remote OVO
domains.

You can easily adapt OVO to fit into existing IT infrastructures and
adjust the managed environment at any time. The fully-customizable
environment ensures a match of different skills, tasks, and
responsibilities, and provides opportunities for task delegation. This
enables multiple OVO operators to work together simultaneously in the
same computing environment, without a duplication of effort.

In the area of network management, OVO provides powerful features for
the discovery and mapping of networks which enable OVO operators to
view the complete managed environment in the following ways:

❏ a logical (system) view

❏ a topological (network) view

❏ a service view (with the HP OpenView Service Navigator)
Chapter 1 35

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
The implementation of OVO can be scaled from the management of
smaller workgroups, running business critical applications, to the
management of world-wide distributed computing environments with
thousands of systems. OVO also supports competitive management
approaches, for example, follow-the sun.

Open APIs and external interfaces enable the seamless integration of
products such as database management modules, and customized
application integration packages. Other IT infrastructure components,
for example, trouble-ticket systems, pagers, and help desks are available
on both the management server and agents.

To summarize, OVO is a core INSM component that can improve the
effectiveness and productivity of any IT organization by increasing the
availability of computing resources and reducing the time required to
resolve problems.

OVO Implementation

OVO is a distributed client-server software solution and its architecture
adheres to the manager/agent concept. Within a computing environment
managed by OVO one, or several, suitable systems are selected as central
management servers. The management servers receive and present
management information, initiate actions and activate the agents,
among other tasks. Other computer systems in the environment,
connected by either LAN or WAN to the management servers, can be
made managed nodes, running the OVO agent software. The OVO
agent on the managed node collects and processes management
information, forwards pertinent information to the appropriate
management server(s), and starts local actions.

OVO can also monitor intelligent network devices such as bridges, hubs
and printers which can submit SNMP traps if a fault or other event
occurs.

Communication between the OVO management server and the managed
nodes is based on DCE remote procedure calls (RPC) which enables
bidirectional communication. In comparison with pure SNMP-based
communication, the use of RPC allows true
management-by-exception. This means that instead of the
management server polling its managed nodes at regular intervals to
obtain status information, it is contacted by the OVO intelligent agent
only when a problem is detected. This minimizes the network traffic and
increases the performance of the management server.
Chapter 136

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Problem Management with OVO

Regardless of the message source, OVO gathers the elements of daily
operations and problem management by employing the following
procedures:

❏ Collecting

Gathering information about the status of the computing
environment.

❏ Processing

Selecting important or critical status information and making it
available on the central system in a consolidated fashion.

❏ Presenting

Overview; highlighting of problems; definition of a problem
resolution strategy.

❏ Acting

Performing planned activities and corrective actions, storing
information and action logs (audit).

These various approaches are described on the following pages.
Chapter 1 37

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Collecting Management Information

OVO provides extensive collection services for management information.
The agents gather management information originating from a variety of
sources and when an exception is detected, they generate messages from
the collected information.

All messages and events are intercepted by the agent at each managed
node, filtered and classified, and then forwarded to the responsible
management server. In an environment with multiple servers, the
responsible server is determined by the manager-of-manager (MoM)
configuration template. SNMP traps can also be intercepted on managed
nodes if a trap template has been assigned to the nodes.

Logfiles and SNMP Traps

Important message sources include application and system logfiles, and
SNMP traps. The OVO logfile encapsulator extracts important events
from logfiles, and the event interceptor intercepts SNMP traps broadcast
by components of the network. Multiple character sets for logfiles are
supported, and conversion routines (e.g., for binary logfiles) can be
applied to consolidate the message format, improve the problem text, set
event attributes, etc. System messages normally displayed on an MPE/iX
system console are an additional source of OVO messages.

Agent Message API

Management information, generated by applications or customer
programs or scripts, can even be sent directly to the OVO agent on any
managed node by way of the Agent Message API, see Chapter 4, “Using
the OVO Application Programming Interfaces,” on page 165.
Chapter 138

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Threshold Monitors

The threshold monitoring capability of OVO is also a source of messages.

It enables you to manage nodes more proactively by tracking the
development of potential problems. When the predefined threshold for a
monitored object is exceeded, a message is generated.

OVO can collect monitoring information for basic system variables by
accessing the SNMP Management Information Base (MIB). This service
can be extended to any SNMP variable and to user-defined objects
provided by your own monitoring applications.

Monitor values from external applications or scripts can be sent directly
to the OVO agent on any managed node by the Agent Monitor API, to be
locally checked against predefined thresholds, see Chapter 4, “Using the
OVO Application Programming Interfaces,” on page 165.

Performance metrics are collected by the embedded performance
component that is part of the OVO agents. The performance component
collects performance counter and instance data from the operating
system.

Legacy Link Interface API

To integrate hardware platforms that are not, or not yet, supported by
OVO, the Legacy Link Interface API is provided to receive and pass
on management information, see “Overview of the Legacy Link
Interface” on page 180.
Chapter 1 39

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Processing and Consolidating Information

OVO offers extensive tools for the management of messages. Messages
collected at the managed nodes are automatically forwarded to an
appropriate management server.

To minimize network traffic, and to avoid overloading the user with
irrelevant messages, filter conditions can be specified. All messages,
including suppressed ones, can be logged on the originating node for
future analysis. Each message can be assigned to a particular severity
level (critical, major, minor, warning, normal) to show the relative
importance of the event. If no severity class has been assigned, then the
message is treated as belonging to class unknown. However, it is
recommended to avoid the “unknown” message status because it is
useful to know the severity of different events. Messages sent to OVO by
way of the opcmsg(1) command are assigned a severity level of normal
if no other severity level has been specified.

Messages which are considered to belong together, for example, if they
are related to the same kind of managed objects or to a certain problem
domain, can be grouped together into message groups. For example, all
messages from a backup or spooler application might be grouped
together. OVO provides several default message groups; see the OVO
Administrator’s Reference for a complete list. Message groups can be
added, modified, or deleted in the OVO Message Group Bank . Note that
the message groups Misc and OpChave special functions and must not be
used for integration; they cannot be deleted.

You can configure message source templates at the management server
and then download them to the managed nodes using the OVO GUI or
the command opctmpldwn(1) . This process is independent of the
location of the managed node. The monitoring of services at the managed
nodes helps to reduce the network traffic. OVO also monitors its own
processes to guarantee complete and continuous availability of its
services.
Chapter 140

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Presenting the Information to the User

The typical working environment for an OVO user consists of the
following main windows in the Motif-based GUI:

❏ IP Map

❏ Managed Nodes

❏ Message Groups

❏ Message Browser

❏ Application Desktop

The content of these windows depends on the tasks and responsibilities
assigned to a particular user; users only see the objects and messages for
which they are responsible and can access only those applications needed
to perform their allocated tasks.

The entire working environment of OVO can be configured to match the
skills and responsibilities of the individual operator in terms of
management information supplied and capabilities granted. The result
is a task-oriented working environment. The internal notification service
of OVO brings critical events to the user’s notice by changing the color of
the affected icons. In addition, external notification services such as
pager, email, warning light, or telephone call initiation can be activated.

The powerful features of OVO are complemented by integrated partner
solutions. Examples of tightly integrated solutions are HP OmniBack,
and HP OmniStorage.
Chapter 1 41

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
IP Map Window OVO includes the full network management features
of HP OpenView Network Node Manager. These include network
discovery and mapping, and the presentation of critical network events
occurring in the managed computing environment.

Figure 1-2 IP Map Window

The IP Map window provides the operator with a topological view of the
network. This can be either a view of the entire network or of a specific
submap. Information about the status of the network is essential for the
efficient management of complex and distributed computing
environments.
Chapter 142

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Managed Nodes Window The Managed Nodes window is the logical or
system view of the managed environment for which the operator is
responsible. Each node (or group of nodes) is represented by an icon.
OVO changes the color of these icons to reflect the current status of the
node according to the messages received into the Message Browser .

Figure 1-3 Managed Nodes Window

You can arrange the nodes in the Managed Nodes window in many
different ways. For example, you might group nodes based on their
geographical location (countries, cities, buildings, etc.) or based on logical
components like routers, systems, mainframes, etc. Different node
hierarchies can be defined to ensure that even large computing
environments, with thousands of managed objects, can be controlled
easily. By clicking on an icon in the Managed Nodes window, operators
can locate the managed object that is the source of a message or event.
Chapter 1 43

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Message Groups Window The Message Groups window displays the
message groups for which an operator is responsible. Messages are
usually grouped by function, location, application, or other logical
classification.

Figure 1-4 Message Groups Window

OVO changes the color of these icons to reflect the current status of the
message group according to the active messages in the Message Browser.
Chapter 144

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Application Desktop Window The Application Desktop window
displays icons for each management application that can be accessed by
a particular operator. From this window, an operator can start daily
problem management tasks. Some applications can be customized to
provide either full or partial functionality.

Figure 1-5 Application Desktop Window

As in other OVO main windows, you can group similar applications into
their own sub-windows, for example, when applications address similar
tasks, or provide multiple functional entry points.
Chapter 1 45

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Message Browser The Message Browser displays all messages
received from the operator’s managed environment, including all nodes
for which the operator is responsible, and which belong to message
groups assigned to the operator. An operator can access detailed
information about messages, find instructions to resolve problems,
start/stop operator-initiated actions, review the status of automatic
actions, modify message attributes, review or write message annotations,
and highlight problem locations.

Figure 1-6 Message Browser

The Message Browser is a powerful source of information for system
management and problem management tasks. If an operator is not able
to solve a problem, the event can be escalated to an expert working at a
different OVO site according to configured escalation rules, for example,
based on date/time and message attributes.
Chapter 146

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Acting on the Information Provided

OVO offers several mechanisms for responding to events. When an event
occurs that requires a non-interactive, corrective action, you can
configure OVO to run the configured action automatically. These actions
can be activated either from the management server and/or directly by
the agents. For other significant events, OVO can provide event-specific
instructions to guide operators during problem resolution. You can set up
operator-initiated actions that are offered to an operator when a
particular problem is reported in the operator’s Message Browser .

All other events and management activities are handled within the
Application Desktop window. From this window custom scripts,
programs and management applications can be started and console
windows opened on managed nodes.

The console login is under OVO control and can be configured to meet
specific operating policies. If the network or remote system is down, a
direct connection over a separate line to the physical console port of the
managed node can be established. For similar management tasks that
have to be performed on multiple managed nodes, OVO also provides a
broadcast facility.

OVO allows you to track the steps taken to address a specific event. A
facility to add annotations, and an interface to external trouble-ticket
systems are provided. Records documenting the resolution of a problem
provide a base for changing and creating message instruction text,
defining enhanced problem resolution instructions, and developing more
automatic actions.
Chapter 1 47

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
Customizing OVO

OVO provides a wide range of elaborate customization capabilities so
that it can be easily adapted to manage diverse IT environments. It can
be configured to collect messages and SNMP traps from any source, and
to monitor any variable of interest. Once the management information is
collected, all follow-on activities can be configured to suit your IT
requirements.

OVO also fully meets the needs of many different users. IT organizations
often define individual management responsibilities for each member of
the operating staff. Using the administrator’s GUI you can specify the
managed nodes and message groups for which each user is responsible.
Only the messages and alerts that are the responsibility of a particular
user appear in the Message Browser of that user.

Messages can be buffered if they arrive outside of configured service
hours, or can be suppressed during scheduled outages. In addition,
messages can be sent to different management servers depending on
time and/or message attributes. For example, you might choose to send
all messages to an OVO server in London between 8 AM and 5 PM, and
to an OVO server in New York at all other times. You might even choose
to send all messages indicating a database problem to your database
expert center in Paris. For more information about configuring an OVO
environment with multiple management servers, refer to the OVO
Concepts Guide.

In addition to redirecting messages, which is automatically done by the
OVO agent, operators can also escalate messages to another user, or to a
user on a different management server. Using the message forwarding
feature, messages can also be transferred between management servers.

The OVO administrator also controls the management tasks assigned to
each user. Only those icons representing applications and control
programs that are the responsibility of a particular user are displayed in
Application Desktop of that user.

OVO also provides secure operations. Each user has a password to
ensure that only authorized people can access OVO. User profiles defined
by the OVO administrator restrict the activities of each user on the
management server and the managed nodes. All actions can be
controlled because activities are initiated only from the Application
Desktop or Message Browser which are tailored to the responsibilities of
the user.
Chapter 148

An Introduction to Integrating Partner Applications with OVO
OVO Conceptual Overview
The OVO Java-based Operator User Interface

In addition to the standard Motif-based operator GUI, OVO also provides
a Java-based operator GUI. The Java-based GUI provides nearly the
same functionality as the Motif-based GUI—see the OVO Software
Release Notes for information about the differences between the two
GUIs.

If you are using the Java-based user interface, your working
environment looks similar to the one in Figure 1-7. See the online
documentation supplied with the Java-based GUI for more information
about how to perform tasks in this environment.

Figure 1-7 The Java-based Operator GUI

You can operate with Java-based GUI remotely from other Java
applications using the Java GUI Remote APIs. For more information,
refer to Chapter 5, “Integrating with Java GUI,” on page 219.
Chapter 1 49

An Introduction to Integrating Partner Applications with OVO
Integration Benefits to Partners
Integration Benefits to Partners
OVO is a leading framework for Integrated Network and System
Management (INSM) so when integrating with OVO, a partner
solution becomes a component of an INSM solution used to manage a
complete IT environment. Integration into OVO increases the customer’s
perceived value of a partner solution and makes it attractive to market
segments that it might be unable to address on its own.

OVO as an INSM Framework

OVO is the leading INSM framework for problem and operations
management. It provides its users (administrator, template
administrators, and operators) with a complete view of the IT
environment, including:

❏ Low-level network devices such as bridges, routers, hubs and
printers;

❏ Computer systems in a heterogeneous environment;

❏ Software such as operating systems, databases, and applications
(including distributed systems).

As the availability of distributed systems depends on all components of
the IT environment working smoothly together, a complete view of the
managed IT environment is required before you can analyze the root
cause of a problem. OVO can collect problem information from all levels
and present it to operators in a consistent way. Operators do not need to
switch between different interfaces. Considerable management
information can accumulate from a large IT environment that must be
filtered and distributed to multiple operators, in order to cope with the
complexity of problem management.

OVO is not automatically aware of developing or already existing
problems in the managed IT environment. It is the responsibility of the
solution partners either to develop ready-to-use OVO configuration
packages that provide the specialized knowledge for problem detection
and resolution, or to extend partner solutions so that they work smoothly
together in the OVO INSM framework.
Chapter 150

An Introduction to Integrating Partner Applications with OVO
Integration Benefits to Partners
Specific Benefits for Integrators in the NIM, NSM, and
INSM Markets

The following discussion is based on the popular classification of the IT
management market into the following segments:

❏ Network Infrastructure Management (NIM)

❏ Networked System Management (NSM)

❏ Integrated Network and System Management (INSM)

❏ Service Management

NIM Market Segment

Management solutions providing problem management for this segment
deal with low-level network devices such as bridges, routers, hubs,
printer and network connections of computers. They typically monitor
the state of these devices and query or set device parameters by
accessing SNMP MIB values. Typically, these solutions can be configured
to receive and act on SNMP traps.

Management solutions addressing this segment are typically integrated
into HP OpenView Network Node Manager (NNM). They use the NNM
capabilities to access their functionality from a central console. For
example, a solution might provide an operator with a view to the
backplane of a router. An operator might then observe the traffic passing
through the router from the central console. These solutions might
integrate into OVO in a similar way as into NNM. This integration
would still benefit from features that are standard in OVO. This type of
solution can easily be migrated from NNM to an OVO integration so that
they become part of an INSM solution.
Chapter 1 51

An Introduction to Integrating Partner Applications with OVO
Integration Benefits to Partners
NSM Market Segment

Management solutions for this market segment deal with computer
systems, databases and applications connected over a network. This
includes solutions for print and storage management, for configuration
management solutions, or for database and application management
solutions.

Solutions for the NSM segment integrate into OVO to prepare a
management solution to become part of an INSM solution. These
solutions can take full advantage of the OVO-specific integration
capabilities from event integration via messages, to using the various
OVO APIs.

To integrate applications or databases for which no satisfactory problem
management solutions are available, OVO provides mechanisms that
allow the straightforward development of a powerful management
solution. Usually it is sufficient to use the integration capabilities that
can be configured in the OVO administrator's GUI and to provide some
additional shell scripts.

INSM Market Segment

The following solutions should also consider OVO integration:

❏ Solutions that address both network and system level problems

❏ Solutions that focus on other aspects of problem management, for
example, trouble ticket and helpdesk systems or event correlation
engines

❏ Solutions that provide problem management for platforms not
directly supported by OVO.

These solutions may benefit considerably from an integration into OVO,
first, because they make their solution ready for inclusion in a full INSM
solution, and second, because they can access the large amount of
problem-related messages that are collected and managed by OVO.

These solutions can take full advantage of the OVO-specific integration
capabilities from event integration via messages to using the various
OVO APIs. Especially for trouble ticket and help desk systems and for
event correlation engines, OVO provides powerful interfaces (trouble
ticket and external notification) as well as specific APIs including the
Legacy Link Interface API, Agent Message Stream Interface API, Server
Message Stream Interface API, Server Message API.
Chapter 152

An Introduction to Integrating Partner Applications with OVO
Integration Benefits to Partners
Service Management Market Segment

The following solutions should also consider OVO integration:

❏ Service providers
Chapter 1 53

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
Integration Facilities Provided by OVO
OVO is designed to provide the maximum flexibility for integrators, so
the mechanisms underlying OVO functionality are configurable to a high
degree. This enables you to customize OVO installations to the specific
needs of your customers. In addition, OVO provides powerful and
straightforward tools that make the tight integration of partner
solutions possible, such as APIs to the management server and managed
nodes. See the OVO Software Release Notes for more information about
the new features provided with this release of OVO.

Integrating Events Using Messages

OVO intercepts and collects messages generated by diverse components
of the network so that it is informed of events occurring throughout the
environment. Messages may be generated in the following
circumstances:

❏ When a new entry is written to a system or application logfile on the
managed nodes.

❏ When an SNMP trap is sent from an SNMP device.

❏ When the threshold monitoring capability of an OVO agent detects
that a monitor threshold has been exceeded.

❏ When functions of the Agent Message API or Agent Monitor API are
called.

❏ When an MPE/iX console message is written to the console of an
MPE/iX agent.

Message generation, regardless of the message source, is controlled by
message templates that have a similar structure for all types of
message source.
Chapter 154

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
Threshold Monitoring

The preceding sections described the integration of events of which OVO
could read some type of text, for example, text written to a logfile or
associated with an SNMP trap. In addition, OVO provides a threshold
monitoring capability to deal with numeric object properties, for
example, resource allocation values such as CPU load, disk space usage,
or any other value relevant to the managed objects.

The importance of not generating too many messages has already been
stated; this also applies to numeric values. A first step towards reducing
the number of generated messages is to recalculate the monitored values
only at regular time intervals. These time intervals are user-defined and
can be different for each monitored value. In general, however, it is not
desirable to have a message generated every time the monitored value is
recalculated. To prevent this, OVO uses thresholds so that a message is
only generated when the monitored value exceeds a threshold.

Note that monitor values are not only obtained by the intelligent agent
recalculating the monitor value, they can also be passed to OVO agents
directly. The functions of the Agent Monitor API allow other applications
to pass monitor values to an OVO intelligent agent.

You can monitor any object property that can be expressed numerically,
including:

❏ Application and system values

Compare important application or system-specific values with their
expected “normal” values.

❏ Database values

Use the database SQL language and database administration tools
to monitor specific values, for example, table sizes, number of locks,
etc., and compare these values with a predefined set of normal
values.

❏ Processes

Use scripts to monitor whether important processes like daemons
are running. Check the important process specific values, for
example, the number of running processes.
Chapter 1 55

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
❏ Files and/or Filesystems

Check the existence and/or the sizes of important files or file systems.
The script might return the used or available disk space and OVO
checks it against predefined upper or lower limits.

❏ Performance metrics

Use the embedded performance component to collect performance
counter and instance data. The platform-generic metrics can be used
to answer most questions about a system’s global configuration, CPU,
disk, swap, and memory usage. The typical metrics vary by platform
but are available on most platforms and are generally useful for drill
down and diagnosis on a particular system.

❏ Management Information Base (MIB) variables

An alternative mechanism for polling MIB variables is also provided
by OVO, referred to as MIB data collection. In contrast to the
threshold monitors, you can configure this mechanism to store the
collected values in a more efficient format. The stored MIB data can
be used to analyze trends in monitored variables by graphing the
values over time. This type of monitor also supports threshold
values, but does not have the sophisticated filtering capabilities of
the OVO threshold monitors.
Chapter 156

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
Working with Message Templates

You can use message templates to filter and suppress messages, reformat
message text, and link actions and instructions with a message. You can
define message templates using the Message Source Templates
window that is accessible to both the OVO administrator and the OVO
template administrator.

By configuring OVO templates, you can specify which message source is
to be used, and how it is employed. You can choose which events detected
through the message source are relevant to justify a message to be
generated and sent to the management server, or which are irrelevant
and can be suppressed. If a message is generated for an event, the
template specifies the composition of the message, its attributes, and the
instructions, annotations, and actions to be associated with the message.

For more information about configuring message templates, see the OVO
Concepts Guide and the OVO Administrator’s Guide to Online
Information.

❏ Basic Template Properties

These include the template name and description, a specification of
the message source to be used and how to use it. For example, the
name of a logfile to read, the program used to preprocess the logfile,
the time interval for checking the logfile, etc.

In addition, the basic template properties include the defaults that
are used to set the attributes for generated messages if no additional
information is specified, for example, default severity, default
message group, etc.

❏ Template Conditions

A list of conditions belongs to each message template. You can
choose either suppress matched conditions or suppress
unmatched conditions to filter out irrelevant events, or choose
message conditions to extract relevant events and forward them to
the Message Browser. Both message and suppress conditions can be
placed in any order, and they are processed by OVO in the order in
which they are listed. The first matching condition determines how
OVO reacts to an event, so the sequence of conditions in the condition
list must be carefully considered.
Chapter 1 57

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
A condition consists of a match condition part that determines to
which events detected in the message source the condition applies.
Among other message attributes, the message text can be used in the
match condition. You can specify patterns using regular expressions
which the message text must match.

If a condition is a suppress matched condition, it is used to
suppress message generation for events that match the condition,
whereas if it is a suppress unmatched condition, it is used to
suppress message generation for events that do not match the
condition. Consequently, for a suppress condition, all you need to
specify is the match condition. For a message condition that triggers
the generation of a message, you also need to define the following:

• Attributes of the generated message, for example, what message
text to use, the severity level, the service name, etc.

• Custom message attributes of the generated message. These are
attributes that you can set to provide your operators with more
relevant information about a message.

• Instructions, annotations, automatic and operator-initiated
actions to be associated with the message

• Whether the message is to be forwarded to a trouble ticket
system or should trigger an external notification.

❏ Template Options

At the template level, you can specify which messages to log locally
on the managed node. In addition, you also need to decide how to
handle entries in the message source that match neither a message
condition nor a suppress condition.

❏ Advanced Options

You can set the defaults for advanced options at both the template
and message condition level. If different values for the advanced
options are set at the message condition level, these will overwrite
the template defaults. The advanced options specify whether
duplicate or similar messages are to be suppressed and whether to
copy or divert messages to processes which use the server or agent
message stream interface API.
Chapter 158

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
Adding Instructions, Annotations, and Actions to a Message
Template

The previous section described how you can use conditions to filter
messages so that operators are not overwhelmed by a flood of messages
of varying importance. A further function of OVO lets you completely
rephrase the text of a message so that it can be easily understood by an
operator. This feature can help OVO operators to resolve problems that
are already manifest or to proactively avoid problems if a situation that
might cause a problem is detected.

For many problem situations additional information is available that
might help operators to resolve a problem. For other problems, the action
necessary to solve the problem is known in advance. In these cases, you
can configure an automatic action to reduce the workload of the
operator. You can also use an operator-initiated action if the solution
to a problem requires the operator to do an action. You can even combine
all these capabilities to create a powerful problem-solving tool.

For example, consider a scenario in which a file system problem occurs.
You might use an automatic action to get more information about the
status of the file system, then present this information to the operator as
an annotation to the message announcing the problem. The operator
might then initiate a predefined command, provided as an
operator-initiated action, to resolve the problem.
Chapter 1 59

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
OVO provides the following mechanisms to support problem resolution
and self-attended operation:

❏ Message Instructions

These help an operator to solve the problem at hand. They describe
the available automatic and operator-initiated actions, give advice
about manual steps for solving the problem, and provide any
additional explanation that might be useful to an operator.

You can define a default instruction text at the template level, and
then define more specific instructions for each message condition of a
template.

❏ Message Annotations

You can associate any text with a message as an annotation. In
contrast to message instructions, annotations are intended to be
extended as a message is processed. For example, you might provide
the output of automatic and operator-initiated actions to the
operators as an annotation.

An operator can later add comments about how the problem was
solved to share this information with colleagues who might search
the message history log if they encounter a similar problem.

❏ Automatic Actions

OVO can invoke actions automatically as a reaction to specific
events. An action can be any shell command line, with parameters if
necessary, that does not require human interaction.

Automatic actions can either be performed on the node on which the
message was generated (local automatic actions) or on any other
node. Local automatic actions do not require communication with the
OVO management server and thus are performed even if the
network is down or the OVO management server is not available.

You can even specify that successful completion of the automatic
action automatically acknowledges the related message, i.e. the
message is no longer displayed in the operator’s message browser.
Chapter 160

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
❏ Operator-initiated Actions

OVO provides a mechanism to offer predefined actions that must be
started by an operator.

This is useful if an action requires human interaction, or if an action
must be tailored to the detected event, or if human judgement is
required. As with automatic actions, on the successful completion of
an action, the related message can be acknowledged automatically.

While you can define instruction text at a template and message
condition level, annotations and actions are always associated with
message conditions. At this level, you can also define two other functions
that are closely related to actions. You can decide:

❏ Whether a message matching a condition should be forwarded to a
trouble ticket system

❏ Whether a message matching a condition should call an external
notification service.

You can define all these mechanisms using the OVO administrator’s
GUI.

Integrating Events using Trouble Ticket and
Notification Services

OVO includes interfaces to trouble-ticket and notification systems which
enable communication from the OVO management server to a trouble
ticket system or a notification system, for example, beepers or e-mail
systems. The forwarding of messages to a trouble ticket system or to a
notification system is defined in the message conditions of templates.
This enables you to define exactly which messages are to be forwarded.

By using a notification schedule, you can define which of the available
notification systems to use, depending on the day of the week and time.

NOTE OVO does not provide trouble ticket or notification services, but it does
support an interface to export event-specific details to an external
trouble ticket service or/and to external notification services.
Chapter 1 61

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
Integrating Applications into the Application Bank

Any tools that can help operators and administrators in their assigned
tasks should be integrated into the OVO Application Bank. This is the
utility used to define the capabilities of operators. The OVO
administrator can set up different Application Desktops for each OVO
operator. You can group similar applications together into Application
Groups to avoid cluttering up the desktop.

An operator can invoke applications simultaneously on several nodes, or
assign different parts of an application to different operators depending
on their responsibility. The latter feature, however, depends on whether
the application provides several entry points.

Most applications can be integrated into the Application Bank.
Applications with an X-window user interface appear as usual in an
X-window environment, others appear in terminal windows.

To integrate an application, you can also add your own entries into the
OVO menu structure. The highest-level menus describe generic
functionality; submenus describe more specific functionality. Menus can
be enabled or disabled based on selection rules which specify the type
and number of nodes that must be selected in a map window before a
menu item becomes active. Inactive menus are automatically grayed-out.
Toolbars provide a quick, intuitive means of invoking actions. OVO
provides a default set of toolbars for invoking actions such as panning or
selecting the root map. When an application is added to an OVO
environment, it can add icons into existing toolbars, or create
window-specific toolbars and icons. See “Integrating External
Applications into the OVO GUI” on page 146 for more information.
Chapter 162

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
Integrating via APIs

OVO provides a set of APIs which can be grouped according to their
functions as follows:

❏ OVO Operator APIs

This group of APIs enable certain actions to be immediately
performed on OVO data. These APIs include:

• OVO Data API

• OVO Interface API

This group of APIs enables external applications to register with
OVO to receive information. When the requested information is
available, OVO forwards it to the requesting interface. The
following interfaces to OVO are available:

— Server Message Stream Interface API

— Agent Message Stream Interface API

— Legacy Link Interface API

— Application Response Interface API

— Message Event Interface API

• Server Message API

• Agent Message API

• Agent Monitor API
Chapter 1 63

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
❏ OVO Configuration APOVO

This group of APIs enables applications to connect to the OVO
database and configure OVO object directly in the database without
using the GUI. These APIs include:

• Connection API

• Application Configuration API

• Application Group Configuration API

• Message Group Configuration API

• Message Regroup Condition Configuration API

• Node Configuration API

• Node Hierarchy Configuration API

• Template Configuration API

• User Profile Configuration API

• User Configuration API

• Distribution API

• Server Synchronization API

For information about the API functions, see the OVO Developer’s
Reference.

The OVO APIs are designed to ease the integration of partner solutions.
Examples for the use of these APIs include:

❏ Full integration of legacy systems for which OVO agent software is
not available.

❏ Connection of event correlation engines to process messages from the
internal message stream of the management server or agent.

❏ Implementation of bidirectional communication between trouble
ticket systems and OVO.

Command line functions to acknowledge messages are also available, for
example opcackmsg(1M) on the OVO management server and
opcmack(1M) on the managed nodes.
Chapter 164

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
NNM Integration Through the OVO GUI

OVO features a default integration with NNM, providing the operator
with the ability to start ovw applications from the OVO GUI. This
functionality is available in both the local case, where the NNM system
is installed on the OVO management server, and in the remote case,
where NNM is installed on a server other than the OVO management
server.

NOTE OVO provides different functionality, depending on whether the operator
is working from the Motif UI or the Java UI.

Command line functions for the Java UI are also available, opcctrlovw
(1m) , a tool for controlling an associate ovw process, and opcmapnode
(1m) , which automatically determines which NNM nodes are available
on the domain in order to start an ovw process.
Chapter 1 65

An Introduction to Integrating Partner Applications with OVO
Integration Facilities Provided by OVO
Integrating via NNM Functionality

The HP OpenView Network Node Manager (NNM) consists of two main
parts: HP OpenView Windows (ovw) and the HP OpenView SNMP Event
System.

The HP OpenView Windows API supports the creation and
manipulation of maps, submaps and symbols, and allows the generation
of dialogs for user interaction. It is intended for the development of
applications that need to use these features. New symbols can also be
registered by ASCII Symbol Registration Files.

The HP OpenView Windows API also supports access to the HP
OpenView Windows object database which stores information about
network objects. An object is an internal representation of a logical or
physical entity or resource that exists somewhere in a computer
network. Objects have certain fields which can be seen as the attributes
of an object, for example an object representing a computer in a network
will have fields for the name and the IP address of that node. New fields
can be added to objects by either using the HP OpenView Windows API
or Field Registration Files.

The HP OpenView SNMP Event System provides a command and a
programmer's interface to SNMP communication functions, an API for
SNMP configuration purposes and it stores information about the
network topology in a topology database.
Chapter 166

2 Integrating Solutions with OVO
Chapter 2 67

Integrating Solutions with OVO
Deciding Which Integration Capabilities to Use
Deciding Which Integration Capabilities to
Use
The different integration capabilities provided by OVO are summarized
in the previous chapter. This chapter discusses the advantages and
disadvantages of different integration capabilities to help you to plan
and design an integration package.

It is important to decide whether the integration capabilities to be used
are available on the management server or on the managed nodes. It is
preferable, whenever possible, to choose integration capabilities on the
managed nodes rather than on the management server. Should you
choose to access the management server directly, you may encounter the
following disadvantages:

❏ Since filtering is done on the management server, any event causes
additional network load which in many cases turns out to be
unnecessary, especially if the event is filtered out and no message is
generated.

❏ Additional load on the management server might cause performance
problems for the server; it is better to take advantage of the
distributed CPU power available on the managed nodes.

❏ The threshold monitoring functions of the agent are not available.

❏ If the management server is unreachable at the time information is
sent, for example, if there is a problem with the network, data may
be lost.

❏ The ability of the agent to perform immediate local automatic actions
is not available.

As a general rule, try to exploit the capabilities available on the managed
nodes in preference to those available only on the management server.

There is no restriction on the number of templates for a particular
message source that can be active at a given time. Templates for each
source (logfiles, SNMP traps, OVO Message API, MPE/iX console, etc)
are evaluated in parallel.
Chapter 268

Integrating Solutions with OVO
Deciding Which Integration Capabilities to Use
When integrating a partner solution it is recommended that you create a
new template for that solution whenever possible. This prevents any
possibility of the conditions defined for the new solution conflicting with
previously defined conditions. In some circumstances, however, this may
result in the generation of similar messages from different sources. To
prevent the Message Browser from being flooded by similar messages, it
is recommended to switch off the Forward Unmatched Messages option
under normal working conditions.

A major goal of the certification program is to ensure that conflicts
between message conditions are avoided. This can be achieved, for
example, with SNMP traps by always including the enterprise-specific
trap IDs in the match condition. For other message sources the unique
application name should be included in any match condition.

These recommendations can be summarized as follows:

1. Try to exploit the functionality of the OVO agent whenever possible.

2. Prefer capabilities handled on the managed nodes to those handled
on the management server only.

3. Define a new template for each integration and/or message source; do
not append new conditions to an existing message source template.
Chapter 2 69

Integrating Solutions with OVO
Deciding Which Integration Capabilities to Use
Table 2-1 shows where the different message sources are handled, and
lists any limitations:

Table 2-1 Message Source Management

Message Source Managed On

Logfile Encapsulation Managed Nodes

API or command line interface to managed nodes: passing a
message by way of opcmsg(1|3) or opcagtmsg_send(3)

Managed Nodes

Threshold Monitoring

This applies to all types of threshold monitors, both for
monitors for which values are determined by the OVO agent,
and for monitors for which values are passed to the agent by a
call to opcmon(1|3) or opcagtmon_send(3)

Managed Nodes

SNMP Traps Managed Nodes (for
HP-UX, Solaris, AIX,
Windows NT/2000, and
Novell NetWare agent
platforms only) or
Management Server

MPE/iX Console Messages Managed Nodes
(MPE/iX only)

Calls to functions of management server APIs: Legacy Link
Interface API, Server Message Stream Interface API, Server
Message API, etc.

Management Server

Calls to functions of managed node: Agent Message Stream
Interface API, Agent Message API

Managed Nodes
Chapter 270

Integrating Solutions with OVO
Defining an Integration Strategy
Defining an Integration Strategy
This section describes how to select a suitable integration strategy for
your solution, based on your integration starting point:

❏ Starting with an existing integration into OVO (aimed at the NSM
market segment).

❏ Starting with an existing integration into HP OpenView Network
Node Manager (NNM) (aimed at the NIM market segment).

❏ Starting from scratch

No previous HP OpenView integration available.

❏ Obtaining coexistence of NNM and OVO

The final part of this section provides some hints to integrators who
want to integrate into both NNM and OVO (aimed at the INSM
market segment).
Chapter 2 71

Integrating Solutions with OVO
Defining an Integration Strategy
Adapting an Existing OVO Integration for OVO
A.08.10

NOTE If you need to integrate into OVO a partner solution that was integrated
into a previous (and recent) version of OVO, any integration points
introduced with OVO version A.08.10 will not be used. In addition, you
may have to recompile the application with the libraries from the latest
version of the OVO software, if those libraries have been changed.

The recommendations for adapting an existing OVO integration depend
on the evaluation of the integration. Two scenarios can be distinguished:

❏ An existing integration was designed for the OVO version A.06.xx
release and takes full advantage of the integration capabilities
offered by this release for a tight integration to be achieved.

❏ An existing OVO integration does not take advantage of the
integration capabilities offered by the OVO version A.06.xx release.

In the second case, in which the integration does not take full advantage
of OVO A.06.xx integration features, a complete verification of the
integration is recommended.

If you can leverage from a tight OVO A.06.xx integration, you might use
this integration as a starting point. Before starting, establish whether
you can enhance the integration by using features of the latest version of
OVO. Refer to the OVO Software Release Notes for more information
about the new features of OVO.
Chapter 272

Integrating Solutions with OVO
Defining an Integration Strategy
Leveraging From an Integration into NNM

If you currently use NNM, it is worth remembering that, as an OVO
network operator, you can work in a way that is similar to the role of the
typical NNM operator. OVO provides the preconfigured network
operators netop and itop to whom the IPMap application, and the
Network and SNMP message groups are assigned by default.

All NNM applications, and additional applications that can be used for
configuration purposes are assigned to the itop operator, whereas only
those NNM applications not used for configuration purposes are
assigned to the network operator netop. An operator can invoke NNM
applications using the menu items in the NNM menu bar. Alternatively,
network operators can invoke the same applications from their personal
application desktop.

The nodes from which the OVO network operator receives SNMP traps
can be configured by means of the external nodes symbol which defines
source nodes in addition to the nodes in the Managed Node window.

Applications integrated into NNM that are not part of the standard
NNM product can be easily integrated into OVO.

OVO provides all the NNM integration points in addition to its own
integration points. You can further enhance an integration by exploiting
these additional OVO-specific integration points, as shown in Figure 2-1.

Figure 2-1 SNMP Event Configuration

Migration Process

NNM Integration Points Integration Points and Capabilities

User Roles

Instructions, Annotations
Powerful Actions

Duplicate Message Suppression
Enhanced SNMP Event Configuration
Alternative Message Sources

Application Desktop

Local Monitoring

SNMP Event Config SNMP Trap Template
Menu / Toolbar Integration Menu / Toolbar / Appl.Desktop

Other NNM Int. Points Other NNM Int. Points
(unchanged)
Chapter 2 73

Integrating Solutions with OVO
Defining an Integration Strategy
SNMP Event Configuration

SNMP traps are configured using the SNMP Trap Templates. An SNMP
Trap Template is automatically generated by a conversion command that
takes the NNM SNMP Event Configuration as input. By using the
SNMP Trap Template, the following additional features are available for
customers migrating from NNM:

❏ OVO provides automatic and operator-initiated actions which can be
started on demand by authorized operators. Actions can be
performed on the management server or on any OVO managed node
running the agent software. The status of an action is visible in the
OVO message browser (running, failed or successful) and the output
of the action can be attached to the message as an annotation.

❏ Instructions can be attached to an OVO message which can either be
statically configured for each condition or template, or dynamically
created using the Instruction Text Interface. For a detailed
description, see “Adding Instructions, Annotations, Automatic- and
Operator-initiated Actions” on page 136.

❏ Messages are stored in the central database, and both standard and
user-customized reports can be generated.

❏ A Duplicate Message Suppression function supports the following:

• Suppression configuration at a template and/or condition level

• Suppression of identical messages or messages matching the
respective condition

• Duplicate message re-transmission based on time intervals
and/or counter

❏ The Server or Agent Message Stream Interface (MSI) API enables
messages to be diverted or copied to external applications like event
correlation systems.
Chapter 274

Integrating Solutions with OVO
Defining an Integration Strategy
Powerful GUI Application Integration

In NNM, applications can be integrated into menus or the toolbar by way
of Application Registration Files (ARFs). The same mechanism is also
available in OVO. See “Integrating External Applications into the OVO
GUI” on page 146 for more information.

Figure 2-2 Application Desktop Window

OVO applications can also be integrated using a GUI registration
method, and are displayed as icons in the operator's Application
Desktop. The integration method for OVO applications has the following
advantages over the method for NNM applications using ARF files:

❏ Application groups provide structuring of applications;

❏ Applications can be executed remotely under any preconfigured user
ID;

❏ Startup of applications can be preconfigured by the OVO
administrator.

Consequently, the Application Desktop is the recommended integration
facility to integrate applications into OVO. Applications newly added to
OVO should always be integrated as OVO applications.
Chapter 2 75

Integrating Solutions with OVO
Defining an Integration Strategy
Monitoring Facilities

The Data Collection and Threshold Monitoring facility of NNM can
be used to monitor numeric MIB values. Alternatively, you can configure
monitor templates for OVO managed nodes to use the OVO threshold
monitoring facility. This has the following advantages:

❏ With MIB data collection, polling is always done by the management
server which sends a request for data to the managed objects at
regular intervals, and receives the monitored value as the response.
With the OVO threshold monitors, polling is done by the OVO agent.
This means that there is no additional network traffic when polling
MIB variables. The only additional network traffic occurs if a
problem is detected that causes a message to be sent to the
management server. This can be useful for monitoring application
MIBs that are located on nodes running the OVO agent.

❏ Even if an object for which a MIB variable is monitored is not
running an OVO agent, the threshold monitor can reduce network
load. In this case, it is recommended to use an agent running on a
machine located in the vicinity of the monitored object. In this case,
any additional network load caused by MIB variable polling is
restricted to a segment of the network, reducing overall network load
and the workload of the management server.

❏ All features previously mentioned for the SNMP Trap Template also
apply to the Monitor Template.

The MIB Data Collection facility allows the collection of SNMP-related
data and it is provided by both NNM and OVO. It is recommended to use
the MIB Data Collection facility when:

❏ the agent is not running on the node to be monitored, and there is no
OVO managed node in the immediate vicinity

❏ the monitored values are to be collected and graphed at a later time.

OVO offers additional capabilities to achieve a tighter integration and
many additional features in the areas described in the following
subsections:
Chapter 276

Integrating Solutions with OVO
Defining an Integration Strategy
Alternative Message Sources

SNMP traps are only one of several different message sources for OVO.
Logfile templates can be used to generate messages on OVO managed
nodes in which a powerful pattern-matching mechanism is applied
locally to forward relevant messages to the management server.

Network traffic is only necessary when a filtered message is transmitted
by way of a reliable remote procedure call (RPC) connection. In
comparison, SNMP traps use the unreliable UDP and can be lost if the
trap interception process on the management server is not running.

NOTE The OVO agent buffers all messages which it cannot send if the
management server is not accessible for any reason.

User Role Concept

The user role concept of OVO means that new operators can be
configured with individually assigned message groups, applications, and
managed nodes. Operators, therefore, have a customized view of their
managed environment and see only the information from systems,
devices and objects for which they are responsible.

A message can be owned by an operator, allowing only that operator to
perform actions, or to escalate or acknowledge the message.

Advantages of an INSM Solution

OVO provides:

❏ Reflection of node status in IP Map windows

❏ Central configuration of distributed collection stations for topology
detection

❏ HP OpenView Service Navigator integration on the management
server
Chapter 2 77

Integrating Solutions with OVO
Defining an Integration Strategy
Starting from Scratch

To integrate a partner solution that is not currently integrated into
either NNM or OVO, first make sure that you have a complete
understanding of the way in which operators use the GUIs, and the
underlying concepts of the two OpenView products. Based on this
knowledge, you can start to define the functional specification of the
integrated solution. You will need to decide what operators will see of the
partner solution and how they are to access the additional functionality.

After defining what you want to show to operators (for example, which
messages and actions) it is usually quite straightforward to decide on the
capabilities to implement this functionality. As a general guideline,
capabilities that are configured by way of the administrator's GUI are
the preferred choice.
Chapter 278

Integrating Solutions with OVO
Defining an Integration Strategy
Obtaining Coexistence of NNM and OVO Integrations

If you plan to integrate your product into both NNM and OVO, you can
choose between the following two strategies:

1. Develop an integration package for NNM and transform this into an
OVO integration package.

The OVO integration package resulting from this approach is not
improved.

2. Develop an integration package for NNM and develop a separate
integration package for OVO.

It is always possible to develop the NNM integration package first,
transform this to an OVO integration package, and then use the
result as a starting point for an independent OVO integration
package.

Figure 2-3 on page 80 illustrates the two strategies. Using strategy 1
only the NNM migration package needs to be maintained; the
corresponding OVO integration package is always generated from the
NNM integration package. You will need to use strategy 2 if you want to
achieve a tight OVO integration that takes full advantage of the OVO
features, you will need to use strategy 2. A tight integration provides
maximum benefit to customers and is a prerequisite for achieving OVO
certification.

Figure 2-3 on page 80 also shows that there are no other strategies
available, as soon as you start to modify the OVO integration resulting
from the migration process, you are using strategy 2. Consequently, the
modified OVO integration can no longer be generated from the NNM
integration and needs to be maintained separately. It is not possible to
design an OVO integration first and to leverage from this for an NNM
integration.
Chapter 2 79

Integrating Solutions with OVO
Defining an Integration Strategy
Figure 2-3 Comparison of Integration Strategies

The following subsections summarize the advantages and disadvantages
of the two strategies.

Strategy 1:

Develop an integration package for NNM and
transform this into an OVO integration package.

The Operations integration resulting from the mi-
gration process is not enhanced or improved.

Strategy 2:

Develop an integration package for NNM and develop
a separate integration package for OVO.

As a starting point for the separate OVO integration
package, the result of migrating a NNM integration
might be used.

NNM
Integra-

tion

OVO
Integra-

tion

NNM
Integra-

tion

OVO
Integra-

tion

NNM
Integra-

tion

Start
Point

NNM
Integra-

tion

Full
OVO

Integration

Full
OVO

Integration

Migrate Migrate

Migrate

Maintain/Update

Maintain/Update Maintain/Update

Maintain/Update

Rethink/
Enhance

Maintain/Update

Maintain/Update
Chapter 280

Integrating Solutions with OVO
Defining an Integration Strategy
Strategy 1: Use Transformed NNM Integration in OVO

This strategy has the following advantages:

❏ Requires little integration effort

You don’t need all the advanced features of OVO, and you don’t need
to identify new integration capabilities.

❏ The OVO integration will work in the same way as the NNM
integration.

This means an easy switchover for operators that used NNM and
will continue with OVO.

❏ Easy to maintain

You need only maintain the NNM integration package.

The OVO integration package is always generated from an NNM
integration package, using the recommended migration process.

This strategy has the following disadvantages:

❏ You do not achieve a tight OVO integration as OVO integration
points and features are not exploited.

❏ It is unlikely that this type of integration will satisfy the
requirements for OVO certification because of the large amount of
unused OVO functionality.

Strategy 2: Develop a Separate OVO Integration

This strategy has the following advantages:

❏ Use OVO features to increase the customer benefit of your
integration, for example, by providing detailed instructions to
operators. For more information, see “Leveraging From an
Integration into NNM” on page 73.

❏ Tight OVO integration can be achieved. This is also a prerequisite for
OVO certification of your integration.

This strategy has the following disadvantages:

❏ The resulting OVO integration package must be maintained as a
separate package

❏ Increased integration effort and planning required
Chapter 2 81

Integrating Solutions with OVO
Summary of the Integration Process
Summary of the Integration Process
The outcome of any integration is an integration package that
contains OVO configuration information. Depending on the product you
are integrating, you may need to modify the software of the partner
solution or even implement additional processes, for example, when
using the OVO APIs. In this case, the integration package would contain
other items in addition to the OVO configuration information.

You may find it useful to answer the following questions as a rough guide
to defining an integration strategy:

❏ What will an operator using OVO see of the partner solution?

❏ Which messages and applications will be available?

❏ Will there be any new message groups?

❏ Can you include automatic and operator-initiated actions?

❏ For which types of message can you provide instructions?

❏ Are there any numeric values that can be monitored by OVO?

❏ Does the partner solution include applications or tools that can be
offered to OVO operators in the application desktop?

The integration process takes the following steps:

1. Select the integration capabilities you need to implement the
required functionality.

You may need to use more than one of the OVO integration
capabilities to implement a certain functionality.

The result of this step is a design plan for the integration.

2. Define the required configuration information using the OVO
administrator’s GUI. This includes:

• Templates for the selected message sources: logfiles, SNMP
traps, MPE/iX console messages, and calls to the OVO APIs. You
will also need to define message and suppress conditions.

• Instructions for operators, automatic actions, and
operator-initiated actions to be coupled with messages.

• Threshold monitors
Chapter 282

Integrating Solutions with OVO
Summary of the Integration Process
• Interfaces to trouble-ticket and notification systems

• Tools for operators and administrators that are to be integrated
into the OVO Application Desktop

• Platforms that will be supported

3. If required, modify the partner solution software or implement
additional processes.

You can implement additional processes using programming
languages or shell scripts, depending on whether you will use the
OVO APIs or the command line interfaces.

NOTE APIs and command line interfaces are available for the agents and
the management server.

4. Create the configuration information fileset by selectively
downloading the required configuration information in the OVO
administrator’s GUI.

5. Add other required files to the configuration information to create
the integration package.

Other required files can be the necessary executables (scripts,
commands, actions) and HP OpenView application registration files
(ARFs).

6. Bundle the integration package with the partner solution product as
a separate fileset or as a separate product.

Add installation instructions to the partner solution documentation
or, if the integration package is a product of its own, create a
separate installation guide.

The installation information must include information to enable
customers to customize the integrated solution to meet their needs.

7. Install or restore the integration package at the customer’s sites by
uploading the configuration information.

8. Show the customer how to use the OVO administrator’s GUI to do
the final customization, and to assign and distribute new or changed
templates to the managed nodes.
Chapter 2 83

Integrating Solutions with OVO
The Role of Configuration Data in an Integration
The Role of Configuration Data in an
Integration
Figure 1-1 on page 32 shows an overview of the integration process in
which it distinguishes between defining an integration strategy and
implementing an integration. The figure shows that the result of an
integration process is an integration package which enables the
partner solution and OVO to work together smoothly.

An integration package always contains OVO configuration information,
which includes definitions for some, or all, of the following object classes:

❏ Applications and application groups
❏ Instruction text interfaces
❏ Managed nodes
❏ Message groups
❏ Node defaults
❏ Node groups
❏ Node Hierarchies
❏ Notification services
❏ Templates and template groups
❏ User and user profiles
❏ Action, command, and monitor executables
❏ Administrator configuration
❏ Database maintenance (configuration of OVO internal database)
❏ Escalation manager configuration
❏ Event correlation libraries
❏ Event correlation modules
❏ Management server configuration
❏ Message forwarding configuration
❏ Regroup conditions
❏ Responsible manager configuration
❏ Trouble ticket configuration

Configuration data in the local database determines the operational
behavior of OVO. Consequently, the configuration data required by OVO
to interact with a partner solution must be incorporated into the OVO
internal database using the configuration download and upload utilities
of OVO.
Chapter 284

Integrating Solutions with OVO
The Role of Configuration Data in an Integration
To download configuration data from OVO you can either select
Actions:Server->Download Configuration... from the menu of the
administrator’s GUI or use the configuration download command
opccfgdwn(1M) at the command line. Both methods download
configuration information into a tree structure of flat files. You can later
upload configuration information into the OVO internal database using
the opccfgupld(1M) command.

Note that service data of the HP OpenView Service Navigator is kept in a
separate file and can currently not be downloaded or uploaded.

These configuration utilities enable a partner to define a configuration
using the OVO GUI and then to download the configuration to a file. The
resulting file can then be shipped and installed with the partner
software, or provided as a separate product that can be uploaded into the
customer’s OVO installation. From the customer’s perspective, an
“out-of-the-box” integration of the partner solution and OVO is provided.

Figure 2-4 on page 86 summarizes how the OVO configuration download
and upload capabilities are used to define a configuration and then to
distribute it to customers.

Figure 2-4 shows the following steps:

Step 1: Define the OVO configuration.

Step 2: Download the OVO configuration to the flat files using
the GUI or opccfgdwn(1M) command.

Step 3: Package the configuration with the product and ship to
the customer.

Step 4: Install the product, including the OVO configuration.

Step 5: Upload the OVO configuration from the flat files

Step 6: Use the new, uploaded configuration.
Chapter 2 85

Integrating Solutions with OVO
The Role of Configuration Data in an Integration
Figure 2-4 Handling OVO Configuration Information

Although configuration files are not encrypted, it is strongly discouraged
to edit them as this can lead to problems when uploading the
configuration. The configuration should always be defined using the
administrator’s GUI.

The uploading and downloading capabilities, and the structure of the
configuration file tree are described in more detail in Chapter 8,
“Creating and Distributing an Integration Package,” on page 273.

1.

1.

1.
2.

3. 4.

5.
6.

6.

6.

Integration Project Customer’s Site

OVO Administrator’s
GUI

OVO Administrator’s
GUI

OVO OperatorIntegration
Engineer

Configuration
Flat Files

Configuration
Flat Files

OVO
Management

Server

OVO
Management

Server

Internal
Database

Internal
Database
Chapter 286

3 Using the Integration
Capabilities of the OVO
Motif-based GUI
Chapter 3 87

Using the Integration Capabilities of the OVO Motif-based GUI
In This Chapter
In This Chapter
This section describes how to use features of the OVO administrator’s
GUI to integrate applications into OVO.
Chapter 388

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Event Integration Through Messages
This section describes in more detail the various methods provided by
the OVO GUI that can be used to generate an integration package.

Configuring Messages in the Message Source
Templates Window

Any problem that causes the partner solution to generate an error
message, should also trigger an OVO message. When correctly
configured, message templates guarantee that OVO operators are always
informed about problems when they occur in the partner solution.

The templates for all message sources, including threshold monitors, are
listed in the Message Source Templates window. The windows used to
create, or modify templates for the various sources can all be accessed
from this window, as shown in Figure 3-1. The Add/Modify <Template>
windows differ slightly for each source, but the concepts involved in
defining templates are similar.
Chapter 3 89

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Figure 3-1 Accessing the Template Configuration Windows

To open the Message Source Templates window, you can:

❏ Login as OVO administrator

Select Windows: Message Source Templates from the OVO
administrator’s GUI.

❏ Login as the OVO template administrator

Message Source
Templates

Add/Modify
Logfile

Add/Modify

Add/Modify
SNMP Traps

Message and

Options

Regroup Conditions Regroup
Conditions No.

Add/Modify
opcmsg Messages

Threshold Monitors

Global
Advanced Options

for all conditions

SNMP Trap
Condition No.

Condition No.

Condition Test

Instructions

Advanced Options
for a condition

Condition Test
Results

Suppress Conditions

Add/Modify MPE/iX
Console Messages

Add/Modify
Event Correlation

Add/Modify
Template Groups

OVO Administrator’s GUI
Choose:
[Window: Message Source
Templates]

Template
Administrators’ GUI

Add/Modify
Scheduled Actions

Global Message
CorrelationOptions

for all conditions

Options for a condition
Message Correlation

Custom Message
Attributes for a condition
Chapter 390

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Figure 3-2 Message Source Templates Window

The following sections describe the OVO message sources and the ways
in which they can be used to integrate with OVO. For more detailed
information about the message sources, refer to the OVO Administrator’s
Guide to Online Information and the OVO Concepts Guide.

For a description of event correlation services and scheduled actions
shown in Figure 3-1 on page 90, refer to the OVO Administrator’s Guide
to Online Information.
Chapter 3 91

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Defining Templates for Logfile Encapsulation

If an application writes events into a logfile, the OVO logfile
encapsulator can interpret these events and incorporate them in the
OVO Message Browser.

An OVO logfile template specifies the events that are of interest to OVO,
for example:

❏ the file to be analyzed and the polling interval

❏ the defaults to be applied to the generated messages (severity,
message group, etc.)

❏ a set of options

❏ a set of conditions

A condition either specifies which events should generate messages to be
forwarded to the management server (message conditions) or which
events should be suppressed (suppress conditions).

NOTE Do not mistake the Monitoring Options part of the Add/Modify
Logfile window, for the threshold monitoring facility of OVO which is
described in the section “Defining Templates for Threshold Monitors” on
page 100.

The template defaults are applied in the following cases:

❏ When defining a new condition for a given template.

❏ When a message is generated that does not match either a message
condition or a suppress condition, this is referred to as an
unmatched message. When defining the template, the options let
you choose whether unmatched messages are ignored or forwarded to
the OVO management server.

You can always change the defaults for the entire template or for
individual conditions as required.

To define a logfile template, click on the [Add Logfile] button in the
Message Source Templates window. The Add Logfile window shown
in Figure 3-3 enables you to specify the logfile to be encapsulated, the
monitoring options for the logfile, and the defaults for the generated
message.
Chapter 392

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Figure 3-3 Add/Modify Logfile Window

For information about the fields in the Add/Modify Logfile window, see
the OVO Administrator’s Guide to Online Information.

For information about setting Advanced Options for a message source, or
using the OVO Instructions Interface see:

❏ “Setting Advanced Options for a Message Source Template” on
page 116;

❏ “Setting Message Correlation Options for a Message Source
Template” on page 118.

❏ “Adding Instructions, Annotations, Automatic- and
Operator-initiated Actions” on page 136.
Chapter 3 93

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Using the Logfile Monitoring Options

This section describes how to use the encapsulator options for different
types of logfile. The options Close After Read and Message On No
Logfile must be considered in each individual situation.

The options File to be Read and Command to be Executed enable
OVO to observe any type of file, including entire directories or binary
files. The logfile encapsulator detects the modification of the file and runs
the specified program which converts the required information into a
readable form for the encapsulator.

❏ Binary logfiles

For a binary logfile, you need a program to convert the binary data
into readable ASCII text. When the application generates binary
files, the following options are recommended:

• Enter the program required to convert the binary file into the
File to be executed field.

• Enter the name of the file containing the converted, readable text
into the File to be read field.

• Select the Read from begin (Always) option if the File to be
read will be completely overwritten.

❏ Logfiles without a constant name, for example,
logfile<number> or logfile<date>

The logfile encapsulator lets you observe directories that are
modified simultaneously if one of the files contained in the directory
changes. You need to use a subprogram or script that must discover
the modified files and extract the new information into another file to
be read by the encapsulator as “File to be read”. For logfiles with a
changing name, the following options are recommended:

• Enter the program required to discover the modified files into the
File to be executed field.

• Enter the name of the file containing the new information into
the File to be read field.

• Select the Read from begin (Always) option if the File to be
read will be completely overwritten.
Chapter 394

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
❏ Logfiles that decrease in size

You may find that some logfiles may get smaller if they are
completely overwritten by the writing process. It is not possible to
recognize new information as the encapsulator stores only the file
status, and not the status of its contents. To read this type of logfile,
select the “Read from begin (Always)” option.
Chapter 3 95

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Defining Templates for SNMP Trap Interception

If an application generates SNMP traps, OVO can intercept them and
incorporate them into the Message Browser.

Figure 3-4 shows the window for adding an SNMP trap template.

Figure 3-4 Add/Modify SNMP Trap Window

For information about the fields in the Add/Modify SNMP Trap window,
see the OVO Administrator’s Guide to Online Information.

For information about setting Advanced Options for a message source, or
using the Instructions Interface see:

❏ “Setting Advanced Options for a Message Source Template” on
page 116;

❏ “Setting Message Correlation Options for a Message Source
Template” on page 118.

❏ “Adding Instructions, Annotations, Automatic- and
Operator-initiated Actions” on page 136.
Chapter 396

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Defining Templates for MPE/iX Console Message
Interception

OVO can intercept all MPE/iX console messages, and it uses the default
categorization and grouping defined in the templates provided with the
OVO software.

Figure 3-5 Add/Modify MPE/iX Console Messages Window

For information about the fields in the Add/Modify MPE/iX window, see
the OVO Administrator’s Guide to Online Information.

For information about setting Advanced Options for a message source, or
using the Instructions Interface see:

❏ “Setting Advanced Options for a Message Source Template” on
page 116;

❏ “Setting Message Correlation Options for a Message Source
Template” on page 118.

❏ “Adding Instructions, Annotations, Automatic- and
Operator-initiated Actions” on page 136.
Chapter 3 97

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Defining Templates for Messages Sent to the OVO
Message Interface opcmsg(1|3)

This section describes how to create or modify a template that intercepts
messages sent to the OVO message interface - the function opcmsg(1|3)
of the Agent Message API.

The partner solution can use the OVO message C library routine
opcmsg(3) or command opcmsg(1) to route messages in the standard
OVO format to any OVO agent. Messages sent through the API or
command are intercepted by OVO at the managed node on which the
command or API are invoked. This allows a distributed handling of
messages across the network.

The following example shows how to create an OVO message with the
opcmsg(1) command:

❏ This example submits a critical message issued by the script
diskwatcher.sh with the related object /usr/lib which belongs to
the message group DB:

 opcmsg sev=critical msg_grp=DB appl=diskwatcher.sh \
 node=laurax.bbn.hp.com \
 msg_text=”DSET vouchers FULL: No further processing \
 on vouchers possible!” \
 object=”/usr/lib”

For all messages created by the OVO Agent Message API, the same
processing is done as for other message sources. You can filter messages,
classify them, set attributes, and define actions or other options. The
description of the message handling is almost the same as for the other
message sources, with only the specification of the message source being
different.
Chapter 398

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Figure 3-6 Add/Modify OVO Interface Messages Window

For information about the fields in the Add/Modify OVO Interface
Messages window, see the OVO Administrator’s Guide to Online
Information.

For information about setting Advanced Options for a message source, or
using the Instructions Interface see:

❏ “Setting Advanced Options for a Message Source Template” on
page 116;

❏ “Setting Message Correlation Options for a Message Source
Template” on page 118.

❏ “Adding Instructions, Annotations, Automatic- and
Operator-initiated Actions” on page 136.
Chapter 3 99

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Defining Templates for Threshold Monitors

This section describes the different types of monitors that are available,
and how to define your own monitors using the OVO administrator’s
GUI.

Overview of OVO Monitoring Capabilities

OVO enables the monitoring of numeric values that are determined
either by:

❏ Program

Calling a program at regular intervals that submits a numeric value
to OVO.

❏ External Program

Accepting numeric values that are determined by some external
mechanism and passed to OVO. These values can be accepted at any
time.

❏ MIB variables

Polling MIB variables at regular time intervals.

The primary mechanism for monitoring numeric values in OVO is
threshold monitoring. Threshold monitors can be set up to use any of
the above methods to determine new values. Threshold monitors can,
therefore, be used to poll MIB variables and to monitor any other values.

Threshold monitors are designed to watch numeric values which might
indicate problems, and to generate messages as soon as a potential
problem is detected. It is, however, important to avoid overwhelming
operators by generating many redundant messages. To prevent such a
flood of redundant messages, OVO threshold monitors enable redundant
messages to be filtered out, for example, by defining time intervals after
which a new message may be generated. As with other OVO message
sources, the full set of action options (automatic and operator-initiated
actions, automatic acknowledgment, etc.) can be configured for the
messages generated by a threshold monitor, together with instructions,
external notification, and trouble ticket services. Threshold monitors do
not, by default, store the data that has been collected.
Chapter 3100

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
A second mechanism, specifically for polling MIB variables and referred
to as MIB Data Collection, is also provided by OVO. In contrast to
threshold monitors, this mechanism can be configured to store the
collected data which can be used to analyze trends in monitored
variables by plotting the values against time. This type of monitor also
supports threshold values but does not provide their sophisticated
filtering capabilities. Events can also be generated based on exceeded
thresholds and on returning to “normal” values, but it is not
straightforward to set up an action to resolving a problem.

Monitoring MIB Variables

When deciding whether to use a threshold monitor or MIB data
collection, consider the following points:

❏ To collect and store data for the later plotting of graphs, it is
recommended to use MIB data collection.

❏ To generate a message as soon as a monitored value indicates a
problem, it is recommended to use threshold monitoring.

❏ If the OVO management server is at a location remote from the
objects for which MIB variables are monitored, and if network load
and management server workload are issues, threshold monitoring
might be more suitable for the following reasons:

• With MIB data collection, the OVO management server polls the
managed objects at regular intervals with a request for data and
receives a response.

• With threshold monitoring, the OVO intelligent agent polls the
monitored object. If the object is a node running the OVO agent,
additional network traffic, due to MIB variable polling, is not
generated. The only additional network traffic is caused when a
problem is detected, and a message must be sent to the
management server.
Chapter 3 101

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
• Even if the object for which a MIB variable is monitored is not
running an OVO intelligent agent, the threshold monitor can
still reduce the network load. In this case, it is recommended to
use an intelligent agent running on a machine located close to
the monitored object. Additional network load caused by MIB
variable polling is, therefore, restricted to a small part of the
network. This reduces the overall network load and the workload
of the management server. If the OVO management server is
connected to the managed objects over a WAN, this situation can
be especially beneficial in terms of network load.

Figure 3-7 Comparison of Network Traffic Caused
Monitoring Methods

MIB Data Collection:

Considerable additional network traffic caused
between the OVO management server and the object
for which the MIB variable is monitored

Threshold Monitoring:

Considerable additional network traffic caused only
between the object to be monitored and a nearby agent

OVO
Management

Server

WAN

Network
Segment

Monitored
Object

SNMP-Get

OVO
Management

Server

WAN

Network
SegmentOVO

Managed
node

running intel-
ligent agent

Messages

monitored
object

without in-
telligent
agent

(e.g. printer)

snmp-
get
Chapter 3102

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Using Threshold Monitoring to Generate Messages

You can configure OVO to monitor managed nodes at regular time
intervals, during which the monitored value is calculated and compared
against a threshold value. If the threshold is exceeded, whether a
message is generated depends on the type of monitor selected and on the
“history” of values relative to the reset value.

If a message is generated, you can set message attributes and custom
message attributes, and provide instructions, annotations, and actions,
in the same way as for any other message generated by matching a
message condition. When a message is generated and all message
attributes are set, it is sent to the management server. If a local
automatic action has been defined, this is also started in parallel. Note
that only when the threshold is exceeded does OVO monitoring cause
network traffic.

The threshold monitoring scripts, provided by the user, are invoked by
the monitoring agent in the configured time interval, except for values
monitored externally. The monitor agent checks the success of the
scripts by interpreting the exit value. If the exit value is not equal to 0,
indicating script failure, the monitor agent sends an appropriate
message to the Message Agent that forwards the message to the
management server.

The script collects one or more current values of the objects to be
monitored and sends them to the monitor agent through a C library
routine or a command interface provided by OVO, with a call to
opcmon(1|3) . See the man pages opcmon(1) and opcmon(3) for more
information.

The check of externally monitored objects is not invoked by the monitor
agent, however, it checks whether a value from an object has arrived
through a call to opcmon(1|3) at least every 15 seconds.
Chapter 3 103

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
The monitor agent checks the received values against the configured
thresholds and creates user-defined messages for any exceeded threshold
values. This happens for the values of all types of objects (program,
external or SNMP MIB) that arrive at the monitor agent. If the monitor
agent receives a value of an object which was not configured, it will
generate an opcerror log entry with an appropriate warning on the
managed node. For example:

File is: /var/opt/OV/log/OpC/< managed_node >/opcerror

OVO message: OpC30-613

08/05/00 10:39 WARNING Monitor Agent(10827):
Can’t find object ‘<Monitored Object>’.
Unknown monitor ’<Monitored Object>’.
Ignoring received value.

If a monitored object should be checked by a user-provided script invoked
by the monitor agent, and a corresponding name-value pair is not
returned, (that is, the script/program does not call opcmon) the monitor
agent will generate a warning message and send it to the management
server. For example, the message OpC30-608:

Can’t retrieve value for monitor <Monitored Object>.
Suppressing further error messages.
Chapter 3104

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Message Generation Policies and Message Filtering

Threshold monitoring enables you to choose either a minimum or
maximum threshold:

❏ Maximum threshold monitoring

As long as the values received from the monitored object are less
than the threshold value, no messages are generated. If the values
reach or exceed the threshold value, then OVO generates the
configured message for this object.

❏ Minimum threshold monitoring

As long as the actual values received from the monitored object are
above the threshold value, no messages are generated. If they reach
or drop below the threshold value, then OVO generates the
configured message for this object. The generation of further
messages depends on how the message generation type is configured,
see below.

To prevent redundant messages from cluttering the operators’ Message
Browsers, OVO provides three mechanisms you can use to generate
further messages after the value of a monitored object crosses a defined
threshold:

❏ Message generation on crossing threshold with Reset

If the monitored value reaches or crosses the threshold, OVO
generates one message. Before OVO generates further messages, the
monitored value must either:

• Drop below the reset value for maximum threshold monitoring,
or

• Rise above the reset value for minimum threshold monitoring.

❏ Message generation on crossing threshold without Reset

If the monitored value reaches or crosses the threshold, OVO
generates one message. Before OVO generates further messages, the
monitored value must either:

• Drop below the threshold value for maximum threshold
monitoring, or

• Rise above the threshold value for minimum threshold
monitoring.
Chapter 3 105

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
❏ Message generation continuously

OVO generates a message each time the monitored value is either:

• equal to or greater than the threshold for maximum threshold
monitoring, or

• equal to or less than the threshold for minimum threshold
monitoring.

The frequency of the message generation in this case depends on the
configured polling interval.

It is also possible to specify that a message is only to be generated when
the monitored value exceeds the threshold for a longer duration than a
defined period. You can do this by setting the Duration parameter in the
Add/Modify Threshold Monitor window.
Chapter 3106

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Figure 3-8 Message Generation Policies For Maximum Thresholds

A) Message on crossing threshold with Reset value

B) Message on crossing threshold without Reset value

C) Message every time

Threshold
Reset

Threshold

Threshold

Message Generation

Message Generation

Message Generation

B) can be seen as a special case of A), where Threshold is equal to Reset.
Chapter 3 107

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Types of OVO Monitor Available

OVO supports the following types of threshold monitor:

❏ Monitoring With User-defined Programs or Scripts

This method uses a program or script provided by the user that is
invoked by the OVO Monitor Agent (opcmona). It collects the
monitored value and transmits it to the OVO management server
using the opcmon(1|3) C library API or command.

Monitoring Performance Metrics

Performance metrics are collected by way of the embedded
performance component. Use the following syntax in the Monitor
Program or MIB ID field:

OVPERF\\<data source >\\< object >\\< metric >

Where:

<data source >

Identifies the data source. When collecting metrics
from the embedded performance component
<data source > must be set to CODA.

<object >

Identifies the name of the object class to be
monitored.

The performance component collects the following
object classes:

• Global (object name: GLOBAL)
• CPU (object name: CPU)
• Network interface (object name: NETIF)
• File system (object name: FS)
• Disk (object name: DISK)

<metric >

Identifies the metric to be collected.

The metrics that are currently available for each object class are
described in more detail on the following Web page:

http://< management_server >:3443/ITO_DOC/< lang >/
manuals/EmbedPerfAgent_Metrics.htm
Chapter 3108

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
In this instance, <management_server> is the fully qualified
hostname of the management server and <lang> is one of the
following:

C for English environments

japanese for Japanese environments

Figure 3-9, Setting Performance Thresholds, shows how to enter the
syntax explained above in threshold monitor templates.

Figure 3-9 Setting Performance Thresholds

The performance component constantly collects all platform-generic
and typical metrics. The collection interval is by default five (5)
minutes and cannot be changed. The data is kept in the data store
for up to five (5) weeks. When the database is full after five (5) weeks
of data have been collected, the oldest data is rolled out one week at a
time and deleted.

See the OVO Administrator’s Reference for more information about
troubleshooting the embedded performance component.

❏ External Monitoring

This type of monitoring is similar to the previous method, but it
differs in that OVO does not invoke the user’s monitor scripts or
programs. This means that monitoring is done externally and the
OVO monitor agent only checks the values of an externally
monitored object against the defined threshold value. The monitor
agent checks whether value pairs (for example, object
name=<value>) have been received for comparison at least every 15
seconds.
Chapter 3 109

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
❏ SNMP MIB variables

OVO can also monitor SNMP MIB variables. OVO queries SNMP
MIB variables on the agents at defined intervals, and checks the
output against the threshold values. If the result is above the
maximum or below the minimum threshold value, OVO generates a
message that is sent to the management server by way of the
message agent.

Monitor scripts or programs should be provided by the integrator. The
scripts or programs are either assumed to exist on the respective
managed nodes (e.g., if they are part of a monitored application) or they
can be distributed to the managed nodes by OVO. If it is required to
distribute these scripts with OVO, they must be copied into the following
directory on the OVO management server:

/var/opt/OV/share/tmp/OpC_appl/<app_name>/<lang>\
/EXECUTABLES/...

From this directory, the scripts can be downloaded automatically,
uploaded to the customer’s management server, and distributed to the
managed nodes.
Chapter 3110

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Integrating Monitors into OVO

A separate monitor is defined for each type of value to be monitored. You
can specify message and suppress conditions for the monitor templates
in the same way as for other message sources. To display a list of
monitors, select the appropriate group in the Message Source
Templates window. To open this window, choose Window: Message
Source Templates from any of the toplevel windows. You can use this
window to add new monitors, as well as modify, copy, and delete
monitors.

When you choose to add or modify a monitor, the Add/Modify Threshold
Monitor window is displayed, see Figure 3-10.

Figure 3-10 Add/Modify Threshold Monitor Template Window

For information about the fields in the Add/Modify Threshold Monitor
window, see the OVO Administrator’s Guide to Online Information.
Chapter 3 111

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
You can set conditions for a monitor template using the Condition No.
window in the same way as for other message sources. For information
about the fields in the Condition No. window for monitors, see the OVO
Administrator’s Guide to Online Information.

As in all condition definition windows, an [Instructions...] button
enables you to specify help text, instructions, and information about the
monitored object and the threshold value, and/or about the configured
actions.
Chapter 3112

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Sending Values Over the OVO Monitoring API or Command

OVO provides an API and a command opcmon(1|3) to allow applications
to send monitoring values from the managed nodes to the OVO
management server. This API/command should be used at the managed
nodes for distributed, exception-based management.

The following steps describe the process flow and the interaction between
the monitor agent of OVO (opcmona) running on the managed node, and
the monitoring script or program provided by the user:

1. OVO checks the intervals defined to invoke the monitoring scripts.

2. OVO calls the specified script or program.

3. As part of the script or program, the actual monitoring values are
collected.

4. The script calls opcmon(1|3) (usually once) to pass the value(s) to
the monitor agent of OVO.

5. The monitor agent checks the value received from opcmon(1|3) and
returns a value to the caller of the script: zero for successful
execution, one for a failure.

6. The monitor agent reads the value against the predefined thresholds
and generates a message if an exception occurs.

7. The return value of opcmon(1|3) is checked in the script and the
processing of the script continues.

OVO checks the exit value from the script and sends an error message if
the script returns an exit value other than zero.
Chapter 3 113

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Figure 3-11 Interaction Between the Monitor Agent and opcmon(1|3)

Monitor Agent

Monitor Script

opcmon

Generate error
message

Compare received
value with
threshold; if
threshold equalled
or crossed,
generate the
configured
message

YesNo

Check exit value of
monitor script; if
necessary
generate error
message

Call opcmon()

Return

Check parameters;

Pass information to Monitor
Agent

Check interval

Call script

Return

Evaluate current status
of monitored object

Check values received
from opcmon

(Provided by customer)

Is
name/value pair

received?
Chapter 3114

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
MIB Data Collection

Setting up MIB Data Collection is described in detail in the section
“Collecting MIB Data” in the Managing Your Network with HP
OpenView Network Node Manager manual.
Chapter 3 115

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Setting Advanced Options for a Message Source
Template

You can specify advanced options for all message sources in the
Advanced Options window. This includes options for pattern-matching
and whether messages are copied or diverted to the Server or Agent
Message Stream Interface.

You will use an identical window to set advanced options for individual
message conditions, and to set the defaults for an entire template that
are applied when a new condition is created. The following description
applies to both cases. You can always change the defaults set by the
template when specifying individual message conditions.

NOTE Although you can modify default message conditions for a template at
any time, this does not change the conditions associated with templates
that you defined previously.

Figure 3-12 Message Condition Advanced Options Window

For information about the fields in the Message Condition Advanced
Options window, see the OVO Administrator’s Guide to Online
Information.
Chapter 3116

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Output to Agent and Server Message Stream Interface (MSI)

You can choose whether to output messages to a message stream
interface so that they can be accessed by external applications, or to
disable these features entirely. When disabled, messages matching the
message conditions cannot be accessed by processes using the server or
agent MSI.

To output messages to either the server or agent MSI, you can choose
either to:

❏ Allow a message that matches the condition to be copied to the MSI.

If the message is read by a process using the MSI, then written back
to OVO, it will be duplicated.

❏ Allow a message that matches the condition to be diverted to the
MSI.

If the message is read by a process using the MSI that does not write
it back to the internal message stream, it is lost, which may be the
intended behavior. For example, an event correlation mechanism on
the management server might compress multiple related messages
into a single, more meaningful message.

Furthermore, if the Divert Messages option is enabled, you can also
define whether immediate local actions should be allowed. It might
be useful to disable local automatic actions if the messages matching
the condition are expected to be removed from the message stream at
the management server, for example, by a process using the MSI that
discards diverted messages. If local automatic actions are disabled,
the automatic action is started if the message finally arrives in the
database at the OVO management server. This means that an
automatic action will not be started if the message is removed from
the message stream.
Chapter 3 117

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Setting Message Correlation Options for a Message
Source Template

You can specify message correlation options for all message sources in
the Message Correlation window. This includes the setting of message
keys and message key relations, and options for the processing of
duplicate messages.

You will use an identical window to set message correlation options for
individual message conditions, and to set the defaults for an entire
template that are applied when a new condition is created. The following
description applies to both cases. You can always change the defaults set
by the template when specifying individual message conditions.

NOTE Although you can modify default message conditions for a template at
any time, this does not change the conditions associated with templates
that you defined previously.
Chapter 3118

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Figure 3-13 Message Correlation Window

For information about the fields in the Message Correlation window,
see the OVO Administrator’s Guide to Online Information.
Chapter 3 119

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Suppression of Duplicate Messages

You can set the Duplicate Message Suppression Mode so that OVO
suppresses:

❏ All duplicate messages that match a particular condition.

❏ All duplicate messages whose input events are identical.

❏ All duplicate messages whose output messages are identical.

When you activate the suppression of duplicate messages, you can also
define either:

❏ A time interval over which OVO suppresses duplicate messages, and
then retransmits them after this period has elapsed, or

❏ A threshold for a duplicate message counter; OVO increments the
counter until it crosses the threshold and then allows the
retransmission of the duplicate message.
Chapter 3120

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Figure 3-14 shows how duplicate messages are suppressed. Assume that
the suppress condition has been defined as follows:

❏ Suppress identical messages occurring within:

• A suppression time interval of “1m”

• Accept message after every “3m”

Figure 3-14 Suppressing Duplicate Messages

In Figure 3-14, the first message (1) is sent because it is the first
occurrence of the event. The second message (2) is sent because more
than 1m (60s) have elapsed between the previous event and the current
event. The third message (3) is sent because 3 minutes (180s) have
elapsed since the last message was sent and events are still coming.

60 120 180 240 300 3600 time [s]

36 24 18 72 30 30 30 30 30 30 30

Message Message Message

1 2 3

0 1 2 3 4 5

sent sent sent

Incoming Identical Events

6 time [m]
Chapter 3 121

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Setting Options for a Message Source Template

Click on the [Options] button in the Message Source Templates
window to specify options for Local Logging of messages, and for the
treatment of unmatched messages.

If a message or trap does not match either a message condition or a
suppress condition, the message is flagged as unmatched. The Options
window lets you choose whether to ignore unmatched messages, log them
on the local node only, or forward them to the management server. If you
forward an unmatched message to the management server, you can
choose whether it should be entered directly into a logfile, or that it be
displayed in the Message Browser.
Chapter 3122

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Adding Instructions to a Message Source Template

See “Adding Instructions, Annotations, Automatic- and
Operator-initiated Actions” on page 136.
Chapter 3 123

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Setting Message and Suppress Conditions

This section describes:

❏ Setting conditions for incoming messages

❏ Setting conditions for incoming SNMP traps

Setting Conditions for Incoming Messages

The Message and Suppress Conditions window enables you to specify
which messages are to be intercepted from the source and forwarded to
the management server, and which messages are to be discarded.

You can specify multiple message and suppress conditions, and freely
mix the order and type of conditions. With suppress conditions, you can
also choose to suppress either messages that match the match condition,
or those that don’t match the match condition. Take care when specifying
the order of conditions as they are processed in the order of the list. OVO
stops processing as soon as a condition matches, so it is recommended to
list more specific conditions above the more general conditions. If you
don’t do this, a general condition may match before the more specific
condition is even applied.

If the first condition that matches is a message condition, the message is
forwarded to the OVO Message Browser, and any configured actions are
invoked. If the message matches a suppress condition, depending on the
type of suppression configured, it is discarded. If a message matches
neither message conditions nor suppress conditions, it is flagged
unmatched as previously discussed.

As you can define multiple message and suppress conditions for each
template, OVO provides the Message and Suppress Conditions
window to list the conditions already defined. This window lets you add
and delete conditions, or to select specific conditions for modification. You
can also change the sequence of conditions in the list.
Chapter 3124

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Figure 3-15 shows the Message and Suppress Conditions window.
Message conditions are indicated by the plus (+) sign in the second
column, suppress matched conditions by the minus (-) sign, and
suppress unmatched conditions by the equals (=) sign.

Figure 3-15 Message and Suppress Conditions Window

When you choose to add or modify a condition, the Condition No.
window shown in Figure 3-16 on page 126 is displayed. This window lets
you set the attributes for a single message or suppress condition. The
appearance of the window differs, depending on whether you are defining
a message condition or suppress condition.
Chapter 3 125

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Figure 3-16 Condition No. Window for a Message Condition

The Condition No. window for a suppress condition, contains only a
Description field, and fields to specify the different parts of the Match
Condition.

For information about the fields in the Condition No. window, see the
OVO Administrator’s Guide to Online Information.
Chapter 3126

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Setting Custom Message Attributes for a Message Condition

Custom message attributes allow you to add your own attributes to a
message. This means that in addition to the default message attributes
like severity, date, time, object, or application, you can extend OVO
messages with attributes of your choice, for example, the attribute
“Customer” or the attribute “SLA” for service level agreements.

Custom message attributes can only be set for message conditions and
are only available for logfile, OVO interface, and threshold monitor
templates.

Use the Custom Message Attributes window to assign attributes of
your choice to a message. Figure 3-17 on page 127 shows an example of
the Custom Message Attributes window. In this example, a message
matching this condition would display with four additional columns in
the browser windows:

❏ Customer

❏ Device

❏ SLA

❏ Source

Figure 3-17 Custom Message Attributes Window
Chapter 3 127

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
In the Custom Message Attributes window, the Name fields define the
name of the attribute which is then displayed as an additional column in
the browser windows. The Value fields display the value of the attribute.
This value can contain one or more of the following:

❏ Hard-coded text

❏ Variables returned by OVO’s pattern-matching mechanism

❏ Predefined OVO variables

See the OVO Administrator’s Reference for a list of predefined
variables.

NOTE Custom message attributes are only displayed in the browser and
message properties windows of the Java-based operator GUI. The
Motif-based operator GUI is not capable of displaying them.

If so configured, custom message attributes are passed to the message
stream interface (MSI) on the agent and/or the management server. See
the OVO Developer’s Reference for more information about available
APIs.

Custom message attributes are also passed to trouble ticket systems
and/or notification services.
Chapter 3128

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Setting Conditions for Incoming SNMP Traps

The window used to define an SNMP Trap condition, shown in
Figure 3-18, differs slightly in the Match Condition fields from the one
used to define a message condition. Note that when defining a suppress
condition, only the Match Condition part of the window is displayed.

Figure 3-18 SNMP Trap Condition No. Window

For information about the fields in the SNMP Trap Condition No.
window, see the OVO Administrator’s Guide to Online Information.
Chapter 3 129

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Using SNMP Trap Templates Converted from NNM SNMP Trap
Configuration Files

In comparison with the NNM SNMP trap configuration files, OVO trap
templates provide additional features that can be exploited for the
manipulation of SNMP traps.

NNM events are configured by associating the enterprise ID, generic and
specific SNMP trap number with an NNM event message, a severity and
an event category. The message derived from that NNM event can be
logged, displayed in the NNM event browser, or discarded. An automatic
action can also be configured for execution on the management server, or
any system running the OVO intelligent agent, when the NNM event is
received.

OVO provides the same functionality by associating the enterprise ID,
generic and specific SNMP trap number with an OVO message, a
severity, and a message group. An OVO message can also be logged,
displayed in the OVO Message Browser, or discarded.

The OVO user-role concept allows the administrator to set up the
operators’ working environment so that operators only see messages
from systems and message groups under their control. In addition, OVO
provides automatic and operator-initiated actions that can be performed
on the management server or on any OVO managed node. The status of
an action is visible in the OVO message browser (running, failed or
successful) and the output of the action can be attached to the message
as an annotation. Instructions can also be attached to an OVO message
at either the template or condition level.
Chapter 3130

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Converting NNM SNMP Trap Configuration Files to OVO Trap
Templates

For NNM integrated solutions, a conversion tool is provided to convert
SNMP trap configuration files into an OVO SNMP Trap Template. The
conversion tool is part of the OVO product.

In NNM, the SNMP Trap configuration is done using the application
xnmtrap which maintains the configuration file trapd.conf. It contains
definitions for the handling of SNMP traps, including how to format
their log entries, and what action to take upon their receipt. The event
browser xnmevents displays the events which are grouped to
categories.

After the conversion the same basic functionality is available:

❏ the NNM event definitions (event name, enterprise ID,
generic/specific trap number) and the NNM event descriptions are
converted

❏ automatic actions previously defined in the NNM SNMP Trap
configuration are converted to OVO automatic actions

❏ with OVO, the same six NNM severity levels are supported

❏ OVO supports the same variables for the definition of a message
format, so the same message text previously received in the NNM
event browser is shown is the OVO message browser

❏ OVO supports the NNM override traps to set the source node, the OV
object ID, the severity value or the Event Category (Message Group)
value

❏ OVO supports the NNM special traps for setting the status color of
an ovw object, display a message in the message browser, pop-up
message, ring a bell and highlight source event.
Chapter 3 131

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Convert NNM SNMP Trap configuration files to OVO SNMP Trap
templates, as follows:

1. Run the command: ovtrap2opc

This creates a new application directory, including the converted trap
template file, and uploads the template to the OVO database.

2. Assign the trap template to the management server.

3. Distribute new template to management server.

4. Restart operator sessions.

See also the man page ovtrap2opc(1M).

NOTE The NNM event notification functionality provided through the Popup
Notification window is covered by means of the Message Browser in
OVO. OVO assigns the message group “SNMP” to all NNM events.
Chapter 3132

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
Hints and Tips for Event Integration from Message
Sources

This section provides a summary of the recommended methods to
integrate events from the various OVO message sources.

❏ Use the OVO templates to filter important messages from those that
are less acute.

Effective filtering ensures that the Message Browsers of responsible
operators do not become cluttered by messages of low severity.
Carefully consider whether it is necessary to forward messages of
status warning and below to the OVO management server.

❏ Avoid using the severity unknown when defining templates and
conditions.

❏ Set the polling interval, used to check the message source, to as long
a time period as acceptable.

❏ For OVO performance reasons, define patterns for pattern-matching
with care.

• Avoid the use of the asterisk (*) wildcard to match an arbitrary
string whenever possible. A comparison against this symbol is
the most time-consuming.

• Define the order of message and suppress conditions carefully;
this is not only important for the semantics of the template, but
also for pattern-matching performance. OVO stops processing
when the first message or suppress condition matches the source,
for example, an entry in a logfile. You can greatly improve
performance by placing an effective suppress condition at the
beginning of the list of conditions.

❏ Define new Message Groups for your integration solution whenever
possible. Only put new messages into existing message groups when
they really belong there.

If you find that there are too many message groups, you can regroup
messages by selecting Actions: Configure Message: Regrouping
on Server from the Node Bank menu.
Chapter 3 133

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
❏ Carefully consider whether to forward all unmatched messages to
the OVO management server. The forwarding of unmatched
messages has the following associated advantages and
disadvantages:

• The analysis of unmatched messages in the design phase can
help to improve your definitions of message and suppress
conditions so that these messages can be matched in the
customer’s environment.

• Increased network traffic and overwhelming of operators can
result if the forwarded unmatched messages are found to be
unimportant.

It is recommended that you handle unmatched messages as follows:

• In the development phase of your integration, forward all
unmatched messages to the management server. You can analyze
these messages carefully to improve the templates.

• When your OVO integration is installed at the customer’s site,
log all unmatched messages on the originating node and advise
the customer to check these at regular intervals to further refine
the templates.
Chapter 3134

Using the Integration Capabilities of the OVO Motif-based GUI
Event Integration Through Messages
❏ It is recommended to enable the output of messages to the agent and
server message stream interface (MSI) in the Message Condition
Advanced Options window for the following reasons:

• The server MSI can always be globally disabled using the
Configure Management Server window. By default, the server
MSI is disabled.

• If the server MSI is not enabled, and at a later stage the
customer decides to connect an external application to the MSI,
they would need to modify all relevant conditions in all templates
manually.

• To prevent an application connected to the server MSI from
being swamped with messages, the API can register conditions
with the management server, which effectively filters the
message stream flowing to the interface.

Consider the following points when choosing whether to divert or
copy messages to the server MSI:

• If you choose to divert a message, there is a possibility that the
application could remove the message from the message stream
so that it is never displayed in a Message Browser. If you
consider a message to be important, choose to copy it to the MSI.

• When the copying of messages to the MSI is enabled, not even an
event correlation engine can remove a message from the message
stream. This result may not be desired if you use an event
correlation engine to reduce the number of messages reaching
the management server.

❏ Configure templates for your integration so that the OVO operators
are always informed about any problems caused by the partner
solution. For example, make sure that any known messages of the
partner solution trigger OVO messages.
Chapter 3 135

Using the Integration Capabilities of the OVO Motif-based GUI
Adding Instructions, Annotations, Automatic- and Operator-initiated Actions
Adding Instructions, Annotations, Automatic-
and Operator-initiated Actions
This section describes how to add message annotations and instructions
to a message received by the OVO management server, and how to define
automatic- and operator-initiated actions for a message.

Adding Instructions for Solving Known Problems

By attaching instructions to a message template or individual message
condition, you provide a source of information that can help an OVO
operator solve the problems that are causing messages to be generated.

You can either define instructions by entering text in the Select
Instruction Text Type window, or by specifying an instruction text
interface listed in the Instruction Text Interfaces window. You can
supply instructions for all OVO event sources.

You can associate instructions with the following OVO message entities:

❏ Message templates

Specify the default instruction text or instruction text interface to be
applied to all message conditions created from this point that do not
overwrite the template setting.

❏ Individual message conditions

Specify the instruction text or instruction interface that is specific to
any messages matching the message condition.

The windows used to define the instruction text options for individual
message conditions and to set instruction text defaults for a template are
identical. You can always override the defaults when specifying
individual message conditions.

NOTE Although you can modify defaults later, this does not affect message
conditions defined before the point at which you make the modification.
Chapter 3136

Using the Integration Capabilities of the OVO Motif-based GUI
Adding Instructions, Annotations, Automatic- and Operator-initiated Actions
If you choose to specify an Instruction Text Interface (where an
external program is called to provide the instruction text) you must
already have defined this interface by selecting Actions: Utilities:
Instruction Interfaces... from the Node Bank menu. If you enter
instruction text directly into the Select Instruction Text Type
window, the text applies to a set of messages matching a certain
condition, or even to a set of messages generated according to the same
template. By using a predefined instruction text interface, you can add
instructions that are specific to the individual message.

Figure 3-19 shows the Select Instruction Text Type window.

Figure 3-19 Select Instruction Text Type Window

For information about the fields in the Select Instruction Type
window, see the OVO Administrator’s Guide to Online Information.
Chapter 3 137

Using the Integration Capabilities of the OVO Motif-based GUI
Adding Instructions, Annotations, Automatic- and Operator-initiated Actions
When providing instruction text, it is useful to use a common, structured
text format. Possible sections contained in an instruction text might be:

❏ Error number with short error text

❏ Problem description

❏ Problem solution text

❏ Impact

❏ Severity

An example layout is shown in Figure 3-20 which contains the output of
an external script connected to the OVO Instruction Interface:

Figure 3-20 Example of Instruction Text Output
Chapter 3138

Using the Integration Capabilities of the OVO Motif-based GUI
Adding Instructions, Annotations, Automatic- and Operator-initiated Actions
Adding Actions and Annotations to a Message

You can choose whether certain actions are performed when a message is
received. These actions are either:

❏ Operator-initiated actions

An operator-initiated action prompts the operator to start certain
actions manually to solve the problem generating the message.

❏ Automatic actions

An automatic action is initiated as soon as the message is received at
the management server.

The OVO annotation feature can be used to record how and when
problems generating messages were resolved. Annotations can serve as a
useful source of reference for an operator the next time a similar
message is received.

You can choose to add an annotation to a message automatically on the
successful completion of an operator-initiated or automatic action. An
annotation records the starting time, output, exit value, and finishing
time of the action. If an operator-initiated or automatic action fails, an
annotation is automatically supplied.

You can define actions and annotations in the lower part of the
Condition No. window for all message sources, see Figure 3-21.

Figure 3-21 Actions Part of the Condition No Window

For information about the fields in this part of the Condition No.
window, see the OVO Administrator’s Guide to Online Information.
Chapter 3 139

Using the Integration Capabilities of the OVO Motif-based GUI
External Notification and Trouble-ticket Service
External Notification and Trouble-ticket
Service
This section describes how to configure the OVO interfaces to external
notification services and trouble ticket services. The OVO administrator
can define notification services, for example, e-mail, pager, beeper, etc.,
and can setup a schedule as to when each service is to be used. OVO will
forward the message, with a total of 16 parameters, to those services
scheduled for the time at which the message arrives at the management
server.

For trouble ticket services, the exit from OVO is similar, except that no
schedule is defined and the trouble ticket system is always called. The
parameters passed to the trouble ticket system are the same as for
notification. Please see the OVO Administrator’s Reference for a list of
parameters and example values.

External notification is a unidirectional communication from the OVO
management server to the notification services. With trouble ticket
systems, bidirectional communication with OVO allows the trouble ticket
system to obtain additional information about the message, to add
annotations, or to acknowledge the message it received.

Example Script

To show you how to call an external notification service or trouble ticket
system, OVO provides the following example script:

/opt/OV/bin/OpC/extern_intf/ttns_mail.sh

This script sends an email to all operators responsible for the message.
Chapter 3140

Using the Integration Capabilities of the OVO Motif-based GUI
External Notification and Trouble-ticket Service
Guidelines for Writing Scripts and Programs

When writing your script or program, follow these guidelines:

❏ Default Directory

For scripts and programs calling external interfaces, you can use the
following default directory provided by OVO:

/opt/OV/bin/OpC/extern_intf

CAUTION If you place your scripts and programs in this directory, they will be
erased when you de-install OVO.

❏ Shell Scripts

If your script is a shell script, the first line must contain a statement
such as the following:

#!/usr/bin/sh

This statement ensures that the shell for which your script is
designed is used during execution.

CAUTION If the first line of your shell script does not contain this statement,
the execution of your script or program may fail.

❏ Default Parameters

OVO sends its own message parameters to the external interface.
You may not use a command that requires additional parameters.
For a list of the parameters provided by OVO, see the OVO
Administrator’s Reference.

Defining Notification Services

Before specifying notification services, you must define a schedule that
specifies which of the available notification services is to be used at a
particular time (day, week, hour, and so on). You can define this schedule
in the Notification Schedule window by selecting Actions:
Utilities->Notification Service... from the Node Bank menu.
Chapter 3 141

Using the Integration Capabilities of the OVO Motif-based GUI
External Notification and Trouble-ticket Service
If required, you can even specify a different notification service for
different days of the week. OVO disables the notification service for each
day on which you do not define a schedule.

Figure 3-22 shows that two different types of notification service have
been configured, and a schedule for Monday and Tuesday has been
defined. If the notification schedule was left in this state, external
notification would be done only on Mondays and Tuesdays, even if a
message had Notification enabled.

Figure 3-22 Notification Schedule Window
Chapter 3142

Using the Integration Capabilities of the OVO Motif-based GUI
External Notification and Trouble-ticket Service
You can set up the notification services to be scheduled in the
Notification Methods window. You can open this window by clicking
on the [Modify] button in the Notification Schedule window. To set
up a notification service, you need to supply a name for the service, and
the pathname of the program or shell script that is called to perform the
notification. The program or shell script must be able to accept the
parameters that are provided with the call, see the OVO Administrator’s
Reference for a list of parameters..

Figure 3-23 Notification Methods Window
Chapter 3 143

Using the Integration Capabilities of the OVO Motif-based GUI
External Notification and Trouble-ticket Service
Figure 3-24 shows the window used to define the schedule for a
particular day. You can access this window by clicking on the relevant
day button in the upper part of the Notification Schedule window.
For each day of the week, you can specify which notification services to
use at what time.

Figure 3-24 Schedule for Day Window
Chapter 3144

Using the Integration Capabilities of the OVO Motif-based GUI
External Notification and Trouble-ticket Service
Defining Trouble Ticket Services

To define trouble ticket services, select Actions: Utilities->Trouble
Ticket... from the Node Bank menu. This opens the Trouble Ticket
window shown in Figure 3-25.

Figure 3-25 Trouble Ticket Window

You can use this window both to enable the use of a trouble ticket
system, and to specify which program forwards the message to the
trouble ticket system.

Manually Forwarding to Trouble Ticket or
Notification Services

In some situations, OVO operators may need to forward messages to a
trouble ticket or notification service manually, if these features are not
enabled for these messages. To do this, you can configure an application
in the operator’s Application Desktop that determines which messages
are currently selected in the active Browser, and forwards these
messages to the trouble ticket system. In this case, the predefined OVO
interface to the trouble ticket systems is not used, instead, this
mechanism exploits the capability of OVO to pass the IDs of currently
selected messages to an application in the Application Desktop as
parameters.

OVO operators can select the relevant messages in the Message Browser,
double-click on the appropriate application icon in their desktop, and
forward messages to an application.
Chapter 3 145

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Integrating External Applications into the
OVO GUI
This section describes various ways to integrate applications into the
graphical user interface of OVO. You can use this section to compare the
different methods and then choose the most suitable for your application.

NOTE For customers who have third-party applications integrated into HP
OpenView Network Node Manager, and integrators who provide
integration packages specifically for NNM, see “Using NNM-integrated
Applications With OVO” on page 161.

GUI Integration Points and Methods

OVO provides the following points from which applications can be
launched:

❏ The Application Desktop is the recommended part of a user’s
environment from which to start an application.

❏ The Menu Bar can be extended to contain additional menus, menu
items, or submenus.

❏ The Popup Menus are similar to the main menus but are displayed
by clicking on a submap symbol.

❏ The Toolbar provides a set of icons that can be used to start
frequently used applications.

The OVO Application Desktops can be customized individually for the
responsibilities of different OVO users. The nodes on which an
application is to be performed can either be predefined by the OVO
administrator when setting up the application, or it can be determined
by selecting the desired nodes in the Node Bank. The OVO operator can
also modify the default application attributes using the Customized
Startup window.

You can group similar applications together into logical units called
Application Groups. This prevents the application desktops from
becoming too cluttered.
Chapter 3146

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Figure 3-26 OVO Application Bank

Almost any application can be integrated into the Application Desktop.
Applications with an X-window user interface run in an X-window
environment, others run in terminal windows.

NOTE To display the NNM GUI through the OVO Java GUI, you must have an
X Window System server running on the OVO Java GUI client system.

You can also add your own entries into the OVO menu structure. The
highest-level menus describe generic functionality; submenus describe
specific functionality.
Chapter 3 147

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Figure 3-27 OVO Multi-level Menus

For each new menu item, there must be a corresponding action or
sub-menu. You will need to use application registration files (ARFs)
to associate programs with menu selections.

Menus can be enabled or disabled depending on certain selection rules
which specify the type and number of nodes that must be selected in a
map window before a menu item becomes active. Inactive menus are
automatically “grayed out”.

Toolbars provide a quick, intuitive means of invoking actions. OVO
provides a default set of toolbars for invoking actions such as panning or
selecting the root map. When an application is added to an OVO
environment, it can add icons into existing toolbars, or create
window-specific toolbars and icons.

Menu and Toolbar items can be targeted for display on submaps based on
the purpose or context of the submap. Submaps can filter which menu
and toolbar items are actually visible. When a submap is created it
determines its context which is a list of identifiers. For example, a
particular submap intended for printer management might have a
context of wantPrinterMenus , NoGeneric . This submap context would
limit menu items and toolbar buttons to those that were targeted using
the wantPrinterMenus context identifier.
Chapter 3148

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
There are two main methods by which an application can be integrated
into OVO:

❏ If the application is already integrated into the HP OpenView
windows, then an application registration file (ARF) exists and the
application is referred to as an “OpenView windows application”.

These applications are integrated into OVO either as OV
Applications or as OV Services.

❏ OVO provides a powerful mechanism to integrate applications into a
user’s Application Desktop. An application integrated this way is
referred to as an OVO Application. If an application is to be
integrated for the first time, this is the preferred method.

The following table shows basic characteristics of the different
application integration types:

Table 3-1 Comparison of Application Integration Types

OVO Application OpenView
Application OpenView Service

Application
accessible to
user by:

• Icon in Application
Desktop.

• Icon in Application
Desktop.

• Push button in
Toolbar.

• Menu Bar

• Push button in
Toolbar

• Started
automatically as
daemon when
operator logs in.a

Application
information
provided by:

• OVO GUI • Application Registration File (ARF)

• OVO GUI

Application
runs on:

One or more preconfigured or selected node(s) including the management
server.

Runs as user: • Predefined at
configuration.

• Can be overwritten
by operator using
“customized setup”.

• UNIX user of operator who started the OVO
GUI.

• Can be predefined at configuration.

• Any user information can be entered before
launching application.
Chapter 3 149

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Output method: • Terminal

• Window displayed
by OVO.

• X-application

• Terminal

• X-application

a. The IP Map application is an example of an application integrated as an OpenView
service.

Table 3-1 Comparison of Application Integration Types (Continued)

OVO Application OpenView
Application OpenView Service
Chapter 3150

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Advantages Gained by Integrating OVO Applications

It is recommended to incorporate an application as an OVO Application
for the following reasons:

❏ The Application Desktop is the main place for applications that
belong to the operators working environment and responsibilities.

❏ Many applications can be easily maintained and accessed by way of
icons and application groups in the Application Desktop.

❏ OVO applications can run on remote nodes without the need to
specify or transmit passwords over the network, or maintain .rhost
files, which is not the case for OV applications. The action agents of
the target nodes are informed via RPC and switch locally to the
configured user.

❏ All information about the application is contained in the central OVO
database and can be downloaded using the administrator’s GUI. It is
not necessary to add an ARF file to an integration package
containing the downloaded information, simplifying the process of
building integration packages and making it less prone to errors.

❏ All information about an application can be accessed and edited
using the OVO GUI. If a new OVO application is configured, the
configuration information is immediately checked and the OVO
application can be tested by the administrator. In contrast, when
configuring OV applications, an ARF file has to be written that may
contain syntax- or semantic errors and only takes effect at the next
startup of the user interface.

❏ OVO applications allow an OVO user to change the parameters of the
application in a controlled way using the customized startup facility.
Chapter 3 151

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Integrating OVO Applications

OVO applications are those that are integrated directly into OVO rather
than by way of NNM. For these applications you can:

❏ Invoke them on the OVO management server and on all OVO
managed nodes that are configured as OVO controlled nodes.

❏ Invoke them on several nodes in parallel.

❏ Change the list of target nodes, by selecting different nodes in the
Managed Nodes window.

❏ Customize the start-up defaults. You can modify the following
attributes:

• List of target nodes

• Command parameters

• User ID to use for execution

• User’s password

❏ Allow the retrieval of the list of selected nodes using the reserved
variable $OPC_NODES.

❏ Do not have or make use of OV Application Registration Files (ARFs)

You can modify the configuration of an OVO application in the
Add/Modify OVO Application window. You can test the application
immediately after configuration, and add parameters to the application
that may or may not be altered by the operator.

The way an OVO application makes use of windows can be used to
further classify OVO applications:

Table 3-2 Windows Used by OVO Applications

Type of OVO Window Examples Password Required

No Window X applications e.g. npuix ,
xomniback , or when output
is not of interest

No

Output Only Window ps(1) , lpstat(1) , df(1) No

Input/Output Window sam, vi , more, npui , ftp ,
nslookup

Yes
Chapter 3152

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
For all three types of OVO application, you must define a user name. In
addition, for applications that use an input/output window, the user’s
password is required. The user name, used to run the application, can be
different for the same application for each of the operators.

The following is a description of the user/password mechanisms used in
OVO:

OVO application with No Window option (e.g. X application):

You need to define a user name but no password. When starting the
application, OVO sends an RPC request to the action agent. The
action agent, always running as root, switches to the appropriate
user on the managed node, sets the DISPLAY variable, and starts
the application.

This is mainly used for X-applications, however, you can also use it
for terminal applications if a terminal emulator is available on the
managed nodes. In this case, you need to specify this in the
application call, for example:

/usr/bin/X11/hpterm -e “ls -l /tmp”

OVO application with Output only - Window option:

You need to define a user name but no password. When starting the
application OVO opens a dialog box on the display and sends an RPC
request to the action agent. The action agent locally switches to the
appropriate user, executes the application, sends the output, using
an RPC, back to the management server and displays it in the dialog
box.

This is appropriate for the integration of applications which do not
require interaction, for example, operating system commands like
ps , bdf , and so on.

OVO application with Input/Output - Window option:

You need to define both a user name and a password. When starting
the application, OVO opens a terminal locally on the management
server and uses an rlogin mechanism, with the defined user and
password, to connect to the managed node. The user profile is
executed and the application is started. When the application has
finished, the connection is closed automatically after the operator
has pressed Return or other signal.
Chapter 3 153

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
You can avoid specifying a password if you define an .rhosts entry on
the managed node with the specified user name. This method should
only be used for terminal applications, and if no terminal emulator is
available on the managed node. This is because:

• the need for specifying passwords or rhosts entries is difficult to
maintain and, in most cases, is unlikely to meet the security
policies of the customer, and

• there is an inherent lack of security in the rlogin mechanism, as
it is possible to get shell access by sending a signal at the right
time.
Chapter 3154

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Integrating HP OpenView Windows Applications

HP OpenView windows applications are applications already integrated
into the HP OpenView platform. These applications are defined through
OV application registration files (ARFs), and may then be integrated
into OVO. Depending on the integration method, these applications are
referred to as either OV Applications or OV Services.

Common characteristics of these applications are as follows:

❏ they are already integrated into HP OpenView windows

❏ their functions are defined in their Application Registration File
(ARF), and not in the OVO Add/Modify OV Application window or
the OVO Add/Modify OV Service window

❏ they are the only means of integrating map applications

❏ they are always started on the OVO management server, and rely on
standard UNIX remote commands (e.g., remsh) to be started on
systems other than the server

❏ they are restricted to startup on Customized OV Application Call
Window and to the functionality defined by the window. (In
particular, only objects passed to the OpenView application can be
modified.)

❏ they allow the retrieval of the list of selected objects by using
$OVwSelection , $OVwSelection1 and so on. The selection name of
the object is passed to the OpenView application. Exceptions are the
following objects, which may not be passed:

• OVO Message Groups

• OVO Applications and Application Groups

• OVO Operators

• OVO External Nodes

After configuration, the administrator must normally restart the OVO
GUI before invoking an OpenView application. This is true whether the
application is integrated as an OV Application or as an OV Service.

OVO does not provide a window for OpenView applications. The
application itself is responsible for establishing its own output methods.
Chapter 3 155

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
HP OpenView Applications

HP OpenView applications integrated as OV Applications present the
related application as an icon in the Application Desktop.
Double-clicking on the icon starts that action as described in the ARF.

Note that OV Applications do not present the related menu items in the
OVO submaps, even if the corresponding ARF contains menu items.
Typical OV Applications are MIB Browser for SNMP, or HP OpenView
OmniBack II.

Each action defined in the ARF must be integrated as a separate OV
Application. This allows you to tailor and customize complex OV
applications to the specific requirements of a user. You can specify a
different bitmap/symbol for each action.

When the operator starts an application from the Application Desktop,
the call is passed to the user’s ovw session, which always runs under the
UNIX user ID of the operator who started the OVO GUI.

HP OpenView Services

For HP OpenView Services, the integration procedure is very similar to
OV Applications but the operator does not see an icon on the Application
Desktop. This means that the OV Service is either started automatically
when the operator logs in to OVO, or it is started on demand from a
menu or toolbar.

In the administrator’s Application Desktop, OV Services are represented
by icons, however, unlike OV applications, they cannot be invoked by
double-clicking. If required, you can invoke and access services from the
menu bar. Although services cannot be invoked by clicking on an icon,
they do appear as icons in the administrator’s Application Desktop, and
may be distributed to operators by copying as usual.

An OV Service allows you to integrate OpenView applications which
start daemons and/or should be integrated in the menu bar. This means
that OVO operators have no graphical representation of their assigned
services, but they might see or access additional submaps if the OV
Service corresponds to an OpenView map application.

If menus are defined in the OV Application Registration File (ARF),
these menu items will be integrated in the menubar of the OVO submaps
for the operator.
Chapter 3156

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Integrating Applications into the Application Desktop

This section describes how to define the following using the OVO GUIs:

❏ OVO application(s)

❏ OV application(s)

❏ OV service(s)

For each OV Application or OV Service that you want to define, OVO
needs the OV ARF in addition to the specifications done in the GUI. The
OV ARF should reside below one of the following two directories:

/etc/opt/OV/share/registration/< lang >

/etc/opt/OV/share/conf/OpC/mgmt_sv/appl/registration/< lang >

Where <lang > is the language variable for the installation; this is C for
an English language installation.

NOTE When planning the packaging of an integration, it is important to note
that GUI specifications can be downloaded but ARFs cannot.

With an English language version of OVO, all registration files in the
following directory are not uploaded by opccfgupld(1M) :

.../APPLICATION/OVREGFILES/japanese

The opccfgupld(1M) utility saves the GUI specifications in the database
and copies the ARFs to the directory:

/etc/opt/OV/share/conf/OpC/mgmt_sv/appl/registration/<lang>

With a Japanese language version of OVO, the registration files in both
of the following directories are uploaded:

.../APPLICATION/OVREGFILES/japanese

.../APPLICATION/OVREGFILES/C

The registration files in the C directory are used if the GUI is started
with the LANG variable set to C, and conversely, the registration files in
the japanese subdirectory are used when the GUI is started with the
LANG variable set to japanese .
Chapter 3 157

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Adding OVO Applications

Use the Add OVO Application window shown in Figure 3-28 to add an
OVO application. To access this window, select Actions:
Application->Add OVO Application... from the menu bar of the
Application Bank window.

Figure 3-28 Add OVO Application Window

For information about the fields in the Add OVO Application window,
see the OVO Administrator’s Guide to Online Information.
Chapter 3158

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Adding OpenView Applications

You can add an OV application in the Add OV Application window
shown in Figure 3-29. To access this window, select Actions:
Application->Add OV Application... from the Application Bank
window.

Figure 3-29 Add OV Application Window

For information about the fields in the Add OV Application window, see
the OVO Administrator’s Guide to Online Information.
Chapter 3 159

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Adding an OpenView Service

You can add an OV service in the Add OV Service window shown in
Figure 3-30. To access this window, select Actions: Application->Add
OV Service... from the Application Bank window.

Figure 3-30 Add OV Service Window

For information about the fields in the Add OV Service window, see the
OVO Administrator’s Guide to Online Information.

The application specifications entered into OVO with the GUI can be
downloaded into the APPLICATIONS directory. You can choose either to
download single applications or services, or a whole application group.
The syntax for the application description files and some examples are
provided in “Configuration Files for Applications” on page 323. This
syntax is created automatically when downloading. The download utility
does not overwrite files in the .../APPLICATIONS directory, but
generates a file appl0 . If this already exists, then the file names appl1 ,
appl2 and so on are used.

Remember to add the ARFs to the subtree
.../APPLICATIONS/OVREGFILES , before you build your application
integration fileset.
Chapter 3160

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Using NNM-integrated Applications With OVO

This section describes how applications that are already integrated into
NNM can be accessed by way of OVO, or can be integrated in different
ways. Applications that are part of NNM are referred to as “NNM
Applications” whereas applications that are manually added are
referred to as “Additional Applications”.

As opposed to NNM, which does not support user roles, applications
integrated into the OVO GUI can be assigned individually by the
administrator to dedicated operators. Each operator has his/her own
customized working environment.

NNM Applications in OVO

All standard NNM applications that present menu items in NNM are
automatically available to the OVO administrator in two ways, either:

❏ Contained in logical groups as OV Application icons.When these
OV Applications are assigned to an operator, they are displayed as
icons in the customized Application Desktop of that operator.

❏ Contained in the Application Bank under the OV Services
application group as an OV Service. When these OV Services are
assigned to an operator, they do not appear in the Application
Desktop, but as menu items available from any of the operator’s
IP-Maps.

The OV Services application group also contains daemon
applications that do not present menu items in NNM, for example,
IP-Map.

There are also three NNM-specific applications contained in the X-OVw
application group in both the OVO administrator and operator GUIs.
This default application group contains the following applications:

❏ Start OVw . This starts an ovw session on the OVO management
server or, if available, on a remote NNM system.

❏ Highlight Selected Node . This application maps the selected node
to an NNM system and highlights the node in an ovw session of that
NNM system.

❏ Highlight Message Node . This maps the node related to a selected
message to an NNM system, and highlights the node in an ovw
session of that NNM system.
Chapter 3 161

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
In addition to the standard user (opc_op), OVO provides a predefined
network user (netop) and a predefined network administrator (itop):

❏ The netop environment allows the network user to perform all
actions that a typical network (NNM) operator would have available,
without the OVO configuration capabilities.

❏ The itop environment allows the network administrator to perform
all actions that a typical network (NNM) administrator would have
available with all configuration capabilities together with the remote
collection station applications and some standard system
management functions.

An OVO user can be given access to an NNM application when the
administrator assigns an OV Application or OV Service to him/her by
copying the application from the administrator’s Application Bank to the
operator’s Application Desktop.

Always consider the following points when assigning applications to an
operator:

❏ Always place applications in the operator’s Application Desktop.

Whenever possible, it is recommended to assign OV Applications in
preference to OV Services.

❏ In addition, you can add applications to the menus in the operator’s
environment by assigning OV Services.

❏ Never integrate applications into menus when they are not already
integrated as icons in the operator’s Application Desktop.

In general, an OVO user, excepting netop and itop, does not have the
IP-Map application assigned by default and therefore does not
automatically have access to the IP-Map submaps. An operator can be
given access to the IP submaps when the administrator assigns the OV
Service IP-Map to his/her Application Desktop. The operator will not see
the OV Service IP-Map in the Application Desktop but will see the IP
submaps themselves.
Chapter 3162

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Structure of NNM Applications in OVO

In the Application Bank similar applications are grouped together into
Application Groups. NNM applications are typically grouped into the
following application groups: Net Activity, Net Config, SNMP Data,
NNM Tools, OV Services, and X-OVw. Applications that use the symbol
class SW_Utils are always started on the management server. For a list
of the various application groups and applications, see the OVO
Administrator’s Reference.

In the OVO Java GUI, ovw applications appear in all application menus;
in the Motif GUI, they appear in the Application Bank/Desktop.

Integrating Additional NNM Applications into OVO

Applications integrated into NNM, but which are not part of NNM, are
not automatically available in the Application Bank of the OVO
administrator or in the Application Desktop of an OVO user.

To integrate this type of application, do the following:

❏ If the application does any trap configuration, for example,
registering for incoming traps, this configuration can be used in OVO
by running a script.

❏ If the application has its own daemon process that creates new
submaps (like IP-Map) then add it manually to the Application Bank
as an OV Service OVO administrator. This OV Service can then be
assigned to the desired operator.

❏ If the application presents menu items in NNM the OVO
administrator can create them manually as OV Applications. When
the application is assigned to an operator, it appears as an icon in the
Application Desktop of that operator.

❏ If an application presents menu items in NNM the administrator can
also create a new OV Service application. When the application is
assigned to an operator, it appears as a menu item.

An integrator can incorporate an application as appropriate and then
provide an integration package that can be easily uploaded into an
existing OVO installation, using opccfgupld(1M) and opccfgdwn(1M) .
The creation of an integration package is described in Chapter 8,
Creating and Distributing an Integration Package,.
Chapter 3 163

Using the Integration Capabilities of the OVO Motif-based GUI
Integrating External Applications into the OVO GUI
Chapter 3164

4 Using the OVO Application
Programming Interfaces
Chapter 4 165

Using the OVO Application Programming Interfaces
In This Chapter
In This Chapter
This section describes the concept and facilities of the application
programming interfaces (APIs) provided with the OVO Developer’s
Toolkit.
Chapter 4166

Using the OVO Application Programming Interfaces
Overview of the OVO APIs
Overview of the OVO APIs
OVO provides several APIs to OVO functions which enable a
knowledgeable user to enhance the operations and problem management
of OVO. This chapter provides an overview of all available APIs—they
are described in more detail in the OVO Developer’s Reference. The APIs
can be further subdivided into the:

❏ OVO Operator APIs

The OVO Operator APIs provide a set of functions that allow you to
operate on OVO messages, message events, and application
responses, for example to own or disown a message.

This group of APIs also includes the Interface API. The Interface API
provides a set of functions that allow access to OVO by opening one of
the following interfaces:

• Server Message Stream Interface

• Agent Message Stream Interface

• Legacy Link Interface

• Application Response Interface

• Message Event Interface

The OVO Interfaces use the Interface API functions to register with
OVO to receive data. When the requested data is available, OVO
sends it to the instance of the interface which made the request.

❏ OVO Configuration APIs

The OVO Configuration APIs provide a set of functions to configure
OVO data directly in the database. The functions allow you, for
example to configure new OVO templates or managed nodes, or to
modify existing applications or users. In addition, functions are
available to control access to OVO data, and to distribute your
configuration changes to the managed nodes.
Chapter 4 167

Using the OVO Application Programming Interfaces
Overview of the OVO APIs
Figure 4-1 on page 169 gives an overview of the OVO User APIs, and the
groups of functions included in each API.

The OVO Developer’s Toolkit also provides interfaces to the HP
OpenView NNM platform functions: OpenView Windows and the
OpenView SNMP System. These integration facilities are described in
Chapter 7, “Integration Facilities of the HP OpenView NNM Core
Platform.”.

For a list of man pages available with the OVO Developer’s Toolkit, see
Appendix C, “About OVO Man Pages.”.
Chapter 4168

Using the OVO Application Programming Interfaces
Overview of the OVO APIs
Figure 4-1 Overview of the OVO User APIs

OVO Operator API

OVO Configuration API

Data API

Interface API

Server Message API

Agent Message API

Agent Monitor API

Connection API

Application Configuration API

Application Group Configuration API

Message Group Configuration API

Message Regroup Condition Configuration API

Node Configuration API

Node Hierarchy Configuration API

Template Configuration API

User Profile Configuration API

User Configuration API

Distribution API

Synchronization API
Chapter 4 169

Using the OVO Application Programming Interfaces
Overview of the OVO APIs
Figure 4-2 illustrates the information exchange between OVO and the
APIs.

Figure 4-2 Overview of OVO APIs on the Management Server and Managed
Nodes

Open View
Windows

SNMP

OVO Management Server

OVO Managed Node

Running OVO Agent

OVO
Agent

OVO

Operations &
Problem

Management

(OVO Specific
Processes,

OVO Database
Tables, etc)

SNMP
Daemon

OVO
Messages

Managed Object

Without OVO Agent
(e.g., Printer, Router)

SNMP
Daemon

HP OV NNM Platform

OV SNMP
System

OVW
API

SNMP
APIs

APIs on the OVO
Server:

Server Message Stream
Interface

Legacy Link Interface

Application Response In-
terface

Message Event
Interface

OVO Data API

OVO Interface API

Server Message API

Application API

Configuration API

APIs on the OVO Agent

Agent Message Stream
Interface

Agent Message API

Agent Monitor API

Process
Running on
Management
Server

Process
Running on
Managed
Node
Chapter 4170

Using the OVO Application Programming Interfaces
Overview of the OVO APIs
Table 4-1 on page 171 gives an overview of the location of the OVO APIs.

Table 4-1 Location of the OVO APIs

API Location

OVO Operator APIs

OVO Data API Management Server and Managed Node

OVO Interface API Management Server and Managed Node

Server Message API Management Server

Agent Message API Managed Node

Agent Monitor API Managed Node

OVO Interfaces

Server Message Stream Interface API Management Server

Agent Message Stream Interface API Managed Node

Legacy Link Interface API Management Server

Application Response Interface API Management Server

Message Event Interface API Management Server

OVO Configuration APIs

Connection API Management Server

Application Configuration API Management Server

Application Group Configuration API Management Server

Message Group Configuration API Management Server

Message Regroup Condition Configuration API Management Server

Node Configuration API Management Server

Node Hierarchy Configuration API Management Server

Template Configuration API Management Server

User Profile Configuration API Management Server
Chapter 4 171

Using the OVO Application Programming Interfaces
Overview of the OVO APIs
User Configuration API Management Server

Distribution API Management Server

Synchronization API Management Server

Table 4-1 Location of the OVO APIs (Continued)

API Location
Chapter 4172

Using the OVO Application Programming Interfaces
The OVO Interfaces
The OVO Interfaces
The following interfaces to OVO can be accessed by way of the Interface
API:

Interface Description

Server Message Stream Interface Enables OVO messages to be output
from the server message stream to an
external application.

Agent Message Stream Interface Enables OVO messages to be output
from the agent message stream to an
external application.

Legacy Link Interface Provides a link between OVO and
managed nodes for which OVO
agents are not currently available.

Application Response Interface Allows external applications to
receive application responses from
OVO applications that have been
started.

Message Event Interface Allows external applications to
receive message events to display
OVO messages, for example in a GUI.

NOTE The same API, the Interface API, is used for all interfaces. The interface
type must be specified as a parameter of the API function call to
distinguish between the various interfaces.

Figure 4-3 on page 174 shows how the OVO Interfaces interact with the
internal message stream of the OVO management server and managed
nodes. Messages are received into the internal message stream,
processed, then stored in the message database and displayed in the
Message Browsers of the GUI. The OVO Interfaces on the management
server are ordered from left to right to show that they tap the internal
message stream at different points, and that they can interact in
different ways.
Chapter 4 173

Using the OVO Application Programming Interfaces
The OVO Interfaces
Figure 4-3 Interaction of OVO Service APIs with the Server/Agent
Message Flows

The Agent Message Stream Interface, the Agent Message API, and the
Agent Monitor APIs are available on the managed nodes, and all other
APIs are currently available on the management server only. See
Table 4-1 on page 171 for more information.

Messages

Server Message
Stream Interface

Application
Response
Interface

OVO Management Server

Action
Responses

Action
Requests

Managed Node
Running OVO
Agent

Internal Message Stream

Legacy Link
Interface

OVO DB

OVO GUI

Messages
(copy or
divert)

Agent Message
Stream Interface

Detect events;
filter;

Generate
messages

Messages

Action
Requests

Action
Responses

Messages

Messages
Copy or
Divert

Messages

Message
Stream

Message Event
Interface
Chapter 4174

Using the OVO Application Programming Interfaces
The OVO Interfaces
Overview of the Server Message-Stream Interface

The OVO management server’s message-stream interface provides
access to the internal message stream of the OVO management server.
Processes may connect to the message-stream interface on OVO’s
management server either in parallel or in series. Multiple connections
to the MSI are organized by means of order numbers. Assigning an order
number to each MSI connection allows OVO’s message manager to
determine at which point in the serial chain those external applications
which are connected to the MSI receive the messages passing through.
For example, an external application connected to the MSI can choose
either to receive messages in parallel with other connections or after the
messages have been processed by other applications in the serial chain,
such as an event-correlation (EC) engine, and passed back to the MSI.

Ideally, all messages should pass through the event-correlation engine
first: not only does this reduces the overall number of messages in the
MSI after the EC instance, it also means that subsequent MSI instances
receive more useful messages. A Trouble Ticket service should be
connected at the end of the serial chain so that it gets only those
messages which are not suppressed by other MSI connections.

The routine to open an instance of the OVO interface first requires a
parameter that specifies the type of interface to be accessed (server MSI,
legacy-link interface, etc.) followed by a user-defined instance name and
an order number. This information is stored in the configuration file
/etc/opt/OV/share/conf/OpC/mgmt_sv/msiconf , which is described
in more detail in “OVO’s Serial MSI Configuration File” on page 177.
Entries in the MSI configuration file use the following format:

<MSI instance name> <order no.>
<MSI instance name> <order no.>

The term “user-defined” implies a potential naming conflict if different
applications specify the same instance string. This problem is similar to
the possible file naming conflicts known for operating systems. As the
instance name is related to the file names used for the interface message
queues, and OVO supports short file name OS versions, the length of the
string is restricted to 12 ASCII characters (two characters are required
for internal handling). The interface ID returned by the open routine is
then used in subsequent calls to the other API functions.
Chapter 4 175

Using the OVO Application Programming Interfaces
The OVO Interfaces
The routines return an error/ok code, with errors being logged in the file:

/var/opt/OV/log/OpC/mgmt_sv/opcerror

Access to the Server Message-stream Interface

If an application registers at the Message Stream Interface, OVO checks
the setting of the Enable Message Stream Interface checkbox in the
Server Configuration window. If the interface is enabled, the message
manager passes the message down to the next check. If the message
itself is also allowed for output, it is written to the interface queues of
OPCSVIF_EXTMSGPROC_READ and
OPCSVIF_EXTMSGPROC_READWRITE. If the option button Copy
Message is selected, a copy of the message is immediately passed back to
the internal flow of the management server, see Figure 4-7 on page 188.

To allow the encapsulation of the opcif_write() routine in a command
that can be used in shell scripts, it is possible to open the write queue of
the read/write interface in a separate process using another interface
type.
Chapter 4176

Using the OVO Application Programming Interfaces
The OVO Interfaces
OVO’s Serial MSI Configuration File

The name of each MSI instance and the order number assigned to it are
stored in the configuration file
/etc/opt/OV/share/conf/OpC/mgmt_sv/msiconf . Both parallel and
serial connections from the MSI are possible at any point in the serial
chain. The start number 0 (zero) is allocated by default to the
event-correlation manager, opcecm. Ascending or descending order
numbers indicate a serial connection: order numbers of equal value
indicate a parallel connection.

The message manager reads the configuration file whenever an MSI
instance opens a connection to the server MSI and then distributes the
messages according the values it finds in the file for the applications or
instances registered. Any MSI instance that is not listed in the
configuration file is assigned the order number 0, which means it
receives messages in parallel with the event-correlation agent process,
assuming the event-correlation agent is running. OVO allows you to
assign order numbers between -127 and 127: gaps are also allowed in the
sequence. You can change the order of individual instances while the
message manager is running: the message manager reads the
configuration file each time an instance connects (or reconnects) and uses
the new value it finds. However, the message manager continues without
interruption if an MSI instance disconnects itself or dies suddenly.

NOTE The message manager ignores entries in the file
/etc/opt/OV/share/conf/OpC/mgmt_sv/msiconf that do not conform
to the format described and writes them instead to the opcerror log file.
Chapter 4 177

Using the OVO Application Programming Interfaces
The OVO Interfaces
Modifying Message IDs

Generally speaking, if an MSI instance modifies a message, a new
message-ID is generated when the instance sends the message back to
the MSI. However, there are exceptions: no new message-ID is generated
if the message has either been diverted to the MSI (that is, no other copy
of the message exists either inside or outside the MSI) or an MSI
instance sends an unmodified message back to the MSI. If two parallel
MSI instances receive the same message and both subsequently send it
unchanged back to the MSI, multiple versions of the same message with
the same message ID exist in the MSI. As a consequence, any MSI
instance connected further down the serial chain receives multiple copies
of the message with the same message ID.

NOTE It is recommended you use the serial MSI feature if you or your
applications require read/write access to messages.

You can control the generation of message IDs by setting the variable,
OPC_MSI_CREATE_NEW_MSGID in the opc[sv]info file to the following
values:

1 enable OVO A.04.00 behavior

2 enable OVO A.05.00 and higher behavior (Default)

3 custom: no automatic creation of new message IDs

You can suppress the generation of new message IDs
generally (for example, parallel messages, copied
messages, and so on) using opcdata_generate_id()
or opcdata_set_str() . For more information on these
calls, see the OVO Developer’s Reference.
Chapter 4178

Using the OVO Application Programming Interfaces
The OVO Interfaces
Serial MSI Configuration: Example Scenario

Figure 4-4 on page 179 illustrates how messages are distributed in a
scenario where five processes are connected to the MSI: counter ,
opcecm, procA , procB and loadmon (load monitor). Incoming messages
go first to counter , then in series to opcecm, then in parallel to both
procA and procB . Finally the message is passed in series to the instance
loadmon . The MSIs that are connected need to be assigned a number for
the configuration to work. The following configuration file represents the
scenario described above:

counter -1

opcecm 0

procA 1

procB 1

loadmon 2

Figure 4-4 Message Distribution in OVO’s Serial MSI

opcecm

Order Number 0

Process A

Order Number 1

loadmon

Order Number 2

Process B

Order Number 1

msg

Counter

Order Number -1

msgMessage Stream Interface
Chapter 4 179

Using the OVO Application Programming Interfaces
The OVO Interfaces
Overview of the Agent Message Stream Interface

The Agent Message Stream Interface allows you to tap the message
flow of an OVO managed node to enable additional message processing
by external applications before a message is sent to the management
server. This can help to reduce the amount of network traffic
considerably. A typical external application might be an event correlation
engine, for example ECS.

Overview of the Legacy Link Interface

The Legacy Link Interface enables you to manage network nodes for
which OVO intelligent agent software is not available, such as legacy
mainframe systems.

This API provides an interface to a process running on the management
server node. This process can send (write) messages, receive action
requests, and send action responses. It must handle all communication
with the network node that lacks the intelligent agent, and it must
ensure that the messages sent to the management server are correct and
complete.

A Legacy Link Interface process running on the management server can
use the Interface API functions to do the following:

❏ Pass messages from a legacy system to the internal message stream
of the management server,

❏ Read action requests from the management server,

❏ Write action responses.
Chapter 4180

Using the OVO Application Programming Interfaces
The OVO Interfaces
Figure 4-5 shows an overview of how to integrate a legacy system using
the Legacy Link Interface. To do this, a legacy link process must be
running on the management server; this process is shaded in gray in the
figure. The legacy link process must manage the communication with the
legacy systems, and also communicate with the management server
processes using the functions of the Legacy Link Interface.

Figure 4-5 Integrating a Legacy System Using the Legacy Link
Interface

Legacy Link

Process

OVO Management
Server Processes

A
P
I

messages

action requests

action responses

OVO Management Server

communicationManagement
System for

Legacy
Platforms

MVS VMS AS/400
Chapter 4 181

Using the OVO Application Programming Interfaces
The OVO Interfaces
Structure of the Legacy Link Process

Figure 4-6 is a flowchart to illustrate the order in which the API
functions are used when a legacy system is fully integrated.

The legacy link process in this description is a process that runs on the
management server. This process communicates with the OVO
management server processes using three instances of the interface:

❏ One to send (write) messages to the management server,

❏ One to receive (read) action requests from the management server,

❏ One to send (write) action responses to the management server.

In addition, the legacy link process must establish a bidirectional
communication channel with the legacy system to receive input for
generating messages and action responses, and to pass on action
requests received from the management server.

As soon as the communication channel between the legacy system and
the OVO management server is established, the legacy link process waits
for incoming data from both communication partners.

When incoming data originates from the legacy system, either an action
response or a message is generated and sent to the OVO management
server. If the incoming data originates from the OVO management
server, it is an action request that is processed, then sent to the legacy
system.

Note that action responses confirm that an action has occurred, for
example, an action response might show that an action has been
completed successfully. When immediate local actions are configured, an
action response should be sent to show that an action has completed even
though an action request was not received from the OVO management
server.
Chapter 4182

Using the OVO Application Programming Interfaces
The OVO Interfaces
Figure 4-6 Using the Legacy Link Interface to Integrate a Legacy System

Data From
Legacy

System?

No

Call opcif_open() 3 times

Open 3 interface instances to:
(1) send messages, (2) receive action
requests, (3) send action responses

opcif_read()

Read action request
originating from OVO server

Pass action request to legacy
system

opcif_write()

Write message or action
response to OVO server

START

Yes

Call opcif_close() 3 times

Close all interface
instances

STOP

Establish communication with legacy
system

Wait for incoming data:
- From Legacy System: messages or action
responses

- From OVO server: action requests

No

YesData From
OVO Server?

No

YesTerminate?

opcdata_create(),
opcdata_set_...()

Create and set fields for
either a message or an
action response

Read data originating from
legacy system
Chapter 4 183

Using the OVO Application Programming Interfaces
The OVO Interfaces
Overview of the Message Event Interface

The Message Event Interface enables an application running on the
OVO management server to register for and receive Message Events. A
message event is generated whenever the status of an OVO message
changes in any way. For example, a message event can be generated if an
annotation is added to a message, if the ownership of a message changes,
etc. This is a read-only interface, so that if a message event is sent from a
source, for example, the OVO Message Browser, the application will be
informed.

This interface might be used, for example, by a message viewing
application to update the status of the messages displayed by the
application.
Chapter 4184

Using the OVO Application Programming Interfaces
The OVO Interfaces
Access to Message Events

If an application registers for message events of the
OPCSVIF_MSG_EVENTS interface, the read queue for this interface
instance is created by OVO and accessed by the client, see Figure 4-8 on
page 189. The display manager registers the instance and writes all
desired message events to this queue. To use this interface, it is not
necessary to enable it in the configuration of the management server.
The only restriction is that the application must run with root
permissions on the management server.

You can get the following message events by way of the Message Event
Interface:

Table 4-2 Message Event Flags

Description Event Flag

All message events OPC_MSG_EVENT_ALL

Message attributes changed OPC_MSG_EVENT_CHANGE

Message in active browser acknowledged OPC_MSG_EVENT_ACK

Message in history browser
unacknowledged

OPC_MSG_EVENT_UNACK

Message owned OPC_MSG_EVENT_OWN

Message disowned OPC_MSG_EVENT_DISOWN

Annotation added OPC_MSG_EVENT_ANNO

Annotation deleted OPC_MSG_EVENT_NO_ANNO

Message escalated to another server OPC_MSG_EVENT_ESCALATED

Message escalated from another server OPC_MSG_EVENT_ESCALATED_FROM

Automatic action started OPC_MSG_EVENT_AA_START

Automatic action finished OPC_MSG_EVENT_AA_END

Operator-initiated action started OPC_MSG_EVENT_OA_START

Operator-initiated action finished OPC_MSG_EVENT_OA_END
Chapter 4 185

Using the OVO Application Programming Interfaces
The OVO Interfaces
Overview of the Application Response Interface

The Application Response Interface enables an external application
to register for and receive Application Responses from OVO
applications that have been started by the Application API
opcappl_start() . OVO generates an application response whenever the
status of a running application changes.

Access to Action Responses

The Application Response Interface (OPCSVIF_APPLIC_RESPONSE) works
in a similar way to the Message Events Interface
(OPCSVIF_MSG_EVENTS). When an application registers for application
responses, a queue is opened to which the application responses are
written. The function opcif_read() reads the application responses
from this queue, see Figure 4-8 on page 189.
Chapter 4186

Using the OVO Application Programming Interfaces
The OVO Interfaces
Read and Write Access to the OVO Message Stream

Figure 4-7 on page 188 shows the difference between the three types of
process that access the OVO message interface. Read-write
applications are message processing programs that read messages and
then modify attributes or create new messages depending on the input
flow. Any resulting messages are then written back to the OVO message
stream. Read-only applications only read the message flow, without
writing messages back to the interface. These applications might include
programs for statistical purposes, debugging tools for support, or a
separate presentation layer. Write-only applications are external
agents which send messages to OVO in the same way as the OVO agents.
These messages should go through the Server or Agent Message Stream
Interface.

Figure 4-7 on page 188 shows the message flow within the message
manager and the different queues used for the interface. It also shows
the Message Event flow and Application Response flow within the
display manager. When an external application has opened an interface
instance and registered, the server generates a queue and sends the ID
of the queue to the application. The application can then open and read
that queue.

Figure 4-8 on page 189 shows how the display manager and the other
processes communicate.
Chapter 4 187

Using the OVO Application Programming Interfaces
The OVO Interfaces
Figure 4-7 Overview of the Interface APIs

m
sg

qu
eu

e
m

sg
qu

eu
e

m
sg

qu
eu

e

M
es

sa
ge

 M
an

ag
er

m
sg

al
lo

w
ed

 fo
r

ou
tp

ut

m
sg

qu
eu

e

O
P

C
S

V
IF

_
E

X
TA

G
T

_
M

E
S

S
A

G
E

O
P

C
S

V
IF

_
E

X
T

M
S

G
P

R
O

C
_

R
E

A
D

O
P

C
S

V
IF

_
E

X
T

M
S

G
P

R
O

C
_

R
E

A
D

W
R

IT
E

ou
tp

ut
on

 in
te

rf
ac

e
en

ab
le

d

O
P

C
S

V
IF

_

E
X

T
M

S
G

P
R

O
C

_

W
R

IT
E

(C
or

re
la

tio
n

(C
or

re
la

tio
n

en
gi

ne
;

(w
rit

e
co

m
m

an
d

fo
r

co
rr

el
at

io
n

en
gi

ne
s)

no

ye
s

fr
on

te
nd

)

ou
tp

ut
m

od
e

no
 o

ut
pu

t

co
py

 to
 /

di
ve

rt
 to

co
rr

el
at

io
n

in
te

rf
ac

e)

 c
op

y
to

no
 R

E
A

D
W

R
IT

E
in

te
rf

ac
e

op
en

O
P

C
S

V
IF

_
E

X
TA

G
T

_
A

C
T

IO
N

_

O
P

C
S

V
IF

_
E

X
TA

G
T

_
A

C
T

IO
N

_
R

E
Q

U
E

S
T

R
E

S
P

O
N

S
E

O
V

O
A

ct
io

n
M

an
ag

er

O
V

O
M

es
sa

ge
R

ec
ei

ve
r

ac
tio

n
qu

eu
e

m
sg

ac
tio

n
re

qu
es

t

action rsp. action response

action request

ac
tio

n
qu

eu
e

M
an

ag
ed

N
od

e

(A
ge

nt
 a

s
ex

te
rn

al
 m

es
sa

ge
 s

ou
rc

e)

m
e

qu
eu

e

O
P

C
S

V
IF

_
M

S
G

_E
V

E
N

T
S

(e
xt

er
na

l m
es

sa
ge

pr
oc

es
si

ng
 to

ol
)

ap
pr

es
p

qu
eu

e

O
P

C
S

V
IF

_
A

P
P

LI
C

_

(e
xt

er
na

l a
pp

lic
at

io
n

pr
oc

es
si

ng
 to

ol
)

R
E

S
P

O
N

S
E

D
is

pl
ay

 M
an

ag
er

M
es

sa
ge

 E
ve

nt
s

to
 G

U
Is

to
 G

U
Is

A
pp

lic
at

io
n

R
es

po
ns

es
Chapter 4188

Using the OVO Application Programming Interfaces
The OVO Interfaces
Figure 4-8 Communication With the Display Manager

Display Manager

Inst 1

Inst 2

Interface

Interface

Action Manager

GUI

Display
me

me

me

me

arsp

ctrlq

meq

meq

arspq

Apply for functionality

update config

me
configured

?

arsp
configured

?

update config

arsp

OVO

init()
arsp

Key:

me = Message Event
meq = Message Event Queue
arsp = Application Response
arspq = Application Response

Receiver

Interface
Application

Instance 1

Instance 2

(opcif_open())
Chapter 4 189

Using the OVO Application Programming Interfaces
The OVO Operator APIs
The OVO Operator APIs
This group of APIs enable actions to be directly performed on OVO data.
These APIs include:

API Description

OVO Data API API to get/set information in OVO
data structures. This API is used for:

• OVO Data Structures

• Containers

• Iterators

OVO Interface APOVO API to connect to the OVO Interfaces;
it contains the functions: opcif_*()
and opcreg_*()

Server Message API API on the management server to
perform operations on OVO
messages; it contains the functions:
opcmsg_*() and opcanno*()

Agent Message API API on managed nodes to perform
operations on OVO messages; it
contains the functions:
opcagtmsg_*() and opcmsg()

Agent Monitor API API on managed nodes to send
monitor values to the management
server; it contains the functions:
opcagtmon_* and opcmon() .

In addition to these APIs, the commands opcackmsg(1M) and
opcack(1M) are provided to acknowledge messages from external
sources. The command opcmack(1M) is also available on the managed
node to acknowledge a message for OVO.
Chapter 4190

Using the OVO Application Programming Interfaces
The OVO Operator APIs
The OVO Interfaces and the OVO Operator API —
A Comparison

Figure 4-9 shows the different methods by which the OVO Interfaces and
the OVO Operator API access OVO data. The OVO Interfaces must open
an interface to the information flow on the agent or server; register to
receive or send information; be given permission to receive or send that
information; and finally close the interface. The OVO Operator APIs,
however, access the OVO database directly, without opening an interface
instance, to perform the required action(s).

Figure 4-9 Comparison of the OVO Service APIs and the OVO Operator
APIs

Information
Flow

VO Database

VO Interfaces OVO Operator APIs

External Application
Chapter 4 191

Using the OVO Application Programming Interfaces
The OVO Configuration APIs
The OVO Configuration APIs
This group of APIs accesses OVO configuration data. These APIs include:

API Description

Connection API
API to connect to and disconnect from
the OVO database; it contains the
functions opc_connect() and
opc_disconnect()

Application Configuration API

API to configure OVO applications
and application groups; it contains
the functions opcappl_*()

Application Group Configuration API

API to configure OVO application
groups; it contains the functions
opcapplgrp_*()

Message Group Configuration API

API to configure OVO message
groups; it contains the functions
opcmsggrp_*()

Message Regroup Condition Configuration API

API to configure OVO message
regroup condition; it contains the
functions opcmsgregrp_*()

Node Configuration API
API to configure OVO nodes and node
groups; it contains the functions
opcnode_*() and opcnodegrp_*()
Chapter 4192

Using the OVO Application Programming Interfaces
The OVO Configuration APIs
Node Hierarchy Configuration API

API to configure OVO node layout
groups; it contains the functions
opcnodehier_*()

Template Configuration API

API to configure message source
templates and template groups; it
contains the functions opctempl*()

User Profile Configuration API

API to configure OVO user profiles; it
contains the functions
opcprofile_*()

User Configuration API

API to configure OVO users; it
contains the functions opcuser_*()

Distribution API

Distribution API to distribute agent
configuration to managed nodes

Synchronization API
Accesses, modifies, and synchronizes
OVO configuration data
Chapter 4 193

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Summary of OVO API Functions

Functions of the OVO Data API

Functions to Manipulate OVO Data Structures

See the man page opcdata_api(3) for information about these functions
and opcdata(3) for information about the OVO data-specific structures.

Table 4-3 Overview of the Data Access and Creation Functions

Function Call Description

opcdata_append_element() Appends a copy of the given element to the
container

opcdata_clear() Clears all fields in the container

opcdata_copy() Makes a copy of the specified opcdata structure

opcdata_copy_info_to_actresp() Copies components from a message or action
request to an action response

opcdata_create() Creates an empty data structure of type
data_type

opcdata_delete_element() Deletes the element in the container and frees the
memory

opcdata_free() Deallocates previously allocated memory

opcdata_generate_id() Generates an OVO UUID

opcdata_get_cma() Gets the value of a specified custom message
attribute

opcdata_get_cmanames() Returns a list of all custom message attributes
available for a message

opcdata_get_double() Gets the double value of the specified attribute

opcdata_get_element() Makes a copy of the desired element
Chapter 4194

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
opcdata_get_error_msg() Returns the error description for the given error
code (thread-safe)

opcdata_get_long() Get long value of specified attribute

opcdata_get_str() Gets string value of specified attribute

opcdata_insert_element() Inserts a copy of the given element at given index

opcdata_ladd() Adds an element to the specified list

opcdata_ldel() Deletes an element from the specified list

opcdata_lget_len() Returns the number of an element in the list

opcdata_lget_long() Returns the value of the attribute in the list

opcdata_lget_str() Returns a pointer to the string of the attribute in
the list

opcdata_lset_long() Replaces the value in the attribute of the list
element

opcdata_lset_str() Replaces the string in the attribute of the list
element

opcdata_num_elements() Returns the number of elements of the container

opcdata_report_error() Returns the error description for the given error
code (not thread-safe)

opcdata_set_cma() Sets a custom message attribute (name and
value) for a message

opcdata_set_double() Sets double attribute in data to value

opcdata_set_long() Sets attribute in data to value

opcdata_set_str() Sets string attribute in data to value

opcdata_remove_cma() Removes custom message attributes from a
message

opcdata_type() Returns the opcdata type

Table 4-3 Overview of the Data Access and Creation Functions

Function Call Description
Chapter 4 195

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the OVO Iterator

See the man page opciter(3) for more information about these functions.

Table 4-4 Overview of the Iterator Functions

Function Call Description

opciter_begin() Sets the iterator to the first element and returns its
pointer.

opciter_create() Creates an iterator

opciter_end() Returns past-end-value (== NULL)

opciter_free() Frees memory of the iterator

opciter_get_pos() Returns actual position of the iterator

opciter_next() Returns pointer to the next container element and
increments the iterator

opciter_nth() Returns pointer to the element on the nth position.
The iterator remains unchanged

opciter_prev() Returns pointer to the previous container element
and decrements the iterator

opciter_set_pos() Sets iterator to specified position
Chapter 4196

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
The OVO Data Structures

Table 4-5 Overview of the OVO Data Structures

OVO Data Type Description

OPCDTYPE_ACTION_REQUEST Defines an OVO action request

OPCDTYPE_ACTION_RESPONSE Contains the response of a previously started action

OPCDTYPE_ANNOTATION Contains a message annotation

OPCDTYPE_APPLIC Defines an OVO application

OPCDTYPE_APPLIC_RESPONSE Contains the response of a previously started OVO
application

OPCDTYPE_APPL_CONFIG Contains the configuration information of an OVO
application

OPCDTYPE_APPL_GROUP Contains the configuration information of an
application group

OPCDTYPE_CONTAINER Contains a list of OVO objects

OPCDTYPE_EMPTY Creates an empty structure

OPCDTYPE_INFORM_USER Contains the name of the user and the message

OPCDTYPE_LAYOUT_GROUP Defines an OVO node layout group

OPCDTYPE_MESSAGE Contains information about the attributes of an
OVO message

OPCDTYPE_MESSAGE_EVENT Contains a message event

OPCDTYPE_MESSAGE_GROUP Contains the name and description of an OVO
message group

OPCDTYPE_MESSAGE_ID Contains an OVO message ID

OPCDTYPE_MONITOR_MESSAGE Contains the most necessary information for a
monitor value

OPCDTYPE_NODE Contains limited information about an OVO
managed node
Chapter 4 197

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
OPCDTYPE_NODE_CONFIG Contains a complete definition of an OVO managed
node with all its attributes

OPCDTYPE_NODE_GROUP Defines an OVO node group

OPCDTYPE_NODEHIER Defines an OVO node hierarchy

OPCDTYPE_REGROUP_COND Contains configuration information about a
message regroup condition

OPCDTYPE_TEMPLATE_INFO Contains the most necessary information to define
an OVO message source template or template group

OPCDTYPE_USER_CONFIG Contains the configuration of an OVO user

OPCDTYPE_USER_RESP_ENTRY Contains the responsibility information of an OVO
user

Table 4-5 Overview of the OVO Data Structures (Continued)

OVO Data Type Description
Chapter 4198

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the OVO Service APIs

Functions to Access the OVO Interface

Functions to Access the Registration Conditions

See the man page opcregcond(3) for information about these functions.

Table 4-6 Overview of the OVO Service API Functions

Function Call Description

opcif_close() Terminate a connection to the interface

opcif_get_pipe() Returns pipefd of its interface input queue

opcif_open() Opens an instance of the Server/Agent MSI, Legacy
Link Interface, Message Event Interface, or
Application Response Interface

opcif_read() Read information from specified interface

opcif_register() Register for certain attributes

opcif_unregister() Unregister condition

opcif_write() Writes a message to the interface

Table 4-7 Overview of the Registration Condition Access and Creation
Functions

Function Call Description

opcreg_create() Creates an empty registration condition structure

opcreg_copy() Creates a copy of registration condition

opcreg_free() Deallocates previously allocated memory

opcreg_get_long() Gets value of given field

opcreg_get_str() Gets string value of given field

opcreg_set_long() Sets attribute in regcond to value

opcreg_set_str() Sets string attribute of regcond to value
Chapter 4 199

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Server Message API

Functions to Manipulate Messages

Table 4-8 Overview of the Server Message API Functions

Function Call Description

opcanno_add() Adds an annotation to an existing message

opcanno_delete() Deletes an annotation from a message

opcanno_get_list() Gets a list of all existing annotations for a message

opcanno_modify() Modifies an existing message annotation

opcmsg_ack() Acknowledges an active message

opcmsg_disown() Disown specified message

opcmsg_escalate() Escalates a message to the escalation server

opcmsg_get() Gets detailed information about a message

opcmsg_get_instructions() Gets instructions for a message

opcmsg_modify() Allows to modify the severity and message text of a
given message

opcmsg_own() Own the specified message

opcmsg_select() Highlight specified message in the Message
Browsers

opcmsg_start_auto_action() Starts an automatic action

opcmsg_start_op_action() Starts an operator-initiated action

opcmsg_unack() Unacknowledges a message
Chapter 4200

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Agent Message API

Functions to Send/Acknowledge Messages

Table 4-9 Overview of the Agent Message API Functions

Function Call Description

opcagtmsg_ack() Acknowledges the specified message

opcagtmsg_send() Writes a message into the queue of the message
interceptor

opcmsg() Writes a message into the queue of the message
interceptor
Chapter 4 201

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Agent Monitor API

Functions to Send Monitor Values

Table 4-10 Overview of the Agent Monitor API Functions

Function Call Description

opcagtmon_send() Writes a monitor value/name pair into the queue of
the monitor agent

opcmon() Writes a monitor value/name pair into the queue of
the monitor agent
Chapter 4202

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Connection API

Functions to Connect to the Management Server

Table 4-11 Overview of the Connection API Functions

Function Call Description

opc_connect() Connect to the OVO database to get access.

opc_disconnect() Disconnect from the OVO database.
Chapter 4 203

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Application Configuration API

Functions to Configure OVO Applications

Table 4-12 Overview of the Application API Function

Function Call Description

opcappl_add() Adds an OVO application

opcappl_delete() Deletes an OVO application

opcappl_get() Gets the full configuration of an OVO application

opcappl_get_list() Gets a list of all configured applications

opcappl_modify() Modifies an OVO application

opcappl_start() Starts an OVO application
Chapter 4204

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Application Group Configuration
API

Functions to Configure OVO Application Groups

Table 4-13 Overview of the Application API Function

Function Call Description

opcapplgrp_add Adds an application group

opcapplgrp_assign_applgrps() Assigns application groups to a specified
application group

opcapplgrp_assign_appls() Assigns applications to a specified application
group

opcapplgrp_deassign_applgrps() Deassigns application groups from a specified
application group

opcapplgrp_deassign_appls() Deassigns applications from a specified
application group

opcapplgrp_delete() Deletes an application group

opcapplgrp_get() Gets the full configuration of a specified
application group

opcapplgrp_get_applgrps() Gets a list of all assigned application groups

opcapplgrp_get_appls() Gets a list of all assigned applications

opcapplgrp_get_list() Gets a list of all application groups

opcapplgrp_modify() Modifies an application group
Chapter 4 205

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Message Group Configuration API

Functions to Configure OVO Message Groups

Table 4-14 Overview of the Message Group Configuration API Functions

Function Call Description

opcmsggrp_add() Adds a message group to the OVO database

opcmsggrp_delete() Removes a message group from the OVO database

opcmsggrp_get_list() Gets a list of all message groups

opcmsggrp_modify() Modifies an existing message group
Chapter 4206

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Message Regroup Condition
Configuration API

Function to Configure OVO Message Regroup Conditions

Table 4-15 Overview of the Message Regroup Condition Configuration API
Functions

Function Call Description

opcmsgregrp_add() Creates a new regroup condition

opcmsgregrp_delete() Deletes a given regroup condition

opcmsgregrp_get() Gets the attributes of a given regroup condition

opcmsgregrp_get_list() Gets a list of all known regroup conditions

opcmsgregrp_modify() Modifies a given regroup condition

opcmsgregrp_move() Moves a given regroup condition to a new position
in the condition list
Chapter 4 207

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Node Configuration API

Function to Configure OVO Managed Nodes

Table 4-16 Overview of the Node Configuration API Function

Function Call Description

opcconf_get_nodes() Gets all configured nodes from the database

opcnode_add() Adds a managed node to the database and the OVO
node bank hierarchy

opcnode_assign_templates() Assigns templates and template groups to a node

opcnode_deassign_templates() Deassigns templates and template groups from a
node

opcnode_delete() Deletes a node from the database, and
acknowledges all messages from that node

opcnode_get() Gets the full configuration of a given managed node

opcnode_get_defaults() Gets the default configuration of a node from the
database

opcnode_get_list() Gets a list of all managed nodes

opcconf_get_nodes() Connects to the OVO database and reads the
managed node configuration

opcnode_get_templates() Gets a list of all templates assigned to the node

opcnode_modify() Modifies the attributes of an existing node
Chapter 4208

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Function to Configure OVO Node Groups

Table 4-17 Overview of the Node Configuration API Function

Function Call Description

opcnodegrp_add() Adds a node group to the database

opcnodegrp_assign_nodes() Assigns nodes to a node group

opcnodegrp_assign_templates() Assigns templates or template groups to a node
group

opcnodegrp_deassign_nodes() Deassigns nodes from a node group

opcnodegrp_deassign_templates() Deassigns templates or template groups from
node group

opcnodegrp_delete() Deletes a node group from the database

opcnodegrp_get() Gets a node group configuration

opcnodegrp_get_list() Gets a list of all node groups

opcnodegrp_get_nodes() Gets a container of nodes assigned to the node
group

opcnodegrp_get_templates() Gets a list of templates or template groups
assigned from a node group

opcnodegrp_modify() Modifies a node group in the database
Chapter 4 209

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Node Hierarchy Configuration API

Functions to Configure OVO Node Hierarchies

Table 4-18 Overview of the Node Hierarchy Configuration API Functions

Function Call Description

opcnodehier_add() Adds a new node hierarchy

opcnodehier_add_layoutgrp() Adds a new layout group

opcnodehier_copy() Copies a node hierarchy

opcnodehier_delete() Deletes a node hierarchy

opcnodehier_delete_layoutgrp() Deletes an empty layout group

opcnodehier_get() Gets the attributes of a given node hierarchy

opcnodehier_get_all_layoutgrps() Gets a list of all node layout groups in a node
hierarchy

opcnodehier_get_all_nodes() Gets a list of all nodes in a node hierarchy

opcnodehier_get_layoutgrp() Gets the full configuration of a node layout
group

opcnodehier_get_layoutgrps() Gets a list of all layout groups assigned to a
given layout group

opcnodehier_get_list() Gets a list of all node hierarchies

opcnodehier_get_nodeparent() Moves each node in the list to the specified node
layout group

opcnodehier_get_nodes() Gets a list of all nodes assigned to a layout
group in the node hierarchy

opcnodehier_modify() Modifies a node hierarchy

opcnodehier_modify_layoutgrp() Modifies a node layout group

opcnodehier_move_layoutgrp() Moves a layout group into another layout group

opcnodehier_move_layoutgrps() Moves layout groups into another layout group

opcnodehier_move_nodes() Moves a node from one location to another
Chapter 4210

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Template Configuration API

Function to Configure OVO Templates

Table 4-19 Overview of the Template Configuration API Functions

Function Call Description

opctempl_delete() Deletes an existing template from the OVO
database

opctempl_get_list() Gets a list of all templates from the OVO database

opctemplfile_add() Adds templates to the OVO database

opctemplfile_get() Gets details of the template and writes them into a
file

opctemplfile_modify() Modifies already existing OVO templates.
Chapter 4 211

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions to Configure OVO Template Groups

Table 4-20 Overview of the Template Configuration API Functions

Function Call Description

opctemplgrp_add() Adds a new template group to the database

opctemplgrp_assign_templates() Assigns templates to a template group

opctemplgrp_deassign_templates() Deassigns templates from a template group

opctemplgrp_delete() Deletes a template group from the OVO
database

opctemplgrp_get() Gets the configuration of a template group from
the OVO database

opctemplgrp_get_templates() Gets a list of templates / template groups
assigned to a template group

opctemplgrp_modify() Modifies an already existing template group
Chapter 4212

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the User Profile Configuration API

Functions to Configure OVO User Profiles

Table 4-21 Overview of the User Profile API Function

Function Call Description

opcprofile_add() Adds a user profile

opcprofile_assign_applgrps() Assigns application groups to a user profile

opcprofile_assign_appls() Assigns applications to a user profile

opcprofile_assign_profiles() Assigns user profiles to a user profile

opcprofile_assign_resps() Assigns responsibilities to a user profile

opcprofile_deassign_applgrps() Deassigns application groups from a user profile

opcprofile_deassign_appls() Deassigns applications from a user profile

opcprofile_deassign_resps() Deassigns responsibilities from a user profile

opcprofile_delete() Deletes a user profile

opcprofile_get() Gets the full configuration of a user profile

opcprofile_get_applgrps() Gets a list of all assigned application groups

opcprofile_get_appls() Gets a list of all assigned applications

opcprofile_get_list() Gets a list of all existing user profiles

opcprofile_get_profiles() Gets a list of all assigned user profiles

opcprofile_get_resps() Gets a list of all assigned responsibilities

opcprofile_modify() Modifies a user profile
Chapter 4 213

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the User Configuration API

Functions to Configure OVO Users

Table 4-22 Overview of the User API Function

Function Call Description

opcuser_add() Adds an OVO user

opcuser_assign_applgrps() Assigns application groups to an OVO user

opcuser_assign_appls() Assigns applications to an OVO user

opcuser_assign_nodehier() Assigns a node hierarchy to an OVO user

opcuser_assign_profiles() Assigns profiles to an OVO user

opcuser_assign_resps() Assigns responsibilities to an OVO user

opcuser_deassign_applgrps() Deassigns application groups from an OVO user

opcuser_deassign_appls() Deassigns applications from an OVO user

opcuser_deassign_profiles() Deassigns profiles from an OVO user

opcuser_deassign_resps() Deassigns responsibilities from an OVO user

opcuser_delete() Deletes an OVO user

opcuser_get() Gets the full configuration of an OVO user

opcuser_get_applgrps() Gets a list of all assigned application groups

opcuser_get_appls() Gets a list of all assigned applications

opcuser_get_list() Gets a list of all existing OVO users

opcuser_get_nodehier() Gets the assigned node hierarchy

opcuser_get_profiles() Gets a list of all assigned profiles

opcuser_get_resps() Gets a list of all assigned responsibilities

opcuser_modify() Modifies an OVO user
Chapter 4214

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Distribution API

Functions to Distribute Configuration to Managed Nodes

Table 4-23 Overview of the Distribution API Function

Function Call Description

opc_distrib() Distributes the OVO agent configuration to
managed nodes.
Chapter 4 215

Using the OVO Application Programming Interfaces
Summary of OVO API Functions
Functions of the Server Synchronization API

Functions to Modify and Update Configuration Data

Table 4-24 Overview of the Server Synchronization API Functions

Function Call Description

opc_inform_user() Informs all affected user interfaces

opcsync_inform_server() Synchronizes the server processes after
configuration changes

opcsync_inform_user() Informs all affected users of any changes to data
configuration

opctransaction_commit() Finishes the current transaction and commits all
transactions to the database

opctransaction_rollback() Rolls back changes to the current user transaction

opctransaction_start () Starts a user transaction
Chapter 4216

Using the OVO Application Programming Interfaces
Using APIs in Internationalized Environments
Using APIs in Internationalized
Environments
All OVO API functions are internationalized. This means that they will
initialize the language setting, check the codeset for compatibility, and
convert codesets if necessary, provided your API programs support
Native Language Support (NLS) environments.

When writing API programs for internationalized environments, you
must ensure that your programs do select the appropriate locale. In C
programs, you do this by calling the function setlocale() at the
beginning of your program.

It is recommended to use setlocale(LC_ALL,"") . The category LC_ALL

names the program’s entire locale. "" adopts the setting of the current
shell.

See the man page setlocale(3C) for more information about the
setlocale() function.
Chapter 4 217

Using the OVO Application Programming Interfaces
Using APIs in Internationalized Environments
Chapter 4218

5 Integrating with Java GUI
Chapter 5 219

Integrating with Java GUI
In This Chapter
In This Chapter

This chapter describes the concept, integration details and usage of the
Java GUI Remote APIs.
Chapter 5220

Integrating with Java GUI
Overview of the Java GUI Remote APIs
Overview of the Java GUI Remote APIs
Java GUI Remote APIs enable you to control certain features in the Java
GUI remotely from other Java applications. You can resolve problems
without searching for problem causing elements in the Java GUI. Java
GUI Remote APIs are useful if you have mapped OVO services and nodes
in other applications.

For the list of available Remote APIs that you use to control these
features, see “Summary of Java GUI Remote APIs Methods” on page 233.

The Java GUI acts as a server, which listens for API calls from clients. In
this case, clients are Java applications that execute Java GUI Remote
APIs in the Java GUI. For more details on how clients connect to the
Java GUI, see “Connecting to Java GUI” on page 230.

A client can be one of the following:

❏ Independent application running on a localhost

You can run a Java applet or application separately from the Java
GUI. The only prerequisite is that the client is using the Java
Interface from the Java GUI Remote APIs. You can execute actions,
such as Open Root Cause Graph or Open Filtered Message
Browser , through Remote APIs without physically using the Java
GUI.

❏ Java applet running inside the Java GUI

A Java applet can run as an integrated add-on component in the
workspace of the Java GUI.

NOTE The Java GUI can act as an application or an applet running in Internet
Explorer or Netscape Navigator. For the security reasons, all applets
running in the workspace of the Java GUI must be signed.

To ensure the connection between your client and the Java GUI is
established, you must enable Java GUI Remote APIs on the management
server. See “Enabling the Java GUI Remote APIs” on page 223 for
information on how to enable the Remote APIs.
Chapter 5 221

Integrating with Java GUI
Overview of the Java GUI Remote APIs
You must create your own client that will establish a connection with the
Java GUI. When the connection is established, you will be able to
execute the Remote APIs in the Java GUI. For information on how to
create your own client, see “Creating the Client” on page 223.

It is possible to connect to Java GUI with more than one client at a time.
A synchronization mechanism ensures that the first called API finishes
before the next one is called.

NOTE Java GUI Remote APIs allow you to execute only URL applications.
Execution of OVO applications using the Java GUI Remote APIs is
disabled for security reasons.

Calling the Java GUI Remote APIs

The ito_op_api_cli is a command line wrapper script for the Java
Remote APIs client. Client com.hp.ov.it.ui.api.examples.japiwrap
is located in ito_op_API.jar and ito_op.jar files. The
ito_op_api_cli script enables calling the japiwrap program, which
implements a simple JavaRemote client, from a command line.

Using ito_op_api_cli , all parameters needed to successfully start the
program are passed to the japiwrap program. The JavaRemote client
executes several basic RemoteAPIs, such as: starting a new JavaGUI,
opening a new message browser, opening new service graphs and so on.

This script can be found in the following locations:

UNIX: /opt/OV/www/htdocs/ito_op/

Windows: C:\Program Files\Hewlett-Packard\HP OVO Java
Console

For more information see the ito_op_api_cli man page.
Chapter 5222

Integrating with Java GUI
Configuring the Java GUI Remote APIs
Configuring the Java GUI Remote APIs
This section describes how to enable Java GUI Remote APIs, and how to
create and run the client required to establish a connection to the Java
GUI.

Enabling the Java GUI Remote APIs

Enable the Java GUI Remote APIs by setting a JGUI_API_ENABLED
variable in a configuration file on the OVO management server. Enter
the following:

/opt/OV/bin/ovconfchg -ovrg server -ns opc -set\
JGUI_API_ENABLED TRUE

IMPORTANT You must restart Service Navigator for the changes to take effect.

After Java GUI Remote APIs are enabled, an additional icon is displayed
in the Java GUI. Refer to the OVO Java GUI Operator’s Guide for more
information.

NOTE If you want to disable the Java GUI Remote APIs, set the
JGUI_API_ENABLED parameter to FALSE, or remove the entry from the
configuration file.

Creating the Client

IMPORTANT For creating and using the client, you must have the Java2SDK1.4.1
installed on your system.

To create your own client, you have to implement the following:

❏ Your preferred type of user interface (command line or graphical).
Chapter 5 223

Integrating with Java GUI
Configuring the Java GUI Remote APIs
❏ An instance of OV_JGUI_JavaBridge class, which holds the
OV_JGUI_RemoteProxy class with all Remote APIs defined.

See “Example of the Basic Client Implementation” on page 225 for more
information.

NOTE You have the possibility to create a more advanced client that, for
example, automatically starts the Java GUI on a localhost when no Java
GUIs are running. See “Example of Creating the Client with Automatic
Java GUI Startup on a Localhost” on page 226 to learn more about
creating the client that provides automatic Java GUI startup on a
localhost.

For creating the client, you can use one of the following provided files:

❏ ito_op_API.jar

❏ ito_op_addon.jar and ito_op.jar

These files are located in JavaGUI installation directory. They contain
the following predefined classes:

❏ Predefined classes:

• com.hp.ov.it.api.client.OV_JGUI_RemoteProxy

• com.hp.ov.it.api.client.OV_JGUI_JavaBridge

• com.hp.ov.it.api.common.OV_JGUI_RemoteFilterData

You can access the detailed Java GUI Remote APIs Specification,
through the following URL:

http:// <management_server> :3443/ITO_DOC/C/manuals/APIdoc

In this instance, <management_server> is the fully qualified hostname
of your management server.

For information on how to compile and run your client, see “To Compile
the Client” on page 228 and “To Run the Client” on page 229.
Chapter 5224

Integrating with Java GUI
Configuring the Java GUI Remote APIs
Example of the Basic Client Implementation

The following example shows how to create a user interface and the
corresponding instance of OV_JGUI_JavaBridge class.

package com.hp.ov.it.api.samples;

 import com.hp.ov.it.api.client.*;
import com.hp.ov.it.api.common.OV_JGUI_RemoteFilterData;

 import java.util.Vector;

 public class RemoteClient
 {

 public static void main(String args[])
 {

 if (args.length < 2)
{

 System.out.println("\nUsage: RemoteClient < mgmtsv >
< username >");
return;

}

 try
 {

 String mgmtsv = args[0];
String user = args[1];

//create JavaBridge instance that will connect to Java
//GUI which is connect to the specified managment

//server and specified user
OV_JGUI_JavaBridge m_bridge =
OV_JGUI_JavaBridge.getNewInstance(user, mgmtsv);

 //get remote proxy
OV_JGUI_RemoteProxy m_proxy =
m_bridge.getRemoteProxy();

 //create a vector of services for filtering
Vector s = new Vector();
s.add("Customer Services");

 //create a vector of nodes for filtering
Vector n = new Vector();
n.add(mgmtsv);

 //create empty filter
 OV_JGUI_RemoteFilterData filter =
Chapter 5 225

Integrating with Java GUI
Configuring the Java GUI Remote APIs
new OV_JGUI_RemoteFilterData();

//set nodes and services
filter.setNodes(n);
filter.setServices(s);

//Show Filtered Active Message browser in browser pane
m_proxy.openMessageBrowser(true, m_proxy.TYPE_ACTIVE,
filter);

}catch (OV_JGUI_CommunicationException e)
{

 System.err.println("Error: "+e);
}

}
}

Example of Creating the Client with Automatic Java GUI
Startup on a Localhost

Java GUI Remote APIs provide you with the possibility to start Java
GUI automatically with the user-defined parameters on a localhost.

By default, Java GUI is installed in the following directory:

❏ On UNIX systems

/opt/OV/www/htdocs/ito_op/

❏ On Windows systems

C:\Program Files\Hewlett-Packard\HP OVO Java Console

However, you can define a custom installation path using the
setInstallDir method. For the list of available Remote APIs, see
“Summary of Java GUI Remote APIs Methods” on page 233.

The following example shows how to configure Java GUI automatic
startup on a localhost:

package com.hp.ov.it.api.samples;

 import com.hp.ov.it.api.client.*;
 import com.hp.ov.it.api.common.OV_JGUI_RemoteFilterData;
 import java.util.Vector;
 import java.net.URL;

 public class AutoStartup
 {
Chapter 5226

Integrating with Java GUI
Configuring the Java GUI Remote APIs
 public static void main(String args[])
 {

 if (args.length < 34)
 {

 System.out.println("\nUsage: AutoStartup < mgmtsv >\
 < username > < password > < apisid > [-trace]");
 return;

}

 try
 {

 String mgmtsv = args[0];
String user = args[1];

 String passwd = args[2];
 String apisid = args[3];

boolean mode = OV_JGUI_JavaBridge.MODE_APPLICATION;

for (int i=0; i < args.length; i++)
 {

if (args[i].equals("-trace"))
OV_JGUI_Logger.setTrace(true);

}
OV_JGUI_JavaBridge m_bridge =
OV_JGUI_JavaBridge.getNewInstance(user, mgmtsv,apisid);

//Checking if JavaGUI is up
if (!m_bridge.isUp())
{

//Setting a custom install path where JavaGUI is
 installed

m_bridge.setInstallPath("D:\\ProgramFiles\\/
 Hewlett-Packard\\HP OVO Java Console");

 //Launch JavaGUI
 try
 {

 int port = m_bridge.launch(passwd, mode);
 } catch (OV_JGUI_TimeOutException e)
 {

 System.out.println(e);
 return;

 }
 }

 URL url = new URL("http://www.hp.com");
Chapter 5 227

Integrating with Java GUI
Configuring the Java GUI Remote APIs
//User should obtain OV_JGUI_RemoteProxy instance after
 communication with JavaGUI has been established
OV_JGUI_RemoteProxy m_proxy = m_bridge.getRemoteProxy();

 //Call Remote API
m_proxy.startURL(url);

 }catch (Exception e)
 {

 System.err.println("Error: "+e);
 e.printStackTrace();

}
}

}

To Compile the Client

Before you compile your client, the following files have to be located in
the current directory:

❏ RemoteClient.java source file

❏ One of the following:

• ito_op_API.jar file

• ito_op.jar and ito_op_addon.jar files

To compile the client, perform the following:

1. Make sure that javac.exe is included in your PATH variable.

2. Compile the client.

• For UNIX systems

Enter one of the following:

— java -classpath ito_op_API.jar
com.hp.ov.it.api.samples.RemoteClient

— javac -d . -classpath ito_op_addon.jar:ito_op.jar
RemoteClient.java
Chapter 5228

Integrating with Java GUI
Configuring the Java GUI Remote APIs
• For Windows systems

 Enter one of the following:

— javac -d . -classpath ito_op_API.jar
RemoteClient.java

— javac -d . -classpath ito_op_addon.jar;ito_op.jar
RemoteClient.java

To Run the Client

Before you run your client, at least one Java GUI has to be running on
your system.

To run the client, perform the following:

1. Make sure that java.exe is included in your PATH variable.

2. Start the client.

• For UNIX systems

Enter one of the following:

— java -cp .:ito_op_API.jar
com.hp.ov.it.api.samples.RemoteClient

— java -cp .:ito_op.jar:ito_op_addon.jar
com.hp.ov.it.api.samples.RemoteClient

• For Windows systems

 Enter one of the following:

— java -cp .;ito_op_API.jar
com.hp.ov.it.api.samples.RemoteClient
<management_server> <username>

— java -cp .;ito_op.jar;ito_op_addon.jar
com.hp.ov.it.api.samples.RemoteClient
<management_server> <username>

Where <management_server> is the fully qualified hostname of
your management server, and <username> is name of the user
that is logged into the Java GUI.
Chapter 5 229

Integrating with Java GUI
Connecting to Java GUI
Connecting to Java GUI
This section describes the process of establishing a connection between
the client you have created and the Java GUI. The connection is achieved
through the port repository file.

The Port Repository File

The port repository file, named OV_JGUI_portRepository , is
automatically created in the user’s home directory upon configuring the
Java GUI Remote APIs. It registers information related to a particular
Java GUI, such as username, management server, port number, and
session ID. For more information about the session ID, see “Assigning a
Session ID to Java GUI” on page 231.

NOTE When the Java GUI Remote APIs are enabled on the management
server, an available port number is automatically assigned to the Java
GUI during its startup.

The client-server communication is established when the client connects
to the Java GUI using the port number and the Java GUI session ID
obtained from the port repository file.

For each running Java GUI, a new line is appended to the port repository
file. The syntax is as follows:

<username> <management_server> <port_number> <session_ID>

The following naming scheme explains the above mentioned terms:

<username> Username logged on to the Java GUI.

<management_server> Management server to which the Java GUI
is connected.

<port_number> Port number that the client uses to connect
to the Java GUI.

<session_ID> Session ID of the Java GUI.
Chapter 5230

Integrating with Java GUI
Connecting to Java GUI
The following is an example of the port repository file, with two Java
GUIs registered:

opc_op integra 3719

opc_op integra 3827 OV_JGUI_API

NOTE When Java GUI closes, the client disconnects from it and the session is
removed from the port repository file.

It is recommended to create a client that is capable of re-establishing the
connection to the Java GUI automatically. See “Example of Creating the
Client with Automatic Java GUI Startup on a Localhost” on page 226 for
more details on how to create a client with automatic Java GUI startup
on a localhost.

Assigning a Session ID to Java GUI

A session ID is a string used to identify specific sessions of the Java GUI
when more than one Java GUI is running on the same management
server using the same username.

At the Java GUI startup, the session ID attribute value (<session_ID>)
is automatically appended to the port repository file together with the
<username> , <management_server> and <port_number> attribute
values. For more information on the port repository file syntax, see “The
Port Repository File” on page 230.

The default <session_ID> attribute value is OV_JGUI_API . However, you
can specify the session ID manually. See “Specifying the Session ID
Manually” on page 232 for more information.

The Session ID is unique for Java GUIs started on the different
management servers, or using different usernames. Nevertheless, each
additional Java GUI session started using the same username on the
same management server acquires the session ID from the previously
started Java GUI. The <session_ID> attribute value of the previously
started Java GUI will be blank.
Chapter 5 231

Integrating with Java GUI
Connecting to Java GUI
Specifying the Session ID Manually

You can specify the session ID manually by using one of the following
methods:

❏ getNewInstance method in OV_JGUI_JavaBridge class

See “Summary of Java GUI Remote APIs Methods” on page 233 for a
list of available Remote APIs.

❏ command line parameter -apisid

Set the <session_ID> attribute value at the Java GUI startup using
the command line parameter -apisid . For example, on the Windows
NT client, start the Java GUI by entering the following:

ito_op <management_server> -apisid= <user-defined_session_ID>

NOTE If you try to set a session ID that is already registered in the port
repository file using the same username on the same management
server, the newly started Java GUI will acquire this particular session
ID. The <session_ID> attribute value of previously started Java GUI
will be blank.
Chapter 5232

Integrating with Java GUI
Summary of Java GUI Remote APIs Methods
Summary of Java GUI Remote APIs Methods
This section summarizes the Java GUI Remote APIs methods within the
following classes:

❏ OV_JGUI_RemoteProxy class

❏ OV_JGUI_JavaBridge class

For more details about the available Java GUI Remote APIs, refer to the
Java GUI Remote APIs Specification, which can be accessed through the
following URL:

http:// <management_server> :3443/ITO_DOC/C/manuals/APIdoc

In this instance, <management_server> is the fully qualified hostname
of your management server.

OV_JGUI_RemoteProxy Class Methods

Table 5-1 Overview of OV_JGUI_RemoteProxy Class Methods

Methods Description

createWorkspace() Creates a new workspace.

exists() Returns true if service is found in the Java GUI,
otherwise false.

getDefaultWorkspace() Returns a default workspace from the Java GUI.

getRootServiceFromGraph() Returns a root service name of the selected service.

getSelectedServices() Returns all selected services from the Java GUI in a
vector.

getSelectedViewType() Returns a selected service view’s type.

getTargetURI() Returns the target where the proxy is sending requests.

getUser() Returns a name of the user, logged into the Java GUI.

highlightMessages() Highlights given messages in the Java GUI.

moveToCenter() Positions service that matches a parameter name to the
center of the service view if possible.
Chapter 5 233

Integrating with Java GUI
Summary of Java GUI Remote APIs Methods
openMessageBrowser() Opens a new filtered message browser in a current
workspace or in a browser pane.

openServiceView() Opens a service view of a specified type on a given
services.

ping() Pings the server to check if it is alive.

selectServiceInTree() Selects one or more services that are specified in the
services parameter in the Object Pane of the Java GUI.

selectServiceInView() Selects service in the currently selected view.

selectServicesInView() Selects one or more services in the currently selected
view.

selectWorkspace() Selects a workspace in the Java GUI.

setDefaultWorkspace() Specifies a default workspace in the Java GUI, where
all service views are opened. Default workspace is the
Services workspace.

setVerbose() Determines if XML data should be printed on stdout
during communication with the server.

startURL() In a current workspace starts the given URL.

toString() Returns a text representation of this proxy.

Table 5-1 Overview of OV_JGUI_RemoteProxy Class Methods (Continued)
Chapter 5234

Integrating with Java GUI
Summary of Java GUI Remote APIs Methods
OV_JGUI_JavaBridge Class Methods

Table 5-2 Overview of OV_JGUI_JavaBridge Class Methods

Methods Description

destroy() Destroys the instance, and closes the connection to the
server.

findServerPort() Queries OV_JGUI_portRepository for a Java GUI
running on the local machine that matches specified
parameters.

findServerPorts() Queries OV_JGUI_portRepository for Java GUIs
running on the local machine that match the specified
parameters.

getHostname() Returns a hostname of the JavaBridge instance.

getInstallPath() Returns the current installation path of the Java GUI.

getLaunchTimeOut() Returns the current timeout for the method launch.

getNewInstance() Creates and returns a new OV_JGUI_JavaBridge
instance that will connect to the Java GUI running on a
local machine.

getPort() Returns a port number of the JavaBridge instance.

getRemoteProxy() Returns the remote proxy element on which remote
methods should be called.

isUp() Checks if the Java GUI specified within the current
bridge is up and running.

launch() Launches the Java GUI that connects to the specified
management server using the specified username, or
using the username specified in the current JavaBridge
instance.

reinit() Calls the destroy() method and creates a new client
instance and a new proxy element.

setInstallPath() Sets the installation path where the Java GUI is
installed.

setLaunchTimeOut() Sets the timeout interval for a method launch.
Chapter 5 235

Integrating with Java GUI
Summary of Java GUI Remote APIs Methods
toString() Prints out the current OV_JGUI_JavaBridge instance.

Table 5-2 Overview of OV_JGUI_JavaBridge Class Methods (Continued)

Methods Description
Chapter 5236

6 Integrating with Service
Navigator
Chapter 6 237

Integrating with Service Navigator
In This Chapter
In This Chapter
HP OpenView Service Navigator is an add-on component of HP
OpenView HP OpenView Operations. It enables you to manage your IT
environment while focusing on the IT services you provide. See the
Service Navigator Concepts and Configuration Guide for more
information.

When using the standard Service Navigator product, service
configuration is done with the command line tool opcservice . Service
operation is performed with the Service Navigator GUI which displays
the current status of the monitored services.

With the OVO Developer’s Toolkit, it is possible to integrate directly with
Service Navigator. The following integration facilities are provided:

❏ XML Data Interface

The XML Data Interface allows you to write or get service
configuration directly into or from the service engine via a filesystem
socket.

• Allows you to write the service configuration directly into the
service engine. The configuration syntax follows the XML rules
defined in the document type definition (DTD) operations.dtd .

• Allows you to get the current service configuration and service
status directly from the service engine. The output syntax follows
the XML rules defined in the DTD results.dtd .

The XML Data Interface is of special interest to integrators who, for
example, want to provide service discovery scripts to automatically
discover the services to be monitored by the Service Navigator
integration.
Chapter 6238

Integrating with Service Navigator
In This Chapter
❏ C++ APIs of the service engine

• The Service Operations Interface

• The Registration Interface for Service Status Changes

These APIs are C++ interfaces and come complete with:

• opcsvcapi.h header file

• libopcsvcapi.sl shared library

Use an ANSI C++ (aCC) compiler. See also the man page
opcsvc_api(3) for more information.

The C++ APIs of the service engine are of special interest to
integrators who, for example, want to integrate with trouble ticket
systems.
Chapter 6 239

Integrating with Service Navigator
The Service Navigator Architecture
The Service Navigator Architecture
The following figure gives an overview over the general architecture of
the service engine of Service Navigator.

Figure 6-1 The Service Navigator Global Architecture

XML

SocketService

Core

Service
Adapter

Message
Adapter

Session Adapter Logging
Adapter

Service Engine

OVO
Server
APIs

OVO Database

Reporter
Reporter

Report

opcuiwww
Service

Manager Operator GUI
Session

Service Navigator GUI

Configuration

Status Engine

Service
Config
Data

Server
Process Management

File
Stream

Request Adapter

Messages

Messages
Chapter 6240

Integrating with Service Navigator
The Service Navigator Architecture
The service engine has the following components:

❏ The service adapter manipulates the service data (configuration
tasks).

❏ The message adapter gets messages and message change events
from the OVO management server.

❏ The session adapter performs operational tasks.

❏ The status engine core calculates the status and maintains the data
structures.

❏ The logging adapter is responsible for persistent service logging.

❏ The request adapter handles operations from clients by contacting
the service, session, and logging adapter.
Chapter 6 241

Integrating with Service Navigator
The XML Data Interface
The XML Data Interface
The XML Data Interface uses filesystem sockets as communication
mechanism. The request adapter of the service engine binds to the socket
and listens for requests. Each request is handled by a request handler in
parallel. If a new request comes in, it opens a filesystem socket over
which it communicates with the new client. The client writes the request
into the socket after a successful connection.

Depending on the type of request, the client also provides information as
XML text. Incoming requests comply to the operations.dtd , outgoing
XML to the results.dtd . Depending on the request, the request adapter
contacts the session, service, or logging adapter.

The following namespaces are used by the Service Navigator DTDs:

❏ XML namespace of the service.dtd :

http://www.hp.com/OV/opcsvc

❏ XML namespace for the operations.dtd :

http://www.hp.com/OV/opcsvcoperations

❏ XML namespace for the results.dtd :

http://www.hp.com/OV/opcsvcresults

Name spaces are specified within the toplevel XML tag and are used to
uniquely identify the XML tags. For example, a file operations.xml
should start like this:

<?xml version=’1.0’ ?>
<Operations xmlns="http://www.hp.com/OV/opcsvcoperations"
version="1.0">

The DTDs are available in:

/etc/opt/OV/share/conf/OpC/mgmt_sv/dtds/services.dtd

/etc/opt/OV/share/conf/OpC/mgmt_sv/dtds/operations.dtd

/etc/opt/OV/share/conf/OpC/mgmt_sv/dtds/results.dtd
Chapter 6242

Integrating with Service Navigator
The XML Data Interface
You can test your XML commands interactively using the opcsvcterm
program. This is an interface to the service engine that inputs XML into
stdin and outputs XML to stdout. See also the man page opcsvcterm(1M).

See the OVO Developer’s Reference for more information about the XML
syntax.
Chapter 6 243

Integrating with Service Navigator
The C++ APIs
The C++ APIs
The OVO Developer’s Toolkit provides the following C++ interfaces for
Service Navigator:

❏ Service operations interface

This interface allows you to set or remove the service attributes, and
to request the status and some basic properties of the service.

❏ Registration interface for service status changes

This interface allows you to register for service status changes. The
information that is returned includes the service name, the previous
severity, and the new severity.

This is of interest to integrators who want to react to service changes
with appropriate actions, for example, forward the information to a
trouble ticket system or notification service, or to execute other
commands.

The following sections describe the concept of these interfaces in more
detail. See the OVO Developer’s Reference for more information about the
C++ classes and for detailed examples.

The Service Operations Interface

This interface allows you to set or remove service attributes, and request
the status and some basic properties of a service. For example, the label,
description, icon, or background.
Chapter 6244

Integrating with Service Navigator
The C++ APIs
The Registration Interface for Service Status Changes

A client sends a registration request to the interface in the service engine
which describes which events the client wishes to receive. The request is
in XML format. The registration manager parses the XML registration
structure and passes it to the core engine. The XML structure for the
registration interface is defined in the operations.dtd (which also
includes the service.dtd).

The service name identifies the client registrations in the service engine.
The registration manager maintains the registration information for
each client during runtime but it is the client’s responsibility to react to
shutdowns of the service engine, for example, if the socket is closed on
the server side. The client has to re-register when the service engine is
restarted.

When a client updates its registration information, the new registration
information must be passed to the interface. The handler stores it in
memory. It is the responsibility of the client to handle any additions or
removals to/from the registration information. The registration manager
initiates an update in the service engine core which propagates the
service graph data structures according all the registrations.

The registration information has the form of a <Registration> XML
structure. Clients pass this structure by way of an API function to the
service engine.

The Registration Conditions

The registration conditions can register for services status changes if
certain criteria are met. The following conditions are available:

❏ Register depending on service structure:

• Recursive: <Recursive>

• Depth of graph: <Depth>

❏ Register for all status change events:

• All events: <All>

See Figure 6-2 on page 246 for an illustration and examples.
Chapter 6 245

Integrating with Service Navigator
The C++ APIs
Figure 6-2 Registration Condition for Service Structure

Service

Register up to Register for all
a specified level:
<Depth>

services:
<Recursive>

<Registration>
<RegCondition>

<ServiceRef>svc_1</ServiceRef>
<Recursive/>

</RegCondition>
<RegCondition>

<ServiceRef>svc_2</ServiceRef>
<Depth>3</Depth>

</RegCondition>
</Registration>

For example:

<Registration>
<All />

</Registration>

For example:
Chapter 6246

7 Integration Facilities of the HP
OpenView NNM Core Platform
Chapter 7 247

Integration Facilities of the HP OpenView NNM Core Platform
In This Chapter
In This Chapter
This chapter describes the integration facilities of HP OpenView
Network Node Manager, the core platform of the OVO Developer’s
Toolkit.
Chapter 7248

Integration Facilities of the HP OpenView NNM Core Platform
Overview
Overview
When you are working on an application that is to be integrated into the
Network Node Manager Platform, it is useful to consider the following
different data domains:

❏ SNMP MIB data

❏ Topology data

❏ OpenView object database

These domains are shown in Figure 7-1 and are described in the
following sections.

Figure 7-1 Data Domains of the HP OpenView NNM Platform

SNMP
daemon

Partner
Solution

OpenView
DB

Topology

SNMP Daemon

SNMP

OVO Management Server

OpenView
Windows

SNMP
API
Chapter 7 249

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
The OpenView Windows API
This API enables an OVO partner to create and manipulate maps and
submaps, and also to generate dialog for user interaction. It is intended
for the development of applications that take advantage of these
features.

The following two components enable developers can construct
OpenView Windows applications:

❏ Application Registration Files (ARFs)

Application registration files (ARFs) are configuration files that
are read when OVW is started. Registration files can be used to
perform many of the functions that would otherwise require
programming. ARF files are described in the section “GUI
Application Integration”.

❏ OpenView Windows Programming Libraries (OVw API)

More complex applications require that you write programs using
the OVw API. The OVw API gives you more control over the behavior
of OpenView Windows applications. The OVw API consists of a large
number of routines that let the programmer perform tasks related to
the following functional areas:

• Application Integration with OVW

Several routines are available to integrate your application into
OpenView Windows. Every application that uses the OVW API
needs to use at least some portion of these calls. These routines
allow your application to connect to OpenView Windows, to
determine when users select particular menu items, and to
handle errors.

• Object Database Access

There are over 40 OVw API routines that operate on objects and
fields of the OV object database. These routines are used to
create objects, to create the fields that comprise objects, to get or
set field values in objects, and to relate fields to objects and vice
versa. Fields can also be created using Field Registration Files.

The object database and its access is discussed in more detail in
“HP OpenView Data - Objects and Fields”.
Chapter 7250

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
• Map and Submap Routines

The OVw API contains many routines that are used to operate on
maps and submaps. These routines let you create and modify
submaps, as well as retrieve information about maps and
submaps. A few OVw API routines let you change the
background images of submaps.

• Symbol Routines

These routines create symbols, alter symbol behavior and
appearance, and get information about an object as it exists on a
map. Symbols can also be created using Symbol Registration
Files.

Maps, Submaps and Symbols are described in the section “Maps,
Submaps and Symbols”.

• User Verification

Several OVw API routines allow a program to verify changes to
maps and objects made by the user by way of the user interface.

• Dynamic registration

There are over 60 OVw API routines that dynamically configure
the OVW menu structure. These routines are rarely used by most
application developers.

• Callback Routines

OpenView Windows uses callback routines to communicate with
applications when various events occur. OpenView Windows
provides many definitions for callback routines to be provided by
the developer

As this API is fully documented in a separate manual set and as it is not
usually the primary integration capability used for OVO integration, it is
not discussed here at the C-function level.

For more information about this API, see the following manuals:

❏ OVW Developer’s Guide

❏ OVW Application Style Guide
Chapter 7 251

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Maps, Submaps, and Symbols

A map is a collection of OVW objects and their relationships. Users don’t
view maps directly - they view windows called submaps that display a
subset of map information.

Users, not applications, create maps. Users can create several maps, and
they can also view maps control which applications operate on the
various maps. Whereas users create maps and define their scope,
applications dynamically update maps to reflect the state of the
management environment.

A submap is a collection of related symbols that are displayed in a single
graphical window. Submaps essentially provide a view into the map
object space. Each submap displays a different perspective of the
information in the map, with the submaps typically organized in a
hierarchical fashion. OpenView submaps provide several layout
algorithms for symbols, including bus, star, ring, row/column, and
point-to-point. Applications can also set or change the color images that
are used as map backgrounds.

Symbols can be placed in OpenView submaps to represent objects in the
OpenView database, such as nodes, connections, or agents. Symbols can
also represent collection of objects, such as a subnets or connections.
Each symbol is identified by its symbol type. The symbol type is defined
by a symbol class/subclass pair. The symbol class defines the symbol
category, while the symbol subclass defines a particular element within
that class.

Symbols can be made executable. If an operator selects an executable
symbol, a predefined action is started. Symbols can also change color to
indicate status, e.g. green for normal, or red for critical. New symbols can
be added by providing icon files and ASCII registration files.

OVO uses maps, submaps and symbols to represent IP networks. The
hierarchy can be explored from the “root” (internet) level, down to the
subnets, devices, and finally to agents.

OVO provides you with a rich set of predefined symbol classes and
subclasses. Figure 7-2 on page 253 shows some of the symbol classes and
subclasses provided by OVO.
Chapter 7252

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Figure 7-2 OVO Symbol Palette

The HP OpenView programmer’s interface lets your application create
symbols and submaps that show object hierarchies and connections (e.g.,
WAN connections). This is described in detail in the OVW Developer’s
Guide.

Symbol Type Registration ASCII Files can also be used to define symbol
classes and subclasses in OpenView Windows. The predefined OVW
symbol classes and subclasses are themselves defined using various
symbol type registration files. You are encouraged to use these
predefined symbol classes and subclasses in your applications.

You may find, however, that existing classes and subclasses are not
adequate for your needs. You can add new symbol subclasses to existing
symbol classes or you can define your own symbol classes. Symbol Type
Registration Files are described in detail in the OVW Developer’s Guide.
Chapter 7 253

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
ClusterView: An Example of an Integrated Map Application

The ClusterView application is integrated into OpenView Network Node
Manager and allows to display and monitor MC/ServiceGuard clusters
from the HP OpenView environment in a distributed commercial
environment. An MC/ServiceGuard cluster is a loosely defined collection
of nodes that assure the availability of a common set of High Availability
Services by using replicated hardware resources (CPUs, LAN cards,
shared disks) and MC/ServiceGuard specific processes that monitor
registered services.

The ClusterView Map-application clusmap uses the OpenView Windows
API to create its own submaps and symbols that represent
MC/ServiceGuard clusters. In the root-submap, it places an explodable
“Clusters” Symbol next to the “IP Internet” symbol to allow the user to
access the cluster hierarchy. Like the ipmap Map-application that sets
the color of the symbols under the “IP Internet” symbol, the clusmap
application sets the color of the symbols under the “Clusters” symbol
according to the status of the MC/ServiceGuard elements.

Figure 7-3 Root Submap Showing ClusterView Symbol

The user can double click on the Clusters icon to reach the Clusters
submap which contains a symbol for each discovered MC/ServiceGuard
cluster. The cluster icons in this submap are automatically placed in this
submap for all clusters auto-discovered by the ClusterView process
clusmon. Status changes will be reflected by the color of the cluster icons.
This screen can be used to drill down to get information on each cluster:
a double click on the MC/ServiceGuard Cluster icons will bring the user
to the “MC/ServiceGuard Cluster” submap.
Chapter 7254

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
The “MC/ServiceGuard Cluster” submap displays the nodes and
packages configured in the cluster. In MC/ServiceGuard terminology, a
package is a collection of network resources and high availability
services managed together such that a single package can be moved
between nodes within a cluster in order to make it highly available.
Chapter 7 255

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
HP OpenView Data: Objects and Fields

The OpenView database is used by applications to store a wide range of
information about network objects. An object is an internal
representation of a logical or physical entity or resource that exists
somewhere in a computer network. It consists of a unique object
identifier and a set of fields that specify all the characteristics of the
object.

OVO automatically makes topology information available in the
OpenView database; it also adds new fields such as “IP Status”. This
information is then available to management applications. OVO uses
OpenView database information to generate network maps and
hierarchies.

Other applications are able to read, write, and create OpenView
database objects and fields. New fields can include information such as
node serial numbers, trouble reports, or non-IP status. Access to this
database is provided through the HP OpenView programmer’s interface.

The HP OpenView programmer’s interface provides almost 50 functions
for interaction with the OpenView Windows object database. The API is
not as complex as it might first appear, though. Among other things, it
provides access to perform the following tasks:

❏ Field operations

• Creating Fields

Fields can be created either using the appropriate API routine or
the Field Registration File (FRF). The FRF is the normal and
preferred way to create fields.

• Getting Field information for a single or all fields

• Getting/Setting object field values

❏ Object operations

• Creating an object

• Deleting an object

❏ Convenience Routines
Chapter 7256

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Fields are object attributes stored in the OVW database that can be seen
as the building blocks from which objects are constructed. There are
three components to a field definition:

❏ the field name

❏ the data type of the field

❏ flags that indicate how the field is used

The following table lists the available data types for field definitions:

Table 7-1 Data Types and Field Definitions

Data Type Description Example Field

Integer32 A 32-bit signed integer IPMap Version, TopM
Node Count

Boolean This type can have the
values True or False

isSNMPSupported,
isLocation

String A standard character
string, limited to 256
characters in length

SNMP sysDescr, SNMP
sysLocation

Enumeration Declares the field to be an
enumerated type. All
possible values for the
enumerated type are
declared in a separate
Enumeration statement.

SNMP ifType, vendor
Chapter 7 257

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
While the field type specifies the data type of the field, the field flags
specify how the field is treated by OpenView Windows. OVW provides
the flexibility to treat fields in different ways. There are five types of flags
(behavior) that can be applied to fields. The examples given behind a
field flag item are taken from the Field Registration File:

❏ List

This field is a List of the specified type. Currently, the only support
types for lists are strings and integers. For example, you might define
a field for the names of administrators of your computer network.
The type would be string, and the flag field would be set to list to
allow you to store multiple names:

Field “administrators” {
Type String;
Flags list;

}

❏ Name

Name fields uniquely identify objects, i.e. there is only one object
with a specific value for this field. Because the hostname of a
computer would be unique for all nodes on the network, the name
flag can be set for the field:

Field “IP Hostname” {
Type String;
Flags name;

}

Chapter 7258

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
❏ Locate

A locate operation may be done on the Locate field. This field will
appear in the Locate: By Attribute dialog box. To search for, or
locate all nodes with a particular status, you might use enumerated
types to classify the status of nodes on a network and setting the
locate flag:

Field “IP Status” {
Type Enumeration;
Flags locate;
Enumeration “Unset”,

“Unknown”,
“Normal”,
“Marginal”,
“Critical”,
“Unmanaged”,
“Warning”,
“Major”,
“Restricted”,
“Disabled”;

}

❏ General

This field will appear in the general attributes section of the Add and
Describe boxes on an object.

❏ Capability

This field is a capability and is used to classify an object. Only
booleans and enumerated types are supported as capability fields. To
determine whether an object has computer capabilities the following
field could be used:

Field “isComputer” {
Type boolean;
Flags capability;

}

Field Registration Files and the HP OpenView programmer’s interface
are described in more detail in the OVW Developer’s Guide.
Chapter 7 259

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
The OpenView SNMP API

The OpenView SNMP API provides the following functions:

❏ SNMP Communications API and Related Commands

A command interface and a programmer’s interface to SNMP
communication functions.

❏ SNMP Configuration API

An API for SNMP configuration purposes.

❏ Topology Data

It stores information about the network topology in a topology
database.

Each component is described in a separate section.

The data on the SNMP agent is accessed by both the agent software and
by management applications.

The layout of agent MIB data is specified by a MIB definition, very much
as you would describe a programming data structure. Let’s look at an
example agent data structure, and components that are used when
integrating with OVO.

The Object ID field is extremely important to OVO; it identifies the type
of SNMP agent that is running on a node. OVO registration files can use
this ID to specify the capabilities of this agent, and which icon will be
used to represent it in HP OpenView maps.

Table 7-2 Example of SNMP Agent Data

MIB Variable Value

system.sysObjectID.0 ...hp.nm.system.hpux.hp9000s700

system.sysUpTime.0 111579040

system.sysContact.0 Jane Smith
Chapter 7260

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
The remaining fields contain agent status, configuration, and metrics.
The read-write fields may be written from your integrated application
(SNMP “sets”), or from OVO applications. All fields can be read from
your application (SNMP “gets”), from the SNMP MIB Browser, or plotted
over time by the xnmgraph application. Data may also be included in
trap messages sent by the agent.

SNMP Communications API and Related Commands

There are two methods available to read or write agent MIB data:

❏ use the Simple Network Management Protocol Application
Programming C-Interface (C functions of the SNMP-API)

❏ use the commands snmpget , snmpset , and snmptrap .

Available C-API Functions

This API allows to establish SNMP communication sessions for
exchanging SNMP messages. The available functions and their
functionality are listed in Table 1. The table should suffice to create an
impression of what can be achieved using the functions of the API.

Formally a SNMP message is called a PDU (protocol data unit).
Basically, there are functions for opening and closing SNMP sessions, for
creating, and manipulating PDUs, for sending and receiving SNMP
PDUs, and for manually retransmitting PDUs.

Most of the API functions are available in two flavors. One flavor is to be
used in event driven X applications. Functions of this flavor have the
letter “X” in their name. The other flavor is for use in conventional
programs. Functions of those two flavors may not be mixed in one
program.

For more information on this API, seethe corresponding man pages and
the SNMP Developer’s Guide and Reference. This manual provides a
good introduction to the underlying concepts, a description of the
corresponding data structures, and scenarios for proper use of the
functions.
Chapter 7 261

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Table 7-3 SNMP Communications API Functions

Category
Function Name for

Event-Driven X
Applications

Function Name
for Traditional

Applications
Description

Session
Management

OVsnmpXOpen OVsnmpOpen Establishes an active SNMP session.

OVsnmpXClose OVsnmpClose Terminates an active SNMP session,
and frees associated resources.

Event
Framework
Session
Functions

OVsnmpCreatePdu OVsnmpEventOpen Successor to OVsnmp[X]TrapOpen().
Establishes a logical session with
the OVsnmpAPI for the purpose of
receiving SNMP traps via the
OpenView Event Framework. It
allows filters to be applied to events
to reduce the number of events that
are received.

OVsnmpXTrapOpen OVsnmpTrapOpen Predecessor to the
OVsnmp[X]EventOpen() function.
This function is provided for
backward compatibility only. Use the
OVsnmp[X]EventOpen() routine in
the future.
Chapter 7262

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Message
Setup and
Manipulation

OVsnmpCreatePdu Allocates an SNMP Protocol Data
Unit (PDU) data structure. A PDU
contains an SNMP message.

OVsnmpAddNullVarBind,
OVsnmpAddTypedVarBind

Used in conjunction with SNMP Set,
Get, GetNext and SNMPv2 Inform
Requests. Allocates, initializes and
appends an OVsnmpVarBind
structure for the specified SNMP
MIB object to the SNMP Request
PDU.

OVsnmpFixPdu If, in a list of variables, one or more
variables cause a request to fail (for
any reason), OVsnmpFixPdu(3) can
be used to strip the offending
variable(s) from the list. The result
is a list that can be used to retry the
request.

OVsnmpCopyPdu Creates a copy of the specified
OVsnmpPdu data structure and its
contained elements

OVsnmpFreePdu Deallocates a PDU structure, and
recovers associated resources.

Table 7-3 SNMP Communications API Functions (Continued)

Category
Function Name for

Event-Driven X
Applications

Function Name
for Traditional

Applications
Description
Chapter 7 263

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Communi-
cations

OVsnmpXSend OVsnmpSend Sends an SNMP message in
non-blocking mode.
Resources associated with the PDU
are deallocated with this call, unless
an error occurs.

Using OVsnmpXSend(3) in an
event-driven X-based application
achieves automatic non-blocking
transmission.

OVsnmpBlockingSend Sends an SNMP message in blocking
mode.
Resources associated with the PDU
are deallocated with this call, unless
an error occurs.

OVsnmpRecv Sends an SNMP message in blocking
mode.
Resources associated with the PDU
are deallocated with this call, unless
an error occurs.

OVsnmpRead Receives messages on all active
SNMP sessions.
Returns information via the callback
function.

Manual
Retrans-
mission

OVsnmpGetRetryInfo Gets retransmission information on
pending SNMP requests.

OVsnmpDoRetry Retransmits a pending SNMP
request.

Table 7-3 SNMP Communications API Functions (Continued)

Category
Function Name for

Event-Driven X
Applications

Function Name
for Traditional

Applications
Description
Chapter 7264

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Related Commands

The following commands related to SNMP communication are available:

❏ snmpwalk(1) - query a node repeatedly using SNMP GetNext
requests

❏ snmpnext(1) - query a node using SNMP GetNext request

❏ snmpset(1) - issue an SNMP Set request

❏ snmpget(1) - query a node using SNMP Get request

❏ snmptrap(1) - issue an SNMP Trap

For more details, see the corresponding man pages.
Chapter 7 265

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
SNMP Configuration API

The SNMP Configuration API provides programmer access to the SNMP
Configuration Database. This database is the repository on the
management station for configuration information that controls the
behavior of a SNMP Session. There are three classes of configuration
parameters that are stored in the database:

❏ Configuration parameters for specific managed nodes

❏ Configuration parameters for wildcard IP addresses

❏ Configuration parameters for a global default

Whenever the configuration parameters for a managed node are
requested, they are obtained from these three classes of stored
information. The resulting parameters, and the associated IP address of
the destination can be cached so that subsequent lookups will be
performed more quickly.

The available functions and their functionality are listed in Table 2. The
table should suffice to create an impression of what can be achieved
using the functions of the API.

For more information on this API, please refer to the corresponding man
pages and to the SNMP Developer’s Guide. This manual provides a good
introduction to the underlying concepts, a description of the
corresponding data structures, and scenarios for proper use of the
functions.
Chapter 7266

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Table 7-4 SNMP Communications API Functions

Category Function Name Description

Database
Access

OVsnmpConfOpen Open the SNMP configuration database for
subsequent access.

OVsnmpConfClose Close the SNMP configuration database.

OVsnmpConfDbName Obtain the pathname of the SNMP configuration
database.

OVsnmpConfFileName Obtain the pathname of the backwards compatibility
(shadow) file that is associated with the SNMP
configuration database.

Resolution OVsnmpConfResolveDest Obtain the effective configuration parameters for a
specified destination agent.

OVsnmpConfFreeDest Deallocate all memory associated with the
OVsnmpConfDest structure returned by
OVsnmpConfResolveDest(3).

Editing OVsnmpConfReadNextEntry Sequentially read specific node records from the
SNMP configuration database.

OVsnmpConfReadEntry Read a specific node record from the SNMP
configuration database.

OVsnmpConfCreateEntry Create a new specific node record in the SNMP
configuration database. This operation will fail if a
record already exists for the specified node.

OVsnmpConfStoreEntry Create or replace, as necessary, a specific node record
in the SNMP
configuration database.

OVsnmpConfDeleteEntry Delete a specific node record from the SNMP
configuration database.

OVsnmpConfAllocEntry Allocate an OVsnmpConfEntry structure.

OVsnmpConfCopyEntry Allocate and initialize an OVsnmpConfEntry
structure with the values from the specified
OVsnmpConfEntry structure.
Chapter 7 267

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Editing
(cont.)

OVsnmpConfParseEntry Allocate and initialize an OVsnmpConfEntry
structure with the values extracted from a
configuration string in the format of an
ovsnmp.conf(4) configuration file entry.

OVsnmpConfFreeEntry Deallocate all memory associated with the specified
OVsnmpConfEntry structure.

OVsnmpConfReadWcList Read the list of IP address wildcard records from the
SNMP configuration database. Since the semantics of
wildcard records are partly dependent upon the order
of the records in the database, these records can only
be updated as a single list.

OVsnmpConfStoreWcList Create or replace, as necessary, the list of IP address
wildcard records in the SNMP configuration
database.

OVsnmpConfAllocWcList Allocate memory for an OVsnmpConfWcList
structure. This structure may then be inserted into
the wildcard list obtained using
OVsnmpConfReadWcList(3).

OVsnmpConfFreeWcList Deallocate all memory associated with the specified
list of OVsnmpConfWcList structures.

OVsnmpConfReadDefault Read the global default record from the SNMP
configuration database.

OVsnmpConfStoreDefault Create or replace, as necessary, the global default
record in the SNMP configuration database.

OVsnmpConfImportFile Replace the contents of the SNMP configuration
database with records extracted from configuration
strings in the specified ovsnmp.conf(4) configuration
file.

OvsnmpConfExportFile Dump the contents of the SNMP configuration
database to the specified ovsnmp.conf(4) configuration
file.

Table 7-4 SNMP Communications API Functions (Continued)

Category Function Name Description
Chapter 7268

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Admini-
stration

OVsnmpConfReadCntl Read the current SNMP configuration database
administration record. This record contains options
which control run-time caching and use of the
backward compatibility configuration file.

OVsnmpConfStoreCntl Update the current SNMP configuration database
administration record. This enables you to modify the
options which control run-time caching and use of the
backward compatibility file.

Misc. OVsnmpConfDeleteCache Remove all entries from the SNMP configuration
run-time cache. New entries accumulate in the cache
as applications call OVsnmpOpen(3) and
OVsnmpConfResolveDest(3).

OVsnmpConfReadNextDest Sequentially read entries from the SNMP
configuration run-time cache. This function is
provided for troubleshooting only (i.e., to dump the
contents of the cache for inspection.)

OVsnmpConfReadNextDest Print the contents of an OVsnmpConfDest structure
to stdout.

OVsnmpConfPrintEntry Print the contents of an OVsnmpConfEntry structure
to stdout.

OVsnmpConfPrintCntl Print the contents of an OVsnmpConfCntl structure
to stdout.

Table 7-4 SNMP Communications API Functions (Continued)

Category Function Name Description
Chapter 7 269

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
The SNMP configuration can also be done interactive with the tool
xnmsnmpconf.

Figure 7-4 SNMP Configuration Using xnmsnmpconf
Chapter 7270

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Topology Data

OVO provides a topology manager that automatically discovers and
maintains a database of TCP/IP nodes and connections. This database
includes fields that describe each node’s functionality, address, and
status. If a device has an SNMP agent, then that agent’s identification is
used to determine its capabilities and how it should be represented on
OVO maps.

Figure 7-5 TCP/IP Submap

The topology manager passes information to the OpenView database.
Other applications may provide discovery mechanisms for non-TCP/IP
protocols; for example, they may discover connections using MAC, WAN,
or vendor-specific protocols. As with the OVO topology manager, these
applications can store topology information in the OpenView database.

OVO can be configured to use the Oracle relational database to manage
topology information. Some customers use the query and
report-generating capabilities of this database to analyze and document
their network.
Chapter 7 271

Integration Facilities of the HP OpenView NNM Core Platform
The OpenView Windows API
Chapter 7272

8 Creating and Distributing an
Integration Package
Chapter 8 273

Creating and Distributing an Integration Package
In This Chapter
In This Chapter
The final stage of the integration process is to create an integration
package for distribution to customers. You will find that the
configuration download/upload utility of OVO will play an important role
in the creation of the integration package.

This chapter describes the structure of OVO configuration files, explains
the use of application registration files (ARFs), and describes how to
download and upload configuration information, and how to add
programs/scripts for distribution by OVO.

To create an integration package you will need to do the following tasks:

1. Define the required configuration in the environment of the
integration package.

• You will do most of this task in the OVO administrator’s GUI. For
example, define new templates, or add new conditions to existing
templates; define message groups, node groups, default
operator(s); set up applications in the Application Desktop, etc.

• In addition, it may sometimes be necessary to place files at
predefined locations in the file trees maintained by OVO, for
example, if monitor scripts, or programs for performing certain
actions are to be distributed by OVO.

2. Download the configuration information into a file tree.

The OVO administrator’s GUI offers a powerful facility for
downloading configuration information. This facility enables you to
choose the full OVO configuration or selected parts that are relevant
to the integration package.

You can also use the command opccfgdwn(1M) to download
predefined configuration sets from the command line.

3. Package the file tree, add any additional software if required and
then ship the integration bundle.

Additional software might be executables for processes running on
the OVO management server, for example, if APIs on the
management server are used, installation scripts, man pages, etc.
Chapter 8274

Creating and Distributing an Integration Package
In This Chapter
The OVO configuration upload command opccfgupld(1M) can be used at
the customer’s site to upload the configuration information into the local
OVO installation.
Chapter 8 275

Creating and Distributing an Integration Package
Structure of OVO Configuration Files
Structure of OVO Configuration Files
The behavior and capabilities of OVO are determined by configuration
information stored in a relational database. This information can be
downloaded into a tree structure of flat files. The structure of this file
tree is shown in Figure 8-1.

Figure 8-1 Structure of an OVO Configuration File Tree

<selected path name>

download.dsf
C

ADMIN
admin.dat

APPLICATIONS

OVREGFILES
opc

snmp
<regfiles> ...

<regfiles> ...

applications.dat

EXECUTABLES
<executables> ...

MSGGROUPS
msggroups.dat

NODEGROUPS
nodegroups.dat

NODES
nodes.dat

OPERATORS
operators.dat
<operator name>

OTHER
DBMAINT

dbmaint.dat

INSTINTF
instintf.dat

MGMTSV
mgmtsv.dat

NODE_DEF
node_def.dat

NOTIFY
notify.dat

TROUBLET
troublet.dat

Usually this is:

/var/opt/OV/share/tmp/OpC_appl/\
<applic_name>

NODEHIER
nodehier.dat

ECLIBRARIES
<libraries>

ECMODULES
<files>

RESPMGRS
<files>
Chapter 8276

Creating and Distributing an Integration Package
Structure of OVO Configuration Files
Figure 8-2 Structure of an OVO Configuration File Tree (cont.)

<selected path name>

download.dsf
C

REGROUP
regroup.dat

TEMPLATES
CONSOLE

console.dat

INTERFACE
interface.dat

LOGFILE
logfile.dat

MONITOR
monitor.dat

TRAP
trap.dat

Usually this is:

/var/opt/OV/share/tmp/OpC_appl/\
<applic_name>

EC
ec.dat
ECCIRCUITS

<circuit_files>

SCHEDULE
schedule.dat

TEMPLGROUP
templgroup.dat
Chapter 8 277

Creating and Distributing an Integration Package
Downloading Configuration Information
Downloading Configuration Information
You can download configuration information either by using the OVO
administrator’s GUI, or from the command line using the
opccfgdwn(1M) command.

Both methods enable you to select the parts of the configuration that you
want to download. For example, instead of downloading the entire
configuration, you may choose to download only the templates. The
different parts of the configuration to be downloaded are specified in the
following file:

/var/opt/OV/share/tmp/OpC_appl/cfgdwn/download.dsf

The following is an example extract from a download.dsf file:

APPLICATION_BANK;
NODE_GROUP “net_devices”;
OPERATOR “itop”
CONFIGURATION *;
OPERATOR “netop”
CONFIGURATION *;
LOGFILE_TEMPLATE “dflt_ApplEvLog (NT)” ;
LOGFILE_TEMPLATE “dflt_SecEvLog (NT)” ;
LOGFILE_TEMPLATE “dflt_SysEvLog (NT)” ;

This specification file is required as a parameter by the opccfgdwn(1M)
command.
Chapter 8278

Creating and Distributing an Integration Package
Downloading Configuration Information
To download configuration data:

1. Open the Download Configuration Data window in the OVO
administrator’s GUI.

Select Actions: Server->Download Configuration

2. Select the parts of the OVO configuration that you want to download.

Figure 8-3 shows the Download Configuration Data window.

Figure 8-3 Download Configuration Data Window
Chapter 8 279

Creating and Distributing an Integration Package
Downloading Configuration Information
3. If you click on any of the buttons between [Applications…] and
[Users and Profiles…] a second window opens that lets you choose
the parts of the configuration to be downloaded more precisely.

Figure 8-4 Select Templates to Download Window

4. Clicking on the button [Write Spec. File] lets you write a
specification file that you can use for downloading the configuration
data at a later point in time. The opccfgdwn(1M) command requires
the name of a specification file and a directory name under which to
write the file tree.

5. Click [OK] to start the downloading process.
Chapter 8280

Creating and Distributing an Integration Package
Downloading Configuration Information
For example, assume that you want to download a configuration file tree
into the directory:

/var/opt/OV/share/tmp/OpC_appl/newConf

The name of the specification file is download.dsf , and the download
command expects that the directory contains a subdirectory C, for the
English version of OVO, and that the specification file resides there. The
full pathname of the configuration file must be:

/var/opt/OV/share/tmp/OpC_appl/newConf/C/download.dsf

To keep the output of the example short, a specification file was used that
downloads two templates only.

Enter:

/opt/OV/bin/OpC/opccfgdwn download.dsf \
/var/opt/OV/share/tmp/OpC_appl/newConf

You will see the following messages displayed:

verifying target filetree
parsing download specification file
“/var/opt/OV/share/tmp/OpC_appl/newConf/C/\
download.dsf”
starting download of selected configuration data
reading logfile templates from DB
downloading template “Bad Logs (HP-UX standalone)”
reading interface templates from DB
downloading template “opcmsg(1|3)”
opccfgdwn finished

Warning:
Since not “All Configuration Data” was selected
for the download, the upload may result in
unexpected database contents. Try “man 1m
opccfgupld” for details.

The administrator can now upload configuration information into the
OVO internal database at any time, and independent of the GUI, using
the command opccfgupld(1M) .
Chapter 8 281

Creating and Distributing an Integration Package
Downloading Configuration Information
Preparing to Download: Adding Executables

If the integration package contains threshold monitors, automatic
actions, or operator-initiated actions to be performed on the managed
nodes, you must make sure that the OVO agents can find the required
executables (programs or scripts).

❏ Check whether the program/script already exists on the managed
node, for example, if it is part of the OS or part of a monitored
application.

❏ Use OVO to distribute the program/script to the managed node(s)

OVO will distribute the program/script to directories on the managed
node which are maintained by OVO and which are automatically in
the command search path of the OVO agents.

This section explains how to use OVO to distribute programs/scripts.

NOTE Distribution by OVO may only be used for small executables, preferably
small wrapper scripts for the reasons stated below.
Chapter 8282

Creating and Distributing an Integration Package
Downloading Configuration Information
Prepare an executable for distribution by OVO as follows:

1. Place the executable into a source directory from which OVO will
fetch it during the configuration downloading. On the OVO
management server, use the directory:

/var/opt/OV/share/databases/OpC/mgd_node/customer

A 3-level directory hierarchy below this directory is predefined
according to vendor, platform, and OS. Each directory below this
triplet contains subdirectories for monitors, commands, actions, and
package types. The package type is the communication type used by
remote procedure calls (RPCs) of a particular agent platform.

If your executables depend on the communication type, that is on
NCS_RPC, on RPC_DCE_TCP, or on RPC_DCE_UDP, place them in
the directories below the package type level. If they are independent
of the communication type, place them in the appropriate
subdirectory below the triplet.

For example, a monitoring executable suitable for 10.x agents on
s700 and s800 machines and using the RPC_DCE_TCP
communication type, needs to be placed into the following
subdirectories:

/var/opt/OV/share/databases/OpC/mgd_node/customer

./hp/s700/hp-ux10/RPC_DCE_TCP/monitor

./hp/s800/hp-ux10/RPC_DCE_TCP/monitor

2. When choosing the configuration information to be downloaded,
make sure that your executables are included.

This has the effect that when you download the configuration
information, OVO fetches the executables from the directory where
you put them and includes them in the file tree with the
configuration information.

3. Create the integration package including the configuration
information and ship to the customer.

4. Upload the configuration information at the customer’s site.

This causes OVO to copy the executables into an OVO-maintained
directory on the customer’s management server.
Chapter 8 283

Creating and Distributing an Integration Package
Downloading Configuration Information
5. Advise the OVO administrator, for example, in the documentation of
the integration package, to distribute the new configuration
information to the required managed nodes.

In the Install/Update OVO Software and Configuration
window, the administrator must distribute Actions , Monitors or
Commands, depending on the requirements of the integration.

Warnings

It is important to consider the following issues when distributing
executables using OVO:

❏ Names of executable files must not exceed a length of 12 characters.

❏ Names of executables must be unique; the names must not conflict
with executables in other integration packages.

To achieve this, it is recommended to use the naming conventions
that are part of the certification requirements for OVO integration
packages. These naming conventions require integrators to prefix
object names with a unique string to identify their solution.

❏ Only small executable files may be distributed by OVO

Distribution to managed nodes depends on the vendor, platform, and
OS characteristics of the managed node and not on the templates or
monitors distributed to the managed node.

For example, you might provide a monitoring script for a business
application running on HP-UX 10.x machines. If you put the script
into the corresponding directory, download it, and then upload it onto
the customer’s management server, this script will be distributed to
any s800 machine running HP-UX 10.x, provided the administrator
distributes “Monitors” to these nodes. This will happen even if the
managed node doesn’t run any part of the business application
meaning that the monitor will never be used.
Chapter 8284

Creating and Distributing an Integration Package
Uploading Configuration Information
Uploading Configuration Information
The opccfgupld(1M) command can only be issued by user root, and you
must specify at least the name of the directory under which the
configuration information is stored.

You can use the following command line options depending on whether
you want to overwrite existing information in the OVO database or not:

-replace Overwrite any information that already exists in the
OVO internal database.

-add Insert additional information that is different from
information that already exists in the OVO internal
database.

Other options are available so that you can upload information at a
subentity level, see below for details.

To upload configuration information into the OVO internal database:

1. Stop the OVO management server processes using the
administrator’s GUI. Select Actions: Server->Stop Services
from the Node Bank menu.

2. Exit the administrator’s GUI.

3. Upload the configuration information, enter:

/opt/OV/bin/OpC/opccfgupld < upload_options > \
<config_directory >

This command is discussed in more detail in the examples below.

4. After successfully uploading the configuration information, restart
the OVO management server processes:

/opt/OV/bin/OpC/opcsv -start

5. Restart the OVO administrator’s GUI.

6. Install the new configuration information on the managed nodes.
Select Actions: Agents->Install/Update SW & Config .

The following examples demonstrate some of the functionality of the
opccfgupld(1M) command. For more information, see the man page
opccfgupld(1M).
Chapter 8 285

Creating and Distributing an Integration Package
Uploading Configuration Information
These examples assume that a file tree containing configuration
information has already been created, using either the OVO
administrator’s GUI or the opccfgdwn(1M) command. The configuration
file tree is assumed to be in the directory:

/var/opt/OV/share/tmp/OpC_appl/newConf

Example 1: Uploading in Add Mode (Default)

This is the most straightforward way to use opccfgupld(1M) . The entire
configuration information under the directory
/var/opt/OV/share/tmp/OpC_appl/newConf is uploaded into the OVO
internal database. As the Add mode is the default setting, you do not
need to specify the -add option. In this mode, only the entities that are
not already stored in the OVO database are uploaded from the
configuration file tree.

To keep the example output short, the file tree only contains
configuration information for two templates. To demonstrate the effect of
“Add” mode, the example shows what happens when one of the templates
already exists in the OVO internal database. You will see that a warning
message is generated for the existing template, and the new template is
added.

To upload a configuration file in “Add” mode, enter:

/opt/OV/bin/OpC/opccfgupld /var/opt/OV/share/tmp/\
OpC_appl/newConf

You will see the following messages displayed:

parsing index file
“/var/opt/OV/share/tmp/OpC_appl/newConf/C/newConf.idx”
starting upload

uploading logfile templates
Template Bad Logs (HP-UX standalone) already exists

(OpC50-79)
Warning: not all requested objects were processed.

(OpC50-24)
uploading interface templates

opccfgupld terminated with 2 warning(s)/error(s)
Chapter 8286

Creating and Distributing an Integration Package
Uploading Configuration Information
Example 2: Uploading in Replace Mode

This example is similar to Example 1, except that Replace mode is used.
You will see that, even though one of the templates already exists in the
OVO database, it is overwritten by the upload command and no warning
is issued.

To upload a configuration in Replace mode, enter:

/opt/OV/bin/OpC/opccfgupld -replace \
/var/opt/OV/share/tmp/OpC_appl/newConf

You will see the following messages displayed:

parsing index file
“/var/opt/OV/share/tmp/OpC_appl/newConf/C/newConf.idx”
starting upload
uploading logfile templates
uploading interface templates
opccfgupld finished

Example 3: Uploading and Replacing Information at a
Subentity Level

The previous examples showed how to upload complete entities of
configuration information, with these entities being complete templates.
You may, however, prefer to work on subentities instead of on complete
entities. For example, you may want to add conditions to a template.

You can merge configuration information using the options:
-add -subentity . If you can identify a match condition in the default
SNMP trap template, before or after which the new trap conditions
should be inserted, the existing condition can be used as an anchor to
control where opccfgupld(1M) inserts the new conditions.
Chapter 8 287

Creating and Distributing an Integration Package
Uploading Configuration Information
Assume that the default template for OVO message interception
contains the following conditions:

condition 1
condition 2
condition 3

and that the partner solution needs the following additional conditions:

new condition a
new condition b

If the configuration file tree contains a template for OVO message
interception containing the two new conditions above, enter:

/opt/OV/bin/OpC/opccfgupld -add -subentity \
/var/opt/OV/share/tmp/OpC_appl/newConf

This command merges the two templates, so that the new conditions are
appended to the end of existing template. The resulting template
contains the following conditions:

condition 1
condition 2
condition 3
new condition a
new condition b

However, the sequence of conditions within a template is important,
because the first condition that matches is applied. OVO, therefore, lets
you insert new conditions at specific positions within the list of
conditions.

Assume that, after analyzing the default template for intercepting OVO
messages, you decide to insert the two new conditions after “condition 2”
of the existing template, as follows:

condition 1
condition 2
new condition a
new condition b
condition 3
Chapter 8288

Creating and Distributing an Integration Package
Uploading Configuration Information
You can obtain this sequence of conditions as follows:

1. Copy the OVO default template for message interception, containing
the following conditions:

condition 1
condition 2
condition 3

2. Remove all conditions except “condition 2”.

3. Add the new conditions needed to integrate the partner solution. You
will now have the following sequence of conditions:

condition 2
new condition a
new condition b

4. Download the required configuration information, including at least
the new template that you have just created.

5. Stop the OVO server processes and exit the GUI

6. Upload the configuration information, enter:

/opt/OV/bin/OpC/opccfgupld -add -subentity \
/var/opt/OV/share/tmp/OpC_appl/newConf

When you specify the -subentity option, and OVO adds information
to an existing template, it compares the conditions to be added with
the existing conditions. If OVO finds a condition in the uploaded
template that is contained in the existing template, this condition is
used as an anchor to determine where to add the new information.

7. Restart the OVO server processes.

8. Restart the OVO administrator’s GUI.

9. Open the template for opcmsg(1|3) interception. You will see that
the conditions are listed in the following order:

condition 1
condition 2
new condition a
new condition b
condition 3
Chapter 8 289

Creating and Distributing an Integration Package
Uploading Configuration Information
Chapter 8290

A Syntax Used in OVO
Configuration Files
Appendix A 291

Syntax Used in OVO Configuration Files
In This Chapter
In This Chapter
This appendix provides a detailed description of the syntax used by the
configuration download command opccfgdwn(1M) to store OVO
configuration information in flat files which in turn are required by the
configuration upload command opccfgupld(1M) .
Appendix A292

Syntax Used in OVO Configuration Files
Notation Used
Notation Used
In this appendix, the syntax is described using a BNF grammar.
Keywords are written in boldface, non-terminal symbols are written in
italics.

The symbol “ε” represents an empty string

The symbol “|” separates alternatives of which one is to be selected.

Square brackets “[” and “]” are used for grouping parts of a rule.
Appendix A 293

Syntax Used in OVO Configuration Files
General OVO Syntax Rules
General OVO Syntax Rules
The following syntax rules apply to all OVO configuration files:

In the first column indicates a comment; all text until
the new line is treated as comment.

separators Blanks, tabs, new lines

keywords Individual keywords are used, all in uppercase.

strings All strings must be enclosed in quotes (“string”).
Quotes within a string must be preceded by a
backslash (\). Empty strings are represented by two
quotes “”. To specify a backslash in a string use \\.
Appendix A294

Syntax Used in OVO Configuration Files
Configuration Files for Templates
Configuration Files for Templates
This section describes the syntax used in configuration files that describe
templates for the following message sources: logfiles, SNMP traps,
MPE/iX console messages, and messages passed to OVO by the message
interface opcmsg(1|3) .

In the following grammar examples, you will find that the configuration
file can have the keyword SYNTAX_VERSION followed by a number at the
beginning.

NOTE It is recommended to put the keyword SYNTAX_VERSION followed by the
number of the current version at the beginning of a configuration file.

For reasons of backward compatibility, the SYNTAX_VERSION is
dynamically determined at template distribution time:

Table A-1 Template Syntax Versions

Syntax
Version

OVO
Version Keyword Description

8 A.07.00 CUSTOM Keyword for custom
message attributes.

7 A.06.00 SUPP_DUPL_IDENT_O
UTPUT_MSG

Keyword for suppress
identical output
messages option.

6 Used by HP HP OpenView Operations for Windows.

5 A.05.00 CONDITION_ID Keyword for condition ID.

MSGKEY

MSGKEYRELATION

Keywords for message
correlation.

SERVICE_NAME Keyword for service
name mapping for the
HP OpenView Service
Navigator.
Appendix A 295

Syntax Used in OVO Configuration Files
Configuration Files for Templates
4 A.04.00 ECS

CIRCUIT_FILE

Keywords for event
correlation.

SCHEDULE Keywords for scheduled
actions.

3 A.03.00 Major

Minor

Keyword for new severity
states.

MPI_AGT_DIVERT_MS
G

MPI_AGT_COPY_MSG

Keywords for the agent
message stream API.

NT_UNICODE

NT_ANSI_L1

NT_ANSI_JP

NT_OEM_L1

NT_OEM_US

NT_OEM_JP

Character sets used by
Windows NT/2000
managed nodes

2 A.02.00 The syntax version is set to 2 (also used in OpC
2.x) if none of the keywords mentioned above is
used.

Table A-1 Template Syntax Versions (Continued)

Syntax
Version

OVO
Version Keyword Description
Appendix A296

Syntax Used in OVO Configuration Files
Configuration Files for Templates
Since the syntax descriptions for the configuration files of all these
templates share most rules, they are presented here as one grammar.
The following restrictions apply:

❏ a configuration file for a logfile template must fit the syntax
definition <logsources>

❏ a configuration file for an SNMP trap template must fit the syntax
definition <snmpsources>

❏ a configuration file for a MPE/iX console message template must fit
the syntax definition <consources>

❏ a configuration file for an OVO message interface template must fit
the syntax definition <opcsources>

❏ a configuration file for an event correlation template must fit the
syntax definition <ecsources>

❏ a configuration file for a scheduled action template must fit the
syntax definition <schedsources>

The grammar is as follows:

file ::= SYNTAX_VERSION <num> [<logsources> | <snmpsources
> |

<consources> | <opcsources> | <ecsource> |
<schedsources> e]

logsources ::= <logsource > <logsources> | e
snmpsources ::= <snmpsource> <snmpsources> | e
consources ::= <consource> <consources> | e
opcsources ::= <opcsource> <opcsources> | e
ecsources ::= <ecsource> <ecsources> | e
schedsources ::= <schedsource> <schedsources> | e

logsource ::= LOGFILE <string> DESCRIPTION <string>
<logdefopts> <conditions>

snmpsource ::= SNMP <string> DESCRIPTION <string>
<snmpdefopts> <snmpconditions>

consource ::= CONSOLE <string> DESCRIPTION <string>
<condefopts> <conditions>

opcsource ::= OPCMSG <string> DESCRIPTION <string>
<opcdefopts> <conditions>

ecsource ::= ECS <string> DESCRIPTION <string>
<ecdefopts> <ecverification>
Appendix A 297

Syntax Used in OVO Configuration Files
Configuration Files for Templates
CIRCUIT_FILE <string> <circuit>
schedsource ::= SCHEDULE <string> DESCRIPTION <string>

<scheddefopts>
logdefopts ::= <logdefopts> [<stddefault> |

<logoption> | <stdoption>] | e
logoption ::= LOGPATH <string> | EXEFILE <string> |

READFILE <string> | INTERVAL <string> |
CHSET <chset> | FROM_LAST_POS |
ALWAYS_FROM_BEGIN | FIRST_FROM_BEGIN |
NO_LOGFILE_MSG | CLOSE_AFTER_READ

snmpdefopts ::= <snmpdefopts> [<stddefault> |
<stdoption>] | e

condefopts ::= <condefopts> [<stddefault> |
<stdoption>] | e

opcdefopts ::= <opcdefopts> [<stddefault> |
<stdoption>] | e

ecdefopts ::= <ecdefopts> [ECS_LOG_INPUT |
ECS_LOG_OUTPUT] | e

ecverification ::= VERIFIED | UNVERIFIED
circuit ::= <circuit> [<string>] | e
scheddefopts ::= <scheddefopts> [SCHEDPROG

<string>] |
USER <string> | MONTH <string> |
MONTHDAY <string> | WEEKDAY
<string> |
HOUR <string> | MINUTE <string> |
TIMEZONE_VALUE <string> |
YEAR <num> | LOGLOCAL | SEND_OUPUT |
TIMEZONE_TYPE <tz_type> |
BEFORE SET <sets> |
FAILURE SET <sets> |
SUCCESS SET <sets> | e

tz_type ::= [MGR_LOCAL | AGT_LOCAL | FIX]
stddefault ::= SEVERITY <severity> | APPLICATION

<string| MSGGRP <string> |
OBJECT <string> |
MAP_COLORING <string> |
SERVICE_NAME <string> |
MSG_KEY <string> | MSGKEY <string> |
HELPTEXT <string> | HELP <string> |
INSTRUCTION_TEXT_INTERFACE <string> |
Appendix A298

Syntax Used in OVO Configuration Files
Configuration Files for Templates
INSTRUCTION_PARAMETERS <string>
stdoption ::= LOGMATCHEDMSGCOND |

LOGMATCHEDSUPPRESS |
LOGUNMATCHED | FORWARDUNMATCHED |
UNMATCHEDLOGONLY | MPI_SV_COPY_MSG |
MPI_SV_DIVERT_MSG | MPI_SV_NO_OUTPUT|

MPI_AGT_WPY_MSG |
MPI_AGT_DIVERT_MSG |
MPI_AGT_NO_OUTPUT |
MPI_IMMEDIATE_LOCAL_ACTIONS |
SUPP_DUPL_COND <supp_dupl> |
SUPP_DUPL_IDENT <supp_dupl> |
SUPP_DUPL_IDENT_OUTPUT_MSG
<supp_dupl> |
SEPARATORS <string> | ICASE |
DISABLED

conditions ::= <conditions> [MSGCONDITIONS <msgconds|

SUPPRESSCONDITIONS <suppressconds>
SUPP_UNM_CONDITIONS
<supp_unm_conds>] | e

msgconds ::= <msgconds> DESCRIPTION <string>
<cond_supp_dupl> <condition_id>
CONDITION <conds> SET
<sets> | e

suppressconds ::= <suppressconds> DESCRIPTION
<string>
<condition_id> CONDITION
<conds> | e

supp_unm_conds ::= <supp_unm_conds> DESCRIPTION
<string>

<condition_id> CONDITION
<conds> | e

conds ::= <conds> [SEVERITY <severities> | NODE
<nodelist>| APPLICATION <string> | MSGGRP

<string> | OBJECT<string> | TEXT
Appendix A 299

Syntax Used in OVO Configuration Files
Configuration Files for Templates
<pattern >] | e
snmpconditions ::= <snmpconditions> [MSGCONDITIONS

<snmpmsgconds> |
SUPPRESSCONDITIONS
<snmpsuppressconds>
SUPP_UNM_CONDS
<snmpsupp_unm_cond>] | e

snmpmsgconds ::= <snmpmsgconds> DESCRIPTION<string>
<cond_supp_dupl> <condition_id>
CONDITION
<snmpconds> SET <sets> | e

snmpsuppressconds ::= <snmpsuppressconds>
DESCRIPTION
<string> <condition_id>
CONDITION <snmpconds> | e

snmpsupp_unm_conds ::= <snmpsupp_unm_cond>
DESCRIPTION <string>
<condition_id>
CONDITION <snmpconds> | e

snmpconds ::= <snmpconds> [$e <string> |
$G <num>|
$S <num> | $<num> <pattern> | NODE
<nodelist >] | e

sets ::= <sets> [SEVERITY <severity> | NODE
<node>|
APPLICATION <string> | MSGGRP <string> |

OBJECT <string> | MSGTYPE <string>| TEXT

<string> | MAP_COLORING <string> |
SERVICE_NAME <string> |
MSG_KEY <string> | MSGKEY <string> |
MSG_REL_BLANK ACK <pattern> |
MSGKEYRELATION ACK <pattern> |
SERVERLOGONLY | AUTOACTION <action> |
OPACTION <action> | TROUBLETICKET

[ACK | e] |
NOTIFICATION | MPI_SV_COPY_MSG |
MPI_SV_DIVERT_MSG | MPI_SV_NO_OUTPUT |
MPI_AGT_COPY_MSG | MPI_AGT_DIVERT_MSG |
MPI_AGT_NO_OUTPUT |
Appendix A300

Syntax Used in OVO Configuration Files
Configuration Files for Templates
MPI_IMMEDIATE_LOCAL_ACTIONS | HELPTEXT
<string> | HELP <string> |
INSTRUCTION_TEXT_INTERFACE <string> |
INSTRUCTION_PARAMETERS <string> |
SERVICE_NAME <string> | <cma >] | e

cond_supp_dupl ::= SUPP_DUPL_COND <supp_dupl> |
SUPP_DUPL_IDENT <supp_dupl> |
SUPP_DUPL_IDENT_OUTPUT_MSG
<supp_dupl> | e

supp_dupl ::= <string> |<string> RESEND <string>|

<string> COUNTER_THRESHOLD <num> |
<string> COUNTER_THRESHOLD <num>
RESET_COUNTER_INTERVAL <string> |
<string>RESEND <string>
COUNTER_THRESHOLD
<num> | <string> RESEND <string>
COUNTER_THRESHOLD <num >
RESET_COUNTER_INTERVAL <string> |
COUNTER_THRESHOLD <num> |
COUNTER_THRESHOLD <num>
RESET_COUNTER_INTERVAL <string>

action ::= <string> [ACTIONNODE <node > | e]
[ANNOTATE | e] [ACK | e]
[SEND_MSG_AFTER_LOC_AA <msgsendok>
<msgsendfailed>] | e

condition_id ::= CONDITION_ID <string> | e
msgsendok ::= SEND_OK_MSG |

SEND_OK_MSG LOGONLY| e
msgsendfailed ::= SEND_FAILED_MSG | e
pattern ::= <string> [SEPARATORS <string > | e]

[ICAS E | e]
chset ::= ASCII | ACP1252 | ACP932 | OEMCP850 |

OEMCP437 | ROMAN8 | ISO88591 | ISO8859|
ISO88595 | ISO88596 | ISO88597 |
ISO88598 |
ISO88599 | TIS620 | EBCDIC | SJIS |
EUCJP |

 EUCKR | EUCTW | GB2312 | BIG5 | CCDC |
Appendix A 301

Syntax Used in OVO Configuration Files
Configuration Files for Templates
UTF8 | UCS2
severities ::= <severities><severity> | e
severity ::= [Unknown | Normal | Warning |

 Minor |
Major| Critical]

nodelist ::= <node> | <nodelist><node>
node :: = IP <ipaddress> [<string> | e] |

DEC <string> |
SNA <string> |
NOVELL <string> |
OTHER <string>

ipaddress::= <digits>.<digits>.<digits>.<digits>
cma::= <cma > | [CUSTOM <string> <string >] | e
string ::= “any alphanumeric string”

(quotation marks
and the backslash occurring within a
string must be masked by a
backslash ‘\’)

num ::= [+ | - | e] <digits>
digits::= < digits > [0 - 9] | [0 - 9]
Appendix A302

Syntax Used in OVO Configuration Files
Template Examples
Template Examples

Example of an OVO Logfile Template

The following example is a configuration file for a logfile template:

LOGFILE “Su (10.x/11.x HP-UX)”

DESCRIPTION “HP-UX 10.x/11.x switch user events in logfile
/var/adm/sulog”

LOGPATH “/var/adm/sulog”
INTERVAL “20s”
CHSET ISO8859
SEVERITY Normal
APPLICATION “/usr/bin/su(1) Switch User”
MSGGRP “Security”

SUPPRESSCONDITIONS
DESCRIPTION “suppress messages caused by mondbfile monitor

(SU root-oracle)”
CONDITION
TEXT “SU <*> + <@.tty> root-oracle”

MSGCONDITIONS
DESCRIPTION “Bad su”

CONDITION
TEXT “SU <*> - <@.tty> <*.from>-<*.to>”

SET
MPI_AGT_DIVERT_MSG
MSGTYPE “bad_su”
SEVERITY Warning
OBJECT “<from>”
TEXT “Bad switch user to <to> by <from>”

DESCRIPTION “Succeeded su”
CONDITION
TEXT “SU <*> + <@.tty> <*.from>-<*.to>”
Appendix A 303

Syntax Used in OVO Configuration Files
Template Examples
SET
MPI_AGT_DIVERT_MSG
MSGTYPE “succeeded_su”
OBJECT “<from>”
TEXT “Succeeded switch user to <to> by <from>”
Appendix A304

Syntax Used in OVO Configuration Files
Template Examples
Example of an OVO Message Source Specification

The following example is a configuration file for the OVO message
interface used to intercept messages sent by opcmsg() .

As the file is part of a downloaded configuration, it contains UUIDs (the
numbers in the lines starting with the keyword “HELP”) that are used
internally by OVO to refer to the respective piece of instruction text:

OPCMSG “opcmsg(1|3)”

DESCRIPTION “default interception of messages submitted by
opcmsg(1) and opcmsg(3)”

FORWARDUNMATCHED

MSGCONDITIONS
DESCRIPTION “PerfView alarms (REPEAT/END

conditions)”
CONDITION
MSGGRP “Performance”
TEXT “^\”<*.text>\” START: <*.time>

<[REPEAT|END].cond>: <*.end>
(<*.option>)”

SET
TEXT “<text> (START: <time> ; <cond>: <end>)”
OPACTION “pv.sh <$MSG_NODE_NAME> ‘<$MSG_OBJECT>’

<option> “
HELPTEXT “An alarm was sent by the MeasureWare

Agent application.
The available operator initiated action
allows to start PerfView to review the

related metrics values. “
HELP “5cfdbe1e-90ec-11d1-baa6-0060b0205c3e”
Appendix A 305

Syntax Used in OVO Configuration Files
Template Examples
Example of an SNMP Trap Template File

SNMP “SNMP 6.0 Traps”

DESCRIPTION “Message Conditions for SNMP Trap
Interception”

SEVERITY Normal
APPLICATION “SNMPTraps”
MSGGRP “SNMP”
FORWARDUNMATCHED
MSGCONDITIONS

from EVENT RMON_Rise_Alarm .1.3.6.1.2.1.16.0.1 “Threshold
Alarms” Warning

DESCRIPTION “RMON_Rise_Alarm”
CONDITION

$e “.1.3.6.1.2.1.16”
$G 6
$S 1

SET
MPI_AGT_DIVERT_MSG
MPI_SV_DIVERT_MSG
SEVERITY Warning
OBJECT “<$2>”
TEXT “RMON Rising Alarm: <$2>

exceeded threshold <$5>;
value = <$4>. (Sample type =
<$3>; alarm index = <$1>)”

HELPTEXT “This event is sent when
an RMON device exceeds a
preconfigured

 threshold.“

from EVENT RMON_Falling_Alarm .1.3.6.1.2.1.16.0.2
“Threshold

Alarms” Warning
DESCRIPTION “RMON_Falling_Alarm”

CONDITION
$e “.1.3.6.1.2.1.16”
$G 6
$S 2
Appendix A306

Syntax Used in OVO Configuration Files
Template Examples
SET
MPI_AGT_DIVERT_MSG
MPI_SV_DIVERT_MSG
SEVERITY Warning
OBJECT “<$2>”
TEXT “RMON Falling Alarm: <$2> fell

below
threshold <$5>; value = <$4>.
(Sample type = <$3>; alarm

index
= <$1>)”

HELPTEXT “This event is sent when
an RMON device falls

 below a preconfigured
 threshold.“
Appendix A 307

Syntax Used in OVO Configuration Files
Configuration Files for Monitors
Configuration Files for Monitors
The following describes the syntax that is used in configuration files for
threshold monitors. These files must fit the syntax rules related to
<monsource >.

It is recommended to put the keyword SYNTAX_VERSION followed by the
number of the current version at the beginning of a configuration file.

NOTE Note that the name of the monitor (the string between the keywords
MONITOR and DESCRIPTION) must not contain space characters
(blanks).

file ::= SYNTAX_VERSION <num> <monsources>

<monsources> ::= <monsource> <monsources> | e

monsource ::= MONITOR <string> DESCRIPTION <string>
<mondefopts>
<monconditions>

mondefopts ::= <mondefopts> [<stddefault> | NODE <nodes> |

<monoption> | <stdoption> |
<oldmondefopts>] | e

<stddefault> ::= SEVERITY <severity> | APPLICATION <string>
| MSGGRP <string> | OBJECT <string> |
MAP_COLORING <string> | SERVICE_NAME
<string> |
MSG_KEY <string> | MSGKEY <string> |
HELPTEXT <string> | HELP <string> |
INSTRUCTION_TEXT_INTERFACE <string> |
INSTRUCTION_PARAMETERS <string>

<monoption> ::= INTERVAL <string> | MONPROG <string> |
MIB <string> | MIB <string> NODE <node> |
EXTERNAL | MINTHRESHOLD |
MAXTHRESHOLD | GEN_BELOW_THRESHOLD |
Appendix A308

Syntax Used in OVO Configuration Files
Configuration Files for Monitors
GEN_BELOW_RESET | GEN_ALWAYS

stdoption ::= LOGMATCHEDMSGCOND | LOGMATCHEDSUPPRESS |
LOGUNMATCHED | FORWARDUNMATCHED |
UNMATCHEDLOGONLY | MPI_SV_COPY_MSG |
MPI_SV_DIVERT_MSG | MPI_SV_NO_OUTPUT |
MPI_AGT_WPY_MSG |
MPI_AGT_DIVERT_MSG | MPI_AGT_NO_OUTPUT |
MPI_IMMEDIATE_LOCAL_ACTIONS |
SUPP_DUPL_COND <supp_dupl> |
SUPP_DUPL_IDENT <supp_dupl> |
SEPARATORS <string> | ICASE |
DISABLED

supp_dupl ::= <string> | <string> RESEND <string>|
<string> COUNTER_THRESHOLD <num> |
<string> COUNTER_THRESHOLD <num>
RESET_COUNTER_INTERVAL <string> |
<string>RESEND <string> COUNTER_THRESHOLD
<num> | <string> RESEND <string>
COUNTER_THRESHOLD <num >
RESET_COUNTER_INTERVAL <string> |
COUNTER_THRESHOLD <num> |
COUNTER_THRESHOLD <num>
RESET_COUNTER_INTERVAL <string>

oldmondefopt ::= THRESHOLD [<num> | <floatnum>] |
THRESHOLD [<num> | <floatnum>]
FOR <string> |
RESET [<num> | <floatnum>] |
MSGTYPE <string> |
TEXT <string> |
SERVERLOGONLY |
LOGLOCAL |
AUTOACTION <action> |
OPACTION <action> |
TROUBLETICKET [ACK | e]
NOTIFICATION

monconditions ::= <monconditions> [MSGCONDITIONS
<monmsgconds> |
SUPPRESSCONDITIONS <monsuppressconds> |
Appendix A 309

Syntax Used in OVO Configuration Files
Configuration Files for Monitors
SUPP_UNM_CONDITIONS
<monsupp_unm_conds>] | e

monmsgconds ::= <monmsgconds> DESCRIPTION <string>
<condition_id> CONDITION <monconds>
SET <sets> | e

monsuppressconds ::= <monsuppressconds> DESCRIPTION
<string>
<condition_id> CONDITION
<monconds> | e

monsupp_unm_conds ::= <monsupp_unm_conds> DESCRIPTION
<string>
<condition_id> CONDITION
<monconds> | e

monconds ::= <monconds> | e

moncond ::= THRESHOLD [<num> | <floatnum>]
<duration> | RESET [<num> | <floatnum>]
OBJECT <pattern>

duration ::= FOR <string> | e

pattern ::= <string> [SEPARATORS <string > | e]
[ICAS E | e]

action ::= <string> [ACTIONNODE <node > | e]
[ANNOTATE | e] [ACK | e]
[SEND_MSG_AFTER_LOC_AA <msgsendok>
<msgsendfailed>] | e

condition_id ::= CONDITION_ID <string> | e

severity ::= [Unknown | Normal | Warning | Minor | Major |
Critical]

node ::= IP <ipaddress> [<string> | e] |
DEC <string> |
SNA <string> |
NOVELL <string> |
Appendix A310

Syntax Used in OVO Configuration Files
Configuration Files for Monitors
OTHER <string>

ipaddress::= <digits>.<digits>.<digits>.<digits>

string ::= “any alphanumeric string” (quotation marks
and the backslash occurring within a string

 must be masked by a backslash ‘\’)

floatnum :: = [+ | - | e] <digits>.<digits> | <num>

num ::= [+ | - | e] <digits>

digits::= < digits > [0 - 9] | [0 - 9]
Appendix A 311

Syntax Used in OVO Configuration Files
Configuration Files for Monitors
Example of an OVO Monitor Template

The following text shows the definition of a monitor for which the OVO
intelligent agent calls a program every 10 minutes to determine disk
usage.

#

Template: disk_util
#

SYNTAX_VERSION 2
MONITOR “disk_util”

DESCRIPTION “Monitor disk space utilization on root disk”
INTERVAL “10m”
MONPROG “disk_mon.sh disk_util”
THRESHOLD 90.000000
RESET 85.000000
MAXTHRESHOLD
GEN_BELOW_RESET
SEVERITY Warning
APPLICATION “OVO”
MSGGRP “OS”
OBJECT “root_disk”
TEXT “Utilization of root disk (<$VALUE>%) is greater

than <$THRESHOLD>%.”
AUTOACTION “ana_disk.sh” ANNOTATE
HELPTEXT “Available space on the device holding the / (root)
filesystem is less than the configured threshold. This may
lead to problems for applications running on the affected
system requesting large amounts of storage space. Also,
performance penalties might be encountered.”

end of disk_util
Appendix A312

Syntax Used in OVO Configuration Files
Configuration Files for Monitors
The program or script disk_mon.sh must contain a command or function
call such as:

opcmon “disk_util={$RETRIEVED_VALUE}”

or

opcmon (object, value)

to pass on the current value of the monitored objects to the OVO Monitor
Agent (opcmona).
Appendix A 313

Syntax Used in OVO Configuration Files
Syntax for Message Pattern Matching
Syntax for Message Pattern Matching
Table A-2 shows the components of the OVO pattern-matching language
that can be used to write expressions to match incoming messages. You
can combine individual components to form complex patterns.

Table A-2 OVO Pattern Matching Language

Component Description

Ordinary
Characters

Ordinary characters are expressions that represent themselves. Any
character of the supported character set can be used.

However, if any of the following special characters are used:

[] < > | ˆ $

they must be prefaced with a backslash (\) to mask their usual function.

If ˆ and $ are not used as Anchoring Characters, they are considered as
ordinary characters.

The Mask
Character

Use the backslash (\) to mask the special meaning of the characters:

 [] < > | ˆ $

A special character preceded by \ results in an expression that matches
the special character itself.

Note that because ˆ and $ only have special meaning when placed at the
beginning and end of a pattern respectively, you need not mask them when
they are used within a pattern (in other words, not at beginning or end).

The only exception is the tab character, that is specified by entering /t in
the pattern string.

Expression
Anchoring

If the caret (ˆ) is used as the first character of the pattern, only expressions
discovered at the beginning of lines are matched. For example, “ˆab”
matches the string “ab” in the line “abcde”, but not in the line “xabcde”.

If the dollar sign is used as the last character of a pattern, only expressions
at the end of lines are matched. For example, de$ matches de in the line
abcde, but not in the line abcdex.
Appendix A314

Syntax Used in OVO Configuration Files
Syntax for Message Pattern Matching
Bracket
Expressions:

The brackets “ [” and “] ” are used as delimiters to group expressions. To
increase performance, avoid brackets wherever they are superfluous.

In the pattern ab[cd[ef]gh] all brackets are unnecessary - abcdefgh is
equivalent. Expressions with brackets are used frequently with the
Alternative Operator or the NOT Operator.

Brackets are also often useful when assigning values to variables.

Expressions
Matching
Multiple
Characters:

Patterns used to match strings consisting of an arbitrary number of
characters are represented by one of the following expressions. Depending
on the symbol used, the characters matched by the expression are
restricted to a certain set.

<*> Matches any string of zero or more arbitrary characters
(including separators).

<n*> Matches a string of n arbitrary characters (including
separators).

<#> Matches a sequence of one or more digits.

<n#> Matches a sequence of n digits.

<_> Matches a sequence of one or more separator characters.

<n_> Matches a string of n separators.

<@> Matches any string that contains no separator
characters, for example, a sequence of one or more
non-separators; this can be used to match words.

Table A-2 OVO Pattern Matching Language (Continued)

Component Description
Appendix A 315

Syntax Used in OVO Configuration Files
Syntax for Message Pattern Matching
Variables The matched string can be assigned to a variable that you can use to
recompose messages or as a parameter for action calls. To define a
parameter, add the string: .parametername before the closing bracket.

For example, the pattern: ˆerrno: <#.number> - <*.error_text> will
match a message of the format: errno: 125 - device does not exist and
assigns 125 to the parameter number and the message device does not
exist to the parameter error_text.

Variable names may only contain alphanumeric characters as well as
underscores (_) and hyphens (-). The following syntax rules apply:

(Letter | '_'){ Letter | Digit | '_' | '-' }

In the syntax above, Letter allows letters and ideographic characters
from all alphabets, and Digit allows digit characters from all alphabets.

Table A-2 OVO Pattern Matching Language (Continued)

Component Description
Appendix A316

Syntax Used in OVO Configuration Files
Syntax for Message Pattern Matching
Assign-to-
Variable
Operator

In addition to being able to use a single expression, such as <*> or <#> to
assign a string to a variable, it is also possible to use the assign-to-variable
operator to build up a complex sub-pattern composed of a number of
operators. The assign-to-variable operator uses the same square brackets
as in other bracket expressions.

The basic pattern is: <[sub-pattern].var>

Example 1:

<[<@>file.tmp].fname>In this example, the dot between file and tmp
matches a dot character, while the dot between] and fname is necessary
syntax. This pattern would match a string such as Logfile.tmp and assign
the complete string to fname.

Example 2:

<[Warning|Error].var>This pattern matches any instance of the string
Warning or the string Error found in the message text. The message text:
Warning and Error: Shutdown would therefore cause the string
Warning to be assigned to var. Note that the first instance of a matched
string is assigned.

Example 3:

<[Error[<#.n><*.msg>]].complete>In this case, any line containing the
word Error followed by a number, has the number assigned to the
variable n and any further text assigned to msg. Finally, both number and
text are assigned to complete.

Table A-2 OVO Pattern Matching Language (Continued)

Component Description
Appendix A 317

Syntax Used in OVO Configuration Files
Syntax for Message Pattern Matching
NOT
Operator

The not operator (!) must be used with delimiting square brackets, for
example: <![WARNING]>

The pattern above matches all text that does not contain the string
WARNING.

The NOT operator may also be used with complex sub-patterns, for
example:

SU <*> + <@.tty> <![root|[user[1|2]]].from>-<*.to>

This pattern makes it possible to generate a switch user message for
anyone who is not root, user1, or user2.

For example, the following would be matched:

SU 03/25 08:14 + ttyp2 user11-root

However, the following would not be matched, because it contains an entry
concerning user2:

SU 03/25 08:14 + ttyp2 user2-root

Note that if the sub-pattern including the not operator does not find a
match, the not operator behaves like a <*>: it matches zero or more
arbitrary characters.

For this reason, the UN*X [!123] expression cannot be duplicated: OVO’s
<![1|2|3]> matches any character or any number of characters, except 1,
2 or 3; the UN*X operator matches any one character, except 1, 2 or 3.

Alternative
Operator

Two expressions separated by the pipe character (|) match a string that
is matched by either expression.

For example, the pattern [ab|c]d matches both the string abd and the
string cd.

Table A-2 OVO Pattern Matching Language (Continued)

Component Description
Appendix A318

Syntax Used in OVO Configuration Files
Syntax for Message Pattern Matching
Numeric
Range
Operators

The pattern for constructing complex expressions with these operators, is:

<number operator [sub-pattern] operator number>

The square brackets are part of the syntax and must be provided as
literals in the pattern.

The sub-pattern can be a simple numeric operator, for instance <#> or
<2#>. These simple operators do not require delimiting brackets.
Alternatively, it may be a complex sub-pattern, using delimiting brackets,
for example:

<120 -gt [<#>1] -gt 20>

It is also possible to construct a pattern using only one operator:

Error <<#> -gt 1004>

The following Numeric Range Operators are available:

-le Less than, or equal to

-lt Less than

-ge Greater than, or equal to

-gt Greater than

-eq Equal to

-ne Not equal to

Table A-2 OVO Pattern Matching Language (Continued)

Component Description
Appendix A 319

Syntax Used in OVO Configuration Files
Pattern Matching
Pattern Matching
It is important to understand how OVO pattern matching works,
especially in conjunction with assignment to parameters.

When matching the pattern:

<*.var1><*.var2>

with the string abcdef, it is not immediately clear which substring of the
input string will be assigned to each variable. For example, it is possible
to assign an empty string to var1 and the whole input string to var2, or
to assign “a” to var1 and “bcdef” to var2, and so on.

The OVO pattern-matching algorithm always scans both the input line
and the pattern definition, including alternative expressions, from left to
right.

<*> expressions are assigned as few characters as possible.

<#>, <@> and <_> expressions are assigned as many characters as
possible.

Consequently, var1 is assigned an empty string in the above example.

To match an input string such as:

this is error 100: big bug

use a pattern such as: error<#.errnumber>:<*.errtext>

error<#.errnumber>:<*.errtext>

The result of this match is that 100 is assigned to errnumber, and big
bug is assigned to errtext.

For performance and pattern readability purposes, you can specify a
delimiting substring between two expressions. In the above example, “ : ”
is used to delimit <#> and <*>.

Matching <@.word><#.num> with “abc123” assigns “abc12” to word
and “3” to num, because digits are permitted for both <#> and <@>, and
the left expression takes as many characters as possible.
Appendix A320

Syntax Used in OVO Configuration Files
Pattern Matching
Patterns without expression anchoring can match any substring within
the input line. Therefore, patterns such as:

this is number<#.num>

are treated in the same way as:

<*>this is number<#.num><*>

Separator Characters

The separator characters used in <_> and <@> can be specified for each
pattern. The user enters the separators in the pattern definition mask;
default characters are the blank and tab characters.

Case Insensitive Mode

OVO allows to specify case sensitive or insensitive mode for each pattern.
The user sets the mode in the pattern definition mask.
Appendix A 321

Syntax Used in OVO Configuration Files
Pattern Matching
Pattern Matching Examples

Table A-3 Pattern Matching Examples

Format Recognized Messages

Error Will recognize any message containing the
keyword “Error” at any place in the message.

panic Matches all messages containing “panic”, “Panic”,
“PANIC”, etc., at any place, if case insensitive
mode is used.

logon|logoff Recognizes any message containing the keyword
“logon” or “logoff”.

ˆgetty:
<*.msg> errno<*><#.errnum>$

Matches messages of format: “getty: cannot open
tty’xx’ errno : 6” or “getty: can’t open ttyop3; errno
16” Note: the anchoring symbol $ is used to assign
the number at the end of the input line to
errnum.

ˆerrno[|=]<#.errnum> <*.errtext> Matches messages of format: “errno 6 - no such
device or address” as well as “errno=12 Not
enough core” The space between <#.errnum> and
<*.errtext> is used as delimiter for correct
assignment of the number to errno.

ˆhugo:<*>:<*.uid>: Matches any entry in /etc/passwd for user ‘hugo’
and returns the user ID in parameter uid. Note
the “:” at the end of the pattern to delimit uid from
the succeeding group ID in the input pattern.

ˆWarning: <*.text> on node
<@.node>$

Matches a message of format “Warning: too many
users on node hpbbx” and assigns “too many users”
to text and “hpbbx” to node. Note: the anchoring
symbol $ is used to assign the word at the end of
the input line to node.

SU<*>+<@.tty>
<![root|admin].from> -<*.to>

Matches all SU logfile entries of all users except
for “root” and “admin”.
Appendix A322

Syntax Used in OVO Configuration Files
Configuration Files for Applications
Configuration Files for Applications
This section describes the syntax used in configuration files for
applications. These files must fit the following syntax rules:

file ::= DOWNLOAD_DATA APPLICATION <syntax_version>
<application_groups> | e

syntax_version ::= SYNTAX_VERSION <digits> | e

application_groups ::= <application_groups>
<application_group> ;

application_group ::= APPLICATION_GROUP
 <application_group_spec>

SUBENTITIES APPLICATION
{ <application_in_group> } |
APPLICATION_GROUP
<application_group_spec>
SUBENTITIES APPLICATION_GROUP
{ <applgrp_in_group> } SUBENTITIES
APPLICATION

 { <application_in_group> } |
MEMBER_APPLICATION_GROUP
<application_group_spec> SUBENTITIES
APPLICATION_GROUP

 { <applgrp_in_group> }
SUBENTITIES APPLICATION {
<application_in_group> }

application_group_spec ::= <string> SYMBOL
<string> | <string> SYMBOL
<string> LABEL <string>
DESCRIPTION
<string> | PSEUDO_GROUP

applgrp_in_group ::= <applgrp_in_group>
MEMBER_APPLICATION_GROUP <string> | e

application_in_group ::= <application_in_group>
<application_data> | e
Appendix A 323

Syntax Used in OVO Configuration Files
Configuration Files for Applications
application_data ::= APPLICATION_REF <string> |
APPLICATION <string> SYMBOL <string>
[TARGET <num> | START_ON_SEL_FLAG

 <bool>]
LABEL <string>
DESCRIPTION <string> APPL_CALL
<string>
INTERN_APPL_ACTION <num>
NODE { <application_node_list> }
APPL_LOGIN { [UUID <uuid > | e]
<application_login_list> }
APPLICATION_TYPE
<application_type_data>

application_node_list ::= <application_node_list>
[<node_ident>
| PATTERN_OTHER <string>] | e

node_ident ::= _OPC_MGMTSV_ |
IP <ipaddress> | IP <ipaddress>
<string> | SNA <string> | DEC <string> |
NOVELL
<string> | OTHER <string>

application_login_list ::= <application_login_list>
[PLTFRM_FAMILY_NAME <string>
USER_NAME
<string> PASSWORD <string>]

application_type_data ::= CSM_PLATFORM_INTERNAL |
CSM_PLATFORM_INTEGRATED UUID
<uuid>
START_IN_TERM_FLAG <num>
PARAMETERS <string>
USER_NAME <string>
PASSWORD <string> |
OV_PLATFORM REGISTERED_NAME
<string>
ACTION_IDENTIFIER <string>

ipaddress ::= <digits>.<digits>.<digits>.<digits>
Appendix A324

Syntax Used in OVO Configuration Files
Configuration Files for Applications
string ::= “any alphanumeric string” (quotation
marks and the backslash occuring within a

 string must be masked by a backslash ‘\’)

num ::= [+ | - | e] <digits>

digits ::= <digits > [0 - 9] | [0 - 9]

bool :: = 0 | 1

uuid ::= “any UUID (Universal Unique Identifier)”
(A UUID string consists of eight hexadecimal
digits followed by a dash, followed by three
groups of four hexadecimal digits separated by
dashes, followed by a dash and twelve hexadecimal
digits.)
Appendix A 325

Syntax Used in OVO Configuration Files
Configuration Files for Applications
Example of an OVO Application Configuration File

The following is an example of an Application Configuration File for an
OVO application. This file is part of the OVO default configuration.

APPLICATION “OVO Status”
SYMBOL “Software:Process”
START_ON_SEL_FLAG FALSE
LABEL “OVO Status”
DESCRIPTION ““
APPL_CALL “/opt/OV/bin/OpC/opcragt -status $OPC_NODES”
INTERN_APPL_ACTION 0
NODE
{

_OPC_MGMTSV_
}
APPL_LOGIN
{
}
APPLICATION_TYPE CSM_PLATFORM_INTEGRATED
UUID “4314a356-4c40-71d0-172c-0f887bb10000”
START_IN_TERM_FLAG 2
PARAMETERS ““
USER_NAME “root”
PASSWORD “
Appendix A326

Syntax Used in OVO Configuration Files
Syntax and Length of OVO Object Names
Syntax and Length of OVO Object Names
Syntax checks are automatically performed when entering information
in the corresponding fields of the GUI. For more information about
length limitations of OVO object names, see the OVO Reporting and
Database Schema.
Appendix A 327

Syntax Used in OVO Configuration Files
Syntax and Length of OVO Object Names
Appendix A328

B Symbols for Application
Integration
Appendix B 329

Symbols for Application Integration
Available Symbols for Application Integration
Available Symbols for Application Integration
The OVO symbol type is a combination of the <shape > parameter and
the <bitmap_name > parameter in the syntax:

<shape >_<bitmap_name >

The default symbol type used in the English version of the OVO
Application Desktop is <Software_applications >.

You can view valid combinations by reviewing the contents of the
directory:

/etc/opt/OV/share/symbols/C

For example, the following Software Symbols are available:

❏ Software
❏ Software_applications
❏ Software_customer
❏ Software_database
❏ Software_directory
❏ Software_driver
❏ Software_file
❏ Software_filesystem
❏ Software_group
❏ Software_license
❏ Software_mail
❏ Software_opsystem
❏ Software_process
❏ Software_provider
❏ Software_software
❏ Software_user

NOTE These symbols are defined for the English version of OVO. Localized
versions are available for the Japanese language OVO.
Appendix B330

C About OVO Man Pages
Appendix C 331

About OVO Man Pages
In this Appendix
In this Appendix
This appendix describes the man pages available in the following areas:

❏ Man Pages in OVO

❏ Man Pages for OVO APIs

❏ Man Pages for HP OpenView Service Navigator

❏ Man Pages for the OVO Developer’s Kit APIs
Appendix C332

About OVO Man Pages
Accessing and Printing Man Pages
Accessing and Printing Man Pages
You can access the OVO man pages from the command line, from online
help, or in HTML format on your management server.

To Access an OVO Man Page from the Command Line

To access an OVO man page from the command line, enter the following:

man < manpagename>

To Print a Man Page from the Command Line

To print an OVO man page from the command line, enter the following:

man < manpagename> | col -lb | lp -d printer_name

To Access the Man Pages in HTML Format

To access the OVO man pages in HTML format, from your Internet
browser, open the following location:

http://< management_server >:3443/ITO_MAN

In this URL, <management_server > is the fully qualified hostname of
your management server.
Appendix C 333

About OVO Man Pages
Man Pages in OVO
Man Pages in OVO
This section describes man pages in OVO.

Table C-1 OVO Man Pages

Man Page Description

call_sqlplus.sh(1) Calls SQL*Plus.

inst.sh(1M) Installs OVO software on managed nodes.

inst_debug(5) Debugs an installation of the OVO agent software.

ito_op(1M) Launches the OVO Java-based operator or Service
Navigator GUI.

ito_op_api_cli(1M) Enables calling the Java GUI Remote APIs.

opc(1|5) Starts the OVO GUI.

opc_audit_secure(1M) Locks the audit level in the OVO database, and allows
directories for the history and audit download to be set.

opc_backup(1M) Interactively saves the OVO environment for Oracle.

opc_backup(5) Backs up the OVO configuration.

opc_chg_ec(1M) Changes circuit names in event correlation (EC)
templates in the OVO database.

opc_recover(1M) Interactively recovers the OVO environment for Oracle.

opc_recover(5) Recovers the OVO configuration.

opcack(1M) Externally acknowledges active messages.

opcackmsg(1M) Externally acknowledges active messages using
message IDs.

opcackmsgs(1M) Externally acknowledges active messages using specific
message attributes.

opcactivate(1M) Activates a pre-installed OVO agent.

opcadddbf(1M) Adds a new datafile to an Oracle tablespace.
Appendix C334

About OVO Man Pages
Man Pages in OVO
opcagt(1M) Administers agent processes on a managed node.

opcagtreg(1M) Registers subagents.

opcagtutil(1M) Parses the agent platform file, and performs operations
with extracted data.

opcaudupl(1M) Uploads audit data into the OVO database.

opcaudwn(1M) Downloads audit data into the OVO database.

opccfgdwn(1M) Downloads configuration data from the database to flat
files.

opccfgout(1M) Configures condition status variables for scheduled
outages in OVO.

opccfgupld(1M) Uploads configuration data from flat files into the
database.

opcchgaddr(1M) Changes the address of nodes in the OVO database.

opccltconfig(1M) Configures OVO client filesets.

opcconfig(1M) Configures an OVO management server.

opccsa(1M) Provides the functionality for listing, mapping, granting,
denying and deleting specified certificate requests.

opccsacm(1M) Performs the ovcm’s functionality for manually issuing
new node certificate and using the installation key.

opcdbidx(1M) Upgrades the structure of the OVO database.

opcdbinit(1M) Initializes the database with the default configuration.

opcdbinst(1M) Creates or destroys the OVO database scheme.

opcdbpwd(1M) Changes the password of the OVO database user
opc_op .

opcdbreorg(1M) Re-organizes the tables in the OVO database.

opcdbsetup(1M) Creates the tables in the OVO database.

Table C-1 OVO Man Pages (Continued)

Man Page Description
Appendix C 335

About OVO Man Pages
Man Pages in OVO
opcdcode(1M) Views OVO encrypted template files.

opcerr(1M) Displays instruction text for OVO error messages.

opcgetmsgids(1m) Gets message IDs to an original message ID.

opchbp(1M) Switches heartbeat polling of managed nodes on or off.

opchistdwn(1M) Downloads OVO history messages to a file.

opchistupl(1M) Uploads history messages into the OVO database.

opcmack(1) Acknowledges an OVO message by specifying the
message ID.

opcmgrdist(1M) Distributes the OVO configuration between
management servers.

opcmom(4) Provides an overview of OVO MoM functionality.

opcmomchk(1) Checks syntax of MoM templates.

opcmon(1) Forwards the value of a monitored object to the OVO
monitoring agent on the local managed node.

opcmsg(1) Submits a message to OVO.

opcpat(1) Tests a program for OVO pattern matching.

opcragt(1M) Remotely administers agent services for OVO on a
managed node.

opcskm(3) Manages secret keys.

opcsqlnetconf(1M) Configures the OVO database to use an Net8 connection.

opcsv(1M) Administers OVO manager services.

opcsvreg(1M) Registers server configuration files.

opcsvskm(1M) Manages secret keys on the management server.

opcsw(1M) Sets the software status flag in the OVO database.

opcswitchuser(1M) Switches the ownership of the OVO agents.

Table C-1 OVO Man Pages (Continued)

Man Page Description
Appendix C336

About OVO Man Pages
Man Pages in OVO
opctempl(1M) Maintains templates in files.

opctemplate(1M) Enables and disables templates.

opctmpldwn(1M) Downloads and encrypts OVO message source
templates.

opcwall(1) Sends a message to currently logged in OVO users.

ovocomposer(1M) Performs tasks related to OV Composer.

ovocomposer(5) Describes the Correlation Composer, an HP OpenView
Operations (OVO) event correlation feature.

ovtrap2opc(1M) Converts the trapd.conf file and the OVO template
file.

Table C-1 OVO Man Pages (Continued)

Man Page Description
Appendix C 337

About OVO Man Pages
Man Pages for OVO APIs
Man Pages for OVO APIs
This section describes man pages for OVO application program
interfaces (APIs).

Table C-2 OVO API Man Pages

Man Page Description

opcmon(3) Forwards the value of a monitored object to the OVO
monitoring agent on the local managed node.

opcmsg(3) Submits a message to OVO.
Appendix C338

About OVO Man Pages
Man Pages for HP OpenView Service Navigator
Man Pages for HP OpenView Service
Navigator
This section describes man pages for the HP OpenView Service
Navigator.

Table C-3 Service Navigator Man Pages

Man Page Description

opcservice(1M) Configures HP OpenView Service Navigator.

opcsvcattr (1M) Add, change or remove service attributes.

opcsvcconv(1M) Converts service configuration files of HP OpenView
Service Navigator from the previous syntax to the
Extensible Markup Language (XML).

opcsvcdwn(1M) Downloads service status logs of HP OpenView Service
Navigator to a file.

opcsvcterm(1M) Emulates an interface to HP OpenView Service
Navigator. The interface inputs Extensible Markup
Language (XML) markup into stdin and outputs
Extensible Markup Language (XML) markup to stdout .

opcsvcupl(1M) Uploads service status logs of HP OpenView Service
Navigator into the OVO database.
Appendix C 339

About OVO Man Pages
Man Pages for the OVO Developer’s Kit APIs
Man Pages for the OVO Developer’s Kit APIs
This section describes man pages for the OVO Developer’s Kit
application program interfaces (APIs).

Table C-4 OVO Developer’s Toolkit Man Pages

Man Page Description

msiconf(4) Configures the OVO message manager.

opc_comif_close(3) Closes an instance of the communication queue
interface.

opc_comif_freedata(3) Displays free data that was allocated by
opc_comif_read() .

opc_comif_open(3) Opens an instance of the communication queue
interface.

opc_comif_read(3) Reads information from a queue.

opc_comif_read_request(3) Reads information from a queue.

opc_comif_write(3) Writes information into a queue.

opc_comif_write_request(3) Writes information into a queue.

opc_connect_api(3) Connects OVO.

opc_distrib(3) Distributes the OVO agent configuration.

opcagtmon_send(3) Forwards the value of a monitored object to OVO.

opcagtmsg_api(3) Handles messages on OVO agents.

opcanno_api(3) Manages OVO message annotations.

opcapp_start(3) Starts an OVO application.

opcappl_api(3) Configures and starts OVO applications.

opcapplgrp_api(3) Configures OVO application groups.

opcconf_api(3) Gets OVO configuration.
Appendix C340

About OVO Man Pages
Man Pages for the OVO Developer’s Kit APIs
opcdata(3) Accesses the attributes of the OVO data structure.

opcdata_api(3) Describes how to access the OVO data structure using
the OVO Data API.

opcif_api(3) API to work with the OVO Message Stream Interface.

opciter(3) OVO iterator to step through opcdata container.

opcmsg_api(3) Manages OVO messages.

opcmsggrp_api(3) Manages OVO message groups.

opcmsgregrpcond_api(3) Creates and modifies OVO message regroup conditions.

opcnode_api(3) Configures OVO managed nodes.

opcnodegrp_api(3) Configures OVO node groups.

opcnodehier_api(3) Configures OVO node hierarchies.

opcprofile_api(3) Configures OVO user profiles.

opcregcond(3) Accesses fields of the OVO registration condition
structure.

opcsvc_api(3) C++ classes for Service Navigator.

opctempl_api(3) Configures OVO message source templates.

opctempfile_api(3) Configures OVO templates using template files.

opctemplgrp_api(3) Configures OVO template groups.

opctransaction_api(3) Starts, commits, and rolls back transactions.

opcuser_api(3) Configures OVO users.

opcversion(3) Returns the string of the OVO library that is currently
used.

Table C-4 OVO Developer’s Toolkit Man Pages (Continued)

Man Page Description
Appendix C 341

About OVO Man Pages
Man Pages for the OVO Developer’s Kit APIs
Appendix C342

Index
architecture, 240
integrations, 238

A
accessing

man pages
command line, 333
HTML format, 333

add OpenView service window, 160
add OV application window, 159
add OVO application window, 158
add/modify logfile window, 93
add/modify MPE/iX console message

window, 97
add/modify OVO interface window, 98
add/modify SNMP trap window, 96
add/modify template window, 89
add/modify threshold monitor window, 111
adding actions to a message, 139
adding an OpenView service, 160
adding annotations to a message, 139
adding conditions, 125
adding instructions

to message condition, 136
to message source template, 136

adding OpenView applications, 159
adding OVO applications, 158
additional documentation, 20
Adobe Portable Document Format. See PDF

documentation
advanced options

duplicate message suppression, 120
for message source templates, 116
output to agent MSI, 117
output to server MSI, 117

Agent Message API
overview of functions, 201
summary of functions, 201

agent message API, 98
opcmsg(1|3), 98

Agent Message Stream Interface, 173
overview, 180

agent message stream interface
output to, 117

Agent Monitor API
overview of functions, 202
summary of functions, 202

APIs
man pages

Developer’s Kit, 340

OVO, 338
overview, 167, 169
OVO Configuration, 64
OVO Interfaces, 173
OVO Operational, 63

Application API
overview of functions, 204, 205, 213, 214

application bank
integrating into, 62

application bank window, 147
Application Configuration API

summary of functions, 204
application desktop window, 45
Application Group Configuration API

summary of functions, 205
application groups, 146
application integration symbols, 330
application integration types

comparison of, 149
application programming interfaces, see

APIs, 29
application registration files, 75
Application Response Interface, 173

access to, 186
overview, 186

architecture of Service Navigator, 240
automatic actions, 139

B
binary logfiles, 94

C
C++ APIs

Service Navigator, 239, 244
command line

accessing man pages, 333
condition no. window, 125
conditions

setting for incoming messages, 124
setting for incoming SNMP traps, 129

Configuration API
overview of functions, 216

configuration data
role in an integration, 84

configuration download, 85
configuration files

structure of, 276
configuration syntax

configuration files for templates, 295
general rules, 294
343

Index
logfile template example, 303
message source specification, 305
monitor files, 308
monitor template example, 312
SNMP trap template example, 306

configuration upload, 85
Connection API

summary of functions, 203
conventions, document, 15
custom message attributes

setting for a condition, 127
customizing OVO, 48

D
data access and creation functions, 194
Data API

summary of functions, 194
defaults

script and program directory, 141
Developer’s Kit APIs man pages, 340
Developer’s Toolkit documentation, 20
display manager communication, 189
distributed GUI, 36
Distribution API

overview of functions, 215
summary of functions, 215

document conventions, 15
documentation, related

additional, 20
Developer’s Toolkit, 20
ECS Designer, 20
Java GUI, 24–25
Motif GUI, 23–24
online, 21, 23–25
PDFs, 17
print, 18–19

download configuration data window, 279
downloading configuration data, 85, 278

adding executables, 282
DTDs

Service Navigator, 242
duplicate messages

suppression of, 120

E
ECS, 35
ECS Designer documentation, 20
Event Correlation Service Designer. See ECS

Designer documentation
event correlation services, see ECS, 35

event integration
using messages, 33
via messages, 89

event integration from message sources
hints and tips, 133

examples
scripts

notification service, 140
trouble ticket system, 140

external notification services, 140
defining, 141
manually forwarding to, 145

F
follow-the-sun, 36

G
GUI

documentation
Java, 24–25
Motif, 23–24

GUI integration points, 146
application desktop, 146
menu bar, 146
pop-up menus, 146
toolbar, 146

guidelines
scripts and programs

notification service, 141
trouble ticket system, 141

H
HP OpenView Event Correlation Service

Designer. See ECS Designer
documentation

HP OpenView Event Correlation Services,
see ECS, 35

HP partner program, 31
HTML format, accessing man pages, 333

I
INSM

OVO as a member of OpenView solution
framework, 34

INSM solution
advantages of, 77

instruction text interface, 136
instruction text output

example of, 138
344

Index
integrated network and system
management, see INSM, 34

integrating
via APIs, 63
via NNM functionality, 66

integrating monitors into OVO, 111
integrating OpenView windows applications,

155
integrating OVO applications, 152
integrating Service Navigator, 238
integrating via messages, 54

adding actions, 59
adding annotations, 59
message templates, 57
threshold monitoring, 55

integrating via notification services, 61
integrating via the application bank, 62
integrating via trouble ticket services, 61
integrating with Java GUI, 220
integrating with OVO, 28
integration facilities

choosing a capability, 68
integration facilities of OVO, 54
integration methods

external applications into the OVO GUI,
146

integration package, 32, 84
adding executables, 282
creating, 274
distributing, 274
downloading configuration data for, 278
tight integration, 33
uploading configuration data, 285

integration points
application desktop, 146
menu bar, 146
pop-up menus, 146
toolbar, 146

integration process
summary, 82

integration strategy, 71
coexistence of NNM and OVO integrations,

79
from existing OpC/OVO, 72
from NNM integration, 73
starting from scratch, 78

integration via messages
adding instructions, 59

internationalization
API functions, 217

IP map window, 42

J
Java GUI

assigning a session ID to, 231
connecting to from remote applications, 230
integrating with, 220
port repository file, 230

L
Layout Configuration API

overview of functions, 210
Legacy Link Interface, 173

overview, 180
process, 182

licenses, 31
locations of OVO APIs, 171
logfile encapsulator, 92

defining templates for, 92
logfile monitoring options, 94
logfiles

handling binary logfiles, 94
that decrease in size, 95
without constant name, 94

M
man pages

accessing
command line, 333
HTML format, 333

APIs
Developer’s Kit, 340
OVO, 338

OVO, 331–340
printing, 333
Service Navigator, 339

managed nodes, 36
managed nodes window, 43
management servers, 36
message and suppress condition window, 124
message browser window, 46
message condition advanced options window,

116
message conditions, 92
message correlation options

for message source templates, 118
message correlation window, 119
message escalation, 48
message event flags, 185
Message Event Interface, 173

access to message events, 185
message event flags, 185
345

Index
overview, 184
message forwarding, 48
Message Group Configuration API

overview of functions, 206
summary of functions, 206

message groups window, 44
message pattern matching, 314
Message Regroup Condition Configuration

API
summary of functions, 207

message source handling, 70
message source templates

parallel processing of, 69
setting advanced options, 116
setting message correlation options, 118
setting options, 122

message source templates window, 89
opening, 90

message stream
read/write access to, 187

MIB data collection, 101, 115
modifying conditions, 125
monitoring

maximum threshold monitoring, 105
MIB data collection, 101
minimum threshold monitoring, 105
threshold monitoring, 100

monitoring capabilities of OVO, 100
monitoring MIB variables, 101
Motif GUI documentation, 23–24
MPE/iX console message interception, 97

defining templates for, 97
MSI

example serial scenario, 179
instance names, 177
message distribution, 179
message ID, 178
order numbers, 177
server configuration file, 177

multi-level menus, 147

N
NNM

integrating applications in menus, 75
integrating applications in the toolbar, 75
leveraging from an NNM integration, 73
monitoring facilities, 76
OpenView object database, 249
OpenView Windows API, 250
overview of integration facilities, 249

SNMP event configuration, 74
SNMP MIB data, 249
topology data, 249

NNM applications in OVO, 161
Node Configuration API

overview of functions, 208, 209
summary of functions, 208

Node Hierarchy Configuration API
summary of functions, 210

notification methods window, 144
notification schedule window, 143
notification services, 61

O
online documentation

description, 21
opccfgdwn(1M), 278
opcmon(1|3), 113
opcmsg(1|3) interception, 98

defining templates for, 98
opcsvcterm

Service Navigator, 243
OpenView applications, 156

integration of, 156
OpenView Event Correlation Service

Designer. See ECS Designer
documentation

OpenView Operations. See OVO
OpenView services

integration of, 156
OpenView SNMP API, 260

example of SNMP agent data, 260
SNMP configuration API, 266

OpenView SNMP Event System, 66
OpenView Windows API, 66, 250

application integration with, 250
application registration file (ARF), 250
maps, submaps, and symbols, 252
object database access, 250
programming libraries, 250

operator-initiated actions, 139
OVO

acting on information, 47
as an integration framework, 30
as INSM framework, 50
collecting management information, 38
conceptual overview, 34
integration facilities, 54
integration package, 32
man pages, 334
346

Index
overview of features, 28
presenting information, 41
problem management, 37
processing and consolidating information,

40
user role concept, 77

OVO administrator, 90
OVO agents, 35
OVO APIs

internationalization, 217
locations, 171
summary of functions, 194

OVO conceptual overview, 34
key features, 34
OpenView product family, 34

OVO Configuration APIs, 64
Application Configuration API, 192
Application Group Configuration API, 192
Connection API, 192
Distribution API, 193
Message Group Configuration API, 192
Message Regroup Condition Configuration

API, 192
Node Configuration API, 192
Node Hierarchy Configuration API, 193
overview, 192
Server Synchronization API, 193
Template Configuration API, 193
User Configuration API, 193
User Profile Configuration API, 193
Utility API, 193

OVO configuration files
structure of, 276

OVO GUI
integrating external applications into, 146

OVO implementation, 36
managed nodes, 36
management server, 36
SNMP events, 36

OVO Interface APIs
summary of functions, 199

OVO Interfaces, 173
access to message stream, 187
Agent Message Stream Interface, 173
Application Response Interface, 173
Legacy Link Interface, 173
Message Event Interface, 173
Server Message Stream Interface, 173

OVO Iterator
overview of functions, 196

OVO object names
length of, 327
syntax, 327

OVO Operational APIs, 63
OVO Operator APIs

Agent Message API, 190
Agent Monitor API, 190
Data API, 190
Interface API, 190
overview, 190
Server Message API, 190

OVO template administrator, 90
ovtrap2opc, 132

P
partner program, 31

benefits of an integration, 50
HP OpenView premier partner, 31
INSM market segment, 52
NIM market segment, 51
NSM market segment, 52

pattern matching syntax, 314
PDF documentation, 17
penView SNMP API

topology data, 271
Portable Document Format. See PDF

documentation
premier partner, 31
print documentation, 18–19
printing

man pages, 333

R
registration interface

conditions, 245
Service Navigator, 245

Regroup Condition Configuration API
overview of functions, 207

related documentation
additional, 20
Developer’s Toolkit, 20
ECS Designer, 20
online, 21, 23–25
PDFs, 17
print, 18–19

Remote APIs
configuring, 223
overview, 221
summary of methods, 233
347

Index
S
serialized Server MSI, 175
Server Message API

overview of functions, 200
summary of functions, 200

Server Message Stream Interface, 173
access to, 176
overview, 175

server message stream interface
output to, 117

Service Navigator
C++ APIs, 239, 244
DTDs, 242
opcsvcterm, 243
registration interface, 245
registration interface conditions, 245
service operations interface, 244
XML data interface, 238, 242

Service Navigator man pages, 339
service operations interface

Service Navigator, 244
setlocale(), 217
setting message and suppress conditions, 124
shell script syntax, 141
SNMP event configuration, 74
SNMP trap condition no. window, 129
SNMP trap interception, 96

defining templates for, 96
SNMP trap templates

converted from NNM SNMP trap
configuration files, 130

suppress conditions, 92
symbols

for application integration, 330
Synchronization API

summary of functions, 216
syntax for pattern matching, 314

T
template administrator, 90
Template Configuration API

overview of functions, 211, 212
summary of functions, 211

templates
logfile, 92
MPE/iX console message interception, 97
opcmsg(1|3) interception, 98
SNMP trap interception, 96

threshold monitoring, 100
toolbar, 148

trapd.conf file, 131
trouble ticket services, 61, 140

manually forwarding to, 145
trouble ticket window, 145
typographical conventions. See document

conventions

U
unmatched messages, 92
uploading configuration data, 85, 285

add mode, 285
replace mode, 285

User Configuration API
summary of functions, 214

User Profile Configuration API
summary of functions, 213

user role concept, 77

W
window

add OpenView service, 160
add OV application, 159
add OVO application, 158
add/modify logfile, 93
add/modify MPE/iX console message, 97
add/modify OVO interface, 98
add/modify SNMP trap, 96
add/modify template, 89
add/modify threshold monitor, 111
application desktop, 45
condition no., 125
download configuration data, 279
IP map, 42
managed nodes, 43
message and suppress conditions, 124
message browser, 46
message condition advanced options, 116
message correlation, 119
message groups, 44
message source templates, 89
notification methods, 144
notification schedule, 143
select instruction text type, 137
SNMP trap condition no., 129
trouble ticket, 145

X
XML data interface

Service Navigator, 238, 242
348

Index
xnmevents, 131
xnmtrap, 131
349

	HP OpenView Operations Developer’s Toolkit
	Legal Notices
	Conventions
	OVO Documentation Map
	Electronic Versions of the Manuals
	OVO Manuals
	Additional OVO-related Products
	OVO Online Information

	About OVO Online Help
	Online Help for the Motif GUI
	Types of Online Help
	To Access Online Help

	Online Help for the Java GUI and Service Navigator
	Types of Online Help
	To View a Topic
	To Access Online Help

	1 An Introduction to Integrating Partner Applications with OVO
	Why Integrate with OVO?
	HP OpenView Partnerships
	A Word about Licenses

	Integrating Partner Solutions with OVO
	OVO Conceptual Overview
	The HP OpenView Product Family and OVO
	OVO Concept and Key Features
	OVO Implementation
	Problem Management with OVO
	Collecting Management Information
	Logfiles and SNMP Traps
	Agent Message API
	Threshold Monitors
	Legacy Link Interface API

	Processing and Consolidating Information
	Presenting the Information to the User
	IP Map Window
	Managed Nodes Window
	Message Groups Window
	Application Desktop Window
	Message Browser

	Acting on the Information Provided
	Customizing OVO
	The OVO Java-based Operator User Interface

	Integration Benefits to Partners
	OVO as an INSM Framework
	Specific Benefits for Integrators in the NIM, NSM, and INSM Markets
	NIM Market Segment
	NSM Market Segment
	INSM Market Segment
	Service Management Market Segment

	Integration Facilities Provided by OVO
	Integrating Events Using Messages
	Threshold Monitoring
	Working with Message Templates
	Adding Instructions, Annotations, and Actions to a Message Template

	Integrating Events using Trouble Ticket and Notification Services
	Integrating Applications into the Application Bank
	Integrating via APIs
	NNM Integration Through the OVO GUI
	Integrating via NNM Functionality

	2 Integrating Solutions with OVO
	Deciding Which Integration Capabilities to Use
	Defining an Integration Strategy
	Adapting an Existing OVO Integration for OVO A.08.10
	Leveraging From an Integration into NNM
	SNMP Event Configuration
	Powerful GUI Application Integration
	Monitoring Facilities
	Alternative Message Sources
	User Role Concept
	Advantages of an INSM Solution

	Starting from Scratch
	Obtaining Coexistence of NNM and OVO Integrations
	Strategy 1: Use Transformed NNM Integration in OVO
	Strategy 2: Develop a Separate OVO Integration

	Summary of the Integration Process
	The Role of Configuration Data in an Integration

	3 Using the Integration Capabilities of the OVO Motif-based GUI
	In This Chapter
	Event Integration Through Messages
	Configuring Messages in the Message Source Templates Window
	Defining Templates for Logfile Encapsulation
	Using the Logfile Monitoring Options

	Defining Templates for SNMP Trap Interception
	Defining Templates for MPE/iX Console Message Interception
	Defining Templates for Messages Sent to the OVO Message Interface opcmsg(1|3)
	Defining Templates for Threshold Monitors
	Overview of OVO Monitoring Capabilities
	Monitoring MIB Variables

	Using Threshold Monitoring to Generate Messages
	Message Generation Policies and Message Filtering
	Types of OVO Monitor Available
	Integrating Monitors into OVO
	Sending Values Over the OVO Monitoring API or Command
	MIB Data Collection

	Setting Advanced Options for a Message Source Template
	Output to Agent and Server Message Stream Interface (MSI)

	Setting Message Correlation Options for a Message Source Template
	Suppression of Duplicate Messages

	Setting Options for a Message Source Template
	Adding Instructions to a Message Source Template
	Setting Message and Suppress Conditions
	Setting Conditions for Incoming Messages
	Setting Custom Message Attributes for a Message Condition
	Setting Conditions for Incoming SNMP Traps
	Using SNMP Trap Templates Converted from NNM SNMP Trap Configuration Files
	Converting NNM SNMP Trap Configuration Files to OVO Trap Templates

	Hints and Tips for Event Integration from Message Sources

	Adding Instructions, Annotations, Automatic- and Operator-initiated Actions
	Adding Instructions for Solving Known Problems
	Adding Actions and Annotations to a Message

	External Notification and Trouble-ticket Service
	Example Script
	Guidelines for Writing Scripts and Programs
	Defining Notification Services
	Defining Trouble Ticket Services
	Manually Forwarding to Trouble Ticket or Notification Services

	Integrating External Applications into the OVO GUI
	GUI Integration Points and Methods
	Advantages Gained by Integrating OVO Applications

	Integrating OVO Applications
	Integrating HP OpenView Windows Applications
	HP OpenView Applications
	HP OpenView Services

	Integrating Applications into the Application Desktop
	Adding OVO Applications
	Adding OpenView Applications
	Adding an OpenView Service

	Using NNM-integrated Applications With OVO
	NNM Applications in OVO
	Structure of NNM Applications in OVO
	Integrating Additional NNM Applications into OVO

	4 Using the OVO Application Programming Interfaces
	In This Chapter
	Overview of the OVO APIs
	The OVO Interfaces
	Overview of the Server Message-Stream Interface
	Access to the Server Message-stream Interface
	OVO’s Serial MSI Configuration File
	Modifying Message IDs
	Serial MSI Configuration: Example Scenario

	Overview of the Agent Message Stream Interface
	Overview of the Legacy Link Interface
	Structure of the Legacy Link Process

	Overview of the Message Event Interface
	Access to Message Events

	Overview of the Application Response Interface
	Access to Action Responses

	Read and Write Access to the OVO Message Stream

	The OVO Operator APIs
	The OVO Interfaces and the OVO Operator API — A Comparison

	The OVO Configuration APIs
	Summary of OVO API Functions
	Functions of the OVO Data API
	Functions to Manipulate OVO Data Structures
	Functions of the OVO Iterator
	The OVO Data Structures

	Functions of the OVO Service APIs
	Functions to Access the OVO Interface
	Functions to Access the Registration Conditions

	Functions of the Server Message API
	Functions to Manipulate Messages

	Functions of the Agent Message API
	Functions to Send/Acknowledge Messages

	Functions of the Agent Monitor API
	Functions to Send Monitor Values

	Functions of the Connection API
	Functions to Connect to the Management Server

	Functions of the Application Configuration API
	Functions to Configure OVO Applications

	Functions of the Application Group Configuration API
	Functions to Configure OVO Application Groups

	Functions of the Message Group Configuration API
	Functions to Configure OVO Message Groups

	Functions of the Message Regroup Condition Configuration API
	Function to Configure OVO Message Regroup Conditions

	Functions of the Node Configuration API
	Function to Configure OVO Managed Nodes
	Function to Configure OVO Node Groups

	Functions of the Node Hierarchy Configuration API
	Functions to Configure OVO Node Hierarchies

	Functions of the Template Configuration API
	Function to Configure OVO Templates
	Functions to Configure OVO Template Groups

	Functions of the User Profile Configuration API
	Functions to Configure OVO User Profiles

	Functions of the User Configuration API
	Functions to Configure OVO Users

	Functions of the Distribution API
	Functions to Distribute Configuration to Managed Nodes

	Functions of the Server Synchronization API
	Functions to Modify and Update Configuration Data

	Using APIs in Internationalized Environments

	5 Integrating with Java GUI
	In This Chapter
	Overview of the Java GUI Remote APIs
	Calling the Java GUI Remote APIs

	Configuring the Java GUI Remote APIs
	Enabling the Java GUI Remote APIs
	Creating the Client
	Example of the Basic Client Implementation
	Example of Creating the Client with Automatic Java GUI Startup on a Localhost
	To Compile the Client
	To Run the Client

	Connecting to Java GUI
	The Port Repository File
	Assigning a Session ID to Java GUI
	Specifying the Session ID Manually

	Summary of Java GUI Remote APIs Methods
	OV_JGUI_RemoteProxy Class Methods
	OV_JGUI_JavaBridge Class Methods

	6 Integrating with Service Navigator
	In This Chapter
	The Service Navigator Architecture
	The XML Data Interface
	The C++ APIs
	The Service Operations Interface
	The Registration Interface for Service Status Changes
	The Registration Conditions

	7 Integration Facilities of the HP OpenView NNM Core Platform
	In This Chapter
	Overview
	The OpenView Windows API
	Maps, Submaps, and Symbols
	ClusterView: An Example of an Integrated Map Application
	HP OpenView Data: Objects and Fields

	The OpenView SNMP API
	SNMP Communications API and Related Commands
	Available C-API Functions
	Related Commands

	SNMP Configuration API
	Topology Data

	8 Creating and Distributing an Integration Package
	In This Chapter
	Structure of OVO Configuration Files
	Downloading Configuration Information
	Preparing to Download: Adding Executables
	Warnings

	Uploading Configuration Information
	Example 1: Uploading in Add Mode (Default)
	Example 2: Uploading in Replace Mode
	Example 3: Uploading and Replacing Information at a Subentity Level

	A Syntax Used in OVO Configuration Files
	In This Chapter
	Notation Used
	General OVO Syntax Rules
	Configuration Files for Templates
	Template Examples
	Example of an OVO Logfile Template
	Example of an OVO Message Source Specification
	Example of an SNMP Trap Template File

	Configuration Files for Monitors
	Example of an OVO Monitor Template

	Syntax for Message Pattern Matching
	Pattern Matching
	Separator Characters
	Case Insensitive Mode
	Pattern Matching Examples

	Configuration Files for Applications
	Example of an OVO Application Configuration File

	Syntax and Length of OVO Object Names

	B Symbols for Application Integration
	Available Symbols for Application Integration

	C About OVO Man Pages
	In this Appendix
	Accessing and Printing Man Pages
	To Access an OVO Man Page from the Command Line
	To Print a Man Page from the Command Line
	To Access the Man Pages in HTML Format

	Man Pages in OVO
	Man Pages for OVO APIs
	Man Pages for HP OpenView Service Navigator
	Man Pages for the OVO Developer’s Kit APIs

