OpenGL 1.2 Reterence Manual

<|lI!






OpenGL 1.2 Reterence Manual

<|lI!



Note
FBefore using this information and the product it supports, read the information in FNotices," on page 553/

Second Edition (October 2000)

This edition applies to OpenGL Version 1.2 for AIX and to all subsequent releases of this product until otherwise
indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About This Book . . .
Who Should Use This Book
Highlighting .

ISO 9000.

Related Publications.

Chapter 1. OpenGL Subroutines.
glAccum Subroutine . .
glActiveTextureARB Subroutlne
glAlphaFunc Subroutine
glAreTexturesResident Subroutlne

glAreTexturesResidentEXT Subroutine .

glArrayElement Subroutine .
glArrayElementEXT Subroutine
glBegin or glEnd Subroutine
glBindTexture Subroutine. . .
gIBindTextureEXT Subroutine .
gIBitmap Subroutine
glBlendColor Subroutine . .
gIBlendColorEXT Subroutine
glBlendEquation Subroutine.
glBlendEquationEXT Subroutine .
glBlendFunc Subroutine .

glBlendFuncSeparateEXT Subroutlne .

glCallList Subroutine
glCallLists Subroutine .
glClear Subroutine .
glClearAccum Subroutine
glClearColor Subroutine .
glClearDepth Subroutine .
glClearIndex Subroutine .
glClearStencil Subroutine

glClientActiveTextureARB Subroutlne S
glClipBoundingBoxIBM or gICIlpBoundlngSphereIBM or gICI|pBound|ngVert|cesIBM Subroutlne

glClipPlane Subroutine
glColor Subroutine .
glColorMask Subroutine .
glColorMaterial Subroutine .

glColorNormalVertexSUN Subroutlne .

glColorPointer Subroutine
glColorPointerEXT Subroutine .
glColorPointerListIBM Subroutine.
glColorSubTable Subroutine
glColorTable Subroutine . .
glColorTableParameter Subroutme .
glColorVertexSUN Subroutine .
glCopyColorSubTable Subroutine.
glCopyColorTable Subroutine .
glCopyPixels Subroutine .
glCopyTeximage1D Subroutine
glCopyTeximage2D Subroutine .
glCopyTexSublmage1D Subroutine .
glCopyTexSublmage2D Subroutine .

© Copyright IBM Corp. 1994, 2002



glCopyTexSublmage3D Subroutine .
glCopyTexSublmage3DEXT Subroutine
glCullFace Subroutine . .o
glDeleteLists Subroutine .
glDeleteTextures Subroutine
glDeleteTexturesEXT Subroutine .
glDepthFunc Subroutine .
glDepthMask Subroutine .
glDepthRange Subroutine
glDrawArrays Subroutine.
glDrawArraysEXT Subroutine .
glDrawBuffer Subroutine .
glDrawElements Subroutine.
glDrawPixels Subroutine . .
glDrawRangeElements Subroutine .
glEdgeFlag Subroutine .
glEdgeFlagPointer Subroutine
glEdgeFlagPointerEXT Subroutine .
glEdgeFlagPointerListIBM Subroutine
glEnable or glDisable Subroutine .

glEnableClientState or gIDlsabIeCIlentState Subroutme .

glEvalCoord Subroutine .

glEvalMesh Subroutine .

glEvalPoint Subroutine .
glFeedbackBuffer Subroutine .
glFinish Subroutine .

glFlush Subroutine

glFog Subroutine . . . .
glFogCoordEXT Subroutlne .
glFogCoordPointerEXT Subroutine.
glFogCoordPointerListiIBM Subroutine
glFrontFace Subroutine . .o
glFrustum Subroutine

glGenLists Subroutine

glGenTextures Subroutine .
glGenTexturesEXT Subroutine .
glGet Subroutine . .
glGetClipPlane Subroutlne
glGetColorTable Subroutine .
glGetColorTableParameter Subroutlne
glGetError Subroutine

glGetLight Subroutine

glGetMap Subroutine

glGetMaterial Subroutine .
glGetPixelMap Subroutine .
glGetPointerv Subroutine .
glGetPointervEXT Subroutine
glGetPolygonStipple Subroutine.
glGetString Subroutine .
glGetTexEnv Subroutine
glGetTexGen Subroutine
glGetTexlmage Subroutine. .
glGetTexLevelParameter Subroutine .
glGetTexParameter Subroutine .
glHint Subroutine .

glindex Subroutine

iV OpenGL 1.2 Reference Manual

. 76
. 78
. 80
. 81
. 81
. 82
. 83
. 85
. 85
. 86
. 88
. 89
.9
. 92
.. 99
. 100
. 101
. 103
. 105
. 106
.11
. 112
. 114
. 117
. 118
. 120
. 121
. 122
. 125
. 126
. 127
. 129
. 130
. 132
. 133
. 134
. 135
. 157
. 158
. 160
. 162
. 163
. 165
. 166
. 168
. 170
171
. 172
. 173
. 174
. 176
. 178
. 180
. 182
. 184
. 186



glindexMask Subroutine
glindexPointer Subroutine .
glindexPointerEXT Subroutine
glindexPointerListIBM Subroutine .
glinitNames Subroutine .
glinterleavedArrays Subroutine .
gllsEnabled Subroutine .

glisList Subroutine.

gllsTexture Subroutine .
gllsTextureEXT Subroutine

glLight Subroutine .

glLightModel Subroutine

glLineStipple Subroutine

glLineWidth Subroutine .

glListBase Subroutine

glLoadldentity Subroutine .
glLoadMatrix Subroutine

glLoadName Subroutine
glLoadNamedMatrixIBM Subroutme
glLoadTransposeMatrixARB Subroutine .
glLockArraysEXT Subroutine .
glLogicOp Subroutine

glMap1 Subroutine

glMap2 Subroutine .

gIMapGrid Subroutine

glMaterial Subroutine.

gIMatrixMode Subroutine .
gIMultiDrawArraysEXT Subroutlne
gIMultiDrawElementsEXT Subroutine .
gIMultiModeDrawArraysIBM Subroutine .
gIMultiModeDrawElementsIBM Subroutine .
gIMultiTexCoordARB Subroutine
gIMultMatrix Subroutine. .
gIMultTransposeMatrixARB Subroutlne .
gINewList or glEndList Subroutine .
gINormal Subroutine . .
gINormalPointer Subroutine .
gINormalPointerEXT Subroutine.
gINormalPointerListIBM Subroutine
gINormalVertexSUN Subroutine .
glOrtho Subroutine

glPassThrough Subroutine.
glPixelMap Subroutine .

glPixelStore Subroutine .
glPixelTransfer Subroutine.
glPixelZoom Subroutine.

glPointSize Subroutine .
glPolygonMode Subroutine
glPolygonOffset Subroutine
glPolygonOffsetEXT Subroutine .
glPolygonStipple Subroutine .
glPrioritizeTextures Subroutine .
glPrioritize TexturesEXT Subroutine
glPushAttrib or glPopAttrib Subroutine

glPushClientAttrib or glPopClientAttrib Subroutlne .

glPushMatrix or glPopMatrix Subroutine.

. 187
. 188
. 189
. 191
. 193
. 194
. 195
. 197
. 198
. 198
. 199
. 202
. 205
. 206
. 208
. 208
. 210
.21
. 212
. 213
. 214
. 215
. 217
. 221
. 225
. 227
. 229
. 230
. 232
. 233
. 234
. 235
. 238
. 239
. 240
. 242
. 243
. 245
. 247
. 249
. 250
. 252
. 253
. 255
. 261
. 265
. 266
. 268
. 269
. 270
. 27
. 272
. 273
. 275
. 279
. 280

Contents

\'}



glPushName or glPopName Subroutine .
glRasterPos Subroutine.

glReadBuffer Subroutine

glReadPixels Subroutine

glRect Subroutine . .

glRenderMode Subroutine .

glRotate Subroutine .

glScale Subroutine

glScissor Subroutine . .
glSecondaryColorEXT Subroutlne .
glSecondaryColorPointerEXT Subroutine
glSecondaryColorPointerListiIBM Subroutine .
glSelectBuffer Subroutine . .o
glShadeModel Subroutine .

glStencilFunc Subroutine .

glStencilMask Subroutine .

glStencilOp Subroutine .

glTexCoord Subroutine .

gITexCoordCoIorNormaIVertexSUN Subroutlne .

glTexCoordColorVertexSUN Subroutine .
glTexCoordNormalVertexSUN Subroutine .
glTexCoordPointer Subroutine
glTexCoordPointerEXT Subroutine .
glTexCoordPointerListIBM Subroutine
glTexCoordVertexSUN Subroutine .
glTexEnv Subroutine . .
glTexGen Subroutine.

glTeximage1D Subroutine .
glTeximage2D Subroutine .
glTeximage3D Subroutine .
glTeximage3DEXT Subroutine
glTexParameter Subroutine
glTexSublmage1D Subroutine
glTexSublmage1DEXT Subroutine .
glTexSublmage2D Subroutine . .
glTexSublmage2DEXT Subroutine .
glTexSublmage3D Subroutine
glTexSublmage3DEXT Subroutine .
glTranslate Subroutine .
glUnLockArraysEXT Subroutlne
glVertex Subroutine . .
glVertexPointer Subroutine
glVertexPointerEXT Subroutine .
glVertexPointerListIBM Subroutine .
glViewport Subroutine .
glVisibilityBufferIBM Subroutme .
glVisibilityThresholdIBM Subroutine

Chapter 2. OpenGL Utility (GLU) Library.
gluBeginCurve or gluEndCurve Subroutine.

gluBeginPolygon or gluEndPolygon Subroutine .

gluBeginSurface or gluEndSurface Subroutine
gluBeginTrim or gluEndTrim Subroutine .
gluBuild1DMipmapLevels Subroutine .
gluBuild1DMipmaps Subroutine .
gluBuild2DMipmapLevels Subroutine .

Vi  OpenGL 1.2 Reference Manual

. 281
. 282
. 285
. 287
. 293
. 294
. 296
. 297
. 299
. 300
. 301
. 303
. 305
. 307
. 308
. 310
. 311
. 313
. 315
. 317
. 318
. 320
. 321
. 323
. 325
. 326
. 332
. 335
. 341
. 347
. 353
. 358
. 361
. 367
. 369
. 375
. 377
. 383
. 385
. 386
. 387
. 389
. 391
. 393
. 394
. 395
. 397

. 399
. 400
. 401
. 402
. 403
. 405
. 408
. 412



gluBuild2DMipmaps Subroutine .
gluBuild3DMipmapLevels Subroutine .
gluBuild3DMipmaps Subroutine .
gluCheckExtension Subroutine .
gluCylinder Subroutine . .
gluDeleteNurbsRenderer Subroutlne .
gluDeleteQuadric Subroutine .
gluDeleteTess Subroutine .

gluDisk Subroutine

gluErrorString Subroutine .
gluGetNurbsProperty Subroutine
gluGetString Subroutine
gluGetTessProperty .
gluLoadSamplingMatrices Subroutlne
gluLookAt Subroutine
gluNewNurbsRenderer Subroutlne
gluNewQuadric Subroutine
gluNewTess Subroutine .
gluNextContour Subroutine
gluNurbsCallback Subroutine.
gluNurbsCallbackData Subroutine . .
gluNurbsCallbackDataEXT Subroutine
gluNurbsCurve Subroutine. .
gluNurbsProperty Subroutine.
gluNurbsSurface Subroutine .
gluOrtho2D Subroutine .
gluPartialDisk Subroutine .
gluPerspective Subroutine .
gluPickMatrix Subroutine .
gluProject Subroutine

gluPwICurve Subroutine
gluQuadricCallback Subroutine .
gluQuadricDrawStyle Subroutine
gluQuadricNormals Subroutine .
gluQuadricOrientation Subroutine .
gluQuadricTexture Subroutine
gluScalelmage Subroutine.
gluSphere Subroutine
gluTessBeginContour, quTessEndContour
gluTessBeginPolygon Subroutine .
gluTessCallback Subroutine .
gluTessEndPolygon Subroutine .
gluTessNormal Subroutine.
gluTessProperty Subroutine .
gluTessVertex Subroutine .
gluUnProject Subroutine
gluUnProject4 Subroutine .

Chapter 3. OpenGL in the AlXwindows (GLX) Environment .

Related Information .

How to Render into an X Drawable .
OpenGL in the AlXwindows environment (GLX) Subroutlnes .
gIXChooseFBConfig Subroutine.

gIXChooseVisual Subroutine .

glXCopyContext Subroutine .

glXCreateContext Subroutine.

Contents

. 416
. 420
. 424
. 428
. 429
. 430
. 431
. 431
. 432
. 433
. 434
. 435
. 436
. 436
. 437
. 438
. 439
. 439
. 440
. 441
. 444
. 445
. 446
. 447
. 451
. 452
. 453
. 454
. 455
. 457
. 458
. 459
. 459
. 460
. 461
. 462
. 463
. 465
. 466
. 467
. 468
. 472
. 473
. 474
. 476
. 477
. 478

. 481
. 481
. 481
. 484
. 486
. 489
. 493
. 494

Vii



gIXCreateGLXPixmap Subroutine .
glXCreateNewContext Subroutine .
glXCreatePbuffer Subroutine .
glXCreatePixmap Subroutine .
glXCreateWindow Subroutine
glXDestroyContext Subroutine
glXDestroyGLXPixmap Subroutine.
glXDestroyPbuffer Subroutine
glXDestroyPixmap Subroutine
glXDestroyWindow Subroutine .
gIXFreeContextEXT Subroutine .
gIXGetClientString Subroutine
gIXGetConfig Subroutine . . .
gIXGetContextIDEXT Subroutine
glXGetCurrentContext Subroutine .
gIXGetCurrentDisplay Subroutine .
glXGetCurrentDrawable Subroutine
gIXGetCurrentReadDrawable Subroutine
gIXGetFBConfigAttrib Subroutine .
gIXGetFBConfigs Subroutine. . . .
gIXGetProcAddressARB Subroutine .
gIXGetSelectedEvent Subroutine
gIXGetVisualFromFBConfig Subroutine .
glXImportContextEXT Subroutine .
glXlIsDirect Subroutine .
glXMakeContextCurrent Subroutlne
glXMakeCurrent Subroutine .
glXQueryContext Subroutine . .
glXQueryContextInfoEXT Subroutine .
gIXQueryDrawable Subroutine .
glXQueryExtension Subroutine .
glXQueryExtensionsString Subroutine
glXQueryServerString Subroutine .
glXQueryVersion Subroutine .
glXSelectEvent Subroutine
gIXSwapBuffers Subroutine
glXUseXFont Subroutine

gIXWaitGL Subroutine

gIXWaitX Subroutine .

Chapter 4. OpenGL Drawing Widgets and Related Functions

GLwCreateMDrawingArea Function
GLwDrawingArea or GLwMDrawingArea Wldget
GLwDrawingAreaMakeCurrent Function.
GLwDrawingAreaSwapBuffers Function .

Appendix. Notices .
Trademarks .

Index

Viii  OpenGL 1.2 Reference Manual

. 496
. 497
. 499
. 501
. 502
. 503
. 504
. 505
. 505
. 506
. 507
. 508
. 509
. 512
. 513
. 514
. 514
. 515
. 516
. 519
. 520
. 522
. 522
. 523
. 524
. 525
. 527
. 529
. 530
. 531
. 532
. 533
. 533
. 534
. 535
. 537
. 538
. 540
. 540

. 543
. 543
. 544
. 551
. 552

. 553
. 554

. 555



About This Book

OpenGL Programmer’s Reference provides reference information on the OpenGL application programming
interface (API).

This publication documents the functional interface of:
* OpenGL 1.2 (first introduced in AlX 4.3.2)

* GLX 1.3 (first introduced in AlX 4.3.2)

* GLU 1.3 (first introduced in AIX 4.3.3)

It also documents several OpenGL extensions supported on this operating system.
Applications/users should query OpenGL to determine if the extension is supported

(gIXQueryExtensionsString [glGetString, and [gluGetString) prior to making extension specific OpenGL,
GLX, or GLU calls.

Further information is also avaiable in /ust/lpp/OpenGL/README on your installed operating system.

Who Should Use This Book

This book is intended for programmers with C programming knowledge who want to develop 3D
applications.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.
Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to OpenGL Programmer’s Reference:
+ |OpenGL 2.1 Reference Manual
* |AIX Version 6.1 General Programming Concepts: Writing and Debugging Programs

© Copyright IBM Corp. 1994, 2002 ix



X OpenGL 1.2 Reference Manual



Chapter 1. OpenGL Subroutines

Following is a list of the basic OpenGL subroutines and the purpose of each.

IActiveTextureARB|
IAlphaFunc]|
IAreTexturesResident|
IAreTexturesResidentEXT]|

[glArrayElementEXT]|

B
IBegin or glEnd

glBindTextur

®

glBitmap

glBlendFunc]|
glBlendFuncSeparateEXT|

gIClipBoundingBoxIBM or gIClipBoundingSpherelBM or|

gIClipBoundingVertices|BM|

IColorTableParameter|

[glColorVertexSUN|

© Copyright IBM Corp. 1994, 2002

Operates on the accumulation buffer.

Specifies which texture unit is active.

Specifies the alpha test function.

Determines if textures are loaded in texture memory.
Determines if textures are loaded in texture memory.
Renders a vertex using the specified vertex array
element.

Renders a vertex using the specified vertex array
element.

Delimits the vertices of a primitive or group of like
primitives.

Binds a named texture to a texturing target.
Binds a named texture to a texturing target.
Draws a bitmap.

Sets the blend color.

Sets the blend color.

Specifies the RGB color blend equation.
Specifies the RGB color blend equation.
Specifies pixel arithmetic.

Specifies separate RGB and Alpha blend factors.

Executes a display list.

Executes a list of display lists.

Clears buffers within the viewport.

Specifies clear values for the accumulation buffer.
Specifies clear values for the color buffers.

Specifies the clear value for the depth buffer.
Specifies the clear value for the color index buffers.
Specifies the clear value for the stencil buffer.
Specifies which texture unit is active.

Determines whether the specified object is trivially
accepted, trivially rejected, or clipped by the current set
of clipping planes.

Specifies a plane against which all geometry is clipped.
Sets the current color.

Enables and disables the writing of frame buffer color
components.

Causes a material color to track the current color.
Specifies a color, a normal and a vertex in one call.
Defines an array of colors.

Defines an array of colors.

Defines a list of color arrays.

Defines a contiguous subset of a color lookup table.
Defines a color lookup table.

Specifies attributes to be used when loading a color
table.

Specifies a color and a vertex in one call.



[gICopyColorSubTable|

[glCopyColorTable|

glDepthRange

glDisable
glDisableClientState|
glDrawArrays

geFlagPointerEX
geFlagPointerListIBM|

glEnable or glDisable|

glEnableClientState orglDisableClientState|

glEvalCoord
glEvalMesh

glEvalPoint

F
glFeedbackBuffe

CoordPointerEXT|
CoordPointerListIBM|

2 OpenGL 1.2 Reference Manual

Loads a subset of a color lookup table from the current
GL_READ_BUFFER.

Load a color lookup table from the current
GL_READ_BUFFER.

Copies pixels in the frame buffer.

Defines a one-dimensional (1D) texture image.
Defines a two-dimensional (2D) texture image.

Copies a one-dimensional (1D) texture subimage.
Copies a two-dimensional (2D) texture subimage.
Copies a three-dimensional (3D) texture subimage.
Copies a three-dimensional (3D) texture subimage.
Specifies whether frontfacing or backfacing facets may
be culled.

Deletes a contiguous group of display lists.
Deletes named textures.

Deletes named textures.

Specifies the function used for depth buffer
comparisons.

Enables or disables writing into the depth buffer.
Specifies the mapping of z values from normalized
device coordinates to window coordinates.

Tests whether a capability is enabled.

Disables an array.

Renders primitives from array data.

Renders primitives from array data.

Specifies which color buffers are to be used for drawing.
Renders primitives from array data.

Writes a block of pixels to the frame buffer.
Renders primitives from array data.

Marks edges as either boundary or nonboundary.
Defines an array of edge flags.

Defines an array of edge flags.

Defines a list of edge flag arrays.

Tests whether a capability is enabled.

Enables or disables an array.

Delimits the vertices of a primitive or group of like
primitives.

Evaluates enabled one-dimensional (1D) and
two-dimensional (2D) maps.

Computes a one-dimensional (1D) or two-dimensional
(2D) grid of points or lines.

Generates and evaluates a single point in a mesh.

Controls the feedback mode.

Blocks until all GL execution is complete.

Forces the running of GL subroutines in finite time.
Specifies fog parameters.

Specifies a Fog Coordinate.

Specifies an array of fog coordinates.

Defines a list of arrays of fog coordinates.

Defines frontfacing and backfacing polygons.



G
glGenLists,
glGenTextures

glGenTexturesX

glGetClipPlane)

glGetColorTableParameter|
glGetError

giGetString
glGetTexEn
glGetTexGen

glGetTeximage
glGetTexLevelParamete

[glGetTexParameter|

lindexPointerEXT|
lindexPointerListIBM|
linitNames|
linterleavedArrays|

glisTexture
glisTextureEX

giLight
glLightModel

glLineWidth

glLoadNamedMatrixIBM|

Multiplies the current matrix by a perspective matrix.

Generates a contiguous set of empty display lists.
Generate texture names.

Generates texture names.

Returns the value or values of a selected parameter.
Returns the coefficients of the clipping plane.
Returns a color lookup table to the user.

Returns attributes used when loading a color table.
Returns error information.

Returns light source parameter values.

Returns evaluator parameters.

Returns material parameters.

Returns the specified pixel map.

Returns the address of the specified pointer.
Returns the address of a vertex data array.

Returns the polygonstipple pattern.

Returns a string describing the current GL connection.
Returns texture environment parameters.

Returns texture coordinate generation parameters.
Returns a texture image.

Returns texture parameter levels for a specific level of
detail.

Returns texture parameter values.

Specifies implementation-specific hints.

Sets the current color index.

Controls the writing of individual bits in the color index
buffers.

Defines an array of color indexes.

Defines an array of color indexes.

Defines a list of color index arrays.

Initializes the name stack.

Simultaneously specifies and enables several
interleaved arrays.

Tests whether a capability is enabled.

Tests for display list existence.

Determines if a name corresponds to a texture.
Determines if a name corresponds to a texture.

Sets light source parameters.

Sets the lighting model parameters.

Specifies the line stipple pattern.

Specifies the width of rasterized lines.

Sets the display-list base for the glCallLists subroutine.
Replaces the current matrix with the identity matrix.
Replaces the current matrix with an arbitrary matrix.
Loads a name onto the name stack.

Loads a pre-defined matrix into the top of the named
matrix stack.

Chapter 1. OpenGL Subroutines 3



[glLoadTransposeMatrixARB|

glLockArraysEX

glMultiDrawArraysEX
glMultiDrawElementsEX
glMultiModeDrawArraysIBM|

[gIMultiModeDrawElementsIBM|

IMultiTexCoordARB|
IMultMatrix|
IMultTransposeMatrixARB|

glPassThrough

glPixelStore
glPointSize

glPrioritizeTexture
glPrioritizeTexturesEXT]|
glPushAttrib or glPopAttrib)

glPushClientAttrib or gIPopCIientAttrib|

glPushMatrix or glPopMatri
glPushName or glPopName

R

glRasterPos
glReadBuffe

4  OpenGL 1.2 Reference Manual

Loads a matrix in row-major order, rather than
column-major order.

Locks the currently enabled vertex arrays.
Specifies a logical pixel operation for color index
rendering.

Defines a one-dimensional (1D) evaluator.

Defines a two-dimensional (2D) evaluator.

Defines a one-dimensional (1D) or two-dimensional (2D)
mesh.

Specifies material parameters for the lighting model.
Specifies the current matrix.

Renders multiple primitives from array data.

Renders multiple primitives from array data.

Renders primitives of multiple primitive types from array
data.

Renders primitives of multiple primitive types from array
data.

Sets the current texture coordinates.

Multiplies the current matrix by an arbitrary matrix.
Multiplies the current matrix by a matrix specified in
row-major order, rather than column-major order.

Creates or replaces a display list.

Sets the current normal vector.

Defines an array of normals.

Defines an array of normals.

Defines a list of normal arrays.

Specifies a normal and a vertex in one call.

Multiplies the current matrix by an orthographic matrix.

Places a marker in the feedback buffer.

Sets up pixel transfer maps.

Sets pixel storage modes.

Sets pixel transfer modes.

Specifies the pixel zoom factors.

Specifies the diameter of rasterized points.

Selects a polygon rasterization mode.

Sets the scale and bias used to calculate depth values.
Sets the scale and bias used to calculate z values.
Sets the polygon stippling pattern.

Sets texture residence priority.

Sets texture residence priority.

Pushes and pops the attribute stack.

Pushes and pops the attribute stack.

Pushes and pops the current matrix stack.

Pushes and pops the name stack.

Specifies the raster position for pixel operations.
Selects a color buffer source for pixels.



glReadPixels|
giRect

glRenderMode|

glSecondaryColorEXT]|
glSecondaryColorPointerEXT]|
glSecondaryColorPointerListIBM|
glSelectBuffen
glShadeModel

ITexCoord
ITexCoordColorNormalVertexSUN|

[gITexCoordColorVertexSUN|

[gITexCoordNormalVertexSUN|

glTexSublmage1DEX
glTexSublmage2D
glTexSublmage2DEX

glTexSublmage3D

glTexSublmage3DEX

glTranslate

U
[glUnLockArraysEXT]|

glVisibilityBufferIBM|

Reads a block of pixels from the frame buffer.
Draws a rectangle.

Sets rasterization mode.

Multiplies the current matrix by a rotation matrix.

Multiplies the current matrix by a general scaling matrix.
Defines the scissor box.

Specifies an RGB color used by the Color Sum stage.
Specifies an array of secondary colors.

Defines a list of arrays of secondary colors.
Establishes a buffer for selection mode values.
Selects flat or smooth shading.

Sets function and reference values for stencil testing.
Controls the writing of individual bits in the stencil
planes.

Sets stencil test actions.

Sets the current texture coordinates.
Specifies a texture coordinate, a color, a normal and a
vertex in one call.

Specifies a texture coordinate, a color, and a vertex in
one call.

Specifies a texture coordinate, a normal and a vertex in
one call.

Defines an array of texture coordinates.

Defines an array of texture coordinates.

Defines a list of texture coordinate arrays.

Specifies a texture coordinate and a vertex in one call.
Sets texture environment parameters.

Controls the generation of texture coordinates.
Specifies a one-dimensional (1D) texture image.
Specifies a two-dimensional (2D) texture image.
Specifies a three-dimensional (3D) texture image.
Specifies a three-dimensional (3D) texture image.
Sets texture parameters.

Specifies a one-dimensional (1D) texture subimage.
Specifies a one-dimensional (1D) texture subimage.
Specifies a two-dimensional (2D) texture subimage.
Specifies a two-dimensional (2D) texture subimage.
Specifies a three-dimensional (3D) texture subimage.
Specifies a three-dimensional (3D) texture subimage.
Multiplies the current matrix by a translation matrix.

Unlocks the currently enabled vertex arrays.

Specifies a vertex.

Defines an array of vertex data.

Defines an array of vertex data.

Defines a list of vertex arrays.

Sets the viewport.

Specifies the array in which visibility calculation results
are stored.

Chapter 1. OpenGL Subroutines 5



|gIVisibiIityThreshoIdIBMl Specifies the number of visible fragments rendered
before a visibility hit is registered.

glAccum Subroutine

Purpose

Operates on the accumulation buffer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glAccum(GLenum [Operation|,
GLfloat |Value

Description

The accumulation buffer is an extended-range color buffer. Images are not rendered into it. Rather, images
rendered into one of the color buffers are added to the contents of the accumulation buffer after rendering.
Effects such as antialiasing (of points, lines, and polygons), motion-blur, and depth of field can be created

by accumulating images generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha (RGBA) values. The number
of bits per component in the accumulation buffer depends on the implementation. You can examine this
number by calling glGetinteger four times, with arguments GL_ACCUM_RED_BITS,
GL_ACCUM_GREEN_BITS, GL_ACCUM_BLUE_BITS, and GL_ACCUM_ALPHA_BITS, respectively.
(See the [giGet subroutine for more information on glGetinteger.) Regardiess of the number of bits per
component, however, the range of values stored by each component is [-1,1]. The accumulation buffer
pixels are mapped 1-to-1 with frame buffer pixels.

The glAccum subroutine operates on the accumulation buffer. The first argument, Operation, is a symbolic
constant that selects an accumulation buffer operation. The second argument, Value, is a floating-point
value to be used in that operation. Five operations are specified: GL_LOAD, GL_ACCUM, GL_ADD,
GL_MULT, and GL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box and are applied
identically to the RGBA components of each pixel. The contents of an accumulation buffer pixel
component are undefined if the glAccum operation results in a value outside the range [-1,1].

The operations are:

GL_ACCUM Obtains RGBA values from the buffer currently selected for reading. (See ) Each
component value is divided by 2n-1, where n is the number of bits allocated to each color
component in the currently selected buffer. The result is a floating-point value in the range [0,1],
which is multiplied by value and added to the corresponding pixel component in the accumulation
buffer, thereby updating the accumulation buffer.

GL_LOAD Functions similarly to GL_ACCUM, except that the current value in the accumulation buffer is not
used in the calculation of the new value. That is, the RGBA values from the currently selected
buffer are divided by 2n-1, multiplied by Value, and then stored in the corresponding accumulation
buffer cell, overwriting the current value.

GL_ADD Adds Value to each R, G, B, and A in the accumulation buffer.

GL_MULT Multiplies each RGBA in the accumulation buffer by Value and returns the scaled component to its
corresponding accumulation buffer location.

6 OpenGL 1.2 Reference Manual



GL_RETURN Transfers accumulation buffer values to the color buffer or buffers currently selected for writing.
Each RGBA component is multiplied by Value, then multiplied by 2n-1, clamped to the range [0,
2n-1] and stored in the corresponding display buffer cell. The only fragment operations that are
applied to this transfer are pixel ownership, scissor, dithering, and color writemasks.

The accumulation buffer is cleared by specifying R, G, B, A values to set it to with the glClearAccum
directive, and then issuing a glClear subroutine with the accumulation buffer enabled.

Parameters

Operation Specifies the accumulation buffer operation. Symbolic constants GL_LOAD, GL_ACCUM,
GL_MULT, GL_ADD, and GL_RETURN are accepted.

Value Specifies a floating-point value used in the accumulation buffer operation. The Operation parameter

determines how Value is used.

Notes

All glAccum operations update only those pixels within the current scissor box.

Errors

GL_INVALID_ENUM Operation is set to an unaccepted value.

GL_INVALID_OPERATION There is no accumulation buffer.

GL_INVALID_OPERATION The glAccum subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glAccum subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_ACCUM_RED_BITS
glGet with argument GL_ACCUM_GREEN_BITS
glGet with argument GL_ACCUM_BLUE_BITS
glGet with argument GL_ACCUM_ALPHA_BITS.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

glBlendFund] subroutine, [gIClear] subroutine, [giClearAccum|
ICopyPixels| subroutine, |giLogicOp| subroutine, [gIPixelStore| subroutine, |gIPixelTransfe
glReadPixels| subroutine, [glScissor| subroutine, |gIStencilO

glReadBuffer| subroutine,

subroutine,
subroutine,
subroutine.

Chapter 1. OpenGL Subroutines 7



glActiveTextureARB Subroutine

Purpose
Specify which texture unit is active.

Library
OpenGL C bindings library: (libGL.a)

C Syntax
void glActiveTextureARB(GLenum

Description

glActiveTextureARB selects which texture unit subsequent texture state calls will affect. The number of
texture units an implementation supports is implementation dependent, but must be at least two. The
texture parameter must be one of GL_TEXTUREi_ARB, where 0 <= i <
GL_MAX_TEXTURE_UNITS_ARB. The initial value is GL_TEXTUREO_ARB.

Parameters
texture specifies which texture unit to make active.
Notes

Vertex arrays are client-side GL resources, which are selected by the giClientActiveTextureARB routine.

If the GL_ARB_multitexture extension is NOT present, then the number of texture units supported by the
implementation is one, not two, as described above.

The following OpenGL subroutines will be routed to different texture units based on this call:
+ glEnable (GL_TEXTURE_GEN_*)

+ glDisable (GL_TEXTURE_GEN_*)

» ¢glTexGen*

* glTexEnv*

» glTeximage*

» glTexSublmage*

+ glCopyTeximage*

» glCopyTexSublmage*

» glBindTexture

Errors

GL_INVALID_OPERATION is generated if texture is not one of the accepted values.
Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

8 OpenGL 1.2 Reference Manual



Related Information

The |glEnableClientState| or glDisableClientState subroutine, the [gIMultiTexCoordARB| subroutine, the
[gITexCoordPointer|

glAlphaFunc Subroutine

Purpose

Specifies the alpha test function.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glAlphaFunc(GLenum [Function|,
GLclampf [Referencel)

Description

The alpha test discards fragments conditional on the outcome of a comparison between the incoming
fragment’s alpha value and a constant reference value. The glAlphaFunc subroutine specifies the
reference and comparison function. The comparison is performed only if alpha testing is enabled. (See
glEnable or glDisable of GL_ALPHA_TEST.)

The Function and Reference parameters specify the conditions under which the pixel is drawn. The
incoming alpha value is compared to the Reference parameter using the function specified by Function. If
the comparison passes, the incoming fragment is drawn, conditional on subsequent stencil and
depth-buffer tests. If the comparison fails, no change is made to the frame buffer at that pixel location.

The comparison functions are:

GL_NEVER Never passes.

GL_LESS Passes if the incoming alpha value is less than the reference value.

GL_EQUAL Passes if the incoming alpha value is equal to the reference value.

GL_LEQUAL Passes if the incoming alpha value is less than or equal to the reference value.
GL_GREATER Passes if the incoming alpha value is greater than the reference value.
GL_NOTEQUAL Passes if the incoming alpha value is not equal to the reference value.
GL_GEQUAL Passes if the incoming alpha value is greater than or equal to the reference value.
GL_ALWAYS Always passes.

The glAlphaFunc subroutine operates on all pixel write operations, including those resulting from the scan
conversion of points, lines, polygons, and bitmaps, and those resulting from pixel draw and copy
operations. The glAlphaFunc subroutine does not affect screen clear operations.

Parameters

Function Specifies the alpha comparison function. Symbolic constants GL_NEVER, GL_LESS, GL_EQUAL,
GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS are accepted.
The default function is GL_ALWAYS.

Reference Specifies the reference value to which incoming alpha values are compared. This value is clamped
to the range 0 (zero) through 1 (one), where 0 represents the lowest possible alpha value, and 1
the highest possible value. The default reference is 0.

Chapter 1. OpenGL Subroutines 9



Notes
Alpha testing is done only in RGBA mode.

Errors
GL_INVALID_ENUM Function is set to an unaccepted value.
GL_INVALID_OPERATION The glAlphaFunc subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glAlphaFunc subroutine are as follows. (See the [giGed subroutine for more
information.)

glGet with argument GL_ALPHA_TEST_FUNC

glGet with argument GL_ALPHA_TEST_REF

glisEnabled| with argument GL_ALPHA_TEST.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |gIBegin| or |gIEnd| subroutine, |giBlendFunc| subroutine, subroutine, subroutine,
glEnable| or glDisable subroutine, |giStencilFunc| subroutine.

glAreTexturesResident Subroutine

Purpose
Determines if textures are loaded in texture memory.

Library
OpenGL C bindings library: libGL.a

C Syntax

GLboolean glAreTexturesResident (GLsizei E|,

const GLuint * [textures),
GLboolean * [residences])

Description

On machines with a limited amount of texture memory, OpenGL establishes a “working set” of textures that
are resident in texture memory. These textures may be bound to a texture target much more efficiently
than textures that are not resident.

The glAreTexturesResident subroutine queries the texture residence status of the n textures named by

the elements of textures. If all the named textures are resident, glAreTexturesResident returns GL_TRUE
and the contents of residences are undisturbed. If not all the named textures are resident,

10 OpenGL 1.2 Reference Manual



glAreTexturesResident returns GL_FALSE and detailed status is returned in the n elements of
residences. If an element of residences is GL_TRUE, then the texture named by the corresponding
element of textures is resident.

The residence status of a single bound texture may also be queried by calling glGetTexParameter with
the target argument set to the target to which the texture is bound, and the parameter name argument set
to GL_TEXTURE_RESIDENT. This is the only way that the residence status of a default texture can be
queried.

The glAreTexturesResident subroutine is not included in display lists.

Parameters

n Specifies the number of textures to be queried.

textures Specifies an array containing the names of the textures to be queried.

residences Specifies an array in which the texture residence status is returned. The residence status of a

texture named by an element of textures is returned in the corresponding element of residences.

Notes
The glAreTexturesResident subroutine is available only if the GL version is 1.1 or greater.

The glAreTexturesResident subroutine returns the residency status of the textures at the time of
invocation. It does not guarantee that the textures will remain resident at any other time.

If textures live in virtual memory (there is no texture memory) they are considered always resident.

Errors
GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_VALUE is generated if any element in textures is zero or does not name a texture. In that
case, the function returns GL_FALSE and the contents of residences is indeterminate.

GL_INVALID_OPERATION is generated if glAreTexturesResident is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter with parameter name GL_TEXTURE_RESIDENT retrieves the residence status of a
currently-bound texture.

Related Information

The g| IBindTexture| subroutine, |9IPrioritizeTextures| subroutine, |glTexlmage1D| subroutine,
|gITexImage2D| subroutine, |gITexParamete[| subroutine.

glAreTexturesResidentEXT Subroutine

Purpose
Renders a vertex using the specified vertex array element.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 11



C Syntax

GLboolean glAreTexturesResidentEXT(GLsizei EL
const GLuint * |textures|,
GLboolean * [residences

Description

On machines with a limited amount of texture memory, OpenGL establishes a “working set” of textures that
are resident in texture memory. These textures may be bound to a texture target much more efficiently
than textures that are not resident.

The glAreTexturesResidentEXT subroutine queries the texture residence status of the n textures named
by the elements of textures. If all the named textures are resident, glAreTexturesResidentEXT returns
GL_TRUE and the contents of residences are undisturbed. If not all the named textures are resident,
glAreTexturesResidentEXT returns GL_FALSE and detailed status is returned in the n elements of
residences. If an element of residences is GL_TRUE, then the texture named by the corresponding
element of textures is resident.

The residence status of a single bound texture may also be queried by calling glGetTexParameter with
the target argument set to the target to which the texture is bound, and the parameter name argument set
to GL_TEXTURE_RESIDENT_EXT. This is the only way that the residence status of a default texture can
be queried.

The glAreTexturesResidentEXT subroutine is not included in display lists.

Parameters

n Specifies the number of textures to be queried.

textures Specifies an array containing the names of the textures to be queried.

residences Specifies an array in which the texture residence status is returned. The residence status of a

texture named by an element of textures is returned in the corresponding element of residences.

Notes

The glAreTexturesResidentEXT subroutine is part of the EXT_texture_object extension, not part of the
core GL command set. If GL_EXT_texture_object is included in the string returned by glGetString (when
called with argument GL_EXTENSIONS), extension EXT_texture_object is supported by the connection.

Errors
GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_VALUE is generated if any element in textures is zero or does not name a texture.

GL_INVALID_OPERATION is generated if glAreTexturesResidentEXT is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter with parameter name GL_TEXTURE_RESIDENT_EXT retrieves the residence status
of a currently-bound texture.

Files

lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

12 OpenGL 1.2 Reference Manual



Related Information
The [gIBindTextureEXT| subroutine, |gIPrioritize TexturesEXT] subroutine, |gITexlmage1D| subroutine,

|gITexIma9e2D| subroutine, |9ITexParamete[| subroutine.

glArrayElement Subroutine

Purpose
Renders a vertex using the specified vertex array element.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glArrayElement(GLint |i

Description

The glArrayElement commands are used within glBegin/glEnd pairs to specify vertex and attribute data
for point, line, and polygon primitives. If GL_VERTEX_ARRAY is enabled when glArrayElement is called,
a single vertex is drawn, using vertex and attribute data taken from location i of the enabled arrays. If
GL_VERTEX_ARRAY is not enabled, no drawing occurs but the attributes correspoinding to the enabled
arrays are modified.

Use glArrayElement to construct primitives by indexing vertex data, rather than by streaming through
arrays of data in first-to-last order. Because each call specifies only a single vertex, it is possible to
explicitly specify per- primitive attributes, such as a single normal per individual triangle.

Changes made to array data between the execution of glBegin and the corresponding execution of glEnd
may affect calls to glArrayElement that are made within the same gIBegin/glEnd period in non-sequential
ways. That is, a call to glArrayElement that precedes a change to array data may access the changed
data, and a call that follows a change to array data may access original data.

Parameters

i Specifies an index into the enabled vertex data arrays.

Notes
The glArrayElement subroutine is available only if the GL version is 1.1 or greater.

The glArrayElement subroutine is included in display lists. If glArrayElement is entered into a display list,
the necessary array data (determined by the array pointers and enables) is also entered into the display
list. Because the array pointers and enables are client side state, their values affect display lists when the
lists are created, not when the lists are executed.

Related Information
The [gIClientActiveTextureARB| subroutine, @ColorPointeﬂ subroutine, |llDrawArrays| subroutine,

IEdgeFlagPointer] subroutine, |glGetPointerv| subroutine, [glindexPointer subroutine,
linterleavedArrays| subroutine, [gINormalPointer subroutine, |g|TexCoordPointer1 subroutine,

IVertexPointer| subroutine.

Chapter 1. OpenGL Subroutines 13



glArrayElementEXT Subroutine

Purpose
Specifies the array elements used to render a vertex.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glArrayElementEXT(GLint |] )

Description

The glArrayElementEXT commands are used within glBegin/glEnd pairs to specify vertex and attribute
data for point, line and polygon primitives. When glArrayElementEXT is called, a single vertex is drawn,
using vertex and attribute data taken from location i of the enabled arrays.

Use glArrayElementEXT to construct primitives by indexing vertex data, rather than by streaming through
arrays of data in first-to-last order. Because each call specifies only a single vertex, it is possible to
explicitly specify perprimitive attributes, such as a single normal per individual triangle.

Parameters

i Specifies an index in the enabled arrays.

Notes

The glArrayElementEXT subroutine may be included in display lists. If glArrayElementEXT is entered
into a display list, the necessary array data (determined by the array pointers and enables) is also entered
into the display list. Because the array pointers and enables are client side state, their values affect display
lists when the lists are created, not when the lists are executed.

Static array data may be read and cached by the implementation at any time. If static array elements are
modified and the arrays are not respecified, the results of any subsequent calls to glArrayElementEXT
are undefined.

The glArrayElementEXT subroutine executes even if GL_VERTEX_ARRAY_EXT is not enabled. No
drawing occurs in this case, but the attributes corresponding to enabled arrays are modified.

Although it is not an error to respecify an array between the execution of and the corresponding
execution of glEnd, the result of such respecification is undefined.

The glArrayElementEXT subroutine is part of the _extname(EXT_vertex_array) extension, not iart of the

core GL command set. If _extstring(EXT_vertex_array) is included in the string returned by |glGetString,
when called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.
File

lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

14  OpenGL 1.2 Reference Manual



Related Information

The [gIClientActiveTextureARB| subroutine, |gIColorPointerEXT] subroutine, [giDrawArraysEXT]

subroutine,

IEdgeFlagPointerEXT] subroutine, [glGetPointervEXT| subroutine, [glindexPointerEXT]

subroutine,

linterleavedArrays| subrou [gINormalPointerEXT| subroutine, |gITexCoordPointerEXT]|

subroutine,

IVertexPointerEXT| subroutine.

glBegin or glEnd Subroutine

Purpose

Delimits the vertices of a primitive or group of like primitives.

Library

OpenGL C bindings library: libGL.a

C Syntax
void g1Begin(GLenum

void gl1End(void)

Description

The gIBegin and glEnd subroutines delimit the vertices that define a primitive or group of like primitives.
The glBegin subroutine accepts a single argument that specifies which of 10 ways the vertices will be
interpreted. Taking n as an integer count starting at 1 (one), and N as the total number of vertices
specified, the interpretations are:

GL_POINTS
GL_LINES

GL_LINE_STRIP

GL_LINE_LOOP

GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

GL_QUADS

GL_QUAD_STRIP

GL_POLYGON

Treats each vertex as a single point. Vertex n defines point n. N points are drawn.
Treats each pair of vertices as an independent line segment. Vertices 2n-1 and 2n
define line n. N/2 lines are drawn.

Draws a connected group of line segments from the first vertex to the last. Vertices
n and n+1 define line n. N-1 lines are drawn.

Draws a connected group of line segments from the first vertex to the last, then
back to the first. Vertices n and n+1 define line n. The last line, however, is defined
by vertices N and 1. N lines are drawn.

Treats each triplet of vertices as an independent triangle. Vertices 3n-2, 3n-1, and
3n define triangle n. N/3 triangles are drawn.

Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. For odd n, vertices n, n+1, and n+2 define
triangle n. For even n, vertices n+1, n, and n+2 define triangle n. N-2 triangles are
drawn.

Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. Vertices 1, n+1, and n+2 define triangle n. N-2
triangles are drawn.

Treats each group of four vertices as an independent quadrilateral. Vertices 4n-3,
4n-2, 4n-1, and 4n define quadrilateral n. N/4 quadrilaterals are drawn.

Draws a connected group of quadrilaterals. One quadrilateral is defined for each
pair of vertices presented after the first pair. Vertices 2n-1, 2n, 2n+2, and 2n+1
define quadrilateral n. N/2-1 quadrilaterals are drawn. Note that the order in which
vertices are used to construct a quadrilateral from strip data is different from that
used with independent data.

Draws a single, convex polygon. Vertices 1 through N define this polygon.

Only a subset of GL subroutines can be used between the giBegin and glEnd subroutines. The
subroutines are: glVertex, giColor, glindex, giINormal, giTexCoord, glEvalCoord, glEvalPoint,
glMaterial, and glEdgeFlag. Also, it is acceptable to use glCallList or glCallLists to execute display lists

Chapter 1. OpenGL Subroutines 15



that include only the preceding subroutines. If any other GL subroutine is called between the glBegin and
glEnd subroutines, the error flag is set and the subroutine is ignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices that can be defined
between the glBegin and glEnd subroutines. Lines, triangles, quadrilaterals, and polygons that are
incompletely specified are not drawn. Incomplete specification results when either too few vertices are
provided to specify even a single primitive or when an incorrect multiple of vertices is specified. The
incomplete primitive is ignored; the rest are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point, 2 for a line, 3 for a
triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a certain multiple of vertices are:
GL_LINES (2), GL_TRIANGLES (3), GL_QUADS (4), and GL_QUAD_STRIP (2).

Parameters

mode  Specifies the primitive or primitives that will be created from vertices presented between giBegin and the
subsequent glEnd. Ten symbolic constants are accepted: GL_POINTS, GL_LINES, GL_LINE_STRIP,
GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS,
GL_QUAD_STRIP, and GL_POLYGON.

Errors

INVALID_ENUM Indicates that mode is set to an unaccepted value.

GL_INVALID_OPERATION Indicates that a subroutine other than glVertex, glColor, glindex, giNormal,
glTexCoord, glEvalCoord, glEvalPoint, glMaterial, glEdgeFlag, glCallList,
or glCallLists subroutine is called between glBegin and the corresponding
glEnd.

GL_INVALID_OPERATION Indicates that glEnd is called before the corresponding glBegin is called.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The [glArrayElement] subroutine, [glArrayElementEXT] subroutine, [giColor] subroutine, [gICallList

subroutine, [glCallLists| subroutine, |gIEdgeFlag| subroutine, |glEvalCoord| subroutine, |glEvalPoint
subroutine, |glindex| subroutine, |giMaterial| subroutine, |gINormaI| subroutine, |gITexCoord| subroutine,

|gIVertex| subroutine.

glBindTexture Subroutine

Purpose
Binds a named texture to a texturing target.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glBindTexture(GLenum |[target|,
GLuint [texture)

16  OpenGL 1.2 Reference Manual



Description

The gIBindTexture subroutine lets you create or use a named texture. Calling glBindTexture with target
set to GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_3D_EXT and texture
set to the name of the new texture binds the texture name to the target. When a texture is bound to a
target, the previous binding for that target is automatically broken.

Texture names are unsigned integers. The value zero is reserved to represent the default texture for each
texture target. Texture names and the corresponding texture contents are local to the shared display-list
space (see glXCreateContext) of the current GL rendering context; two rendering contexts share texture
names only if they also share display lists.

You can use glGenTextures to generate a set of new texture names.

When a texture is first bound, it assumes the dimensionality of its target: A texture first bound to
GL_TEXTURE_1D becomes one-dimensional (1D), a texture first bound to GL_TEXTURE_2D becomes
two-dimensional (2D), a texture first bound to GL_TEXTURE_3D becomes three-dimensional (3D), a
texture first bound to GL_TEXTURE_3D_EXT becomes three-dimensional (3D). The state of a (1D)
texture immediately after it is first bound is equivalent to the state of the default GL_TEXTURE_1D at GL
initialization, and similarly for 2D and 3D textures.

While a texture is bound, GL operations on the target to which it is bound affect the bound texture, and
queries of the target to which it is bound return state from the bound texture. If texture mapping of the
dimensionality of the target to which a texture is bound is active, the bound texture is used. In effect, the
texture targets become aliases for the textures currently bound to them, and the texture name zero refers
to the default textures that were bound to them at initialization.

A texture binding created with glBindTexture remains active until a different texture is bound to the same
target, or until the bound texture is deleted with glDeleteTextures.

Once created, a named texture may be rebound to the target of the matching dimensionality as often as
needed. It is usually much faster to use glBindTexture to bind an existing named texture to one of the
texture targets than it is to reload the texture image using glTeximage1D or glTexlmage2D. For additional
control over performance, use glPrioritizeTextures.

The glIBindTexture subroutine is included in display lists.

Parameters

target Specifies the target to which the texture is bound. Must be either GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_3D_EXT (EXT_texture3D).

texture Specifies the name of a texture.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_OPERATION is generated if texture has a dimensionality which doesn’t match that of target.

GL_INVALID_OPERATION is generated if glBindTexture is executed between the execution of glBegin
and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_TEXTURE_1D_BINDING

glGet with argument GL_TEXTURE_2D_BINDING

Chapter 1. OpenGL Subroutines 17



glGet with argument GL_TEXTURE_3D_BINDING

glGet with argument GL_TEXTURE_3D_BINDING_EXT

Related Information

The [glAreTexturesResident subroutine, [giDeleteTextures| subroutine, [giGenTextures| subroutine,

subroutine, [glGetTexParameter] subroutine, |glisTexture] subroutine, [gIPrioritizeTextures| subroutine,

|gITexImage1 D| subroutine, |gITexImage2D| subroutine, |gITexImage3DEXT| subroutine, |gITexParamete[|

subroutine.

gIBindTextureEXT Subroutine

Purpose
Binds a named texture to a texturing target.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1BindTextureEXT(GLenum [target],
GLuint |[texture)

Description

glBindTextureEXT is part of the EXT_texture_object extension. This extension makes it possible to use
named 1-, 2-dimensional textures in addition to the usual OpenGL texture targets designated by
GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D_EXT, etc.

Texture names are unsigned integers. The value zero is reserved to represent the default texture for each
texture target. Texture names and the corresponding texture contents are local to the shared display-list
space (see glXCreateContext) of the current OpenGL rendering context; two rendering contexts will share
texture names only if they also share display lists.

To create a named texture, simply bind a previously-unused texture name to one of the texture targets
listed above. This can be accomplished by calling glBindTextureEXT with target set to the appropriate
texture target, and fexture set to the name of the new texture. When a texture is bound to a target, the
previous binding for that target is automatically broken.

Note that glGenTexturesEXT may be used to generate a set of fresh texture names.

When a texture is first bound, it assumes the dimensionality of its target: A texture first bound to
GL_TEXTURE_1D becomes one-dimensional (1D), a texture first bound to GL_TEXTURE_2D becomes
two-dimensional (2D), a texture first bound to GL_TEXTURE_3D_EXT becomes three-dimensional (3D).
The state of a (1D) texture immediately after it is first bound is equivalent to the state of the default
GL_TEXTURE_1D at GL initialization, and similarly for 2D and 3D textures.

While a texture is bound, GL operations on the target towhich it is bound affect the bound texture, and
queries of the target to which it is bound return state from the bound texture. If texture mapping of the
dimensionality of the target to which a texture is bound is active, the bound texture is used. In effect, the
texture targets become aliases for the textures currently bound to them, and the texture name zero refers
to the default textures that were bound to them at initialization.

A texture binding created with glBindTextureEXT remains active until a different texture is bound to the
same target, or until the bound texture is deleted with glDeleteTexturesEXT.

18 OpenGL 1.2 Reference Manual



Once created, a named texture may be re-bound to the appropriate target as often as needed. It is usually
much faster to bind an existing named texture to one of the texture targets using glBindTextureEXT than
it is to reload the texture image using glTexlmage*. For additional control over performance, consider
using glPrioritizeTexturesEXT.

glBindTextureEXT is included in display lists.

Parameters

target The target to which the texture will be bound. Must be one of GL_TEXTURE_1D, GL_TEXTURE_2D,
or GL_TEXTURE_3D_EXT (EXT_texture3D).

texture The name of a texture.

Notes

gIBindTextureEXT is part of the EXT_texture_object extension, not part of the core GL command set. If
GL_EXT_texture_object is included in the string returned by glGetString, when called with argument
GL_EXTENSIONS, extension EXT_texture_object is supported by the connection.

Errors

GL_INVALID_ENUM Generated if target is not one of the allowable values.
GL_INVALID_OPERATION Generated if fexture has a dimensionality and it doesn’t match that of target.
GL_INVALID_OPERATION Generated if glBindTextureEXT is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets
glGet with argument GL_TEXTURE_1D_BINDING_EXT

glGet with argument GL_TEXTURE_2D_BINDING_EXT
glGet with argument GL_TEXTURE_3D_BINDING_EXT

Files

lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information

The |gIDeleteTexturesEXT| subroutine, [glGenTexturesEXT]| subroutine, [91Get] subroutine,
lglGetTexParameter| subroutine, |glisTexture] subroutine, [giTexlmage1D| subroutine, [giTexlmage2D|
subroutine, |gITexImage3DEXT| subroutine, |gITexParamete[| subroutine.

glBitmap Subroutine

Purpose
Draws a bitmap.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 19



C Syntax
void glBitmap(6Lsizei [vidth],

GLsizei Height|,

GLfloat [xOrigin),
GLfloat |yOrigin),
GLfloat [xMove,
GLfloat |yMove),

const GLubyte * |ljitmap|)

Description

A bitmap is a binary image. When drawn, the bitmap is positioned relative to the current raster position,
and frame buffer pixels corresponding to 1’s in the bitmap are written using the current raster color or
index. Frame buffer pixels corresponding to 0’s in the bitmap are not modified.

The gIBitmap subroutine takes seven arguments. The first pair of arguments specify the width and height
of the bitmap image. The second pair of arguments specify the location of the bitmap origin relative to the
lower left corner of the bitmap image. The final pair of arguments specify x and y offsets to be added to
the current raster position after the bitmap has been drawn. The final argument is a pointer to the bitmap
image itself.

The bitmap image is interpreted like image data for the glDrawPixels subroutine, with Width and Height
corresponding to the width and height arguments of that subroutine, and with Type set to GL_BITMAP and
Format set to GL_COLOR_INDEX. Modes specified using the glPixelStore subroutine affect the
interpretation of bitmap image data; modes specified using the glPixelTransfer subroutine do not.

If the current raster position is not valid, the giBitmap subroutine is ignored. Otherwise, the lower left
corner of the bitmap image is positioned at the following window coordinates:

Xw
yw

[xr - xo]
[yr - yol

where ( xr, yr ) is the raster position, and ( xo, yo ) is the bitmap origin.

Fragments are then generated for each pixel corresponding to a 1 in the bitmap image. These fragments
are generated using the current raster z coordinate, color or color index, and current raster texture
coordinates. They are then treated just as if they had been generated by a point, line, or polygon,
including texture mapping, fogging, and all per-fragment operations such as alpha and depth testing.

After the bitmap has been drawn, the x and y coordinates of the current raster position are offset by
xMove and yMove. No change is made to the z coordinate of the current raster position, or to the current
raster color, index, or texture coordinates.

Parameters

Width Specifies the pixel width of the bitmap image.

Height Specifies the pixel height of the bitmap image.

xOrigin Specifies the location of the x origin in the bitmap image. The x origin is measured from the lower left
corner of the bitmap, with right and up being the positive axes.

yOrigin Specifies the location of the y origin in the bitmap image. The y origin is measured from the lower left
corner of the bitmap, with right and up being the positive axes.

xMove Specifies the x offset to be added to the current raster position after the bitmap is drawn.

yMove Specifies the y offset to be added to the current raster position after the bitmap is drawn.

Bitmap Specifies the address of the bitmap image.

20 OpenGL 1.2 Reference Manual



Errors

GL_INVALID_VALUE Either Width or Height is negative.
GL_INVALID_OPERATION The gIBitmap subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the gIBitmap subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_CURRENT_RASTER_POSITION

glGet with argument GL_CURRENT_RASTER_COLOR

glGet with argument GL_CURRENT_RASTER_INDEX

glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS
glGet with argument GL_CURRENT_RASTER_POSITION_VALID.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin] or glEnd subroutine, [giDrawPixels]| subroutine, [gIPixelStore] subroutine, [gIPixelTransfer]
h

subroutine, |glRasterPos| subroutine.

glBlendColor Subroutine

Purpose
Sets the blend color. This subroutine is part of OpenGL 1.2 ARB Imaging subset extension.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1BlendColor(GLclampf [red,
GLclampf |green|,
GLclampf |plue,
GLclampf |alphal

Description

The GL_BLEND_COLOR may be used to calculate the source and destination blending factors. See
glBlendFunc|for a complete description of the blending operations. Initially the GL_BLEND_COLOR is set
to (0, 0, 0, 0).

Chapter 1. OpenGL Subroutines 21



Parameters

red, green, blue, alpha Specify the components of GL_BLEND_COLOR.

Notes

The glIBlendColor subroutine is available only if the GL version is 1.1 or greater.

Errors

GL_INVALID_OPERATION The gIBlendColor is called between a call to glBegin and the corresponding

call to glEnd.
Associated Gets
glGet with argument GL_BLEND_COLOR.

Related Information
The [gIBlendFunc] subroutine, subroutine.

giBlendColorEXT Subroutine

Purpose
Sets the blend color. This subroutine is part of OpenGL 1.2 ARB Imaging subset extension.
Library
OpenGL C bindings library: libGL.a
C Syntax
void g1BlendColorEXT(GLclampf
GLclampf
GLcTampf
GLcTampf
Description

The GL_BLEND_COLOR_EXT may be used to calculate the source and destination blending factors. See
glBlendFunc|for a complete description of the blending operations. Initially the GL_BLEND_COLOR_EXT
is set to (0, 0, 0, 0).

Parameters

red, green, blue, alpha Specify the components of GL_BLEND_COLOR_EXT.
Notes

The gIBlendColorEXT subroutine is available only if the GL version is 1.1 or greater.

Errors

GL_INVALID_OPERATION The gIBlendColorEXT is called between a call to glBegin and the

corresponding call to glEnd.

22 OpenGL 1.2 Reference Manual



Associated Gets
glGet with argument GL_BLEND_COLOR_EXT.

Related Information
The |gIiBlendFunc| subroutine, subroutine.

giBlendEquation Subroutine

Purpose
Specifies the RGB color blend equation. This subroutine is part of the OpenGL 1.2 ARB Imaging subset.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1BlendEquation(GLenum

Description

Blending combines corresponding source and destination color components according to the blending
operation specified by the mode. The blend equations are:

GL_FUNC_ADD min(Cs*sf + Cd*df, 1)
GL_FUNC_SUBTRACT max(Cs*sf - Cd*df, 0)
GL_FUNC_REVERSE_SUBTRACT max(Cd*df - Cs*sf, 0)
GL_LOGIC_OP Cs Lop Cd

GL_MIN min(Cs, Cd)
GL_MAX max(Cs, Cd)

where Cs and Cd are the source and destination color components, respectively; sf and df are the source
and destination blending factors are specified by giBlendFunc; Lop is one of the 16 bitwise operators
specified by glLogicOp.

Parameters

mode  Specifies how source and destination RGBA color components are combined. The symbolic constants
GL_FUNC_ADD, GL_MIN, GL_MAX, GL_FUNC_SUBTRACT, GL_REVERSE_SUBTRACT are accepted.
The initial mode is GL_FUNC_ADD.

Notes

The mode GL_LOGIC_OP is part of the EXT_blend_logic_op extension, not part of the core GL command
set. If GL_EXT_blend_logic_op is included in the string returned by glGetString, when called with
argument GL_EXTENSIONS, extension EXT_blend_logic_op is supported by the connection.

Errors
GL_INVALID_ENUM The mode parameter is not an accepted or supported value.
GL_INVALID_OPERATION The glBlendEquation is called between a call to glBegin and the

corresponding call to glEnd.

Chapter 1. OpenGL Subroutines 23



Associated Gets
glGet with argument GL_BLEND_EQUATION.

Related Information
The [gIBlendFunc]| subroutine, [glEnable or glDisable]| subroutine, subroutine, subroutine.

giBlendEquationEXT Subroutine

Purpose
Specifies the RGB color blend equation.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glBlendEquationEXT(GLenum

Description

Blending combines corresponding source and destination color components according to the blending
operation specified by the mode. The blend equations are:

GL_FUNC_ADD_EXT min(Cs*sf + Cd*df, 1)
GL_FUNC_SUBTRACT_EXT max(Cs*sf - Cd*df, 0)
GL_FUNC_REVERSE_SUBTRACT_EXT max(Cd*df - Cs*sf, 0)
GL_LOGIC_OP Cs Lop Cd
GL_MIN_EXT min(Cs, Cd)
GL_MAX_EXT max(Cs, Cd)

where Cs and Cd are the source and destination color components, respectively; sf and df are the source
and destination blending factors are specified by [gIiBlendFunc} Lop is one of the 16 bitwise operators

specified by

Parameters

mode  Specifies how source and destination RGBA color components are combined. The symbolic constants
GL_FUNC_ADD_EXT, GL_MIN_EXT, GL_MAX_EXT, GL_FUNC_SUBTRACT_EXT,
GL_REVERSE_SUBTRACT_EXT are accepted. The initial mode is GL_FUNC_ADD_EXT.

Notes

The modes GL_FUNC_SUBTRACT_EXT and GL_FUNC_REVERSE_SUBTRACT_EXT are part of the
EXT_blend_subtract extension, not part of the core GL command set. If GL_EXT_blend_subtract is
included in the string returned by when called with argument GL_EXTENSIONS, extension
EXT_blend_subtract is supported by the connection.

The mode GL_LOGIC_OP is part of the EXT_blend_logic_op extension, not part of the core GL command

set. If GL_EXT_blend_logic_op is included in the string returned by glGetString, when called with
argument GL_EXTENSIONS, extension EXT_blend_logic_op is supported by the connection.

24  OpenGL 1.2 Reference Manual



The modes GL_MIN_EXT and GL_MAX_EXT are part of the EXT_blend_minmax extension, not part of
the core GL command set. If GL_EXT_blend_minmax is included in the string returned by glGetString,
when called with argument GL_EXTENSIONS, extension EXT_blend_minmax is supported by the
connection.

Errors
GL_INVALID_ENUM The mode parameter is not an accepted or supported value.
GL_INVALID_OPERATION The glBlendEquation is called between a call to[gIBegin| and the

corresponding call to glEnd.

Associated Gets
with argument GL_BLEND_EQUATION_EXT.

Related Information
The [gIBegin| subroutine, |gIBlendFunc| subroutine, |glEnable or glDisable| subroutine, subroutine,
glGetString[ subroutine, [glLogicOp| subroutine.

giBlendFunc Subroutine

Purpose
Specifies pixel arithmetic.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1BlendFunc(GLenum SourceFactorL

GLenum [DestinationFactor)

Description

In RGB mode, pixels can be drawn using a function that blends the incoming (source) red, green, blue,
and alpha (RGBA) values with the RGBA values that are already in the frame buffer (the destination
values). By default, blending is disabled. Use theand glDisable subroutines with argument
GL_BLEND to enable and disable blending.

When blending is enabled, giBlendFunc and giBlendEquationEXT determine the blending operation.
SourceFactor and DestinationFactor specify the scaling rules used for scaling the source and destination
color components, respectively. Each rule defines four scale factors, one each for red, green, blue, and
alpha. The rules are described in the table below.

In the table and in subsequent equations, source color components are referred to as:
(Rs, Gs, Bs, As)

Destination color components are referred to as:
(Rd, Gd, Bd, Ad)

Constant color components are referred to as:
(Rc, Gc, Bc, Ac)

They are understood to have integer values between 0 (zero) and:

Chapter 1. OpenGL Subroutines 25



(kR, kG, kB, kA)

where

(kc = 2mc - 1)
(mR, mG, mB, mA)

represents the number of RGBA bit planes.

Source scale factors are referred to as:
(s R, s G, sB,sA)

Destination scale factors are referred to as:

(dR, d G, dB, dA)

The scale factors:
(frR, fG, fB, fA)

represent either source or destination factors. All scale factors have the range [0,1].

Parameter (R, 1G, 1B, fA)
GL_ZERO (0,0,0,0)
GL_ONE (1,1,1,1)

GL_SRC_COLOR

(Rs/kR, Gs/kG, Bs/kB, As/kA)

GL_ONE_MINUS_SRC_COLOR

(1,1, 1, 1) - (Rs/kR, Gs/kG, Bs/kB, As/kA)

GL_DST_COLOR

(Rd/kR, Gd/kG, Bd/kB, Ad/kA)

GL_ONE_MINUS_DST_COLOR

(1,1, 1, 1) - (Rd/kR, Gd/kG, Bd/kB, Ad/kA)

GL_SRC_ALPHA

(As/kA, Asl/kA, As/kA, As/kA)

GL_ONE_MINUS_SRC_ALPHA

(1,1, 1, 1) - (As/kA, As/kA, As/kA, As/kA)

GL_DST_ALPHA

(Ad/KA, Ad/KA, Ad/KA, Ad/KA)

GL_ONE_MINUS_DST_ALPHA

(1,1, 1, 1) - (Ad/kA, Ad/kA, Ad/kA, Ad/kA)

GL_CONSTANT_COLOR

(Rc/kR, GelkG, Bo/kB, AclkA)

GL_ONE_MINUS_CONSTANT_COLOR

(1,1, 1, 1) - (Rc/kR, Gc/kG, Be/kB, Ac/kA)

GL_CONSTANT_ALPHA

(Ac/kA, Acl/kA, Acl/kA, Ac/kA)

GL_ONE_MINUS_CONSTANT_ALPHA

(1,1, 1, 1) - (Ac/kA, Ac/kA, Ac/kA, Ac/kA)

GL_SRC_ALPHA_SATURATE

@ i, iy 1)

i=min (As, kA - Ad )/KA

To determine the blended RGBA values of a pixel when drawing in RGB mode, the system uses the

following equations:
Rd = min (kR, RssR + RddR)

Gd = min (kG, GssG + GddG)
Bd = min (kB, BssB + BddB)
Ad = min (kA, AssA + AddA)

Blending combines corresponding source and destination color components according to the blending

operation specified by GL_BLEND_EQUATION_EXT. The blending operations are:

GL_BLEND_EQUATION_EXT

Binary Operation

GL_FUNC_ADD_EXT

min(Cs x sC+Cd x dC,kC)

26 OpenGL 1.2 Reference Manual




GL_BLEND_EQUATION_EXT Binary Operation
GL_FUNC_SUBTRACT_EXT max(Cs x sC-Cd x dC,0)
GL_FUNC_REVERSE_SUBTRACT_EXT max(Cd x dC-Cs x sC,0)
GL_LOGIC_OP Cs Lop Cd
GL_MIN_EXT min(Cs, Cd)
GL_MAX_EXT max(Cs, Cd)

where C is the relevant color component (R, G, B, or A), Cs and Cd are the source and destination color
components, respectively, sC and sD are the source and destination scale factors, respectively, and Lop is
one of 16 bitwise operators specified by glLogicOp.

Despite the apparent precision of the preceding equations, blending arithmetic is not exactly specified,
because blending operates with imprecise integer color values. However, a blend factor that should be
equal to 1 is guaranteed not to modify its multiplicand, and a blend factor equal to 0 reduces its
multiplicand to 0. Thus, for example, when SourceFactor is GL_SRC_ALPHA, DestinationFactor is
GL_ONE_MINUS_SRC_ALPHA, and As is equal to kA, the equations reduce to simple replacement:
Rd = Rs

Gd = Gs

Rd = Bs
Ad = As

Parameters

SourceFactor Specifies how the RGBA source-blending factors are computed. Thirteen symbolic
constants are accepted: GL_ZERO, GL_ONE, GL_DST_COLOR,
GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,
GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR,
GL_CONSTANT_COLOR_EXT, GL_ONE_MINUS_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR_EXT, GL_CONSTANT_ALPHA,
GL_CONSTANT_ALPHA_EXT, GL_ONE_MINUS_CONSTANT_ALPHA,
GL_ONE_MINUS_CONSTANT_ALPHA_EXT, and GL_SRC_ALPHA_SATURATE.
These symbolic constants are defined in the Description section. The initial value is
GL_ONE.

DestinationFactor Specifies how the RGBA destination-blending factors are computed. Twelve
symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA ,
GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR,
GL_CONSTANT_COLOR_EXT, GL_ONE_MINUS_CONSTANT_COLOR,
GL_ONE_MINUS_CONSTANT_COLOR_EXT, GL_CONSTANT_ALPHA,
GL_CONSTANT_ALPHA_EXT, GL_ONE_MINUS_CONSTANT_ALPHA, and
GL_ONE_MINUS_CONSTANT_ALPHA_EXT. These symbolic constants are
defined in the Description section. The initial value is GL_ZERO.

Notes

Incoming (source) alpha is correctly thought of as a material opacity, ranging from 1.0 (KA), representing
complete opacity, to 0.0 (0), representing complete transparency.

When more than one color buffer is enabled for drawing, blending is done separately for each enabled
buffer, using for destination color the contents of that buffer. (See the |giDrawBuffer| subroutine.)
Blending affects only RGB rendering. It is ignored by color index renderers.

Chapter 1. OpenGL Subroutines 27



The Source and destination factors GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR,
GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA, and their _EXT versions are only valid
if the ARB imaging subset is supported and/or the Blend Color extension.

Errors
GL_INVALID_ENUM Either SourceFactor or DestinationFactor is set to an unaccepted value.
GL_INVALID_OPERATION The gIBlendFunc subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the giBlendFunc subroutine are as follows. (See the [giGed subroutine for more
information.)

glGet with argument GL_BLEND_SRC, GL_BLEND_DST, GL_LOGIC_OP_MODE, or
GL_BLEND_EQUATION_EXT.

glisEnabled with argument GL_BLEND

Examples

Transparency is best implemented using a blend function (GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA) with primitives sorted from farthest to nearest. Note that this
transparency calculation does not require the presence of alpha bit planes in the frame buffer.

The blend function operation (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) is also useful for
rendering antialiased points and lines in arbitrary order.

Polygon antialiasing is optimized using a blend function (GL_SRC_ALPHA_SATURATE, GL_ONE) with
polygons sorted from nearest to farthest. (See the or giDisable subroutine and the
GL_POLYGON_SMOOTH argument for information on polygon antialiasing.) Destination alpha bit planes,
which must be present for this blend function to operate correctly, store the accumulated coverage.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [glAlphaFunc] subroutine, [gIBegin| or glEnd subroutine, subroutine, |giDrawBuffer subroutine,
[glEnable] or Disable ubroutine, |glLogicOp| subroutine, [gIStencilFunc| subroutine.

giBlendFuncSeparateEXT Subroutine

Purpose
Specifies separate RGB and Alpha blend factors.

Library
OpenGL C bindings library: (libGL.a)

28 OpenGL 1.2 Reference Manual



C Syntax

void g1BlendFuncSeparateEXT(enum |sfactorRGB|,
enum |dfactorRGB,
enum |[sfactorAlphal,
enum |dfactorAlphal

~

Description
Blending capability is extended by this function. It allows independent specification of the RGB and alpha

blend factors for blend operations that require source and destination blend factors. It is not always
desired that the blending used for RGB is also applied to alpha.
The accepted values for sfactorRGB and sfactorAlpha are:
GL_ZERO

GL_ONE

GL_DST_COLOR

GL_ONE_MINUS_DST_COLOR

GL_SRC_ALPHA

GL_ONE_MINUS_SRC_ALPHA

GL_DST_ALPHA

GL_ONE_MINUS_DST_ALPHA

GL_CONSTANT_COLOR (_EXT)
GL_ONE_MINUS_CONSTANT_COLOR (_EXT)
GL_CONSTANT_ALPHA (_EXT)
GL_ONE_MINUS_CONSTANT_ALPHA (_EXT)
GL_SRC_ALPHA_SATURATE

The accepted values for sfactorRGB and sfactorAlpha are:
GL_ZERO

GL_ONE

GL_SRC_COLOR
GL_ONE_MINUS_SRC_COLOR
GL_SRC_ALPHA
GL_ONE_MINUS_SRC_ALPHA
GL_DST_ALPHA
GL_ONE_MINUS_DST_ALPHA
GL_CONSTANT_COLOR (_EXT)
GL_ONE_MINUS_CONSTANT_COLOR (_EXT)
GL_CONSTANT_ALPHA (_EXT)
GL_ONE_MINUS_CONSTANT_ALPHA (_EXT)
GL_SRC_ALPHA_SATURATE

For further information on the mathematical function of each of these accepted values, see [gIlBlendFunc

Chapter 1. OpenGL Subroutines 29



Parameters

sfactorRGB is the source blend factor for the RGB components.
sfactorAlpha is the source blend factor for the Alpha component.
dfactorRGB is the destination blend factor for the RGB components.
dfactorAlpha is the destination blend factor for the Alpha component.
Notes

This subroutine is only valid if the EXT_blend_func_separate extension is defined.
GL_CONSTANT_COLOR (_EXT), GL_ONE_MINUS_CONTANT_COLOR (_EXT),
GL_CONSTANT_ALPHA (_EXT), and GL_ONE_MINUS_CONSTANT_ALPHA (_EXT) are only valid if the
GL_EXT_blend_color extension is defined.

The (_EXT) at the end of these values above indicates that the enum can be specified with or without the
_EXT suffix, and behaves identically in both cases.

Error Codes

GL_INVALID_ENUM is generated if any of sfactorRGB, dfactorRGB,
sfactorAlpha, or dfactorAlpha are not accepted values.
GL_INVALID_OPERATION is generated if glBlendFuncSeparateEXT is executed

between the execution of glBegin and the corresponding
execution of glEnd.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The sunbroutine.

giCallList Subroutine

Purpose
Executes a display list.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glCallList(GLuint

Description

The glCallList subroutine causes the named display list to be executed. The subroutines saved in the
display list are executed in order, just as if they were called without using a display list. If List has not been
defined as a display list, glCallList is ignored.

30 OpenGL 1.2 Reference Manual



The glCallList subroutine may appear inside a display list. To avoid the possibility of infinite recursion
resulting from display lists calling one another, an implementation-dependent limit is placed on the the
nesting level of display lists during display list execution. This limit is at least 64.

GL state is not saved and restored across a call to glCallList. Thus, changes made to GL state during the
execution of a display list will remain after execution of the display list is completed. Use the glPushAttrib,
glPopAttrib, PushMatrix, and glPopMatrix subroutines to preserve GL state across glCallList calls.

Parameters

List Specifies the integer name of the display list to be executed.

Notes

Display lists can be executed between a call to glBegin and the corresponding call to glEnd, as long as
the display list includes only commands that are allowed in this interval.

Associated Gets

The associated get for the glCallList subroutine is as follows. (See the subroutine for more
information.)

glGet with argument GL_MAX_LIST_NESTING

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The|gIBegin| or glEnd subroutine, |glCallLists| subroutine, |gIDeIeteList§| subroutine, g| IGenList§|
subroutine, [gINewList| subroutine, |gIPushAttrib| or giPopAttrib subroutine, [gIlPushMatrix| or glPopMatrix

subroutine.

glCallLists Subroutine

Purpose
Executes a list of display lists.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glCallLists(6Lsizei [Vumber],

GLenum ,

const GLvoid * |Lists)

Chapter 1. OpenGL Subroutines 31



Description

The glCallLists subroutine causes each display list in the list of names passed as lists to be executed. As
a result, the commands saved in each display list are executed in order, just as if they were called without
using a display list. Names of display lists that have not been defined are ignored.

The glCallLists subroutine provides an efficient means for executing display lists. The Number parameter
allows lists with various name formats to be accepted. The formats are:

GL_BYTE Lists is treated as an array of signed bytes, each in the range -128 through 127.

GL_UNSIGNED_BYTE Lists is treated as an array of unsigned bytes, each in the range 0 through 255.

GL_SHORT Lists is treated as an array of signed 2-byte integers, each in the range -32,768
through 32,767.

GL_UNSIGNED_SHORT Lists is treated as an array of unsigned 2-byte integers, each in the range 0 through
65,535.

GL_INT Lists is treated as an array of signed 4-byte integers.

GL_UNSIGNED_INT Lists is treated as an array of unsigned 4-byte integers.

GL_FLOAT Lists is treated as an array of 4-byte floating-point values.

GL_2_BYTES Lists is treated as an array of unsigned bytes. Each pair of bytes specifies a single

display list name. The value of the pair is computed as 256 times the unsigned
value of the first byte plus the unsigned value of the second byte.

GL_3_BYTES Lists is treated as an array of unsigned bytes. Each triplet of bytes specifies a
single display list name. The value of the triplet is computed as 65,536 times the
unsigned value of the first byte, plus 256 times the unsigned value of the second
byte, plus the unsigned value of the third byte.

GL_4_BYTES Lists is treated as an array of unsigned bytes. Each quadruplet of bytes specifies a
single display list name. The value of the quadruplet is computed as 16,777,216
times the unsigned value of the first byte, plus 65,536 times the unsigned value of
the second byte, plus 256 times the unsigned value of the third byte, plus the
unsigned value of the fourth byte.

The list of display list names is not null-terminated. Rather, the Number parameter specifies how many
names are to be taken from Lists.

An additional level of indirection is made available with the glListBase subroutine, which specifies a
signed offset that is added to each display list name specified in Lists before that display list is executed.

The glCallLists subroutine can appear inside a display list. To avoid the possibility of infinite recursion
resulting from display lists calling one another, an implementation-dependent limit is placed on the the
nesting level of display lists during display list execution. This limit must be at least 64.

GL state is not saved and restored across a call to glCallLists. Thus, changes made to GL state during
the execution of the display lists remain after execution is completed. Use the glPushAttrib, glPopAttrib,
glPushMatrix, and glPopMatrix subroutines to preserve GL state across glCallLists calls.

Parameters

Number Specifies the number of display lists to be executed.

Type Specifies the type of values in lists. Symbolic constants GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, GL_2_BYTES, GL_3_BYTES,
and GL_4_BYTES are accepted.

Lists Specifies the address of an array of name offsets in the display list. The pointer type is void because the
offsets can be bytes, shorts, ints, or floats, depending on the value of Type.

32 OpenGL 1.2 Reference Manual



Notes

Display lists can be executed between a call to glBegin and the corresponding call to glEnd, as long as
the display list includes only commands that are allowed in this interval.

Associated Gets

Associated gets for the glCallLists subroutine are as follows. (See the [gIGet subroutine for more
information.)

glGet with argument GL_LIST_BASE

glGet with argument GL_MAX_LIST_NESTING

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin| or glEnd subroutine, |giCallList subroutine, [glDeleteLists| subroutine, |glGenList
subroutine, [glListBase| subroutine, subroutine, |gIPushAttrib| or glPopAttrib subroutine,
|gIPushMatrix| or glPopMatrix subroutine.

glClear Subroutine

Purpose
Clears buffers to preset values.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glClear(GLbitfield

Description

The glClear subroutine sets the bit plane area of the viewport to values previously selected by
glClearColor, giClearindex, giClearDepth, giClearStencil and glClearAccum. Multiple color buffers can
be cleared simultaneously by selecting more than one buffer at a time using glDrawBuffer.

The pixel ownership test, the scissor test, dithering and the buffer writemasks affect the operation of
glClear. The scissor box bounds the cleared region. Alpha function, blend function, logical operation,
stenciling, texture mapping, and z-buffering are ignored by giClear.

The glClear subroutine takes a single argument that is the bitwise OR of several values indicating which
buffer is to be cleared.

The values are:

GL_COLOR_BUFFER_BIT Indicates the buffers currently enabled for color writing.
GL_DEPTH_BUFFER_BIT Indicates the depth buffer.

Chapter 1. OpenGL Subroutines 33



GL_ACCUM_BUFFER_BIT Indicates the accumulation buffer.
GL_STENCIL_BUFFER_BIT Indicates the stencil buffer.

The value to which each buffer is cleared depends on the setting of the clear value for that buffer.
glGet with argument GL_COLOR_CLEAR_VALUE
glGet with argument GL_STENCIL_CLEAR_VALUE.

Parameters

Mask  Bitwise OR of masks that indicate the buffers to be cleared. The four masks are GL_COLOR_BUFFER_BIT,
GL_DEPTH_BUFFER_BIT, GL_ACCUM_BUFFER_BIT, and GL_STENCIL_BUFFER_BIT.

Notes

If a buffer is not present, then a glClear directed at that buffer has no effect.

Errors

GL_INVALID_VALUE A bit other than the four defined bits is set in Mask.
GL_INVALID_OPERATION The glClear subroutine is called between a call to giBegin and the

corresponding call to glEnd.

Associated Gets
Associated gets for the glClear subroutine are as follows. (See the subroutine for more information.)

glGet with argument GL_ACCUM_CLEAR_VALUE
glGet with argument GL_DEPTH_CLEAR_VALUE
glGet with argument GL_INDEX_CLEAR_VALUE

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin] or glEnd subroutine, [giClearAccum| subroutine, [gIClearColor subroutine, [gIClearDepth
subroutine glClearindex| subroutine, ICIearStencH subroutine, IDrawBuffe subroutme,

subroutine.

glClearAccum Subroutine

Purpose
Specifies clear values for the accumulation buffer.

Library
OpenGL C bindings library: libGL.a

34 OpenGL 1.2 Reference Manual



C Syntax

void glClearAccum(GLfloat E:a,
GLfloat
GLfloat
GLfloat

Description

The glClearAccum subroutine specifies the red, green, blue, and alpha values used by the glClear
subroutine to clear the accumulation buffer. Values specified by glClearAccum are clamped to the range

[-1,1].

Parameters

Red Specifies the red value used when the accumulation buffer is cleared. The default value is 0 (zero).
Green Specifies the green value used when the accumulation buffer is cleared. The default value is 0.

Blue Specifies the blue value used when the accumulation buffer is cleared. The default value is 0.

Alpha Specifies the alpha value used when the accumulation buffer is cleared. The default value is 0.
Errors

GL_INVALID_OPERATION The glClearAccum subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClearAccum subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_ACCUM_CLEAR_VALUE.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The or glEnd subroutine, subroutine.

giClearColor Subroutine

Purpose
Specifies clear values for the color buffers.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 35



C Syntax

void glClearColor(GLclampf @,
GLclampf Ereen,
GLclampf |Bluel,

GLclampf A tha|)

Description

The glClearColor subroutine specifies the red, green, blue, and alpha values used by the glClear
subroutine to clear the color buffers. Values specified by glClearColor are clamped to the range [0,1].

Parameters

Red Specifies the red value used when the color buffer is cleared. The default value is 0 (zero).

Green Specifies the green value used when the color buffer is cleared. The default value is 0.

Blue Specifies the blue value used when the color buffer is cleared. The default value is 0.

Alpha Specifies the alpha value used when the color buffer is cleared. The default value is 0.

Errors

GL_INVALID_OPERATION The glClearColor subroutine is called between a call to giBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClearColor subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_COLOR_CLEAR_VALUE.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The or glEnd subroutine, subroutine.

glClearDepth Subroutine

Purpose
Specifies the clear value for the depth buffer.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glClearDepth(GLclampd [Depth)

36 OpenGL 1.2 Reference Manual



Description

The glClearDepth subroutine specifies the depth value used by the glClear subroutine to clear the depth
buffer. Values specified by glClearDepth are clamped to the range [0,1].

Parameters

Depth Specifies the depth value used when the depth buffer is cleared. The default value is O (zero).
Errors

GL_INVALID_OPERATION The glClearDepth subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClearDepth subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_DEPTH_CLEAR_VALUE.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The or glEnd subroutine, subroutine.

giClearindex Subroutine

Purpose

Specifies the clear value for the color index buffers.
Library

OpenGL C bindings library: libGL.a

C Syntax

void glClearIndex(GLfloat
Description

The glClearindex subroutine specifies the index used by glClear to clear the color index buffers. The
Clear parameter is not clamped. Rather, Clear is converted to a fixed-point value with unspecified
precision to the right of the binary point. The integer part of this value is then masked with 2m -1, where m
is the number of bits in a color index stored in the frame buffer.

Parameters

Clear Specifies the index used when the color index buffers are cleared. The default value is 0 (zero).

Chapter 1. OpenGL Subroutines 37



Errors

GL_INVALID_OPERATION The glClearindex subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glClearlndex subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_INDEX_CLEAR_VALUE
glGet with argument GL_INDEX_BITS.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The or glEnd subroutine, subroutine.

glClearStencil Subroutine

Purpose

Specifies the clear value for the stencil buffer.
Library

OpenGL C bindings library: libGL.a

C Syntax

void glClearStencil(GLint
Description

The glClearStencil subroutine specifies the index used by glClear to clear the stencil buffer. The Stencil
parameter is masked with 2m - 1, where m is the number of bits in the stencil buffer.

Parameters

Stencil Specifies the index used when the stencil buffer is cleared. The default value is 0 (zero).
Errors

GL_INVALID_OPERATION Indicates that glClearStencil is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClearStencil subroutine are as follows. (See the [giGet] subroutine for more
information.)

38 OpenGL 1.2 Reference Manual



glGet with argument GL_STENCIL_CLEAR_VALUE

glGet with argument GL_STENCIL_BITS.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The or glEnd subroutine, subroutine.

giClientActiveTextureARB Subroutine

Purpose
Specify which texture unit is active.

Library
OpenGL C bindings library: (libGL.a)

C Syntax
void glClientActiveTextureARB(GLenum

Description

glClientActiveTextureARB selects which texture unit’s client state parameters will be modified by
glTexCoordPointer, and enabled or disabled with glEnableClientState or glDisableClientState,
respectively, when called with a parameter of GL_TEXTURE_COORD_ARRAY. The number of texture
units an implementation supports is implementation dependent, but must be at least two. The texture
parameter must be one of GL_TEXTUREi_ARB, where 0 <= i < GL_MAX_TEXTURE_UNITS_ARB. The
initial value is GL_TEXTUREO_ARB.

Parameters
texture specifies which texture unit to make active.
Notes

If the GL_ARB_multitexture extension is NOT present, then the number of texture units supported by the
implementation is one, not two, as described above.

The following OpenGL subroutines will be routed to different texture units based on this call:
+ glEnableClientState (GL_TEXTURE_COORD_ARRAY)

+ glDisableClientState (GL_TEXTURE_COORD_ARRAY)

* glinterleavedArrays

+ glTexCoordPointer

* ¢glTexCoordPointerEXT

» glTexCoordPointerListiBM

Subroutine glClientActiveTextureARB is supported only if GL_ARB_multitexture is included in the string
returned by glGetString when called with the argument GL_EXTENSIONS.

Chapter 1. OpenGL Subroutines 39



Error Codes

GL_INVALID_OPERATION is generated if texture is not one of the accepted values.
Files
lusr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The |glActiveTextureARB| subroutine, the [glEnableClientState| or giDisableClientState subroutine, the
[gIMultiTexCoord ARB| subroutine, the [gITexCoordPointer subroutine.

giClipBoundingBoxIBM or gIClipBoundingSpherelBM or
glClipBoundingVerticesIBM Subroutine

Purpose

Determine whether the specified object is trivially accepted, trivially rejected, or clipped by the current set
of clipping planes.

Library
OpenGL C bindings library: (libGL.a)

C Syntax

GLenum g1C1ipBoundingBoxIBM (GLfloat xmin,
GLfloat ymin,
GLfloat zmin,
GLfloat xmax,
GLfloat ymax,
GLfloat zmax)

GLenum g1C1ipBoundingSphereIBM (GLfloat x,
GLfloat y,
GLfloat 2z,
GLfloat radius)

GLenum g1ClipBoundingVerticesIBM (GLint size,
GLenum type,
GLsizei stride,
GLsizei count,
GLvoid =*data)

Description

These three new functions can be used by applications to determine if a complex object is fully outside,
inside, or both outside and inside the clip volume (ie, view volume plus any enabled clipping planes). The
complex object is generally defined by a simplified representation of the object. This extension provides for
3 different simplified object variants - a bounding box, a bounding sphere, and a set of bounding vertices.

These functions can not be inserted within a display list. If called while a display list is open, they are
executed immediately.

40 OpenGL 1.2 Reference Manual



An enable is also provided so that applications can directly update the clip volume hint without having to

make a separate OpenGL function call.

See GL_UPDATE_CLIP_VOLUME_HINT under glEnable.

All functions return the results of the clip check. These results include:

GL_REJECT_IBM

GL_ACCEPT_IBM

GL_CLIP_IBM

Parameters
Xmin,ymin,zmin
Xmax,ymax,zmax
XY,z

radius

size

type

stride

count

data

Notes

Indicates that the bounding object is trivially rejected.
Rendering the object will result in nothing being rendered.
Indicates that the bounding object is trivially accepted.
Rendering the object should be entirely within the viewport
and can be rendering without clipping.

Indicates that the bounding object is not trivially accepted
or rejected. Implementations that don’t support clip
checking for all rendering enviroments can return
CLIP_IBM for those unsupported environments.

Specifies the minimum x,y and z modeling coordinates of
the bounding box.

Specifies the maximum x,y and z modeling coordinates of
the bounding box.

Specifies the center of the bounding sphere in modeling
coordinates.

Specifies the radius of the bounding sphere in modeling
coordinates.

Specifies the number of coordinate components per
vertex; must be 2, 3 or 4.

Specifies the data type for the data parameter. Symbolic
constants GL_SHORT, GL_INT, GL_FLOAT, and
GL_DOUBLE are accepted.

Specifies the byte offset between consecutive vertexes. If
stride is 0, the vertices are understood to be tightly
packed in the array.

Specifies the number of vertices pointed to by the data
parameter.

Specifies a pointer to the first coordinate of the vertex list.

These three functions are only available if the GL_IBM_clip_check extension is present.

Error Codes

GL_INVALID_value
GL_INVALID_ENUM
GL_INVALID_value

Files

lusr/include/GL/gl.h

is generated if size is not 2, 3, or 4.
is generated if type is not one of the acceptable values.
is generated if count is negative.

Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 41



glClipPlane Subroutine

Purpose
Specifies a plane against which all geometry is clipped.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1ClipPlane(GLenum |Planel,
const GLdouble * |Fquation)

By default, all clipping planes are defined as (0,0,0,0) in eye coordinates and are disabled.

Parameters

Plane Specifies which clipping plane is being positioned. Symbolic names of the form GL_CLIP_PLANE;,
where i is an integer between 0 and GL_MAX_CLIP_PLANES-1, are accepted.

Equation Specifies the address of an array of four double-precision floating-point values. These values are

interpreted as a plane equation.

Description

Geometry is always clipped against the boundaries of a six-plane frustum in x, y, and z. The gIClipPlane
subroutine allows the specification of additional planes, not necessarily perpendicular to the x, y, or z axes,
against which all geometry is clipped. Up to GL_MAX_CLIP_PLANES planes can be specified, where
GL_MAX_CLIP_PLANES is at least 6 in all implementations. Because the resulting clipping region is the
intersection of the defined half-spaces, it is always convex.

The gIClipPlane subroutine specifies a half-space using a four-component plane equation. When
glClipPlane is called, Equation is transformed by the inverse of the modelview matrix and stored in the
resulting eye coordinates. Subsequent changes to the modelview matrix have no effect on the stored

plane equation components. If the dot product of the eye coordinates of a vertex with the stored plane
equation components is positive or 0 (zero), the vertex is in with respect to that clipping plane. Otherwise it
is out.

Clipping planes are enabled and disabled with glEnable and glDisable, called with the argument
GL_CLIP_PLANE/, where i is the plane number.

Notes

It is always the case that GL_CLIP_PLANE/ = GL_CLIP_PLANEO + /.

Errors

GL_INVALID_ENUM Plane is set to an unaccepted value.

GL_INVALID_OPERATION The gIClipPlane subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the gIClipPlane subroutine are as follows. (See the subroutine for more
information.)

42 OpenGL 1.2 Reference Manual



glGetClipPlane)
glisEnabled

Files

Enabled with argument GL_CLIP_PLANE!.

lusr/include/GL/gl.h

Related Information

The or glEnd subroutine, or giDisable subroutine.

Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL

glColor Subroutine

Purpose

Sets the current color.

Library

OpenGL C bindings library: libGL.a

C Syntax

glColor3b, glColor3d, glColor3f, glColor3i, glColor3s,
gl1Color3ub, glColor3ui, glColor3us, glColordb, glColorid,
glColordf, glColordi,glColords, glColordub, glColordui,
gl1Colordus, glColor3bv, glColor3dv, glColor3fv, gliColor3iv,
g1Color3sv, glColor3ubv, glColor3uiv, glColor3usv, glColordbv,
glColorddv, glColor4dfv, glColordiv, glColordsv, glColordubyv,

glColorduiv, glColordusv
-set the current color

void glColor3b

void gl1Color3
GLbyte
GLbyte

void g1Color3
GLdouble
GLdouble

void gl1Color3
GLfloat
GLfloat

void g1Color3
GLint |G
GLint |B

void gl1Color3
GLshort
GLshort

b(GLbyte [Red],

Green|,
Blue

d(GLdouble [Red],

Green,
Blue

f(6Lfloat [Red,

Green|,
Blue

i(GLint [Red],
reen|,
lue

s(GLshort [Red],

Green),
Blue

Chapter 1. OpenGL Subroutines

43



void glColor3ub(GLubyte [Red],
GLubyte |Green),
GLubyte |Blue)

void glColor3ui (GLuint [Red],
GLuint |Green|,
GLuint |Blue

void glColor3us(GLshort E:E,
GLshort |[Green|,
GLshort |Blue

void gl1Colordb(GLbyte E:a,
GLbyte
GLbyte
GLbyte

void glColor4dd(GLdouble E:E,
GLdouble
GLdouble
GLdouble

void glColor4f(GLfloat [Red,
GLfloat
GLfloat
GLfloat

void glColordi (6Lint [Red],
GLint
GLint
GLint

void g1Color4ds(GLshort E:a,
GLshort
GLshort
GLshort

void glColordub(GLubyte E:a,
GLubyte
GLubyte
GLubyte

void glColordui (GLuint E:E,
GLuint
GLuint
GLuint

void glColordus(GLshort E:a,
GLshort
GLshort
GLshort

void glColor3bv(const GLbyte * |Variable)
void glColor3dv(const GLdouble * [Variable]

44 OpenGL 1.2 Reference Manual



void glColor3fv(const GLfloat *
void glColor3iv(const GLint
void gl1Color3sv(const GLshort *
void g1Color3ubv(const GLubyte =
void glColor3uiv(const GLuint =
void glColor3usv(const GLushort =*
void glColordbv(const GLbyte *
void g1Colorddv(const GLdouble *
void glColor4fv(const GLfloat *
void glColordiv(const GLint * [Variable)
void glColordsv(const GLshort
void gl1Colordubv(const GLubyte *
void glColorduiv(const GLuint *
void glColorusv(const GLushort =

Description

The Graphics Library stores both a current single-valued color index and a current four-valued red, green,
blue, alpha (RGBA) color. The glColor subroutine sets a new four-valued RGBA color. The glColor
subroutine has two major variants: glColor3 and glColor4. glColor3 variants specify new red, green, and
blue values explicitly, and set the current alpha value to 1.0 implicitly. glColor4 variants specify all four
color components explicitly.

glColor3b, glColor4b, glColor3s, giColords, glColor3i, and glColor4i take 3 or 4 unsigned byte, short,
or long integers as arguments. When v is appended to the name, the color subroutines can take a pointer
to an array of such values.

Current color values are stored in floating-point format, with unspecified mantissa and exponent sizes.
Unsigned integer color components, when specified, are linearly mapped to floating-point values such that
the largest representable value maps to 1.0 (full intensity), and 0 (zero) maps to 0.0 (zero intensity).
Signed integer color components, when specified, are linearly mapped to floating-point values such that
the most positive representable value maps to 1.0, and the most negative representable value maps to
-1.0. Floating-point values are mapped directly.

Neither floating-point nor signed integer specified values are clamped to the range [0,1] before updating
the current color. However, color components are clamped to this range before they are interpolated or
written into a color buffer.

Parameters

Red Specifies a red value for the current color. The initial value is 1 (one).
Green Specifies a green value for the current color. The initial value is 1 (one).
Blue Specifies a blue value for the current color. The initial value is 1 (one).

Chapter 1. OpenGL Subroutines 45



Alpha Specifies a new alpha value for the current color. Included only in the four-argument glColor
subroutine. The initial value is 1 (one).
Variable Specifies a pointer to an array that contains red, green, blue, and (sometimes) alpha values.

Notes

The current color can be updated at any time. In particular, glColor can be called between a call to
glBegin and the corresponding call to glEnd.

Associated Gets

Associated gets for the glColor subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_CURRENT_COLOR.
glGet with argument GL_RGBA_MODE.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The subroutine, [glColorPointer| subroutine, |glColorPointerEXT| subroutine, subroutine,
glindex

subroutine.

glColorMask Subroutine

Purpose
Enables and disables the writing of frame buffer color components.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glColorMask(GLboolean @,
GLboolean [Green),
GLboolean
GLboolean

Description

The glColorMask subroutine specifies whether the individual color components in the frame buffer can or
cannot be written. If the Red parameter is GL_FALSE, for example, no change is made to the red
component of any pixel in any of the color buffers, regardless of the drawing operation attempted.

Changes to individual bits of components cannot be controlled. Rather, changes are either enabled or
disabled for entire color components.

46 OpenGL 1.2 Reference Manual



Parameters

Red Specifies whether red can or cannot be written into the frame buffer. The default value is True, indicating
that the red color component can be written.

Green Specifies whether green can or cannot be written into the frame buffer. The default value is True, indicating
that the green color component can be written.

Blue Specifies whether blue can or cannot be written into the frame buffer. The default value is True, indicating
that the blue color component can be written.

Alpha Specifies whether alpha can or cannot be written into the frame buffer. The default value is True, indicating

that the alpha color component can be written.

Errors

GL_INVALID_OPERATION The glColorMask subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glColorMask subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_COLOR_WRITEMASK
glGet with argument GL_RGBA_MODE.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin| or glEnd subroutine, [giColor] subroutine, subroutine, subroutine,
glindexMask| subroutine, [giStencilMask| subroutine.

glColorMaterial Subroutine

Purpose
Causes a material color to track the current color.
Library
OpenGL C bindings library: libGL.a
C Syntax
void glColorMaterial (GLenum ,
GLenum
Description

The glColorMaterial subroutine specifies which material parameters track the current color. When
GL_COLOR_MATERIAL is enabled, the material parameter or parameters specified by mode, of the

Chapter 1. OpenGL Subroutines 47



material or materials specified by face, track the current color at all times. GL_COLOR_MATERIAL is
enabled and disabled using the subroutines glEnable and glDisable, called with GL_COLOR_MATERIAL
as their argument. By default it is disabled.

Parameters

face Specifies whether front, back, or both front and back material parameters should track the current color.
Accepted values are GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK. The default value is
GL_FRONT_AND_BACK.

mode  Specifies which of several material parameters will track the current color. Accepted values are
GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, and GL_AMBIENT_AND_DIFFUSE. The
default value is GL_AMBIENT_AND_DIFFUSE.

Notes

The glColorMaterial subroutine allows a subset of material parameters to be changed for each vertex
using only the glColor subroutine, without calling glMaterial. If only such a subset of parameters is to be
specified for each vertex, the use of the glColorMaterial subroutine is preferred over calling glMaterial.

Calling glDrawElements may leave the current color indeterminate. If giColorMaterial is enabled while
the current color is indeterminate, the lighting material state specified by face and mode is also
indeterminate.

Errors
GL_INVALID_ENUM face or mode is set to an unaccepted value.
GL_INVALID_OPERATION The glColorMaterial subroutine is called between a call to gilBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glColorMaterial subroutine are as follows. (See the [giGet] subroutine for more
information.)

gllsEnabled| with argument GL_COLOR_MATERIAL
glGet with argument GL_COLOR_MATERIAL_PARAMETER
glGet with argument GL_COLOR_MATERIAL_FACE.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin| or glEnd subroutine, subroutine, [glEnable] or giDisable subroutine,
ightModel

subroutine, |glLig subroutine, |giMateriall subroutine.

glColorNormalVertexSUN Subroutine

Purpose
Specifies a color, a normal and a vertex in one call.

48 OpenGL 1.2 Reference Manual



Library
OpenGL C bindings library: (libGL.a)

C Syntax

void glColor4fNormal3fVertex3fSUN (GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
void gl1Color4fNormal3fVertex3fvSUN (const GLfloat
const GLfloat
const GLfloat

Description
This subroutine can be used as a replacement for the following calls:

giColor();
gTNormal();
glVertex();

For example, glColor4fNormal3fVertex3fvSUN replaces the following calls:

glColordf();
gTNormal3f();
glVertex3fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

rng b a specifies r, g, b, and a components of the color for this vertex.

c specifies a pointer to an array of the four components r, g, b, and a.

nx, ny, nz specifies x, y, and z coordinates of the normal vector for this vertex.

n specifies a pointer to an array of the three elements nx, ny and nz.

XV z specifies the x, y, and z coordinates of a vertex. Not all parameters are present in all forms of
the command.

v specifies a pointer to an array of the three elements x, y, and z

Notes

Calling glColorNormalVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined
behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 49



Related Information
The|gIBegin| or glEnd subroutine, the [glColor subroutine, thesubroutine, the [glTexCoord

subroutine, the |9IVertex| subroutine.

glColorPointer Subroutine

Purpose
Defines an array of colors.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glColorPointer( GLint ,
GLenum [typel,
GLsizei tride|,

const GLvoid = _pointer‘l)

Description

The glColorPointer subroutine specifies the location and data format of an array of color components to
use when rendering. The size parameter specifies the number of components per color, and must be 3 or
4. The type parameter specifies the data type of each color component and stride gives the byte stride
from one color to the next allowing vertices and attributes to be packed into a single array or stored in
separate arrays. (Single-array storage may be more efficient on some implementations; see
glinterleavedArrays).

When a color array is specified, size, type, stride, and pointer are saved as client side state.

To enable and disable the color array, call glEnableClientState and glDisableClientState with the
argument GL_COLOR_ARRAY. If enabled, the color array is used when glDrawArrays, glDrawElements
or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, giMultiDrawElementsEXT,
glMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Color array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters
size Specifies the number of components per color. It must be 3 or 4. The initial value is 4.
type Specifies the data type of each color component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive colors. If stride is zero (the initial value), the colors are
understood to be tightly packed in the array. The initial value is 0.
pointer Specifies a pointer to the first component of the first color element in the array. The initial value is 0

(NULL pointer).

50 OpenGL 1.2 Reference Manual



Notes
The glColorPointer subroutine is available only if the GL version is 1.1 or greater.

The color array is initially disabled and it won’t be accessed when glArrayElement, giDrawElements, or
glDrawArrays is called.

Execution of glColorPointer is not allowed between glBegin and the corresponding glEnd, but an error
may or may not be generated. If an error is not generated, the operation is undefined.

The glColorPointer subroutine is typically implemented on the client side with no protocol.

Since the color array parameters are client side state, they are not saved or restored by glPushAttrib and
glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glColorPointer commands are not included in display lists.

Error Codes
GL_INVALID_VALUE is generated if size is not 3 or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

Associated Gets
glisEnabled with argument GL_COLOR_ARRAY.

glGet with argument GL_COLOR_ARRAY_SIZE.
glGet with argument GL_COLOR_ARRAY_TYPE.
glGet with argument GL_COLOR_ARRAY_STRIDE.

glGetPointerv with argument GL_COLOR_ARRAY_POINTER.

Related Information

The [glArrayElement] subroutine, [giColorPointerListIBM] subroutine, [giDrawArrays| subroutine,
lgIDrawElements]| subroutine, [glEdgeFlagPointer] subroutine, [glEnable| subroutine, |giGetPointerv]
subroutine, [glindexPointer| subroutine, |glinterleavedArrays| subroutine, |gINormalPointer subroutine,

IPopClientAttrib| subroutine, [gIPushClientAttrib| subroutine, [glTexCoordPointer| subroutine,
IVertexPointer| subroutine.

glColorPointerEXT Subroutine

Purpose
Defines an array of colors.

Library
OpenGL and OpenGL C bindings library: libGL.a

C Syntax

void glColorPointerEXT(GLint ,
GLenum [typel,

Chapter 1. OpenGL Subroutines 51



GLsizei stride|,

GLsizei |[count|,

const GLvoid _*pointer|b

Description

The glColorPointerEXT subroutine specifies the location and data format of an array of color components
to use when rendering. size specifies the number of components per color, and must be 3 or 4. The type
parameter specifies the data type of each color component and stride gives the byte stride from one color
to the next allowing vertexes and attributes to be packed into a single array or stored in separate arrays.
(Single-array storage may be more efficient on some implementations). The count parameter indicates the
number of array elements (counting from the first) that are static. Static elements may be modified by the
application, but once they are modified, the application must explicitly respecify the array before using it for
any rendering. When a color array is specified, size, type, stride, count and pointer are saved as
client-side state, and static array elements may be cached by the implementation.

The color array is enabled and disabled using glEnable and glDisable with the argument
GL_COLOR_ARRAY_EXT. If enabled, the color array is used when glDrawArraysEXT or
glArrayElementEXT is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
gliMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Color array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters
size Specifies the number of components per color. It must be 3 or 4.
type Specifies the data type of each color component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, or GL_DOUBLE_EXT, are accepted.

stride Specifies the byte offset between consecutive colors. If stride is zero the colors are understood to be
tightly packed in the array.

count Specifies the number of colors, counting from the first, that are static.

pointer Specifies a pointer to the first component of the first color element in the array.

Notes

Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the color array is disabled and it won’t be accessed when glArrayElementEXT or
glDrawArraysEXT is called.

Although, it is not an error to call glColorPointerEXT between the execution of glBegin and the
corresponding execution of glEnd, the results are undefined.

glColorPointerEXT will typically be implemented on the client side with no protocol.

Since the color array parameters are client side state, they are not saved or restored by glPushAttrib and
glPopAttrib.

52 OpenGL 1.2 Reference Manual



glColorPointerEXT commands are not entered into display lists.
glColorPointerEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL

command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when
called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors
GL_INVALID_VALUE is generated if size is not 3 or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride or count is negative.

Associated Gets
glilsEnabled with argument GL_COLOR_ARRAY_EXT.

glGet with argument GL_COLOR_ARRAY_SIZE_EXT.

glGet with argument GL_COLOR_ARRAY_TYPE_EXT.

glGet with argument GL_COLOR_ARRAY_STRIDE_EXT.

glGet with argument GL_COLOR_ARRAY_COUNT_EXT.

glGetPointervEXT with argument GL_COLOR_ARRAY_POINTER_EXT.

File

lust/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The |glArrayElement| subroutine, |giDrawArraysEXT] subroutine, [gIEdgeFlagPointerEXT| subroutine,
IGetPointervEXT] subroutine, [glindexPointerEXT]| subroutine, [gINormalPointerEXT] subroutine,
ITexCoordPointerEXT| subroutine, |gIVertexPointerEXT| subroutine.

glColorPointerListIBM Subroutine

Purpose
Defines a list of color arrays.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1ColorPointerListIBM ( GLint ,
GLenum |[typel,

GLint tride|,
const GLvoid *x |pointer],

GLint ll_)trstride

Chapter 1. OpenGL Subroutines 53



Description

The glColorPointerListIBM subroutine specifies the location and data format of a list of arrays of color
components to use when rendering. The size parameter specifies the number of components per color,
and must be 3 or 4. The type parameter specifies the data type of each color component. The stride
parameter gives the byte stride from one color to the next allowing vertices and attributes to be packed
into a single array or stored in separate arrays. (Single-array storage may be more efficient on some
implementations; see glinterleavedArrays). The ptrstride parameter specifies the byte stride from one
pointer to the next in the pointer array.

When a color array is specified, size, type, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a "tightly packed” array as it does in glColorPointer. Instead, it
causes the first array element of each array to be used for each vertex. Also, a negative value can be
used for stride, which allows the user to move through each array in reverse order.

To enable and disable the color arrays, call glEnableClientState and glDisableClientState with the
argument GL_COLOR_ARRAY. The color array is initially disabled. When enabled, the color arrays are
used when glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIiBM,
glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or glArrayElement is called. The last
three calls in this list will only use the first array (the one pointed at by pointer{0]). See the descriptions of
these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Color array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters
size Specifies the number of components per color. It must be 3 or 4. The initial value is 4.
type Specifies the data type of each color component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive colors. The initial value is O.

pointer Specifies a list of color arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.
Notes

The glColorPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is
supported.

Execution of glColorPointerListIBM is not allowed between glBegin and the corresponding glEnd, but an
error may or may not be generated. If an error is not generated, the operation is undefined.

The glColorPointerListIBM subroutine is typically implemented on the client side.

Since the color array parameters are client side state, they are not saved or restored by glPushAttrib and
glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

54 OpenGL 1.2 Reference Manual



When a glColorPointerListIBM call is encountered while compiling a display list, the information it
contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glColorPointer call and the glColorPointerListIBM call share the same state variables. A

glColorPointer call will reset the color list state to indicate that there is only one color list, so that any and
all lists specified by a previous glColorPointerListiIBM call will be lost, not just the first list that it specified.

Error Codes
GL_INVALID_VALUE is generated if size is not 3 or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets
glisEnabled with argument GL_COLOR_ARRAY.

glGetPointerv with argument GL_COLOR_ARRAY_LIST_IBM.
glGet with argument GL_COLOR_ARRAY_LIST_STRIDE_IBM.
glGet with argument GL_COLOR_ARRAY_SIZE.

glGet with argument GL_COLOR_ARRAY_STRIDE.

glGet with argument GL_COLOR_ARRAY_TYPE.

Related Information

The [glArrayElement] subroutine, [giColorPointer] subroutine, [giDrawArrays| subroutine, [giDrawElements|
subroutine, |glEdgeFlagPointer] subroutine, IglEnabIgI subroutine, |glGetPointerv| subroutine,

lindexPointer| subroutine, |g||nterleavedArrays subroutine, |gIMultiDrawArraysEXT| subroutine,
IMultiDrawElementsEXT] subroutine, |giMultiModeDrawArraysIBM| subroutine,
IMultiModeDrawElementsIBM| subroutine, |gINormalPointer| subroutine, [giPopClientAttrib| subroutine,
IPushClientAttrib| subroutine, [gITexCoordPointer subroutine, [glVertexPointer| subroutine.

glColorSubTable Subroutine

Purpose
Define a contiguous subset of a color lookup table.

Library
OpenGL C bindings library: (libGL.a)

C Syntax

void g1ColorTable(GLenum |target,
GLsizei |[start|,
GLsizei |count|,
GLenum |format|,

GLenum [typel,

const |GLvoid *data

void g1ColorTableEXT (GLenum |target|,
GLsizei |start|,

GLsizei |count],

Chapter 1. OpenGL Subroutines 55



GLenum [format),
GLenum |type|,
const GLvoid [xdatal

Description

glColorSubTable is used to respecify a contiguous portion of a color table previously defined using
glColorTable. The pixels reference by data replace the portion of the existing table from indices start to
start + count - 1, inclusive. This region may not include any entries outside the range of the color table as
it was originally specified. It is not an error to specify a subtable with width of 0, but such a specification
has no effect.

Parameters

target must be GL_TEXTURE_COLOR_TABLE_EXT.

start is the starting index of the portion of the color table to be replaced.

count is the number of table entries to replace.

format is the format of the pixel data in data. The allowable values are GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, GL_BGR, GL_RGBA and
GL_BGRA.

type is the type of the pixel data in fable. The allowable values are GL_UNSIGNED_BYTE, GL_BYTE,

GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,
GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REYV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4 4 4,

55

GL_UNSIGNED_SHORT

_5’
_4_4, GL_UNSIGNED_SHORT_4 4 4 4
5
GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.
data is a pointer to a one-dimensional array of pixel data that is processed to replace the specified region
of the color table.

Notes

GL_TEXTURE_COLOR_TABLE_SGi is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these
tokens may be used interchangeably. GL_PROXY_TEXTURE_COLOR_TABLE_SGil is an alias for
GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_VALUE is generated if start + count > width, where width is the
width of the previously defined color table.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_OPERATION is generated if glColorSubTable is executed between the
execution of glBegin and the corresponding execution of
glEnd.

Associated Gets

Associated gets for the glColorSubTable subroutine are as follows. (See the glGet subroutine for more
information.)

glGet with arguement glGetColorTableParameter.

glGet with arguement glGetColorTable.

56 OpenGL 1.2 Reference Manual



Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information

The [gIColorTable subroutine, the [giColorTableParameter] subroutine, the [giCopyColorTable subroutine,
the |glCopyColorSubTable| subroutine, the |glGetColorTable| subroutine.

glColorTable Subroutine

Purpose
Define a color lookup table.

Library
OpenGL C bindings library: (libGL.a)

C Syntax

void g1ColorTable(GLenum target|,
GLenum [internalformat|,
GLsizei |wvidth|,
GLenum [format|,

GLenum |typ |,
const GLvoid |*table|)

void gl1ColorTableSGI(GLenum [target],
GLenum [internalformat|,
GLsizei |width|,
GLenum [format|,
GLenum |typel,

const GLvoid |*table|D

Description

glColorTable may be used in two ways: to test the actual size and color resolution of a lookup table given
a particular set of parameters, or to load the contents of a color lookup table. Use the targets
GL_PROXY_* for the first case and the other targets for the second case.

If targetis GL_TEXTURE_COLOR_TABLE_EXT, glColorTable builds a color lookup table from an array
of pixels. The pixel array specified by width, format, type, and table is extracted from memory and
processed just as if glDrawPixels were called, but processing stops after the final expansion to RGBA is
completed.

The four scale parameters and the four bias parameters that are defined for the table are then used to
scale and bias the R, G, B, and A components of each pixel. (Use glColorTableParameter to set these
scale and bias parameters).

Next, the R, G, B, and A values are clamped to the range [0, 1]. Each pixel is then converted to the
internal format specified by internalformat. This conversion simply maps the component values of the pixel
(R, G, B, and A) to the values included in the internal format (red, green, blue, alpha, and intensity). The
mapping is as follows:

Internal Format Red Green Blue Alpha Luminance Intensity

GL_ALPHA A

Chapter 1. OpenGL Subroutines 57



GL_LUMINANCE R

GL_LUMINANCE_ALPHA A R
GL_INTENSITY R
GL_RGB R G B

GL_RGBA R G B A

Finally, the red, green, blue, alpha, luminance, and/or intensity components of the resulting pixels are
stored in the color table. They form a one-dimensional table with indices in the range [0, width-1].

If targetis GL_PROXY_TEXTURE_COLOR_TABLE_EXT, glColorTable recomputes and stores the
values of the proxy color table’s state variables GL_COLOR_TABLE_FORMAT,
GL_COLOR_TABLE_WIDTH, GL_COLOR_TABLE_RED_SIZE, GL_COLOR_TABLE_GREEN_SIZE,
GL_COLOR_TABLE_BLUE_SIZE, GL_COLOR_TABLE_ALPHA_SIZE,
GL_COLOR_TABLE_LUMINANCE_SIZE, and GL_COLOR_TABLE_INTENSITY_SIZE. There is no effect
on the image or state of any actual color table. If the specified color table is too large to be supported,
then all the proxy state variables listed above are set to zero. Otherwise, the color table could be
supported by glColorTable using the corresponding non-proxy target, and the proxy state variable are set
as if that target were being defined.

The proxy state variables can be retrieved by calling glGetColorTableParameter with a target of
GL_PROXY_*. This allows the application to decide what the resulting color table attributes would be.

If a color table is enabled, and its width is non-zero, then its contents are used to replace a subset of the
components of each RGBA pixel group, based on the internal format of the table.

Each pixel group has color components (R, G, B, A) that are in the range [0.0, 1.0]. The color components
are rescaled to the size of the color lookup table to form an index. Then a subset of the components
based on the internal format of the table are replaced by the table entry specified by that index. If the color
components and contents of the table are represented as follows:

Representation Meaning

r Table index computed from R

g Table index computed from G

b Table index computed from B

a Table index computed from A
L[] Luminance value at table index i
I[i] Intensity value at table index i
R[] Red value at table index i
G[1] Green value at table index i
B[i] Blue value at table index i
Ali] Alpha value at table index i

then the result of color table lookup is as follows:

Resulting Color Components

Table Internal Format R G B A
GL_ALPHA R G B Ala]
GL_LUMINANCE L[r] Lg] L[b] A
GL_LUMINANCE_ALPHA L[r] L[g] L[b] Ala]
GL_INTENSITY I[r] 1[q] 1[b] I[a]
GL_RGB R[r] Glg] B[b] A
GL_RGBA R[r] Glg] B[b] Ala]

Parameters

target must be GL_TEXTURE_COLOR_TABLE_EXT or

GL_PROXY_TEXTURE_COLOR_TABLE_EXT

58 OpenGL 1.2 Reference Manual



internalformat

width
format

type

table

Notes

is the internal format of the color table. The allowable values are GL_ABGR_EXT,
GL_ALPHA, GL_ALPHA4, GL_ALPHAS8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCES_ALPHAS8, GL_LUMINANCE12_ALPHAA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITYS8, GL_INTENSITY12, GL_INTENSITY16, GL_R3_G3_B2,
GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16,
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGB8, GL_RGB10_A2,
GL_RGBA12, and GL_RGB16.

is the number of entries in the color lookup table specified by table.

is the format of the pixel data in table. The allowable values are GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, GL_BGR,
GL_RGBA, GL_BGRA, GL_422_EXT, GL_422_REV_EXT, GL_422_AVERAGE_EXT, and
GL_422_REV_AVERAGE_EXT.

is the type of the pixel data in table. The allowable values are GL_UNSIGNED_BYTE,
GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,
GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_S_G_S_EE_,
GL_UNSIGNED_SHORT_4_4 4 4, GL_UNSIGNED_SHORT_4_4 4 4 REV,
GL_UNSIGNED_SHORT_5_5 _5_1, GL_UNSIGNED_SHORT_1_5_5 5 _REV,

GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.
is pointer to a one-dimensional array of pixel data that is processed to build the color table.

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

GL_TEXTURE_COLOR_TABLE_SGil is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these
tokens may be used interchangeably. GL_PROXY_TEXTURE_COLOR_TABLE_SGil is an alias for
GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

GL_INVALID_ENUM
GL_INVALID_ENUM
GL_INVALID_VALUE
GL_INVALID_VALUE

GL_INVALID_ENUM
GL_INVALID_ENUM

GL_TABLE_TOO_LARGE

GL_INVALID_OPERATION

is generated if target is not one of the allowable values.

is generated if internalformat is not one of the allowable values.

is generated if width is less than zero.

is generated if target is set to GL_TEXTURE_COLOR_TABLE_EXT and
width is not a power of two.

is generated if format is not one of the allowable values.

is generated if type is not one of the allowable values.

is generated if the requested color table is too large to be supported by
the implementation, and target is not a GL_PROXY_* target.

is generated if glColorTable is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
Associated gets for the glColorTable subroutine are as follows. (See the subroutine for more

information.)

with arguement glGetColorTableParameter.

with arguement glGetColorTable.

Chapter 1. OpenGL Subroutines 59



Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |giColorSubTable| subroutine, the [glColorTableParameter] subroutine, the [giCopyColorTable|
subroutine, the [giCopyColorSubTable] subroutine, the [giGetColorTable| subroutine.

glColorTableParameter Subroutine

Purpose
Specify attributes to be used when loading a color table.

Library
OpenGL C bindings library: (libGL.a)

C Syntax
void glColorTableParameterfv(GLenum ,

GLenum ,

const GLfloat

void glColorTableParameteriv(GLenum [target|,
GLenum |pname),
const GLint [<params)

void glColorTableParameterfvSGI(GLenum [target|,

GLenum ,

const GLfloat

void glColorTableParameterivSGI(GLenum [target],
GLenum Ename,

const GLint _*paramsl)

Description

glColorTableParameter is used to specify the scale factors and bias terms applied to color components
when they are loaded into a color table. farget indicates which color table the scale or bias terms apply to.

If pname is set to GL_COLOR_TABLE_SCALE, then the four values pointed to by params will be stored
as the red, green, blue and alpha scale factors, in that order.

If pname is set to GL_COLOR_TABLE_BIAS, then the four values pointed to by params will be stored as
the red, green, blue and alpha bias terms, in that order.

Parameters

target is the target color table and must be
GL_TEXTURE_COLOR_TABLE_EXT.

pname is the symbolic name of a texture color lookup table

parameter. Must be GL_COLOR_TABLE_SCALE or
GL_COLOR_TABLE_BIAS.

60 OpenGL 1.2 Reference Manual



params is a pointer to an array where the values of the
paramaters are stored.

Notes

GL_TEXTURE_COLOR_TABLE_SGi is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these
tokens may be used interchangeably.

GL_PROXY_TEXTURE_COLOR_TABLE_SGi is an alias for
GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

GL_INVALID_ENUM is generated if farget is not one of the allowable values.

GL_INVALID_ENUM is generated if pname is not one of the allowable values.

GL_INVALID_OPERATION is generated if glColorTable is executed between the
execution of glBegin and the corresponding execution of
glEnd.

Associated Gets

Associated gets for the glColorTableParameter subroutine are as follows. (See the subroutine for
more information.)

with arguement glGetColorTableParameter.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The|gIPierTransfe[| subroutine, the |glColorTable| subroutine.

glColorVertexSUN Subroutine

Purpose

Specifies a color and a vertex in one call.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glColor3fVertex3fSUN (GLfloat |r|,
GLfloat N
GLfloat b,
GLfloat [x|,
GLfloat |y,
GLfloat |2

void glColor3fVertex3fvSUN (const GLfloat ||,
const GLfloat [+v)
void glColordubVertex2fSUN (GLubyte ,

Chapter 1. OpenGL Subroutines 61



GLubyte |g],

GLubyte |b],
GLubyte |a],
GLfloat [x|,
GLfloat |y

void glColordubVertex2fvSUN (const GLubyte [xc|,
const GLfloat [xv)
void glColordubVertex3fSUN (GLubyte |,

GLubyte )
GLubyte |b|,
GLubyte |a],
GLfloat [x|,
GLfloat |y,
GLfloat |7

void glColordubVertex3fvSUN (const GLubyte ,
const GLfloat [xv)

Description
This subroutine can be used as a replacement for the following calls:

giColor();
glVertex();

For example, glColor4ubVertex3fvSUN replaces the following calls:
glColordub();
glVertex3fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

X, Y, z Specifies the x, y, and z coordinates of a vertex. Not all
parameters are present in all forms of the command.

v Specifies a pointer to an array of two, or three elements.
The elements of a two-element array are x and y. The
elements of a three-element array are x, y, and z

rg b, a Specifies the red, green, blue, and alpha components of a
color. Not all parameters are present in all forms of the
command.

c Specifies a pointer to an array of three or four elements.
The elements of a three-element array are r, g, and b.
The elements of a four-element array are r, g, b, and a.

Notes

Calling glColorVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined behavior.
This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

62 OpenGL 1.2 Reference Manual



Related Information
The|gIBegin| or glEnd subroutine, the [glColor subroutine, thesubroutine, the [glTexCoord

subroutine, the |9IVertex| subroutine.

glCopyColorSubTable Subroutine

Purpose
Load a subset of a color lookup table from the current GL_READ_BUFFER.
Library
OpenGL C bindings library: (libGL.a)
C Syntax
void g1CopyColorSubTable(GLenum [target|,
GLsizei tart|,
GLint )
GLint )
GLsizei
void g1CopyColorSubTableSGI(GLenum [target|,
GLsizei N
GLint [x],
GLint |y,
GLsizei |width)
Description

glCopyColorSubTable is used to respecify a contiguous portion of a color table previously defined using
glColorTable. The pixels copied from the framebuffer replace the portion of the existing table from indices
start to start + x - 1, inclusive. This region may not include any entries outside the range of the color table
as it was originally specified. It is not an error to specify a subtexture with width of 0, but such a
specification has no effect.

Parameters

target Must be GL_TEXTURE_COLOR_TABLE_EXT.

start is the starting index of the portion of the color table to be
replaced.

X,y is the window coordinates of the left end of the row of
pixels to be copied.

width is the width of the pixel rectangle.

Notes

GL_TEXTURE_COLOR_TABLE_SGil is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these
tokens may be used interchangeably. GL_PROXY_TEXTURE_COLOR_TABLE_SGil is an alias for
GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

GL_INVALID_ENUM is generated if target is not one of the allowable values.
GL_INVALID_VALUE is generated if width is less than zero.

Chapter 1. OpenGL Subroutines 63



GL_INVALID_OPERATION is generated if glCopyColorSubTable is executed
between the execution of glBegin and the corresponding
execution of glEnd.

Associated Gets

Associated gets for the glColorTable subroutine are as follows. (See the [giGet] subroutine for more
information.)

[g1Get] with arguement glGetColorTableParameter.
with arguement glGetColorTable.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information

The |gIColorSubTable| subroutine, the [glColorTableParameter| subroutine, the [giCopyColorTable|
subroutine, the [glGetColorTable| subroutine.

glCopyColorTable Subroutine

Purpose
Load a color lookup table from the current GL_READ_BUFFER.
Library
OpenGL C bindings library: (libGL.a)
C Syntax
void glCopyColorTable(GLenum [target|,
GLenum |internal format|,
GLint [x],
GLint |y,

GLsizei idth
void g1CopyColorTableSGI(GLenum |target|,
GLenum [internalformat|,

GLint N
GLint 5

GLsizei |[width)

Description

glCopyColorTable loads a color table with pixels from the current GL_READ_BUFFER (rather than from
main memory, as is the case for glColorTable).

The screen-aligned pixel rectangle with lower-left corner at (x, y) having width width and height 1 is loaded
into the color table. If any pixels within this region are outside the window that is associated with the GL
context, the values obtained for those pixels are undefined

The pixels in the rectangle are processed just as if glIReadPixels were called, with internalformat set to
RGBA, but processing stops after the final conversion to RGBA.

64 OpenGL 1.2 Reference Manual



The four scale parameters and the four bias parameters that are defined for the table are then used to
scale and bias the R, G, B, and A components of each pixel. (Use glColorTableParameter to set these
scale and bias parameters).

Next, the R, G, B, and A values are clamped to the range [0, 1]. Each pixel is then converted to the
internal format specified by internalformat. This conversion simply maps the component values of the pixel
(R, G, B, and A) to the values included in the internal format (red, green, blue, alpha, and intensity). The
mapping is as follows:

Internal Format Red Green Blue Alpha Luminance Intensity
GL_ALPHA A

GL_LUMINANCE R
GL_LUMINANCE_ALPHA A R

GL_INTENSITY R
GL_RGB R G B

GL_RGBA R G B A

Finally, the red, green, blue, alpha, luminance, and/or intensity components of the resulting pixels are
stored in the color table. They form a one-dimensional table with indices in the range [0, width-1].

Parameters

target Must be GL_TEXTURE_COLOR_TABLE_EXT or
GL_PROXY_TEXTURE_COLOR_TABLE_EXT.

internalformat is the internal format of the color table. The allowable
values are: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4,
GL_ALPHAS8, GL_ALPHA12, GL_ALPHA16,
GL_LUMINANCE, GL_LUMINANCE4,
GL_LUMINANCES, GL_LUMINANCE12,
GL_LUMINANCE16, GL_LUMINANCE_ALPHA,
GL_LUMINANCE4_ALPHAA4,
GL_LUMINANCE6_ALPHA2,
GL_LUMINANCES_ALPHAS,
GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGBS5,
GL_RGBS8, GL_RGB10, GL_RGB12, GL_RGB16,
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_AT1,
GL_RGB8, GL_RGB10_A2, GL_RGBA12, and
GL_RGB16.

width The width of the pixel rectangle.

X is the x coordinate of the lower-left corner of the pixel
rectangle to be transferred to the color table.

y is the y coordinate of the lower-left corner of the pixel
rectangle to be transferred to the color table.

table is a pointer to a one-dimensional array of pixel data that is
processed to build the color table.

Notes
GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

GL_TEXTURE_COLOR_TABLE_SGi is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these

tokens may be used interchangeably. GL_PROXY_TEXTURE_COLOR_TABLE_SGil is an alias for
GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Chapter 1. OpenGL Subroutines 65



Error Codes

GL_INVALID_ENUM is generated if farget is not one of the allowable values.

GL_INVALID_ENUM is generated if internalformat is not one of the allowable
values.

GL_INVALID_VALUE is generated if width is less than zero.

GL_TABLE_TOO_LARGE is generated if the requested color table is too large to be
supported by the implementation.

GL_INVALID_OPERATION is generated if glCopyColorTable is executed between
the execution of glBegin and the corresponding execution
of glEnd.

Associated Gets

Associated gets for the glColorTable subroutine are as follows. (See the subroutine for more
information.)

[g1Get| with arguement glGetColorTableParameter.
[g1Get] with arguement giGetColorTable.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information

The [gIColorTable] subroutine, the [giColorTableParameter] subroutine, the [giCopyColorSubTable]
subroutine, the [glGetColorTable| subroutine.

glCopyPixels Subroutine

Purpose
Copies pixels in the frame buffer.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1CopyPixels(GLint I;Coordinatel,

GLint |yCoordinate),
GLsizei
GLsizei
GLenum

Description

The glCopyPixels subroutine copies a screen-aligned rectangle of pixels from the specified frame buffer
location to a region relative to the current raster position. Its operation is well defined only if the entire pixel
source region is within the exposed portion of the window. Results of copies from outside the window, or
from regions of the window that are not exposed, are hardware-dependent and undefined.

66 OpenGL 1.2 Reference Manual



The x and y parameters specify the window coordinates of the lower left corner of the rectangular region
to be copied. The Width and Height parameters specify the dimensions of the rectangular region to be
copied. Both Width and Height must be nonnegative numbers.

Several parameters control the processing of the pixel data while it is being copied. These parameters are
set with three subroutines: glPixelTransfer, glPixelMap, and glPixelZoom. This article describes the
effects on glCopyPixels of most, but not all, of the parameters specified by these three subroutines.

The glCopyPixels subroutine copies values from each pixel with lower left corner at (x + i, y + j) for 0 <= i
<Width and 0 <= j <Height. This pixel is said to be the ith pixel in the jth row. Pixels are copied in row
order from the lowest to the highest row, left to right in each row.

The Type parameter specifies whether color, depth, or stencil data is to be copied. The details of the
transfer for each data type are as follows.

GL_COLOR Indices or red, green, blue, alpha (RGBA) colors are read from the buffer currently specified as
the read source buffer. (See the glReadBuffer subroutine.) If the GL is in color index mode, each
index that is read from this buffer is converted to a fixed-point format with an unspecified number
of bits to the right of the binary point. Each index is then shifted left by GL_INDEX_SHIFT bits
and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In
either case, 0 (zero) bits fill otherwise unspecified bit locations in the result. If GL_MAP_COLOR
is True, the index is replaced with the value that it references in lookup table
GL_PIXEL_MAP_I_TO_Il. Whether the lookup replacement of the index is done or not, the
integer part of the index is then ANDed with 2b -1, where b is the number of bits in a color index
buffer.

If the GL is in RGBA mode, the red, green, blue, and alpha components of each pixel that is read
are converted to an internal floating-point format with unspecified precision. The conversion maps
the largest representable component value to 1.0, and component value 0 to 0.0. The resulting
floating-point color values are then multiplied by GL_c_SCALE and added to GL_c_BIAS, where
cis RED, GREEN, BLUE, and ALPHA for the respective color components. The results are
clamped to the range [0,1]. If GL_MAP_COLOR is True, each color component is scaled by the
size of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references
in that table. cis R, G, B, or A, respectively.

The resulting indices or RGBA colors are then converted to fragments by attaching the current
raster position z coordinate and texture coordinates to each pixel, then assigning window
coordinates (xr + i, yr + j), where (xr, yr) is the current raster position, and the pixel was the ith
pixel in the fth row. These pixel fragments are then treated just like the fragments generated by
rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

GL_DEPTH Depth values are read from the depth buffer and converted directly to an internal floating-point
format with unspecified precision. The resulting floating-point depth value is then multiplied by
GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is clamped to the range [0,1].

The resulting depth components are then converted to fragments by attaching the current raster
position color or color index and texture coordinates to each pixel, then assigning window
coordinates (xr + i, yr + j), where (xr, yr) is the current raster position, and the pixel was the ith
pixel in the fth row. These pixel fragments are then treated just like the fragments generated by
rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Chapter 1. OpenGL Subroutines 67



GL_STENCIL Stencil indices are read from the stencil buffer and converted to an internal fixed-point format with
an unspecified number of bits to the right of the binary point. Each fixed-point index is then
shifted left by GL_INDEX_SHIFT bits and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is
negative, the shift is to the right. In either case, 0 bits fill otherwise unspecified bit locations in the
result. If GL_MAP_STENCIL is True, the index is replaced with the value that it references in the
lookup table GL_PIXEL_MAP_S_TO_S. Whether the lookup replacement of the index is done or
not, the integer part of the index is then ANDed with 2b -1, where b is the number of bits in the
stencil buffer. The resulting stencil indices are then written to the stencil buffer such that the index
read from the ith location of the jth row is written to location (xr + i, yr + j), where (xr, yr) is the
current raster position. Only the pixel ownership test, the scissor test, and the stencil writemask
affect these writes.

The rasterization described thus far assumes pixel zoom factors of 1.0. If glPixelZoom is used to change
the x and y pixel zoom factors, pixels are converted to fragments as follows. If (xr, yr) is the current raster
position, and a given pixel is in the th location in the jth row of the source pixel rectangle, fragments are
generated for pixels whose centers are in the rectangle with corners at

Unmapped format: variant of paragraph
(xr + zoomx i, yr + zoomy j)

Unmapped format: variant of paragraph
and
Unmapped format: variant of paragraph
(xr + zoomx (i + 1), yr + zoomy (j+ 1)),

where zoom x is the value of GL_ZOOM_X and zoomy is the value of GL_ZOOM_Y.

Parameters

xCoordinate Specifies the x window coordinate of the lower left corner of the rectangular region of pixels to
be copied.

yCoordinate Specifies the y window coordinate of the lower left corner of the rectangular region of pixels to
be copied.

Width Specifies the width of the rectangular region of pixels to be copied. This parameter does not
accept a negative value.

Height Specifies the height of the rectangular region of pixels to be copied. This parameter does not
accept a negative value.

Type Specifies whether color values, depth values, or stencil values are to be copied. Symbolic
constants GL_COLOR, GL_DEPTH, and GL_STENCIL are accepted.

Notes

Modes specified by glPixelStore have no effect on the operation of glCopyPixels.

Errors

GL_INVALID_ENUM Type is not an accepted value.

GL_INVALID_VALUE Either Width or Height is negative.

GL_INVALID_OPERATION Type is GL_DEPTH and there is no depth buffer.

GL_INVALID_OPERATION Type is GL_STENCIL and there is no stencil buffer.

GL_INVALID_OPERATION The glCopyPixels subroutine is called between a call to glBegin and the

corresponding call to glEnd.

68 OpenGL 1.2 Reference Manual



Associated Gets

Associated gets for the glCopyPixels subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_CURRENT_RASTER_POSITION.

glGet with argument GL_CURRENT_RASTER_POSITION_VALID.

Examples

To copy the color pixel in the lower left corner of the window to the current raster position, enter the
following:

g1CopyPixels(0, 0, 1, 1, GL_COLOR);

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin| or glEnd subroutine, |giDepthFunc]| subroutine,
subroutine, |glPixelMap| subroutine, |gIPixelTransfer subroutine,
subroutine, [glIReadBuffer| subroutine, [gIReadPixels| subroutine,

glDrawBuffer] subroutine, [glDrawPixel
glPixelZoom| subroutine, [gIRasterPo
gIStencilFunc| subroutine.

glCopyTeximage1D Subroutine

Purpose
Defines a one-dimensional (1D) texture image.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1CopyTexImagelD(GLenum [target],
GLint |level],

GLenum |internalFormat|,
GLint [xCoordinate|,
GLint |yCoordinate),

GLsizei |width|,
GLint |porder)
Description

The glCopyTeximage1D subroutine defines a one dimensional texture image with pixels from the current
GL_READ_BUFFER.

The screen aligned pixel row with left corner at (x,y) and with a length of width + 2 * border defines the
texture array at the mipmap level specified by level. llternalFormat specifies the internal format of the
texture array.

The pixels in the row are processed exactly as if glCopyPixels had been called, but the process stops
just before final conversion. At this point all pixel component values are clamped to the range [0, 1] and
then converted to the texture’s internal format for storage in the texel array.

Chapter 1. OpenGL Subroutines 69



Pixel ordering is such that lower x screen coordinates correspond to lower texture coordinates.

If any of the pixels within the specified row of the current GL_READ_BUFFER are outside the window
associated with the current rendering context, then the values obtained for those pixels are undefined.

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

internalFormat Specifies the internal format of the texture. Must be one of the following symbolic
constants: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4, GL_ALPHAS8, GL_ALPHA12,
GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCES,
GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA,
GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCES_ALPHAS8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,
GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBAS,
GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

xCoordinate Specifies the x window coordinate of the lower left corner of the row of pixels to be
copied.

yCoordinate Specifies the y window coordinate of the lower left corner of the row of pixels to be
copied.

width Specifies the width of the texture image. Must be 0 or 2**n + 2*border for some integer n.
The height of the texture image is 1.

border Specifies the width of the border. Must be either 0 or 1.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.
The glCopyTeximage1D subroutine is available only if the GL version is 1.1 or greater.
1, 2, 3, or 4 are not accepted values for internalFormat.

An image with zero width indicates a null texture.

Errors
GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value
of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_VALUE is generated if width is less than zero, greater than 2 + GL_MAX_TEXTURE_SIZE,
or if width cannot be represented as 2**k+ 2 * border for some integer k.

GL_INVALID_VALUE is generated if width is less than zero or greater than 2 +
GL_MAX_TEXTURE_SIZE, or if it cannot be represented as 2**n + 2 * border for some integer value of n.

70 OpenGL 1.2 Reference Manual



GL_INVALID_OPERATION is generated if glCopyTexlmage1D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTeximage

glisEnabled with argument GL_TEXTURE_1D
Related Information

The [gICopyTexImage2D| subroutine, [giDrawPixels| subroutine, [gIFog| subroutine, [gIPixelStore]
subroutine, |gIPixelTransfer subroutine, |gITexEnv| subroutine, [gITexGen subroutine,|gITexImage1Q|
subroutine, |glTexParameter| subroutine.

glCopyTeximage2D Subroutine

Purpose

Defines a two-dimensional (2D) texture image.

Library

OpenGL C bindings library: libGL.a

C Syntax

void g1CopyTexImage2D(GLenum ,
GLint |ZeveZL

GLenum IinternalFormatL
GLint [xCoordinate|,
GLint |yCoordinate),

GLsizei |width|,
GLsizei |height|,
GLint order)

Description

The glCopyTexlmage2D subroutine defines a two-dimensional texture image with pixels from the current
GL_READ_BUFFER.

The screen aligned pixel rectangle with lower left corner at (x, y) and with a width of width + 2 * border
and height height + 2 * border defines the texture array at the mipmap level specified by level.
internalFormat specifies the internal format of the texture array.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the process
stops just before final conversion. At this point all pixel component values are clamped to the range
[0.0,1.0] and then converted to the texture’s internal format for storage in the texel array.

Pixel ordering is such that lower x and y screen coordinates correspond to lower s and t texture
coordinates.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the

window associated with the current rendering context, then the values obtained for those pixels are
undefined.

Chapter 1. OpenGL Subroutines 71



Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

internalFormat Specifies the internal format of the texture. Must be one of the following symbolic

constants: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4, GL_ALPHAS8, GL_ALPHA12,
GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCES,
GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA,
GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCES_ALPHAS8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,
GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBAS,
GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

xCoordinate Specifies the x window coordinate of the lower left corner of the row of pixels to be
copied.

yCoordinate Specifies the y window coordinate of the lower left corner of the row of pixels to be
copied.

width Specifies the width of the texture image. Must be 0 or 2**n + 2*border for some integer n.
The height of the texture image is 1.

height Specifies the height of the texture image. Must be 0 or 2**m + 2*border for some integer
m.

border Specifies the width of the border. Must be either 0 or 1.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.
The glCopyTeximage2D subroutine is available only if the GL version is 1.1 or greater.
1, 2, 3, or 4 are not accepted values for internalFormat.

An image with height or width of 0 indicates a NULL texture.

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value
of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width or height is less than zero, greater than 2 +
GL_MAX_TEXTURE_SIZE, or if width or height cannot be represented as 2**k + 2 * border for some
integer k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_VALUE is generated if internalFormat is not one of the allowable values.

GL_INVALID_OPERATION is generated if glCopyTexlmage2D is executed between the execution of
glBegin and the corresponding execution of glEnd.

72 OpenGL 1.2 Reference Manual



Associated Gets
glGetTeximage.

gllsEnabled with argument GL_TEXTURE_2D.

Related Information
The |glCopyPixels| subroutine, [giCopyTeximage1D| subroutine, |gIPixelStore]| subroutine, |gIPixelTransfer|
subroutine, subroutine, [gITexlmage2D| subroutine, [gITexParameter| subroutine.

glCopyTexSubimage1D Subroutine

Purpose
Copies a one-dimensional (1D) texture subimage.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1CopyTexSubImagelD(GLenum [target],
GLint [level],

GLint [xoffset],
GLint [xCoordinate|,
GLint |yCoordinate|,

GLsizei |width|)

Description

The glCopyTexSublmage1D subroutine replaces a portion of a one dimensional texture image with pixels
from the current GL_READ_BUFFER (rather than from main memory, as is the case for
glTexSubimage1D).

The screen aligned pixel row with left corner at (x, y), and with length width replaces the portion of the
texture array with x indices xoffset through xoffset + width - 1, inclusive. The destination in the texture
array may not include any texels outside the texture array as it was originally specified.

The pixels in the row are processed exactly as if glCopyPixels had been called, but the process stops
just before final conversion. At this point all pixel component values are clamped to the range [0, 1] and
then converted to the texture’s internal format for storage in the texel array.

It is not an error to specify a subtexture with zero width, but such a specification has no effect. If any of
the pixels within the specified row of the current GL_READ_BUFFER are outside the read window
associated with the current rendering context, then the values obtained for those pixels are undefined.

No change is made to the internalFormat, width, or border parameters of the specified texture array or to
texel values outside the specified subregion.

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies the texel offset within the texture array.

xCoordinate Specifies the x window coordinate of the lower left corner of the row of pixels to be copied.

Chapter 1. OpenGL Subroutines 73



yCoordinate Specifies the y window coordinate of the lower left corner of the row of pixels to be copied.
width Specifies the width of the texture image subimage.

Notes
The glCopyTexSublmage1D subroutine is available only if the GL version is 1.1 or greater.

Texturing has no effect in color index mode.

The glPixelTransfer mode affects texture images in exactly the way they affect giDrawPixels.

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_1D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
glTexlmage1D operation.

GL_INVALID_VALUE is generated if width is less than zero.

GL_INVALID_VALUE may be generated if level>log2 max, where max is the returned value of
GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if y < -b or if width < -b, where b is the border width of the texture
array.

GL_INVALID_VALUE is generated if xoffset < -b, or (xoffset + width) > (w-b). Where w is the
GL_TEXTURE_WIDTH, and b is the GL_TEXTURE_BORDER of the texture image being modified. Note
that w includes twice the border width.

Associated Gets
glGetTeximage

glisEnabled with argument GL_TEXTURE_1D.

Related Information
The |giCopyTexSublmage2D| subroutine, |giDrawPixels| subroutine, [gIFog| subroutine, |glPixelStore]

subroutine, |glPixelTransfer] subroutine, [gITexEnv| subroutine, |glTexGen| subroutine, |glTeximage1D
subroutine, |gITexSublmage1D]| subroutine, |gITexParamete|_‘| subroutine,

glCopyTexSublmage2D Subroutine

Purpose
Copies a two-dimensional (2D) texture subimage.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1CopyTexSubImage2D(GLenum [target|,
GLint level|,

GLint [xoffset|,
GLint |yoffset

74  OpenGL 1.2 Reference Manual



GLint |xCoordinate),
GLint |yCoordinate),
GLsizei |width|,
GLsizei |height

Description

The glCopyTexSublmage2D subroutine replaces a portion of a two dimensional texture image with pixels
from the current GL_READ_BUFFER (rather than from main memory, as is the case for
glTexSubimage2D).

The screen aligned pixel rectangle with lower left corner at (x, y) and with width width and height height
replaces the portion of the texture array with x indices xoffset through xoffset + width - 1, inclusive, and y
indices yoffset through yoffset + height - 1, inclusive, at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the process
stops just before final conversion. At this point all pixel component values are clamped to the range [0, 1]
and then converted to the texture’s internal format for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the texture array as it
was originally specified. It is not an error to specify a subtexture with zero width or height, but such a
specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the read
window associated with the current rendering context, then the values obtained for those pixels are
undefined.

No change is made to the internalformat, width, height, or border parameters of the specified texture array
or to texel values outside the specified subregion.

Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

xCoordinate Specifies the x window coordinate of the lower left corner of the row of pixels to be copied.

yCoordinate Specifies the y window coordinate of the lower left corner of the row of pixels to be copied.

width Specifies the width of the texture image subimage.

height Specifies the height of the texture subimage.

Notes

The glCopyTexSublmage2D subroutine is available only if the GL version is 1.1 or greater.
Texturing has no effect in color index mode.

The glPixelTransfer mode affects texture images in exactly the way they affect glDrawPixels.

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
glTeximage2D operation.

Chapter 1. OpenGL Subroutines 75



GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value
of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if x < -b or if y < -b, where b is the border width of the texture array.
GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, or (yoffset +
height) > (h - b). Where w is the GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT, and b is the
GL_TEXTURE_BORDER of the texture image being modified. Note that w and h include twice the border
width.

GL_INVALID_OPERATION is generated if glCopyTexSublmage2D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTeximage

glisEnabled with argument GL_TEXTURE_2D
Related Information

The [gICopyTexlmage2D] subroutine, [giDrawPixels| subroutine, [gIFog| subroutine, [gIPixelStore]
subroutine, |gIPixelTransfer subroutine, subroutine, subroutine, [gITeximage2D|
subroutine, |glTexParameter| subroutine.

glCopyTexSublmage3D Subroutine

Purpose

Copies a three-dimensional (3D) texture subimage. This subroutine is only supported on OpenGL 1.2 and
later.

Library

OpenGL C bindings library: libGL.a

C Syntax

void g1CopyTexSubImage3D (GLenum [target|,
GLint [level],
GLint [xoffset],
GLint |yoffset],
GLint [zoffset|,
GLint [x,
GLint |y,
GLsizei |width|,
GLsizei |height

Description

The glCopyTexSublmage3D subroutine replaces a rectangular portion of a three-dimensional texture
image with pixels from the current GL_READ_BUFFER (rather than from main memory, as is the case for
glTexSublimage3D).

76 OpenGL 1.2 Reference Manual



The screen-aligned pixel rectangle with lower-left corner at (x, y) and with width width and height height
replaces the portion of the texture array with x indices xoffset through xoffset + width - 1, inclusive, and y
indices yoffset through yoffset + height - 1, inclusive, at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the process
stops just before final conversion. At this point all pixel component values are clamped to the range [0, 1]
and then converted to the texture’s internal format for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the texture array as it
was originally specified. It is not an error to specify a subtexture with zero width or height, but such a
specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the read
window associated with the current rendering context, then the values obtained for those pixels are
undefined.

No change is made to the internalformat, width, height, depth, or border parameters of the specified
texture array or to texel values outside the specified subregion.

Parameters

target Specifies the target texture. Must be GL_TEXTURE_3D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

zoffset Specifies a texel offset in the z direction within the texture array.

X,y Specify the window coordinates of the lower left corner of the rectangular region of pixels to be copied.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

Notes

Texturing has no effect in color index mode.

The glPixelTransfer mode affects texture images in exactly the way they affect giDrawPixels.

Errors
GL_INVALID_ENUM is generated if farget is not GL_TEXTURE_3D.

GL_INVALID_OPERATION is generated if texture array has not been defined by a previous
glTexlmage3D operation.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value
of GL_MAX_3D_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if x < -b or if y < -b, where b is the border width of the texture array.
GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, (yoffset + height)
> (h - b), zoffset < -b, or (zoffset + depth) > (d - b). Where w is the GL_TEXTURE_WIDTH, h is the

GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH, and b is the GL_TEXTURE_BORDER of the
texture image being modified. Note that w, h, and d include twice the border width.

Chapter 1. OpenGL Subroutines 77



GL_INVALID_OPERATION is generated if giCopyTexSublmage3D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

|gIGetTexImage|

glisEnabled with argument GL_TEXTURE_3D.

Related Information
The 9| IDrawPiers| subroutine, |glFog| subroutine, |gIPierStorE| subroutine, |glPixelTransfer| subroutine,
|gITexEnv|subroutine, glTexGen| subroutine, |gITexImage39| subroutine, |glTexParameter| subroutine.

glCopyTexSublmage3DEXT Subroutine

Purpose
Copies a three-dimensional (3D) texture subimage.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1CopyTexSubImage3DEXT(GLenum [target],
GLint Zevel|,

GLint (offset|,
GLint |yoffset|,
GLint |zoffset|,
GLint x|,

GLint A

GLsizei |width|,
GLsizei |height

Description

The glCopyTexSublmage3DEXT subroutine replaces a rectangular portion of a three-dimensional texture
image with pixels from the current GL_READ_BUFFER (rather than from main memory, as is the case for
glTexSubimage3DEXT).

The screen-aligned pixel rectangle with lower-left corner at (x, y) and with width width and height height
replaces the portion of the texture array with x indices xoffset through xoffset + width - 1, inclusive, and y
indices yoffset through yoffset + height - 1, inclusive, at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the process
stops just before final conversion. At this point all pixel component values are clamped to the range [0, 1]
and then converted to the texture’s internal format for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the texture array as it
was originally specified. It is not an error to specify a subtexture with zero width or height, but such a
specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the read

window associated with the current rendering context, then the values obtained for those pixels are
undefined.

78 OpenGL 1.2 Reference Manual



No change is made to the internalformat, width, height, depth, or border parameters of the specified
texture array or to texel values outside the specified subregion.

Parameters

target Specifies the target texture. Must be GL_TEXTURE_3D_EXT.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

zoffset Specifies a texel offset in the z direction within the texture array.

X, y Specify the window coordinates of the lower left corner of the rectangular region of pixels to be copied.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

Notes

The glCopyTexSublmage3DEXT subroutine is available only if the EXT_texture_3d extension is
supported.

Texturing has no effect in color index mode.

The glPixelTransfer mode affects texture images in exactly the way they affect giIDrawPixels.

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D_EXT.

GL_INVALID_OPERATION is generated if texture array has not been defined by a previous
glTeximage3D operation.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value
of GL_MAX_3D_TEXTURE_SIZE_EXT.

GL_INVALID_VALUE is generated if x < -b or if y < -b, where b is the border width of the texture array.

GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, (yoffset + height)
> (h - b), zoffset < -b, or (zoffset + depth) > (d - b). Where w is the GL_TEXTURE_WIDTH, h is the
GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH_EXT, and b is the GL_TEXTURE_BORDER of
the texture image being modified. Note that w, h, and d include twice the border width.

GL_INVALID_OPERATION is generated if glCopyTexSublmage3DEXT is executed between the
execution of glBegin and the corresponding execution of glEnd.

Associated Gets

|gIGetTexIma9e|

glisEnabled with argument GL_TEXTURE_3D_EXT.

Related Information

The |gIDrawPiers| subroutine, |gIFog| subroutine, g| IPierStor5| subroutine, |glPixelTransfer] subroutine,
|gITexEnv| subroutine, |9ITexGen| subroutine, |9ITexImage3DEXT| subroutine, |gITexParamete[| subroutine.

Chapter 1. OpenGL Subroutines 79



glCullFace Subroutine

Purpose
Specifies whether frontfacing or backfacing facets may be culled.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1CullFace(GLenum

Parameters

mode  Specifies whether frontfacint or backfacing facets are candidates for culling. Symbolic constants GL_FRONT,
GL_BACK, and GL_FRONT_AND_BACK are accepted. The initial value is GL_BACK.

Description

The glCullFace subroutine specifies whether frontfacing or backfacing facets are culled (as specified by
the mode parameter) when facet culling is enabled. Facet culling is enabled and disabled using the
glEnable and glDisable subroutines with the argument GL_CULL_FACE. Facets include triangles,
quadrilaterals, polygons, and rectangles.

The glFrontFace subroutine specifies which of the clockwise and counterclockwise facets are frontfacing
and backfacing.

Notes

If mode is GL_FRONT_AND_BACK, no facets are drawn, but other primitives such as points and lines
are drawn.

Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glCullFace is executed between the execution of glBegin and
the corresponding execution of glEnd.

Associated Gets
glisEnabled with argument GL_CULL_FACE.

glGet with argument GL_CULL_FACE_MODE.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The or glDisable subroutine, subroutine.

80 OpenGL 1.2 Reference Manual



glDeleteLists Subroutine

Purpose
Deletes a contiguous group of display lists.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glDeleteLists(GLunint ,

GLsizei

Description

The glDeleteLists subroutine causes a contiguous group of display lists to be deleted. The List parameter
is the name of the first display list to be deleted, and the Range parameter is the number of display lists to
be deleted. All display lists d with List <= d <= List + Range - 1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names are available for

reuse at a later time. Names within the range that do not have an associated display list are ignored. If
Range is 0 (zero), nothing happens.

Parameters

List Specifies the integer name of the first display list to delete.
Range Specifies the number of display lists to delete.

Errors

GL_INVALID_VALUE Range is negative.

GL_INVALID_OPERATION The glDeleteLists subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The [gIBegin| or glEnd subroutine, [gICallLis{| subroutine, [gICallLists| subroutine, [giGenLists| subroutine,
gllsList subroutine, [gINewList| subroutine.

glDeleteTextures Subroutine

Purpose
Deletes named textures.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 81



C Syntax

void glDeleteTextures(GLsizei E|,

const GLuint [<textures)

Parameters

n Specifies the number of textures to be deleted
textures Specifies an array of textures to be deleted.

Description

The glDeleteTextures subroutine deletes n textures named by the elements of the array textures. After a
texture is deleted, it has no contents or dimensionality, and its name is free for reuse (for example by
glGenTextures). If a texture that is currently bound is deleted, the binding reverts to 0 (the default
texture).

The glDeleteTextures subroutine silently ignores zeros and names that do not correspond to existing
textures.

Notes
The glDeleteTextures subroutine is available only if the GL version is 1.1 or greater.

The glDeleteTextures subroutine is not included in display lists.

Errors
GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glDeleteTextures is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

Related Information

The |9IAreTexturesResidenﬂ subroutine, |§IBindTextur5| subroutine, |gIGenTexture§| subroutine, |glGe
subroutine, [glGetTexParameter subroutine, |glIPrioritizeTextures| subroutine, |gITexlmage1D| subroutine,

|gITexIma9e2D| subroutine, |9ITexParamete|_‘| subroutine.

glDeleteTexturesEXT Subroutine

Purpose
Deletes named textures.

Library
OpenGL and OpenGL C bindings library: libGL.a

C Syntax

void glDeleteTexturesEXT(GLsizei El,

const GLuint [xtextures)

82 OpenGL 1.2 Reference Manual



Description

glDeleteTexturesEXT deletes n textures named by the elements of the array textures. After a texture is
deleted, it has no contents or dimensionality, and its name is free for reuse (by glGenTexturesEXT, for
example). If a texture that is currently bound is deleted, the binding reverts to zero (the default texture).
glDeleteTexturesEXT silently ignores zeros and names that do not correspond to existing textures.

glDeleteTexturesEXT is not included in display lists.

Parameters

n The number of textures to be deleted.

textures An array in which each element is the name of a texture to be deleted.
Notes

glDeleteTexturesEXT is part of the EXT_texture_object extension, not part of the core GL command set.
If GL_EXT_texture_object is included in the string returned by glGetString, when called with argument
GL_EXTENSIONS, extension EXT_texture_object is supported by the connection.

Errors
GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glDeleteTexturesEXT is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
|gIIsTextureEXI|

File

lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information

The |gIBindTextureEXT]| subroutine, [glGenTexturesEXT| subroutine, |§IGeﬂ subroutine, [glGetTexParameter]
subroutine, [gITexParameter| subroutine, [gITexSublmage1D| subroutine, |giITexSublmage2D| subroutine,
[glTexSublmage3DEXT] subroutine.

glDepthFunc Subroutine

Purpose
Specifies the function used for depth buffer comparisons.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glDepthFunc(GLenum [function)

Chapter 1. OpenGL Subroutines 83



Description

The glDepthFunc subroutine specifies the function used to compare each incoming pixel z value with the
z value present in the depth buffer. The comparison is performed only if depth testing is enabled. (See
glEnable and glDisable of GL_DEPTH_TEST.)

The function parameter specifies the conditions under which the pixel will be drawn. The comparison
functions are as follows:

GL_NEVER Never passes.

GL_LESS Passes if the incoming z value is less than the stored z value.

GL_EQUAL Passes if the incoming z value is equal to the stored z value.

GL_LEQUAL Passes if the incoming z value is less than or equal to the stored z value.
GL_GREATER Passes if the incoming z value is greater than the stored z value.
GL_NOTEQUAL Passes if the incoming z value is not equal to the stored z value.
GL_GEQUAL Passes if the incoming z value is greater than or equal to the stored z value.
GL_ALWAYS Always passes.

The default value of function is GL_LESS. Initially, depth testing is disabled.

Parameters

function Specifies the depth comparison function. Symbolic constants GL_NEVER, GL_LESS, GL_EQUAL,
GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS are accepted. The
default function is GL_LESS.

Errors
GL_INVALID_ENUM function is not an accepted value.
GL_INVALID_OPERATION The glDepthFunc subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glDepthFunc subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_DEPTH_FUNC
glisEnabled| with argument GL_DEPTH_TEST.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |§|Be§in! or glEnd subroutine, [giDepthRange] subroutine, [gIEnable or giDisable] subroutine,

subroutine, [gIPolygonOffset| subroutine, [gIPolygonOffsetEXT| subroutine.

84 OpenGL 1.2 Reference Manual



glDepthMask Subroutine

Purpose
Enables or disables writing into the depth buffer.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glDepthMask(GLboolean [Flag)

Description

The glDepthMask subroutine specifies whether the depth buffer is enabled for writing. If the Flag
parameter is zero (0), depth buffer writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing
is enabled.

Parameters

Flag Specifies whether the depth buffer is enabled for writing. If Flag is 0, depth buffer writing is disabled.
Otherwise, it is enabled. Initially, depth buffer writing is enabled.

Errors

GL_INVALID_OPERATION The glDepthMask subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glDepthMask subroutine are as follows. (See the [giGef] subroutine for more
information.)

glGet with argument GL_DEPTH_WRITEMASK.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin| or glEnd subroutine, [giColorMask| subroutine, subroutine, [giDepthRange
subroutine, [glindexMask| subroutine, [giStencilMask| subroutine.

glDepthRange Subroutine

Purpose
Specifies the mapping of z values from normalized device coordinates to window coordinates.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 85



C Syntax
void glDepthRange(GLclampd [near],

GLclampd

Description

After clipping and division by w, z coordinates range from -1.0 to 1.0, corresponding to the near and far
clipping planes. The glDepthRange subroutine specifies a linear mapping of the normalized z coordinates
in this range to window z coordinates. Regardless of the actual depth buffer implementation, window
coordinate depth values are treated as though they range from 0.0 through 1.0 (like color components).
Thus, the values accepted by glDepthRange are both clamped to this range before they are accepted.

The default mapping of 0,1 maps the near plane to 0 (zero) and the far plane to 1 (one). With this
mapping, the depth buffer range is fully utilized.

Parameters

near Specifies the mapping of the near clipping plane to window coordinates. The default value is 0.

far Specifies the mapping of the far clipping plane to window coordinates. The default value is 1.

Notes

It is not necessary that near be less than far. Reverse mappings such as 1,0 are acceptable.

Errors

GL_INVALID_OPERATION The glDepthRange subroutine is called between a call to gilBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glDepthRange subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_DEPTH_RANGE.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |giBegin| or glEnd subroutine subroutine, |gIPolygonOffset| subroutine,
glViewport

[glPolygonOffsetEXT] subroutine, |gIViewport| subroutine.

glDrawArrays Subroutine

Purpose
Renders primitives from array data.

Library
OpenGL C bindings library: libGL.a

86 OpenGL 1.2 Reference Manual



C Syntax

void glDrawArrays (GLenum ,
GLint [first,
GLsizei |count)

Description

The glDrawArrays subroutine lets you specify multiple geometric primitives with very few subroutine calls.
Instead of calling a GL procedure to pass each individual vertex, normal, texture coordinate, edge flage, or
color, you can prespecify separate arrays of vertexes, normals, and colors and use them to construct a
sequence of primitives with a single call to glDrawArrays.

When glDrawArrays is called, it uses count sequential elements from each enabled array to construct a
sequence of geometric primitives, beginning with element first. The mode parameter specifies what kind of
primitives are constructed, and how the array elements construct these primitives. If GL_VERTEX_ARRAY
is not enabled, no geometric primitives are generated.

Vertex attributes that are modified by glDrawArrays have an unspecified value after glDrawArrays
returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current color is undefined after
glDrawArrays executes. Attributes that are not modified remain well defined.

Parameters

mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,
GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

first Specifies the starting index in the enabled arrays.
count Specifies the number of indices to be rendered.
Notes

The glDrawArrays subroutine is available only if the GL version is 1.1 or greater.

The glDrawArrays subroutine is included in display lists. If glDrawArrays is entered into a display list, the
necessary array data (determined by the array pointers and enables) is also entered into the display list.
Because the array pointers and enables are client side state, their values affect display lists when the lists
are created, not when the lists are executed.

Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if glDrawArrays is executed between the execution of glBegin
and the corresponding glEnd.

Related Information
The |glArrayElement] subroutine, |giColorPointe subroutin&]ngrawElementq subroutine,
1l

IEdgeFlagPointer subroutine, |glGetPointerv| subroutine, [glindexPointer subroutine,
glinterleavedArrays| subroutine, gINormalPointer] subroutine, |gITexCoordPointe|1 subroutine,

glVertexPointer| subroutine.

Chapter 1. OpenGL Subroutines 87



glDrawArraysEXT Subroutine

Purpose
Renders primitives from array data.

Library
OpenGL C bindings library: libGL.a

C Syntax
void gl1DrawArraysEXT(GLenum ,

GLint |first,
GLsizei [count)

Description

glDrawArraysEXT makes it possible to specify multiple geometric primitives with very few subroutine
calls. Instead of calling an OpenGL procedure to pass each individual vertex, normal, or color, separate
arrays of vertexes, normals, and colors can be prespecified, and used to define a sequence of primitives
(all of the same type) with a single call to glDrawArraysEXT.

When glDrawArraysEXT is called, count sequential elements from each enabled array are used to
construct a sequence of geometric primitives, beginning with element first. mode specifies what kind of
primitives are constructed, and how the array elements are used to construct these primitives. If
GL_VERTEX_ARRAY_EXT is not enabled, no geometric primitives are generated.

Vertex attributes that are modified by glDrawArraysEXT have an unspecified value after
glDrawArraysEXT returns. For example, if GL_COLOR_ARRAY_EXT is enabled, the value of the current
color is undefined after giDrawArraysEXT executes. Attributes that aren’t modified remain well defined.

Operation of glDrawArraysEXT is atomic with respect to error generation. If an error is generated, no
other operations take place.

Parameters

mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,
GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

first Specifies the starting index in the enabled arrays.
count Specifies the number of indices which should be rendered.
Notes

glDrawArraysEXT may be included in display lists. If giDrawArraysEXT is entered into a display list, the
necessary array data (determined by the array pointers and enables) is also entered into the display list.
Because the array pointers and enables are client side state, their values affect display lists when the lists
are created, not when the lists are executed.

Static array data may be read and cached by the implementation at any time. If static array elements are
modified and the arrays are not respecified, the results of any subsequent calls to glDrawArrayseEXT are
undefined.

Although it is not an error to respecify an array between the execution of glBegin and the corresponding
execution of glEnd, the result of such respecification is undefined.

88 OpenGL 1.2 Reference Manual



glDrawArraysEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL
command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when
called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if glDrawArraysEXT is called between the execution of glBegin
and the corresponding execution of glEnd.

File

lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information

The [glArrayElementEXT] subroutine, |glColorPointerEXT| subroutine, [gIEdgeFlagPointerEXT] subroutine,
IGetPointervEXT] subroutine, |glindexPointerEXT| subroutine, [gINormalPointerEXT| subroutine,
ITexCoordPointerEXT]| subroutine, |glVertexPointerEXT]| subroutine.

glDrawBuffer Subroutine

Purpose
Specifies which color buffers are to be used for drawing.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1DrawBuffer(GLenum

Description

When colors are written to the frame buffer, they are written into the color buffers specified by the
glDrawBuffer subroutine. The specifications are:

GL_NONE No color buffers are written.

GL_FRONT_LEFT Only the front left color buffer is written.

GL_FRONT_RIGHT Only the front right color buffer is written.

GL_BACK_LEFT Only the back left color buffer is written.

GL_BACK_RIGHT Only the back right color buffer is written.

GL_FRONT Only the front left and front right color buffers are written. If there is no front right
color buffer, only the front left color buffer is written.

GL_BACK Only the back left and back right color buffers are written. If there is no back right
color buffer, only the back left color buffer is written.

GL_LEFT Only the front left and back left color buffers are written. If there is no back left color
buffer, only the front left color buffer is written.

GL_RIGHT Only the front right and back right color buffers are written. If there is no back right

color buffer, only the front right color buffer is written.

Chapter 1. OpenGL Subroutines 89



GL_FRONT_AND_BACK All the front and the back color buffers (front left, front right, back left, back right)
are written. If there are no back color buffers, only the front left and front right color
buffers are written. If there are no right color buffers, only the front left and back left
color buffers are written. If there are no right or back color buffers, only the front left
color buffer is written.

GL_AUXi/ Only auxiliary color buffer i is written.

If more than one color buffer is selected for drawing, blending or logical operations are computed and
applied independently for each color buffer and may produce different results in each buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts include both left and right
buffers. Likewise, single-buffered contexts include only front buffers, while double-buffered contexts include
both front and back buffers. The context is selected at GL initialization.

Parameters

Mode  Specifies up to four color buffers to be drawn into. Symbolic constants GL_NONE, GL_FRONT_LEFT,
GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT,
GL_FRONT_AND_BACK, and GL_AUXi/, where i is between 0 and GL_AUX_BUFFERS - 1, are accepted.
(GL_AUX_BUFFERS is not the upper limit; use glGet to query the number of available aux buffers.) The
default value is GL_FRONT for single buffered contexts, and GL_BACK for double buffered contexts.

Notes

It is always the case that GL_AUX/ = GL_AUXO + i.

Errors

GL_INVALID_ENUM Mode is not an accepted value.

GL_INVALID_OPERATION None of the buffers indicated by Mode exists.

GL_INVALID_OPERATION The glDrawBuffer subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glDrawBuffer subroutine are as follows. (See the [giGet subroutine for more
information.)

glGet with argument GL_DRAW_BUFFER

glGet with argument GL_AUX_BUFFERS.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin| or gIEnd subroutine, |gIBlendFunc| subroutine, ICoIorMassubroutlne
subroutlne glLogicOp] subroutine, IReadBuffe subroutlne

90 OpenGL 1.2 Reference Manual



glDrawElements Subroutine

Purpose
Renders primitives from array data.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glDrawElements (GLenum ,

GLsizei |count|,

GLenum |type],

const GLvoid |*indices|b

Description

The glDrawElements subroutine lets you specify multiple geometric primitives with very few subroutine
calls. Instead of calling a GL function to pass each individual vertex, normal, texture coordinate, edge
flage, or color, you can prespecify separate arrays of vertexes, normals, and so on and use them to
construct a sequence of primitives with a single call to glDrawElements.

When glDrawElements is called, it uses count sequential elements from an enabled array, starting at
indices to construct a sequence of geometric primitives. mode specifies what kind of primitives are
constructed and how the array elements construct these primitives. If GL_VERTEX_ARRAY is not
enabled, no geometric primitives are generated.

Vertex attributes that are modified by glDrawElements have an unspecified value after glDrawElements
returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current color is undefined after
glDrawElements executes. Attributes that are not modified maintain their previous values.

Notes
The glDrawElements subroutine is available only if the GL version is 1.1 or greater.

The glDrawElements subroutine is included in display lists. If giIDrawElements is entered into a display
list, the necessary array data (determined by the array pointers and enables) is also entered into the
display list. Because the array pointers and enables are client side state, their values affect display lists
when the lists are created, not when the lists are executed.

Parameters

mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,
GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

count Specifies the number of elements to be rendered.

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

Errors

GL_INVALID_ENUM is generated ifmode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

Chapter 1. OpenGL Subroutines 91



GL_INVALID_OPERATION is generated if giIDrawElements is executed between the execution of
glBegin and the corresponding glEnd.

Related Information
The [glArrayElement| subroutine, [giColorPointer| subroutine, subroutine,

IEdgeFlagPointer| subroutine, |glGetPointerv| subroutine, |glindexPointer| subroutine,
linterleavedArrays| subroutine, |g INormaIPointed subroutine, |gITexCoordPointe|1 subroutine,

IVertexPointer| subroutine.

glDrawPixels Subroutine

Purpose
Writes a block of pixels to the frame buffer.
Library
OpenGL C bindings library: libGL.a
C Syntax
void glDrawPixels(GLsizei
GLsizei
GLenum
GLenum
const GLvoid *
Description

The glDrawPixels subroutine reads pixel data from memory and writes it into the frame buffer relative to
the current raster position. Use glRasterPos to set the current raster position, and use glGet with
argument GL_CURRENT_RASTER_POSITION to query the raster position.

A number of parameters define the encoding of pixel data in memory and control the processing of the
pixel data before it is placed in the frame buffer. These parameters are set with four subroutines:
glPixelStore, glPixelTransfer, glPixelMap, and glPixelZoom. This article describes the effects on
glDrawPixels of many, but not all, of the parameters specified by these four subroutines.

Data is read from the Pixels parameter as a sequence of signed or unsigned bytes, signed or unsigned
shorts, signed or unsigned integers, or single-precision floating-point values, depending on Type. Each of
these bytes, shorts, integers, or floating-point values is interpreted as one color or depth component, or
one index, depending on Format. Indices are always treated individually. Color components are treated as
groups of one, two, three, or four values, again based on Format. Both individual indices and groups of
components are referred to as pixels. If Type is GL_BITMAP, the data must be unsigned bytes, and
Format must be either GL_COLOR_INDEX or GL_STENCIL_INDEX. Each unsigned byte is treated as
eight 1-bit pixels, with bit ordering determined by GL_UNPACK_LSB_FIRST. (See glPixelStore.)

Width multiplied by Height pixels are read from memory, starting at location Pixels. By default these pixels
are taken from adjacent memory locations, except that after every Width pixels are read, the read pointer
is advanced to the next 4-byte boundary. The 4-byte row alignment is specified by glPixelStore with
argument GL_UNPACK_ALIGNMENT, and it can be set to 1, 2, 4, or 8 bytes. Other pixel store
parameters specify different read pointer advancements, both before the first pixel is read, and after all
Width pixels are read. Refer to the glPixelStore subroutine for details on these options.

The Width multiplied by Height pixels that are read from memory are each operated on in the same way,
based on the values of several parameters specified by glPixelTransfer and glPixelMap. The details of
these operations, as well as the target buffer into which the pixels will be drawn, are specific to the format

92 OpenGL 1.2 Reference Manual



of the pixels, as specified by Format. Format can assume one of the following 18 symbolic values:

GL_COLOR_INDEX

GL_STENCIL_INDEX

Each pixel is a single value, a color index. It is converted to fixed point,
with an unspecified number of bits to the right of the binary point,
regardless of the memory data type. Floating-point values convert to true
fixed-point values. Signed and unsigned integer data is converted with all
fraction bits set to 0 (zero). Bitmap data converts to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and
added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift
is to the right. In either case, 0 bits fill otherwise unspecified bit locations
in the result.

If the GL is in red, green, blue, alpha (RGBA) mode, the resulting index is
converted to an RGBA pixel using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables. If the GL is in color index mode and
GL_MAP_COLOR is True, the index is replaced with the value that it
references in the lookup table GL_PIXEL_MAP_I_TO_Il. Whether the
lookup replacement of the index is done or not, the integer part of the
index is then ANDed with 2b -1, where b is the number of bits in a color
index buffer.

The resulting indices or RGBA colors are then converted to fragments by
attaching the current raster position z coordinate and texture coordinates
to each pixel, then assigning x and y window coordinates to the nth
fragment such that xn = xr + n mod Width and yn = yr + [n/Width], where
(xr, yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each pixel is a single value, a stencil index. It is converted to fixed point,
with an unspecified number of bits to the right of the binary point,
regardless of the memory data type. Floating-point values convert to true
fixed-point values. Signed and unsigned integer data is converted with all
fraction bits set to 0. Bitmap data converts to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and
added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift
is to the right. In either case, 0 bits fill otherwise unspecified bit locations
in the result. If GL_MAP_STENCIL is True, the index is replaced with the
value that it references in the lookup table GL_PIXEL_MAP_S_TO_S.
Whether the lookup replacement of the index is done or not, the integer
part of the index is then ANDed with 2b -1, where b is the number of bits
in the stencil buffer. The resulting stencil indices are then written to the
stencil buffer such that the nth index is written to location xn = xr + n mod
Width and yn = yr + [n/Width], where (xr, yr) is the current raster position.
Only the pixel ownership test, the scissor test, and the stencil writemask
affect these write operations.

Chapter 1. OpenGL Subroutines 93



GL_DEPTH_COMPONENT

GL_RGBA

94 OpenGL 1.2 Reference Manual

Each pixel is a single depth component. Floating-point data is converted
directly to an internal floating-point format with unspecified precision.
Signed integer data is mapped linearly to the internal floating-point format
such that the most positive representable integer value maps to 1.0, and
the most negative representable value maps to -1.0. Unsigned integer
data is mapped similarly: the largest integer value maps to 1.0, and 0
maps to 0.0. The resulting floating-point depth value is then multiplied by
GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is
clamped to the range [0,1].

The resulting depth components are then converted to fragments by
attaching the current raster position color or color index and texture
coordinates to each pixel, then assigning x and y window coordinates to
the nth fragment such that xn = xr + n mod Width and yn = yr +
[n/Width], where (xr, yr) is the current raster position. These pixel
fragments are then treated just like the fragments generated by rasterizing
points, lines, or polygons. Texture mapping, fog, and all the fragment
operations are applied before the fragments are written to the frame
buffer.

Each pixel is a four-component group, red first, followed by green,
followed by blue, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED,
GREEN, BLUE, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.



GL_BGRA

GL_ABGR_EXT

GL_RED

Each pixel is a four-component group, blue first, followed by green,
followed by red, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,
GREEN, RED, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

Each pixel is a four-component group: for GL_RGBA, the red component
is first, followed by green, followed by blue, followed by alpha: for
GL_BGRA, the blue component is first, followed by green, followed by
red, followed by alpha: for GL_ABGR_EXT the order is alpha, blue,
green, and then red. Floating-point values are converted directly to an
internal floatingpoint format with unspecified precision. Signed integer
values are mapped linearly to the internal floating-point format such that
the most positive representable integer value maps to 1.0, and the most
negative representable value maps to -1.0. Unsigned integer data is
mapped similarly: the largest integer value maps to 1.0, and zero maps to
0.0. The resulting floating-point color values are then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,
BLUE, and ALPHA for the respective color components. The results are
clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size
of lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value that
it references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that

xn = xr + n mod width
yn=yr+ | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each pixel is a single red component. This component is converted to the
internal floating-point format in the same way as the red component of an
RGBA pixel is, then it is converted to an RGBA pixel with green and blue
set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated
just as if it had been sent in as an RGBA pixel.

Chapter 1. OpenGL Subroutines 95



GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

GL_BGR

GL_LUMINANCE

GL_LUMINANCE_ALPHA

GL_422_EXT

96 OpenGL 1.2 Reference Manual

Each pixel is a single green component. This component is converted to
the internal floating-point format in the same way as the green component
of an RGBA pixel is, then it is converted to an RGBA pixel with red and
blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is
treated just as if it had been sent in as an RGBA pixel.

Each pixel is a single blue component. This component is converted to
the internal floating-point format in the same way as the blue component
of an RGBA pixel is, then it is converted to an RGBA pixel with red and
green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is
treated just as if it had been sent in as an RGBA pixel.

Each pixel is a single alpha component. This component is converted to
the internal floating-point format in the same way as the alpha component
of an RGBA pixel is, then it is converted to an RGBA pixel with red,
green, and blue set to 0.0. After this conversion, the pixel is treated just
as if it had been sent in as an RGBA pixel.

Each pixel is a three-component group, red first, followed by green,
followed by blue. Each component is converted to the internal
floating-point format in the same way as the red, green, and blue
components of an RGBA pixel are. The color triple is converted to an
RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated
just as if it had been sent in as an RGBA pixel.

Each pixel is a three-component group, blue first, followed by green,
followed by red. Each component is converted to the internal floating-point
format in the same way as the blue, green, and red components of an
BGRA pixel are. The color triple is converted to an BGRA pixel with alpha
set to 1.0. After this conversion, the pixel is treated just as if it had been
sent in as an BGRA pixel.

Each pixel is a single luminance component. This component is converted
to the internal floating-point format in the same way as the red component
of an RGBA pixel is, then it is converted to an RGBA pixel with red,
green, and blue set to the converted luminance value, and alpha set to
1.0. After this conversion, the pixel is treated just as if it had been sent in
as an RGBA pixel.

Each pixel is a two-component group, luminance first, followed by alpha.
The two components are converted to the internal floating-point format in
the same way as the red component of an RGBA pixel is, then they are
converted to an RGBA pixel with red, green, and blue set to the converted
luminance value, and alpha set to the converted alpha value. After this
conversion, the pixel is treated just as if it had been sent in as an RGBA
pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. The Cb for each even pixel is used as the Cb value for that pixel
and its neighbor to the right. The Cr in each odd pixel is used as the Cr
value for that pixel and its neighbor to the left. (If the width of the image is
odd, then the colors will be undefined in the rightmost column.) Through
the use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.



GL_422_REV_EXT

GL_422_AVERAGE_EXT

GL_422 REV_AVERAGE_EXT

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. The Cb for each even pixel is used as the Cb value for that pixel and
its neighbor to the right. The Cr in each odd pixel is used as the Cr value
for that pixel and its neighbor to the left. (If the width of the image is odd,
then the colors will be undefined in the rightmost column.) Through the
use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor
to the right. Each odd pixel gets its Cb from the average of its left and
right neighbor, and its Cr from the average of itself and its neighbor two to
the right. (If the width of the image is odd, then the colors will be
undefined in the rightmost column. If the neighbors to the right are not
present for a given fragment, we use GL_422_EXT to compute that
fragment.) Through the use of the color matrix, Y then assumes the role
of red, Cb becomes green and Cr becomes blue. After this conversion,
the pixel is treated just as if it had been sent in as an RGB pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to
the right. Each odd pixel gets its Cb from the average of its left and right
neighbor, and its Cr from the average of itself and its neighbor two to the
right. (If the width of the image is odd, then the colors will be undefined in
the rightmost column. If the neighbors to the right are not present for a
given fragment, we use GL_422_REV_EXT to compute that fragment.)
Through the use of the color matrix, Y then assumes the role of red, Cb
becomes green and Cr becomes blue. After this convers ion, the pixel is
treated just as if it had been sent in as an RGB pixel.

The following table summarizes the meaning of the valid constants for the Type parameter:

Type
GL_UNSIGNED_BYTE
GL_BYTE

GL_BITMAP
GL_UNSIGNED_SHORT
GL_SHORT
GL_UNSIGNED_INT
GL_INT

GL_FLOAT
GL_UNSIGNED_BYTE_3_3_2
GL_UNSIGNED_BYTE_2_3_3_REV
GL_UNSIGNED_SHORT_5_6_5

Corresponding Type
Unsigned 8-bit integer
Signed 8-bit integer

Single bits in unsigned 8-bit integers
Unsigned 16-bit integer
Signed 16-bit integer
Unsigned 32-bit integer
32-bit integer
Single-precision floating-point
Unsigned 8-bit integer
Unsigned 8-bit integer
Unsigned 16-bit integer

Chapter 1. OpenGL Subroutines 97



GL_UNSIGNED_SHORT_5_6_5_REV Unsigned 16-bit integer

GL_UNSIGNED_SHORT 4 4 4 4 Unsigned 16-bit integer
GL_UNSIGNED_SHORT 4 4 4 4 REV Unsigned 16-bit integer
GL_UNSIGNED_SHORT 5 5 5 1 Unsigned 16-bit integer
GL_UNSIGNED_SHORT_1_5_5_5 REV Unsigned 16-bit integer
GL_UNSIGNED_INT_8_8_8_8 Unsigned 32-bit integer
GL_UNSIGNED_INT_8_8_8_8_REV Unsigned 32-bit integer
GL_UNSIGNED_INT_10_10_10_2 Unsigned 32-bit integer
GL_UNSIGNED_INT_2_10_10_10_REV Unsigned 32-bit integer

The rasterization described thus far assumed pixel zoom factors of 1.0. If glPixelZoom is used to change
the x and y pixel zoom factors, pixels are converted to fragments as follows. If (xr, yr) is the current raster
position, and a given pixel is in the nth column and mth row of the pixel rectangle, fragments are
generated for pixels whose centers are in the rectangle with corners at (xr + zoomx n, yr + zoomy m) and
(xr + zoomx (n + 1), yr + zoomy (m + 1)), where zoomx is the value of GL_ZOOM_X and zoomy is the
value of GL_ZOOM_Y.

Parameters
Width Specifies the width of the pixel rectangle that will be written into the frame buffer.
Height Specifies the height of the pixel rectangle that will be written into the frame buffer.

Format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_STENCIL_INDEX,
GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
GL_BGR, GL_BGRA, GL_ABGR_EXT, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_422_EXT,
GL_422_REV_EXT, GL_422_AVERAGE_EXT, and GL_422_REV_AVERAGE_EXT are accepted.

Type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,
GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4 4,
GL_UNSIGNED_SHORT _4_4 4 4 REV, GL_UNSIGNED_SHORT_5_5
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,

GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10__10_2, and

4
51,

=

GL_UNSIGNED_INT_2_10_10_10_REV, are accepted.
Pixels Specifies a pointer to the pixel data.

Notes

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL
command set.

Packed pixel types and BGR/BGRA formats are only supported in OpenGL 1.2 or later.

Errors

GL_INVALID_VALUE Either Width or Height is negative.

GL_INVALID_ENUM Format or Type is not one of the accepted values.

GL_INVALID_OPERATION Format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,
GL_RGBA, GL_AGBR_EXT, GL_LUMINANCE, GL_LUMINANCE_ALPHA,
and the GL is in color index mode.

GL_INVALID_ENUM Type is GL_BITMAP and Format is not either GL_COLOR_INDEX or
GL_STENCIL_INDEX.

GL_INVALID_OPERATION Format is GL_STENCIL_INDEX and there is no stencil buffer.

GL_INVALID_OPERATION The glDrawPixels subroutine is called between a call to glBegin and the

corresponding call to glEnd.

98 OpenGL 1.2 Reference Manual



Associated Gets

Associated gets for the glDrawPixels subroutine are as follows. (See thesubroutine for more
information.)

glGet with argument GL_CURRENT_RASTER_POSITION

glGet with argument GL_CURRENT_RASTER_POSITION_VALID.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [glAIphaFunc] subroutine, [giBegin| or glEnd subroutine, [giBlendFunc] subroutine, [giCopyPixels
subroutine, |giDepthFunc] subroutine, [glLogicOp| subroutine, [gIPixelMap| subroutine, [glIPixelStore
IPixelTransfer| subroutine, [glPixelZoom| subroutine, |gIRasterPo§| subroutine, |g|ReadPier§|

subroutine,
subroutine, [glScisso subroutine,|gIStenciIFun<_:|subroutine.

gliDrawRangeElements Subroutine

Purpose
Renders primitives from array data. This subrotuine is only supported on OpenGL 1.2 and later.
Library
OpenGL C bindings library: libGL.a
C Syntax
void g1DrawRangeElements (GLenum
GLuint
GLuint
GLsizei )
GLenum N
const GLvoid [xindices])
Description

The glDrawRangeElements subroutine lets you specify multiple geometric primitives with very few
subroutine calls. Instead of calling a GL function to pass each individual vertex, normal, texture coordinate,
edge flage, or color, you can prespecify separate arrays of vertexes, normals, and so on and use them to
construct a sequence of primitives with a single call to glDrawRangeElements.

When glDrawRangeElements is called, it uses count sequential elements from indices to construct a
sequence of geometric primitives. GLuint start and GLuint end specify the values between which all
values in the array indices must lie. GLenum mode specifies what kind of primitives are constructed and
how the array elements construct these primitives. If GL_VERTEX_ARRAY is not enabled, no geometric
primitives are generated.

The recommended maximum amounts of vertex and index data can be determined by calling Getintegerv
with the symbolic constants MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If
end-start+1 is greater than the value of MAX_ELEMENTS_VERTICES,or if count is greater than the value

Chapter 1. OpenGL Subroutines 99



of MAX_ELEMENTS_INDICES, then the call may operate at reduced performance. There is no
requirement that all vertices in the range [start,end] be referenced. However, the implementation may
partially process unused vertices, reducing performance from what could be achieved with an optimal
index set.

Vertex attributes that are modified by glDrawRangeElements have an unspecified value after
glDrawRangeElements returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current
color is undefined after giDrawRangeElements executes. Attributes that are not modified remain well
defined.

Parameters

mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,
GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

start Specifies the start value in indices. Must be less than the end value in indices.

end Specifies the end value in indices. Must be greater than the start value in indices.

count Specifies the number of elements to be rendered.

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

Notes

The glDrawRangeElements subroutine is available only if the GL version is 1.1 or greater.

The glDrawRangeElements subroutine is included in display lists. If gIDrawRangeElements is entered
into a display list, the necessary array data (determined by the array pointers and enables) is also entered
into the display list. Because the array pointers and enables are client side state, their values affect display
lists when the lists are created, not when the lists are executed.

Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative or the end value is less than the start value.

GL_INVALID_OPERATION is generated if giIDrawRangeElements is executed between the execution of
glBegin and the corresponding glEnd.

Related Information
The [glArrayElement| subroutine, [giColorPointer| subroutine, subroutine,
|gIEdgeFIa Pointer| subroutine, lglGetPointerv| subroutine, %IlndexPointe subroutine,|gINormaIPointe|1

subroutine, |giTexCoordPointer| subroutine, [glVertexPointer| subroutine.

glEdgeFlag Subroutine

Purpose
Marks edges as either boundary or nonboundary.

Library
OpenGL C bindings library: libGL.a

100 OpenGL 1.2 Reference Manual



C Syntax
void glEdgeFlag(GLboolean [Flag)

void glEdgeFlagv(const GLboolean [+Flagvl)

Description

Each vertex of a polygon, separate triangle, or separate quadrilateral specified between giBegin and
glEnd is marked as the start of either a boundary or nonboundary edge. If the current edge flag is True
when the vertex is specified, the vertex is marked as the start of a boundary edge. Otherwise, the vertex is
marked as the start of a nonboundary edge. glEdgeFlag sets the edge flag to True if the Flag parameter
is nonzero; otherwise, the edge flag is set to False.

The vertices of connected triangles and connected quadrilaterals are always marked as a boundary,
regardless of the value of the edge flag.

Boundary and nonboundary edge flags on vertices are significant only if GL_POLYGON_MODE is set to
GL_POINT or GL_LINE. See glPolygonMode.

Initially, the edge flag bit is True.

Parameters
Flag Specifies the current edge flag value, either True or False.
Flagv Specifies a pointer to an array that contains a single Boolean element (either True or False). Replaces the

current edge flag value.

Notes

The current edge flag can be updated at any time. In particular, glEdgeFlag can be called between a call
to glBegin and the corresponding call to glEnd.

Associated Gets

Associated gets for the glEdgeFlag subroutine are as follows. (See the [giGet subroutine for more
information.)

glGet with argument GL_EDGE_FLAG.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin] subroutine, |?IEdgeFlagPointer1 subroutine, [gIEdgeFlagPointerEXT| subroutine,

subroutine, [gIPolygonMode| subroutine.

glEdgeFlagPointer Subroutine

Purpose
Defines an array of edge flags.

Chapter 1. OpenGL Subroutines 101



Library
OpenGL C bindings library: libGL.a

C Syntax

void glEdgeFlagPointer( GLsizei ,
const GLvoid =*

Description

The glEdgeFlagPointer subroutine specifies the location and data format of an array of Boolean edge
flags to use when rendering. The stride parameter gives the byte stride from one edge flag to the next
allowing vertices and attributes to be packed into a single array or stored in separate arrays. (Single array
storage may be more efficient on some implementations; see |9IInterIeavedArrays|.)

When an edge flag array is specified, stride and pointer are saved as client side state.

To enable and disable the edge flag array, call glEnableClientState and glDisableClientState with the
argument GL_EDGE_FLAG_ARRAY. If enabled, the edge flag array is used when glDrawArrays,
glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Edge Flag array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

stride Specifies the byte offset between consecutive edge flags. If stride is zero (the initial value), the edge
flags are understood to be tightly packed in the array. The initial value is 0.

pointer Specifies a pointer to the first edge flag in the array. The initial value is 0 (NULL pointer).

Notes

The glEdgeFlagPointer subroutine is available only if the GL version is 1.1 or greater.

The edge flag array is initially disabled and it won’t be accessed when glArrayElement, giDrawElements,
or glDrawArrays is called.

Execution of glEdgeFlagPointer is not allowed between glBegin and the corresponding glEnd, but an
error may or may not be generated. If an error is not generated, the operation is undefined.

The glEdgeFlagPointer subroutine is typically implemented on the client side with no protocol.

Since the edge flag array parameters are client side state, they are not saved or restored by glPushAttrib
and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glEdgeFlagPointer subroutine is not included in display lists.

Error Codes
GL_INVALID_ENUM is generated if stride is negative.

102 OpenGL 1.2 Reference Manual



Associated Gets
glisEnabled with argument GL_EDGE_FLAG_ARRAY

glGet with argument GL_EDGE_FLAG_ARRAY_STRIDE

glGetPointerv with argument GL_EDGE_FLAG_ARRAY_POINTER

Related Information

The |gIArravEIement|subroutine,g| IColorPointer subroutine, [giDrawArrays] subroutine, [giDrawElements]
subroutine, |glEdgeFlagPointerListIBM| subroutine, |glEnabl subroutine,lgI_GetPointerv subroutine,
glindexPointer| subroutine, |gINormaIPointer1 subroutine, |gIPopClientAttrib| subroutine,
[glPushClientAttrib| subroutine, |giTexCoordPointer| subroutine, |gIVertexPointer subroutine.

glEdgeFlagPointerEXT Subroutine

Purpose

Defines an array of edge flags.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glEdgeFlagPointerEXT(GLsizei ,
GLsizei |count|,
const GLboolean |*pointer|b

Description

glEdgeFlagPointerEXT specifies the location and data format of an array of boolean edge flags to use
when rendering. stride gives the byte stride from one edge flag to the next allowing vertexes and attributes
to be packed into a single array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations.) count indicates the number of array elements (counting from the first) that are
static. Static elements may be modified by the application, but once they are modified, the application
must explicitly respecify the array before using it for any rendering. When an edge flag array is specified,
stride, count and pointer are saved as client-side state, and static array elements may be cached by the
implementation.

The edge flag array is enabled and disabled using glEnable and glDisable with the argument
GL_EDGE_FLAG_ARRAY_EXT. If enabled, the edge flag array is used when glDrawArraysEXT or
glArrayElementEXT is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIiBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Edge Flag array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Chapter 1. OpenGL Subroutines 103



Parameters

stride Specifies the byte offset between consecutive edge flags. If stride is zero the edge flags are
understood to be tightly packed in the array.

count Specifies the number of edge flags, counting from the first, that are static.

pointer Specifies a pointer to the first edge flag in the array.

Notes

Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the edge flag array is disabled and it won’t be accessed when glArrayElementEXT or
glDrawArraysEXT is called.

Although, it is not an error to call glEdgeFlagPointerEXT between the execution of glBegin and the
corresponding execution of glEnd, the results are undefined.

glEdgeFlagPointerEXT will typically be implemented on the client side with no protocol.

Since the edge flag array parameters are client side state, they are not saved or restored by glPushAttrib
and glPopAttrib.

glEdgeFlagPointerEXT commands are not entered into display lists.
glEdgeFlagPointerEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL

command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when
called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors
GL_INVALID_ENUM is generated if stride or count is negative.

Associated Gets
glisEnabled with argument GL_EDGE_FLAG_ARRAY_EXT .

glGet with argument GL_EDGE_FLAG_ARRAY_STRIDE_EXT.

glGet with argument GL_EDGE_FLAG_ARRAY_COUNT_EXT.

glGetPointervEXT with argument GL_EDGE_FLAG_ARRAY_POINTER_EXT.

File

lust/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The [glArrayElementEXT] subroutine, |glColorPointerEXT| subroutine, [giDrawArraysEXT| subroutine,
IGetPointervEXT]| subroutine, [glindexPointerEXT| subroutine, |gINormalPointerEXT| subroutine,
ITexCoordPointerEXT| subroutine, |gIVertexPointerEXT| subroutine.

104 OpenGL 1.2 Reference Manual



glEdgeFlagPointerListiBM Subroutine

Purpose
Defines a list of edge flag arrays.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glEdgeFlagPointerListIBM ( GLint ,
const GLboolean ** lEointerL

GLint |ptrstride

Description

The glEdgeFlagPointerListIBM subroutine specifies the location and data format of a list of arrays of
edge flags to use when rendering. The stride parameter gives the byte stride from one edge flag to the
next allowing vertices and attributes to be packed into a single array or stored in separate arrays.
(Single-array storage may be more efficient on some implementations; see glinterleavedArrays). The
ptrstride parameter specifies the byte stride from one pointer to the next in the pointer array.

When an edge flag array is specified, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a "tightly packed” array as it does in glEdgeFlagPointer. Instead, it
causes the first array element of each array to be used for each vertex. Also, a negative value can be
used for stride, which allows the user to move through each array in reverse order.

To enable and disable the edge flag arrays, call glEnableClientState and glDisableClientState with the
argument GL_EDGE_FLAG_ARRAY. The edge flag array is initially disabled. When enabled, the edge
flag arrays are used when glMultiDrawArraysEXT, glMultiDrawElementsEXT,
glMultiModeDrawArraysIBM, glMultiModeDrawElementsiBM, glDrawArrays, glDrawElements or
glArrayElement is called. The last three calls in this list will only use the first array (the one pointed at by
pointer[0]). See the descriptions of these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Edge Flag array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

stride Specifies the byte offset between consecutive edge flags. The initial value is 0.

pointer Specifies a list of edge flag arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.
Notes

The glEdgeFlagPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is
supported.

Chapter 1. OpenGL Subroutines 105



Execution of glEdgeFlagPointerListIBM is not allowed between glBegin and the corresponding glEnd,
but an error may or may not be generated. If an error is not generated, the operation is undefined.

The glEdgeFlagPointerListIBM subroutine is typically implemented on the client side.

Since the edge flag array parameters are client side state, they are not saved or restored by glPushAttrib
and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glEdgeFlagPointerListIBM call is encountered while compiling a display list, the information it
contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glEdgeFlagPointer call and the glEdgeFlagPointerListIBM call share the same state variables. A
glEdgeFlagPointer call will reset the edge flag list state to indicate that there is only one edge flag list, so
that any and all lists specified by a previous glEdgeFlagPointerListIBM call will be lost, not just the first
list that it specified.

Error Codes
None.

Associated Gets
glisEnabled with argument GL_EDGE_FLAG_ARRAY.

glGetPointerv with argument GL_EDGE_FLAG_ARRAY_LIST_IBM.
glGet with argument GL_EDGE_FLAG_ARRAY_LIST_STRIDE_IBM.

glGet with argument GL_EDGE_FLAG_ARRAY_STRIDE.

Related Information

The [glArrayElement| subroutine, !glEdgeFlagPointej subroutine, [glDrawArrays]| subroutine,

[giDrawElements]| subroutine, [glEdgeFlagPointer] subroutine, [glEnable| subroutine, [giGetPointerv]

subroutine, [glindexPointer subroutine, [glinterleavedArrays| subroutine, |giMultiDrawArraysEXT]|

subroutine, [gIMultiDrawElementsEXT| subroutine, [giMultiModeDrawArraysIBM| subroutine,
IMultiModeDrawElementsIBM| subroutine, |gINormalPointer| subroutine, [giPopClientAttrib| subroutine,
IPushClientAttrib| subroutine, [glTexCoordPointer| subroutine, [glVertexPointer| subroutine.

glEnable or glDisable Subroutine

Purpose
Enables or disables a GL capability.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glEnable(GLenum [capability)
void glDisable(GLenum [capability)

Description

glEnable and glDisable enable and disable various capabilities. Use gllsEnable or glGet to determine
the current setting of any capability. Both glEnable and glDisable take a single argument, capability,
which may assume one of the following values:

106 OpenGL 1.2 Reference Manual



GL_ALPHA_TEST
GL_AUTO_NORMAL

GL_BLEND

GL_CLIP_PLANE/

GL_COLOR_ARRAY_EXT

GL_COLOR_LOGIC_OP

GL_COLOR_MATERIAL

GL_COLOR_SUM_EXT

GL_CULL_FACE

GL_CULL_VERTEX_IBM

GL_DEPTH_TEST
GL_DITHER

GL_EDGE_FLAG_ARRAY_EXT

If enabled, do alpha testing. (See [glAlphaFunc})

If enabled, compute surface normal vectors analytically when
either GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4 is used
to generate vertices. (See )

If enabled, blend the incoming red, green, blue, alpha (RGBA)
color values with the values in the color buffers. (See

glBlendFunc})
If enabled, clip geometry against user-defined clipping plane i.
(See|glClipPlane})

If enabled, colors are taken from the color array when
EIArrayElementEXT or glDrawArraysEXT is called. (See

IColorPointerEXT] glArrayElementEXT| and
IDrawArraysEXT])
If enabled, apply the currently selected logical operation to the
incoming color and color buffer values. The initial value is

GL_FALSE. (See [glLogicOp})

If enabled, have one or more material parameters track the
current color. (See [giColorMateriall)

If enabled, user may specify the RGB components of the
secondary color used in the Color Sum stage, instead of using the
default (0,0,0,0) color. This applies only in RGBA mode and when
LIGHTING is disabled. (See |glSecondaryColorEXT})

If enabled, cull polygons based on their winding in window
coordinates. (See )

If enabled, cull polygons based on their vertex normals. When
vertex culling is enabled, vertices are classified as front or back
facing according to the sign of the dot product between the
normal at the vertex and an eye direction vector from the vertex
toward the eye position. When (normal dot eye_direction) <= 0 the
vertex is classified as back facing. When (normal dot
eye_direction) > 0 the vertex is classified as front facing. Vertices
are culled when the face orientation determined by the dot
product is the same as the face specified by CullFace. When all
of the vertices of a polygon are culled, then the polygon may be
culled. Unlike GL_CULL_VERTEX_EXT, vertex culling using
GL_CULL_VERTEX_IBM does not necessarily result in polygons
being culled even if all of the vertices of the polygon are culled.
The eye direction is determined by transforming the column vector
(0, 0, 1) by the upper leftmost 3x3 matrix taken from the inverse
of the modelview matrix. The eye direction is undefined if the
modelview matrix is singular or nearly singular. This operation in
effect projects the z axis in eye coordinates back into object
space. If the projection matrix or DepthRange settings cause the z
axis in window coordinates to be misaligned with the z axis in eye
coordinates, this extension should not be used. Vertex culling is
performed independently of face culling. Polygons on the
silhouettes of objects may have both front and back facing
vertices. Since polygons are culled only if all of their vertices are
culled and are not necessarily culled by GL_CULL_VERTEX_IBM
even in that case, face culling may have to be used in addition to
vertex culling in order to correctly cull silhouette polygons.

If enabled, do depth comparisons and update the depth buffer.
(See [gIDepthFunc| and |giDepthRange})

If enabled, dither color components or indices before they are
written to the color buffer.

If enabled, edge flags are taken from the edge flags array when
§IArrayEIementEXT or glDrawArraysEXT is called. (See

IEdgeFlagPointerEXT] [glArrayElementEXT| and
IDrawArraysEXT})

Chapter 1. OpenGL Subroutines 107



GL_FOG

GL_INDEX_ARRAY_EXT

GL_LIGHT/

GL_LIGHTING

GL_LINE_SMOOTH
GL_LINE_STIPPLE
GL_LOGIC_OP
GL_MAP1_COLOR_4
GL_MAP1_INDEX
GL_MAP1_NORMAL
GL_MAP1_TEXTURE_COORD _1

GL_MAP1_TEXTURE_COORD_2

GL_MAP1_TEXTURE_COORD_3

GL_MAP1_TEXTURE_COORD_4

GL_MAP1_VERTEX_3

GL_MAP1_VERTEX_4

GL_MAP2_COLOR_4
GL_MAP2_INDEX
GL_MAP2_NORMAL
GL_MAP2_TEXTURE_COORD _1

GL_MAP2_TEXTURE_COORD_2

GL_MAP2_TEXTURE_COORD_3

GL_MAP2_TEXTURE_COORD_4

108 OpenGL 1.2 Reference Manual

If enabled, blend a fog color into the post-texturing color. (See
falFog))

If enabled, color indexes are taken from the color index array
when glArrayElementEXT or glDrawArraysEXT is called. (See

EllndexPointerEXTl, [glArrayElementEXT]| and

IDrawArraysEXT])

If enabled, include light i in the evaluation of the lighting equation.
(See [glLightModel| and |glLight])

If enabled, use the current lighting parameters to compute the
vertex color or index. Otherwise, simply associate the current
color or index with each vertex. (See |gIMateriall [glLightModel
and [gILight])
If enabled, draw lines with correct filtering. Otherwise, draw
aliased lines. (See [glLineWidth])

If enabled, use the current line stipple pattern when drawing lines.
(See [glLineStipple])

If enabled, apply the currently selected Ioiical oieration to the

incoming and color buffer indices. (See |glLogicOp])

If enabled, calls to glEvalCoord1, glEvalMesh1, and
glEvalPoint1 will generate RGBA values. (See [giMap1])

If enabled, calls to glEvalCoord1, glEvalMesh1, and
glEvalPoint1 will generate color indices. (See )

If enabled, calls to glEvalCoord1, glEvalMesh1, and
glEvalPoint1 will generate normals. (See [giMap1])

If enabled, calls to glEvalCoord1, glEvalMesh1, and
glEvalPoint1 will generate s texture coordinates. (See [giMap1])
If enabled, calls to glEvalCoord1, glEvalMesh1, and
glEvalPoint1 will generate s and t texture coordinates. (See
gIMap1})

If enabled, calls to glEvalCoord1, glEvalMesh1, and
glEvalPoint1 will generate s, t, and r texture coordinates. (See
gIMap1})

If enabled, calls to glEvalCoord1, glEvalMesh1, and
glEvalPoint1 will generate s, t, r, and q texture coordinates. (See
gIMap1})

If enabled, calls to glEvalCoord1, glEvalMesh1, and

glEvalPoint1 will generate will generate x, y, and z vertex
coordinates. (See )

If enabled, calls to glEvalCoord1, glEvalMesh1, and
glEvalPoint1 will generate homogeneous x, y, z, and w vertex
coordinates. (See )

If enabled, calls to glEvalCoord2, glEvalMesh2, and
glEvalPoint2 will generate RGBA values. (See [giMap2})

If enabled, calls to glEvalCoord2, glEvalMesh?2, and
glEvalPoint2 will generate color indices. (See [giMap2])

If enabled, calls to glEvalCoord2, glEvalMesh?2, and
glEvalPoint2 will generate normals. (See )

If enabled, calls to glEvalCoord2, glEvalMesh2, and
glEvalPoint2 will generate s texture coordinates. (See [giMap2])
If enabled, calls to glEvalCoord2, glEvalMesh2, and
glEvalPoint2 will generate s and t texture coordinates. (See
gIMap2})

If enabled, calls to glEvalCoord2, glEvalMesh2, and
glEvalPoint2 will generate s, t, and r texture coordinates. (See
gIMap2})

If enabled, calls to glEvalCoord2, glEvalMesh2, and
glEvalPoint2 will generate s, t, r, and q texture coordinates. (See

gIMap2})



GL_MAP2_VERTEX_3

GL_MAP2_VERTEX_4

GL_NORMAL_ARRAY_EXT

GL_NORMALIZE

GL_OCCLUSION_CULLING_HP

GL_POLYGON_OFFSET_EXT

GL_POLYGON_OFFSET_FILL

GL_POLYGON_OFFSET_LINE

GL_POLYGON_OFFSET_POINT

GL_POINT_SMOOTH

GL_POLYGON_SMOOTH

GL_POLYGON_STIPPLE

GL_RESCALE_NORMAL

GL_RESCALE_NORMAL_EXT

GL_SCISSOR_TEST

If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate will generate x, y, and z vertex
coordinates. (See )

If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate homogeneous x, y, z, and w vertex
coordinates. (See )

If enabled, normals are taken from the normal array when
EIArrayElementEXT or glDrawArraysEXT is called. (See

INormalPointerEXT] |glArrayElementEXT| and

IDrawArraysEXT})
If enabled, normal vectors specified with gINormal are scaled to
unit length after transformation. (See [gINormal})
If enabled, the occlusion testing described within extension
HP_occlusion_test is performed. This extension allows an
application to render some geometry and, at the completion of the
rendering, to determine if any of the geometry could or did modify
the depth buffer (in other words, a depth buffer test succeeded).
(See glGet with parameter
GL_OCCLUSION_TEST_RESULT_HP). Occlusion culling
operates independently of the current rendering state (in other
words, when occlusion culling is enabled, fragments are
generated and the depth and/or color buffer may be updated). To
prevent updating the depth/color buffers, the application must
disable updates to these buffers. As a side effect of calling glGet
with parameter GL_OCCLUSION_TEST_RESULT_HP, the
internal result state is cleared, and it is reset for a new bounding
box test.
If enabled, an offset is added to z values of a polygon’s fragments
before the depth comparison is performed. (See
[glPolygonOffsetEXT])
If enabled, and if the polygon is rendered in GL_FILL mode, an
offset is added to z values of a polygon’s fragments before the

depth comparison is performed. The initial value is GL_FALSE.
(See|glPolygonOffset!)

If enabled, and if the polygon is rendered in GL_LINE mode, an
offset is added to z values of a polygon’s fragments before the

depth comparison is performed. The initial value is GL_FALSE.
(See|glPolygonOffset!)

If enabled, an offset is added to z values of a polygon’s fragments
before the depth comparison is performed, if the polygon is
rendered in GL_POINT mode. The initial value is GL_FALSE.

(See |glPolygonOffset])

If enabled, draw points with proper filtering. Otherwise, draw

aliased points. (See
If enabled, draw polygons with proper filtering. Otherwise, draw
aliased polygons. (See |gIPolygonMode])

If enabled, use the current polygon stipple pattern when rendering
polygons. (See |gIPoI¥gonStiEEIg|)

If normal rescaling is enabled, a new operation is added to the
transformation of the normal vector into eye coordinates. The
normal vector is rescaled after it is multiplied by the inverse
modelview matrix and before it is normalized.

If normal rescaling is enabled, a new operation is added to the
transformation of the normal vector into eye coordinates. The
normal vector is rescaled after it is multiplied by the inverse
modelview matrix and before it is normalized.

If enabled, discard fraiments that are outside the scissor

rectangle. (See [glScissor])

Chapter 1. OpenGL Subroutines 109



GL_STENCIL_TEST

GL_TEXTURE_1D

GL_TEXTURE_2D

GL_TEXTURE_3D

GL_TEXTURE_3D_EXT

GL_TEXTURE_COLOR_TABLE_EXT

GL_TEXTURE_COORD_ARRAY_EXT

GL_TEXTURE_GEN_Q

GL_TEXTURE_GEN_R

GL_TEXTURE_GEN_S

GL_TEXTURE_GEN_T

GL_UPDATE_CLIP_VOLUME_HINT

GL_VERTEX_ARRAY_EXT

If enabled, do stencil testing and update the stencil buffer. (See
[glStencilFunc|and [gIStencilOp})

If enabled, one-dimensional texturing is performed (unless
two-dimensional texturing is also enabled). (See )
If enabled, two-dimensional texturing is performed. (See
[giTeximage2D])

If enabled, three-dimensional texturing is performed. (See
[glTeximageaD))

If enabled, three-dimensional texture mapping is performed. (See
[gITeximage3DEXT])

If enabled, a color lookup table is added to the texture
mechanism. (See )
If enabled, texture coordinates are taken from the texture
coordinates array when glArrayElementEXT or
IDrawArraysEXT is called. (See |gITexCoordPointerEXT|
élArrayElementEXTI and |glDrawArraysEXT])
If enabled, the g texture coordinate is computed using the texture
generation function defined with glTexGen. Otherwise the current
q texture coordinate is used. (See [gITexGen])
If enabled, the rtexture coordinate is computed using the texture
generation function defined with glTexGen. Otherwise the current
rtexture coordinate is used. (See [gITexGen])
If enabled, the s texture coordinate is computed using the texture
generation function defined with glTexGen. Otherwise the current
s texture coordinate is used. (See [giTexGen])
If enabled, the t texture coordinate is computed using the texture
generation function defined with glTexGen. Otherwise, the current
t texture coordinate is used. (See [gITexGen])
If enabled, calls to ClipBoundingBoxIBM,
ClipBoundingSpherelBM, and ClipBoundingVerticesIBM will
result in updates to the VOLUME_CLIPPING_HINT_EXT state. A
result of REJECT_IBM causes the hint to be set to DONT_CARE.
A result of CLIP_IBM causes the hint to be set to NICEST. A
result of ACCEPT_IBM causes the hint to be set to FASTEST. If
the EXT_clip_volume_hint extension is not supported, then the
UPDATE_CLIP_VOLUME_HINT enable state has no effect. (See
EICIipBoundingBoxlBMl [gIClipBoundingSpherelBM|} or
ICIipBoundingVerticesIBM[ )
If enabled, vertexes are taken from the vertex array when

IArrayElementEXT or glDrawArraysEXT is called. (See
IVertexPointerEXT] |glArrayElementEXT| and
IDrawArraysEXT])

Parameters

capability Specifies a symbolic constant indicating a GL capability. Initially, all are disabled except
GL_DITHER.

Errors

GL_INVALID_ENUM
GL_INVALID_OPERATION

110 OpenGL 1.2 Reference Manual

capability is not an accepted value.
The glEnable subroutine is called between a call to glBegin and the
corresponding call to glEnd.



Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The|gIAIphaFunc| subroutine, |glArrayElementEXT| subroutine, |gIBegin| or glEnd subroutine,

[g!BlendFunc] subroutine, |gIClipPlane] subroutine, |9ICoIorMateriaIi subroutine, [gIColorPointerEXT]

subroutine, [gICullFace| subroutine, |giDepthFunc| subroutine, |giDepthRange| subroutine,

[giDrawArraysEXT] subroutine, |gIEd§eFlalPointerEXT| subroutine, |gIFo subroutine,!%IlndexPointerEXTI

subroutine, [gllsEnabled| subroutine, |glLight| subroutine, |glLightModel| subroutine, [glLineStipple
|gILogicOng

subroutine, |glLineWidth| subroutine, and the ubroutine.

The g| IMap1|subroutine,|§IMap2| subroutine,gl| IMateriaI|subroutine,g| INormal| subroutine,

lgINormalPointerEXT] subroutine, |gIPointSize] subroutine, |gIPolygonMode] subroutine, [gIPolygonOffsef]
subroutine, IgIPongonOffsetEXTI subroutine, |gIPolygonStipple] subroutine, |giScissor subroutine,
[glTexCoordPointerEXT] subroutine, [glTexGen| subroutine, |glTeximage1D] subroutine, [giTeximage2
subroutine, and the [gITexlmage3DEXT] subroutine.

glEnableClientState or glDisableClientState Subroutine

Purpose
Enables or disables an array.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glEnableClientState(GLenum [array)

void glDisableClientState(GLenum [orray)

Description

The glEnableClientState subroutine lets you enable individual arrays, and glDisableClientState lets you
disable individual arrays.

Parameters

array Specifies the array to enable or disable. Symbolic constraints GL_EDGE_FLAG_ARRAY,
GL_TEXTURE_COORD_ARRAY, GL_COLOR_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY,
GL_VERTEX_ARRAY, GL_FOG_COORDINATE_ARRAY_EXT, and
GL_SECONDARY_COLOR_ARRAY_EXT are accepted (for glEnableClientState).

Notes

The glEnableClientState and glDisableClientState subroutines are available only if the GL version is 1.1
or greater.

Errors
GL_INVALID_ENUM is generated if array is not an accepted value.

Chapter 1. OpenGL Subroutines 111



The glEnableClientState subroutine is not allowed between the execution of glBegin and the
corresponding glEnd, but an error may or may not be generated. If no error is generated then the
behavior is undefined.

Related Information

The [glArrayElement] subroutine, [giColorPointer] subroutine, [giDrawArrays| subroutine, [giDrawElements|
subroutine, [gIEdgeFlagPointer| subroutine, |ﬁIEnabIe| subroutine, [glGetPointerv| subroutine,

subroutine, |glindexPointe subroutine,|g||nterleavedArrays| subroutine,
ISecondaryColorEXT]| subroutine, |giTexCoordPointer| subroutine,

glEvalCoord Subroutine

Purpose
Evaluates enabled one-dimensional (1D) and two-dimensional (2D) maps.

Library
OpenGL C bindings library: libGL.a

C Syntax

glEvalCoord1d
void glEvalCoordld(GLdouble EI)

void glEvalCoordlf(GLfloat

void glEvalCoord2d(GLdouble [,
GLdouble

void glEvalCoord2f(GLfloat ,
GLfloat

glEvalCoord1dv
void glEvalCoordldv(const GLdouble * |u)

void glEvalCoordlfv(const GLfloat *
void glEvalCoord2dv(const GLdouble *

void glEvalCoord2fv(const GLfloat *

Description

The glEvalCoord1 subroutine evaluates enabled 1D maps at argument u. The glEvalCoord2 subroutine
does the same for 2D maps using two domain values, u and v. Maps are defined with giMap1 and
glMap2, and enabled and disabled with glEnable and glDisable.

When one of the glEvalCoord subroutines is issued, all currently enabled maps of the indicated
dimension are evaluated. Then, for each enabled map, it is as if the corresponding GL subroutine was
issued with the computed value. That is, if GL_MAP1_INDEX or GL_MAP2_INDEX is enabled, a glindex
subroutine is simulated. If GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4 is enabled, a glColor
subroutine is simulated. If GL_MAP1_NORMAL or GL_MAP2_NORMAL is enabled, a normal vector is
produced, and if any of GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1_TEXTURE_COORD_3, GL_MAP1_TEXTURE_COORD_4, GL_MAP2_TEXTURE_COORD_1,

112  OpenGL 1.2 Reference Manual



GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3, or
GL_MAP2_TEXTURE_COORD_4 is enabled, an appropriate glTexCoord subroutine is simulated.

The GL uses evaluated values instead of current values for those evaluations that are enabled, and
current values otherwise, for color, color index, normal, and texture coordinates. However, the evaluated
values do not update the current values. Thus if glVertex subroutines are interspersed with glEvalCoord
subroutines, the color, normal, and texture coordinates associated with the glVertex subroutines will not be
affected by the values generated by the glEvalCoord subroutines, but rather only by the most recent
glColor, glindex, giNormal, and glTexCoord subroutines.

No subroutines are issued for maps that are not enabled. If more than one texture evaluation is enabled
for a particular dimension (for example, GL_MAP2_TEXTURE_COORD_1 and
GL_MAP2_TEXTURE_COORD_2), only the evaluation of the map that produces the larger number of
coordinates (in this case, GL_MAP2_TEXTURE_COORD_2) is carried out. GL_MAP1_VERTEX_4
overrides GL_MAP1_VERTEX_3, and GL_MAP2_VERTEX_4 overrides GL_MAP2_VERTEX_3 in the
same manner. If neither a three-component nor a four-component vertex map is enabled for the specified
dimension, the glEvalCoord subroutine is ignored.

If automatic normal generation is enabled by calling glEnable with argument GL_AUTO_NORMAL,
glEvalCoord2 generates surface normals analytically, regardless of the contents or enabling of the
GL_MAP2_NORMAL map. Let:

m = (delta p / delta u) (delta p / delta v)

Then the generated normal n is

n=mn/||m]

If automatic normal generation is disabled, the corresponding normal map GL_MAP2_NORMAL, if
enabled, is used to produce a normal. If neither automatic normal generation nor a normal map is enabled,
no normal is generated for glEvalCoord2 subroutines.

Parameters
glEvalCoordid

u Specifies a value that is the domain coordinate u to the basis function defined in a previous glMap1 or giMap2
subroutine.

v Specifies a value that is the domain coordinate v to the basis function defined in a previous glMap2
subroutine. This argument is not present in an glEvalCoord1 subroutine.

glEvalCoord1dv

u Specifies a pointer to an array containing either one or two domain coordinates. The first coordinate is u. The
second coordinate is v, and is present only in glEvalCoord2 versions.

Associated Gets

Associated gets for the glEvalCoord subroutine are as follows. (See the subroutine for more
information.)

glisEnabled| with argument GL_MAP1_VERTEX_3.

glisEnabled with argument GL_MAP1_VERTEX 4.

glisEnabled with argument GL_MAP1_INDEX.

Chapter 1. OpenGL Subroutines 113



gllsEnabled with argument GL_MAP1_COLOR_4.
gllsEnabled with argument GL_MAP1_NORMAL.
glisEnabled with argument GL_MAP1_TEXTURE_COORD_1.
glisEnabled with argument GL_MAP1_TEXTURE_COORD_2.
glisEnabled with argument GL_MAP1_TEXTURE_COORD_3.
gllsEnabled with argument GL_MAP1_TEXTURE_COORD_4.
glisEnabled with argument GL_MAP2_VERTEX_3.
glisEnabled with argument GL_MAP2_VERTEX 4.
glisEnabled with argument GL_MAP2_INDEX.

glilsEnabled with argument GL_MAP2_COLOR_4.
glisEnabled with argument GL_MAP2_NORMAL.
glisEnabled with argument GL_MAP2_TEXTURE_COORD_1.
glisEnabled with argument GL_MAP2_TEXTURE_COORD_2.
glisEnabled with argument GL_MAP2_TEXTURE_COORD_3.
gllsEnabled with argument GL_MAP2_TEXTURE_COORD_4.
glisEnabled with argument GL_AUTO_NORMAL.

s P

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin] or glEnd subroutine, [giColod subroutine, [glEnable] or Disable subroutine, [gIEvalMesh|
subroutine, |glEvalPoint| subroutine, gllndex subroutin IMap1 subroutine, |§LMap2| subroutine,

e,|
|gIMapGr|d| subroutme gINorma subroutine, |gITexCoord| subroutlne gIVerte subroutine.

glEvalMesh Subroutine

Purpose
Computes a one-dimensional (1D) or two-dimensional (2D) grid of points or lines.

Library
OpenGL C bindings library: libGL.a

114  OpenGL 1.2 Reference Manual



C Syntax
void glEvalMeshl(GLenum ,

GLint |il],
GLint [i2

void glEvalMesh2 (GLenum ,

GLint
GLint
GLint
GLint

Description

The glMapGrid and glEvalMesh subroutines are used in tandem to efficiently generate and evaluate a
series of evenly spaced map domain values. The glEvalMesh subroutine steps through the integer
domain of a 1D or 2D grid whose range is the domain of the evaluation maps specified by giMap1 and
glMap2. The Mode parameter determines whether the resulting vertices are connected as points, lines, or
filled polygons.

In the 1D case, glEvalMesh1, the mesh is generated as if the following code fragment was executed:

g1Begin(Type);

for (i = il; i <= i2; i += 1)
glEvalCoordl(i (DELTA u) + ul)

glEnd();

where DELTA u = (u2 - ul )/nand n, ul, and u2 are the arguments to the most recent giMapGrid1
subroutine. Type is GL_POINTS if Mode is GL_POINT, or GL_LINES if Mode is GL_LINE. The one
absolute numeric requirement is that if / = n, the value computed from i (DELTA u) + ul is exactly u2.

In the 2D case, glEvalMesh2, DELTA u = (u2 - ul)/n and DELTA v = (V2 - v1)/m, where n, ul, u2, m, v1,
and v2 are the arguments to the most recent giMapGrid2 subroutine. Then, if Mode is GL_FILL, the

glEvalMesh2 subroutine is equivalent to:
for (§ = jl; j <23 j +=1) {
g1Begin(GL_QUAD_STRIP)
for (i= il; i <= i2; 1 += 1) {
glEvalCoord2(i (DELTA u) + ul, j (DELTA v) + vl1);
glEvalCoord2(i (DELTA u) + ul, (j+1) (DELTA v) +
vl);
}
glEnd();
}

If Mode is GL_LINE, a call to glEvalMesh2 is equivalent to:
for (3 = jl; j <= 325§ += 1) {
g1Begin(GL_LINE_STRIP)
for (i = il; i <=1i2; 1 += 1)
glEvalCoord2(i DELTA u + ul, j (DELTA v) + vl1);
glEnd();
}
for (i = il; 1 <= 125 i += 1) {
g1Begin(GL_LINE_STRIP);
for (§ =313 j <= jl; j += 1)
glEvalCoord2(i (DELTA u + ul, j (DELTA v) + v1);
glEnd();

And finally, if Mode is GL_POINT, a call to glEvalMesh2 is equivalent to:

Chapter 1. OpenGL Subroutines 115



g1Begin(GL_POINTS);
for (§ = 31; j <=325 j +=1) {
for (i = il; i <= 23 i += 1) {
glEvalCoord2(i (DELTA u) + ul, j (DELTA v) + v1):
}

}
glEnd();

In all three cases, the only absolute numeric requirements are that if i = n, the value computed from i
(DELTA u) + ul is exactly u2, and if j = m, the value computed from j (DELTA v) + v1 is exactly v2.

Parameters
glEvalMesh1

Mode  Specifies whether to compute a 1D mesh of points or lines. Symbolic constants GL_POINT and GL_LINE
are accepted.

i1 Specifies the first integer values for grid domain variable i.
2 Specifies the last integer values for grid domain variable i.
glEvalMesh2

Mode  Specifies whether to compute a 2D mesh of points, lines, or polygons. Symbolic constants GL_POINT,
GL_LINE, and GL_FILL are accepted.

i1 Specifies the first integer values for grid domain variable i.

2 Specifies the last integer values for grid domain variable i.

j1 Specifies the first integer values for grid domain variable j.

j2 Specifies the last integer values for grid domain variable j.

Errors

GL_INVALID_ENUM Indicates that Mode is not an accepted value.
GL_INVALID_OPERATION Indicates that glEvalMesh is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glEvalMesh subroutine are as follows. (See the [giGed subroutine for more
information.)

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN
glGet with argument GL_MAP1_GRID_SEGMENTS
glGet with argument GL_MAP2_GRID_SEGMENTS.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

116 OpenGL 1.2 Reference Manual



Related Information

The|gIBegin| or glEnd subroutine, |gIEvaICoord| subroutine, |glEvalPoint| subroutine, subroutine,
|gIMaEZ| subroutine, |gIMaEGrid| subroutine.

glEvalPoint Subroutine

Purpose
Generates and evaluates a single point in a mesh.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glEvalPointl(GLint [i]

void glEvalPoint2(GLint ,
GLint

Description

The glMapGrid and glEvalMesh subroutines are used in tandem to efficiently generate and evaluate a
series of evenly spaced map domain values. glEvalPoint can be used to evaluate a single grid point in
the same grid space that is traversed by glEvalMesh. Calling glEvalPoint1 is equivalent to calling

EvalCoordl(i (DELTA u) + ul);

where DELTA u = (u2 - ul)/n and n, ul, and u2 are the arguments to the most recent glMapGrid1
subroutine. The one absolute numeric requirement is that if i = n, the value computed from i (DELTA u) +
ul is exactly u2.

In the two-dimensional case, glEvalPoint2, let

DELTA u = (u2 - ul )/n
DELTA v = (v2 - vl )/m

where n, ul, u2, m, vl, and v2 are the arguments to the most recent glMapGrid2 subroutine. Then the
glEvalPoint2 subroutine is equivalent to calling:

EvalCoord2(i (DELTA u) + ul,
7 (DELTA v) + v1)

The only absolute numeric requirements are that if i = n, the value computed from i (DELTA u) + ul is
exactly u2, and if j = m, the value computed from j (DELTA v) + v1 is exactly v2.

Parameters

i Specifies the integer value for grid domain variable i.
J Specifies the integer value for grid domain variable j. (This parameter applies to glEvalPoint2 only.)

Associated Gets

Associated gets for the glEvalPoint subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_MAP1_GRID_DOMAIN.

Chapter 1. OpenGL Subroutines 117



glGet with argument GL_MAP2_GRID_DOMAIN.
glGet with argument GL_MAP1_GRID_SEGMENTS.
glGet with argument GL_MAP2_GRID_SEGMENTS.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The subroutine, subroutine, subroutine, subroutine,

subroutine.

glFeedbackBuffer Subroutine

Purpose
Controls the feedback mode.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glFeedbackBuffer(GLsizei [Size],

GLenum (Typel,
GLfloat * [Buffer)

Description

The glFeedbackBuffer subroutine controls feedback. Feedback, like selection, is a GL mode. The mode is
selected by calling glRenderMode with GL_FEEDBACK. When the GL is in feedback mode, no pixels are
produced by rasterization. Instead, information about primitives that would have been rasterized is fed
back to the application using the GL.

The glFeedbackBuffer subroutine has three arguments:

» Bufferis a pointer to an array of floating point values into which feedback information is placed.
» Size indicates the size of the array.

» Type is a symbolic constant describing the information that is fed back for each vertex.

The glFeedbackBuffer subroutine must be issued before feedback mode is enabled (by calling
glRenderMode with argument GL_FEEDBACK). Setting GL_FEEDBACK without establishing the
feedback buffer, or calling glFeedbackBuffer while the GL is in feedback mode, results in an error.

The GL is taken out of feedback mode by calling glIRenderMode with a parameter value other than
GL_FEEDBACK. When this is done while the GL is in feedback mode, glRenderMode returns the
number of entries placed in the feedback array. The returned value never exceeds Size. If the feedback
data requires more room than is available in Buffer, glRenderMode returns a negative value.

While in feedback mode, each primitive that would be rasterized generates a block of values that get

copied into the feedback array. If doing so would cause the number of entries to exceed the maximum, the
block is partially written so as to fill the array (if there is any room left at all), and an overflow flag is set.

118 OpenGL 1.2 Reference Manual



Each block begins with a code indicating the primitive type, followed by values that describe the primitive’s
vertices and associated data. Entries are also written for bitmaps and pixel rectangles. Feedback occurs
after polygon culling and glPolyMode interpretation of polygons has taken place, so polygons that are
culled are not returned in the feedback buffer. It can also occur after polygons with more than three edges
are broken up into triangles, if the GL implementation renders polygons by performing this decomposition.

The glPassThrough subroutine can be used to insert a marker into the feedback buffer. (See

|gIPassThroughl)

Following is the grammar for the blocks of values written into the feedback buffer. Each primitive is
indicated with a unique identifying value followed by some number of vertices. Polygon entries include an
integer value indicating how many vertices follow. A vertex is fed back as some number of floating-point
values, as determined by Type. Colors are fed back as four values in red, green, blue, alpha (RGBA)
mode and one value in color index mode.

feedbackList
feedbackltem
point
lineSegment
polygon
polySpec
bitmap
pixelRectangle
passThru
vertex

2d

3d

3dColor
3dColorTexture
4dColorTexture
color

rgba

index

tex

-> feedbackltem feedbackList | feedbackltem

-> point | lineSegment | polygon | bitmap | pixelRectangle | passThru
-> GL_POINT_TOKEN vertex

-> GL_LINE_TOKEN vertex vertex | GL_LINE_RESET_TOKEN vertex vertex
-> GL_POLYGON_TOKEN n polySpec

-> polySpec vertex | vertex vertex vertex

-> GL_BITMAP_TOKEN vertex

-> GL_DRAW_PIXEL_TOKEN vertex | GL_COPY_PIXEL_TOKEN vertex
-> GL_PASS_THROUGH_TOKEN value

-> 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture

-> value value

-> value value value

-> value value value color

-> value value value color tex

-> value value value value color tex

-> rgba | index

-> value value value value

-> value

-> value value value value

where value is a floating-point number, and n is a floating-point integer giving the number of vertices in the
polygon. GL_POINT_TOKEN, GL_LINE_TOKEN, GL_LINE_RESET_TOKEN, GL_POLYGON_TOKEN,
GL_BITMAP_TOKEN, GL_DRAW_PIXEL_TOKEN, GL_COPY_PIXEL_TOKEN and
GL_PASS_THROUGH_TOKEN are symbolic floating-point constants. GL_LINE_RESET_TOKEN is
returned whenever the line stipple pattern is reset. The data returned as a vertex depends on the feedback

Type.

The following table gives the correspondence between Type and the number of values per vertex. The
variable kis 1 in color index mode and 4 in RGBA mode.

Type Coordinates Color Texture Total Number
of Values

GL_2D Xy 2

GL_3D X, Y, Z 3

GL_3D_COLOR X, Y, Z k 3+k

GL_3D_COLOR_TEXTURE X, Y, Z k 4 7+k

GL_4D_COLOR_TEXTURE X, Y, Z, W k 4 8+k

Chapter 1. OpenGL Subroutines 119



Feedback vertex coordinates are in window coordinates, except w, which is in clip coordinates. Feedback
colors are lighted, if lighting is enabled. Feedback texture coordinates are generated, if texture coordinate
generation is enabled. They are always transformed by the texture matrix.

Parameters
Size Specifies the maximum number of values that can be written into Buffer.
Type Specifies a symbolic constant that describes the information that is returned for each vertex. GL_2D,

GL_3D, GL_3D_COLOR, GL_3D_COLOR_TEXTURE, and GL_4D_COLOR_TEXTURE are accepted.
Buffer Returns the feedback data.

Notes

The glFeedbackBuffer subroutine, when used in a display list, is not compiled into the display list but
rather is executed immediately.

Errors

GL_INVALID_ENUM Type is not an accepted value.

GL_INVALID_VALUE Size is negative.

GL_INVALID_OPERATION The glFeedbackBuffer subroutine is called while the render mode is

GL_FEEDBACK, or glRenderMode is called with argument GL_FEEDBACK
before glFeedbackBuffer is called at least once.

GL_INVALID_OPERATION The glFeedbackBuffer subroutine is called between a call to glBegin and
the corresponding call to glEnd.

Associated Gets

Associated gets for the glFeedbackBuffer subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_RENDER_MODE.
glGetPointerv with argument GL_FEEDBACK_BUFFER_POINTER.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |gIBegin or glEnd| subroutine, |gIGetPointer\_I| subroutine, |gILineStippI5| subroutine, |gIPassThrough|

subroutine, |g|PoI¥gonMode| subroutine, |g|RenderMode| subroutine, |9ISeIectBuffe|_‘| subroutine.

glFinish Subroutine

Purpose
Blocks until all GL execution is complete.

Library
OpenGL C bindings library: libGL.a

120 OpenGL 1.2 Reference Manual



C Syntax

void g1Finish( void )

Description

The glFinish subroutine does not return until the effects of all previously called GL subroutines are
complete. Such effects include all changes to the GL state, all changes to the connection state, and all
changes to the frame buffer contents.

Notes

The glFinish subroutine requires a round-trip to the server.

Errors

GL_INVALID_OPERATION The glFinish subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The or glEnd subroutine, subroutine, subroutine, subroutine.

glFlush Subroutine

Purpose
Forces the running of GL subroutines in finite time.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1Flush( void )

Description

Different GL implementations buffer subroutines in several different locations, including network buffers and
the graphics accelerator itself. The glFlush subroutine empties all of these buffers, causing all issued
subroutines to be executed as quickly as they are accepted by the actual rendering engine. Though this
execution cannot be completed in any particular time period, it does complete in finite time.

Because any GL program might be executed over a network, or on an accelerator that buffers subroutines,
all programs should call glFlush whenever they must have all of their previously issued subroutines
completed. For example, call glFlush before waiting for user input that depends on the generated image.

Notes

The glFlush subroutine can return at any time. It does not wait until the execution of all previously issued
OpenGL commands is complete.

Chapter 1. OpenGL Subroutines 121



Errors

GL_INVALID_OPERATION The glFlush subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |gIBegin| or glEnd subroutine, subroutine.

glFog Subroutine

Purpose
Specifies fog parameters.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1Fogf (GLenum |I_30rameterName|,
GLfloat |ParameterVaZue|)

void g1Fogi (GLenum |Far‘ame ter'Name|,

GLint |ParameterValue))

void gl1Fogfv(GLenum ParameterNameL

const GLfloat * [ParameterValues))

void g1Fogiv(GLenum |ParameterName

-

const GLint * [ParameterValues

~

Description

The glFog subroutine is enabled and disabled with glEnable and glDisable using the argument GL_FOG.
While enabled, fog affects rasterized geometry, bitmaps, and pixel blocks, but not buffer clear operations.

The glFog subroutine assigns the value or values in ParameterValues to the fog parameter specified by
ParameterName. The accepted values for ParameterName are:

GL_FOG_MODE

GL_FOG_DENSITY

122 OpenGL 1.2 Reference Manual

ParameterValues is a single integer or floating-point value that
specifies the equation to be used to compute the fog blend
factor, . Three symbolic constants are accepted:

GL_LINEAR, GL_EXP, and GL_EXP2. The equations
corresponding to these symbolic constants are defined in the
following sections. The default fog mode is GL_EXP.
ParameterValues is a single integer or floating-point value that
specifies Density, the fog density used in both exponential fog
equations. Only nonnegative densities are accepted. The
default fog density is 1.0.



GL_FOG_START ParameterValues is a single integer or floating-point value that
specifies Start, the near distance used in the linear fog
equation. The default near distance is 0.0.

GL_FOG_END ParameterValues is a single integer or floating-point value that
specifies End, the far distance used in the linear fog equation.
The default far distance is 1.0.

GL_FOG_INDEX ParameterValues is a single integer or floating-point value that
specifies ff, the fog color index. The default fog index is 0.0.
GL_FOG_COLOR ParameterValues contains four integer or floating-point values

that specify Cf, the fog color. Integer values are mapped
linearly such that the most positive representable value maps
to 1.0, and the most negative representable value maps to
-1.0. Floating-point values are mapped directly. After
conversion, all color components are clamped to the range
[0,1]. The default fog color is (0,0,0,0).
GL_FOG_COORDINATE_SOURCE_EXT ParameterValues is a single integer or floating point value that
specifies the source for the fog coordinates. Two symbolic
constants are accepted: GL_FOG_COORDINATE_EXT and
GL_FRAGMENT_DEPTH_EXT. Their use is described below.
The default fog coordinate source is
GL_FRAGMENT_DEPTH_EXT.

Fog blends a fog color with each rasterized pixel fragment’s post-texturing color using a blending factor f.
Factor fis computed in one of three ways, depending on the fog mode, using one of two values,
depending on the fog coordinate source. If the fog coordinate source is GL_FOG_COORDINATE_EXT
then z in the equations below comes from the current fog coordinate. Otherwise, it comes from the
fragment’s distance from the origin in eye coordinates.

The equation for GL_LINEAR fog is:

_ end-z
end — start

Figure 1. Equation for GL_LINEAR Fog. This figure shows that f is equal to end-z / end-start.

The equation for GL_EXP fog is:

f= e(—density.z)

Figure 2. Equation for GL_EXP Fog. This figure shows that f is equal to e(-density*z).
The equation for GL_EXP2 fog is:

Chapter 1. OpenGL Subroutines 123



f= e(—density. 2)2

Figure 3. Equation for GL_EXPZ2 Fog. This figure shows that f is equal to e(-density*z) to the power of two.

Regardless of the fog mode, fis clamped to the range [0,1] after it is computed. Then, if the GL is in red,
green, blue, alpha (RGBA) color mode, the fragment’s color, Cr, is replaced by the following:

Cr prime = fCr + (1 - f) Cf

In color index mode, the fragment’s color index, ir, is replaced by the following:
ir prime = ir + (1 - f) if

Parameters

glFogf and glFogi

ParameterName Specifies a single-valued fog parameter. GL_FOG_DENSITY, GL_FOG_END,
GL_FOG_INDEX, GL_FOG_MODE, GL_FOG_START, and
GL_FOG_COORDINATE_SOURCE_EXT are accepted.

ParameterValue Specifies the value to which ParameterName is set.

glFogfv and glFogiv

ParameterName Specifies a fog parameter. GL_FOG_COLOR, GL_FOG_DENSITY, GL_FOG_END,
GL_FOG_INDEX, GL_FOG_MODE, GL_FOG_START, and
GL_FOG_COORDINATE_SOURCE_EXT are accepted.

ParameterValues Specifies the value or values to be assigned to ParameterName. GL_FOG_COLOR
requires an array of four values. All other parameters accept an array containing only a
single value.

Errors

GL_INVALID_ENUM ParameterName is not an accepted value.

GL_INVALID_OPERATION The glFog subroutine is called between a call to glBegin and the

corresponding call to glEnd.

GL_INVALID_VALUE ParameterName is GL_FOG_DENSITY and ParameterValues is negative.

GL_INVALID_ENUM ParameterName is GL_FOG_COORDINATE_SOURCE_EXT and

ParameterValues is not one of the two permitted values.

Associated Gets
Associated gets for the glFog subroutine are as follows. (See the subroutine for more information.)

glisEnabled| with argument GL_FOG.
glGet with argument GL_FOG_COLOR.

glGet with argument GL_FOG_INDEX.

glGet with argument GL_FOG_DENSITY.

124 OpenGL 1.2 Reference Manual



glGet with argument GL_FOG_START.

glGet with argument GL_FOG_END.

glGet with argument GL_FOG_MODE.

glGet with argument GL_CURRENT_FOG_COORDINATE_EXT.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |giBegin| or glEnd subroutine, or glDisable subroutine.

glFogCoordEXT Subroutine

Purpose
Specifies a Fog Coordinate.

Library
OpenGL C bindings library: (libGL.a)

C Syntax

void g1FogCoordfEXT(GLfloat |coord)
void g1FogCoorddEXT(GLdouble
void g1FogCoordfvEXT(GLfloat
void g1FogCoorddvEXT (GLdouble

Description

This extension allows specifying an explicit per-vertex fog coord to be used in fog computations, rather
than using a fragment depth-based fog equation.

Parameters

coord specifies the fog coordinate, which is used in computing
the fogging effect, as described in glFog. This coordinate
is used in place of the distance in eye coordinates from
the origin to the fragment being fogged.

Variable specifies a pointer to a one-element array containing a fog
coordinate.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 125



Related Information

The|gIBegin| or glEnd subroutine, |gIFog| subroutine, the [gIFogCoordPointerEXT]| subroutine, the
|gIFogCoordPointerListIBM| subroutine.

glFogCoordPointerEXT Subroutine

Purpose
Specifies an array of fog coordinates.
Library
OpenGL C bindings library: (libGL.a)
C Syntax
void gl1FogCoordPointerEXT(GLenum [typel,
GLsizei [stride,
const GLvoid [*pointer])
Description

The glFogCoordPointerEXT extension specifies the location and data format of an array of fog
coordinates to use when rendering. The type parameter specifies the data type of each fog coordinate,
and stride gives the byte stride from one coordinate to the next allowing vertices and attributes to be
packed into a single array or stored in separate arrays. (Single-array storage may be more efficient on
some implementations; see [glinterleavedArrays).

When a fog coordinate array is specified, type, stride, and pointer are saved as client side state.

To enable and disable the fog coordinate array, call glEnableClientState and glDisableClientState with
the argument GL_FOG_COORDINATE_ARRAY_EXT. If enabled, the fog coordinate array is used when
glDrawArrays, glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Fog Coord array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

type specifies the data type of each fog coordinate in the array.
Symbolic constants GL_FLOAT, or GL_DOUBLE are
accepted. The initial value is GL_FLOAT.

stride specifies the byte offset between consecutive fog
coordinates. If stride is zero (the initial value), the
coordinates are understood to be tightly packed in the
array. The initial value is 0.

pointer specifies a pointer to the first component of the first fog
coordinate in the array. The initial value is 0 (NULL
pointer).

126 OpenGL 1.2 Reference Manual



Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The |glArrayElement| subroutine, the|gICoIorPointeF| subroutine, the|§IDrawArray§| subroutine, the
glEnabl

EIDrawElementsl subroutine, the |gIEdgeFIa Pointer] subroutine, the subroutine, the

IFogCoordPointerListIBM| subroutine, the |glGetPointerv| subroutine, the [glindexPointer| subroutine, the
linterleavedArrays| subroutine, the [gINormalPointer subroutine, the |gIPushClientAttrib| or
glPopClientAttrib subroutine, the |gITexCoordPointer| subroutine, the |glVertexPointer subroutine.

glFogCoordPointerListIBM Subroutine

Purpose
Defines a list of arrays of fog coordinates.
Library
OpenGL C bindings library: (libGL.a)
C Syntax
void glFogCoordPointerListIBM ( GLenum |[type,
GLint |stride|,
const GLvoid [**pointer],
GLint |ptrstride
Description

The glFogCoordPointerListIBM subroutine specifies the location and data format of a list of arrays of fog
coordinates to use when rendering. The type parameter specifies the data type of each fog coordinate.
The stride parameter gives the byte stride from one coordinate to the next, allowing vertices and attributes
to be packed into a single array or stored in separate arrays. (Single-array storage may be more efficient
on some implementations; see |g||nterleavedArraysb. The pirstride parameter specifies the byte stride
from one pointer to the next in the pointer array.

When a fog coordinate array is specified, type, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a "tightly packed” array as it does in glIFogCoordPointer. Instead, it
causes the first array element of each array to be used for each vertex. Also, a negative value can be
used for stride, which allows the user to move through each array in reverse order.

To enable and disable the fog coordinate arrays, call glEnableClientState and glDisableClientState with
the argument GL_COLOR_ARRAY. The fog coordinate array is initially disabled. When enabled, the fog
coordinate arrays are used when glMultiDrawArraysEXT, glMultiDrawElementsEXT,
glMultiModeDrawArraysIBM, glMultiModeDrawElementsiBM, glDrawArrays, glDrawElements or
glArrayElement is called. The last three calls in this list will only use the first array (the one pointed at by
pointer[0]). See the descriptions of these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIiBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

Chapter 1. OpenGL Subroutines 127



If enabled, the Fog Coord array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

type specifies the data type of each fog coordinate in the
arrays. Symbolic constants GL_FLOAT or GL_DOUBLE
are accepted. The initial value is GL_FLOAT.

stride specifies the byte offset between consecutive fog
coordinates. The initial value is 0.

pointer specifies a list of fog coordinate arrays. The initial value is
0 (NULL pointer).

ptrstride specifies the byte stride between successive pointers in
the pointer array. The initial value is 0.

Notes

The glFogCoordPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension
is supported.

Execution of glIFogCoordPointerListIBM is not allowed between giBegin and the corresponding glEnd,
but an error may or may not be generated. If an error is not generated, the operation is undefined.

The glFogCoordPointerListIBM subroutine is typically implemented on the client side.

Since the fog coordinate array parameters are client side state, they are not saved or restored by
glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glFogCoordPointerListIBM call is encountered while compiling a display list, the information it
contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glFogCoordPointerEXT call and the glFogCoordPointerListIBM call share the same state variables.
A glFogCoordPointerEXT call will reset the fog coordinate list state to indicate that there is only one fog

coordinate list, so that any and all lists specified by a previous glFogCoordPointerListIBM call will be
lost, not just the first list that it specified.

Error Codes

GL_INVALID_ENUM is generated if fype is not an accepted value.

Associated Gets

Associated gets for the glFogCoordPointerListIBM subroutine are as follows. (See the subroutine
for more information.)

with argument GL_FOG_COORDINATE_ARRAY_EXT.

with argument GL_FOG_COORDINATE_ARRAY_POINTER_EXT.
[g1Get] with arguement GL_CURRENT_FOG_COORDINATE.

[olGeq with arguement GL_FOG_COORDINATE_ARRAY_TYPE_EXT.

[glGeq with arguement GL_FOG_COORDINATE_ARRAY_STRIDE_EXT.

128 OpenGL 1.2 Reference Manual



Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The |glArrayElement| subroutine, the|gICoIorPointeF| subroutine, the|§IDrawArray§| subroutine, the
glEnabl

IDrawElements| subroutine, the |gIEdgemgPointed subroutine, the subroutine, the

IFogCoordPointerEXT]| subroutine, the |glGetPointerv| subroutine, the [glindexPointer| subroutine, the

linterleavedArrays| subroutine, the |g|MuItiDrawArraysEX subroutine, the |9IMuItiDrawEIementsEXT|
subroutine, the [gIMultiModeDrawArraysIBM| subroutine, the |gIMultiModeDrawElementsIBM| subroutine,

the |gINormalPointer| subroutine, the |giPushClientAttrib| or glPopClientAttrib subroutine, the
|gITexCoordPointe|1 subroutine, the |glVertexPointer| subroutine.

glFrontFace Subroutine

Purpose
Defines frontfacing and backfacing polygons.

Library
OpenGL C bindings library: libGL.a

C Syntax
void gl1FrontFace(GLenum

Description

In a scene composed entirely of opaque closed surfaces, backfacing polygons are never visible.
Eliminating these invisible polygons speeds up the rendering of the image. Backface elimination is enabled
and disabled with glEnable and glDisable using argument GL_CULL_FACE.

The projection of a polygon to window coordinates is said to have clockwise winding if an imaginary object
following the path from its first vertex, its second vertex, and so on, to its last vertex, and finally back to its
first vertex, moves in a clockwise direction about the interior of the polygon. The polygon’s winding is said
to be counterclockwise if the imaginary object following the same path moves in a counterclockwise
direction about the interior of the polygon. The glFrontFace subroutine specifies whether polygons with
clockwise winding in window coordinates, or counterclockwise winding in window coordinates, are taken to
be frontfacing. Passing GL_CCW to the Mode parameter selects counterclockwise polygons as frontfacing;
GL_CW selects clockwise polygons as frontfacing. By default, counterclockwise polygons are taken to be
frontfacing.

Parameters

Mode  Specifies the orientation of frontfacing polygons. GL_CW and GL_CCW are accepted. The default value is
GL_CCW.

Errors

GL_INVALID_ENUM Mode is not an accepted value.

GL_INVALID_OPERATION The glFrontFace subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Chapter 1. OpenGL Subroutines 129



Associated Gets

Associated gets for the glFrontFace subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_FRONT_FACE.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The subroutine, subroutine.

glFrustum Subroutine

Purpose
Multiplies the current matrix by a perspective matrix.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glFrustum(GLdouble [Left,
GLdouble |Ri

GLdouble
GLdouble
GLdouble
GLdouble

Description

The glFrustum subroutine describes a perspective matrix that produces a perspective projection.

The parameters (Left, Bottom, -Near) and (Right, Top, -Near) specify the points on the near clipping plane
that are mapped to the lower left and upper right corners of the window, respectively, assuming that the
eye is located at (0, 0, 0). -Far specifies the location of the far clipping plane. Both Near and Far must be
positive.

The corresponding matrix is:

130 OpenGL 1.2 Reference Manual



2 Near 0 A
Right-Left
0 2 Near B
Top—Bottom
0 0 C
0 0 -1

Figure 4. Perspective Projection Perspective Matrix. This diagram shows a matrix enclosed in brackets. The matrix
consists of four lines containing four characters each. The first line contains the following (from left to right): 2Near /
Right-Left, zero, A, zero. The second line contains the following (from left to right): zero, 2Near / Top-Bottom, B, zero.
The third line contains the following (from left to right): zero, zero, C, D. The fourth line contains the following (from left
to right): zero, zero, -1, zero.

where the following statements apply:

A _ Right+Left
~ Right-Left

_ Top+Bottom
~ Top—Bottom

C= Far+Near
Far—Near

_2 Far Near
~ Far-Near

Figure 5. Statements. This figure shows the equations used to find the values of A, B, C, and D in the matrix above. In

the first equation, A equals Right+Left / Right-Left. In the second equation, B equals Top+Bottom / Top-Bottom. In the
third equation, C equals Far+Near / Far-Near. In the fourth equation, D equals 2FarNear / Far-Near.

The current matrix is multiplied by this matrix with the result replacing the current matrix. That is, if M is
the current matrix and F is the frustum perspective matrix, M is replaced with MF.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

Parameters
Left Specifies a point on the left side of the clipping plane
Right Specifies a point on the right side of the clipping plane.

Bottom Specifies a point on the bottom of the clipping plane.

Top Specifies a point on the top of the clipping plane.

Near Specifies the location of the near clipping plane. This must be a positive value.
Far Specifies the location of the far clipping plane. This must be a positive value.
Notes

Depth buffer precision is affected by the values specified for Near and Far. The greater the ratio of Far to
Near is, the less effective the depth buffer will be at distinguishing between surfaces that are near each
other. If r= Far/ Near, roughly log2r bits of depth buffer precision are lost. Because r approaches infinity
as Near approaches 0 (zero), Near must never be set to 0.

Errors

GL_INVALID_VALUE Either Near or Far is not positive.

Chapter 1. OpenGL Subroutines 131



GL_INVALID_OPERATION The glFrustum subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glFrustum subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_MATRIX_MODE.

glGet with argument GL_MODELVIEW_MATRIX.
glGet with argument GL_PROJECTION_MATRIX.
glGet with argument GL_TEXTURE_MATRIX.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin] or glEnd subroutine, [giMatrixMode] subroutine, [giMultMatrix| subroutine,
h

subroutine, or glPopMatrix subroutine, |gIViewpor§| subroutine.

glGenLists Subroutine

Purpose
Generates a contiguous set of empty display lists.

Library
OpenGL C bindings library: libGL.a

C Syntax
GLuint glGenLists(GLsizei [Range)

Description

The glGenLists subroutine has one argument, Range. It returns an integer n such that Range contiguous
empty display lists, named n, n+1, ..., n+Range-1, are created. If Range is 0 (zero), if there is no group of
Range contiguous names available, or if any error is generated, no display lists are generated, and 0 is
returned.

Parameters

Range Specifies the number of contiguous empty display lists to be generated.

Errors

GL_INVALID_VALUE Range is negative.

132 OpenGL 1.2 Reference Manual



GL_INVALID_OPERATION The glGenLists subroutine is called between a call to giBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glGenLists subroutine are as follows. (See thesubroutine for more
information.)

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |gIBegin| or glEnd subroutine, |giCallList{ subroutine, [glCallLists| subroutine, |giDeleteLists| subroutine,
subroutine.

glGenTextures Subroutine

Purpose
Generate texture names.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glGenTextures(GLsizei El,

GLuint

Parameters

n Specifies the number of texture names to be generated.
textures Specifies an array in which the generated texture names are stored.

Description

The glGenTextures subroutine returns n texture names in textures. There is no guarantee that the names
form a contiguous set of integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to glGenTextures.

The generated textures have no dimensionality; they assume the dimensionality of the texture target to
which they are first bound (see |gIBindTexture).

Texture names returned by a call to glGenTextures are not returned by subsequent calls, unless they are
first deleted with glDeleteTextures.

The glGenTextures subroutine is not included in display lists.

Chapter 1. OpenGL Subroutines 133



Notes
The glGenTextures subroutine is available only if the GL version is 1.1 or greater.

Errors
GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glGenTextures is executed between the execution of glBegin
and the corresponding execution of glEnd.

Associated Gets

Related Information

The |§IBindTexture| subroutine, [giDeleteTextures| subroutine, |%IGe? subroutine, [giGetTexParameter]

subroutine, [gllsTexture| subroutine, |glTeximage1D| subroutine, |glTeximage2D| subroutine,
[gITeximage3DEXT] subroutine, |glTexParameter| subroutine.

glGenTextureseEXT Subroutine

Purpose
Generates texture names.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glGenTexturesEXT(GLsizei E|,

GLuint +

Description

glGenTexturesEXT returns n texture names in textures. There is no guarantee that the names form a
contiguous set of integers; however, it is guaranteed that none of the returned names was in use
immediately before the call to glGenTexturesEXT.

The generated textures have no dimensionality; they assume the dimensionality of the texture target to
which they are first bound (see giBindTextureEXT).

Texture names returned by a call to glGenTexturesEXT will not be returned by subsequent calls, unless
they are first deleted with glDeleteTexturesEXT.

glGenTexturesEXT is not included in display lists.

Parameters
n The number of texture names to be generated.
textures An array in which the generated texture names are stored.

134 OpenGL 1.2 Reference Manual



Notes

glGenTexturesEXT is part of the EXT_texture_object extension, not part of the core GL command set. If
GL_EXT_texture_object is included in the string returned by glGetString, when called with argument
GL_EXTENSIONS, extension EXT_texture_object is supported by the connection.

Errors
GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glGenTexturesEXT is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

|gIIsTextureEX !l
File

lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The |gIBindTextureEXT| subroutine, |glDelete TexturesEXT| subroutine, EIGeﬂ subroutine,

lglGetTexParameter| subroutine, [gITeximage1D| subroutine, |gITexlmage2D| subroutine, |gITeximage3DEXT|

subroutine, |gITexParamete|_‘| subroutine.
glGet Subroutine

Purpose
Returns the value or values of a selected parameter.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glGetBooleanv( GLenum |ParameterName|,

GLBoolean * |ParameterValues])

void glGetDoublev(GLenum |ParameterName|,

GLdouble * |ParameterValues| )

void glGetFloatv(GLenum |Parameter‘Name|,

GLfloat * [ParameterValues)

void glGetIntegerv(GLenum |Parame terNameL

GLint |ParameterValues))

Description

The four commands, glGetBooleanv, glGetDoublev, glGetFloatv, and glGetintegerv, return values for
simple-state variables in GL. ParameterName is a symbolic constant indicating the state variable to be
returned, and ParameterValues is a pointer to an array of the indicated type in which to place the returned
data.

Chapter 1. OpenGL Subroutines 135



Type conversion is performed if ParameterValues has a different type than the state variable value being
requested. If glGetBooleanv is called, a floating-point or integer value is converted to GL_FALSE if and
only if it is O (zero). Otherwise, it is converted to GL_TRUE. If glGetIntegerv is called, Boolean values are
returned as GL_TRUE or GL_FALSE, and most floating-point values are rounded to the nearest integer
value. Floating-point colors and normals, however, are returned with a linear mapping that maps 1.0 to the
most positive representable integer value, and -1.0 to the most negative representable integer value. If
either glGetFloatv or glGetDoublev is called, Boolean values are returned as GL_TRUE or GL_FALSE,

and integer values are converted to floating-point values.

The following symbolic constants are accepted by ParameterName:

GL_ACCUM_ALPHA_BITS

GL_ACCUM_BLUE_BITS

GL_ACCUM_CLEAR_VALUE

GL_ACCUM_GREEN_BITS

GL_ACCUM_RED_BITS

GL_ALIASED_LINE_WIDTH_RANGE

GL_ALIASED_POINT_SIZE_RANGE

GL_ALPHA_BIAS

GL_ALPHA_BITS

GL_ALPHA_SCALE

GL_ALPHA_TEST

GL_ALPHA_TEST_FUNC

136 OpenGL 1.2 Reference Manual

ParameterValues returns one value, the
number of alpha bit planes in the accumulation
buffer.

ParameterValues returns one value, the
number of blue bit planes in the accumulation
buffer.

ParameterValues returns four values: the red,
green, blue, and alpha (RGBA) values used to
clear the accumulation buffer. Integer values, if
requested, are linearly mapped from the
internal floating-point representation such that
1.0 returns the most positive representable
integer value, and -1.0 returns the most

negative representable integer value. (See
glClearAccum|)

ParameterValues returns one value, the
number of green bit planes in the
accumulation buffer.

ParameterValues returns one value, the
number of red bit planes in the accumulation
buffer.

ParameterValues returns two values: the
smallest and largest supported widths for
aliased lines. (See )
ParameterValues returns two values: the
smallest and largest supported sizes for
aliased points. (See [gIPointSize])
ParameterValues returns one value, the alpha
bias factor used during pixel transfers. (See
[giPixelTransfer])

ParmeterValues returns one value, the number
of alpha bit planes in each color buffer.
ParameterValues returns one value, the alpha
scale factor used during pixel transfers. (See
[giPixelTransfer])

ParameterValues returns a single Boolean
value indicating whether alpha testing of
fragments is enabled. (See )

ParameterValues returns one value, the

symbolic name of the alpha test function. (See
glAlphaFunc})



GL_ALPHA_TEST_REF

GL_ARRAY_ELEMENT_LOCK_FIRST_EXT

GL_ARRAY_ELEMENT_LOCK_COUNT_EXT

GL_ATTRIB_STACK_DEPTH

GL_AUTO_NORMAL

GL_AUX_BUFFERS

GL_BLEND

GL_BLEND_DST

GL_BLEND_DST_ALPHA_EXT

GL_BLEND_DST_RGB_EXT

GL_BLEND_EQUATION_EXT

GL_BLEND_SRC

GL_BLEND_SRC_ALPHA_EXT

GL_BLEND_SRC_RGB_EXT

ParameterValues returns one value, the
reference value for the alpha test. (See
[glAlphaFund]) An integer value, if requested,
is linearly mapped from the internal
floating-point representation such that 1.0
returns the most positive representable integer
value, and -1.0 returns the most negative
representable integer value.

ParameterValues returns one value, the first
element in the locked range. (See
|gILockArra¥sEX!|) Requires extension
EXT_compiled_vertex_array.
ParameterValues returns one value, the count
of elements in the locked range. (See
[glLockArraysEXT]) Requires extension
EXT_compiled_vertex_array.
ParameterValues returns one value, the depth
of the attribute stack. If the stack is empty, O is
returned. (See [gIPushAttrib])
ParameterValues returns a single Boolean
value indicating whether two-dimensional (2D)
map evaluation automatically generates
surface normals. (See |giMap2))
ParameterValues returns one value, the
number of auxiliary color buffers.
ParameterValues returns a single Boolean

value indicating whether blending is enabled.
(See [gIBlendFunc])

ParameterValues returns one value, the
symbolic constant identifying the destination
blend function. (See )
ParameterValues returns one value, the
symbolic constant identifying the destination
alpha separate blend function. (See
[gIBlendFuncSeparate})

ParameterValues returns one value, the
symbolic constant identifying the destination
RGB separate blend function. (See
[gIBlendFuncSeparate})

ParameterValues returns one value, a
symbolic constant indicating the blend
equation. (See [gIBlendEquationEXT})
Requires at least one of the following
extensions: EXT_blend_minmax,
EXT_blend_color, EXT_blend_subtract,
EXT_blend_logic_op.

ParameterValues returns one value, the
symbolic constant identifying the source blend
function. (See |§IBIendFunc )
ParameterValues returns one value, the
symbolic constant identifying the source alpha
separate blend function. (See
[glBlendFuncSeparate])

ParameterValues returns one value, the
symbolic constant identifying the source RGB
separate blend function. (See
[gIBlendFuncSeparatel)

Chapter 1. OpenGL Subroutines 137



GL_BLUE_BIAS

GL_BLUE_BITS

GL_CLIENT_ATTRIB_STACK_DEPTH

GL_BLUE_SCALE

GL_CLIP_PLANE

GL_COLOR_ARRAY

GL_COLOR_ARRAY_COUNT_EXT

GL_COLOR_ARRAY_EXT

GL_COLOR_ARRAY_LIST_STRIDE_IBM

GL_COLOR_ARRAY_SIZE

GL_COLOR_ARRAY_SIZE_EXT

GL_COLOR_ARRAY_STRIDE

GL_COLOR_ARRAY_STRIDE_EXT

GL_COLOR_ARRAY_TYPE

GL_COLOR_ARRAY_TYPE_EXT

138 OpenGL 1.2 Reference Manual

ParameterValues returns one value, the blue
bias factor used during pixel transfers. (See
[alPixelTransfer)

ParameterValues returns one value, the
number of blue bit planes in each color buffer.
ParameterValues returns one value indicating
the depth of the attribute stack. The initial
value is 0. (See |glPushClientAttrib})
ParameterValues returns one value, the blue
scale factor used during pixel transfers. (See
[giPixelTranster])

ParameterValues returns a single Boolean
value indicating whether the specified clipping
plane is enabled. (See )
ParameterValues returns a single Boolean
value indicating whether the color array is
enabled. The initial value is GL_FALSE. (See
[giColorPointer)

ParameterName returns one value, the
number of colors in the color array, counting
from the first, that are static. (See
[gIColorPointerEXT]) Requires extension
EXT_vertex_array.

ParameterValues returns a single boolean
value, indicating whether the color array is
enabled. (See [glColorPointerEXT}) Requires
extension EXT_vertex_array.
ParameterValues returns one value, the byte
stride between successive pointers to color
lists. The initial value is 0. (See
[gIColorPointerListIBM}) Requires extension
IBM_vertex_array_lists.

ParameterValues returns one value, the
number of components per color in the color

array. The initial value is 4. (See
glColorPointer|)

ParameterValues returns one value, the
number of components per color in the color
array. (See |gIColorPointerEXT|) Requires
extension EXT_vertex_array.
ParameterValues returns one value, the byte
offset between consecutive colors in the color

array. The initial value is 0. (See
(iColorPointer)

ParameterName returns one value, the byte
offset between consecutive colors in the color
array. (See |gIColorPointerEXT|) Requires
extension EXT_vertex_array.
ParameterValues returns one value, the data
type of each component in the color array. The
initial value is GL_FLOAT. (See
[giColorPointer))

ParameterValues returns one value, the data
type of each component in the color array.
(See |[gIColorPointerEXT]) Requires extension
EXT_vertex_array.




GL_COLOR_CLEAR_VALUE

GL_COLOR_LOGIC_OP

GL_COLOR_MATERIAL

GL_COLOR_MATERIAL_FACE

GL_COLOR_MATERIAL_PARAMETER

GL_COLOR_MATRIX

GL_COLOR_SUM_EXT

GL_COLOR_WRITEMASK

GL_CULL_FACE

GL_CULL_FACE_MODE

GL_CURRENT_COLOR

GL_CURRENT_FOG_COORDINATE_EXT

GL_CURRENT_INDEX

ParameterValues returns four values: the
RGBA values used to clear the color buffers.
Integer values, if requested, are linearly
mapped from the internal floating-point
representation such that 1.0 returns the most
positive representable integer value, and -1.0
returns the most negative representable
integer value. (See )
ParameterValues returns a single Boolean
value indicating whether a fragment’s color
values are merged into the framebuffer using
a logical operation. The initial value is
GL_FALSE. (See [glLogicOp])
ParameterValues returns a single Boolean
value indicating whether one or more material

parameters are tracking the current color. (See
glColorMateriall)

ParameterValues returns one value, a
symbolic constant indicating which materials
have a parameter that is tracking the current
color. (See [giColorMaterial])
ParameterValues returns one value, a
symbolic constant indicating which material

parameters are tracking the current color. (See
glColorMateriall)

ParameterValues returns 16 values: the color
matrix. (See |glLoadNamedMatrixIBM|)
ParameterValues returns a single Boolean
value indicating whether the color sum stage
and secondary color handling is enabled. (See
[glSecondaryColorEXT)})

ParameterValues returns four Boolean values:
the RGBA write enables for the color buffers.
(See[gIColorMasK))

ParameterValues returns a single Boolean
value indicating whether polygon culling is
enabled. (See)

ParameterValues returns one value, a
symbolic constant indicating which polygon
faces are to be culled. (See )
ParameterValues returns four values: the
RGBA values of the current color. Integer
values, if requested, are linearly mapped from
the internal floating-point representation such

that 1.0 returns the most positive
representable integer value, and -1.0 returns

the most negative representable integer value.
(See alColor)

ParameterValues returns one value, the
current fog coordinate. (See
(FogCoordEXT)

ParameterValues returns one value, the
current color index. (See [glindex])

Chapter 1. OpenGL Subroutines 139



GL_CURRENT_NORMAL

GL_CURRENT_RASTER_COLOR

GL_CURRENT_RASTER_DISTANCE

GL_CURRENT_RASTER_INDEX

GL_CURRENT_RASTER_POSITION

GL_CURRENT_RASTER_TEXTURE_COORDS

GL_CURRENT_RASTER_POSITION_VALID

GL_CURRENT_SECONDARY_COLOR

GL_CURRENT_TEXTURE_COORDS

GL_DEPTH_BIAS

GL_DEPTH_BITS

GL_DEPTH_CLEAR_VALUE

GL_DEPTH_FUNC

140 OpenGL 1.2 Reference Manual

ParameterValues returns three values: the x,
y, and z values of the current normal. Integer
values, if requested, are linearly mapped from
the internal floating-point representation such
that 1.0 returns the most positive
representable integer value, and -1.0 returns
the most negative representable integer value.
(See [gINormal})

ParameterValues returns four values: the
RGBA values of the current raster position.
Integer values, if requested, are linearly
mapped from the internal floating-point
representation such that 1.0 returns the most
positive representable integer value, and -1.0
returns the most negative representable
integer value. (See )
ParameterValues returns one value, the
distance from the eye to the current raster

position. The initial value is 0. (See
glRasterPosl)

ParameterValues returns one value, the color
index of the current raster position. (See
[giRasterPos])

ParameterValues returns four values: the X, y,
z, and w components of the current raster
position. x, y, and z are in window
coordinates, w is in clip coordinates. (See
[giRasterPos})

ParameterValues returns four values: the s, t,
r, and g current raster texture coordinates.
(See |gIRasterPos| and |gITexCoord})
ParameterValues returns a single Boolean
value indicating whether the current raster
position is valid. (See [gIRasterPos])
ParameterValues returns a four values: the
RGBA values of the secondary color. (See
[gISecondaryColorEXT]})

ParameterValues returns four values: the s, t,
r, and g current texture coordinates. (See

)

ParameterValues returns one value, the depth
bias factor used during pixel transfers. (See
[glPixelTransfer))

ParameterValues returns one value, the
number of bit planes in the depth buffer.
ParameterValues returns one value, the value
that is used to clear the depth buffer. Integer
values, if requested, are linearly mapped from
the internal floating-point representation such
that 1.0 returns the most positive
representable integer value, and -1.0 returns

the most negative representable integer value.
(See |gIClearDepth})

ParameterValues returns one value, the

symbolic constant that indicates the depth
comparison function. (See )




GL_DEPTH_RANGE

GL_DEPTH_SCALE

GL_DEPTH_TEST

GL_DEPTH_WRITEMASK

GL_DITHER

GL_DOUBLEBUFFER

GL_DRAW_BUFFER

GL_EDGE_FLAG

GL_EDGE_FLAG_ARRAY

GL_EDGE_FLAG_ARRAY_COUNT_EXT

GL_EDGE_FLAG_ARRAY_EXT

GL_EDGE_FLAG_LIST_STRIDE_IBM

GL_EDGE_FLAG_ARRAY_STRIDE

GL_EDGE_FLAG_ARRAY_STRIDE_EXT

ParameterValues returns two values: the near
and far mapping limits for the depth buffer.
Integer values, if requested, are linearly
mapped from the internal floating-point
representation such that 1.0 returns the most
positive representable integer value, and -1.0
returns the most negative representable
integer value. (See )
ParameterValues returns one value, the depth
scale factor used during pixel transfers. (See

glPixelTransfen])

ParameterValues returns a single Boolean

value indicating whether depth testing of
fragments is enabled. (See and
glDepthRange})

ParameterValues returns a single Boolean

value indicating if the depth buffer is enabled
for writing. (See )
ParameterValues returns a single Boolean
value indicating whether dithering of fragment
colors and indices is enabled.
ParameterValues returns a single Boolean
value indicating whether double buffering is
supported.

ParameterValues returns one value, a
symbolic constant indicating which buffers are
being drawn to. (See )
ParameterValues returns a single Boolean
value indicating whether the current edge flag
is True or False. (See [gIEdgeFlag])
ParameterValues returns a single Boolean
value indicating whether the edge flag array is
enabled. The initial value is GL_FALSE. (See
[glEdgeFlagPointer})

ParameterValues returns one value, the
number of edge flags in the edge flag array,
counting from the first, that are static. (See
|9IEdgeFIagPointerEXTl) Requires extension
EXT_vertex_array.

ParameterValues returns a single boolean
value, indicating whether the edge flag array is
enabled. (See |gIEdgeFlagPointerEXT})
Requires extension EXT_vertex_array.
ParameterValues returns one value, the byte
stride between successive pointers to edge
flag lists. The initial value is 0. (See
|g|EdgeFIagPointerListIBMl) Requires
extension IBM_XXX.

ParameterValues returns one value, the byte
offset between consecutive edge flags in the
edge flag array. The initial value is 0. (See
|gIEdgeFIagPointed)

ParameterValues returns one value, the byte
offset between consecutive edge flags in the
edge flag array. (See
|gIEdgeFIagPointerEXTl) Requires extension
EXT_vertex_array.

Chapter 1. OpenGL Subroutines 141



GL_FOG

GL_FOG_COLOR

GL_FOG_COORDINATE_ARRAY_TYPE_EXT

GL_FOG_COORDINATE_ARRAY_STRIDE_EXT

GL_FOG_DENSITY
GL_FOG_END

GL_FOG_HINT

GL_FOG_INDEX

GL_FOG_MODE

GL_FOG_START

GL_FRONT_FACE

GL_GREEN_BIAS

GL_GREEN_BITS

GL_GREEN_SCALE

GL_INDEX_ARRAY

GL_INDEX_ARRAY_COUNT_EXT

GL_INDEX_ARRAY_EXT

142 OpenGL 1.2 Reference Manual

ParameterValues returns a single Boolean
value indicating whether fogging is enabled.
(See [gIFog])

ParameterValues returns four values: the
RGBA components of the fog color. Integer
values, if requested, are linearly mapped from
the internal floating-point representation such
that 1.0 returns the most positive
representable integer value, and -1.0 returns
the most negative representable integer value.
(See[gIFog])

ParameterValues returns one value, the fog
coordinate array type. (See
[gIFogCoordPointerEXT])

ParameterValues returns one value, the fog
coordinate array stride. (See
[gIFogCoordPointerEXT])

ParameterValues returns one value, the fog
density parameter. (See [giFog})
ParameterValues returns one value, the end
factor for the linear fog equation. (See )
ParameterValues returns one value, a
symbolic constant indicating the mode of the
fog hint. (See [gIHint})

ParameterValues returns one value, the fog
color index. (See [gIFog])

ParameterValues returns one value, a
symbolic constant indicating which fog
equation is selected. (See )
ParameterValues returns one value, the start
factor for the linear fog equation. (See [gIFog])
ParameterValues returns one value, a
symbolic constant indicating whether clockwise

or counterclockwise polygon winding is treated
as frontfacing. (See )
ParameterValues returns one value, the green
bias factor used during pixel transfers.
ParameterValues returns one value, the
number of green bit planes in each color
buffer.

ParameterValues returns one value, the green
scale factor used during pixel transfers. (See
[aiPixelTranster)

ParameterValues returns a single Boolean
value indicating whether the color index array
is enabled. The initial value is GL_FALSE.
(See [glindexPointer)

ParameterValues returns one value, the
number of color indexes in the color index
array, counting from the first, that are static.
(See [glindexPointerEXT]) Requires extension
EXT_vertex_array.

ParameterValues returns a single boolean
value, indicating whether the color index array
is enabled. (See |glindexPointerEXT})
Requires extension EXT_vertex_array.




GL_INDEX_ARRAY_LIST_STRIDE_IBM

GL_INDEX_ARRAY_STRIDE

GL_INDEX_ARRAY_STRIDE_EXT

GL_INDEX_ARRAY_TYPE

GL_INDEX_ARRAY_TYPE_EXT

GL_INDEX_BITS

GL_INDEX_CLEAR_VALUE

GL_INDEX_MODE

GL_INDEX_OFFSET

GL_INDEX_SHIFT

GL_INDEX_WRITEMASK

GL_LIGHT# (where '# is 0...GL_MAXLIGHTS-1)

GL_LIGHTING

GL_LIGHT_MODEL_AMBIENT

ParameterValues returns one value, the byte
stride between successive pointers to index
lists. The initial value is 0. (See
[glindexPointerListIBM}) Requires extension
IBM_vertex_array_lists.

ParameterValues returns one value, the byte
offset between consecutive color indexes in

the color index array. The initial value is 0.
(See |glindexPointer])

ParameterValues returns one value, the byte
offset between consecutive color indexes in
the color index array. (See
[glindexPointerEXT]) Requires extension
EXT_vertex_array.

ParameterValues returns one value, the data
type of indexes in the color index array. The
initial value is GL_FLOAT. (See
[glindexPointer])

ParameterValues returns one value, the data
type of indexes in the color index array. (See
[glindexPointerEXT]) Requires extension
EXT_vertex_array.

ParameterValues returns one value, the
number of bit planes in each color index
buffer.

ParameterValues returns one value, the color
index used to clear the color index buffers.
(See giClearindex)

ParameterValues returns a single Boolean
value indicating whether the GL is in color
index mode (True) or RGBA mode (False).
ParameterValues returns one value, the offset
added to color and stencil indices during pixel
transfers. (See [gIPixelTransfer})
ParameterValues returns one value, the
amount that color and stencil indices are

shifted during pixel transfers. (See
glPixelTransfen])

ParameterValues returns one value, a mask
indicating which bit planes of each color index
buffer can be written. (See [glindexMask])
ParameterValues returns a single Boolean
value indicating whether the specified light is

enabled. (See |gILighﬂ and |gILightModeI|)

ParameterValues returns a single Boolean

value indicating whether lighting is enabled.
(See [glLightModell)

ParameterValues returns four values: the
RGBA components of the ambient intensity of
the entire scene. Integer values, if requested,
are linearly mapped from the internal
floating-point representation such that 1.0
returns the most positive representable integer
value, and -1.0 returns the most negative

representable integer value. (See
glLightModell)

Chapter 1. OpenGL Subroutines 143



GL_LIGHT_MODEL_COLOR_CONTROL

GL_LIGHT_MODEL_LOCAL_VIEWER

GL_LIGHT_MODEL_TWO_SIDE

GL_LINE_SMOOTH

GL_LINE_SMOOTH_HINT

GL_LINE_STIPPLE

GL_LINE_STIPPLE_PATTERN
GL_LINE_STIPPLE_REPEAT
GL_LINE_WIDTH

GL_LINE_WIDTH_GRANULARITY

GL_LINE_WIDTH_RANGE

GL_LIST_BASE

GL_LIST_INDEX

GL_LIST_MODE

GL_LOGIC_OP

GL_LOGIC_OP_MODE

GL_MAP1_COLOR_4

144 OpenGL 1.2 Reference Manual

ParameterValues can be
GL_SINGLE_COLOR or
GL_SPECULAR_COLOR.
GL_SINGLE_COLOR is the default value.
Depending upon the ParameterValues, the
lighting equations compute the two colors
differently. All computations are carried out in
eye coordinates. (See [glLightModel])
ParameterValues returns a single Boolean
value indicating whether specular reflection
calculations treat the viewer as being local to
the scene. (See [glLightModel])
ParameterValues returns a single Boolean
value indicating whether separate materials
are used to compute lighting for frontfacing
and backfacing polygons. (See )
ParameterValues returns a single Boolean
value indicating whether antialiasing of lines is
enabled. (See)
ParameterValues returns one value, a
symbolic constant indicating the mode of the
line antialiasing hint. (See [gIHint).
ParameterValues returns a single Boolean

value indicating whether stippling of lines is
enabled. (See)
ParameterValues returns one value, the 16-bit
line stipple pattern. (See [gILineStipple})
ParameterValues returns one value, the line
stipple repeat factor. (See )
ParameterValues returns one value, the line
width as specified with
ParameterValues returns one value, the width
difference between adjacent supported widths
for antialiased lines. (See )
ParameterValues returns two values: the
smallest and largest supported widths for
antialiased lines. (See )
ParameterValues returns one value, the base
offset added to all names in arrays presented
to glCallLists. (See [glListBase])
ParameterValues returns one value, the name
of the display list currently under construction.
If no display list is currently under
construction, 0 is returned. (See [gINewList])
ParameterValues returns one value, a
symbolic constant indicating the construction
mode of the display list currently being
constructed. (See )
ParameterValues returns a single Boolean
value indicating whether fragment indexes are
merged into the frame buffer using a logical

operation. (See )

ParameterValues returns one value, a
symbolic constant indicating the selected logic
operational mode. (See )
ParameterValues returns a single Boolean

value indicating whether 1D evaluation
generates colors. (See [giMap1])



GL_MAP1_GRID_DOMAIN

GL_MAP1_GRID_SEGMENTS

GL_MAP1_INDEX

GL_MAP1_NORMAL

GL_MAP1_TEXTURE_COORD_1

GL_MAP1_TEXTURE_COORD_2

GL_MAP1_TEXTURE_COORD_3

GL_MAP1_TEXTURE_COORD_4

GL_MAP1_VERTEX_3

GL_MAP1_VERTEX_4

GL_MAP2_COLOR_4

GL_MAP2_GRID_DOMAIN

GL_MAP2_GRID_SEGMENTS

GL_MAP2_INDEX

GL_MAP2_NORMAL

GL_MAP2_TEXTURE_COORD _1

GL_MAP2_TEXTURE_COORD_2

ParameterValues returns two values: the
endpoints of the one-dimensional (1D) map’s
grid domain. (See [giMapGrid})
ParameterValues returns one value, the
number of partitions in the 1D map’s grid
domain. (See [gIMapGrid])
ParameterValues returns a single Boolean
value indicating whether 1D evaluation
generates color indices. (See )
ParameterValues returns a single Boolean
value indicating whether 1D evaluation
generates normals. (See )
ParameterValues returns a single Boolean
value indicating whether 1D evaluation

generates 1D texture coordinates. (See
ihap)

ParameterValues returns a single Boolean
value indicating whether 1D evaluation

generates 2D texture coordinates. (See
ihap)

ParameterValues returns a single Boolean
value indicating whether 1D evaluation
generates 3D texture coordinates. (See
giMap1})

ParameterValues returns a single Boolean
value indicating whether 1D evaluation
generates 4D texture coordinates. (See
giMap1})

ParameterValues returns a single Boolean
value indicating whether 1D evaluation

generates 3D vertex coordinates. (See
aliap)

ParameterValues returns a single Boolean
value indicating whether 1D evaluation
generates 4D vertex coordinates. (See
giMap1})

ParameterValues returns a single Boolean
value indicating whether 2D evaluation
generates colors. (See [giMap2))
ParameterValues returns four values: the
endpoints of the 2D map’s i and j grid
domains. (See )
ParameterValues returns two values: the
number of partitions in the 2D map’s i and j
grid domains. (See [giMapGrid})
ParameterValues returns a single Boolean
value indicating whether 2D evaluation
generates color indices. (See [giMap2])
ParameterValues returns a single Boolean
value indicating whether 2D evaluation
generates normals. (See )
ParameterValues returns a single Boolean
value indicating whether 2D evaluation

generates 1D texture coordinates. (See
_)

ParameterValues returns a single Boolean
value indicating whether 2D evaluation

generates 2D texture coordinates. (See
itap)

Chapter 1. OpenGL Subroutines 145



GL_MAP2_TEXTURE_COORD_3

GL_MAP2_TEXTURE_COORD_4

GL_MAP2_VERTEX_3

GL_MAP2_VERTEX_4

GL_MAP_COLOR

GL_MAP_STENCIL

GL_MATRIX_MODE

GL_MAX_3D_TEXTURE_SIZE

GL_MAX_3D_TEXTURE_SIZE_EXT

GL_MAX_ATTRIB_STACK_DEPTH

GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

GL_MAX_CLIP_PLANES

GL_MAX_ELEMENTS_INDICES

GL_MAX_ELEMENTS_VERTICES

GL_MAX_EVAL_ORDER

GL_MAX_LIGHTS

146 OpenGL 1.2 Reference Manual

ParameterValues returns a single Boolean
value indicating whether 2D evaluation

generates 3D texture coordinates. (See
_ )

ParameterValues returns a single Boolean
value indicating whether 2D evaluation

generates 4D texture coordinates. (See
_ )

ParameterValues returns a single Boolean
value indicating whether 2D evaluation

generates 3D vertex coordinates. (See
_ )

ParameterValues returns a single Boolean
value indicating whether 2D evaluation

generates 4D vertex coordinates. (See
_ )

ParameterValues returns a single Boolean
value indicating if colors and color indices are
to be replaced by table lookup during pixel
transfers. (See )
ParameterValues returns a single Boolean
value indicating if stencil indices are to be

replaced by table lookup during pixel transfers.
(See |gIPixelTransfer})

ParameterValues returns one value, a
symbolic constant indicating which matrix

stack is currently the target of all matrix
operations. (See )
ParameterValues returns one value, the
maximum width, height, or depth of any 3D
texture image (without borders). (See
[glTeximage3DEXT})

ParameterValues returns one value, a rough
estimate of the largest 3D texture that the GL
can handle. If the GL version is 1.2 or greater,
use GL_PROXY_TEXTURE_3D" to determine
if a texture is too large. (See
[gITeximage3DEXT]) Requires extension
EXT_texture3D.

ParameterValues returns one value, the

maximum supported depth of the attribute
stack. (e [glPushAtird)

ParameterValues returns one value indicating
the maximum supported depth of the client
attribute stack. (See [gIPushClientAttriby)
ParameterValues returns one value, the
maximum number of application-defined
clipping planes. (See )
ParameterValues returns one value: the
maximum number of DrawRangeElements
vertices.

ParameterValues returns one value: the
maximum number of DrawRangeElements
vertices.

ParameterValues returns one value, the
maximum equation order supported by 1D and
2D evaluators. (See [gIMap1| and [giMap2})
ParameterValues returns one value, the

maximum number of lights. (See [glLight})




GL_MAX_LIST_NESTING

GL_MAX_MODELVIEW_STACK_DEPTH

GL_MAX_NAME_STACK_DEPTH

GL_MAX_PIXEL_MAP_TABLE

GL_MAX_PROJECTION_STACK_DEPTH

GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT

GL_MAX_TEXTURE_SIZE

GL_MAX_TEXTURE_STACK_DEPTH

GL_MAX_VIEWPORT_DIMS

GL_MAX_VISIBILITY_THRESHOLD_IBM

GL_MODELVIEW_MATRIX

GL_MODELVIEW_STACK_DEPTH

GL_NAME_STACK_DEPTH

GL_NORMAL_ARRAY

GL_NORMAL_ARRAY_COUNT_EXT

GL_NORMAL_ARRAY_EXT

ParameterValues returns one value, the
maximum recursion depth allowed during

display list traversal. (See [glCallList})

ParameterValues returns one value, the

maximum supported depth of the modelview
matrix stack. (See )

ParameterValues returns one value, the

maximum supported depth of the selection
name stack. (See )
ParameterValues returns one value, the
maximum supported size of a glPixelMap

lookup table. (See |§IPierMaE‘)

ParameterValues returns one value, the

maximum supported depth of the projection
matrix stack. (See )
ParameterValues returns one value, the
maximum level of texture anisotropy supported
by this implementation. (See
[glGetTexParameter}) Requires extension
EXT_texture_filter_anisotropic.
ParameterValues returns one value, the
maximum width or height of any texture image
(without borders). (See and
[gTeximage20))

ParameterValues returns one value, the
maximum supported depth of the texture
matrix stack. (See )
ParameterValues returns two values: the
maximum supported width and height of the
viewport. (See [gIViewport)
ParameterValues returns one value: the
maximum permitted number of visible
fragments that will be discarded prior to
registering a visibility hit. (See
[alVisibilityBufferlBM]) Requires extension
IBM_occlusion_cull.

ParameterValues returns 16 values: the

modelview matrix on the top of the modelview
matrix stack. (See )

ParameterValues returns one value, the
number of matrices on the modelview matrix
stack. (See )
ParameterValues returns one value, the
number of names on the selection name
stack. (See [gIPushMatrix])
ParameterValues returns a single Boolean
value, indicating whether the normal array is
enabled. The initial value is GL_FALSE. (See
|gINormaIPointe[|)

ParameterValues returns one value, the
number of normals in the normal array,
counting from the first, that are static. (See
[gINormalPointerEXT]) Requires extension
EXT_vertex_array.

ParameterValues returns a single boolean
value, indicating whether the normal array is
enabled. (See |gINormalPointerEXT])
Requires extension EXT_vertex_array.

Chapter 1. OpenGL Subroutines 147



GL_NORMAL_ARRAY_LIST_STRIDE_IBM

GL_NORMAL_ARRAY_STRIDE

GL_NORMAL_ARRAY_STRIDE_EXT

GL_NORMAL_ARRAY_TYPE

GL_NORMAL_ARRAY_TYPE_EXT

GL_NORMALIZE

GL_OCCLUSION_TEST_HP

GL_OCCLUSION_TEST_RESULT_HP

GL_PACK_ALIGNMENT

GL_PACK_IMAGE_HEIGHT

GL_PACK_IMAGE_HEIGHT_EXT

GL_PACK_LSB_FIRST

GL_PACK_ROW_LENGTH

GL_PACK_SKIP_IMAGES

148 OpenGL 1.2 Reference Manual

ParameterValues returns one value, the byte
stride between successive pointers to normal
lists. The initial value is 0. (See
[gINormalPointerListIBM]) Requires extension
IBM_vertex_array_lists.

ParameterValues returns one value, the byte
offset between consecutive normals in the
normal array. The initial value is 0. (See
[gINormalPointer})

ParameterValues returns one value, the byte
offset between consecutive normals in the
normal array. (See [gINormalPointerEXT})
Requires extension EXT_vertex_array.
ParameterValues returns one value, the data
type of each coordinate in the normal array.
The initial value is GL_FLOAT. (See
[gINormalPointer})

ParameterValues returns one value, the data
type of each coordinate in the normal array.
(See [gINormalPointerEXT]) Requires
extension EXT_vertex_array.
ParameterValues returns a single Boolean
value indicating whether normals are
automatically scaled to unit length after they
have been transformed to eye coordinates.
(See [giNormal)

ParameterValues returns a single Boolean
value indicating whether the occlusion test
HP_OCCLUSION_TEST is enabled. (See
[giEnable])

ParameterValues returns a single Boolean
value indicating whether the occlusion test
HP_OCCLUSION_TEST noted any fragments
successfully passing the depth test. (See
[giEnable])

ParameterValues returns one value, the byte

alignment used for writing pixel data to
memory. (See )

ParameterValues returns one value, the
number of image rows used for writing 3D
pixel data to memory. (See )
ParameterValues returns one value, the
number of image rows used for writing 3D
pixel data to memory. (See )
Requires extension EXT_texture3D.
ParameterValues returns a single Boolean

value indicating whether single-bit pixels being
written to memory are written first to the least

significant bit of each unsigned byte. (See
glPixelStore})

ParameterValues returns one value, the row
length used for writing pixel data to memory.
(See [glPixelStore])

ParameterValues returns one value, the
number of 2D images skipped before the first

pixel of a 3D image is written into memory.
(See [gPrefStors)




GL_PACK_SKIP_IMAGES_EXT

GL_PACK_SKIP_PIXELS

GL_PACK_SKIP_ROWS

GL_PACK_SWAP_BYTES

GL_PERSPECTIVE_CORRECTION_HINT

GL_PIXEL_MAP_A_TO_A_SIZE

GL_PIXEL_MAP_B_TO_B_SIZE

GL_PIXEL_MAP_G_TO_G_SIZE

GL_PIXEL_MAP_I_TO_A_SIZE

GL_PIXEL_MAP_I_TO_B_SIZE

GL_PIXEL_MAP_I_TO_G_SIZE

GL_PIXEL_MAP_I_TO_I_SIZE

GL_PIXEL_MAP_I_TO_R_SIZE

GL_PIXEL_MAP_R_TO_R_SIZE

GL_PIXEL_MAP_S_TO_S_SIZE

GL_POINT_SIZE

GL_POINT_SIZE_GRANULARITY

GL_POINT_SIZE_RANGE

ParameterValues returns one value, the
number of 2D images skipped before the first
pixel of a 3D image is written into memory.
(See [glPixelStorel) Requires extension
EXT_texture3D.

ParameterValues returns one value, the
number of pixel locations skipped before the

first pixel is written into memory. (See
_)

ParameterValues returns one value, the
number of rows of pixel locations skipped
before the first pixel is written into memory.
(See gIPixelStore})

ParameterValues returns a single Boolean
value indicating whether the bytes of 2-byte
and 4-byte pixel indices and components are

swapped before being written to memory. (See
GPelSiord)

ParameterValues returns one value, a
symbolic constant indicating the mode of the
perspective correction hint. (See )
ParameterValues returns one value, the size
of the alpha-to-alpha pixel translation table.
(See |§IPierMaE
ParameterValues returns one value, the size
of the blue-to-blue pixel translation table. (See
[glPixelMap])

ParameterValues returns one value, the size

of the green-to-green pixel translation table.
(So0 piPixeiiap)

ParameterValues returns one value, the size
of the index-to-alpha pixel translation table.
(See [gIPixelMap])
ParameterValues returns one value, the size
of the index-to-blue pixel translation table.
(See [glPixelMap])

ParameterValues returns one value, the size

of the index-to-green pixel translation table.
(Seo iPineiag)

ParameterValues returns one value, the size
of the index-to-index pixel translation table.
(See [gIPixelMap])

ParameterValues returns one value, the size
of the index-to-red pixel translation table. (See
[glPixelMap])

ParameterValues returns one value, the size
of the red-to-red pixel translation table. (See
[glPixelMap])

ParameterValues returns one value, the size
of the stencil-to-stencil pixel translation table.
(See [gIPixelMap])

ParameterValues returns one value, the point
size as specified by
ParameterValues returns one value, the size
difference between adjacent supported sizes
for antialiased points. (See )

ParameterValues returns two values: the
smallest and largest supported sizes for
antialiased points. (See )

Chapter 1. OpenGL Subroutines 149

~




GL_POINT_SMOOTH

GL_POINT_SMOOTH_HINT

GL_POLYGON_MODE

GL_POLYGON_OFFSET_BIAS_EXT

GL_POLYGON_OFFSET_EXT

GL_POLYGON_OFFSET_FACTOR

GL_POLYGON_OFFSET_FACTOR_EXT

GL_POLYGON_OFFSET_FILL

GL_POLYGON_OFFSET_LINE

GL_POLYGON_OFFSET_POINT

GL_POLYGON_OFFSET_UNITS

GL_POLYGON_SMOOTH

GL_POLYGON_SMOOTH_HINT

GL_POLYGON_STIPPLE

150 OpenGL 1.2 Reference Manual

ParameterValues returns a single Boolean
value indicating whether antialiasing of points
is enabled. (See )
ParameterValues returns one value, a
symbolic constant indicating the mode of the
point antialiasing hint. (See [gIHint])
ParameterValues returns two values: symbolic
constants indicating whether frontfacing and
backfacing polygons are rasterized as points,
lines, or filled polygons. (See
[glPolygonModel)

ParameterValues returns one value, the
constant which is added to the z value of each
fragment generated when a polygon is
rasterized. (See |gIPolygonOffsetEXT])
Requires extension EXT_polygon_offset.
ParameterValues returns a single Boolean
value indicating whether polygon offest is
enabled. (See [gIPolygonOffsetEXT])
Requires extension EXT_polygon_offset.
ParameterValues returns one value, the
scaling factor used to determine the variable
offset which is added to the depth value of
each fragment generated when a polygon is
rasterized. The initial value is 0.0. (See
[gIPolygonOffsed)

ParameterValues returns one value, the
scaling factor used to determine the variable
offset which is added to the z value of each
fragment generated when a polygon is
rasterized. (See |gIPolygonOffsetEXT])
Requires extension EXT_polygon_offset.
ParameterValues returns a single Boolean
value indicating whether polygon offset is
enabled for polygons in fill mode. The initial
value is GL_FALSE. (See [gIPolygonOffset])
ParameterValues returns a single Boolean
value indicating whether polygon offset is
enabled for polygons in line mode. The initial
value is GL_FALSE. (See [gIPolygonOffset])
ParameterValues returns a single Boolean
value indicating whether polygon offset is
enabled for polygons in point mode. The initial
value is GL_FALSE. (See [gIPolygonOffset])
ParameterValues returns one value, this value
is multiplied by an implementation-specific
value and then added to the z value of each
fragment generated when a polygon is
rasterized. The initial value is 0.0. (See
[gIPolygonOffsed)

ParameterValues returns a single Boolean
value indicating whether antialiasing of
polygons is enabled. (See )
ParameterValues returns one value, a
symbolic constant indicating the mode of the
polygon antialiasing hint. (See [giHint})
ParameterValues returns a single Boolean
value indicating whether stippling of polygons
is enabled. (See [gIPolygonStipple])




GL_PROJECTION_MATRIX

GL_PROJECTION_STACK_DEPTH

GL_READ_BUFFER

GL_RED_BIAS

GL_RED_BITS

GL_RED_SCALE

GL_RENDER_MODE

GL_RGBA_MODE

GL_SCISSOR_BOX

GL_SCISSOR_TEST

GL_SHADE_MODEL

GL_SECONDARY_COLOR_ARRAY_SIZE_EXT

GL_SECONDARY_COLOR_ARRAY_STRIDE_EXT

GL_SECONDARY_COLOR_ARRAY_TYPE_EXT

GL_SMOOTH_LINE_WIDTH_GRANULARITY

GL_SMOOTH_LINE_WIDTH_RANGE

GL_SMOOTH_POINT_SIZE_GRANULARITY

ParameterValues returns 16 values: the
projection matrix on the top of the projection
matrix stack. (See )
ParameterValues returns one value, the
number of matrices on the projection matrix
stack. (See [gIPushMatrix])

ParameterValues returns one value, a
symbolic constant indicating which color buffer
is selected for reading. (See
and [glAccum])

ParameterValues returns one value, the red
bias factor used during pixel transfers.
ParameterValues returns one value, the
number of red bit planes in each color buffer.
ParameterValues returns one value, the red
scale factor used during pixel transfers. (See
[aiPixelTranster)

ParameterValues returns one value, a
symbolic constant indicating whether the GL is
in render, select, or feedback mode. (See
[giRenderModel)

ParameterValues returns a single Boolean
value indicating whether the GL is in RGBA
mode (True) or color index mode (False). (See
[giColor)

ParameterValues returns four values: the x
and y window coordinates of the scissor box,
followed by its width and height. (See
[giScissor))

ParameterValues returns a single Boolean

value indicating whether scissoring is enabled.
(See iScissor)

ParameterValues returns one value, a
symbolic constant indicating whether the

shading mode is flat or smooth. (See
(iShadelodel)

ParameterValues returns one value, the
number of components in each entry of the
secondary color array, which will be either 3 or
4. (See [glSecondaryColorPointerEXT})
ParameterValues returns one value, the byte
offset between consecutive entries in the
secondary color array. (See
[gISecondaryColorPointerEXT])
ParameterValues returns one value, the data
type of each component in the secondary
color array. (See
[gISecondaryColorPointerEXT])
ParameterValues returns one value, the width
difference between adjacent supported widths
for antialiased lines. (See [gILineWidth])
ParameterValues returns two values: the
smallest and largest supported widths for
antialiased lines. (See )

ParameterValues returns one value, the size

difference between adjacent supported sizes
for antialiased points. (See )

Chapter 1. OpenGL Subroutines 151



GL_SMOOTH_POINT_SIZE_RANGE

GL_STENCIL_BITS

GL_STENCIL_CLEAR_VALUE

GL_STENCIL_FAIL

GL_STENCIL_FUNC

GL_STENCIL_PASS_DEPTH_FAIL

GL_STENCIL_PASS_DEPTH_PASS

GL_STENCIL_REF

GL_STENCIL_TEST

GL_STENCIL_VALUE_MASK

GL_STENCIL_WRITEMASK

GL_STEREO

GL_SUBPIXEL_BITS

GL_TEXTURE_1D

GL_TEXTURE_2D

GL_TEXTURE_1D_BINDING

152 OpenGL 1.2 Reference Manual

ParameterValues returns two values: the
smallest and largest supported sizes for
antialiased points. (See [gIPointSize})
ParameterValues returns one value, the
number of bit planes in the stencil buffer.
ParameterValues returns one value, the index
to which the stencil bit planes are cleared.
(See|gIClearStencil)

ParameterValues returns one value, a
symbolic constant indicating what action is
taken when the stencil test fails. (See
[giStenciiop))

ParameterValues returns one value, a
symbolic constant indicating what function is
used to compare the stencil reference value
with the stencil buffer value. (See
[giStencilFund])

ParameterValues returns one value, a
symbolic constant indicating what action is
taken when the stencil test passes but the
depth test fails. (See )
ParameterValues returns one value, a
symbolic constant indicating what action is
taken when the stencil test passes and the
depth test passes. (See )
ParameterValues returns one value, the
reference value that is compared with the
contents of the stencil buffer. (See
[giStencilFund])

ParameterValues returns a single Boolean
value indicating whether stencil testing of

fragments is enabled. (See |gIStencilFunc|and
iStenciog)

ParameterValues returns one value, the mask
that is used to mask both the stencil reference
value and the stencil buffer value before they

are compared. (See )

ParameterValues returns one value, the mask

that controls writing of the stencil bit planes.
(Soo BiStencillask)

ParameterValues returns a single Boolean
value indicating whether stereo buffers (left
and right) are supported.

ParameterValues returns one value, an
estimate of the number of bits of subpixel
resolution that are used to position rasterized
geometry in window coordinates.
ParameterValues returns a single Boolean
value indicating whether 1D texture mapping is
enabled. (See)
ParameterValues returns a single Boolean
value indicating whether 2D texture mapping is
enabled. (See [giTeximage2D])
ParameterValues returns a single value, the

name of the texture currently bound to the
target GL_TEXTURE_1D. The initial value is

0. (See|gIBindTexture})



GL_TEXTURE_1D_BINDING_EXT

GL_TEXTURE_2D_BINDING

GL_TEXTURE_2D_BINDING_EXT

GL_TEXTURE_3D_BINDING_EXT

GL_TEXTURE_3D_EXT

GL_TEXTURE_COLOR_TABLE_EXT

GL_TEXTURE_COORD_ARRAY

GL_TEXTURE_COORD_ARRAY_COUNT_EXT

GL_TEXTURE_COORD_ARRAY_EXT

GL_TEXTURE_COORD_ARRAY_LIST_STRIDE_IBM

GL_TEXTURE_COORD_ARRAY_SIZE

GL_TEXTURE_COORD_ARRAY_SIZE_EXT

GL_TEXTURE_COORD_ARRAY_STRIDE

ParameterValues returns a single value, the
name of the texture currently bound to the
target GL_TEXTURE_1D. (See
[gIBindTextureEXT]) Requires extension
EXT_texture_object.

ParameterValues returns a single value, the
name of the texture currently bound to the
target GL_TEXTURE_2D. The initial value is
0. (See [gIBindTexture])

ParameterValues returns a single value, the
name of the texture currently bound to the
target GL_TEXTURE_2D. (See
[gIBindTextureEXT]) Requires extension
EXT_texture_object.

ParameterValues returns a single value, the
name of the texture currently bound to the
target GL_TEXTURE_3D_EXT. (See
) Requires extension
EXT_texture_object.

ParameterValues returns a single Boolean
value indicating whether 3D texture mapping is
enabled. (See |glTeximage3DEXT}) Requires
extension EXT_texture3D.

ParameterValues returns a single Boolean
value indicating whether the texture color table
is enabled. The initial value is GL_FALSE.
(See [giColorTable])

ParameterValues returns a single Boolean
value indicating whether the texture coordinate
array is enabled. The initial value is
GL_FALSE. (See |[gITexCoordPointer])
ParameterValues returns one value, the
number of elements in the texture coordinate
array, counting from the first, that are static.
(See [gITexCoordPointerEXT}) Requires
extension EXT_vertex_array.
ParameterValues returns a single boolean
value, indicating whether the texture
coordinate array is enabled. (See
[gITexCoordPointerEXT}) Requires extension
EXT_vertex_array.

ParameterValues returns one value, the byte
stride between successive pointers to texture
coord lists. The initial value is 0. (See
[gITexCoordPointerListIBM}) Requires
extension IBM_vertex_array_lists.
ParameterValues returns one value, the
number of coordinates per element in the
texture coordinate array. The initial value is 4.
(See [gITexCoordPointer})

ParameterValues returns one value, the
number of coordinates per element in the
texture coordinate array. (See
[gITexCoordPointerEXT}) Requires extension
EXT_vertex_array.

ParameterValues returns one value, the byte
offset between consecutive elements in the
texture coordinate array. The initial value is 0.
(See [gITexCoordPointer})

Chapter 1. OpenGL Subroutines 153



GL_TEXTURE_COORD_ARRAY_STRIDE_EXT

GL_TEXTURE_COORD_ARRAY_TYPE

GL_TEXTURE_COORD_ARRAY_TYPE_EXT

GL_TEXTURE_ENV_COLOR

GL_TEXTURE_ENV_MODE

GL_TEXTURE_GEN_S

GL_TEXTURE_GEN_T

GL_TEXTURE_GEN_R

GL_TEXTURE_GEN_Q

GL_TEXTURE_MATRIX

GL_TEXTURE_STACK_DEPTH

GL_TRANSPOSE_COLOR_MATRIX_ARB

GL_TRANSPOSE_MODELVIEW_MATRIX_ARB

154 OpenGL 1.2 Reference Manual

ParameterValues returns one value, the byte
offset between consecutive elements in the
texture coordinate array. (See
[gITexCoordPointerEXT}) Requires extension
EXT_vertex_array.

ParameterValues returns one value, the data
type of the coordinates in the texture
coordinate array. The initial value is
GL_FLOAT. (See [gITexCoordPointer})
ParameterValues returns one value, the data
type of the coordinates in the texture
coordinate array. (See
[gITexCoordPointerEXT}) Requires extension
EXT_vertex_array.

ParameterValues returns four values: the
RGBA values of the texture environment color.
Integer values, if requested, are linearly
mapped from the internal floating-point
representation such that 1.0 returns the most
positive representable integer value, and -1.0
returns the most negative representable
integer value. (See )
ParameterValues returns one value, a
symbolic constant indicating what texture
environment function is currently selected.
(See [giTexEnv})

ParameterValues returns a single Boolean
value indicating whether automatic generation
of the S texture coordinate is enabled. (See
[gITexGenl)

ParameterValues returns a single Boolean
value indicating whether automatic generation
of the T texture coordinate is enabled. (See
[giTexGenl)

ParameterValues returns a single Boolean
value indicating whether automatic generation
of the R texture coordinate is enabled. (See
[giTexGenl)

ParameterValues returns a single Boolean
value indicating whether automatic generation
of the Q texture coordinate is enabled. (See

glTexGen})

ParameterValues returns 16 values: the

texture matrix on the top of the texture matrix
stack. (Ses gatrixMode)

ParameterValues returns one value, the
number of matrices on the texture matrix stack
. (See [gIPushMatrix])

ParameterValues returns 16 values: the
transpose of the color matrix. (See
[gILoadNamedMatrixIBM]) Requires extension
ARB_transpose_matrix.

ParameterValues returns 16 values: the
transpose of the modelview matrix on the top
of the modelview matrix stack. (See

[gIMatrixMode]) Requires extension

ARB_transpose_matrix.




GL_TRANSPOSE_PROJECTION_MATRIX_ARB

GL_TRANSPOSE_TEXTURE_MATRIX_ARB

GL_UNPACK_ALIGNMENT

GL_UNPACK_IMAGE_HEIGHT

GL_UNPACK_IMAGE_HEIGHT_EXT

GL_UNPACK_LSB_FIRST

GL_UNPACK_ROW_LENGTH

GL_UNPACK_SKIP_IMAGES

GL_UNPACK_SKIP_IMAGES_EXT

GL_UNPACK_SKIP_PIXELS

GL_UNPACK_SKIP_ROWS

GL_UNPACK_SWAP_BYTES

GL_UPDATE_CLIP_VOLUME_HINT

ParameterValues returns 16 values: the
transpose of the projection matrix on the top of
the projection matrix stack. (See
) Requires extension
ARB_transpose_matrix.

ParameterValues returns 16 values: the
transpose of the texture matrix on the top of
the texture matrix stack. (See )
Requires extension ARB_transpose_matrix.
ParameterValues returns one value, the byte

alignment used for reading pixel data from
memory.(Soo lPxeiStord)

ParameterValues returns one value, the
number of image rows used for reading 3D
pixel data from memory. (See )
ParameterValues returns one value, the
number of image rows used for reading 3D
pixel data from memory. (See )
Requires extension EXT_texture3D.
ParameterValues returns a single Boolean

value indicating whether single-bit pixels being
read from memory are read first from the least

significant bit of each unsigned byte. (See
(gPixeiStord)

ParameterValues returns one value, the row

length used for reading pixel data from
memory. (See )

ParameterValues returns one value, the
number of 2D images skipped before the first
pixel of a 3D image is read from memory.
(See [glPixelStore})

ParameterValues returns one value, the
number of 2D images skipped before the first
pixel of a 3D image is read from memory.
(See [gIPixelStorel) Requires extension
EXT_texture3D.

ParameterValues returns one value, the
number of pixel locations skipped before the

first pixel is read from memory. (See
gPbelSiord)

ParameterValues returns one value, the
number of rows of pixel locations skipped
before the first pixel is read from memory.
(See [gIPixelStore})

ParameterValues returns a single Boolean
value indicating whether the bytes of 2-byte
and 4-byte pixel indices and components are
swapped after being read from memory. (See
ParameterValues returns a single Boolean
value indicating whether the automatic
updating of the Clip Volume Hint (through calls
to glClipBoundingBoxIBM,
glClipBoundingSpherelBM or
glClipBoundingVerticesIBM) is enabled.
(See |gIHint]l) Requires extension
IBM_clip_check.

Chapter 1. OpenGL Subroutines 155



GL_VERTEX_ARRAY

GL_VERTEX_ARRAY_COUNT_EXT

GL_VERTEX_ARRAY_EXT

GL_VERTEX_ARRAY_LIST_STRIDE_IBM

GL_VERTEX_ARRAY_SIZE_EXT

GL_VERTEX_ARRAY_STRIDE

GL_VERTEX_ARRAY_STRIDE_EXT

GL_VERTEX_ARRAY_TYPE

GL_VERTEX_ARRAY_TYPE_EXT

GL_VIEWPORT

GL_VISIBILITY_BUFFER_SIZE_IBM

GL_VISIBILITY_THRESHOLD_IBM

GL_ZOOM_X

GL_ZOOM_Y

ParameterValues returns a single Boolean
value indicating whether the vertex array is
enabled. The initial value is GL_FALSE. (See
[gIVertexPointer])

ParameterValues returns one value, the
number of vertices in the vertex array,
counting from the first, that are static. (See
[gIVertexPointerEXT]) Requires extension
EXT_vertex_array.

ParameterValues returns a single boolean
value, indicating whether the vertex array is
enabled. (See [glVertexPointerEXT})
ParameterValues returns one value, the byte
stride between successive pointers to vertex
lists. The initial value is 0. (See
[gIvertexPointerListIBM|) Requires extension
IBM_vertex_array_lists.

ParameterValues returns one value, the
number of coordinates per vertex in the vertex
array. (See |[glVertexPointerEXT]) Requires
extension EXT_vertex_array.
ParameterValues returns one value, the byte
offset between consecutive vertices in the

vertex array. The initial value is 0. (See
glVertexPointer|)

ParameterValues returns one value, the byte
offset between consecutive vertices in the
vertex array. (See [glVertexPointerEXT])
Requires extension EXT_vertex_array.
ParameterValues returns one value, the data
type of each coordinate in the vertex array.
The initial value is GL_FLOAT. (See
[gIVertexPointer))

ParameterValues returns one value, the data
type of each coordinate in the vertex array.
(See |[glVertexPointerEXT]) Requires
extension EXT_vertex_array.
ParameterValues returns four values: the x
and y window coordinates of the viewport,

followed by its width and height. (See
gIViewPort))

ParameterValues returns one value: the
maximum number of values that can be stored
in the visibility array. (See
[aIvisibilityBufferlBM]) Requires extension
IBM_occlusion_cull.

ParameterValues returns one value: the
number of visible fragments that will be
discarded prior to registering a visibility hit.
(See |glVisibilityThresholdIBM}) Requires
extension IBM_occlusion_cull.
ParameterValues returns one value, the x

pixel zoom factor. (See |gIPixelZoom|)

ParameterValues returns one value, the y

pixel zoom factor. (See |gIPixelZoom})

Many of the Boolean parameters can also be queried more easily using |gllsEnabled

156 OpenGL 1.2 Reference Manual



Parameters

ParameterName Specifies the parameter value to be returned. The symbolic constants listed in the
Description section are accepted.
ParameterValues Returns the value or values of the specified parameter.

Error Codes

GL_INVALID_ENUM ParameterName is not an accepted value.
GL_INVALID_OPERATION The glGet subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |g|GetCIipPIane| subroutine, |§IGetErroF| subroutinubroutine, IGetMap]| subroutine,

[glGetMaterial| subroutine, [glGetPixelMap| subroutine, |giGetPointerv] subroutine, |giGetPointervEXT]|

subroutine, [giGetPolygonStipple| subroutine, [giGetString| subroutine, [giGetTexEnv| subroutine,
IGetTexGen| subroutine, |glGetTexImage| subroutine, |glGetTexLevelParameter| subroutine,
IGetTexParameted subroutine, |gIIsEnabIed| subroutine.

glGetClipPlane Subroutine

Purpose
Returns the coefficients of the clipping plane.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glGetClipPlane(GLenum [Plane],

GLdouble * |Fquation)

Description
The glGetClipPlane subroutine returns in Equation the four coefficients of the plane equation for Plane.

Parameters

Plane Specifies a clipping plane. The number of clipping planes depends on the implementation; however,
at least six clipping planes are supported. They are identified by symbolic names of the form
GL_CLIP_PLANE/ where 0 < i < GL_MAX_CLIP_PLANES.

Equation Returns four double-precision values that are the coefficients of the plane equation of Plane in eye
coordinates.

Chapter 1. OpenGL Subroutines 157



Notes

It is always the case that GL_CLIP_PLANE/ = GL_CLIP_PLANEO + /.

If an error is generated, no change is made to the contents of Equation.

Errors

GL_INVALID_ENUM
GL_INVALID_OPERATION

Files

lusr/include/GL/gl.h

Related Information

Plane is not an accepted value.
The glGetClipPlane subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

The or glEnd subroutine, |gIClipPlane| subroutine.

glGetColorTable Subroutine

Purpose

Return a color lookup table to the user.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glGetColorTable(GLenum |[target|,

GLenum

ormat|,

GLenum |typ |,
const GLvoid |*tabZe|D

void glGetColorTableSGI(GLenum
GLenum
GLenum

target|,

ormat|,

typel,

const GLvoid [<table)

Description

glGetColorTable returns in table the contents of the color table specified by target. No pixel transfer
operations are performed, but pixel storage modes that are applicable to glReadPixels are performed.

Color components that are requested to be in the specified format, but which are not included in the
internal format of the color lookup table, are returned as zero. The assignments of the internal color
components to the components requested by format are:

Internal Component Resulting Component
red red
green green
blue blue
alpha alpha
Tuminance red
intensity red

158 OpenGL 1.2 Reference Manual



Parameters

target
format

type

table

Notes

Must be GL_TEXTURE_COLOR_TABLE_EXT.

is the format of the pixel data in table. The allowable
values are GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_LUMINANCE,
GL_LUMINANCE_ALPHA, GL_RGB, GL_BGR,
GL_RGBA, GL_BGRA, GL_422_EXT,
GL_422_REV_EXT, GL_422_AVERAGE_EXT, and
GL_422_REV_AVERAGE_EXT.

is the type of the pixel data in fable. The allowable values
are GL_UNSIGNED_BYTE, GL_BYTE,
GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, GL_FLOAT,

GL_UNSIGNED_BYTE_3_3_2,
GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4,
GL_UNSIGNED_SHORT_4 4 4 4 REV,
GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5 REYV,

GL_UNSIGNED_INT_8_8 _8_8,
GL_UNSIGNED_INT_8_8_8_8_REYV,
GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV.

is a pointer to a one-dimensional array of pixel data that

will be loaded with the contents of the color table.

GL_TEXTURE_COLOR_TABLE_SGi is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these

tokens may be used interchangeably.

GL_PROXY_TEXTURE_COLOR_TABLE_SGil is an alias for
GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

GL_INVALID_ENUM
GL_INVALID_ENUM
GL_INVALID_ENUM
GL_INVALID_OPERATION

GL_INVALID_OPERATION

is generated if farget is not one of the allowable values.
is generated if format is not one of the allowable values.
is generated if fype is not one of the allowable values.
is generated if type is one of
GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE 2_3_3_REV
GL_UNSIGNED_SHORT_5_6_5, o
GL_UNSIGNED_SHORT_5_6_5_|
GL_RGB.

is generated if type is one of

REV and format is not

GL_UNSIGNED_SHORT_4_4_4 4,
GL_UNSIGNED_SHORT_4 4 4 4 _REV,
GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5 REYV,
GL_UNSIGNED_SHORT_8_8_8_8,
GL_UNSIGNED_SHORT_8_8_8_8_REV,

GL_UNSIGNED_SHORT_10_10_10_2, or
GL_UNSIGNED_SHORT_2_10_10_10_REV, and format
is neigher GL_RGBA nor GL_BGRA.

Chapter 1. OpenGL Subroutines 159



GL_INVALID_OPERATION is generated if glColorTable is executed between the
execution of glBegin and the corresponding execution of
glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information

The |gIColorSubTable] subroutine, the [glColorTableParameter| subroutine, the
lglGetColorTableParameter| subroutine.

glGetColorTableParameter Subroutine

Purpose
Returns attributes used when loading a color table.

Library
OpenGL C bindings library: (libGL.a)

C Syntax

void glGetColorTableParameterfv(GLenum [target|,
GLenum [pname|,
const GLfloat
void glGetColorTableParameteriv(GLenum |target|,
GLenum [pname|,
const GLint [xparams])
void glGetColorTableParameterfvSGI (GLenum [target|,
GLenum [pname|,
const GLfloat [*params))
void glGetColorTableParameterivSGI(GLenum [target|,
GLenum [pname|,

const GLint _*params|)

Description
This subroutine returns parameters specific to color table target.

When pname is set to GL_COLOR_TABLE_SCALE or GL_COLOR_TABLE_BIAS,
glGetColorTableParameter returns the color table scale or bias parameters for the table specified by
target. For these queries, target must be set to GL_TEXTURE_COLOR_TABLE_EXT and params points
to an array of four elements, which receive the scale or bias factors for red, green, blue, and alpha, in that
order.

glGetColorTableParameter can also be used to retrieve the format and size parameters for a color table.
For thes queries, set target to any of the six targets listed above. The format and size parameters are set
by giColorTable.

The following table lists the format and size parameters that may be queried. For each symbolic constant
listed below for pname, params must point to an array of the given length, and will receive the values
indicated.

160 OpenGL 1.2 Reference Manual



Parameter

GL_COLOR_TABLE_FORMAT
GL_COLOR_TABLE_WIDTH
GL_COLOR_TABLE_RED_SIZE
GL_COLOR_TABLE_GREEN_SIZE
GL_COLOR_TABLE_BLUE_SIZE
GL_COLOR_TABLE_ALPHA SIZE

GL_COLOR_TABLE_LUMINANCE_SIZE
GL_COLOR_TABLE_INTENSITY SIZE

Parameters

target

pname

params

Notes

= R e e e e

Meaning

Internal format (e.g. GL_RGBA)
Number of elements in the table

Size
Size
Size
Size
Size
Size

of red component, in bits

of green component, in bits

of blue component, in bits

of alpha component, in bits

of luminance component, in bits
of intensity component, in bits

is the target color table. Must be
GL_TEXTURE_COLOR_TABLE_EXT, or
GL_PROXY_TEXTURE_COLOR_TABLE_EXT.

is the symbolic name of a texture color lookup table
parameter. Must be one of GL_COLOR_TABLE_SCALE,
GL_COLOR_TABLE_BIAS,
GL_COLOR_TABLE_FORMAT,
GL_COLOR_TABLE_WIDTH,
GL_COLOR_TABLE_RED_SIZE,
GL_COLOR_TABLE_GREEN_SIZE,
GL_COLOR_TABLE_BLUE_SIZE,
GL_COLOR_TABLE_ALPHA_SIZE,
GL_COLOR_TABLE_LUMINANCE_SIZE, or
GL_COLOR_TABLE_INTENSITY_SIZE.

is a pointer to an array where the values of the
paramaters will be stored.

GL_TEXTURE_COLOR_TABLE_SGI is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these
tokens may be used interchangeably. GL_PROXY_TEXTURE_COLOR_TABLE_SGil is an alias for
GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

GL_INVALID_ENUM
GL_INVALID_ENUM
GL_INVALID_OPERATION

Files

lusr/include/GL/gl.h

Related Information

is generated if farget is not one of the allowable values.
is generated if pname is not one of the allowable values.
is generated if glColorTableParameter is executed
between the execution of a glBegin and the
corresponding execution of glEnd.

Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

The [gIColorSubTable| subroutine, the |giColorTableParameter| subroutine.

Chapter 1. OpenGL Subroutines 161



glGetError Subroutine

Purpose
Returns error information.

Library
OpenGL C bindings library: libGL.a

C Syntax

GLenum gl1GetError( void )

Description

The glGetError subroutine returns the value of the error flag. Each detectable error is assigned a numeric
code and symbolic name. When an error occurs, the error flag is set to the appropriate error code value.
No other errors are recorded until glGetError is called, the error code is returned, and the flag is reset to
GL_NO_ERROR . If a call to glGetError returns GL_NO_ERROR, there has been no detectable error
since the last call to glGetError, or since the GL was initialized.

To allow for distributed implementations, there may be several error flags. If any single error flag has
recorded an error, the value of that flag is returned, and that flag is reset to GL_NO_ERROR when
glGetError is called. If more than one flag has recorded an error, glGetError returns and clears an
arbitrary error flag value. Therefore, glGetError should always be called in a loop, until it returns
GL_NO_ERROR, if all error flags are to be reset.

Initially, all error flags are set to GL_NO_ERROR.

The currently defined errors are:

GL_NO_ERROR No error has been recorded. The value of this symbolic constant is
guaranteed to be 0 (zero).

GL_INVALID_ENUM An unacceptable value is specified for an enumerated argument. The
offending command is ignored, having no side effect other than to set the
error flag.

GL_INVALID_VALUE A numeric argument is out of range. The offending command is ignored,
having no side effect other than to set the error flag.

GL_INVALID_OPERATION The specified operation is not allowed in the current state. The offending
command is ignored, having no side effect other than to set the error flag.

GL_STACK_OVERFLOW This command would cause a stack overflow. The offending command is
ignored, having no side effect other than to set the error flag.

GL_STACK_UNDERFLOW This command would cause a stack underflow. The offending command is
ignored, having no side effect other than to set the error flag.

GL_OUT_OF_MEMORY There is not enough memory left to execute the command. The state of the
GL is undefined, except for the state of the error flags, after this error is
recorded.

GL_TABLE_TOO_LARGE The specified table is too large.

When an error flag is set, results of a GL operation are undefined only if GL_OUT_OF_MEMORY has
occurred. In all other cases, the command generating the error is ignored and has no effect on the GL
state or frame buffer contents.

162 OpenGL 1.2 Reference Manual



Errors

GL_INVALID_O

Files

PERATION

lust/include/GL/gl.h

The glGetError subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Contains C language constants, variable type definitions, and ANSI function
prototypes fo OpenGL.

Related Information
The or glEnd subroutine.

glGetLight Subroutine

Purpose

Returns light source parameter values.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetLightfv(GLenum [Lighd],
GLenum [|ParameterName|,
GLfloat * [ParameterValues)

void glGetLightiv(GLenum 'Lightl,
GLenum |ParameterName),
GLint * |ParameterValues)

Description

The glGetLight subroutine returns in ParameterValues the value or values of a light source parameter.
Light names the light and is a symbolic name of the form GL_LIGHT/ for 0 < i < GL_MAX_LIGHTS, where
GL_MAX_LIGHTS is an implementation-dependent constant that is greater than or equal to 8.
ParameterName specifies one of 10 light source parameters, again by symbolic name.

The parameters are:

GL_AMBIENT

GL_DIFFUSE

ParameterValues returns four integer or floating-point values
representing the ambient intensity of the light source. Integer values,
when requested, are linearly mapped from the internal floating-point
representation such that 1.0 maps to the most positive representable
integer value, and -1.0 maps to the most negative representable
integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined.

ParameterValues returns four integer or floating-point values
representing the diffuse intensity of the light source. Integer values,
when requested, are linearly mapped from the internal floating-point
representation such that 1.0 maps to the most positive representable
integer value, and -1.0 maps to the most negative representable
integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined.

Chapter 1. OpenGL Subroutines 163



GL_SPECULAR

GL_POSITION

GL_SPOT_DIRECTION

GL_SPOT_EXPONENT

GL_SPOT_CUTOFF

GL_CONSTANT_ATTENUATION

GL_LINEAR_ATTENUATION

GL_QUADRATIC_ATTENUATION

Parameters

ParameterValues returns four integer or floating-point values
representing the specular intensity of the light source. Integer values,
when requested, are linearly mapped from the internal floating-point
representation such that 1.0 maps to the most positive representable
integer value, and -1.0 maps to the most negative representable
integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined.

ParameterValues returns four integer or floating-point values
representing the position of the light source. Integer values, when
requested, are computed by rounding the internal floating-point values
to the nearest integer value. The returned values are those
maintained in eye coordinates. They will not be equal to the values
specified using glLight, unless the modelview matrix was identified at
the time glLight was called.

ParameterValues returns three integer or floating-point values
representing the direction of the light source. Integer values, when
requested, are computed by rounding the internal floating-point values
to the nearest integer value. The returned values are those
maintained in eye coordinates. They will not be equal to the values
specified using glLight, unless the modelview matrix was identity at
the time glLight was called. Although spot direction is normalized
before being used in the lighting equation, the returned values are the
transformed versions of the specified values prior to normalization.
ParameterValues returns a single integer or floating-point value
representing the spot exponent of the light. An integer value, when
requested, is computed by rounding the internal floating-point
representation to the nearest integer.

ParameterValues returns a single integer or floating-point value
representing the spot cutoff angle of the light. An integer value, when
requested, is computed by rounding the internal floating-point
representation to the nearest integer.

ParameterValues returns a single integer or floating-point value
representing the constant (not distance related) attenuation of the
light. An integer value, when requested, is computed by rounding the
internal floating point representation to the nearest integer.
ParameterValues returns a single integer or floating-point value
representing the linear attenuation of the light. An integer value, when
requested, is computed by rounding the internal floating-point
representation to the nearest integer.

ParameterValues returns a single integer or floating-point value
representing the quadratic attenuation of the light. An integer value,
when requested, is computed by rounding the internal floating-point
representation to the nearest integer.

Light Specifies a light source. The number of possible lights depends on the implementation;
however, at least eight lights are supported. They are identified by symbolic names of
the form GL_LIGHT/ where 0 < i < GL_MAX_LIGHTS.

ParameterName Specifies a light source parameter for Light. Accepted symbolic names are
GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION,
GL_SPOT_DIRECTION, GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,
GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and
GL_QUADRATIC_ATTENUATION.

ParameterValues Returns the requested data.

164 OpenGL 1.2 Reference Manual



Notes

It is always the case that GL_LIGHT/ = GL_LIGHTO + /.

If an error is generated, no change is made to the contents of ParameterValues.

Errors

GL_INVALID_ENUM
GL_INVALID_OPERATION

Files

lusr/include/GL/gl.h

Related Information

The or glEnd subroutine, subroutine.

Either Light or ParameterName is not an accepted value.
The glGetLight subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

glGetMap Subroutine

Purpose
Returns evaluator parameters.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1GetMapdv(GLenum |Target|,

GLenum [Query],
GLdouble * |v
void glGetMapfv(GLenum |TargetL
GLenum [Query|,
GLfloat * |v|
void glGetMapiv(GLenum |TargetL

GLenum [Queryl,
GLint * v

Description

The glMap1 and glMap2 subroutines define evaluators. The glGetMap subroutine returns evaluator
parameters. Target chooses a map, Query selects a specific parameter, and v points to storage where the

values are returned. (See the |gIMap1|and|gIMap2|subroutines for a description of the acceptable values

for the Target parameter.)

Chapter 1. OpenGL Subroutines

165



Query can assume the following values:

GL_COEFF

GL_ORDER

GL_DOMAIN

Parameters

Target

v returns the control points for the evaluator function. One-dimensional (1D) evaluators return order
control points, and two-dimensional (2D) evaluators return uorder x vorder control points. Each
control point consists of 1, 2, 3, or 4 integer, single-precision floating-point, or double-precision
floating-point values, depending on the type of the evaluator. Two-dimensional control points are
returned in row major order, incrementing the vorder index quickly, and the vorder index after each
row. Integer values, when requested, are computed by rounding the internal floating-point values to
the nearest integer values.

v returns the order of the evaluator function. One-dimensional evaluators return a single value,
order. Two-dimensional evaluators return two values, uorder and vorder.

v returns the linear v and v mapping parameters. One-dimensional evaluators return two values, uf?
and u2, as specified by glMap1. Two-dimensional evaluators return four values, ut, u2, v1, and v2,
as specified by glMap2. Integer values, when requested, are computed by rounding the internal
floating-point values to the nearest integer values.

Specifies the symbolic name of a map. Accepted values are GL_MAP1_COLOR_4, GL_MAP1_INDEX,
GL_MAP1_NORMAL, GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,
GL_MAP1_TEXTURE_COORD_3, GL_MAP1_TEXTURE_COORD_4, GL_MAP1_VERTEX_3,
GL_MAP1_VERTEX_4, GL_MAP2_COLOR_4, GL_MAP2_INDEX, GL_MAP2_NORMAL,
GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2,
GL_MAP2_TEXTURE_COORD_3, GL_MAP2_TEXTURE_COORD_4, GL_MAP2_VERTEX_3, and
GL_MAP2_VERTEX_4.

Query Specifies which parameter to return. Symbolic names GL_COEFF, GL_ORDER, and GL_DOMAIN are
accepted.

v Returns the requested data.

Notes

If an error is generated, no change is made to the contents of v.

Errors

GL_INVALID_ENUM Either Target or Query is not an accepted value.

GL_INVALID_OPERATION The glGetMap subroutine is called between a call to glBegin and the

corresponding call to glEnd.
Files
lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The or glEnd subroutine, |glEvalCoord| subroutine, subroutine, subroutine.

glGetMaterial Subroutine

Purpose

Returns material parameters.

166 OpenGL 1.2 Reference Manual



Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetMaterialfv(GLenum |Face|,

GLenum |Parameteriame),

GLfloat * [ParameterValues)

void glGetMaterialiv(GLenum |Face|,

GLenum |[ParameterNamel,

GLint * [ParameterValues)

Description

The glGetMaterial subroutine returns in ParameterValues the value or values of parameter
ParameterName of material Face. Six parameters are defined:

GL_AMBIENT

GL_DIFFUSE

GL_SPECULAR

GL_EMISSION

GL_SHININESS

GL_COLOR_INDEXES

Parameters

Face

ParameterName

ParameterValues returns four integer or floating-point values representing the ambient
reflectance of the material. Integer values, when requested, are linearly mapped from
the internal floating-point representation such that 1.0 maps to the most positive
representable integer value, and -1.0 maps to the most negative representable
integer value. If the internal value is outside the range [-1,1], the corresponding
integer return value is undefined.

ParameterValues returns four integer or floating-point values representing the diffuse
reflectance of the material. Integer values, when requested, are linearly mapped from
the internal floating-point representation such that 1.0 maps to the most positive
representable integer value, and -1.0 maps to the most negative representable
integer value. If the internal value is outside the range [-1,1], the corresponding
integer return value is undefined.

ParameterValues returns four integer or floating-point values representing the
specular reflectance of the material. Integer values, when requested, are linearly
mapped from the internal floating-point representation such that 1.0 maps to the most
positive representable integer value, and -1.0 maps to the most negative
representable integer value. If the internal value is outside the range [-1,1], the
corresponding integer return value is undefined.

ParameterValues returns four integer or floating-point values representing the emitted
light intensity of the material. Integer values, when requested, are linearly mapped
from the internal floating-point representation such that 1.0 maps to the most positive
representable integer value, and -1.0 maps to the most negative representable
integer value. If the internal value is outside the range [-1,1], the corresponding
integer return value is undefined.

ParameterValues returns one integer or floating-point value representing the specular
exponent of the material. Integer values, when requested, are computed by rounding
the internal floating-point value to the nearest integer value.

ParameterValues returns three integer or floating-point values representing the
ambient, diffuse, and specular indices of the material. These indices are used only for
color index lighting. (The other parameters are all used only for red, green, blue, and
alpha lighting.) Integer values, when requested, are computed by rounding the
internal floating-point values to the nearest integer values.

Specifies which of the two materials is being queried. GL_FRONT or GL_BACK are
accepted, representing the front and back materials, respectively.

Specifies the material parameter to return. GL_AMBIENT, GL_DIFFUSE,
GL_SPECULAR, GL_EMISSION, GL_SHININESS, and GL_COLOR_INDEXES are
accepted.

Chapter 1. OpenGL Subroutines 167



ParameterValues Returns the requested data.

Notes

If an error is generated, no change is made to the contents of ParameterValues.

Errors

GL_INVALID_ENUM Either Face or ParameterName is not an accepted value.

GL_INVALID_OPERATION The glGetMaterial subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The or glEnd subroutine, subroutine.

glGetPixelMap Subroutine

Purpose
Returns the specified pixel map.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glGetPixelMapfv(GLenum [Map],
GLfloat [xValues)

void glGetPixelMapuiv(GLenum ,
GLuint [<Values)

void glGetPixelMapusv(GLenum ,
GLushort [xValues)

Description

The glGetPixelMap subroutine returns in the Values parameter the contents of the pixel map specified by
the Map parameter. Pixel maps are used during the execution of glReadPixels, glDrawPixels,
glCopyPixels, glTeximage1D, and glTexlmage2D to map color indices, stencil indices, color
components, and depth components to other values.

Unsigned integer values, if requested, are linearly mapped from the internal fixed- or floating-point
representation such that 1.0 maps to the largest representable integer value, and 0.0 maps to 0 (zero).
Returned unsigned integer values are undefined if the map value was not in the range [0,1].

To determine the required size of the Map parameter, call the glGet subroutine with the appropriate
symbolic constant.

168 OpenGL 1.2 Reference Manual



Parameters

Map Specifies the name of the pixel map to return. Accepted values are GL_PIXEL_MAP_I_TO_l,
GL_PIXEL_MAP_S_TO_S, GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, GL_PIXEL_MAP_I_TO_A, GL_PIXEL_MAP_R_TO_R,
GL_PIXEL_MAP_G_TO_G, GL_PIXEL_MAP_B_TO_B, and GL_PIXEL_MAP_A_TO_A.

Values Returns the pixel map contents.

Notes

If an error is generated, no change is made to the contents of the Values parameter.

Errors

GL_INVALID_ENUM Map is not an accepted value.

GL_INVALID_OPERATION The glGetPixelMap subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glGetPixelMap subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_PIXEL_MAP_I_TO_I_SIZE.
glGet with argument GL_PIXEL_MAP_S_TO_S_SIZE.
glGet with argument GL_PIXEL_MAP_I_TO_R_SIZE.
glGet with argument GL_PIXEL_MAP_I_TO_G_SIZE.
glGet with argument GL_PIXEL_MAP_I_TO_B_SIZE.
glGet with argument GL_PIXEL_MAP_I_TO_A_SIZE.
glGet with argument GL_PIXEL_MAP_R_TO_R_SIZE.
glGet with argument GL_PIXEL_MAP_G_TO_G_SIZE.
glGet with argument GL_PIXEL_MAP_B_TO_B_SIZE.
glGet with argument GL_PIXEL_MAP_A_TO_A_SIZE.
glGet with argument GL_MAX_PIXEL_MAP_TABLE.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |§IBe§inI or glEnd subroutine, |§ICopyPiers| subroutine, |§IDrawPier§| subroutine,

subroutine, |glPixelTransfer subroutine, |gIReadPier§| subroutine, |_gITexIma9e1 QI subroutine,

|gITexIma9e2D| subroutine.

Chapter 1. OpenGL Subroutines 169



glGetPointerv Subroutine

Purpose
Returns the address of the specified pointer.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glGetPointerv(GLenum ,
GLvoidx

Description

The glGetPointerv subroutine returns pointer information. The pname parameter is a symbolic constant
indicating the pointer to be returned, and params is a pointer to a location in which to place the returned
data.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
giMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the various vertex arrays are used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIiBM,
glMultiModeDrawElementsIBM, or giIDrawRangeElements is called.

Parameters

pname Specifies the array or buffer pointer to be returned. The following symbolic constants are accepted:
*+ GL_COLOR_ARRAY_LIST_IBM
*+ GL_COLOR_ARRAY_POINTER
 GL_EDGE_FLAG_ARRAY_LIST_IBM
 GL_EDGE_FLAG_ARRAY_POINTER
 GL_FEEDBACK_BUFFER_POINTER
+ GL_FOG_COORDINATE_ARRAY_LIST_IBM
* GL_FOG_COORDINATE_ARRAY_POINTER_EXT
* GL_INDEX_ARRAY_LIST_IBM
* GL_INDEX_ARRAY_POINTER
* GL_NORMAL_ARRAY_LIST_IBM
+ GL_NORMAL_ARRAY_POINTER
* GL_SECONDARY_COLOR_ARRAY_LIST_IBM
*+ GL_SECONDARY_COLOR_ARRAY_POINTER
* GL_SELECTION_BUFFER_POINTER
* GL_TEXTURE_COORD_ARRAY_LIST_IBM
+ GL_TEXTURE_COORD_ARRAY_POINTER
* GL_VERTEX_ARRAY_LIST_IBM
* GL_VERTEX_ARRAY_POINTER

* GL_VISIBILITY_BUFFER_POINTER_IBM
params Returns the pointer value specified by pname.

170 OpenGL 1.2 Reference Manual



Notes
The glGetPointerv subroutine is available only if the GL version is 1.1 or greater.

The "*_ARRAY_LIST_IBM" symbolic constants are only accepted if the IBM_vertex_array_list extension
is defined.

The *_ARRAY_LIST_IBM symbolic constants are only accepted if the IBM_vertex_array_list extension is
defined.

The "GL_FOG_COORDINATE_*" symbolic constants are only accepted if the EXT_fog_coord extension
is defined.

The "GL_SECONDARY_COLOR_*" symbolic constants are only accepted if the EXT_secondary_color
extension is defined.

The GL_VISIBILITY_BUFFER_POINTER_IBM symbolic constant is only accepted if the
IBM_occlusion_cull extension is supported.

The pointers are all client side state.

The initial value for each pointer is 0.

Error Codes
GL_INVALID_ENUM is generated if pname is not an accepted value.

Related Information

The [glArrayElement] subroutine, [giColorPointer] subroutine, !?IColorPointerListlBMl subroutine,

IDrawArrays| subroutine, |gIEdgeFlagPointe | subroutine, (glEd eFIagPointerListIBMlsubroutine,
IFeedbackBufferi subroutine, [glindexPointer subroutine, |glindexPointerListIBM| subroutine,
INormalPointer] subroutine, [gINormalPointerListIBM| subroutine, |glSelectBuffer] subroutine,
ITexCoordPointer| subroutine, |gITexCoordPointerListIBMl subroutine, |gIVertexPointe|_‘| subroutine,
IVertexPointerListIBM| subroutine, [glVisibilityBufferlBM| subroutine.

glGetPointervEXT Subroutine

Purpose
Returns the address of a vertex data array.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glGetPointervEXT(GLenum [pname],

GLvoid

Description

glGetPointervEXT returns array pointer information. pname is a symbolic constant indicating the array
pointer to be returned, and params is a pointer to a location in which to place the returned data.

Chapter 1. OpenGL Subroutines 171



Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
giMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the various vertex arrays are used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

pname Specifies the array pointer to be returned. Symbolic constants
GL_VERTEX_ARRAY_POINTER_EXT, GL_NORMAL_ARRAY_POINTER_EXT,
GL_COLOR_ARRAY_POINTER_EXT, GL_INDEX_ARRAY_POINTER_EXT,
GL_TEXTURE_COORD_ARRAY_POINTER_EXT, GL_EDGE_FLAG_ARRAY_POINTER_EXT, are
accepted.

**params returns the array pointer value specified by pname.

Notes
The array pointers are client side state.

glGetPointervEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL
command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when
called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.

File

lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The [glArrayElementEXT] subroutine, |glColorPointerEXT| subroutine, [giDrawArraysEXT]| subroutine,
IEd eFIagPointerEXTI subroutine, |glindexPointerEXT| subroutine, |gINormalPointerEXT]| subroutine,
ITexCoordPointerEXT]| subroutine, |glVertexPointerEXT]| subroutine.

glGetPolygonStipple Subroutine

Purpose
Returns the polygon stipple pattern.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glGetPolygonStipple(GLubyte )

172 OpenGL 1.2 Reference Manual



Description

The glGetPolygonStipple subroutine returns to Mask a 32 x 32 polygon stipple pattern. The pattern is
packed into memory as if the following values were called:

» glReadPixels with both Height and Width equal to 32.
* Typeis GL_BITMAP.
* Formatis GL_COLOR_INDEX.

In addition, the pattern is packed into memory as if the stipple pattern was stored in an internal 32 x 32

color index buffer. Unlike glReadPixels, however, pixel transfer operations (shift, offset, pixel map) are not
applied to the returned stipple image.

Parameters

Mask  Returns the stipple pattern.

Notes

If an error is generated, no change is made to the contents of the Mask parameter.

Errors

GL_INVALID_OPERATION The glGetPolygonStipple subroutine is called between a call to glBegin and
the corresponding call to glEnd.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The [gIBegin| or gIEnd subroutine, [gIPixelStore] subroutine, [gIPixelTransfer] subroutine, [giPolygonStipple]

subroutine, |g|ReadPiers| subroutine.
glGetString Subroutine

Purpose
Returns a string describing the current GL connection.

Library
OpenGL C bindings library: libGL.a

C Syntax
const GLubyte * glGetString(GLenum |Parameterl)

Description

The glGetString subroutine returns a pointer to a static string describing some aspect of the current GL
connection. The Parameter1 parameter can be one of the following values:

Chapter 1. OpenGL Subroutines 173



GL_VENDOR Returns the name of the company responsible for this GL implementation. This name does
not change from release to release.

GL_RENDERER Returns the name of the renderer. This name is typically specific to a particular
configuration of a hardware platform. It does not change from release to release.

GL_VERSION Returns a version or release number.

GL_EXTENSIONS Returns a space-separated list of supported extensions to GL.

Because GL does not include queries for the performance characteristics of an implementation, it is
expected that some applications will be written to recognize known platforms and will modify their GL
usage based on known performance characteristics of these platforms. Together, strings GL_VENDOR
and GL_RENDERER uniquely specify a platform, and do not change from release to release. These
strings should be used by such platform recognition algorithms.

The format and contents of the string that glGetString returns depend on the implementation, except that
extension names do not include space characters and are separated by space characters in the
GL_EXTENSIONS string, and all strings are null-terminated.

Parameters

Parameter1 Specifies a symbolic constant, one of GL_VENDOR, GL_RENDERER, GL_VERSION, or
GL_EXTENSIONS.

Notes

If an error is generated, glGetString returns 0 (zero).

Errors

GL_INVALID_ENUM Parameter1 is not an accepted value.

GL_INVALID_OPERATION The glGetString subroutine is called between a call to glBegin and the

corresponding call to glEnd.
Files
lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The or glEnd subroutine.

glGetTexEnv Subroutine

Purpose
Returns texture environment parameters.

Library
OpenGL C bindings library: libGL.a

174 OpenGL 1.2 Reference Manual



C Syntax

void glGetTexEnvfv(GLenum |Target|,
GLenum [ParameterName),
GLfloat [<ParameterValues)

void gl1GetTexEnviv(GLenum |Target|,
GLenum |Parameteriame),
GLint [«ParameterValues)

Description

The glGetTexEnv subroutine returns in the ParameterValues parameter selected values of a texture
environment that was specified with glTexEnv. The Target parameter specifies a texture environment.
Currently only the GL_TEXTURE_ENV texture environment is defined and supported.

ParameterName names a specific texture environment parameter. The parameters are:

GL_TEXTURE_ENV_MODE ParameterValues returns the single-valued texture environment mode, a
symbolic constant.
GL_TEXTURE_ENV_COLOR ParameterValues returns four integer or floating-point values that are the

texture environment color. Integer values, when requested, are linearly
mapped from the internal floating-point representation such that 1.0 maps to
the most positive representable integer, and -1.0 maps to the most negative
representable integer.

GL_COMBINE_RGB_EXT ParameterValues returns the currently defined function to be used when
blending texture RGB values in "combine” mode.

GL_COMBINE_ALPHA_EXT ParameterValues returns the currently defined function to be used when
blending texture Alpha values in "combine” mode.

GL_SOURCEO_RGB_EXT ParameterValues returns the currently defined value used to determine the
source for RGB Operand 0.

GL_SOURCE1_RGB_EXT ParameterValues returns the currently defined value used to determine the
source for RGB Operand 1.

GL_SOURCE2_RGB_EXT ParameterValues returns the currently defined value used to determine the
source for RGB Operand 2.

GL_SOURCEO_ALPHA_EXT ParameterValues returns the currently defined value used to determine the
source for Alpha Operand 0.

GL_SOURCE1_ALPHA_EXT ParameterValues returns the currently defined value used to determine the
source for Alpha Operand 1.

GL_SOURCE2_ALPHA_EXT ParameterValues returns the currently defined value used to determine the
source for Alpha Operand 2.

GL_OPERANDO_RGB_EXT ParameterValues returns the currently defined RGB Operand 0.

GL_OPERAND1_RGB_EXT ParameterValues returns the currently defined RGB Operand 1.

GL_OPERAND2_RGB_EXT ParameterValues returns the currently defined RGB Operand 2.

GL_OPERANDO_ALPHA_EXT ParameterValues returns the currently defined RGB Alpha 0.

GL_OPERAND1_ALPHA_EXT ParameterValues returns the currently defined RGB Alpha 1.

GL_OPERAND2_ALPHA_EXT ParameterValues returns the currently defined RGB Alpha 2.

GL_RGB_SCALE_EXT ParameterValues returns the floating-point value which is used to do the
final scale on the RGB channels.

GL_ALPHA_SCALE ParameterValues returns the floating-point number which is used to do the

final scale on the alpha channel.

Parameters

Target Specifies a texture environment. Must be GL_TEXTURE_ENV.

Chapter 1. OpenGL Subroutines 175



ParameterName Specifies the symbolic name of a texture environment parameter. Accepted values are:
* GL_TEXTURE_ENV_MODE
« GL_TEXTURE_ENV_COLOR
+ GL_COMBINE_RGB_EXT
* GL_COMBINE_ALPHA_EXT
+ GL_SOURCEO_RGB_EXT
*+ GL_SOURCE1_RGB_EXT
*+ GL_SOURCE2_RGB_EXT
+ GL_SOURCEO_ALPHA_EXT
* GL_SOURCE1_ALPHA_EXT
* GL_SOURCE2_ALPHA_EXT
+ GL_OPERANDO_RGB_EXT
« GL_OPERAND1_RGB_EXT
* GL_OPERAND2_RGB_EXT
* GL_OPERANDO_ALPHA_EXT
* GL_OPERAND1_ALPHA_EXT
* GL_OPERAND2_ALPHA_EXT
* GL_RGB_SCALE_EXT
* GL_ALPHA_SCALE

ParameterValues Returns the requested data.

Notes

If an error is generated, no change is made to the contents of ParameterValues.

Errors

GL_INVALID_ENUM Either Target or ParameterName is not an accepted value.

GL_INVALID_OPERATION The glGetTexEnv subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The |9IBe9in or gIEnd| subroutine, subroutine.

glGetTexGen Subroutine

Purpose
Returns texture coordinate generation parameters.

Library
OpenGL C bindings library: libGL.a

176 OpenGL 1.2 Reference Manual



C Syntax

void glGetTexGendv(GLenum |Coordinate|,

GLenum [ParameterName),

GLdouble [xParameterValues])

void glGetTexGenfv(GLenum |Coor‘dinate|,

GLenum |Parameteriame),

GLfloat [<ParameterValues)

void glGetTexGeniv(GLenum |Coordinate|,

GLenum |Parameteriame),

GLint [<ParameterValues)

Description

The glGetTexGen subroutine returns in ParameterValues selected parameters of a texture coordinate
generation function specified with glTexGen. Coordinate names one of the (s, t, r, g) texture coordinates,
using the symbolic constant GL_S, GL_T, GL_R, or GL_Q.

ParameterName specifies one of three symbolic names:

GL_TEXTURE_GEN_MODE

GL_OBJECT_PLANE

GL_EYE_PLANE

Parameters
Coordinate

ParameterName

ParameterValues

Notes

ParameterValues returns the single-valued texture generation function, a
symbolic constant.

ParameterValues returns the four plane equation coefficients that specify object
linear-coordinate generation. Integer values, when requested, are mapped
directly from the internal floating-point representation.

ParameterValues returns the four plane equation coefficients that specify eye
linear-coordinate generation. Integer values, when requested, are mapped
directly from the internal floating-point representation. The returned values are
those maintained in eye coordinates. They are not equal to the values specified
using glTexGen, unless the modelview matrix was identified at the time
glTexGen was called.

Specifies a texture coordinate. Must be GL_S, GL_T, GL_R, or GL_Q.
Specifies the symbolic name of the values to be returned. Must be either
GL_TEXTURE_GEN_MODE or the name of one of the texture generation plane
equations, either GL_OBJECT_PLANE or GL_EYE_PLANE.

Returns the requested data.

If an error is generated, no change is made to the contents of ParameterValues.

Errors

GL_INVALID_ENUM
GL_INVALID_OPERATION

Files

lusr/include/GL/gl.h

Either Coordinate or ParameterName is not an accepted value.
The glGetTexGen subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 177



Related Information
The or glEnd subroutine, subroutine.

glGetTeximage Subroutine

Purpose
Returns a texture image.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1GetTexImage (GLenum

GLenum
GLenum
GLvoid

Description

The glGetTexlmage subroutine returns a texture image and places it in the Pixels parameter. Target
specifies whether the desired texture image is one specified by glTeximage1D (GL_TEXTURE_1D),
glTeximage2D (GL_TEXTURE_2D), glTeximage3D (GL_TEXTURE_3D), or by glTeximage3DEXT
(GL_TEXTURE_3D_EXT). Level specifies the level-of-detail number of the desired image. Format and
Type specify the format and type of the desired image array. (See the |gITeximage1D| and [gIDrawPixels|
subroutines for a description of the acceptable values for the Format and Type parameters, respectively.)

Operation of glGetTexImage is best understood by considering the selected internal four-component
texture image to be a red, green, blue, alpha (RGBA) color buffer that is the size of the image. The
semantics of glGetTexlmage are then identical to those of glReadPixels called with the same Format and
Type, with x and y set to 0 (zero), Width set to the width of the texture image (including the border if one
was specified), and Height set to 1 (one) for one-dimensional (1D) images, or to the height of the texture
image (including the border if one was specified) for two-dimensional (2D) images. Because the internal
texture image is an RGBA image, pixel formats GL_COLOR_INDEX, GL_STENCIL_INDEX, and
GL_DEPTH_COMPONENT are not accepted, and pixel type GL_BITMAP is not accepted.

If the selected texture image does not contain four components, the following mappings are applied:

» Single-component textures are treated as RGBA buffers with red set to the single-component value, and
green, blue, and alpha set to 0.

» Two-component textures are treated as RGBA buffers with red set to the value of component 0, alpha
set to the value of component 1, and green and blue set to 0.

» Three-component textures are treated as RGBA buffers with red set to component 0, green set to
component 1, blue set to component 2, and alpha set to 0.

To determine the required size of Pixels, use the glGetTexLevelParameter subroutine to ascertain the
dimensions of the internal texture image, then scale the required number of pixels by the storage required
for each pixel, based on Format and Type. Be sure to consider the pixel storage parameters, especially
GL_PACK_ALIGNMENT.

Notes
If an error is generated, no change is made to the contents of Pixels.

178 OpenGL 1.2 Reference Manual



Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL
command set.

Target of GL_TEXTURE_3D_EXT is part of the _extname (EXT_texture3D) extension, not part of the core
GL command set.

Parameters

Target Specifies which texture is to be obtained. GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D,
and GL_TEXTURE_3D_EXT are accepted.

Level Specifies the level-of-detail number of the desired image. Level 0 is the base image level. Level n is the

nth mipmap reduction image.

Format Specifies a pixel format for the returned data. The supported formats are GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_ABGR_EXT, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

Type Specifies a pixel type for the returned data. The supported types are GL_UNSIGNED_BYTE, GL_BYTE,
GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

Pixels Returns the texture image. Should be a pointer to an array of the type specified by the Type parameter.

Errors

GL_INVALID_ENUM Either Target, Format, or Type is not an accepted value.

GL_INVALID_VALUE Level is less than 0 or greater than log2max, where max is the returned value

of GL_MAX_TEXTURE_SIZE.
GL_INVALID_OPERATION The glGetTexImage subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glGetTexImage subroutine are as follows. (See the [giGet] subroutine for more
information.)

[glGetTexLevelParameter with argument GL_TEXTURE_WIDTH.

glGetTexLevelParameter with argument GL_TEXTURE_HEIGHT.
glGetTexLevelParameter with argument GL_TEXTURE_BORDER.
glGetTexLevelParameter with argument GL_TEXTURE_COMPONENTS.
glGet with arguments GL_PACK_ALIGNMENT and others.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The|§IBe§in! or glEnd subroutine, |glDrawPixels| subroutine, |giIReadPixels| subroutine, |giTexlmage1D

subroutine, |glTeximage2D| subroutine.

Chapter 1. OpenGL Subroutines 179



glGetTexLevelParameter Subroutine

Purpose
Returns texture parameter values for a specific level of detail.
Library
OpenGL C bindings library: libGL.a
C Syntax
void glGetTexLevelParameterfv(GLenum [target|,
GLint [level],
GLenum |pnamel,
GLfloat *

void glGetTexLevelParameteriv(GLenum
GLint
GLenum

Description

The glGetTexLevelParameter subroutine returns in params texture parameter values for a specific
level-of-detail value, specified as level. The target parameter defines the target texture, either
GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_3D_EXT,
GL_PROXY_TEXTURE_1D, GL_PROXY_TEXTURE_2D, GL_PROXY_TEXTURE_3D, or
GL_PROXY_TEXTURE_3D_EXT.

The GL_MAX_TEXTURE_SIZE parameter reports the largest square texture image which can be
accomodated with mipmaps and borders (but a long skinny texture, or a texture without mipmaps and
borders, may easily fit in texture memory). The proxy targets allow the user to more accurately query
whether the GL can accomodate a texture of a given configuration. If the texture cannot be accomodated,
the texture state variables (which may be queried with glGetTexLevelParameter) are set to 0. If the
texture can be accomodated the texture state values will be set as they would be set for a non-proxy
target.

The pname parameter specifies the texture parameter whose value or values will be returned.

The accepted parameter names are as follows:

GL_TEXTURE_ALPHA_SIZE The internal storage resolution of an individual alpha component.
The resolution chosen by the GL will be a close match for the
resolution requested by the user with the component argument of
glTeximageiD, glTeximage2D, or glTeximage3DEXT. The initial
value is 0.

GL_TEXTURE_BLUE_SIZE The internal storage resolution of an individual blue component.
The resolution chosen by the GL will be a close match for the
resolution requested by the user with the component argument of
glTeximage1D, glTexlmage2D, or glTeximage3DEXT. The initial

value is 0.

GL_TEXTURE_BORDER params returns a single value, the width in pixels of the border of
the texture image. The inital value is 0.

GL_TEXTURE_DEPTH params returns a single value, the depth of the texture image.
This value includes the border of the texture image. The initial
value is 0.

180 OpenGL 1.2 Reference Manual



GL_TEXTURE_DEPTH_EXT params returns a single value, the depth of the texture image.
This value includes the border of the texture image. The initial
value is 0.

GL_TEXTURE_GREEN_SIZE The internal storage resolution of an individual green component.
The resolution chosen by the GL will be a close match for the
resolution requested by the user with the component argument of
glTeximageiD, glTeximage2D, or glTeximage3DEXT. The initial

value is 0.

GL_TEXTURE_HEIGHT params returns a single value, the height of the texture image.
This value includes the border of the texture image. The initial
value is 0.

GL_TEXTURE_INTENSITY_SIZE The internal storage resolution of an individual component. The

resolution chosen by the GL will be a close match for the
resolution requested by the user with the component argument of
glTeximage1D or giTeximage2D. The initial value is 0.

GL_TEXTURE_INTERNAL_FORMAT params returns a single value, the requested internal format of the
texture image.
GL_TEXTURE_LUMINANCE_SIZE The internal storage resolution of an individual /luminance

component. The resolution chosen by the GL will be a close
match for the resolution requested by the user with the
component argument of glTeximage1D, glTeximage2D, or
glTeximage3DEXT. The initial value is 0.
GL_TEXTURE_RED_SIZE The internal storage resolution of an individual red component.
The resolution chosen by the GL will be a close match for the
resolution requested by the user with the component argument of
glTeximage1D, glTeximage2D, or glTeximage3DEXT. The initial

value is 0.

GL_TEXTURE_WIDTH params returns a single value, the width of the texture image. This
value includes the border of the texture image. The initial value is
0.

Parameters

target Specifies the symbolic name of the target texture, either GL_TEXTURE_1D, GL_TEXTURE_2D,

GL_TEXTURE_3D, GL_PROXY_TEXTURE_1D, or GL_PROXY_TEXTURE_2D,
GL_PROXY_TEXTURE_3D, GL_PROXY_TEXTURE_3D_EXT, GL_TEXTURE_3D_EXT.

level Specifies the level-of-detail number of the desired image. Level 0 is the base image level. Level n is the
nth mipmap reduction image.
pname Specifies the symbolic name of a texture parameter. GL_TEXTURE_DEPTH,

GL_TEXTURE_DEPTH_EXT, GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT,

GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE_BORDER, GL_TEXTURE_RED_SIZE,

GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE,

GL_TEXTURE_LUMINANCE_SIZE, and GL_TEXTURE_INTENSITY_SIZE are accepted.
params Returns the requested data.

Notes
If an error is generated, no change is made to the contents of params.

The GL_TEXTURE_INTERNAL_FORMAT parameter is only available if the GL version is 1.1 or greater.
In version 1.0, use GL_TEXTURE_COMPONENTS instead.

Errors
GL_INVALID_ENUM is generated if target or pname is not an accepted value.

GL_INVALID_VALUE is generated if level is less than zero.

Chapter 1. OpenGL Subroutines 181



GL_INVALID_VALUE may be generated if level is greater than log sub 2 max, where max is the returned
value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_OPERATION is generated if glGetTexLevelParameter is executed between the execution
of glBegin and the corresponding execution of glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |glGetTexParameter| subroutine, subroutine, subroutine,
[gITexParameter| subroutine.

glGetTexParameter Subroutine

Purpose
Returns texture parameter values.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glGetTexParameterfv(GLenum TaréetL
GLenum |ParameterName|,

GLfloat [<ParameterValues))

void glGetTexParameteriv(GLenum |Target|,
GLenum [|ParameterName|,

GLint [*ParameterValues)

Description

The glGetTexParameter subroutine returns in ParameterValues the value or values of the texture
parameter specified as ParameterName. Target defines the target texture, either GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_TEXTURE_3D, and GL_TEXTURE_3D_EXT (if the 3D texture extension is
supported). ParameterName accepts the same symbols as glTexParameter, with the same interpretations:

GL_TEXTURE_BASE_LEVEL Specifies for the texture the base array level. Any non-negative integer
value is permissable. Supported in OpenGL 1.2 and later.

GL_TEXTURE_MAX_LEVEL Specifies for the texture the maximum array level. Any non-negative
integer value is permissable. Supported in OpenGL 1.2 and later.

GL_TEXTURE_BORDER_COLOR Returns four integer or floating-point numbers that comprise the red,

green, blue, alpha (RGBA) color of the texture border. Floating-point
values are returned in the range [0,1]. Integer values are returned as a
linear mapping of the internal floating-point representation such that 1.0
maps to the most positive representable integer and -1.0 maps to the
most negative representable integer.

GL_TEXTURE_MAG_FILTER Returns the single-valued texture magnification filter, a symbolic
constant.
GL_TEXTURE_MIN_FILTER Returns the single-valued texture minification filter, a symbolic constant.

182 OpenGL 1.2 Reference Manual



GL_TEXTURE_MAX_LOD

GL_TEXTURE_MIN_LOD

GL_TEXTURE_PRIORITY (1.1 only)
GL_TEXTURE_PRIORITY_EXT
(EXT_texture_object)
GL_TEXTURE_RESIDENT (1.1 only)
GL_TEXTURE_RESIDENT_EXT
(EXT_texture_object)

GL_TEXTURE_WRAP_R
GL_TEXTURE_WRAP_R (3D Texture
Extension)

GL_TEXTURE_WRAP_S

GL_TEXTURE_WRAP_T

Specifies for the texture the maximum level of detail of the image array.
Any floating-point value is permissable. Supported in OpenGL 1.2 and
later.

Specifies for the texture the minimum level of detail of the image array.
Any floating-point value is permissable. Supported in OpenGL 1.2 and
later.

Returns the priority of the target texture (or the named texture bound to
it). The initial value is 1. See [glPrioritizeTextures|

Returns the residence status of the target texture. If the value returned
in params is GL_TRUE, the texture is resident in texture memory. See
[glAreTexturesResident

Returns the single-valued wrapping function for texture coordinate r, a
symbolic constant.

Returns the single-valued wrapping function for texture coordinate r, a
symbolic constant.

Returns the single-valued wrapping function for texture coordinate s, a
symbolic constant.

Returns the single-valued wrapping function for texture coordinate t, a
symbolic constant.

Parameters

Target Specifies the symbolic name of the target texture. GL_TEXTURE_1D,
GL_TEXTURE_2D, GL_TEXTURE_3D, and GL_TEXTURE_3D_EXT (EXT_texture_3D)
are accepted.

ParameterName Specifies the symbolic name of a texture parameter. GL_TEXTURE_BASE_LEVEL,
GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAX_LOD, GL_TEXTURE_MIN_LOD,
GL_TEXTURE_PRIORITY, GL_TEXTURE_PRIORITY_EXT,
GL_TEXTURE_RESIDENT, GL_TEXTURE_RESIDENT_EXT,
GL_TEXTURE_WRAP_R, GL_TEXTURE_WRAP_R_EXT, GL_TEXTURE_WRAP_S,
GL_TEXTURE_WRAP_T, and GL_TEXTURE_BORDER_COLOR are accepted.

ParameterValues Returns the texture parameters.

Notes

If an error is generated, no change is made to the contents of ParameterValues.

Errors
GL_INVALID_ENUM

GL_INVALID_OPERATION
the corresponding call to glEnd.

Files

lusr/include/GL/gl.h
prototypes for OpenGL.

Related Information
The |gIBegin| or glEnd subroutine, |gITexParamete|_‘| subroutine.

Either Target or ParameterName is not an accepted value.
The glGetTexParameter subroutine is called between a call to glBegin and

Chapter 1. OpenGL Subroutines

Contains C language constants, variable type definitions, and ANSI function

183



glHint Subroutine

Purpose

Specifies implementation-specific hints.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glHint( GLenum |TargetL
GLenum [Mode

Description

Certain aspects of GL behavior, when there is room for interpretation, can be controlled with hints. A hint is
specified with two arguments. Target is a symbolic constant indicating the behavior to be controlled, and
Mode is another symbolic constant indicating the desired behavior. Mode can be one of the following

three:

GL_FASTEST The most efficient option should be chosen.

GL_NICEST The most correct or highest quality option should be chosen.
GL_DONT_CARE The client does not have a preference. This is the initial setting for all hints.

Though the implementation aspects that can be hinted are well-defined, the interpretation of the hints
depends on the implementation. The hint aspects that can be specified with Target, along with suggested

semantics, are:

GL_FOG_HINT

GL_LINE_SMOOTH_HINT

GL_PERSPECTIVE_CORRECTION_HINT

GL_POINT_SMOOTH_HINT

GL_POLYGON_SMOOTH_HINT

GL_SUBPIXEL_HINT_IBM

184 OpenGL 1.2 Reference Manual

Indicates the accuracy of fog calculation. If per-pixel
fog calculation is not efficiently supported by the GL
implementation, hinting GL_DONT_CARE or
GL_FASTEST can result in per-vertex calculation of
fog effects.

Indicates the sampling quality of antialiased lines.
Hinting GL_NICEST can result in more pixel
fragments being generated during rasterization, if a
larger filter function is applied.

Indicates the quality of color and texture coordinate
interpolation. If perspective-corrected parameter
interpolation is not efficiently supported by the GL
implementation, hinting GL_DONT_CARE or
GL_FASTEST can result in simple linear interpolation
of colors and texture coordinates.

Indicates the sampling quality of antialiased points.
Hinting GL_NICEST can result in more pixel
fragments being generated during rasterization, if a
larger filter function is applied.

Indicates the sampling quality of antialiased polygons.
Hinting GL_NICEST can result in more pixel
fragments being generated during rasterization, if a
larger filter function is applied.

Indicates if primitives are rendered using subpixel
sampling techniques. Hinting GL_NICEST can result
in a greater accuracy of pixels turned on when a
primitive is rendered. GL_FASTEST and
GL_DONT_CARE may result in faster, non-subpixel
positioned, rendering of some primitives.



GL_CLIP_VOLUME_CLIPPING_HINT_EXT

GL_PIXEL_FILTER_HINT_IBM

Parameters

Indicates whether clip volume clipping is desirable.
Hinting GL_NICEST can result in all clipping
calculations being performed, while GL_FASTEST can
suppress such clipping. GL_FASTEST should only be
used when the user is confident that no attempts to
render will occur outside the clip volume, for the
behavior of the GL library is undefined if any primitive
extends beyond the clip volume. If extension
IBM_clip_check is present and
GL_UPDATE_CLIP_VOLUME_HINT is enabled, this
hint can be automatically updated by calls to
glClipBoundingBoxIBM,
glClipBoundingVolumelBM, or
glClipBoundingVerticesIBM. See these routines for
details. This hint is supported only if the
GL_EXT_clip_volume_hint extension is supported.
Indicates desired quality of pixel filtering when
rendering pixel images specified by glBitmap,
glCopyPixel, and glDrawPixel. Hinting GL_NICEST
should perform pixel filtering that provides the best
image quality, regardless of performance.
GL_FASTEST should perform pixel filtering that
provides the fastest possible pixel zoom regardless of
the image quality. GL_DONT_CARE should perform
point-sampled blits in accordance with the OpenGL
specification.

Target Specifies a symbolic constant indicating the behavior to be controlled. GL_FOG_HINT,
GL_LINE_SMOOTH_HINT, GL_PERSPECTIVE_CORRECTION_HINT, GL_POINT_SMOOTH_HINT,
GL_POLYGON_SMOOTH_HINT, GL_SUBPIXEL_HINT_IBM,
GL_CLIP_VOLUME_CLIPPING_HINT_EXT and GL_PIXEL_FILTER_HINT_IBM are accepted.

Mode Specifies a symbolic constant indicating the desired behavior. GL_FASTEST, GL_NICEST, and

GL_DONT_CARE are accepted.

Notes

The interpretation of hints depends on the implementation. The glHint subroutine can be ignored.

GL_CLIP_VOLUME_CLIPPING_HINT_EXT is only valid if the GL_EXT_clip_volume_hint extension is

present.

Errors

GL_INVALID_ENUM Either Target or Mode is not an accepted value.

GL_INVALID_OPERATION The glHint subroutine is called between a call to glBegin and the
corresponding call to glEnd.

GL_INVALID_ENUM The GL_PIXEL_FILTER_HINT_IBM parameter is used in an OpenGL
implementation that doesn’t support the GL_EXT_pixel_filter_hint extension.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 185



Related Information
The or glEnd subroutine.

glindex Subroutine

Purpose
Sets the current color index.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glIndexd(GLdouble
void glIndexf(GLfloat Current)

void glIndexi(GLint Current)

void glIndexs(GLshort Current)

void glIndexdv(const GLdouble *Current)
void glIndexfv(const GLfloat *Current)
void glIndexiv(const GLint *Current)
void glIndexsv(const GLshort *Current)
void glIndexub(GLubyte Current)

void glIndexubv(const GLubyte *Current)

Description

The glindex subroutine updates the current (single-valued) color index. It takes one argument, the new
value for the current color index.

The current index is stored as a floating-point value. Integer values are converted directly to floating-point
values, with no special mapping.

Index values outside the representable range of the color index buffer are not clamped. However, before
an index is dithered (if enabled) and written to the frame buffer, it is converted to fixed-point format. Any
bits in the integer portion of the resulting fixed-point value that do not correspond to bits in the frame buffer
are masked out.

Parameters
Current In the case of glindexd, glindexf, glindexi, glindexs, and glindexub this parameter specifies the new

value for the current color index.

In the case of glindexdv, glindexfv, glindexiv, glindexsv, and glindexubv this parameter specifies a
pointer to a one-element array that contains the new value for the current color index.

Notes

The current index can be updated at any time. In particular, glindex can be called between a call to
glBegin and the corresponding call to glEnd.

186 OpenGL 1.2 Reference Manual



Associated Gets

Associated gets for the glindex subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_CURRENT_INDEX.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin] subroutine, [giColor subroutine, [gIEnd] subroutine, [glindexPointer] subroutine,

lglindexPointerEXT| subroutine.

glindexMask Subroutine

Purpose
Controls the writing of individual bits in the color index buffers.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glIndexMask(GLuint

Description

The glindexMask subroutine controls the writing of individual bits in the color index buffers. The least
significant n bits of the Mask parameter, where n is the number of bits in a color index buffer, specify a
mask. Wherever a 1 (one) appears in the mask, the corresponding bit in the color index buffer (or buffers)
is made writable. Where a 0 (zero) appears, the bit is write-protected.

This mask is used only in color index mode, and it affects only the buffers currently selected for writing
(see glDrawBuffer). Initially, all bits are enabled for writing.

Parameters

Mask  Specifies a bit mask to enable and disable the writing of individual bits in the color index buffers. Initially, the
mask is all 1’s.

Errors

GL_INVALID_OPERATION The glindexMask subroutine is called between a call to gilBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glindexMask subroutine are as follows. (See the subroutine for more
information.)

Chapter 1. OpenGL Subroutines 187



glGet with argument GL_INDEX_WRITEMASK.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |gIBegin| or glEnd subroutine, [giColorMaskK| subroutine, [giDepthMask| subroutine, [giDrawBuffe
subroutlne subroutine, |glStencilMask| subroutine.

glindexPointer Subroutine

Purpose
Defines an array of color indexes.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glIndexPointer( GLenum [type),
GLsizei Etr‘ide,

const GLvoid * _pointer‘l)

Description

The glindexPointer subroutine specifies the location and data format of an array of color indexes to use
when rendering. The tfype parameter specifies the data type of each color index and stride gives the byte
stride from one color index to the next allowing vertices and attributes to be packed into a single array or
stored in separate arrays. (Single array storage may be more efficient on some implementations; see
[glinterleavedArrays})

The parameters type, stride, and pointer are saved as client-side state.

The color index array is initially disabled. To enable and disable the array, call glEnableClientState and
glDisableClientState with the argument GL_INDEX_ARRAY. If enabled, the color index array is used
when glDrawArrays, glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, giMultiDrawElementsEXT,
glMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Index array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

type Specifies the data type of each color index in the array. Symbolic constants GL_UNSIGNED_BYTE,
GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

188 OpenGL 1.2 Reference Manual



stride Specifies the byte offset between consecutive color indexes. If stride is zero (the initial value), the color
indexes are understood to be tightly packed in the array.
pointer Specifies a pointer to the first index in the array. The initial value is 0 (NULL pointer).

Notes
The glindexPointer subroutine is available only if the GL version is 1.1 or greater.

The color index array is initially disabled, and it won’t be accessed when glArrayElement,
glDrawElements or glDrawArrays is called.

Execution of glindexPointer is not allowed between glBegin and the corresponding glEnd, but an error
may or may not be generated. If an error is not generated, the operation is undefined.

The glindexPointer subroutine is typically implemented on the client side with no protocol.

Since the color index array parameters are client side state, they are not saved or restored by
glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glindexPointer subroutine is not included in display lists.

Errors
GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

Associated Gets
glisEnabled with argument GL_INDEX_ARRAY

glGet with argument GL_INDEX_ARRAY_TYPE
glGet with argument GL_INDEX_ARRAY_STRIDE

glGetPointerv with argument GL_INDEX_ARRAY_POINTER

Related Information
The |gIArrayEIement| subroutine, |gICoIorPointeF| subroutine, |gIDrawArrays| subroutine, |giDrawElements|

subroutine, [gIEdgeFlagPointer| subroutine, |glEnable] subroutine, [glGetPointerv| subroutine,
lindexPointerListIBM| subroutine, [gINormalPointer] subroutine, |gIPopClientAttrib| subroutine,
IPushClientAttrib| subroutine, |gITexCoordPointer] subroutine, [glVertexPointer| subroutine.

glindexPointerEXT Subroutine

Purpose
Defines an array of color indexes.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 189



C Syntax

void glIndexPointerEXT(GLenum |[type),
GLsizei stride|,
GLsizei |[count|,

const GLvoid _*pointer|b

Description

The glindexPointerEXT subroutine specifies the location and data format of an array of color indexes to
use when rendering. type specifies the data type of each color index and stride gives the byte stride from
one color index to the next allowing vertexes and attributes to be packed into a single array or stored in
separate arrays. (Single-array storage may be more efficient on some implementations.) count indicates
the number of array elements (counting from the first) that are static. Static elements may be modified by
the application, but once they are modified, the application must explicitly respecify the array before using
it for any rendering. When a color index array is specified, type, stride, count and pointer are saved as
client-side state, and static array elements may be cached by the implementation.

The color index array is enabled and disabled using glEnable and glDisable with the argument
GL_INDEX_ARRAY_EXT. If enabled, the color index array is used when glDrawArraysEXT or
glArrayElementEXT is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIiBM, or giIDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Index array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

type Specifies the data type of each color index in the array. Symbolic constants GL_SHORT, GL_INT,
GL_FLOAT, or GL_DOUBLE_EXT, are accepted.

stride Specifies the byte offset between consecutive color indexes. If stride is zero the color indexes are
understood to be tightly packed in the array.

count Specifies the number of indexes, counting from the first, that are static.

pointer Specifies a pointer to the first index in the array.

Notes

Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the color index array is disabled and it won’t be accessed when glArrayElementEXT or
glDrawArraysEXT is called.

Although, it is not an error to call glindexPointerEXT between the execution of glBegin and the
corresponding execution of glEnd, the results are undefined.

glindexPointerEXT will typically be implemented on the client side with no protocol.

Since the color index array parameters are client side state, they are not saved or restored by
glPushAttrib and glPopAttrib.

glindexPointerEXT commands are not entered into display lists.

190 OpenGL 1.2 Reference Manual



glindexPointerEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL
command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when
called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors
GL_INVALID_ENUM is generated if fype is not an accepted value.

GL_INVALID_VALUE is generated if stride or count is negative.

Associated Gets
glisEnabled with argument GL_INDEX_ARRAY_EXT.

glGet with argument GL_INDEX_ARRAY_SIZE_EXT.

glGet with argument GL_INDEX_ARRAY_TYPE_EXT.

glGet with argument GL_INDEX_ARRAY_STRIDE_EXT.

glGet with argument GL_INDEX_ARRAY_COUNT_EXT.

glGetPointervEXT with argument GL_INDEX_ARRAY_POINTER_EXT.

File

lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The |glArrayElementEXT]| subroutine, [giColorPointerEXT]| subroutine, |giDrawArraysEXT] subroutine,
IEdgeFlagPointerEXT]| subroutine, [glGetPointervEXT] subroutine, |gINormalPointerEXT| subroutine,
ITexCoordPointerEXT] subroutine, [glVertexPointerEXT| subroutine.

glindexPointerListIBM Subroutine

Purpose
Defines a list of color index arrays.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glIndexPointerListIBM( GLenum ,
GLint Etridel,
const GLvoid x* |pointer],
GLint |ptrstride

Description

The glindexPointerListIBM subroutine specifies the location and data format of a list of arrays of color
indices to use when rendering. The type parameter specifies the data type of each color index. The stride
parameter gives the byte stride from one color index to the next allowing vertices and attributes to be

Chapter 1. OpenGL Subroutines 191



packed into a single array or stored in separate arrays. (Single-array storage may be more efficient on
some implementations; see glinterleavedArrays). The ptrstride parameter specifies the byte stride from
one pointer to the next in the pointer array.

When a color index array is specified, type, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a "tightly packed” array as it does in glindexPointer. Instead, it
causes the first array element of each array to be used for each vertex. Also, a negative value can be
used for stride, which allows the user to move through each array in reverse order.

To enable and disable the color index arrays, call glEnableClientState and glDisableClientState with the
argument GL_INDEX_ARRAY. The color index array is initially disabled. When enabled, the color index
arrays are used when glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or glArrayElement is called. The last
three calls in this list will only use the first array (the one pointed at by pointer{0]). See the descriptions of
these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
giMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Index array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIiBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

type Specifies the data type of each color component in the array. Symbolic constants GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive color indices. The initial value is 0.

pointer Specifies a list of color index arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.
Notes

The glindexPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is
supported.

Execution of glindexPointerListIBM is not allowed between giBegin and the corresponding glEnd, but an
error may or may not be generated. If an error is not generated, the operation is undefined.

The glindexPointerListIBM subroutine is typically implemented on the client side.

Since the color index array parameters are client side state, they are not saved or restored by
glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glindexPointerListIBM call is encountered while compiling a display list, the information it
contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glindexPointer call and the glindexPointerListIBM call share the same state variables. A
dglindexPointer call will reset the color index list state to indicate that there is only one color index list, so
that any and all lists specified by a previous glindexPointerListIBM call will be lost, not just the first list
that it specified.

192 OpenGL 1.2 Reference Manual



Error Codes
GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets
glisEnabled with argument GL_INDEX_ARRAY.

glGetPointerv with argument GL_INDEX_ARRAY_LIST_IBM.
glGet with argument GL_INDEX_ARRAY_LIST_STRIDE_IBM.
glGet with argument GL_INDEX_ARRAY_STRIDE.

glGet with argument GL_INDEX_ARRAY_TYPE.

Related Information

The |glArrayElement] subroutine, |§IIndexPointeF| subroutine, |§IDrawArrays| subroutine, [giDrawElements|
subroutine, [gIEdgeFlagPointer] subroutine, |glEnable| subroutine, |glGetPointerv| subroutine,

glindexPointer| subroutine, |g||nterleavedArrays| subroutine, |gIMuItiDrawArraysEXT| subroutine,
gIMultiDrawElementsEXT] subroutine, [gIMultiModeDrawArraysIBM| subroutine,
gIMuItiModeDrawEIementsIBMl subroutine, |9INormaIPointer| subroutine, |g|PopCIientAttrib| subroutine,
[glPushClientAttrib| subroutine, |giTexCoordPointer| subroutine, |gIVertexPointer subroutine.

glinitNames Subroutine

Purpose
Initializes the name stack.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glInitNames( void )

Description

The name stack is used during selection mode to allow sets of rendering commands to be uniquely
identified. It consists of an ordered set of unsigned integers. The glinitNames subroutine causes the name
stack to be initialized to its default empty state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to the glinitNames
subroutine while the render mode is not GL_SELECT are ignored.

Errors

GL_INVALID_OPERATION The glinitNames subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glinitNames subroutine are as follows. (See the [giGet] subroutine for more
information.)

Chapter 1. OpenGL Subroutines 193



glGet with argument GL_NAME_STACK_DEPTH
glGet with argument GL_MAX_NAME_STACK_DEPTH.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The|§IBe§in| or glEnd subroutine, |glLoadName| subroutine, subroutine, [giIRenderMode
subroutine, |gISeIectBuffe|_‘| subroutine.

glinterleavedArrays Subroutine

Purpose
Simultaneously specifies and enables several interleaved arrays.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glInterleavedArrays(GLenum ,
GLsizei [stride],

const GLvoid *pointer)

Description

The glinterleavedArrays subroutine lets you specify and enable individual color, normal, texture and
vertex arrays whose elements are part of a larger aggregate array element. For some implementations,
this is more efficient than specifying the arrays seperately.

If stride is zero then the aggregate element are stored consecutively, otherwise stride bytes occur between
aggregate array elements.

The format enumerant serves as a ’key’ describing the extraction of individual arrays from the aggregate
array. If format contains a T, then texture coordinates are extracted from the interleaved array. If C is
present, color values are extracted. If N is present, normal coordinates are extracted; Vertex coordinates
are always extracted.

The digits 2, 3, and 4 denote how many values are extracted. F indicates that values are extracted as
floating point values. Colors may also be extracted as 4 unsigned bytes if 4UB follows the C. If a color is
extracted as 4 unsigned bytes, the vertex array element which follows is located at the first possible
floating point aligned address.

Parameters

format Specifies the type of array to enable. Symbolic constants GL_V2F, GL_V3F, GL_C4UB_V2F,
GL_C4UB_V3F, GL_C3F_V3F, GL_N3F_V3F, GL_C4F_N3F_V3F, GL_T2F_V3F, GL_T4F_V4F,
GL_T2F_C4UB_V3F, GL_T2F_C3F_V3F, GL_T2F_N3F_V3F, GL_T2F_C4F_N3F_V3F, or
GL_TA4F_C4F_N3F_VA4F are accepted.

stride Specifies the offset in bytes between each aggregate array element.

194  OpenGL 1.2 Reference Manual



Notes
The glinterleavedArrays subroutine is available only if the GL version is 1.1 or greater.

If glinterleavedArrays is called while compiling a display list, it is not compiled into the list, and it is
executed immediately.

Execution of glinterleavedArrays is not allowed between giBegin and the corresponding glEnd, but an
error may or may not be generated. If an error is not generated, the operation is undefined.

The glinterleavedArrays subroutine is typically implemented on the client side with no protocol.

Since the vertex array parameters are client side state, they are not saved or restored by glPushAttrib
and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors
GL_INVALID_ENUM is generated if format is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

Related Information

The [glArrayElement] subroutine, [giColorPointer] subroutine, [giDrawArrays| subroutine, [giDrawElements|
subroutine, [gIEdgeFlagPointer] subroutine, |glEnableClientState] subroutine, [glGetPointerv| subroutine,
[glindexPointer| subroutine, [gINormalPointer| subroutine, [PopClientAttrib| subroutine, |gIPushClientAttrib|
subroutine, |gITexCoordPointer| subroutine, |gIVertexPointe|_‘| subroutine.

glisEnabled Subroutine

Purpose
Tests whether a capability is enabled.

Library
OpenGL C bindings library: libGL.a

C Syntax
GLboolean glIsEnabled (GLenum |Capability)

Description

The glisEnabled subroutine returns GL_TRUE if the Capability parameter is an enabled capability and
returns GL_FALSE otherwise. The following capabilities are accepted for Capability:

GL_ALPHA_TEST
GL_AUTO_NORMAL
GL_BLEND
GL_CLIP_PLANE/
GL_COLOR_ARRAY
GL_COLOR_ARRAY_EXT
GL_COLOR_LOGIC_OP
GL_COLOR_MATERIAL
GL_COLOR_SUM_EXT
GL_CULL_FACE
GL_CULL_VERTEX_IBM _ _ _
GL_DEPTH_TEST See [gIDepthFunc| and |giDepthRange]

Chapter 1. OpenGL Subroutines 195



GL_DITHER
GL_EDGE_FLAG_ARRAY
GL_EDGE_FLAG_ARRAY_EXT
GL_FOG

GL_INDEX_ARRAY
GL_INDEX_ARRAY_EXT
GL_LIGHT/

GL_LIGHTING
GL_LINE_SMOOTH
GL_LINE_STIPPLE
GL_LOGIC_OP
GL_MAP1_COLOR_4
GL_MAP1_INDEX
GL_MAP1_NORMAL
GL_MAP1_TEXTURE_COORD_1
GL_MAP1_TEXTURE_COORD_2
GL_MAP1_TEXTURE_COORD_3
GL_MAP1_TEXTURE_COORD_4
GL_MAP1_VERTEX_3
GL_MAP1_VERTEX_4
GL_MAP2_COLOR_4
GL_MAP2_INDEX
GL_MAP2_NORMAL
GL_MAP2_TEXTURE_COORD_1
GL_MAP2_TEXTURE_COORD_2
GL_MAP2_TEXTURE_COORD_3
GL_MAP2_TEXTURE_COORD_4
GL_MAP2_VERTEX_3
GL_MAP2_VERTEX_4
GL_NORMAL_ARRAY
GL_NORMAL_ARRAY_EXT
GL_NORMALIZE
GL_OCCLUSION_CULLING_HP
GL_POINT_SMOOTH
GL_POLYGON_SMOOTH
GL_POLYGON_STIPPLE
GL_POLYGON_OFFSET_EXT
GL_POLYGON_OFFSET_FILL
GL_POLYGON_OFFSET_LINE
GL_POLYGON_OFFSET_POINT
GL_RESCALE_NORMAL_EXT
GL_SCISSOR_TEST
GL_STENCIL_TEST
GL_TEXTURE_1D
GL_TEXTURE_2D
GL_TEXTURE_3D_EXT
GL_TEXTURE_COLOR_TABLE_EXT
GL_TEXTURE_COORD_ARRAY
GL_VERTEX_ARRAY
GL_TEXTURE_COORD_ARRAY_EXT
GL_TEXTURE_GEN_Q
GL_TEXTURE_GEN_R
GL_TEXTURE_GEN_S
GL_TEXTURE_GEN_T
GL_UPDATE_CLIP_VOLUME_HINT

196 OpenGL 1.2 Reference Manual

See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See
See

IEnable)

IEdgeFlagPointe
IEdgeFlagPointerEX
IFo

lindexPointe
lindexPointerEX

ILightModelf and |gILight

IMateriall [glLightModel and [giLight]
ILineWidth

ILineStipple

ILogicOp
IMap1
IMa
IMa
IMa
IMa
IMa
IMa
IMa
IMa
IMa
IMa
IMa
IMa
IMa
IMa
IMa|
IMa
IMap2

INormaIPointeﬂ

NINININDINDINDINDEIND = = = = = = = =

INormalPointerEXT|

INormal

IEnable)
IPointSize)
IPolygonMod
IPolygonStippl
IPolygonOffsetEX
IPolygonOffset
IPolygonOffset
IPolygonOffset
IEnable|
IScisso

IStencilFunc|and |gIStenciIOE|

ITeximage1D|
ITeximage2D|
ITeximage3DEX
IColorTable

ITexCoordPointer|

IVertexPointe
ITexCoordPointerEX

ITexGen
ITexGen
ITexGen
ITexGen
IHint




GL_VERTEX_ARRAY_EXT See |glVertexPointerEXT]

Parameters

Capability Specifies a symbolic constant indicating a GL capability.

Notes

If an error is generated, glisEnabled returns 0 (zero).

Errors

GL_INVALID_ENUM Capability is not an accepted value.

GL_INVALID_OPERATION The glisEnabled subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The or glEnd subroutine, subroutine.

glisList Subroutine

Purpose
Tests for display list existence.

Library
OpenGL C bindings library: libGL.a

C Syntax

GLboolean g1IsList(GLuint [List)

Description

The glisList subroutine returns GL_TRUE if the List parameter is the name of a display list and returns
GL_FALSE otherwise.

Parameters

List Specifies a potential display-list name.

Errors

GL_INVALID_OPERATION The gllsList subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Chapter 1. OpenGL Subroutines 197



Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin| or gIEnd subroutine, [glCallLis{ subroutine, [giCallLists| subroutine, [giDeleteLists| subroutine,

subroutine, |gINewList| subroutine.

glisTexture Subroutine

Purpose
Determines if a name corresponds to a texture.

Library
OpenGL C bindings library: libGL.a

C Syntax
GLboolean glIsTexture(GLuint [texture)

Description

The gllsTexture subroutine returns GL_TRUE if fexture is currently the name of a texture. If texture is
zero, or is a non-zero value that is not currently the name of a texture, or if an error occurs, glisTexture
returns GL_FALSE.

The gllsTexture subroutine is not included in display lists.

Parameters
texture Specifies a value which may be the name of a texture.
Notes

The glisTexture subroutine is available only if the GL version is 1.1 or greater.

Errors

GL_INVALID_OPERATION is generated if gllsTexture is executed between the execution of glBegin and
the corresponding execution of glEnd.

Related Information

The |gIBindTexture| subroutine, |glDeleteTextures| subroutine, |gIGenTexture§| subroutine, |gIGei|

subroutine, |9IGetTexParameteﬂ— subroutine, |9ITexIma9e1 QI subroutine, |9ITexImage29| subroutine,
|gITexParamete[| subroutine.

glisTextureEXT Subroutine

Purpose
Determines if a name corresponds to a texture.

198 OpenGL 1.2 Reference Manual



Library
OpenGL C bindings library: libGL.a

C Syntax
GLboolean gllsTextureEXT( GLuint)

Description

glisTextureEXT returns GL_TRUE if texture is currently the name of a texture. If texture is zero, or is a
non-zero value that is not currently the name of a texture, or if an error occurs, glisTextureEXT returns
GL_FALSE.

glisTextureEXT is not included in display lists.

Parameters
texture A value which might be the name of a texture.
Notes

gllsTextureEXT is part of the EXT_texture_object extension, not part of the core GL command set. If
GL_EXT_texture_object is included in the string returned by glGetString, when called with argument
GL_EXTENSIONS, extension EXT_texture_object is supported by the connection.

Errors

GL_INVALID_OPERATION is generated if glisTextureEXT is executed between the execution of glBegin
and the corresponding execution of glEnd.

File

lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The |gIBindTextureEXT]| subroutine, |glDelete TexturesEXT] subroutine, |glGenTexturesEXT| subroutine,

EIGe subroutine, |g|GetTexParameter1 subroutine, |gITexImage1 QI subroutine, |gITexImage29| subroutine,

ITexParameter| subroutine.

glLight Subroutine

Purpose
Sets light source parameters.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glLightf(GLenum |Light|,

GLenum [ParameterName|,
GLfloat [Parameter)

Chapter 1. OpenGL Subroutines 199



void glLighti (GLenum |Light|,
GLenum |ParameterName|,
GLint |Parameter)

void glLightfv(GLenum |Light|,

GLenum |ParameterNamel,
const GLfloat * [ParameterValues))

void glLightiv(GLenum |Light|,
GLenum |ParameterNamel,
const GLint * [ParameterValues))

Description

The glLight subroutine sets the values of individual light source parameters. Light names the light and is a
symbolic name of the form GL_LIGHTI, where 0 is less than or equal to i/ which is less than
GL_MAX_LIGHTS. ParameterName specifies one of 10 light source parameters, again by symbolic name.
ParameterValues is either a single value or a pointer to an array that contains the new values.

Lighting calculation is enabled and disabled using glEnable and glDisable with argument GL_LIGHTING.
When lighting is enabled, light sources that are enabled contribute to the lighting calculation. Light source i
is enabled and disabled using glEnable and glDisable with argument GL_LIGHT/.

The 10 light parameters are as follows:

GL_AMBIENT

GL_DIFFUSE

GL_SPECULAR

200 OpenGL 1.2 Reference Manual

ParameterValues contains four integer or floating-point values that
specify the ambient red, green, blue, alpha (RGBA) intensity of the
light. Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable
value maps to -1.0. Floating-point values are mapped directly. Neither
integer nor floating-point values are clamped. The default ambient
light intensity is (0.0, 0.0, 0.0, 1.0).

ParameterValues contains four integer or floating-point values that
specify the diffuse RGBA intensity of the light. Integer values are
mapped linearly such that the most positive representable value maps
to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor
floating-point values are clamped. The default diffuse intensity is (0.0,
0.0, 0.0, 1.0) for all lights other than light zero. The default diffuse
intensity of light zero is (1.0, 1.0, 1.0, 1.0).

ParameterValues contains four integer or floating-point values that
specify the specular RGBA intensity of the light. Integer values are
mapped linearly such that the most positive representable value maps
to 1.0, and the most negative representable value maps to -1.0.
Floating-point values are mapped directly. Neither integer nor
floating-point values are clamped. The default specular intensity is
(0.0, 0.0, 0.0, 1.0) for all lights other than light zero. The default
specular intensity of light zero is (1.0, 1.0, 1.0, 1.0).



GL_POSITION

GL_SPOT_DIRECTION

GL_SPOT_EXPONENT

GL_SPOT_CUTOFF

GL_CONSTANT_ATTENUATION,
GL_LINEAR_ATTENUATION, or
GL_QUADRATIC_ATTENUATION

ParameterValues contains four integer or floating-point values that

specify the position of the light in homogeneous object coordinates.
Both integer and floating-point values are mapped directly. Neither

integer nor floating-point values are clamped.

The position is transformed by the modelview matrix when glLight is
called (just as if it were a point), and it is stored in eye coordinates. If
the w component of the position is 0.0, the light is treated as a
directional source. Diffuse and specular lighting calculations consider
the light’s direction, but not its actual position, and attenuation is
disabled. Otherwise, diffuse and specular lighting calculations are
based on the actual location of the light in eye coordinates, and
attenuation is enabled. The default position is (0,0,1,0); thus, the
default light source is directional, as well as parallel to and in the
direction of the -z axis.

ParameterValues contains three integer or floating-point values that
specify the direction of the light in homogeneous object coordinates.
Both integer and floating-point values are mapped directly. Neither
integer nor floating-point values are clamped.

The spot direction is transformed by the inverse of the modelview
matrix when glLight is called (just as if it were a normal), and it is
stored in eye coordinates. It is significant only when
GL_SPOT_CUTOFF is not 180, which it is by default. The default
direction is (0,0,-1).

ParameterValues is a single integer or floating-point value that
specifies the intensity distribution of the light. Integer and
floating-point values are mapped directly. Only values in the range
[0,128] are accepted.

Effective light intensity is attenuated by the cosine of the angle
between the direction of the light and the direction from the light to
the vertex being lighted, raised to the power of the spot exponent.
Thus, higher spot exponents result in a more focused light source,
regardless of the spot cutoff angle. (See the GL_SPOT_CUTOFF
description.) The default spot exponent is 0, resulting in uniform light
distribution.

ParameterValues is a single integer or floating-point value that
specifies the maximum spread angle of a light source. Integer and
floating-point values are mapped directly. Only values in the range
[0,90] and the special value 180 are accepted. If the angle between
the direction of the light and the direction from the light to the vertex
being lighted is greater than the spot cutoff angle, the light is
completely masked. Otherwise, its intensity is controlled by the spot
exponent and the attenuation factors. The default spot cutoff is 180,
resulting in uniform light distribution.

ParameterValues is a single integer or floating-point value that
specifies one of the three light attenuation factors. Integer and
floating-point values are mapped directly. Only nonnegative values are
accepted. If the light is positional, rather than directional, its intensity
is attenuated by the reciprocal of the sum of the constant factor, the
linear factor times the distance between the light and the vertex being
lighted, and the quadratic factor times the square of the same
distance. The default attenuation factors are (1,0,0), resulting in no
attenuation.

Chapter 1. OpenGL Subroutines 201



Parameters

Light Specifies a light. The number of lights depends on the implementation, but at least
eight lights are supported. They are identified by symbolic names of the form
GL_LIGHT/ where 0 is less than or equal to /i which is less than GL_MAX_LIGHTS.

ParameterName For glLightf, glLighti, and glLightv, this parameter specifies a single-valued light
source parameter for Light. GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,
GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and
GL_QUADRATIC_ATTENUATION are accepted.

For glLightfv and glLightiv, this parameter specifies a light source parameter for Light.
GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION,
GL_SPOT_DIRECTION, GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,
GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and
GL_QUADRATIC_ATTENUATION are accepted.

Parameter Specifies the value to which the parameter ParameterName of light source Light is set.

ParameterValues Specifies a pointer to the value or values to which the parameter ParameterName of
light source Light is set. This parameter is used only with glLightfv and glLightiv.

Notes

It is always the case that GL_LIGHT/ = GL_LIGHTO + .

Errors

GL_INVALID_ENUM Either Light or ParameterName is not an accepted value.
GL_INVALID_VALUE A spot exponent value is specified outside the range [0,128], or spot cutoff is

specified outside the range [0,90] (except for the special value 180), or a
negative attenuation factor is specified.

GL_INVALID_OPERATION The glLight subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets
Associated gets for the glLight subroutine are as follows. (See thesubroutine for more information.)

glGetLight

glisEnabled| with argument GL_LIGHTING.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The |gIBegin| or glEnd subroutine, |giColorMaterial| subroutine, or giDisable subroutine,
glLightModel| subroutine, |giMaterial| subroutine.

glLightModel Subroutine

Purpose
Sets the lighting model parameters.

202 OpenGL 1.2 Reference Manual



Library
OpenGL C bindings library: libGL.a

C Syntax
void glLightModelf (GLenum |ParameterNamel,
GLfloat |Parameter)

void glLightModeli (GLenum |Parame terNamel,

GLint |Parameter

void glLightModelfv(GLenum |ParameterName|,

const GLfloat * [ParameterValues)

void glLightModeliv(GLenum |Parameter‘Name|,

const GLint * [ParameterValues))

Description

The glLightModel subroutine sets the lighting model parameters. ParameterName names a parameter
and ParameterValues gives the new value. There are three lighting model parameters:

GL_LIGHT_MODEL_COLOR_CONTROL

GL_LIGHT_MODEL_AMBIENT

GL_LIGHT_MODEL_LOCAL_VIEWER

GL_LIGHT_MODEL_TWO_SIDE

Lighting produces two colors at the vertex: a primary color
and a secondary color. The values of the two colors depend
on the light model color control. ParameterValues can be
GL_SINGLE_COLOR or GL_SPECULAR_COLOR.
GL_SINGLE_COLOR is the default value. Depending upon
the ParameterValues, the lighting equations compute the two
colors differently. All computations are carried out in eye
coordinates

ParameterValues contains four integer or floating-point values
that specify the ambient red, green, blue, alpha (RGBA)
intensity of the entire scene. Integer values are mapped
linearly such that the most positive representable value maps
to 1.0, and the most negative representable value maps to
-1.0. Floating-point values are mapped directly. Neither integer
nor floating-point values are clamped. The default ambient
scene intensity is (0.2, 0.2, 0.2, 1.0).

ParameterValues is a single integer or floating-point value that
specifies how specular reflection angles are computed. If
ParameterValues is 0 (or 0.0), specular reflections are
computed from the origin of the eye coordinate system.
Otherwise, reflection angles take the view direction to be
parallel to and in the direction of the -z axis, regardless of the
location of the vertex in eye coordinates. The default is False.
ParameterValues is a single integer or floating-point value that
specifies whether one-sided or two-sided lighting calculations
are done for polygons. It has no effect on the lighting
calculations for points, lines, or bitmaps. If ParameterValues is
0 (or 0.0), one-sided lighting is specified, and only the front
material parameters are used in the lighting equation.
Otherwise, two-sided lighting is specified. In this case, vertices
of backfacing polygons are lighted using the back material
parameters, and have their normals reversed before the
lighting equation is evaluated. Vertices of frontfacing polygons
are always lighted using the front material parameters, with no
change to their normals. The default is False.

Chapter 1. OpenGL Subroutines 203



In RGBA mode, the lighted color of a vertex is the sum of the material emission intensity, the product of
the material ambient reflectance and the lighting model full-scene ambient intensity, and the contribution of
each enabled light source. Each light source contributes the sum of three terms: ambient, diffuse, and
specular.

» The ambient light source contribution is the product of the material ambient reflectance and the light’s
ambient intensity.

» The diffuse light source contribution is the product of the material diffuse reflectance, the light’s diffuse
intensity, and the dot product of the vertex’s normal with the normalized vector from the vertex to the
light source.

* The specular light source contribution is the product of the material specular reflectance, the light’s
specular intensity, and the dot product of the normalized vertex-to-eye and vertex-to-light vectors, raised
to the power of the shininess of the material.

All three light source contributions are attenuated equally based on the distance from the vertex to the light
source and on light source direction, spread exponent, and spread cutoff angle. All dot products are
replaced with 0 (zero) if they are a negative value.

The alpha component of the resulting lighted color is set to the alpha value of the material diffuse
reflectance.

In color index mode, the value of the lighted index of a vertex ranges from the ambient to the specular
values passed to glMaterial using GL_COLOR_INDEXES. The extent to which the resulting index is
above ambient is determined by diffuse and specular coefficients, computed with a weighting of the lights’
colors (.30, .59, .11); the shininess of the material; and the same reflection and attenuation equations as in
the RGBA case.

Parameters

ParameterName For glLightModelf and glLightModeli, this parameter specifies a single-valued lighting
model parameter. GL_LIGHT_MODEL_COLOR_CONTROL,
GL_LIGHT_MODEL_LOCAL_VIEWER, and GL_LIGHT_MODEL_TWO_SIDE are
accepted.
For glLightModelfv and glLightModeliv, this parameter specifies a lighting model
parameter. GL_LIGHT_MODEL_AMBIENT, GL_LIGHT_MODEL_COLOR_CONTROL,
GL_LIGHT_MODEL_LOCAL_VIEWER, and GL_LIGHT_MODEL_TWO_SIDE are
accepted.

Parameter Specifies the value to which ParameterName is set. This parameter applies only to
GL_LIGHT_MODEL_COLOR_CONTROL, giLightModelf, and glLightModeli.

ParameterValues Specifies a pointer to the value or values to which ParameterName is set. This
parameter applies only to glLightModelfv and glLightModeliv.

Errors

GL_INVALID_ENUM ParameterName is not an accepted value.

GL_INVALID_OPERATION The glLightModel subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLightModel subroutine are as follows. (See the [gIGet] subroutine for more
information.)

glGet with argument GL_LIGHT_MODEL_AMBIENT.

204 OpenGL 1.2 Reference Manual



glGet with argument GL_LIGHT_MODEL_LOCAL_VIEWER.

glGet with argument GL_LIGHT_MODEL_TWO_SIDE.

glisEnabled| with argument GL_LIGHTING.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The or glEnd subroutine, or glDisable subroutine, subroutine,

subroutine.

glLineStipple Subroutine

Purpose
Specifies the line stipple pattern.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glLineStipple(GLint |Fact0r‘|,

GLushort |£at tern|b

Description

Line stippling masks out certain fragments produced by rasterization; those fragments are not drawn. The
masking is achieved by using three parameters: the 16-bit line stipple pattern (the Pattern parameter), the
repeat count (the Factor parameter), and an integer stipple counter s.

Counter s is reset to 0 (zero) whenever the glBegin subroutine is called, and before each line segment of
a glBegin(GL_LINES)gIEnd sequence is generated. It is incremented after each fragment of a unit width
aliased line segment is generated, or after each of the i fragments of an i width line segment are
generated. The i fragments associated with count s are masked out if

Pattern bit floor (s/Factor) mod 16

is 0, otherwise these fragments are sent to the frame buffer. Bit O of the Pattern parameter is the least
significant bit.

Antialiased lines are treated as a sequence of 1 times width rectangles for purposes of stippling.
Rectangle s is rasterized or not rasterized, based on the fragment rule described for aliased lines, counting
rectangles rather than groups of fragments.

Line stippling is enabled or disabled using the glEnable and glDisable subroutines with the

GL_LINE_STIPPLE argument. When enabled, the line stipple pattern is applied as described in the
preceding section. When disabled, it is as if the pattern were all 1s. Initially, line stippling is disabled.

Chapter 1. OpenGL Subroutines 205



Parameters

Factor Specifies a multiplier for each bit in the line stipple pattern. If Factor is 3, for example, each bit in the
pattern is used three times before the next bit in the pattern is used. Factor is clamped to the range [1,
255] and defaults to 1.

Pattern Specifies a 16-bit integer whose bit pattern determines which fragments of a line is drawn when the
line is rasterized. Bit 0 is used first, and the default pattern is all 1s.

Errors

GL_INVALID_OPERATION The glLineStipple subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glLineStipple subroutine are as follows. (See the [giGet subroutine for more
information.)

glGet with argument GL_LINE_STIPPLE_PATTERN

glGet with argument GL_LINE_STIPPLE_REPEAT

glisEnabled| with argument GL_LINE_STIPPLE.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The subroutine, [glEnable or Disable| subroutine, [glLineWidth| subroutine, [giPolygonStipple|

subroutine.

glLineWidth Subroutine

Purpose

Specifies the width of rasterized lines.
Library

OpenGL C bindings library: libGL.a
C Syntax

void glLineWidth(GLfloat
Description

The glLineWidth subroutine specifies the rasterized width of both aliased and antialiased lines. Using a
line width other than 1.0 has different effects, depending on whether line antialiasing is enabled. Line
antialiasing is controlled by calling the glEnable and glDisable subroutines with the GL_LINE_SMOOTH
argument.

206 OpenGL 1.2 Reference Manual



If line antialiasing is disabled, the actual width is determined by rounding the supplied width to the nearest
integer. (If the rounding results in the value 0 (zero), it is as if the line width were 1 (one).) If | DELTAXx |

> | DELTAy |, i pixels are filled in each column that is rasterized, where i is the rounded value of Width.
Otherwise, i pixels are filled in each row that is rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel square that intersects the
region lying within the rectangle. The fragment has a width equal to the current line width, a length equal
to the actual length of the line, and is centered on the mathematical line segment. The coverage value for
each fragment is the window coordinate area of the intersection of the rectangular region with the
corresponding pixel square. This value is saved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported width is requested,
the nearest supported width is used. Only width 1.0 is guaranteed to be supported; others depend on the
implementation. The range of supported widths and the size difference between supported widths within
the range can be queried by calling the glGet subroutine with the GL_LINE_WIDTH_RANGE and
GL_LINE_WIDTH_GRANULARITY arguments.

Parameters

Width Specifies the width of rasterized lines. The default is 1.0.

Notes

The line width specified by glLineWidth is always returned when GL_LINE_WIDTH is queried. Clamping
and rounding for aliased and antialiased lines have no effect on the specified value.

Non-antialiased line width may be clamped to an implementation-dependent maximum. Although this
maximum cannot be queried, it must be no less than the maximum value for antialiased lines, rounded to
the nearest integer value.

Errors
GL_INVALID_VALUE Width is less than or equal to 0.
GL_INVALID_OPERATION The glLineWidth subroutine is called between a call to giBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLineWidth subroutine are as follows. (See the [glGet] subroutine for more
information.)

glGet with argument GL_LINE_WIDTH
glGet with argument GL_LINE_WIDTH_RANGE

glGet with argument GL_LINE_WIDTH_GRANULARITY

glisEnabled| with argument GL_LINE_SMOOTH.
Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 207



Related Information
The |gIBegin or glEnd| subroutine, [glEnable or Disable| subroutine.

glListBase Subroutine

Purpose
Sets the display-list base for the glCallLists subroutine.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glListBase(GLuint [Base)

Description

The glCallLists subroutine specifies an array of offsets. Display-list names are generated by adding the
Base parameter to each offset. Names that reference valid display lists are executed; the others are
ignored.

Parameters

Base  Specifies an integer offset that is added to glCallLists offsets to generate display-list names. Initial value is 0
(zero).

Errors

GL_INVALID_OPERATION The glListBase subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glListBase subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_LIST_BASE.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin or glEnd|subroutine, subroutine.
glLoadldentity Subroutine

Purpose
Replaces the current matrix with the identity matrix.

208 OpenGL 1.2 Reference Manual



Library
OpenGL C bindings library: libGL.a

C Syntax

void glLoadIdentity( void )

Description

The glLoadldentity subroutine replaces the current matrix with the identity matrix. It is semantically
equivalent to calling the glLoadMatrix subroutine with the following identity matrix:

1000
100

o QO

010
0 01

o

Figure 6. Identity Matrix. This diagram shows a matrix enclosed in brackets. The matrix consists of four lines
containing four characters each. The first line contains the following (from left to right): one, zero, zero, zero. The
second line contains the following (from left to right): zero, one, zero, zero. The third line contains the following (from
left to right): zero, zero, one, zero. The fourth line contains the following (from left to right): zero, zero, zero, one.

Calling glLoadldentity is in some cases more efficient.

Errors

GL_INVALID_OPERATION The glLoadldentity subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glLoadldentity subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin or iIEnd| subroutine, [glLoadMatrix] subroutine, [giMatrixMode] subroutine, [giMultMatrix]
glPushMatrix

subroutine, ( subroutine.

Chapter 1. OpenGL Subroutines 209



glLoadMatrix Subroutine

Purpose
Replaces the current matrix with an arbitrary matrix.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glLoadMatrixd(const GLdouble [<Matrix|

void glLoadMatrixf(const GLfloat [Matrix]

Description

The glLoadMatrix subroutine replaces the current matrix with the one specified in the Matrix parameter.
The current matrix is the projection matrix, model view matrix, or texture matrix, determined by the current
matrix mode. (See thesubroutine for information on specifiying the current matrix.) The
Matrix parameter points to a 4 x 4 matrix of single- or double-precision floating-point values stored in
column-major order. That is, the matrix is stored as the following:

ap a4 ag a2
a1y as ag ayz

d2 3 a1 214

az azy a1 ays

Figure 7. Stored Matrix. This diagram shows a matrix enclosed in brackets. The matrix consists of four lines containing
four characters each. The first line contains the following (from left to right): a subscript zero, a subscript four, a
subscript eight, a subscript twelve. The second line contains the following (from left to right): a subscript one, a
subscript five, a subscript nine, a subscript thirteen. The third line contains the following (from left to right): a subscript
two, a subscript six, a subscript ten, a subscript fourteen. The fourth line contains the following (from left to right): a
subscript three, a subscript seven, a subscript eleven, a subscript fifteen.

Parameters

Matrix Specifies a pointer to 4 x 4 matrix stored in column-major order as 16 consecutive values.
Errors

GL_INVALID_OPERATION The glLoadMatrix subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLoadMatrix subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX

210 OpenGL 1.2 Reference Manual



glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |§ IBegin or i IEnd| subroutine, |§ILoadIdentit§| subroutine, |gIMatrixMod5| subroutine,

subroutine, [gIPushMatrix| subroutine, |glLoadTransposeMatrixARB]| subroutine.

glLoadName Subroutine

Purpose
Loads a name onto the name stack.

Library
OpenGL C bindings library: libGL.a

C Syntax

void LoadName (GLuint [Vame)

Description

The name stack is used during selection mode to allow sets of rendering commands to be uniquely
identified. It consists of an ordered set of unsigned integers. The glLoadName subroutine causes the
Name parameter to replace the value on the top of the name stack, which is initially empty.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glLoadName while
the render mode is not GL_SELECT are ignored.

Parameters

Name  Specifies a name that replaces the top value on the name stack.

Errors
GL_INVALID_OPERATION The glLoadName subroutine is called while the name stack is empty.
GL_INVALID_OPERATION The glLoadName subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLoadName subroutine are as follows. (See the [giGe{ subroutine for more
information.)

glGet with argument GL_NAME_STACK_DEPTH.

glGet with argument GL_MAX_NAME_STACK_DEPTH.

Chapter 1. OpenGL Subroutines 211



Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin or glEnd] subroutine, [glinitNames] subroutine, subroutine, [gIRenderMode
subroutine, [giSelectBuffer| subroutine.

glLoadNamedMatrixIBM Subroutine

Purpose
Loads a pre-defined matrix into the top of the named matrix stack.
Library
OpenGL C bindings library: (libGL.a)
C Syntax
void glLoadNamedMatrixIBM(GLenum f[natrix,
GLenum |name)
Description

Using this subroutine, a predefined matrix can be loaded into any matrix stack, regardless of the current
matrix mode in use.

glLoadNamedMaxtrixIBM(matrix, GL_IDENTITY_MATRIX_IBM) is functionally equivalent to:

PushAttrib(GL_TRANSFORM_BIT);
MatrixMode (matrix) ;
LoadIdentity();

PopAttrib();

This subroutine does NOT change the current matrix mode.

Parameters

matrix specifies which of the matrices to load. Acceptable values
are GL_COLOR, GL_TEXTURE, GL_MODELVIEW, and
GL_PROJECTION.

212 OpenGL 1.2 Reference Manual



name

Notes

specifies the named matrix to load. Acceptable values and
their corresponding matrices are:
GL_IDENTITY_MATRIX_IBM 1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.
0.
1.

o o ol

0.0 0.0 1.0
0.0 0.0 0.0

GL_YCRCB_TO_RGB_MATRIX_IBM 1.164 0.000 1.596 -0.874
1.164 -0.392 -0.813 0.532

1.164 2.017 0.000 1.000
0.000 0.000 0.000 1.000

GL_RGB_TO_YCRCB_MATRIX_IBM 0.257 0.504 0.098 0.063
-0.148 -0.291  0.439 0.502
0.439 -0.368 -0.071 0.502
0.000 0.000 0.000 1.000

Note that the second and third parameters above are only
valid if the GL_IBM_YCbCr extension is present.

This subroutine is only available if the GL_IBM_load_matrix extension is present.

Error Codes

GL_INVALID_ENUM
GL_INVALID_ENUM

Files

lusr/include/GL/gl.h

is generated if matrix is not one of the acceptable values.
is generated if name is not one of the acceptable values.

Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

glLoadTransposeMatrixARB Subroutine

Purpose

Loads a matrix in row-major order, rather than column-major order.

Library
OpenGL C bindings library: (libGL.a)

C Syntax

void glLoadTransposeMatrixfARB(const GLfloat [<Matrix]
void glLoadTransposeMatrixdARB(const GLdouble [xMatrix|

Description

The glLoadTransposeMatrixARB subroutine replaces the current matrix with the one specified in the
Matrix parameter. The current matrix is the projection matrix, model view matrix, or texture matrix,
determined by the current matrix mode. (See the subroutine for information on specifiying
the current matrix.) The Matrix parameter points to a 4 x 4 matrix of single- or double-precision
floating-point values stored in row-major order. That is, the matrix is stored as the following:

Chapter 1. OpenGL Subroutines 213



/ a0 al a2 a3 \
ad ab ab a7
a8 a9 alod all

\ al2 al3 al4 al5 /

Parameters

Matrix is an array of 16 values, specified in row-major order.

Error Codes
GL_INVALID_OPERATION is generated if glLoadTransposeMatrixARB is executed

between the execution of glBegin and the corresponding
execution of glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The |glLoadMatrix| subroutine, the [giMatrixMode| subroutine.

glLockArraysEXT Subroutine

Purpose
Locks the currently enabled vertex arrays.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glLockArraysEXT (int ,
sizei

Description

The currently enabled vertex arrays can be locked with the subroutine glLockArraysEXT. When the
vertex arrays are locked, the GL can compile the array data or the transformed results of array data
associated with the currently enabled vertex arrays. The vertex arrays are unlocked by the
[glUnlockArraysEXT] subroutine.

Between glLockArraysEXT and glUnlockArraysEXT the application should ensure that none of the array
data in the range of elements specified by first and count are changed. Changes to the array data
between the execution of glLockArraysEXT and glUnlockArraysEXT subroutines may affect calls to
DrawArrays, ArrayElement, or DrawElements subroutines in non-sequential ways.

While using a compiled vertex array, references to array elements by the subroutines DrawArrays,
ArrayElement, or DrawElements which are outside of the range specified by first and count are undefined.

This extension defines an interface which allows static vertex array data to be cached or pre-compiled for
more efficient rendering. This is useful for implementations which can cache the transformed results of

214 OpenGL 1.2 Reference Manual



array data for reuse by several DrawArrays, ArrayElement, or DrawElements subroutines. It is also useful
for implementations which can transfer array data to fast memory for more efficient processing.

For example, rendering an M by N mesh of quadrilaterals can be accomplished by setting up vertex arrays
containing all of the vertexes in the mesh and issuing M DrawElements subroutines each of which operate
on 2 * N vertexes. Each DrawElements subroutine after the first will share N vertexes with the preceding
DrawElements subroutine. If the vertex array data is locked while the DrawElements subroutines are
executed, then OpenGL may be able to transform each of these shared vertexes just once.

Parameters

first The first element in the locked range.

count The number of elements to be contained in the locked range.

Errors

INVALID_VALUE First is less than or equal to zero.

INVALID_OPERATION The glLockArraysEXT subroutine is called between execution of
glLockArraysEXT and the corresponding execution of glUnlockArraysEXT.

INVALID_OPERATION The glLockArraysEXT subroutine is called between execution of Begin and the

corresponding execution of End.

Related Information
The [glUnlockArraysEXT| subroutine.

glLogicOp Subroutine

Purpose

Specifies a logical pixel operation for color index rendering.
Library

OpenGL C bindings library: libGL.a

C Syntax

void LogicOp(GLenum [OperatorCodel)

Description

The glLogicOp subroutine specifies a logical operation that, when enabled, is applied between the
incoming color and the color at the corresponding location in the frame buffer. The logical operation is
enabled or disabled with the glEnable and glDisable subroutines using the GL_LOGIC_OP symbolic
constant for color index mode or the GL_COLOR_LOGIC_OP for RGB mode.

The OperatorCode parameter specifies a symbolic constant chosen from the following list. In the
explanation of the logical operations, s represents the incoming color index and d represents the index in
the frame buffer. Standard C-language operators are used. As these bit-wise operators suggest, the logical
operation is applied independently to each bit pair of the source and destination indexes.

Operation Resulting Value
GL_CLEAR 0
GL_SET 1
GL_COPY s

Chapter 1. OpenGL Subroutines 215



Operation Resulting Value

GL_COPY_INVERTED Is
GL_NOOP d
GL_INVERT Id
GL_AND s&d
GL_NAND I(s & d)
GL_OR sld
GL_NOR I(s1d)
GL_XOR s~d
GL_EQUIV (s~ d)
GL_AND_REVERSE s &!d
GL_AND_INVERTED Is & d
GL_OR_REVERSE slld
GL_OR_INVERTED Isld
Parameters
OperatorCode Specifies a symbolic constant that selects a logical operation. The following symbols are

accepted:

*+ GL_CLEAR

 GL_SET

+ GL_COPY

* GL_COPY_INVERTED

+ GL_NOOP

* GL_INVERT

« GL_AND

« GL_NAND

« GL_OR

« GL_NOR

+ GL_XOR

+ GL_EQUIV

+ GL_AND_REVERSE
* GL_AND_INVERTED
* GL_OR_REVERSE

* GL_OR_INVERTED

Notes

When more than one color index buffer is enabled for drawing, logical operations are done separately for
each enabled buffer, using the contents of that buffer for the destination index. (See the [gIDrawBuffe
subroutine for information about specifying color buffers for drawing.)

The OperatorCode parameter must be one of the 16 accepted values. Other values result in an error.

Errors
GL_INVALID_ENUM OperatorCode is not an accepted value.
GL_INVALID_OPERATION The glLogicOp subroutine is called between a call to glBegin and the

corresponding call to glEnd.

216 OpenGL 1.2 Reference Manual



Associated Gets

Associated gets for the glLogicOp subroutine are as follows. (See the subroutine for more
information.)

glEnable or glDisable with argument GL_COLOR_LOGIC_OP for RGB mode or GL_INDEX_LOGIC_OP
for color index mode.

glGet with argument GL_LOGIC_OP_MODE.

gllsEnabled| with argument GL_LOGIC_OP.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [glAlphaFunc] subroutine, [gIBegin or glEnd] subroutine, [giBlendEquationEXT] subroutine,

|gIBIendFunc| subroutine, |gIDrawBuffe|_‘| subroutine, |9IEnabIe or Disable| subroutine, |gIStenciI0d

subroutine.

gliMap1 Subroutine

Purpose

Defines a 1-dimensional (1D) evaluator.

Library

OpenGL C bindings library: libGL.a

C Syntax

void g1Mapld(GLenum ,
GLdouble |ul,

GLdouble
GLint |Stride|,

GLint

const GLdouble * |£oints|b

void g1Maplf(GLenum ,

GLint |Stride),
GLint
const GLfloat *|Pointsb

Description

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices, normals,
texture coordinates, and colors. The values produced by an evaluator are sent to further stages of GL
processing just as if they had been presented using the glVertex, gINormal, giTexCoord, and glColor
subroutines, except that the generated values do not update the current normal, texture coordinates, or
color.

Chapter 1. OpenGL Subroutines 217



All polynomial or rational polynomial splines of any degree (up to the maximum degree supported by the
GL implementation) can be described using evaluators. These include almost all splines used in computer
graphics, such as B-splines, Bezier curves, and Hermite splines.

Evaluators define curves based on Bernstein polynomials. Define p(t) as the following:
Let p(t) = BnO(t)RO + Bnl(t)RL + . . . + Bnn(t)Rn

where Ri is a control point and Bhni(t) is the ith Bernstein polynomial of degree:
n (Order = n+l)

See the figure:

n n n!
is the binomial coefficient given by =
k k! (n—k)!

Figure 8. Binomial Coefficient Equation. This figure shows that the binomial coefficient with original set of size n and
subset of size k is the binomial coefficient given by the following equation: the binomial coefficient with original set of
size n and subset of size k is equal to n! / k! (n-k)!.

See the figure:
00=1and || =1
k

Figure 9. Definition. This figure shows that zero to the power of zero is eqgivalent to one and the binomial coefficient
with original set of size n and subset of size k is also eqivalent to one.

The glMap1 subroutine is used to define the basis and to specify what kind of values are produced. Once
defined, a map can be enabled and disabled by calling the glEnable and glDisable subroutines with the
map name, one of the nine predefined values for the Target parameter. The glEvalCoord1 subroutine
evaluates the 1D maps that are enabled. When glEvalCoord1 presents a value u, the Bernstein functions
are evaluated using {, as in the following figure:

u-ut

u2-ut

Figure 10. Value of t. This figure shows that t is equal to u-u1 / u2-uft.

The Target parameter specifies a symbolic constant that indicates what kind of control points are provided
in the Points parameter, and what output is generated when the map is evaluated. It can assume one of
the following nine predefined values:

218 OpenGL 1.2 Reference Manual



GL_MAP1_VERTEX_3

GL_MAP1_VERTEX_4

GL_MAP1_INDEX

GL_MAP1_COLOR_4

GL_MAP1_NORMAL

GL_MAP1_TEXTURE_COORD_1

GL_MAP1_TEXTURE_COORD_2

GL_MAP1_TEXTURE_COORD_3

GL_MAP1_TEXTURE_COORD_4

Each control point is three floating-point values representing x, y, and z.
Internal glVertex3 subroutines are generated when the map is
evaluated.

Each control point is four floating-point values representing x, y, z, and
w. Internal glVertex4 subroutines are generated when the map is
evaluated.

Each control point is a single floating-point value representing a color
index. Internal glindex subroutines are generated when the map is
evaluated. However, the current index is not updated with the value of
these glindex subroutines.

Each control point is four floating-point values representing red, green,
blue, and alpha (RGBA). Internal glColor4 subroutines are generated
when the map is evaluated. However, the current color is not updated
with the value of these glColor4 subroutines.

Each control point is three floating-point values representing the x, y,
and z components of a normal vector. Internal giINormal subroutines
are generated when the map is evaluated. However, the current normal
is not updated with the value of these glINormal subroutines.

Each control point is a single floating-point value representing the s
texture coordinate. Internal glTexCoord1 subroutines are generated
when the map is evaluated. However, the current texture coordinates
are not updated with the value of these glTexCoord subroutines.
Each control point is two floating-point values representing the s and t
texture coordinates. Internal glTexCoord2 subroutines are generated
when the map is evaluated. However, the current texture coordinates
are not updated with the value of these glTexCoord subroutines.
Each control point is three floating-point values representing the s, t,
and r texture coordinates. Internal glTexCoord3 subroutines are
generated when the map is evaluated. However, the current texture
coordinates are not updated with the value of these glTexCoord
subroutines.

Each control point is four floating-point values representing the s, t, r
and q texture coordinates. Internal glTexCoord4 subroutines are
generated when the map is evaluated. However, the current texture
coordinates are not updated with the value of these glTexCoord
subroutines.

The Stride, Order, and Points parameters define the array addressing for accessing the control points.
Points is the location of the first control point, which occupies one, two, three, or four contiguous memory
locations, depending on which map is being defined. Order is the number of control points in the array.
Stride tells how many float or double locations to advance the internal memory pointer to reach the next

control point.

Parameters

Target Specifies the values that are generated by the evaluator. The following symbolic constants are accepted:

* GL_MAP1_VERTEX_3
* GL_MAP1_VERTEX_4
* GL_MAP1_INDEX

* GL_MAP1_COLOR_4
*+ GL_MAP1_NORMAL

* GL_MAP1_TEXTURE_COORD_1
* GL_MAP1_TEXTURE_COORD_2
* GL_MAP1_TEXTURE_COORD_3
+ GL_MAP1_TEXTURE_COORD_4

Chapter 1. OpenGL Subroutines 219



ut, u2 Specify a linear mapping of u, as presented to glEvalCoord1, to u1, the variable that is evaluated by the
equations specified by this subroutine.

Stride Specifies the number of floats or doubles between the beginning of one control point and the beginning
of the next one in the data structure referenced in Points. This allows control points to be embedded in
arbitrary data structures. The only constraint is that the values for a particular control point must occupy
contiguous memory locations.

Order Specifies the number of control points. Must be positive.
Points Specifies a pointer to the array of control points.
Notes

As is the case with all GL subroutines that accept pointers to data, it is as if the contents of Points were
copied by glMap1 before it returned. Changes to the contents of Points have no effect after giMap1 is
called.

Errors

GL_INVALID_ENUM Target is not an accepted value.

GL_INVALID_VALUE utis equal to u2.

GL_INVALID_VALUE Stride is less than the number of values in a control point.
GL_INVALID_VALUE Order is less than one or greater than GL_MAX_EVAL_ORDER.
GL_INVALID_OPERATION The glMap1 subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets
Associated gets for the glMap1 subroutine are as follows. (See the [giGet] subroutine for more information.)

glGet with argument GL_MAX_EVAL_ORDER.
[glisEnabled] with argument GL_MAP1_VERTEX_3.
glisEnabled with argument GL_MAP1_VERTEX 4.
glisEnabled with argument GL_MAP1_INDEX.

glisEnabled with argument GL_MAP1_COLOR_4.
glisEnabled with argument GL_MAP1_NORMAL.
glisEnabled with argument GL_MAP1_TEXTURE_COORD_1.
glisEnabled with argument GL_MAP1_TEXTURE_COORD_2
glisEnabled with argument GL_MAP1_TEXTURE_COORD_3
glisEnabled with argument GL_MAP1_TEXTURE_COORD_4.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

220 OpenGL 1.2 Reference Manual



Related Information

The [gIBegin] or glEnd subroutine, [giColod subroutine, isable subroutine, [glEvalCoord|

subroutine, |9IEvaIMesh| subroutine, |glEvalPoint| subroutine, |glGetMap subroutine,|g|lndex| subroutine,

[giMap2| subroutine, |giMapGrid| subroutine, [gINormal| subroutine, [gITexCoord| subroutine, |glVertex|

subroutine.

glMap2 Subroutine

Purpose
Defines a 2-dimensional (2D) evaluator.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1Map2d(GLenum ,

GLdouble

GLint |uStride|,
GLint
GLdouble |vI,
GLdouble |v2|,
GLint vStrideL
GLint |vOrder],

const GLdouble *|Pointsp

void glMap2f(GLenum [Target|,

GLfloat

GLint |uStride),
GLint
GLfloat V1|,
GLfloat |[v2,
GLint vStrideL
GLint |vOrder),

const GLfloat *|Pointsb

Description

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices, normals,
texture coordinates, and colors. The values produced by an evaluator are sent on to further stages of GL
processing just as if they had been presented using the glVertex, giNormal, glTexCoord, and glColor
subroutines, except that the generated values do not update the current normal, texture coordinates, or
color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported by the
GL implementation) can be described using evaluators. These include almost all surfaces used in
computer graphics, such as B-spline surfaces, non-uniform rational B-spline surfaces (NURBS), and Bezier
surfaces.

Evaluators define surfaces based on bivariate Bernstein polynomials. Define p(s, t) as follows:

Chapter 1. OpenGL Subroutines 221



Let p(s, t) = BnOBmOROO + Bn1BmORO1 + . . . + BnnBmORnO
+BnOBm1RO1 + . . . + BnnBmlRnl

+BnOBmmROM + . . . + BnnBmmRnm

where Rij is a control point, Bni (s) is the ith Bernstein polynomial of degree:
n (uOrder = n +1)

See the following figure:

Bn (s) = si(1—s)n—1

Figure 11. Value of Bni (s). This figure shows that Bni (s) is equal to [the binomial coefficient with original set of size n
and subset of size i] s to the power of i (1-s) to the power of n-i.

and Bmj (1) is the jth Bernstein polynomial of degree:

m (vOrder = m + 1)

See the following figure:

Bm; (1) = H(1—pm=J

Figure 12. Value of Bmj (t). This figure shows that Bmj (t) is equal to [the binomial coefficient with original set of size
m and subset of size j] t to the power of j (1-t) to the power of m-j.

See the following figure:

0=1and | N | =1

0

Figure 13. Definition. This figure shows that zero to the power of zero is eqivalent to one and the binomial coefficient
with original set of size n and subset of size zero is also eqivalent to one.

The glMap2 subroutine is used to define the basis and to specify what kind of values are produced. Once
defined, a map can be enabled and disabled by calling the glEnable and glDisable subroutines with the
map name, which is one of the nine predefined values for the Target parameter. When the glEvalCoord2
subroutine presents values u and v, the bivariate Bernstein polynomials are evaluated using s and t, as in
the following figure:

222 OpenGL 1.2 Reference Manual



u-ut

S= _
u2—-uft
v—vi

t= _
ve —vi

Figure 14. Value of s and t. This figure shows two equations. The first equation shows that s is equal to u-u1 / u2-uf.
The second equation shows that t is equal to v—v1 /v2-v1.

The Target parameter specifies a symbolic constant that indicates what kind of control points are provided
in the Points parameter, and what output is generated when the map is evaluated. It can assume one of

the following nine predefined values:

GL_MAP2_VERTEX_3

GL_MAP2_VERTEX_4

GL_MAP2_INDEX

GL_MAP2_COLOR_4

GL_MAP2_NORMAL

GL_MAP2_TEXTURE_COORD _1

GL_MAP2_TEXTURE_COORD_2

GL_MAP2_TEXTURE_COORD_3

GL_MAP2_TEXTURE_COORD_4

Each control point is three floating-point values representing x, y, and z.
Internal glVertex3 subroutines are generated when the map is
evaluated.

Each control point is four floating-point values representing x, y, z, and
w. Internal glVertex4 subroutines are generated when the map is
evaluated.

Each control point is a single floating-point value representing a color
index. Internal glindex subroutines are generated when the map is
evaluated. However, the current index is not updated with the value of
these glindex subroutines.

Each control point is four floating-point values representing red, green,
blue, and alpha. Internal glColor4 subroutines are generated when the
map is evaluated. However, the current color is not updated with the
value of these glColor4 subroutines.

Each control point is three floating-point values representing the x, y,
and z components of a normal vector. Internal giINormal subroutines
are generated when the map is evaluated. However, the current normal
is not updated with the value of these giNormal subroutines.

Each control point is a single floating-point value representing the s
texture coordinate. Internal glTexCoord1 subroutines are generated
when the map is evaluated. However, the current texture coordinates
are not updated with the value of these glTexCoord subroutines.
Each control point is two floating-point values representing the s and t
texture coordinates. Internal glTexCoord2 subroutines are generated
when the map is evaluated. However, the current texture coordinates
are not updated with the value of these glTexCoord subroutines.
Each control point is three floating-point values representing the s, t,
and r texture coordinates. Internal glTexCoord3 subroutines are
generated when the map is evaluated. However, the current texture
coordinates are not updated with the value of these glTexCoord
subroutines.

Each control point is four floating-point values representing the s, t, r,
and g texture coordinates. Internal glTexCoord4 subroutines are
generated when the map is evaluated. However, the current texture
coordinates are not updated with the value of these glTexCoord
subroutines.

The uStride, uOrder, vStride, vOrder, and Points parameters define the array addressing for accessing the
control points. The Points parameter is the location of the first control point, which occupies one, two,
three, or four contiguous memory locations, depending on which map is being defined. There are uOrder
times vOrder control points in the array. The uStride parameter tells how many float or double locations

Chapter 1. OpenGL Subroutines 223



are skipped to advance the internal memory pointer from control point Rij to control point R(i+1)j. The
vStride parameter tells how many float or double locations are skipped to advance the internal memory
pointer from control point Rij to control point Ri(j+1).

Parameters
Target Specifies the kind of values that are generated by the evaluator. The following symbolic constants are
accepted:

* GL_MAP2_VERTEX_3

* GL_MAP2_VERTEX_4

* GL_MAP2_INDEX

* GL_MAP2_COLOR_4

* GL_MAP2_NORMAL

* GL_MAP2_TEXTURE_COORD_1
*+ GL_MAP2_TEXTURE_COORD_2
* GL_MAP2_TEXTURE_COORD_3
* GL_MAP2_TEXTURE_COORD_4

ut, u2 Specify a linear mapping of u, as presented to glEvalCoord2, to u1, one of the two variables that is
evaluated by the equations specified by this subroutine.
uStride Specifies the number of floats or doubles between the beginning of control point Rij and the beginning

of control point R(i+1)j, where i and j are the u and y control-point indexes, respectively. This allows
control points to be embedded in arbitrary data structures. The only constraint is that the values for a
particular control point must occupy contiguous memory locations.

uOrder Specifies the dimension of the control point array in the u axis. Must be positive.

vl, v2 Specify a linear mapping of v, as presented to glEvalCoord2, to v1, one of the two variables that is
evaluated by the equations specified by this subroutine.

vStride Specifies the number of floats or doubles between the beginning of control point Rij and the beginning

of control point Ri(j+1), where i and j are the u and v control point indexes, respectively. This allows
control points to be embedded in arbitrary data structures. The only constraint is that the values for a
particular control point must occupy contiguous memory locations.

vOrder Specifies the dimension of the control point array in the v axis. Must be positive.
Points Specifies a pointer to the array of control points.
Notes

For all GL subroutines that accept pointers to data, it is as if the contents of Points were copied by
glMap2 before it returned. Changes to the contents of Points have no effect after giMap2 is called.

Errors

GL_INVALID_ENUM Target is not an accepted value.

GL_INVALID_VALUE utis equal to u2, or if v1 is equal to v2.

GL_INVALID_VALUE uStride or vStride is less than the number of values in a control point.
GL_INVALID_VALUE uOrder or vOrder is less than one or greater than GL_MAX_EVAL_ORDER.
GL_INVALID_OPERATION The glMap2 subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets
Associated gets for the giMap2 subroutine are as follows. (See the [giGef] subroutine for more information.)

glGetMap

glGet with argument GL_MAX_EVAL_ORDER

224 OpenGL 1.2 Reference Manual



glisEnabled| with argument GL_MAP2_VERTEX_3

gllsEnabled with argument GL_MAP2_VERTEX_ 4
glisEnabled with argument GL_MAP2_INDEX

glisEnabled with argument GL_MAP2_COLOR_4
glisEnabled with argument GL_MAP2_NORMAL
gllsEnabled with argument GL_MAP2_TEXTURE_COORD_1
glisEnabled with argument GL_MAP2_TEXTURE_COORD_2
glisEnabled with argument GL_MAP2_TEXTURE_COORD_3
glisEnabled with argument GL_MAP2_TEXTURE_COORD_4.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |gIBegin or glEnd| subroutine, [glColor subroutine, |gIEnabIe or Disable| subroutine, |gIEvaICoord|
subroutine, [glEvalMesh| subroutine, [gIEvalPoint| subroutine, |giGetMap| subroutine, |glindex| subroutine,

[gIMap1| subroutine, |giMapGrid| subroutine, |gINormal| subroutine, [gITexCoord| subroutine, |glVertex|

subroutine.

glMapGrid Subroutine

Purpose
Defines a 1-dimensional (1D) or 2-dimensional (2D) mesh.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glMapGridid(6Lint [un],
GLdouble |ull,
GLdouble [u2)

void glMapGridif(GLint [un],
GLfloat |ui],
GLfloat [u2)

void glMapGrid2d(6Lint [ur],
GLdouble |ull,
GLdouble [u2|,
GLint [vr],
GLdouble |vi|,
GLdouble [v2)

Chapter 1. OpenGL Subroutines 225



void glMapGrid2f(GLint |un,
GLfloat [ulf,
GLfloat |u2),
GLint [vn],
GLfloat |[vI|,
GLfloat |v

Description

The glMapGrid and glEvalMesh subroutines are used in tandem to efficiently generate and evaluate a
series of evenly spaced map domain values. The glEvalMesh subroutine steps through the integer
domain of a 1D or 2D grid, whose range is the domain of the evaluation maps specified by the giMap1
and glMap2 subroutines.

The glMapGrid1 and glMapGrid2 subroutines specify the linear grid mappings between the j (or /i and
integer grid coordinates, to the u (or u and v) floating-point evaluation map coordinates. See the [giMap1|
subroutine and the subroutine for details of how u and v coordinates are evaluated.

The glMapGrid1 subroutine specifies a single linear mapping such that integer grid coordinate 0 (zero)
maps exactly to u1, and integer grid coordinate un maps exactly to u2. All other integer grid coordinates i
are mapped such that

u=1i(u2 - ul)/un + ul

The glMapGrid2 subroutine specifies two such linear mappings. One maps integer grid coordinate i=0
exactly to u1, and integer grid coordinate i=un exactly to u2. The other maps integer grid coordinate j=0
exactly to v1, and integer grid coordinate j=vn exactly to v2. Other integer grid coordinates i and j are
mapped such that

u=1i(u2 - ul)/un + ul

v =g((v2 -vl)/vn + vl

The mappings specified by glMapGrid are identically used by glEvalMesh and glEvalPoint.

Parameters

un Specifies the number of partitions in the grid range interval [u1, u2]. Must be positive.

ut, u2 Specify the mappings for integer grid domain values i=0 and i=un.

vn Specifies the number of partitions in the grid range interval [v1, v2] (giMapGrid2 only).

vi, v2 Specify the mappings for integer grid domain values /=0 and j=vn (glMapGrid2 only).

Errors

GL_INVALID_VALUE un or vn is not positive.

GL_INVALID_OPERATION The glMapGrid subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glMapGrid subroutine are as follows. (See the [gIGet] subroutine for more
information.)

glGet with argument GL_MAP1_GRID_DOMAIN
glGet with argument GL_MAP2_GRID_DOMAIN

glGet with argument GL_MAP1_GRID_SEGMENTS

226 OpenGL 1.2 Reference Manual



glGet with argument GL_MAP2_GRID_SEGMENTS.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin or glEnd| subroutine, |glEvalCoord| subroutine, |glEvalMesh subroutine,
uﬂ—‘ giMap2

subroutine, subroutine, subroutine.

glMaterial Subroutine

Purpose
Specifies material parameters for the lighting model.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glMaterialf(GLenum (Facel,

GLenum |pNamel,
GLfloat |Parameter)

void glMateriali(GLenum ,
GLenum [pName),
GLint |[Parameter]

void glMaterialfv(GLenum ,
GLenum |5Name|,

const GLfloat * |Parameter‘s|)

void glMaterialiv(GLenum [Face],
GLenum [pName],

const GLint »* |Parameters|)

Description

The glMaterial subroutine assigns values to material parameters. There are two matched sets of material

parameters. One, the frontfacing set, is used to shade points, lines, bitmaps, and all polygons (when

two-sided lighting is disabled), or just frontfacing polygons (when two-sided lighting is enabled). The other

set, backfacing, is used to shade backfacing polygons only when two-sided lighting is enabled. See the
ILightModel| subroutine for details concerning one- and two-sided lighting calculations.

The glMaterial subroutine takes three arguments:

* The Face parameter specifies whether the GL_FRONT materials, the GL_BACK materials, or both
GL_FRONT_AND_BACK materials are modified.

* The pName parameter specifies which of several parameters in one or both sets are modified.
» The Parameters parameter specifies what value or values are assigned to the specified parameter.

Material parameters are used in the lighting equation that is optionally applied to each vertex. See the
glLightModel| subroutine for details about the lighting equation. The following parameters and their

Chapter 1. OpenGL Subroutines 227



interpretations by the lighting equation can be specified using glMaterial:

GL_AMBIENT Parameters contains four integer or floating-point values that specify the
ambient red, green, blue, alpha (RGBA) reflectance of the material.
Integer values are mapped linearly such that the most positive
representable value maps to 1.0, and the most negative representable
value maps to -1.0. Floating-point values are mapped directly. Neither
integer nor floating-point values are clamped. The default ambient
reflectance for both front and backfacing materials is (0.2, 0.2, 0.2, 1.0).

GL_DIFFUSE Parameters contains four integer or floating-point values that specify the
diffuse RGBA reflectance of the material. Integer values are mapped
linearly such that the most positive representable value maps to 1.0, and
the most negative representable value maps to -1.0. Floating-point values
are mapped directly. Neither integer nor floating-point values are clamped.
The default diffuse reflectance for both front and backfacing materials is
(0.8, 0.8, 0.8, 1.0).

GL_SPECULAR Parameters contains four integer or floating-point values that specify the
specular RGBA reflectance of the material. Integer values are mapped
linearly such that the most positive representable value maps to 1.0, and
the most negative representable value maps to -1.0. Floating-point values
are mapped directly. Neither integer nor floating-point values are clamped.
The default specular reflectance for both front and backfacing materials is
(0.0, 0.0, 0.0, 1.0).

GL_EMISSION Parameters contains four integer or floating-point values that specify the
RGBA emitted light intensity of the material. Integer values are mapped
linearly such that the most positive representable value maps to 1.0, and
the most negative representable value maps to -1.0. Floating-point values
are mapped directly. Neither integer nor floating-point values are clamped.
The default emission intensity for both front and backfacing materials is
(0.0, 0.0, 0.0, 1.0).

GL_SHININESS Parameters is a single integer or floating-point value that specifies the
RGBA specular exponent of the material. Integer and floating-point values
are mapped directly. Only values in the range [0,128] are accepted. The
default specular exponent for both frontfacing and backfacing materials is

0.
GL_AMBIENT_AND_DIFFUSE Equivalent to calling glMaterial twice with the same parameter values,
once with GL_AMBIENT and once with GL_DIFFUSE.
GL_COLOR_INDEXES Parameters contains three integer or floating-point values specifying the

color indices for ambient, diffuse, and specular lighting. These three
values, and GL_SHININESS, are the only material values used by the

color index mode lighting equation. See the [glLightModel| subroutine for

a discussion of color index lighting.

Parameters

materialf and materiali

Face Specifies which face or faces are being updated. The Face parameter must be one of GL_FRONT,
GL_BACK or GL_FRONT_AND_BACK.

pName Specifies the single-valued material parameter of the face or faces that is being updated. Must be
GL_SHININESS.

Parameter Specifies the value to which GL_SHININESS is set.

materialfv and materialiv

Face Specifies which face or faces are being updated. Must be one of GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK.

228 OpenGL 1.2 Reference Manual



pName Specifies the material parameter of the face or faces that is being updated. Must be one of the
following:

* GL_AMBIENT

* GL_DIFFUSE

* GL_SPECULAR

* GL_EMISSION

* GL_SHININESS

* GL_AMBIENT_AND_DIFFUSE

* GL_COLOR_INDEXES
Parameters Specifies a pointer to the value or values to which the pName parameter is set.

Notes

The material parameters can be updated at any time. In particular, giMaterial can be called between a call
to the glBegin subroutine and the corresponding call to the glEnd subroutine. If only a single material
parameter is to be changed per vertex, however, glColorMaterial is preferred over glMaterial. (See the
|gICoIorMateriaI| subroutine for information on tracking the current color with the material color.)

Errors
GL_INVALID_ENUM Face or pName is not an accepted value.
GL_INVALID_VALUE A specular exponent outside the range [0,128] is specified.

Associated Gets
Associated get for the glMaterial subroutine is as follows. (See the [gIGet] subroutine for more information.)

glGetMaterial.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The|giBegin or glEnd| subroutine, |9ICoIorMateriaI| subroutine, [glGetMaterial| subroutine,
ﬁ

subroutine, |glLightModel| subroutine.

glMatrixMode Subroutine

Purpose
Specifies the current matrix.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glMatrixMode (GLenum

Chapter 1. OpenGL Subroutines 229



Description

The glMatrixMode subroutine sets the current matrix mode. The Mode parameter can assume one of the
following three values:

GL_MODELVIEW Applies subsequent matrix operations to the model view matrix stack.
GL_PROJECTION Applies subsequent matrix operations to the projection matrix stack.
GL_TEXTURE Applies subsequent matrix operations to the texture matrix stack.
Parameters

Mode  Specifies which matrix stack is the target for subsequent matrix operations. The following three values are
accepted:

* GL_MODELVIEW
* GL_PROJECTION
* GL_TEXTURE

Associated Gets

Associated gets for the glMatrixMode subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_MATRIX_MODE.

Errors

GL_INVALID_ENUM Mode is not an accepted value.

GL_INVALID_OPERATION The glMatrixMode subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The [gIBegin or glEnd] subroutine, [glLoadMatrix| subroutine, [gIPushMatrix] subroutine.

glMultiDrawArraysEXT Subroutine

Purpose

Renders multiple primitives from array data.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMultiDrawArraysEXT(GLenum fnode
GLint
GLsizei 5
GLsizei |primcount|

230 OpenGL 1.2 Reference Manual



Description

The glMultiDrawArraysEXT subroutine lets you specify multiple geometric primitives with very few
subroutine calls. Instead of calling a GL procedure to pass each individual vertex, normal, texture
coordinate, edge flag, or color, you can prespecify separate arrays of vertexes, normals, and colors and
use them to construct a sequence of primitives with a single call to glMultiDrawArraysEXT.

When gIMultiDrawArraysEXT is called, it uses count sequential elements from each enabled array to
construct a sequence of geometric primitives, beginning with element first. The mode parameter specifies
what kind of primitives are constructed, and how the array elements construct these primitives. If
GL_VERTEX_ARRAY is not enabled, no geometric primitives are generated.

Vertex attributes that are modified by glMultiDrawArraysEXT have an unspecified value after
glMultiDrawArraysEXT returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current
color is undefined after glMultiDrawArraysEXT executes. Attributes that are not modified remain well
defined.

Behaves identically to DrawArrays except that a list of arrays is specified instead. The number of lists is
specified in the primcount parameter. It has the same effect as:

for(i=0; i<primcount; i++) {
if (*(count+i)>0) DrawArrays(mode, *(first+i), *(count+i));
}

Parameters
mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,

GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

first Points to an array of the starting indeces in the enabled arrays.
count Points to an array of the number of indices to be rendered.
primcount Specifies the size of first and count.

Notes

The glMultiDrawArraysEXT subroutine is included in display lists. If glMultiDrawArraysEXT is entered
into a display list, the necessary array data (determined by the array pointers and enables) is also entered
into the display list. Because the array pointers and enables are client side state, their values affect display
lists when the lists are created, not when the lists are executed.

Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if glMultiDrawArraysEXT is executed between the execution of
glBegin and the corresponding glEnd.

Related Information
The [glArrayElement| subroutine, [giColorPointer, subroutml_lgIMuItiDrawEIementsEXTI subroutine,
|gIEdgeFlaﬂsomte|1subroutme lglGetPointerv| subroutine, |glindexPointer| subroutine, [gINormalPointer|

subroutine, |glTexCoordPointer subroutine, |gIVertexPomteﬁ subroutine.

Chapter 1. OpenGL Subroutines 231



glMultiDrawElementsEXT Subroutine

Purpose

Renders multiple primitives from array data.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMultiDrawElementsEXT(GLenum |model,
GLsizei [+count],
GLenum |type|,
const GLvoid [+xindices),
GLsizei |Qrimcount|b

Description

The glMultiDrawElementsEXT subroutine lets you specify multiple geometric primitives with very few
subroutine calls. Instead of calling a GL function to pass each individual vertex, normal, texture coordinate,
edge flag, or color, you can prespecify separate arrays of vertexes, normals, and so on and use them to
construct a sequence of primitives with a single call to glMultiDrawElementsEXT.

When glMultiDrawElementsEXT is called, it uses count sequential elements from indices to construct a
sequence of geometric primitives. GLenum mode specifies what kind of primitives are constructed and
how the array elements construct these primitives. If GL_VERTEX_ARRAY is not enabled, no geometric
primitives are generated.

Vertex attributes that are modified by glMultiDrawElementsEXT have an unspecified value after
glMultiDrawElementsEXT returns. For example, if GL_COLOR_ARRAY is enabled, the value of the
current color is undefined after giMultiDrawElementsEXT executes. Attributes that are not modified
remain well defined.

Parameters

mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,
GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

count Points to an array of the element counts.

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

primcount Specifies the size of the count array.

Notes

The glMultiDrawElementsEXT subroutine is included in display lists. If gilMultiDrawElementsEXT is
entered into a display list, the necessary array data (determined by the array pointers and enables) is also
entered into the display list. Because the array pointers and enables are client side state, their values
affect display lists when the lists are created, not when the lists are executed.

glMultiDrawElementsEXT is part of the _extname(EXT_multi_draw_arrays) extension, not part of the core

GL command set. If _extstring(EXT_multi_draw_arrays) is included in the string returned by glGetString,
when called with argument GL_EXTENSIONS, extension _extname(EXT_multi_draw_arrays) is supported.

232 OpenGL 1.2 Reference Manual



Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if glMultiDrawElementsEXT is executed between the execution
of glBegin and the corresponding glEnd.

Associated Gets
glGetTeximage, glisEnabled with argument GL_TEXTURE_1D.

Related Information
The [glArrayElement| subroutine, [giColorPointer| subrout|n|_|gIMuItiDrawArraysEXTI subroutine,
[glEdgeFlagPointer] subroutine, [giGetPointerv| subroutine, [glindexPointer| subroutine, [gINormalPointer|

subroutine ingexCoordPomterI subroutine, |gIVertexPomte§ subroutine.

glMultiModeDrawArraysiBM Subroutine

Purpose
Renders primitives of multiple primitive types from array data.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glMultiModeDrawArraysIBM( GLenum * ,
GLint  * [first|,
GLsizei =* |count|,
GLsizei [|primcount],

GLint  fnodestride)

Description

The glMultiModeDrawArraysIBM subroutine behaves identically to glDrawArrays except that a list of
arrays and a list of primitive modes is specified instead. The number of lists is specified in the primcount
parameter. It has the same effect as:
for(i=0; i < primcount; i++) {
if (*(count+i) > 0)
g1DrawArrays (*((GLenum =) ((char *)mode+i*modestride)),

*(first+i),
*(count+i));
}
Parameters
mode Points to an array of primitive modes. Symbolic constants GL_POINTS, GL_LINE_STRIP,
GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,
GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.
first Points to an array of the starting indices in the enabled arrays.
count Points to an array of the number of indices to be rendered for each primitive.
primcount Specifies the word size of the mode, first and count arrays.
modestride Specifies how to stride through the mode array. Typical values are 0 (single primitive mode for all

primitives) and sizeof(GLenum) (separate primitive mode for each primitive).

Chapter 1. OpenGL Subroutines 233



Notes

The glMultiModeDrawArraysIBM subroutine is available only if the IBM_multi_mode_draw_arrays
extension is supported.

The glMultiModeDrawArraysIBM subroutine is included in display lists. If giMultiMlodeDrawArraysIiBM is
entered into a display list, the necessary array data (determined by the array pointers and enables) is also
entered into the display list. Because the array pointers and enables are client side state, their values
affect display lists when the lists are created, not when the lists are executed.

Error Codes

* GL_INVALID_ENUM is generated if any of the primitive modes in the mode array is not an accepted
value.

* GL_INVALID_OPERATION is generated if giMultiModeDrawArraysIBM is executed between the
execution of glBegin and the corresponding glEnd.

Related Information

The [glArrayElement| subroutine, [giColorPointer subroutine, |giColorPointerListIBM| subroutine,
EIDrawEIements| subroutine, |glEdgeFlagPointer| subroutine, glEdgeFIagPointerListIBMl subroutine,

IGetPointerv| subroutine, [glindexPointer] subroutine, [glindexPointerListIBM| subroutine,

linterleavedArrays| subroutine, |giMultiModeDrawElementsIBM| subroutine, [gINormalPointer|
subroutine, [gINormalPointerListIBM| subroutine, [gITexCoordPointer subroutine,
[gITexCoordPointerListIBM| subroutine, [glVertexPointer] subroutine, |glVertexPointerListIBM| subroutine.

glMultiModeDrawElementsIBM Subroutine

Purpose
Renders primitives of multiple primitive types from array data.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glMultiModeDrawElementsIBM(GLenum [xmode],

GLsizei *count,

GLenum |[type),

const GLvoid [*xindices|,
GLsizei _[primcount],
GLint  frodestride)

Description

glMultiModeDrawElementsIBM behaves identically to gIDrawElements except that a list of arrays and a
list of primitive modes is specified instead. The number of lists is specified in the primcount parameter. It
has the same effect as:
for(i=0; i < primcount; i++) {
if (*(count+i) > 0)
g1DrawElements (*((GLenum *) ((char *)mode+i*modestride)),

*(count+i),

type,

*(indices+i));

234 OpenGL 1.2 Reference Manual



Parameters

mode Points to an array of primitive modes, Specifying what kind of primitives to render. Symbolic
constants GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON
are accepted.

count Points to an array of the element counts. Each count specifies the number of elements to be
rendered for that primitive.

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,
GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the list of index arrays.

primcount Specifies the number of elements to be read from the mode array and from the count array (and

how many arrays there are in the indices list). Each such (mode,count,indices[]) triple tells us
how many vertices of the indicated mode are to be rendered, and the location of their array of
indices.

modestride Specifies how to stride through the mode array. Typical values are 0 (single primitive mode for all
primitives)and sizeof(GLenum) (separate primitive mode for each primitive)

Notes

The glMultiModeDrawElementsIBM subroutine is available only if the IBM_multimode_draw_arrays
extension is supported.

The glMultiModeDrawElementsIBM subroutine is included in display lists. If
glMultiModeDrawElementsIBM is entered into a display list, the necessary array data (determined by the
array pointers and enables) is also entered into the display list. Because the array pointers and enables
are client side state, their values affect display lists when the lists are created, not when the lists are
executed.

Errors
GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glMultiModeDrawElementsIBM is executed between the
execution of glBegin and the corresponding glEnd.

Related Information

The [glArrayElement] subroutine, [giColorPointer] subroutinlggIColorPointerListlBMl subroutine,
IDrawArrays| subroutine, |glIEdgeFlagPointer| subroutine, gIEdgeFIagPointerListIBMlsubroutine,
IGetPointerv| subroutine, |glindexPointe subroutine,|g||_ndexPointerListIBM|subroutine,

gIMultiModeDrawArraysIBM| subroutine, [gINormalPointer subroutine, |gINormalPointerListIBM|

subroutine, EITexCoordPointeri subroutine, |gITexCoordPointerListIBM| subroutine, [glVertexPointer|

subroutine, |glVertexPointerListIBM| subroutine.

glMultiTexCoordARB Subroutine

Purpose
Sets the current texture coordinates.

Library
OpenGL C bindings library: (libGL.a)

Chapter 1. OpenGL Subroutines 235



C Syntax

void glMultiTexCoord1dARB( GLenum

void gIMultiTexCoord1fARB( GLenum
GLfloat

void gIMultiTexCoordliARB( GLenum
GLint [s|)

void glMultiTexCoord1sARB( GLenum
GLshort |[s]

void gI1MultiTexCoord2dARB( GLenum |target

)

GLdouble |s|,
GLdouble |t )

void glMultiTexCoord2fARB( GLenum |target],

GLfloat |s|,
GLfloat |t

)

void gI1MultiTexCoord2iARB( GLenum targetL

GLint
GLint

5312

)

void glMultiTexCoord2sARB( GLenum |[target],

GLshort |s|,
GLshort |t

)

void gIMultiTexCoord3dARB( GLenum |[target|,

GLdouble
GLdouble
GLdouble

il 5 %)

t

)

void glMultiTexCoord3fARB( GLenum |target|,

GLfloat
GLfloat
GLfloat

i

i

Si+l»

)

void gIMultiTexCoord3iARB( GLenum |target|,

GLint s,
GLint |[t],
r

GLint )

void gIMultiTexCoord3sARB( GLenum targetL

GLshort
GLshort
GLshort

i

Rl I 1%)

)

void glMultiTexCoord4dARB( GLenum |target],

GLdouble
GLdouble

GLdouble

S|
u
GLdouble |r,
q

void glMultiTexCoord4fARB( GLenum |target],

GLfloat
GLfloat
GLfloat
GLfloat

Q [S [+[O0
0

void gIMultiTexCoord4iARB( GLenum |[target|,

GLint
GLint
GLint
GLint

QS [+[»

)

void glMultiTexCoord4sARB( GLenum |[target|,

GLshort [s],
GLshort |[t|,

236 OpenGL 1.2 Reference Manual



void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

GLshort
GLshort
glMultiTexCoordldvARB( GLenum
GLdouble
g1MultiTexCoord1fvARB( GLenum
GLfloat
gI1MultiTexCoordlivARB( GLenum
GLint
gIMultiTexCoordlsvARB( GLenum
GLshort
g1MultiTexCoord2dvARB( GLenum

glMultiTexCoord2fvARB( GLenum
GLfloat
gI1MultiTexCoord2ivARB( GLenum
GLint
gIMultiTexCoord2svARB( GLenum
GLshort
gIMultiTexCoord3dvARB( GLenum

gIMultiTexCoord3fvARB( GLenum
GLfloat
gIMultiTexCoord3ivARB( GLenum
GLint
g1MultiTexCoord3svARB( GLenum
GLshort
gIMultiTexCoord4dvARB( GLenum

g1MultiTexCoord4fvARB( GLenum
GLfloat

g1MultiTexCoord4svARB( GLenum
GLshort

Description

glMultiTexCoordARB specifies texture coordinates in one, two, three or four dimensions. If t is not
specified it is taken to be 0. If ris not specified it is taken to be 0. If g is not specified, it is taken to be 1.
The current texture coordinates are part of the data that is associated with each vertex and with the
current raster position. Initially, the values for s, t, rand q are (0, 0, O, 1).

Parameters

target

specifies texture unit whose coordinates should be
modified. The number of texture units is implementation
dependent, but must be at least two. Must be one of
GL_TEXTUREIi_ARB, where 0 <= i < the
implementation-dependent value of
GL_MAX_TEXTURE_UNITS_ARB.

specifies the s, t, r, and g texture coordinates for target
texture unit. Not all parameters are present in all forms of
the command.

specifies a pointer to an array of one, two, three or four
elements, which in turn specify the s, t, r, and g texture
coordinates.

Chapter 1. OpenGL Subroutines 237



Notes

glMultiTexCoordARB is only supported if GL_ARB_multitexture is included in the string returned by
glGetString when called with the argument GL_EXTENSIONS.

The current texture coordinates can be updated at any time. In particular, giMultiTexCoordARB can be
called between a call to glBegin and the corresponding call to glEnd.

It is always the case that GL_TEXTUREi_ARB = GL_TEXTUREO_ARB + i.

Associated Gets

Associated gets for the gIMultiTexCoordARB subroutine are as follows. (See the subroutine for
more information.)

GL_CURRENT_TEXTURE_COORDS with appropriate texture unit selected.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information

The |glActiveTextureARB| subroutine, the [gIClientActiveTextureARB] subroutine, the |glTexCoord
subroutine, the [glTexCoordPointer| subroutine.

glMultMatrix Subroutine

Purpose
Multiplies the current matrix by an arbitrary matrix.

Library
OpenGL C bindings library: libGL.a

C Syntax
void gIMultMatrixd(const GLdouble [Matrix)

void gIMultMatrixf(const GLfloat [Matrix]

Description

The glMultMatrix subroutine multiplies the current matrix with the one specified in the Matrix parameter.
For example, if M is the current matrix and T is the matrix passed to glMultMatrix, M is replaced with MT.

The current matrix is the projection matrix, model view matrix, or texture matrix, determined by the current
matrix mode. (See the [gIMatrixMode| subroutine for information on specifying the current matrix.)

The Matrix parameter points to a 4 x 4 matrix of single- or double-precision floating-point values stored in
column-major order. That is, the matrix is stored as in the following figure:

238 OpenGL 1.2 Reference Manual



Ao a4 ag a2
a1 as ag ay3

a2 ag a1 a4

az azy ay1 a5

Figure 15. Stored Matrix. This diagram shows a matrix enclosed in brackets. The matrix consists of four lines
containing four characters each. The first line contains the following (from left to right): a subscript zero, a subscript
four, a subscript eight, a subscript twelve. The second line contains the following (from left to right): a subscript one, a
subscript five, a subscript nine, a subscript thirteen. The third line contains the following (from left to right): a subscript
two, a subscript six, a subscript ten, a subscript fourteen. The fourth line contains the following (from left to right): a
subscript three, a subscript seven, a subscript eleven, a subscript fifteen.

Parameters

Matrix Specifies a pointer to 4 x 4 matrix stored in column-major order as 16 consecutive values.
Errors

GL_INVALID_OPERATION The glMultMatrix subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glMultMatrix subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_MATRIX_MODE.

glGet with argument GL_MODELVIEW_MATRIX.
glGet with argument GL_PROJECTION_MATRIX.
glGet with argument GL_TEXTURE_MATRIX.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin or glEnd] subroutine, [giLoadldentity] subroutine, [glLoadMatrix] subroutine,
ﬁ

subroutine, ( subroutine, [giMultTransposeMatrixARB| subroutine.

glMultTransposeMatrixARB Subroutine

Purpose
Multiplies the current matrix by a matrix specified in row-major order, rather than column-major order.

Chapter 1. OpenGL Subroutines 239



Library
OpenGL C bindings library: (libGL.a)

C Syntax

void glMultTransposeMatrixfARB(const GLfloat [xMatrix)
void glMultTransposeMatrixdARB(const GLdouble [<Matrix|

Description

The glMultTransposeMatrixARB subroutine replaces the current matrix with the product of the current
matrix and the one specified in the Matrix parameter. The current matrix is the projection matrix, model
view matrix, or texture matrix, determined by the current matrix mode. (See the subroutine
for information on specifiying the current matrix.) The Matrix parameter points to a 4 x 4 matrix of single-
or double-precision floating-point values stored in row-major order. That is, the matrix is stored as the
following:

/ a0 al a2 a3 \
ad ab a6 a7
a8 a9 ald all

\ al2 al3 al4 al5 /

The effect on an input vertex is as if it is first multiplied by the matrix specified in this call, and then
subsequently multiplied by the previous "current” matrix.

Parameters

Matrix is an array of 16 values, specified in row-major order.

Error Codes
GL_INVALID_OPERATION is generated if giMultTransposeMatrixARB is executed

between the execution of glBegin and the corresponding
execution of glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The subroutine, the subroutine.

giNewList or glEndList Subroutine

Purpose
Creates or replaces a display list.

Library
OpenGL C bindings library: libGL.a

240 OpenGL 1.2 Reference Manual



C Syntax
void gINewList(GLuint |List|,

GLenum Mode]b

Description

Display lists are groups of GL commands that have been stored for subsequent execution. The display
lists are created with the gINewList subroutine. All subsequent commands are placed in the display list, in
the order issued, until the glEndList subroutine is called.

The gINewList subroutine has two arguments. The first argument, List, is a positive integer that becomes
the unique name for the display list. Names can be created and reserved with the glGenLists subroutine
and tested for uniqueness with the gllsList subroutine. The second argument, Mode, is a symbolic
constant that can assume one of two values:

GL_COMPILE Commands are compiled only.
GL_COMPILE_AND_EXECUTE Commands are performed as they are compiled into the display list.

The following subroutines are not compiled into the display list, but are performed immediately, regardless
of the display-list mode:

» glisList

+ glGenLists

+ ¢lDeleteLists

» glFeedbackBuffer
» ¢lSelectBuffer

* glRenderMode

* glReadPixels

» glPixelStore

* glFlush

» glFinish

» glisEnabled

* All glGet subroutines

When gIEndList is encountered, the display-list definition is completed by associating the list with the
unique name List (specified in gINewList). If a display list with the name List already exists, it is replaced
only when glEndList is called.

Parameters

List Specifies the display list name.
Mode  Specifies the compilation mode, which can be GL_COMPILE or GL_COMPILE_AND_EXECUTE.

Notes

The glCallList and glCallLists subroutines can be entered into display lists. The commands in the display
list or lists run by glCallList or glCallLists are not included in the display list being created, even if the list
creation mode is GL_COMPILE_AND_EXECUTE.

Error Codes

GL_INVALID_VALUE Listis O (zero).
GL_INVALID_ENUM Mode is not an accepted value.

Chapter 1. OpenGL Subroutines 241



GL_INVALID_OPERATION The glEndList subroutine is called without a preceding gINewList.
OR

The gINewList subroutine is called while a display list is being defined.
GL_INVALID_OPERATION The gINewList subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the gINewList and glEndList subroutines are as follows. (See the subroutine
for more information.)

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |gIBegin or glEnd| subroutine, [giCallList| subroutine, |[glCallLists| subroutine, |giDeleteLists| subroutine,
|gIGenLists| subroutine.

giNormal Subroutine

Purpose
Set the current normal vector; for use in lighting calculations.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gTNormal3b (
GLbyte |nx,
GLbyte |y,
GLbyte |nz)
void g1Normal3d(
GLdouble  |nxl,
GLdouble |y,
GLdouble  |nZ)
void gTNormal3f(
GLfloat fnx],
GLfloat |ny,
GLfloat |nz)
void gTNormal3i (
GLint  |nx|,
GLint |y,
GLint
void gTNormal3s(
GLshort  fnx],
GLshort |y,
GLshort  |nz)

242 OpenGL 1.2 Reference Manual



void g1Normal3bv (
const GLbyte
void g1Normal3dv(
const GLdouble [xv))
void g1Normal3fv(
const GLfloat
void gTNormal3iv(

const GLint

void g1Normal3sv (

const GLshort

Description

The current normal is set to the given coordinates whenever gINormal is issued. Byte, short, or integer
arguments are converted to floating-point format with a linear mapping that maps the most positive
representable integer value to 1.0, and the most negative representable integer value to - 1.0.

Normals specified with gINormal need not have unit length. If normalization is enabled, then normals
specified with gINormal are normalized after transformation. To enable and disable normalization, call

[glEnable| and [gIDisable| with the argument GL_NORMALIZE. Normalization is initially disabled.

Parameters

nx, ny, nz

Notes

The current normal can be updated at
glBegin| and the corresponding call to |glEnd|

Associated Gets

[gIGet with argument GL_CURRENT_NORMAL
glisEnabled| with argument GL_NORMALIZE

Related Information

Specify the x, y, and z coordinates of the new current
normal. The initial value of the current normal is the unit
vector, (0, O, 1).

Specifies a pointer to an array of three elements: the x, y,
and z coordinates of the new current normal.

The [gIBegin| subroutine, [giColor] subroutine, [glindex] subroutine, [gINormalPointer] subroutine,

glTexCoord| subroutine, and the |gIVertex| subroutine.

ani time. In particular, gINormal can be called between a call to

giNormalPointer Subroutine

Purpose

Defines an array of normals.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines

243



C Syntax

void gINormalPointer( GLenum [type],
GLsizei |stride,

const GLvoid = _pointer|)

Description

The gINormalPointer subroutine specifies the location and data format of an array of normals to use
when rendering. The tfype parameter specifies the data type of the normal coordinates and stride gives the
byte stride from one normal to the next allowing vertices and attributes to be packed into a single array or
stored in separate arrays. (Single array storage may be more efficient on some implementations; see
|g_;||nterleavedArrays[). When a normal array is specified, type, stride, and pointer are saved as client side
state.

To enable and disable the normal array, call glEnableClientState and glDisableClientState with the
argument GL_NORMAL_ARRAY. If enabled, the normal array is used when glDrawArrays,
giDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
gliMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Normal array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

type Specifies the the data type of each coordinate in the array. Symbolic constants GL_BYTE,
GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive normals. The initial value is 0.

pointer Specifies a pointer to the first coordinate of the first normal in the array. The initial value is 0 (NULL
pointer).

Notes

The gINormalPointer subroutine is available only if the GL version is 1.1 or greater.

The normal array is initially disabled and it won’t be accessed when glArrayElement, glDrawElements or
glDrawArrays is called.

Execution of gINormalPointer is not allowed between glBegin and the corresponding glEnd, but an error
may or may not be generated. If an error is not generated, the operation is undefined.

The giNormalPointer subroutine is typically implemented on the client side with no protocol.

Since the normal array parameters are client side state, they are not saved or restored by glPushAttrib
and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The giNormalPointer subroutine is not included in display lists.

244 OpenGL 1.2 Reference Manual



Errors

* GL_INVALID_ENUM is generated if type is not an accepted value.
* GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

» glisEnabled with argument GL_NORMAL_ARRAY

* glGet with argument GL_NORMAL_ARRAY_TYPE

glGet with argument GL_NORMAL_ARRAY_STRIDE
glGetPointerv with argument GL_NORMAL_ARRAY_POINTER

Related Information
The |glArrayElement| subroutine, |gICoIorPointeF| subroutine, |gIDrawArrays| subroutine, |giDrawElements|

subroutine, [gIEdgeFlagPointer| subroutine, |glEnable] subroutine, [glGetPointerv| subroutine,
lindexPointer| subroutine, |9INormaIPointerListIBM| subroutine, |gIPopClientAttrib| subroutine,
IPushClientAttrib| subroutine, [gITexCoordPointer] subroutine, |glVertexPointer| subroutine.

giNormalPointerEXT Subroutine

Purpose
Defines an array of normals.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glNormalPointerEXT(GLenum [type,
GLsizei [stride,
GLsizei |[count|,

const GLvoid [+pointer)

Description

dgINormalPointerEXT specifies the location and data format of an array of normals to use when rendering.
type specifies the data type of the normal coordinates and stride gives the byte stride from one normal to
the next allowing vertexes and attributes to be packed into a single array or stored in separate arrays.
(Single-array storage may be more efficient on some implementations.) count indicates the number of
array elements (counting from the first) that are static. Static elements may be modified by the application,
but once they are modified, the application must explicitly respecify the array before using it for any
rendering. When a normal array is specified, type, stride, count and pointer are saved as client-side state,
and static array elements may be cached by the implementation.

The normal array is enabled and disabled using glEnable and glDisable with the argument
GL_NORMAL_ARRAY_EXT. If enabled, the normal array is used when glDrawArraysEXT or
glArrayElementEXT is called.

Use glDrawArraysEXT to define a sequence of primitives (all of the same type) from pre-specified vertex
and vertex attribute arrays. Use glArrayElementEXT to specify primitives by indexing vertexes and vertex
attributes.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

Chapter 1. OpenGL Subroutines 245



by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Normal array is used when giDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giIDrawRangeElements is called.

Parameters

type Specifies the the data type of each coordinate in the array. Symbolic constants GL_BYTE,
GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE_EXT are accepted.

stride Specifies the byte offset between consecutive normals.

count Specifies the number of normals, counting from the first, that are static.

pointer Specifies a pointer to the first coordinate of the first normal in the array.

Notes

Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the normal array is disabled and it won’t be accessed when glArrayElementEXT or
glDrawArraysEXT is called.

Although, it is not an error to call gINormalPointerEXT between the execution of glBegin and the
corresponding execution of glEnd, the results are undefined.

giNormalPointerEXT will typically be implemented on the client side with no protocol.

Since the normal array parameters are client side state, they are not saved or restored by glPushAttrib
and glPopAttrib.

giNormalPointerEXT commands are not entered into display lists.
giNormalPointerEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL

command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when
called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors
GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride or count is negative.

Associated Gets
gllsEnabled with argument GL_NORMAL_ARRAY_EXT .

glGet with argument GL_NORMAL_ARRAY_TYPE_EXT.
glGet with argument GL_NORMAL_ARRAY_STRIDE_EXT.
glGet with argument GL_NORMAL_ARRAY_COUNT_EXT.

glGetPointervEXT with argument GL_NORMAL_ARRAY_POINTER_EXT.

246 OpenGL 1.2 Reference Manual



File

lust/include/GL/glext.h Contains extensions to C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information

The |glArrayElementEXT] subroutine, [glColorPointerEXT| subroutine, |giDrawArraysEXT]| subroutine,
IEdgeFlagPointerEXT] subroutine, |glGetPointervEXT]| subroutine, [glindexPointerEXT] subroutine,
ITexCoordPointerEXT]| subroutine, [glVertexPointerEXT]| subroutine.

giNormalPointerListIBM Subroutine

Purpose
Defines a list of normal arrays.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glNormalPointerListIBM(GLenum [typel,
GLint Etrl’deL
const GLvoid *= [pointer],

GLint |gtr‘stride

Description

The giNormalPointerListIBM subroutine specifies the location and data format of a list of arrays of
normal components to use when rendering. The fype parameter specifies the data type of each normal
component. The stride parameter gives the byte stride from one normal to the next allowing vertices and
attributes to be packed into a single array or stored in separate arrays. (Single-array storage may be more
efficient on some implementations; see glinterleavedArrays). The pirstride parameter specifies the byte
stride from one pointer to the next in the pointer array.

When a normal array is specified, type, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a "tightly packed” array as it does in gINormalPointer. Instead, it
causes the first array element of each array to be used for each vertex. Also, a negative value can be
used for stride, which allows the user to move through each array in reverse order.

To enable and disable the normal arrays, call glEnableClientState and glDisableClientState with the
argument GL_NORMAL_ARRAY. The normal array is initially disabled. When enabled, the normal arrays
are used when glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or glArrayElement is called. The last
three calls in this list will only use the first array (the one pointed at by pointer0]). See the descriptions of
these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIiBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

Chapter 1. OpenGL Subroutines 247



If enabled, the Normal array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

type Specifies the data type of each normal component in the array. Symbolic constants GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive normal. The initial value is 0.

pointer Specifies a list of normal arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.
Notes

The giNormalPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is
supported.

Execution of gINormalPointerListIBM is not allowed between glBegin and the corresponding glEnd, but
an error may or may not be generated. If an error is not generated, the operation is undefined.

The gINormalPointerListIBM subroutine is typically implemented on the client side.

Since the normal array parameters are client side state, they are not saved or restored by glPushAttrib
and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a gINormalPointerListIBM call is encountered while compiling a display list, the information it
contains does NOT contribute to the display list, but is used to update the immediate context instead.

The gINormalPointer call and the gINormalPointerListIBM call share the same state variables. A
giNormalPointer call will reset the normal list state to indicate that there is only one normal list, so that
any and all lists specified by a previous gINormalPointerListIBM call will be lost, not just the first list that
it specified.

Error Codes
GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets
glisEnabled with argument GL_NORMAL_ARRAY

glGetPointerv with argument GL_NORMAL_ARRAY_LIST_IBM
glGet with argument GL_NORMAL_ARRAY_LIST_STRIDE_IBM
glGet with argument GL_NORMAL_ARRAY_STRIDE

glGet with argument GL_NORMAL_ARRAY_TYPE

Related Information

The [glArrayElement] subroutine, [giDrawArrays]| subroutine, [giDrawElements| subroutine,
lglEdgeFlagPointer subroutine, [glEnable| subroutine, |glGetPointerv| subroutine, |glindexPointer]
subroutine, |9IInterIeavedArrays| subroutine, |gIMuItiDrawArraysEXT| subroutine,
[gIMultiDrawElementsEXT]| subroutine, [gIMultiModeDrawArraysIBM| subroutine,

248 OpenGL 1.2 Reference Manual



IMultiModeDrawElementsIBM| subroutine, |gINormalPointer| subroutine, [gIPopClientAttrib| subroutine,
glPushClientAttrib| subroutine, |gITexCoordPointer| subroutine, |gIVertexPointe[| subroutine.

gINormalVertexSUN Subroutine

Purpose

Specifies a normal and a vertex in one call.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glNormal3fVertex3fSUN (GLfloat |nx],
GLfloat |ny],
GLfloat |nzZ|,
GLfloat x|,
GLfloat |y,
GLfloat |7

void glNormal3fVertex3fvSUN (const GLfloat ,
const GLfloat [+

Description
This subroutine can be used as a replacement for the following calls:

gTNormal();
glVertex();

For example, gINormal3fVertex3fvSUN replaces the following calls:
gTNormal3f();
glVertex3fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

X,V Z Specifies the x, y, and z coordinates of a vertex. Not all
parameters are present in all forms of the command.

v Specifies a pointer to an array of the three elements x, y,
and z

nx, ny, nz Specify x, y, and z coordinates of the normal vector for
this vertex.

n Specifies a pointer to an array of the three elements nx,
ny and nz.

Notes

Calling gINormalVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Chapter 1. OpenGL Subroutines 249



Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The|gIBegin| or glEnd subroutine, the [glColor subroutine, thesubroutine, the [glTexCoord

subroutine, the |9IVertex| subroutine.

glOrtho Subroutine

Purpose
Multiplies the current matrix by an orthographic matrix.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl0rtho(GLdouble [Left],
GLdouble [
GLdouble
GLdouble
GLdouble
GLdouble

Description

The glOrtho subroutine describes a perspective matrix that produces a parallel projection. (Left, Bottom,

-Near) and (Right, Top, -Near) specify the points on the near clipping plane that are mapped to the lower
left and upper right corners of the window, respectively, assuming that the eye is located at (0, 0, 0). -Far
specifies the location of the far clipping plane. Both Near and Far can be either positive or negative. The

corresponding matrix is as follows:

2
_ 0 0 b
Right-Left

2
0 _— 0 t
Top—Bottom
-2
0 0 E— L
Far—Near
0 0 0 1

Figure 16. Parallel Projection Perspective Matrix. This diagram shows a matrix enclosed in brackets. The matrix
consists of four lines containing four characters each. The first line contains the following (from left to right): 2 /
Right-Left, zero, zero, t subscript x. The second line contains the following (from left to right): zero, 2 / Top-Bottom,
zero, t subscript y. The third line contains the following (from left to right): zero, zero, -2 / Far-Near, t subscript z. The
fourth line contains the following (from left to right): zero, zero, zero, one.

where the following statements apply:

250 OpenGL 1.2 Reference Manual



Right+Left

b=— ——
Right-Left

Top+Bottom

y=————

Y Top—Bottom
Far+Near

= ——————
Far—Near

Figure 17. Statements. This figure shows three equations. The first equation shows that t subscript x (from the above
matrix) is equal to negative Right+Left / Right-Left. The second equation shows that t subscript y (from the above
matrix) is equal to negative Top+Bottom / Top—Bottom. The third equation shows that t subscript z (from the above
matrix) is equal to negative Far+Near / Far—Near.

The current matrix is multiplied by this matrix with the result replacing the current matrix. That is, if M is
the current matrix and O is the ortho matrix, M is replaced with MO.

Use the glPushMatrix and glPopMatrix subroutines to save and restore the current matrix stack.

Parameters

Left, Right Specify the coordinates for the left and right vertical clipping planes.

Bottom, Top Specify the coordinates for the bottom and top horizontal clipping planes.

Near, Far Specify the distances to the nearer and farther depth clipping planes. These distances are
negative if the plane is to be behind the viewer.

Errors

GL_INVALID_OPERATION The glOrtho subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glOrtho subroutine are as follows. (See the [giGet subroutine for more
information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin or glEnd| subroutine, |gIFrustum| subroutine, [gIiMatrixMode| subroutine,
subroutine, |gIPushMatrix| subroutine, |glViewport| subroutine.

Chapter 1. OpenGL Subroutines 251




glPassThrough Subroutine

Purpose
Places a marker in the feedback buffer.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glPassThrough(GLfloat (Token)

Description

Feedback is a GL render mode. The mode is selected by calling the glRenderMode subroutine with
GL_FEEDBACK. When the GL is in feedback mode, no pixels are produced by rasterization. Instead,
information about primitives that would have been rasterized is fed back to the application using the GL.
See the |9IFeedbackBuffer| subroutine for a description of the feedback buffer and the values in the
feedback buffer.

The glPassThrough subroutine inserts a user-defined marker in the feedback buffer when it is executed
in feedback mode. The Token parameter is returned as if it were a primitive; it is indicated with its own
unique identifying value: GL_PASS_THROUGH_TOKEN. The order of glPassThrough commands with
respect to the specification of graphics primitives is maintained.

Parameters

Token Specifies a marker value to be placed in the feedback buffer following a GL_PASS_THROUGH_TOKEN
value.

Notes

The glPassThrough subroutine is ignored if the GL is not in feedback mode.

Errors

GL_INVALID_OPERATION The glPassThrough subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPassThrough subroutine are as follows. (See thesubroutine for more
information.)

glGet with argument GL_RENDER_MODE.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The|gIBegin or gIEnd| subroutine, |gIFeedbackBuffer| subroutine, |gIRenderMode| subroutine.

252 OpenGL 1.2 Reference Manual



glPixelMap Subroutine

Purpose
Sets up pixel transfer maps.

Library
OpenGL C bindings library: libGL.a

C Syntax
void gl1PixelMapfv(GLenum ,

GLint WMapSize|,

const GLfloat * |Values|b
void gl1PixelMapuiv(GLenum ,

GLint MapSize),

const GLuint * |Values|)
void g1Pixe1MaEusv(GLenum ,

GLint MapSize),
const GLushort = |Values|)

Description

The glPixelMap subroutine sets up translation tables, or maps, used by the glDrawPixels, glReadPixels,
glCopyPixels, glTeximage1D, and glTeximage2D subroutines. See the [glPixelTransfer| subroutine for a
complete description on using these maps. Use of these maps is also described in part in the pixel and

texture image subroutines. Only the specification of the maps is described here.

The Map parameter is a symbolic map name, indicating one of 10 maps to set. The MapSize parameter
specifies the number of entries in the map, and the Values parameter is a pointer to an array of MapSize
map values.

The 10 maps are:

GL_PIXEL_MAP_I_TO_I Maps color indexes to color indexes.
GL_PIXEL_MAP_S TO_S Maps stencil indexes to stencil indexes.
GL_PIXEL_MAP_I_TO_R Maps color indexes to red components.
GL_PIXEL_MAP_I_TO_G Maps color indexes to green components.
GL_PIXEL_MAP_IL_TO_B Maps color indexes to blue components.
GL_PIXEL_MAP_I_TO_A Maps color indexes to alpha components.

GL_PIXEL_MAP_R_TO_R Maps red components to red components.
GL_PIXEL_MAP_G_TO_G Maps green components to green components.
GL_PIXEL_MAP_B_TO_B Maps blue components to blue components.
GL_PIXEL_MAP_A_TO_A Maps alpha components to alpha components.

The entries in a map can be specified as single precision floating-point numbers, unsigned short integers,
or unsigned long integers. Maps that store color component values (all but the GL_PIXEL_MAP_I_TO_lI
and GL_PIXEL_MAP_S_TO_S maps) retain their values in floating-point format, with unspecified mantissa
and exponent sizes. Floating-point values specified by glPixelMapfv are converted directly to the internal
floating-point format of these maps, then clamped to the range [0,1]. Unsigned integer values specified by
glPixelMapusv and glPixelMapuiv are converted linearly such that the largest representable integer
maps to 1.0, and 0 (zero) maps to 0.0.

Chapter 1. OpenGL Subroutines 253



Maps that store indices, GL_PIXEL_MAP_I_TO_Il and GL_PIXEL_MAP_S_TO_S, retain their values in
fixed-point format, with an unspecified number of bits to the right of the binary point. Floating-point values
specified by glPixelMapfv are converted directly to the internal fixed-point format of these maps. Unsigned
integer values specified by glPixelMapusv and glPixelMapuiv specify integer values, with all Os to the
right of the binary point.

The following table shows the initial sizes and values for each of the maps. Maps that are indexed by
either color or stencil indexes must have MapSize = 2n for some n or results are undefined. The maximum
allowable size for each map depends on the implementation and can be determined by calling the glGet
subroutine with argument GL_MAX_PIXEL_MAP_TABLE. The single maximum applies to all maps, and it
is at least 32.

Map Lookup Index |Lookup Value |Initial Size Initial Value
GL_PIXEL_MAP_I_TO_I color index color index 1 0.0
GL_PIXEL_MAP_S_TO_S stencil index stencil index 1 0
GL_PIXEL_MAP_I_TO_R color index R 1 0.0
GL_PIXEL_MAP_I_TO_G color index G 1 0.0
GL_PIXEL_MAP_I_TO_B color index B 1 0.0
GL_PIXEL_MAP_I_TO_A color index A 1 0.0
GL_PIXEL_MAP_R_TO_R R R 1 0.0
GL_PIXEL_MAP_G_TO_G G G 1 0.0
GL_PIXEL_MAP_B_TO_B B B 1 0.0
GL_PIXEL_MAP_A TO_A A A 1 0.0
Parameters
Map Specifies a symbolic map name. Map must be one of the following:

* GL_PIXEL_MAP_I_TO_I

* GL_PIXEL_MAP_S_TO_S

* GL_PIXEL_MAP_I_TO_R

* GL_PIXEL_MAP_I_TO_G

* GL_PIXEL_MAP_I_TO_B

e GL_PIXEL_MAP_I_TO_A

* GL_PIXEL_MAP_R_TO_R

* GL_PIXEL_MAP_G_TO_G

* GL_PIXEL_MAP_B_TO_B

* GL_PIXEL_MAP_A_TO_A
MapSize Specifies the size of the map being defined.
Values Specifies an array of MapSize values.
Errors
GL_INVALID_ENUM Map is not an accepted value.
GL_INVALID_VALUE MapSize is negative or larger than GL_MAX_PIXEL_MAP_TABLE.
GL_INVALID_VALUE Map is GL_PIXEL_MAP_I_TO_I, GL_PIXEL_MAP_S_TO_S,

GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, or GL_PIXEL_MAP_I_TO_A, and MapSize is not
a power of two.

254 OpenGL 1.2 Reference Manual



GL_INVALID_OPERATION The glPixelMap subroutine is called between a call to gilBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glPixelMap subroutine are as follows. (See the subroutine for more
information.)

glGetPixelMap

glGet with argument GL_PIXEL_MAP_I_TO_I_SIZE
glGet with argument GL_PIXEL_MAP_S_TO_S_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_I_TO_A_SIZE
glGet with argument GL_PIXEL_MAP_R_TO_R_SIZE
glGet with argument GL_PIXEL_MAP_G_TO_G_SIZE
glGet with argument GL_PIXEL_MAP_B_TO_B_SIZE
glGet with argument GL_PIXEL_MAP_A_TO_A_SIZE
glGet with argument GL_MAX_PIXEL_MAP_TABLE.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin] or glEnd subroutine, [giCopyPixels| subroutine, [giDrawPixels| subroutine, [giGetPixelMap)
subroutine, [gIPixelStore| subroutine, |gIPierTransfe|_‘| subroutine, |gIReadPiers| subroutine, |gITexImage1 D|
subroutine, [giTexlmage2D| subroutine.

glPixelStore Subroutine

Purpose
Sets pixel storage modes.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 255



C Syntax

void g1PixelStoref(GLenum ,
GLfloat Parameter)

void gl1PixelStorei(GLenum ,

GLint Parameter)

Description

The glPixelStore subroutine sets pixel storage modes that affect the operation of subsequent
IDrawPixels and glReadPixels subroutines as well as the unpacking of polygon stipple patterns (see the
EIPolygonStip le| subroutine ), bitmaps (see the|gIBitmap| subroutine ), and texture patterns (see the

ITeximage1D| subroutine, |gITexlmage2D| subroutine, |giTexlmage3DEXT]| subroutine, [gITexSublmage1Dj
ITe

subroutine, [gITexSublmage2D| subroutine, and the

The pName parameter is a symbolic

xSublmage3DEXT] subroutine).

constant indicating the parameter to be set, and the Parameter

parameter is the new value. The following parameters affect how pixel data is returned to client memory,

and are therefore significant only for

GL_PACK_SWAP_BYTES

GL_PACK_LSB_FIRST

GL_PACK_ROW_LENGTH

glReadPixels commands. They are as follows:

If True, byte ordering for multibyte color components, depth components,
color indexes, or stencil indexes is reversed. That is, if a 4-byte component is
made up of bytes b0, b1, b2, b3, it is stored in memory as b3, b2, b1, b0 if
GL_PACK_SWAP_BYTES is True. GL_PACK_SWAP_BYTES has no effect
on the memory order of components within a pixel, only on the order of bytes
within components or indexes. For example, the three components of a
GL_RGB format pixel are always stored with red first, green second, and blue
third, regardless of the value of GL_PACK_SWAP_BYTES.

If True, bits are ordered within a byte from least significant to most significant;
otherwise, the first bit in each byte is the most significant one. This parameter
is significant for bitmap data only.

If greater than 0 (zero), GL_PACK_ROW_LENGTH defines the number of
pixels in a row. If the first pixel of a row is placed at location p in memory, the
location of the first pixel of the next row is obtained by skipping the result of

the equation in

Where n is the number of components or indexes in a pixel, / is the number
of pixels in a row (GL_PACK_ROW_LENGTH if it is greater than O;
otherwise, the width argument to the pixel routine), a is the value of
GL_PACK_ALIGNMENT, and s is the size, in bytes, of a single component (if
a<s,itis as if a = s). In the case of 1-bit values, the location of the next row
is obtained by skipping the result of the equation in |ﬂgure 19 on page 257

The word component in this description refers the nonindex values red, green,
blue, alpha, and depth. Storage format GL_RGB, for example, has three
components per pixel; first red, then green, and finally blue.

nl s>a

k= a | snl s<a components
—|— or indexes
s | a

Figure 18. GL_PACK_ROW _LENGTH Equation. This figure shows an equation where k is equal to the following two
lines preceded by a single curly brace: nl s greater than or equal to a. Below the first line is the second line as follows:
a/s [snl/a] s less than a components or indexes.

256 OpenGL 1.2 Reference Manual



nl
k=8a|—— | components
8a | orindexes

Figure 19. GL_PACK_ROW_LENGTH 1-bit Values Equation. This figure shows an equation where k is equal to 8a[nl /

8a] components or indexes.

GL_PACK_IMAGE_HEIGHT

GL_PACK_SKIP_PIXELS,
GL_PACK_SKIP_ROWS, and
GL_PACK_SKIP_IMAGES

GL_PACK_ALIGNMENT

If greater than O (zero), GL_PACK_IMAGE_HEIGHT defines the number of
rows in a 3D image, otherwise the number of rows is defined to be the height
of the 3D image.

These values are provided as a convenience to the programmer; they provide
no functionality that cannot be duplicated simply by incrementing the pointer
passed to the glReadPixels subroutine. Setting GL_PACK_SKIP_PIXELS to
i is equivalent to incrementing the pointer by in components or indexes, where
n is the number of components or indexes in each pixel. Setting
GL_PACK_SKIP_ROWS to j is equivalent to incrementing the pointer by jk
components or indexes, where k is the number of components or indexes per
row, as computed in the GL_PACK_ROW_LENGTH section. Setting the
GL_PACK_SKIP_IMAGES to | is equivalent to incrementing the pointer by
Imk components or indexes, where m is the number of rows per image as
specified by GL_PACK_IMAGE_HEIGHT.

Specifies the alignment requirements for the start of each pixel row in
memory. The allowable values are 1 (one) (byte alignment), 2 (rows aligned
to even-numbered bytes), 4 (word alignment), and 8 (rows start on
double-word boundaries).

The remaining parameters affect how pixel data is read from client memory. These values are significant
for the glDrawPixels, glTeximage1D, glTeximage2D, gIBitmap, and glPolygonStipple subroutines.

They are as follows:

GL_UNPACK_SWAP_BYTES

GL_UNPACK_LSB_FIRST

If True, byte ordering for a multibyte color components, depth
components, color indexes, or stencil indexes is reversed. That is, if a
4-byte component is made up of bytes b0, b1, b2, b3, it is taken from
memory as b3, b2, b1, b0 if GL_UNPACK_SWAP_BYTES is True.
GL_UNPACK_SWAP_BYTES has no effect on the memory order of
components within a pixel, only on the order of bytes within
components or indexes. For example, the three components of a
GL_RGB format pixel are always stored with red first, green second,
and blue third, regardless of the value of
GL_UNPACK_SWAP_BYTES.

If True, bits are ordered within a byte from least significant to most
significant; otherwise, the first bit in each byte is the most significant
one. This is significant for bitmap data only.

Chapter 1. OpenGL Subroutines 257



GL_UNPACK_ROW_LENGTH If greater than 0, GL_UNPACK_ROW_LENGTH defines the number
of pixels in a row. If the first pixel of a row is placed at location p in
memory, then the location of the first pixel of the next row is obtained

by skipping the result of the equation in

Where n is the number of components or indexes in a pixel, i is the
number of pixels in a row (GL_UNPACK_ROW_LENGTH if it is
greater than 0; otherwise, the width argument to the pixel routine), a
is the value of GL_UNPACK_ALIGNMENT, and s is the size, in
bytes, of a single component (if a < s, it is as if a = s). In the case of
1-bit values, the location of the next row is obtained by skipping the
result of the equation in|Figure 21

The word component in this description refers the nonindex values
red, green, blue, alpha, and depth. Storage format GL_RGB, for
example, has three components per pixel, first red, then green, and
finally blue.

nl s>a

k= a | snl s<a components
—|— or indexes
s | a

Figure 20. GL_UNPACK_ROW_LENGTH Equation. This figure shows an equation where k is equal to the following
two lines preceded by a single curly brace: nl s greater than or equal to a. Below the first line is the second line as
follows: a / s [snl / a] s less than a components or indexes.

nl
k=8a|—— | components
8a | orindexes

Figure 21. GL_UNPACK_ROW_LENGTH 1-bit Values Equation. This figure shows an equation where k is equal to
8a[nl / 8a] components or indexes.

GL_UNPACK_IMAGE_HEIGHT If greater than O (zero), GL_UNPACK_IMAGE_HEIGHT defines the
number of rows in a 3D image, otherwise the number of rows is
defined to be the height of the 3D image.

GL_UNPACK_SKIP_PIXELS, These values are provided as a convenience to the programmer; they
GL_UNPACK_SKIP_ROWS, and provide no functionality that cannot be duplicated simply by
GL_UNPACK_SKIP_IMAGES incrementing the pointer passed to glDrawPixels, glTeximage1D,

glTeximage2D, glTeximage3DEXT, glBitmap, or glPolygonStipple.
Setting GL_UNPACK_SKIP_PIXELS to i is equivalent to incrementing
the pointer by in components or indexes, where n is the number of
components or indexes in each pixel. Setting
GL_UNPACK_SKIP_ROWS to j is equivalent to incrementing the
pointer by jk components or indexes, where k is the number of
components or indexes per row, as computed in the
GL_UNPACK_ROW_LENGTH section. Setting the
GL_UNPACK_SKIP_IMAGES to / is equivalent to incrementing the
pointer by /Imk components or indexes, where m is the number of
rows per image as specified by GL_UNPACK_IMAGE_HEIGHT.

258 OpenGL 1.2 Reference Manual



GL_UNPACK_ALIGNMENT Specifies the alignment requirements for the start of each pixel row in
memory. The allowable values are 1 (byte alignment), 2 (rows aligned
to even-numbered bytes), 4 (word alignment), and 8 (rows start on
double-word boundaries).

The following table gives the type, initial value, and range of valid values for each of the storage
parameters that can be set with glPixelStore.

pName Type Initial Value Valid Range
GL_PACK_SWAP_BYTES Boolean False True or False
GL_PACK_LSB_FIRST Boolean False True or False
GL_PACK_ROW_LENGTH integer 0 [0,+infinity)
GL_PACK_SKIP_ROWS integer 0 [0,+infinity)
GL_PACK_SKIP_PIXELS integer 0 [0,+infinity)
GL_PACK_ALIGNMENT integer 4 1,2,4,0r8
GL_PACK_IMAGE_HEIGTH integer 0 [0,+infinity)
GL_PACK_SKIP_IMAGES integer 0 [0,+infinity)
GL_UNPACK_SWAP_BYTES Boolean False True or False
GL_UNPACK_LSB_FIRST Boolean False True or False
GL_UNPACK_ROW_LENGTH integer 0 [0,+infinity)
GL_UNPACK_SKIP_ROWS integer 0 [0,+infinity)
GL_UNPACK_SKIP_PIXELS integer 0 [0,+infinity)
GL_UNPACK_ALIGNMENT integer 4 1,2,4,0r8
GL_UNPACK_IMAGE_HEIGTH integer 0 [0,+infinity)
GL_UNPACK_SKIP_IMAGES integer 0 [0,+infinity)

The glPixelStoref subroutine can be used to set any pixel store parameter. If the parameter type is
Boolean, and if Parameter is 0.0, the parameter is False; otherwise it is set to True. If pName is an integer
type parameter, Parameter is rounded to the nearest integer.

Likewise, glPixelStorei can also be used to set any of the pixel store parameters. Boolean parameters are

set to False if Parameter is 0 and True otherwise. Parameter is converted to floating-point format before
being assigned to real-valued parameters.

Chapter 1. OpenGL Subroutines 259



Parameters

pName  Specifies the symbolic name of the parameter to be set. The following values affect the packing of pixel
data into memory:

* GL_PACK_SWAP_BYTES

* GL_PACK_LSB_FIRST

* GL_PACK_ROW_LENGTH

* GL_PACK_SKIP_PIXELS

+ GL_PACK_SKIP_ROWS

* GL_PACK_ALIGNMENT

* GL_PACK_IMAGE_HEIGHT
* GL_PACK_SKIP_IMAGES

The following values affect the unpacking of pixel data from memory:
« GL_UNPACK_SWAP_BYTES

* GL_UNPACK_LSB_FIRST

* GL_UNPACK_ROW_LENGTH

* GL_UNPACK_SKIP_PIXELS

* GL_UNPACK_SKIP_ROWS

* GL_UNPACK_ALIGNMENT

* GL_UNPACK_IMAGE_HEIGHT

* GL_UNPACK_SKIP_IMAGES

Notes

The pixel storage modes in effect when glDrawPixels, glReadPixels, glTeximage, gIBitmap, or
glPolygonStipple is placed in a display list control the interpretation of memory data. The pixel storage
modes in effect when a display list is executed are not significant.

Errors
GL_INVALID_ENUM pName is not an accepted value.
GL_INVALID_VALUE A negative row length, pixel skip, or row skip value is specified, or alignment is

specified as other than 1, 2, 4, or 8.

Associated Gets

Associated gets for the glPixelStore subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_PACK_SWAP_BYTES
glGet with argument GL_PACK_LSB_FIRST
glGet with argument GL_PACK_ROW_LENGTH
glGet with argument GL_PACK_SKIP_ROWS
glGet with argument GL_PACK_SKIP_PIXELS
glGet with argument GL_PACK_ALIGNMENT
glGet with argument GL_PACK_IMAGE_HEIGTH

260 OpenGL 1.2 Reference Manual



glGet with argument GL_PACK_SKIP_IMAGES
glGet with argument GL_UNPACK_SWAP_BYTES
glGet with argument GL_UNPACK_LSB_FIRST
glGet with argument GL_UNPACK_ROW_LENGTH
glGet with argument GL_UNPACK_SKIP_ROWS
glGet with argument GL_UNPACK_SKIP_PIXELS
glGet with argument GL_UNPACK_ALIGNMENT.
glGet with argument GL_UNPACK_IMAGE_HEIGTH

glGet with argument GL_UNPACK_SKIP_IMAGES

GL_INVALID_OPERATION The glPixelStore subroutine is called between a call to giBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin or glEnd| subroutine, [gIBitmap] subroutine, [giDrawPixels| subroutine, [gIPixelMap] subroutine,
[glPixelTransfer| subroutine, [gIPixelZoom| subroutine, |gIPolygonStipple] subroutine, [gIReadPixel

subroutine, [gITeximage1D| subroutine, [giTexlmage2D| subroutine, |giTeximage3DEXT] subroutine,
[gITexSublmage1D| subroutine, [gITexSublmage2D| subroutine, |gITexSublmage3DEXT]| subroutine.

glPixelTransfer Subroutine

Purpose
Sets pixel transfer modes.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1PixelTransferf(GLenum |;_9Name|,

GLfloat |Parame ter|D

void gl1PixelTransferi(GLenum ,
cLint

Description

The glPixelTransfer subroutine sets pixel transfer modes that affect the operation of subsequent
glDrawPixels, glReadPixels, glCopyPixels, glCopyTeximage1D, glCopyTeximage2D,
glCopyTexSublmageiD, glCopyTexSublmage2D, glCopyTexSubimage3DEXT, glTeximageiD,

Chapter 1. OpenGL Subroutines 261



glTeximage2D, glTeximage3DEXT, giTexSublmage1D, giTexSublmage2D, and glTexSubimage3DEXT
subroutines. The algorithms that are specified by pixel transfer modes operate on pixels after they are
read from the frame buffer (glReadPixels and glCopyPixels) or unpacked from client memory
(glDrawPixels, glReadPixels, giCopyPixels, glCopyTeximageiD, glCopyTeximage2D,
glCopyTexSublimage1D, glCopyTexSubimage2D, glCopyTexSublmage3DEXT, glTeximage1D,
glTeximage2D, giTeximage3DEXT, glTexSublmage1D, glTexSublmage2D, and glTexSublmage3DEXT
subroutines). Pixel transfer operations happen in the same order, and in the same manner, regardless of
the command that resulted in the pixel operation. Pixel storage modes control the unpacking of pixels

being read from client memory and the packing of pixels being written back into client memory. (See the
subroutine for information on setting pixel storage modes.)

Pixel transfer operations handle four fundamental pixel types: color, color index, depth, and stencil. Color
pixels are made up of four floating-point values with unspecified mantissa and exponent sizes, scaled such
that 0.0 represents O (zero) intensity and 1.0 represents full intensity. Color indexes comprise a single
fixed-point value, with unspecified precision to the right of the binary point. Depth pixels comprise a single
floating-point value, with unspecified mantissa and exponent sizes, scaled such that 0.0 represents the
minimum depth buffer value and 1.0 represents the maximum depth buffer value. Finally, stencil pixels
comprise a single fixed-point value, with unspecified precision to the right of the binary point.

The pixel transfer operations performed on the four basic pixel types are as follows:

color Each of the four color components is multiplied by a scale factor, then added to a bias factor.
That is, the red component is multiplied by GL_RED_SCALE, then added to GL_RED_BIAS;
the green component is multiplied by GL_GREEN_SCALE, then added to GL_GREEN_BIAS;
the blue component is multiplied by GL_BLUE_SCALE, then added to GL_BLUE_BIAS; and
the alpha component is multiplied by GL_ALPHA_SCALE, then added to GL_ALPHA_BIAS.
After all four color components are scaled and biased, each is clamped to the range [0,1]. All
color scale and bias values are specified with glPixelTransfer.

If GL_MAP_COLOR is True, each color component is scaled by the size of the corresponding
color-to-color map, then replaced by the contents of that map indexed by the scaled
component. That is, the red component is scaled by GL_PIXEL_MAP_R_TO_R_SIZE, then
replaced by the contents of GL_PIXEL_MAP_R_TO_R indexed by itself. The green component
is scaled by GL_PIXEL_MAP_G_TO_G_SIZE, then replaced by the contents of
GL_PIXEL_MAP_G_TO_G indexed by itself. The blue component is scaled by
GL_PIXEL_MAP_B_TO_B_SIZE, then replaced by the contents of GL_PIXEL_MAP_B_TO_B
indexed by itself. The alpha component is scaled by GL_PIXEL_MAP_A_TO_A_SIZE, then
replaced by the contents of GL_PIXEL_MAP_A_TO_A indexed by itself. All components taken
from the maps are then clamped to the range [0,1]. GL_MAP_COLOR is specified with
glPixelTransfer. The contents of the various maps are specified with the glPixelMap
subroutine.

262 OpenGL 1.2 Reference Manual



color index Each color index is shifted left by GL_INDEX_SHIFT bits, and any bits beyond the number of
fraction bits carried by the fixed-point index are filled with Os. If GL_INDEX_SHIFT is negative,
the shift is to the right, again O filled. Then GL_INDEX_OFFSET is added to the index.
GL_INDEX_SHIFT and GL_INDEX_OFFSET are specified with glPixelTransfer.

From this point, operation diverges depending on the required format of the resulting pixels. If
the resulting pixels are to be written to a color index buffer, or if they are being read back to
client memory in GL_COLOR_INDEX format, the pixels continue to be treated as indexes. If
GL_MAP_COLOR is True, each index is masked by 2n-1, where nis
GL_PIXEL_MAP_I_TO_I_SIZE, then replaced by the contents of GL_PIXEL_MAP_I_TO_I
indexed by the masked value. GL_MAP_COLOR is specified with glPixelTransfer. The
contents of the index map are specified with the glPixelMap subroutine.

If the resulting pixels are to be written to a red, green, blue, alpha (RGBA) color buffer, or if
they are being read back to client memory in a format other than GL_COLOR_INDEX, the
pixels are converted from indexes to colors by referencing the four maps
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A. Before being dereferenced, the index is masked by 2n-1, where n is
GL_PIXEL_MAP_I_TO_R_SIZE for the red map, GL_PIXEL_MAP_I_TO_G_SIZE for the green
map, GL_PIXEL_MAP_I_TO_B_SIZE for the blue map, and GL_PIXEL_MAP_I_TO_A_SIZE
for the alpha map. All components taken from the maps are then clamped to the range [0,1].
The contents of the four maps are specified with the glPixelMap subroutine.

depth Each depth value is multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, then
clamped to the range [0,1].
stencil Each index is shifted GL_INDEX_SHIFT bits just as a color index is, then added to

GL_INDEX_OFFSET. If GL_MAP_STENCIL is True, each index is masked by 2n-1, where n is
GL_PIXEL_MAP_S_TO_S_SIZE, then replaced by the contents of GL_PIXEL_MAP_S_TO_S
indexed by the masked value.

The following table gives the type, initial value, and range of valid values for each of the pixel transfer
parameters that are set with glPixelTransfer.

pName Type Initial Value Valid Range

GL_MAP_COLOR Boolean False True or False

GL_MAP_STENCIL Boolean False True or False

GL_INDEX_SHIFT integer 0 (-infinity,+infinity)
GL_INDEX_OFFSET integer 0 (-infinity,+infinity)
GL_RED_SCALE float 1.0 (-infinity,+infinity)
GL_GREEN_SCALE float 1.0 (-infinity,+infinity)
GL_BLUE_SCALE float 1.0 (-infinity,+infinity)
GL_ALPHA_SCALE float 1.0 (-infinity,+infinity)
GL_DEPTH_SCALE float 1.0 (-infinity,+infinity)
GL_RED_BIAS float 0.0 (-infinity,+infinity)
GL_GREEN_BIAS float 0.0 (-infinity,+infinity)
GL_BLUE_BIAS float 0.0 (-infinity,+infinity)
GL_ALPHA_BIAS float 0.0 (-infinity,+infinity)
GL_DEPTH_BIAS float 0.0 (-infinity,+infinity)

The glPixelTransferf subroutine can be used to set any pixel transfer parameter. If the parameter type is
Boolean, 0.0 implies False and any other value implies True. If pName is an integer parameter, Parameter
is rounded to the nearest integer.

Chapter 1. OpenGL Subroutines 263



Likewise, glPixelTransferi can be used to set any of the pixel transfer parameters. Boolean parameters
are set to False if Parameter is 0 and True otherwise. Parameter is converted to floating-point format
before being assigned to real-valued parameters.

Parameters

pName Specifies the symbolic name of the pixel transfer parameter to be set. Must be one of the following:

« GL_MAP_COLOR

« GL_MAP_STENCIL
* GL_INDEX_SHIFT
* GL_INDEX_OFFSET
« GL_RED_SCALE

« GL_RED_BIAS

« GL_GREEN_SCALE
* GL_GREEN_BIAS
* GL_BLUE_SCALE
* GL_BLUE_BIAS

* GL_ALPHA_SCALE
« GL_ALPHA_BIAS
* GL_DEPTH_SCALE

* GL_DEPTH_BIAS
Parameter Specifies the value to which pName is set.

Notes

If a glDrawPixels, glReadPixels, glCopyPixels, glTeximage1D, or glTeximage2D subroutine is placed
in a display list (see the subroutine and the subroutine for information about display
lists), the pixel transfer mode settings in effect when the display list is executed are the ones that are
used. They may be different from the settings when the command was compiled into the display list.

Errors
GL_INVALID_ENUM pName is not an accepted value.
GL_INVALID_OPERATION The glPixelTransfer subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPixelTransfer subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_MAP_COLOR
glGet with argument GL_MAP_STENCIL
glGet with argument GL_INDEX_SHIFT
glGet with argument GL_INDEX_OFFSET
glGet with argument GL_RED_SCALE

glGet with argument GL_RED_BIAS

264 OpenGL 1.2 Reference Manual



glGet with argument GL_GREEN_SCALE
glGet with argument GL_GREEN_BIAS
glGet with argument GL_BLUE_SCALE
glGet with argument GL_BLUE_BIAS
glGet with argument GL_ALPHA_SCALE
glGet with argument GL_ALPHA_BIAS
glGet with argument GL_DEPTH_SCALE
glGet with argument GL_DEPTH_BIAS.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The|gIBegin or gIEndl subroutine, |§ICaIILisﬂ subroutine, g| ICopyPiers| subroutine, ICopyTexImage1D|
subroutine, gICopyTexImage2D| subroutine, blCopyTexSublmag%il_)I subroutine, |giCopyTexSublmage2D)|
els| su

subroutine, |giCopyTexSublmage3DEXT| subroutine, |giDrawPix broutine, 9INewList| subroutine,
IPixelMap| subroutine, |9IPierStore| subroutine, |g|PierZoom| subroutine, |gIReadPixels] subroutine,
ITexImageﬂ subroutine, |gITeximage2D| subroutine, |gITexlmage3DEXT]| subroutine, [gITexSublmage1Dj
subroutine, [gITexSublmage2D| subroutine, |gITexSublmage3DEXT]| subroutine, .

glPixelZoom Subroutine

Purpose
Specifies the pixel zoom factors.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1PixelZoom(GLfloat xFactor,
GLfloat yFactor)

Parameters

XFactor and yFactor Specify the x and y zoom factors for pixel write operations.

Description

The glPixelZoom subroutine specifies values for the x and y zoom factors. During the execution of the
glDrawPixels or glCopyPixels subroutines, if (xr, yr) is the current raster position, and a given element is
in the nth row and mth column of the pixel rectangle, then pixels whose centers are in the rectangle with
corners at

(xr + n x xFactor, yr + m x yFactor)

Chapter 1. OpenGL Subroutines 265



and

(xr + (n+1) x xFactor, yr + (m+1) x yFactor)

are candidates for replacement. Any pixel whose center lies on the bottom or left edge of this rectangular
region is also modified.

Pixel zoom factors are not limited to positive values. Negative zoom factors reflect the resulting image
about the current raster position.

Errors

GL_INVALID_OPERATION The glPixelZoom subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glPixelZoom subroutine are as follows. (See the [giGet] subroutine for more
information.)

glGet with argument GL_ZOOM_X.
glGet with argument GL_ZOONL_Y.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The|gIBegin or gIEnd| subroutine, |glCopyPixels| subroutine, |glDrawPixels| subroutine.

glPointSize Subroutine

Purpose
Specifies the diameter of rasterized points.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glPointSize(GLfloat [Sizel

Description

The glPointSize subroutine specifies the rasterized diameter of both aliased and antialiased points. Using
a point size other than 1.0 has different effects, depending on whether point antialiasing is enabled. Point
antialiasing is controlled by calling the glEnable and glDisable subroutines with argument
GL_POINT_SMOOTH.

If point antialiasing is disabled, the actual size is determined by rounding the supplied size to the nearest

integer. (If the rounding results in the value 0 (zero), it is as if the point size were 1 (one).) If the rounded
size is odd, the center point (x, y) of the pixel fragment that represents the point is computed as

266 OpenGL 1.2 Reference Manual



(floor(xw) + 0.5, floor(yw) + 0.5)

where w subscripts indicate window coordinates. All pixels that lie within the square grid of the rounded
size centered at (x, y) make up the fragment. If the size is even, the center point is

(floor(xw + 0.5), floor(yw + 0.5))

and the rasterized fragment’s centers are the half-integer window coordinates within the square of the
rounded size centered at (x, y). All pixel fragments produced in rasterizing a nonantialiased point are
assigned the same associated data, that of the vertex corresponding to the point.

If antialiasing is enabled, point rasterization produces a fragment for each pixel square that intersects the
region lying within the circle having diameter equal to the current point size and centered at the point’s
(xw, yw). The coverage value for each fragment is the window coordinate area of the intersection of the
circular region with the corresponding pixel square. This value is saved and used in the final rasterization
step. The data associated with each fragment is the data associated with the point being rasterized.

Not all sizes are supported when point antialiasing is enabled. If an unsupported size is requested, the
nearest supported size is used. Only size 1.0 is guaranteed to be supported; others are dependent on the
implementation. The range of supported sizes and the size difference between supported sizes within the
range can be queried by calling the glGet subroutine with the GL_POINT_SIZE_RANGE and
GL_POINT_SIZE_GRANULARITY arguments.

Notes

The point size specified by glPointSize is always returned when GL_POINT_SIZE is queried. Clamping
and rounding for aliased and antialiased points have no effect on the specified value.

Nonantialiased point size may be clamped to a maximum that depends on the implementation. Although

this maximum cannot be queried, it must be no less than the maximum value for antialiased points,
rounded to the nearest integer value.

Parameters

Size Specifies the diameter of rasterized points. The default is 1.0.

Errors
GL_INVALID_VALUE Size is less than or equal to 0.
GL_INVALID_OPERATION The glPointSize subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPointSize subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_POINT_SIZE
glGet with argument GL_POINT_SIZE_RANGE

glGet with argument GL_POINT_SIZE_GRANULARITY

glisEnabled| with argument GL_POINT_SMOOTH.

Chapter 1. OpenGL Subroutines 267



Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |gIBegin or glEnd| subroutine, [glEnable or Disable| subroutine.

glPolygonMode Subroutine

Purpose

Selects a polygon rasterization mode.

Library

OpenGL C bindings library: libGL.a

C Syntax

void g1PolygonMode (GLenum ,
GLenum

Description

The glPolygonMode subroutine controls the interpretation of polygons for rasterization. The Face
parameter describes which polygons the Mode parameters applies to: frontfacing polygons (GL_FRONT),
backfacing polygons (GL_BACK), or both (GL_FRONT_AND_BACK). The polygon mode affects only the
final rasterization of polygons. In particular, a polygon’s vertices are lit and the polygon is clipped and
possibly culled before these modes are applied.

Three modes are defined and can be specified in the Mode parameter:

GL_POINT Polygon vertices that are marked as the start of a boundary edge are drawn as points. Point
attributes such as GL_POINT_SIZE and GL_POINT_SMOOTH control the rasterization of the points.
Polygon rasterization attributes other than GL_POLYGON_MODE have no effect.

GL_LINE Boundary edges of the polygon are drawn as line segments. They are treated as connected line
segments for line stippling; the line stipple counter and pattern are not reset between segments. (See
thesubroutine for information on specifying the line stipple pattern.) Line attributes
such as GL_LINE_WIDTH and GL_LINE_SMOOTH control the rasterization of the lines. Polygon
rasterization attributes other than GL_POLYGON_MODE have no effect.

GL_FILL The interior of the polygon is filled. Polygon attributes such as GL_POLYGON_STIPPLE and
GL_POLYGON_SMOOTH control the rasterization of the polygon.

Parameters

Face Specifies the polygons to which Mode applies. Must be GL_FRONT for frontfacing polygons, GL_BACK for
backfacing polygons, or GL_FRONT_AND_BACK for frontfacing and backfacing polygons.

Mode  Specifies the way polygons are rasterized. Accepted values are GL_POINT, GL_LINE, and GL_FILL. The
default is GL_FILL for both frontfacing and backfacing polygons.

Notes

Vertices are marked as boundary or nonboundary with an edge flag. Edge flags are generated internally
by the GL when it decomposes polygons, and they can be set explicitly with the glEdgeFlag subroutine.

268 OpenGL 1.2 Reference Manual



Errors

GL_INVALID_ENUM Face or Mode is not an accepted value.
GL_INVALID_OPERATION The glPolygonMode subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glPolygonMode subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_POLYGON_MODE.

Examples
To draw a surface with filled backfacing polygons and outlined frontfacing polygons, enter the following:
g1PolygonMode (GL_FRONT, GL_LINE);

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |gIBegin or glEnd| subroutine, |gIEdgeFIa§] subroutine, |gILineStippI€| subroutine, |glLineWidth

subroutine, |gIPointSizg| subroutine, IPongonStippIe| subroutine.

glPolygonOffset Subroutine

Purpose
Sets the scale and bias used to calculate depth values.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1PolygonOffset (GLfloat ,
GLfloat

Description

When GL_POLYGON_OFFSET is enabled, each fragment’s depth value will be offset after it is
interpolated from the depth values of the appropriate vertices. The value of the offset is factor * DZ + r *
units, where DZ is a measurement of the change in depth relative to the screen area of the polygon, and r
is the smallest value which is guaranteed to produce a resolveable offset for a given implementation. The
offset is added before the depth test is performed and before the value is written into the depth buffer.

This is useful for rendering hidden line images, for applying decals to surfaces, and for rendering solids
with highlighted edges.

Chapter 1. OpenGL Subroutines 269



Parameters

factor Specifies a scale factor which is used to create a variable depth offset for each polygon. The initial value
is 0.

units Is multiplied by an implementation specific value to create a constant depth offset. The initial value is 0.

Notes

The glPolygonOffset subroutine is available only if the GL version is 1.1 or greater.

Errors

GL_INVALID_OPERATION is generated if glPolygonOffset is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glisEnabled with argument GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or
GL_POLYGON_OFFSET_POINT.

glGet with argument GL_POLYGON_OFFSET_FACTOR or GL_POLYGON_OFFSET_UNITS.

Related Information

The|§IDepthFunc| subroutine,|§IDisable|subroutine,|§IEnabI5| subroutine, |glGet| subroutine, [glisEnabled
subroutine, |gILineWidth| subroutine, |gIStenciIOE| subroutine, |gITexEn!| subroutine.

glPolygonOffsetEXT Subroutine

Purpose
Sets the scale and bias used to calculate z values.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1Polygon0ffsetEXT(GLfloat [factor],
GLfloat

Description

When GL_POLYGON_OFFSET_EXT is enabled, each fragment’s z value will be offset after it is
interpolated from the z values of the appropriate vertices. The value of the offset is factor * DZ + bias,
where DZ is a measurement of the change in z relative to the screen area of the polygon. The offset is
added before the Depth Test is performed and before the value is written into the Depth Buffer.

Initially GL_POLYGON_OFFSET_FACTOR_EXT and GL_POLYGON_OFFSET_BIAS_EXT are both set to
0.0.

This is useful for rendering hidden line images, for applying decals to surfaces, and for rendering solids
with highlighted edges.

Parameters

factor specifies a scale factor which is used to create a offset for each polygon.

270 OpenGL 1.2 Reference Manual



bias specifies a constant which is added to each polygon’s z offset.

Notes

glPolygonOffsetEXT is part of the EXT_polygon_offset extension, not part of the core GL command set.
If GL_EXT_polygon_offset is included in the string returned by glGetString, when called with argument
GL_EXTENSIONS, extension EXT_polygon_offset is supported by the connection.

Errors

GL_INVALID_OPERATION is generated if glPolygonOffsetEXT is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
gllsEnabled with argument GL_POLYGON_OFFSET_EXT.

glGet with argument GL_POLYGON_OFFSET_FACTOR_EXT or GL_POLYGON_OFFSET_BIAS_EXT .
File
lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The [gIDepthFund] subroutine, [glEnable orglDisable] subroutine, [giGed subroutine, [gllsEnabled
subroutine, |gILineWidth| subroutine, |gIStenciIOp| subroutine, |giTexEnv| subroutine.

glPolygonStipple Subroutine

Purpose
Sets the polygon stippling pattern.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glPolygonStipple(const GLubyte * |Mask]

Description

Polygon stippling, like line stippling, masks out certain fragments produced by rasterization, creating a
pattern. (See the |glLineStipple| subroutine .) Stippling is independent of polygon antialiasing.

The Mask parameter is a pointer to a 32 x 32 stipple pattern that is stored in memory just like the pixel
data supplied to a glDrawPixels subroutine with height and width both equal to 32, a pixel format of
GL_COLOR_INDEX, and data type of GL_BITMAP. That is, the stipple pattern is represented as a 32 x
32 array of 1-bit color indexes packed in unsigned bytes. The glPixelStore subroutine parameters such as
GL_UNPACK_SWAP_BYTES and GL_UNPACK_LSB_FIRST affect the assembling of the bits into a

stipple pattern. Pixel transfer operations (shift, offset, pixel map) are not applied to the stipple image,
however.

Chapter 1. OpenGL Subroutines 271



Polygon stippling is enabled and disabled with the glEnable/glDisable subroutine pair, using argument
GL_POLYGON_STIPPLE. If enabled, a rasterized polygon fragment with window coordinates xw and yw
is sent to the next stage of the GL if and only if the (xw mod 32)th bit in the (yw mod 32)th row of the
stipple pattern is 1 (one). When polygon stippling is disabled, it is as if the stipple pattern were all 1s.

Parameters

Mask  Specifies a pointer to a 32 x 32 stipple pattern that is unpacked from memory in the same way that the
glDrawPixels subroutine unpacks pixels.

Associated Gets

Associated gets for the glPolygonStipple subroutine are as follows. (See the subroutine for more
information.)

glGetPolygonStipple
glisEnabled| with argument GL_POLYGON_STIPPLE.

Error Codes

GL_INVALID_OPERATION The glPolygonStipple subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |gIBegin or glEnd| subroutine, |giDrawPixels| subroutine, |glEnable or glDisable]| subroutine,
glLineStipple

|g|GetPongonStippIe| subroutine, subroutine, [gIPixelStore| subroutine, |gIPierTransfe[|
subroutine.

glPrioritizeTextures Subroutine

Purpose
Sets texture residence priority.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1PrioritizeTextures(GLsizei n,
const GLuint *textures,
const GLclampf *priorities)

Parameters
n Specifies the number of textures to be prioritized.
textures Specifies an array containing the names of the textures to be prioritized.

272 OpenGL 1.2 Reference Manual



priorities Specifies an array containing the texture priorities. A priority given in an element of priorities
applies to the texture named by the corresponding element of textures.

Description

The glPrioritizeTextures subroutine assigns the n texture priorities given in priorities to the n textures
named in textures.

On machines with a limited amount of texture memory, GL establishes a ““working set” of textures that are
resident in texture memory. These textures may be bound to a texture target much more efficiently than
textures that are not resident. By specifying a priority for each texture, glPrioritizeTextures allows
applications to guide the GL implementation in determining which textures should be resident.

The priorities given in priorities are clamped to the range [0.0, 1.0] before being assigned. Zero indicates
the lowest priority; textures with priority zero are least likely to be resident. One indicates the highest
priority; textures with priority one are most likely to be resident. However, textures are not guaranteed to
be resident until they are bound.

The glPrioritizeTextures subroutine silently ignores attempts to prioritize texture zero, or any texture
name that does not correspond to an existing texture.

The glPrioritizeTextures subroutine does not require that any of the textures named by textures be bound
to a texture target. It can also be used to set the priority of a texture, but only if the texture is currently
bound. This is the only way to set the priority of a default texture.

The glPrioritizeTextures subroutine is included in display lists.

Notes
The glPrioritizeTextures subroutine is available only if the GL version is 1.1 or greater.

Errors
GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glPrioritizeTextures is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter with parameter name GL_TEXTURE_PRIORITY retrieves the priority of a currently
bound texture.

Related Information

The |glAreTexturesResident] subroutine, |gIBindTexturE| subroutine, |gITexImage1 D] subroutine,
[glTeximage2D]| subroutine, [gITeximage3DEXT] subroutine, |glITexParameter| subroutine.

glPrioritizeTexturesEXT Subroutine

Purpose
Sets texture residence priority.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 273



C Syntax

void gl1PrioritizeTexturesEXT(GLsizei n,
const GLuint *textures,
const GLclampf *priorities)

Parameters

n The number of textures to be prioritized.

textures An array containing the names of the textures to be prioritized.

priorities An array containing the texture priorities. A priority given in an element of priorities applies to the

texture named by the corresponding element of textures.

Description

glPrioritizeTexturesEXT assigns the n texture priorities given in priorities to the n textures named in
textures.

On machines with a limited amount of texture memory, OpenGL establishes a ““working set” of textures
that are resident in texture memory. These textures may be bound to a texture target much more efficiently
than textures that are not resident. By specifying a priority for each texture, glPrioritizeTexturesEXT
allows applications to guide the OpenGL implementation in determining which textures should be resident.

The priorities given in priorities are clamped to the range [0.0, 1.0] before being assigned. Zero indicates
the lowest priority, and hence textures with priority zero are least likely to be resident. One indicates the
highest priority, and hence textures with priority one are most likely to be resident. However, textures are
not guaranteed to be resident until they are bound.

glPrioritizeTexturesEXT silently ignores attempts to prioritize texture zero, or any texture name that does
not correspond to an existing texture.

glPrioritizeTexturesEXT does not require that any of the textures named by textures be bound to a
texture target. glTexParameter may also be used to set a texture’s priority, but only if the texture is
currently bound. This is the only way to set the priority of a default texture.

glPrioritizeTexturesEXT is included in display lists.

Notes

glPrioritizeTexturesEXT is part of the EXT_texture_object extension, not part of the core GL command
set. If GL_EXT_texture_object is included in the string returned by glGetString, when called with
argument GL_EXTENSIONS, extension EXT_texture_object is supported by the connection.

Errors
GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glPrioritizeTexturesEXT is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter with parameter name GL_TEXTURE_PRIORITY_EXT retrieves the priority of a
currently-bound texture.

274 OpenGL 1.2 Reference Manual



File

lust/include/GL/glext.h

Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The |glAreTexturesResidentEXT] subroutine,

IBindTextureEXT] subroutine, |gITexImage1 D| subroutine,

|gITexIma9e2D| subroutine, |9ITexImage3DEXT

subroutine, |9ITexParamete[| subroutine.

glPushAttrib or glPopAttrib Subroutine

Purpose
Pushes and pops the attribute stack.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1PushAttrib(GLbitfield mask)
void gl1PopAttrib(void)

Parameters

mask

Description

Specifies a mask that indicates which attributes to save. Values for Mask are provided in the preceding list.

The glPushAttrib subroutine takes one argument, a mask that indicates which groups of state variables to
save on the attribute stack. Symbolic constants are used to set bits in the mask. The Mask parameter is
typically constructed by ORing several of these constants together. The GL_ALL_ATTRIB_BITS special

mask can be used to save all stackable states.

The symbolic mask constants and their associated GL states are in the following list.

Mask

GL_ACCUM_BUFFER_BIT Accumulation

GL_COLOR_BUFFER_BIT

Attributes saved

buffer clear value

GL_ALPHA_TEST enable bit

Alpha test function and reference value
GL_BLEND enable bit

Blending source and destination functions
GL_COLOR_LOGIC_OP enable bit
GL_DITHER enable bit

GL_DR

AW_BUFFER setting

GL_LOGIC_OP enable bit

Logic op function

Color mode and index mode clear values
Color mode and index mode write masks
GL_BLEND_EQUATION_EXT setting

GL_CURRENT_BIT Current

red, green, blue, alpha (RGBA) color

Chapter 1. OpenGL Subroutines 275



Current color index

Current normal vector

Current texture coordinates

Current raster position

GL_CURRENT_RASTER_POSITION_VALID flag

RGBA color associated with current raster position

Color index associated with current raster position

Texture coordinates associated with current raster position

GL_EDGE_FLAG flag
GL_DEPTH_BUFFER_BIT GL_DEPTH_TEST enable bit

Depth buffer test function

Depth buffer clear value

GL_DEPTH_WRITEMASK enable bit
GL_ENABLE_BIT GL_ALPHA_TEST flag

GL_AUTO_NORMAL flag

GL_BLEND flag

Enable bits for the user-definable clipping planes

GL_COLOR_LOGIC_OP flag

GL_COLOR_MATERIAL

GL_CULL_FACE flag

GL_DEPTH_TEST flag

GL_DITHER flag

GL_FOG flag

GL_LIGHT/, where 0 < i<GL_MAX_LIGHTS

GL_LIGHTING flag

GL_LINE_SMOOTH flag

GL_LINE_STIPPLE flag

GL_LOGIC_OP flag

GL_MAP1_x, where x is a map type

GL_MAP2_x, where x is a map type

GL_NORMALIZE flag

GL_POINT_SMOOTH flag

GL_POLYGON_OFFSET_EXT flag

GL_POLYGON_OFFSET_FILL flag

GL_POLYGON_OFFSET_LINE flag

GL_POLYGON_OFFSET_POINT flag

GL_POLYGON_SMOOTH flag

GL_POLYGON_STIPPLE flag

GL_SCISSOR_TEST flag

GL_STENCIL_TEST flag

GL_TEXTURE_1D flag

GL_TEXTURE_2D flag

GL_TEXTURE_3D_EXT flag

Flags GL_TEXTURE_GEN_x, where xis S, T, R, or Q
GL_EVAL_BIT GL_MAP1_x enable bits, where x is a map type

GL_MAP2_x enable bits, where x is a map type

1-dimensional (1D) grid endpoints and divisions

2-dimensional (2D) grid endpoints and divisions

GL_AUTO_NORMAL enable bit
GL_FOG_BIT GL_FOG enable flag

Fog color

Fog density

Linear fog start

Linear fog end

Fog index

276 OpenGL 1.2 Reference Manual



GL_HINT_BIT

GL_LIGHTING_BIT

GL_LINE_BIT

GL_LIST_BIT
GL_PIXEL_MODE_BIT

GL_POINT_BIT

GL_POLYGON_BIT

GL_POLYGON_STIPPLE_BIT
GL_SCISSOR_BIT

GL_FOG_MODE value
GL_PERSPECTIVE_CORRECTION_HINT setting
GL_POINT_SMOOTH_HINT setting
GL_LINE_SMOOTH_HINT setting
GL_POLYGON_SMOOTH_HINT setting
GL_FOG_HINT setting

GL_SUBPIXEL_HINT_IBM setting
GL_COLOR_MATERIAL enable bit
GL_COLOR_MATERIAL_FACE value

Color material parameters that are tracking the current color
Ambient scene color
GL_LIGHT_MODEL_LOCAL_VIEWER value
GL_LIGHT_MODEL_TWO_SIDE setting
GL_LIGHTING enable bit

Enable bit for each light

Ambient, diffuse, and specular intensity for each light

Direction, position, exponent, and cutoff angle for each light =~ Constant,

linear, and quadratic attenuation factors for each light
Ambient, diffuse, specular, and emissive color for each material
Ambient, diffuse, and specular color indices for each material
Specular exponent for each material
GL_SHADE_MODEL setting

GL_LINE_SMOOTH flag

GL_LINE_STIPPLE enable bit

Line stipple pattern and repeat counter

Line width

GL_LIST_BASE setting

GL_RED_BIAS and GL_RED_SCALE settings
GL_GREEN_BIAS and GL_GREEN_SCALE values
GL_BLUE_BIAS and GL_BLUE_SCALE
GL_ALPHA_BIAS and GL_ALPHA_SCALE
GL_DEPTH_BIAS and GL_DEPTH_SCALE
GL_INDEX_OFFSET and GL_INDEX_SHIFT values
GL_MAP_COLOR and GL_MAP_STENCIL flags
GL_ZOOM_X and GL_ZOOM._Y factors
GL_READ_BUFFER setting

GL_POINT_SMOOTH flag

Point size

GL_CULL_FACE enable bit
GL_CULL_FACE_MODE value

GL_FRONT_FACE indicator
GL_POLYGON_OFFSET_BIAS_EXT setting
GL_POLYGON_OFFSET_EXT flag
GL_POLYGON_OFFSET_FACTOR setting
GL_POLYGON_OFFSET_FACTOR_EXT setting
GL_POLYGON_OFFSET_FILL flag
GL_POLYGON_OFFSET_LINE flag
GL_POLYGON_OFFSET_POINT flag
GL_POLYGON_OFFSET_UNITS setting
GL_POLYGON_MODE setting
GL_POLYGON_SMOOTH flag
GL_POLYGON_STIPPLE enable bit

Polygon stipple image

GL_SCISSOR_TEST flag

Scissor box

Chapter 1. OpenGL Subroutines

277



GL_STENCIL_BUFFER_BIT GL_STENCIL_TEST enable bit
Stencil function and reference value
Stencil value mask
Stencil fail, pass, and depth buffer pass actions
Stencil buffer clear value
Stencil buffer writemask
GL_TEXTURE_BIT Enable bits for the four texture coordinates
Border color for each texture image
Minification function for each texture image
Magnification function for each texture image
Texture coordinates and wrap mode for each texture image
Color and mode for each texture environment
Enable bits GL_TEXTURE_GEN_x, xis S, T, R, and Q
GL_TEXTURE_GEN_MODE setting for S, T, R, and Q
glTexGen plane equations for S, T, R, and Q
Enables for 1D, 2D, and 3D_EXT testures
GL_TRANSFORM_BIT Coefficients of the six clipping planes
Enable bits for the user-definable clipping planes
GL_MATRIX_MODE value
GL_NORMALIZE flag
GL_VIEWPORT_BIT Depth range (near and far)
Viewport origin and extent

The glPopAttrib subroutine restores the values of the state variables saved with the last glPushAttrib
subroutine. Those not saved are left unchanged.

It is an error to push attributes onto a full stack, or to pop attributes off an empty stack. In either case, the
error flag is set, and no other change is made to GL state.

Initially, the attribute stack is empty.

Notes

Not all values for the GL state can be saved on the attribute stack. For example, pixel pack and unpack
state, render mode state, and select and feedback state cannot be saved.

The depth of the attribute stack is dependent on the implementation, but it must be at least 16.

Errors

GL_STACK_OVERFLOW The glPushAttrib subroutine is called while the attribute stack is full.
GL_STACK_UNDERFLOW The glPopAttrib subroutine is called while the attribute stack is empty.
GL_INVALID_OPERATION The glPushAttrib subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets
glGet with argument GL_ATTRIB_STACK_DEPTH

glGet with argument GL_MAX_ATTRIB_STACK_DEPTH.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

278 OpenGL 1.2 Reference Manual



Related Information

The |glBegin| subroutine, |§IEnd|subroutine, |§IGeﬂ subroutine, |gIGetCIipPIane| subroutine, |gIGetErroF|
subroutine, [giGetLight] subroutine, [glGetMap]| subroutine, |glGetMaterial| subroutine, |glGetPixelMap|
subroutine, [glGetPolygonStipple| subroutine, |9IGetStt‘Lnngubroutine, lglGetTexEnv| subroutine,
IGetTexGen| subroutine, |glGetTexImage| subroutine, |glGetTexLevelParameter| subroutine,
IGetTexParameter| subroutine, |gIIsEnabIed| subroutine, [gIPushClientAttrib or PopClientAttrib|
subroutine.

glPushClientAttrib or glPopClientAttrib Subroutine

Purpose
Pushes and pops the attribute stack.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1PushClientAttrib(GLbitfield mask)
void glPopClientAttrib(void)

Parameters

mask  Specifies a mask that indicates which attributes to save. Values for mask are listed below.

Description

The glPushClientAttrib subroutine takes one argument, a mask that indicates which groups of client state
variables to save on the client attribute stack. Symbolic constants are used to set bits in the mask. The
mask parameter is typically constructed by OR’ing several of these constants together. The special mask
GL_CLIENT_ALL_ATTRIB_BITS can be used to save all stackable client state.

The symbolic mask constants and their associated GL client state are as follows (the second column lists
which attributes are saved):

GL_CLIENT_PIXEL_STORE_BIT Pixel storage modes
GL_CLIENT_VERTEX_ARRAY_BIT Vertex arrays (and enables)

The glPopClientAttrib subroutine restores the values of the client state variables saved with the last
glPushClientAttrib. Those not * saved are left unchanged.

It is an error to push attributes onto a full client attribute stack, or to pop attributes off an empty stack. In
either case, the error flag is set, and no other change is made to GL state.

Initially, the client attribute stack is empty.

Notes
The glPushClientAttrib subroutine is available only if the GL version is 1.1 or greater.

Not all values for GL client state can be saved on the attribute stack. For example, select and feedback
state cannot be saved.

Chapter 1. OpenGL Subroutines 279



The depth of the attribute stack depends on the implementation, but it must be at least 16.

The glPushClientAttrib and glPopClientAttrib subroutines are not compiled

into display lists, but are executed immediately.

Use glPushAttrib and glPopAttrib to push and restore state which is kept on the server. Only pixel

storage modes and vertex array state may be pushed and popped with glPushClientAttrib and
glPopClientAttrib.

Errors
GL_STACK_OVERFLOW is generated if glPushClientAttrib is called while the attribute stack is full.

GL_STACK_UNDERFLOW is generated if glPopClientAttrib is called while the attribute stack is empty.

Associated Gets
glGet with argument GL_ATTRIB_STACK_DEPTH

glGet with argument GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

Related Information

The LqICoIorPointeﬂ subroutine, ITIDisabIeCIientStatel subroutine, |gIEdgeFlagPointer] subroutine,
EIEnableClientStatel subroutine, [glGet] subroutine, |glGetError| subroutine, |glindexPointer| subroutine,

INewList| subroutine, [gINormalPointer| subroutine, [gIPixelStore| subroutine, [gIPushAttrib| subroutine,
ITexCoordPointer| subroutine, |gIVertexPointe[| subroutine.

glPushMatrix or glPopMatrix Subroutine

Purpose
Pushes and pops the current matrix stack.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1PushMatrix(void)
void glPopMatrix(void)

Description

There is a stack of matrices for each of the matrix modes. In GL_MODELVIEW mode, the stack depth is
at least 32. In the other two modes, GL_PROJECTION and GL_TEXTURE, the depth is at least 2. The
current matrix in any mode is the matrix on the top of the stack for that mode.

The glPushMatrix subroutine pushes the current matrix stack down by one, duplicating the current matrix.
That is, after a glPushMatrix call, the matrix on the top of the stack is identical to the one below it.

The glPopMatrix subroutine pops the current matrix stack, replacing the current matrix with the one below
it on the stack.

Initially, each of the stacks contains one matrix, an identity matrix.

280 OpenGL 1.2 Reference Manual



It is an error to push a full matrix stack, or to pop a matrix stack that contains only a single matrix. In
either case, the error flag is set, and no other change is made to GL state.

Error Codes

GL_STACK_OVERFLOW The glPushMatrix subroutine is called while the current matrix stack is full.

GL_STACK_UNDERFLOW The glPopMatrix subroutine is called while the current matrix stack contains
only a single matrix.

GL_INVALID_OPERATION The glPushMatrix subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPushMatrix or glPopMatrix subroutine are as follows. (See the [gIGef]
subroutine for more information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX

glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX

glGet with argument GL_MODELVIEW_STACK_DEPTH

glGet with argument GL_PROJECTION_STACK_DEPTH
glGet with argument GL_TEXTURE_STACK_DEPTH

glGet with argument GL_MAX_MODELVIEW_STACK_DEPTH
glGet with argument GL_MAX_PROJECTION_STACK_DEPTH
glGet with argument GL_MAX_TEXTURE_STACK_DEPTH.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin or glEnd| subroutine, |gIFrustum| subroutine, |glLoadldentity| subroutine, [glLoadMatri
subroutine, |giMatrixMode] subroutine, [gIMultMatrix| subroutine, [glOrtho| subroutine, |giRotate| subroutine,

|gIScalg| subroutine, |gITransIatg| subroutine, |gIViewpor:t| subroutine.

glPushName or glPopName Subroutine

Purpose
Pushes and pops the name stack.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 281



C Syntax
void g1PushName (GLuint Name)
void g1PopName(void)

Parameters

Name  Specifies a name that will be pushed onto the name stack.

Description

The name stack is used during selection mode to allow sets of rendering commands to be uniquely
identified. It consists of an ordered set of unsigned integers. The glPushName subroutine causes the
Name parameter to be pushed onto the name stack, which is initially empty. The glPopName subroutine
pops one name off the top of the stack.

It is an error to push a name onto a full stack, or to pop a name off an empty stack. It is also an error to
manipulate the name stack between a call to the glBegin subroutine and the corresponding call to the
glEnd subroutine. In any of these cases, the error flag is set and no other change is made to GL state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glPushName or
glPopName while the render mode is not GL_SELECT are ignored.

Associated Gets

Associated gets for the glPushName or giIPopName subroutine are as follows. (See the subroutine
for more information.)

glGet with argument GL_NAME_STACK_DEPTH

glGet with argument GL_MAX_NAME_STACK_DEPTH.

Error Codes

GL_STACK_OVERFLOW The glPushName subroutine is called while the name stack is full.
GL_STACK_UNDERFLOW The glPopName subroutine is called while the name stack is empty.
GL_INVALID_OPERATION The glPushName or glPopName subroutine is called between a call to

glBegin and the corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |gIBegin or glEnd| subroutine, subroutine, |glLoadName| subroutine, [gIRenderMode
subroutine, |gISeIectBuffe[| subroutine.

glRasterPos Subroutine

Purpose
Specifies the raster position for pixel operations.

282 OpenGL 1.2 Reference Manual



Library
OpenGL C bindings library: libGL.a

C Syntax

void glRasterPos2d(GLdouble Eﬂ,
GLdouble

void glRasterPos2f(GLfloat El,
GLfloat Eb

void glRasterPos2i(GLint Eﬂ,
GLint

void glRasterPos2s(GLshort Eﬂ,
GLshort

void glRasterPos3d(GLdouble Eﬂ,
GLdouble Y],
GLdouble

void glRasterPos3f(GLfloat El,
GLfloat |V,
GLfloat

void glRasterPos3i(GLint Eﬂ,
GLint )
GLint

void glRasterPos3s(GLshort EL
GLshort |V,
GLshort

void glRasterPos4d(GLdouble Eﬂ,
GLdouble 5
GLdouble )
GLdouble

void glRasterPos4f(GLfloat EL
GLfloat |V,
GLfloat |7,
GLfloat

void glRasterPos4i(GLint Eﬂ,

GLint )
GLint )
GLint

void glRasterPos4s(GLshort El,

GLshort |V,
GLshort |7,
GLshort

void glRasterPos2dv(const GLdouble * Eb
void glRasterPos2fv(const GLfloat * ED

Chapter 1. OpenGL Subroutines 283



void glRasterPos2iv(const GLint = Eb

void glRasterPos2sv(const GLshort * Eb
void glRasterPos3dv(const GLdouble * Eb
void glRasterPos3fv(const GLfloat * Eb
void glRasterPos3iv(const GLint * Eb

void glRasterPos3sv(const GLshort * ED
void glRasterPos4dv(const GLdouble * Eb
void glRasterPos4fv(const GLfloat * ED
void glRasterPos4iv(const GLint »* Eb

void glRasterPos4sv(const GLshort * Eb

Parameters

XY, Z W Specify the x, y, z, and w object coordinates (if present) for the raster position.
v Specifies a pointer to an array of two, three, or four elements, specifying x, y, z, and w
coordinates, respectively.

Description

The GL maintains a 3-dimensional (3D) position in window coordinates. This position, called the raster
position, is maintained with subpixel accuracy. It is used to position pixel and bitmap write operations. (See
the [gIBitmap] subroutine for information on drawing bitmaps: the [gICopyPixels| subroutine for information
on copying pixels to the frame buffer; and the |gIDrawPixels| subroutine for information on writing a block
of pixels to the frame buffer.)

The current raster position consists of four window coordinates (X, Y, Z, W), a valid bit, and associated
color data and texture coordinates. The W coordinate is actually a clip coordinate, because W is not
projected to window coordinates. The glRasterPos4 subroutine specifies object coordinates X, Y, Z, and
W explicitly. The glRasterPos3 subroutine specifies object coordinates X, Y, and Z explicitly, while W' is
implicitly set to 1 (one). The glRasterPos2 subroutine uses the argument values for X and Y while
implicitly setting Zand Wto 0 (zero) and 1.

The object coordinates presented by glRasterPos are treated just like those of a glVertex subroutine:
they are transformed by the current modelview and projection matrices and passed to the clipping stage. If
the vertex is not culled, it is projected and scaled to window coordinates, which become the new current
raster position, and the GL_CURRENT_RASTER_POSITION_VALID flag is set. If the vertex is culled, the
valid bit is cleared and the current raster position and associated color and texture coordinates are
undefined.

The current raster position also includes some associated color data and texture coordinates. If lighting is
enabled, GL_CURRENT_RASTER_COLOR in red, green, blue, alpha (RGBA) mode or the
GL_CURRENT_RASTER_INDEX in color index mode is set to the color produced by the lighting
calculation. (See the [glLight| subroutine for information on setting light source parameters; the
subroutine for information on setting lighting model parameters; and the [giShadeModel]
subroutine for information on selecting flat or smooth shading.) If lighting is disabled, current color (in

RGBA mode, state variable GL_CURRENT_COLOR) or color index (in color index mode, state variable
GL_CURRENT_INDEX) is used to update the current raster color.

284 OpenGL 1.2 Reference Manual



Likewise, the GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of the
GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture generation functions.
(See the |gITexGen| subroutine for information on generating texture coordinates.)

Initially, the current raster position is (0,0,0,1), the valid bit is set, the associated RGBA color is (1,1,1,1),
the associated color index is 1, and the associated texture coordinates are (0,0,0,1). In RGBA mode,

GL_CURRENT_RASTER_INDEX is always 1; in color index mode, the current raster RGBA color always
maintains its initial value.

Notes
The raster position is modified both by glRasterPos and by giBitmap.

When the raster position coordinates are not valid, drawing commands that are based on the raster
position are ignored (that is, they do not result in changes to GL state).

Errors

GL_INVALID_OPERATION The glRasterPos subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glRasterPos subroutine are as follows. (See the [giGet] subroutine for more
information.)

glGet with argument GL_CURRENT_RASTER_POSITION

glGet with argument GL_CURRENT_RASTER_POSITION_VALID
glGet with argument GL_CURRENT_RASTER_COLOR

glGet with argument GL_CURRENT_RASTER_INDEX

glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin or glEnd| subroutine, lgiBitmap| subroutine, [glCopyPixels| subroutine, [gIDrawPixel
subroutine, |glLight| subroutine, [glLightModel| subroutine, |giIShadeModel| subroutine, |glITexCoord

subroutine, subroutine, subroutine.

glReadBuffer Subroutine

Purpose
Selects a color buffer source for pixels.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 285



C Syntax

void gl1ReadBuffer(GLenum Mode)

Parameters

Mode  Specifies a color buffer. Accepted values are as follows:
* GL_FRONT_LEFT
* GL_FRONT_RIGHT
« GL_BACK_LEFT
* GL_BACK_RIGHT
* GL_FRONT, GL_BACK
* GL_LEFT
* GL_RIGHT
e GL_AUXi/, where i is between 0 (zero) and GL_AUX_BUFFERS - 1

Description

The glReadBuffer subroutine specifies a color buffer as the source for subsequent glReadPixels and
glCopyPixels subroutines. The Mode parameter accepts one of twelve or more predefined values.
(GL_AUXO0 through GL_AUXS3 are always defined.) In a fully configured system, GL_FRONT, GL_LEFT,
and GL_FRONT_LEFT all name the front left buffer, GL_FRONT_RIGHT and GL_RIGHT name the front
right buffer, and GL_BACK_LEFT and GL_BACK name the back left buffer. Nonstereo configurations
have only a left buffer, or a front left and a back left buffer if double-buffered. Single-buffered
configurations have only a front buffer, or a front left and a front right buffer if stereo. It is an error to
specify a nonexistent buffer to glReadBuffer.

By default, the Mode parameter is GL_FRONT in single-buffered configurations and GL_BACK in
double-buffered configurations.

Error Codes

GL_INVALID_ENUM Mode is not one of the twelve (or more) accepted values.
GL_INVALID_OPERATION Mode specifies a buffer that does not exist.
GL_INVALID_OPERATION The glReadBuffer subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets
Associated gets for the glReadBuffer subroutine are as follows. (See the subroutine.)

glGet with argument GL_READ_BUFFER.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The|ngegin or gIEnd| subroutine, |glCopyPixels| subroutine, [glDrawBuffer| subroutine, [gIReadPixel

subroutine.

286 OpenGL 1.2 Reference Manual



glReadPixels Subroutine

Purpose
Reads a block of pixels from the frame buffer.
Library
OpenGL C bindings library: libGL.a
C Syntax
void glReadPixels(GLint X,
GLint Y,
GLsizei Width,
GLsizei Height,
GLenum Format,
GLenum Type,
GLvoid *Pixels)
Parameters
XY Specify the window coordinates of the first pixel that is read from the frame buffer. This
location is the lower left corner of a rectangular block of pixels.
Width, Height Specify the dimensions of the pixel rectangle. Width and Height of 1 (one) correspond to a
single pixel.
Format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX,

GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA, GL_ABGR_EXT,
GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_422_EXT, GL_422_REV_EXT,
GL_422_AVERAGE_EXT and GL_422 REV_AVERAGE_EXT are accepted.

Type Specifies the data type for Pixels. Sybolic constants GL_UNSIGNED_BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,
GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT 4 4 4 4, GL_UNSIGNED_SHORT 4_4 4 4 _REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,
GL_UNSIGNED_INT_8_8_8_ 8, GL_UNSIGNED_INT_8_8 8 8 REV,
GL_UNSIGNED_INT_10_10_10_2, GL_UNSIGNED_INT_2_10_10_10_REV are accepted.
Pixels Returns the pixel data.
Description

The glReadPixels subroutine returns pixel data from the frame buffer, starting with the pixel whose lower
left corner is at location (X, Y), and puts it into client memory starting at the location specified by the Pixels
parameter. Several parameters control the processing of the pixel data before it is placed into client
memory. These parameters are set with three subroutines: glPixelStore, glPixelTransfer, and
glPixelMap. The effects on glReadPixels of most, but not all, of the parameters specified by these three
subroutines are described here.

The glReadPixels subroutine returns values from each pixel with the lower left-hand corner at (x + i, y + )
for 0 < i < Width and 0 < j < Height. This pixel is said to be the ith pixel in the jfth row. Pixels are returned
in row order from the lowest to the highest row, left to right in each row.

The Format parameter specifies the format for the returned pixel values. Accepted values for Format are
as follows:

Chapter 1. OpenGL Subroutines 287



GL_COLOR_INDEX

GL_STENCIL_INDEX

GL_DEPTH_COMPONENT

GL_ABGR_EXT

GL_RED

GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

288 OpenGL 1.2 Reference Manual

Color indexes are read from the color buffer selected by the
glReadBuffer subroutine. Each index is converted to fixed-point format,
shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If
GL_MAP_COLOR is GL_TRUE, indexes are replaced by their mappings
in the table GL_PIXEL_MAP_I_TO_LI.

Stencil values are read from the stencil buffer. Each index is converted to
fixed-point format, shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If
GL_MAP_STENCIL is GL_TRUE, indexes are replaced by their
mappings in the table GL_PIXEL_MAP_S_TO_S.

Depth values are read from the depth buffer. Each component is
converted to floating-point format such that the minimum depth value
maps to 0.0 and the maximum value maps to 1.0. Each component is
then multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, and
finally clamped to the range [0,1].

Each pixel is a four-component group: for GL_RGBA, the red component
is first, followed by green, followed by blue, followed by alpha; for
GL_BGRA, the blue component is first, followed by green, followed by
red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,
green, and then red. Floating-point values are converted directly to an
internal floatingpoint format with unspecified precision. Signed integer
values are mapped linearly to the internal floating-point format such that
the most positive representable integer value maps to 1.0, and the most
negative representable value maps to -1.0. Unsigned integer data is
mapped similarly: the largest integer value maps to 1.0, and zero maps to
0.0. The resulting floating-point color values are then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where cis RED, GREEN,
BLUE, and ALPHA for the respective color components. The results are
clamped to the range [0,1].

Each pixel is a single red component. This component is converted to the
internal floating-point format in the same way as the red component of an
RGBA pixel is, then it is converted to an RGBA pixel with green and blue
set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated
just as if it had been read as an RGBA pixel.

Each pixel is a single green component. This component is converted to
the internal floating-point format in the same way as the green component
of an RGBA pixel is, then it is converted to an RGBA pixel with red and
blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is
treated just as if it had been read as an RGBA pixel.

Each pixel is a single blue component. This component is converted to
the internal floating-point format in the same way as the blue component
of an RGBA pixel is, then it is converted to an RGBA pixel with red and
green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is
treated just as if it had been read as an RGBA pixel.

Each pixel is a single alpha component. This component is converted to
the internal floating-point format in the same way as the alpha component
of an RGBA pixel is, then it is converted to an RGBA pixel with red,
green, and blue set to 0.0. After this conversion, the pixel is treated just
as if it had been read as an RGBA pixel.

Each pixel is a three-component group, red first, followed by green,
followed by blue. Each component is converted to the internal
floating-point format in the same way as the red, green, and blue
components of an RGBA pixel are. The color triple is converted to an
RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated
just as if it had been read as an RGBA pixel.



GL_RGBA

GL_BGR

GL_BGRA

GL_LUMINANCE

Each pixel is a four-component group, red first, followed by green,
followed by blue, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where cis RED,
GREEN, BLUE, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

Each pixel is a three-component group, blue first, followed by green,
followed by red. Each component is converted to the internal floating-point
format in the same way as the blue, green, and red components of an
BGRA pixel are. The color triple is converted to an BGRA pixel with alpha
set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an BGRA pixel.

Each pixel is a four-component group, blue first, followed by green,
followed by red, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,
GREEN, RED, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

Each pixel is a single luminance component. This component is converted
to the internal floating-point format in the same way as the red component
of an RGBA pixel is, then it is converted to an RGBA pixel with red,
green, and blue set to the converted luminance value, and alpha set to
1.0. After this conversion, the pixel is treated just as if it had been read as
an RGBA pixel.

Chapter 1. OpenGL Subroutines 289



GL_LUMINANCE_ALPHA

GL_422_EXT

GL_422_REV_EXT

290 OpenGL 1.2 Reference Manual

Processing differs depending on whether color buffers store color indexes
or red, green, blue, alpha (RGBA) color components. If color indexes are
stored, they are read from the color buffer selected by glReadBuffer.
Each index is converted to fixed-point format, shifted left or right
depending on the value and sign of GL_INDEX_SHIFT, and added to
GL_INDEX_OFFSET. Indexes are then replaced by the RGBA values
obtained by indexing the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables.

If RGBA color components are stored in the color buffers, they are read
from the color buffer selected by glReadBuffer. Each color component is
converted to floating-point format such that zero intensity maps to 0.0 and
full intensity maps to 1.0. Each component is then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where ¢ is GL_RED,
GL_GREEN, GL_BLUE, and GL_ALPHA. Each component is clamped to
the range [0,1]. Finally, if GL_MAP_COLOR is GL_TRUE, each color
component c¢ is replaced by its mapping in the table
GL_PIXEL_MAP_c_TO_c, where c again is GL_RED, GL_GREEN,
GL_BLUE, and GL_ALPHA. Each component is scaled to the size its
corresponding table before the lookup is performed.

Finally, unneeded data is discarded. For example, GL_RED discards the
green, blue, and alpha components, while GL_RGB discards only the
alpha component. GL_LUMINANCE computes a single component value
as the sum of the red, green, and blue components, and
GL_LUMINANCE_ALPHA does the same, while keeping alpha as a
second value.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_RGB_TO_YCBCR_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glReadPixels is called with this
parameter. The internal RGB values are sent through the RGB_to_YCbCr
matrix to create Y, Cb, and Cr values. Each returned pixel is a
two-component group. The first component is Y. The second component
is Cb in the even pixels and Cr in the odd pixels. The Cb for each even
pixel comes from the Cb value for that pixel. The Cr in each odd pixel
comes from the Cr value of its neighbor to the left. (If the width of the
image is odd, then the colors will be undefined in the rightmost column.).
This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_RGB_TO_YCBCR_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glReadPixels is called with this
parameter. The internal RGB values are sent through the RGB_to_YCbCr
matrix to create Y, Cb, and Cr values. Each returned pixel is a
two-component group. The first component is Cb in the even pixels and
Cr in the odd pixels. The second component is Y. The Cb for each even
pixel comes from the Cb value for that pixel. The Cr in each odd pixel
comes from its neighbor to the left. (If the width of the image is odd, then
the colors will be undefined in the rightmost column.).



GL_422_AVERAGE_EXT

GL_422_REV_AVERAGE_EXT

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_RGB_TO_YCBCR_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glReadPixels is called with this
parameter. The internal RGB values are sent through the RGB_to_YCbCr
matrix to create Y, Cb, and Cr values. Each returned pixel is a
two-component group. The first component is Y. The second component
is Cb in the even pixels and Cr in the odd pixels. Each even pixel gets its
Cb from itself, and its Cr from its neighbor to the right. Each odd pixel
gets its Cb from the average of its own Cb and that of its left neighbor,
and gets its Cr from the average of its own Cr and that of its left neighbor.
(If the width of the image is odd, then the colors will be undefined in the
rightmost column. If the neighbors to the right are not present for a given
fragment, we use GL_422_EXT to compute that fragment.).

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_RGB_TO_YCBCR_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glReadPixels is called with this
parameter. The internal RGB values are sent through the RGB_to_YCbCr
matrix to create Y, Cb, and Cr values. Each returned pixel is a
two-component group. The first component is Cb in the even pixels and
Cr in the odd pixels. The second component is Y. Each even pixel gets its
Cb from itself, and its Cr from its neighbor to the right. Each odd pixel
gets its Cb from the average of its own Cb and that of its left neighbor,
and gets its Cr from the average of its own Cr and that of its left neighbor.
(If the width of the image is odd, then the colors will be undefined in the
rightmost column. If the neighbors to the right are not present for a given
fragment, we use GL_422_EXT to compute that fragment.).

The shift, scale, bias, and lookup factors described in the preceding section are all specified by
glPixelTransfer. The lookup table contents themselves are specified by the glPixelMap subroutine.

The final step involves converting the indexes or components to the proper format, as specified by the
Type parameter. If the Format parameter is GL_COLOR_INDEX or GL_STENCIL_INDEX and Type is not
GL_FLOAT, each index is masked with the mask value given in the following table. If the Type parameter
is GL_FLOAT, each integer index is converted to single-precision floating-point format.

If the Format parameter is any legal value other than GL_COLOR_INDEX, GL_STENCIL_INDEX, or
GL_DEPTH_COMPONENT, and the Type parameter is not GL_FLOAT, each component is multiplied by
the multiplier shown in the following table. If Type is GL_FLOAT, each component is passed as is (or
converted to the client’s single-precision floating-point format if it is different from the one used by the GL).

Type Index Mask Component Conversion
GL_UNSIGNED_BYTE 28 1 (2% -1)c
GL_BYTE 27 -1 (2" -1)c-112
GL_BITMAP 1 1
GL_UNSIGNED_SHORT 216 1 (2 -1)c
GL_SHORT 2'5 -1 [(2" -1)c-1)2
GL_UNSIGNED_INT 2% 1 (2* -1)c
GL_INT 251 1 [(2%" -1)c-1)/2
GL_FLOAT none c
GL_UNSIGNED_BYTE_3_3 2 28 1 (2N -1)c
GL_UNSIGNED_BYTE_2_3_3_REV 28 1 (2N -1)c

Chapter 1. OpenGL Subroutines 291




Type Index Mask Component Conversion
GL_UNSIGNED_SHORT_5_6_5 21 -1 (2N -1)c
GL_UNSIGNED_SHORT_5_6_5_REV 216 1 (2N -1)c
GL_UNSIGNED_SHORT 4 4 4 4 216 -1 (2N -1)c
GL_UNSIGNED_SHORT_4_4 4 4 REV 216 1 (2N -1)c
GL_UNSIGNED_SHORT 5 5 5_1 216 -1 (2N -1)c
GL_UNSIGNED_SHORT_1_5_5_5_REV 216 1 (2N -1)c
GL_UNSIGNED_INT 8 8 8 8 2% 1 (2N -1)c
GL_UNSIGNED_INT_8_8_8_8_REV 2% 1 (2N -1)c
GL_UNSIGNED_INT_10_10_10_2 2% 1 (2N -1)c
GL_UNSIGNED_INT_2_10_10_10_REV 2% 1 (2N -1)c

Equations with N as the exponent are performed for each bitfield of the packed data type, with N set to the
number of bits in the bitfield.

Return values are placed in memory as follows. If the Format parameter is GL_COLOR_INDEX,
GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, or
GL_LUMINANCE, a single value is returned and the data for the ith pixel in the jtth row is placed in
location (j) Width + i. GL_RGB and GL_BGR return three values, GL_RGBA, GL_BGRA, and
GL_ABGR_EXT return four values, and GL_LUMINANCE_ALPHA, GL_422_EXT, GL_422_REV_EXT,
GL_422_AVERAGE_EXT and GL_422_REV_AVERAGE_EXT return two values for each pixel, with all
values corresponding to a single pixel occupying contiguous space in Pixels. Storage parameters set by
glPixelStore, such as GL_PACK_SWAP_BYTES and GL_PACK_LSB_FIRST, affect the way that data is

written into memory. See the [gIPixelStore| subroutine for a description.

Notes

Values for pixels that lie outside the window connected to the current GL context are undefined. If an error
is generated, no change is made to the contents of Pixels.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL
command set.

Packed pixel types and BGR/BGRA formats are only supported in OpenGL 1.2 and later.

Error Codes

GL_INVALID_ENUM Format or Type is not an accepted value.

GL_INVALID_VALUE Width or Height is negative.

GL_INVALID_OPERATION Format is GL_COLOR_INDEX and the color buffers store RGBA color
components.

GL_INVALID_OPERATION Format is GL_STENCIL_INDEX and there is no stencil buffer.

GL_INVALID_OPERATION Format is GL_DEPTH_COMPONENT and there is no depth buffer.

GL_INVALID_OPERATION The glReadPixels subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glReadPixels subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_INDEX_MODE.

292 OpenGL 1.2 Reference Manual



Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |gIBegin or glEnd| subroutine, |gICopyPiers| subroutine, |gIDrawPier§| subroutine, |gIPixelMap|
subroutine, |gIPierStore| subroutine, |9IPierTransfe[| subroutine, |9IReadBuffe[| subroutine.

glRect Subroutine

Purpose
Draws a rectangle.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glRectd(GLdouble [xI],
GLdouble
GLdouble
GLdouble

void glRectf(6Lfloat [xi],
GLfloat
GLfloat
GLfloat

void glRects(GLshort ,
GLshort
GLshort
GLshort

void glRectdv(const GLdouble * ,
const GLdouble =

void glRectfv(const GLfloat * ,
const GLfloat *

void glRectiv(const GLint = ,

const GLint *

void glRectsv(const GLshort * ,
const GLshort =*

Chapter 1. OpenGL Subroutines 293



Parameters

X1, Y1 Specify one vertex of a rectangle.

X2, Y2 Specify the opposite vertex of the rectangle.

Vi Specifies a pointer to one vertex of a rectangle.

Ve Specifies a pointer to the opposite vertex of the rectangle.
Description

The glRect subroutine supports efficient specification of rectangles as two corner points. Each rectangle
command takes four arguments, organized either as two consecutive pairs of (x,y) coordinates, or as two
pointers to arrays, each containing an (x,y) pair. The resulting rectangle is defined in the z=0 plane.

glRect (X1, Y1, X2, Y2) is equivalent to the following sequence:

g1Begin(GL_POLYGON) ;
glVertex2 (X1, Y1);
glVertex2(X2, Y1);
glVertex2 (X2, Y2);
glVertex2 (X1, Y2);
gleEnd();

Note: If the second vertex is above and to the right of the first vertex, the rectangle is constructed
with a counterclockwise winding.

Errors

GL_INVALID_OPERATION The glRect subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The |9IBe9in or gIEnd| subroutine, subroutine.

glRenderMode Subroutine

Purpose
Sets rasterization mode.

Library
OpenGL C bindings library: libGL.a

C Syntax

GLint g1RenderMode (GLenum Mode)

Parameters

Mode  Specifies the rasterization mode. Four values are accepted: GL_RENDER, GL_SELECT, GL_FEEDBACK,
and GL_VISIBILITY_IBM. The default value is GL_RENDER.

294 OpenGL 1.2 Reference Manual



Description

The glRenderMode subroutine sets the rasterization mode. It takes one argument, the Mode parameter,
which can assume one of four predefined values:

GL_RENDER

GL_SELECT

GL_FEEDBACK

GL_VISIBILITY_IBM

Render mode. Primitives are rasterized, producing pixel fragments, which are
written into the frame buffer. This is the normal mode, and also the default mode.
Selection mode. No pixel fragments are produced, and no change to the frame
buffer contents is made. Instead, a record of the names of primitives that would
have been drawn if the render mode was GL_RENDER is returned in a select
buffer, which must be created before selection mode is entered. (See the
[gISelectBuffer] subroutine for information about establishing a buffer for selection
mode values.)

Feedback mode. No pixel fragments are produced, and no change to the frame
buffer contents is made. Instead, the coordinates and attributes of vertices that
would have been drawn had the render mode been GL_RENDER are returned in a
feedback buffer, which must be created before feedback mode is entered. (See the
|g|FeedbackBuffe[| subroutine for information about controlling the feedback mode.)
Visibility RenderMode is identical to render RenderMode, except whenever a
fragment passes all tests (in other words, depth, stencil, alpha, scissor and
window-ownership) then a visibility hit results. Whenever a name stack manipulation
command is executed or RenderMode is called, and there is a hit since the last
time the stack was manipulated or RenderMode was called, then a hit record is
written into the visibility array. The hit record consists of the number of names in the
name stack at the time of the event, followed by the name stack contents (bottom
name first). (See the |glVisibilityBufferlBM| subroutine for information about
controlling the visibility mode.)

The return value of glRenderMode is determined by the render mode at the time glRenderMode is
called, rather than by the Mode parameter.

Refer to glSelectBuffer, glFeedbackBuffer and glVisibilityBufferIBM for more details concerning
selection, feedback and visibility operation.

Notes

If an error is generated, glRenderMode returns 0 (zero) regardless of the current render mode.

Errors

GL_INVALID_ENUM
GL_INVALID_OPERATION

GL_INVALID_OPERATION

GL_INVALID_OPERATION

GL_INVALID_OPERATION

Mode is not one of the four accepted values.

The glSelectBuffer subroutine is called while the render mode is
GL_SELECT, or glRenderMode is called with the GL_SELECT argument
before glSelectBuffer is called at least once.

The glFeedbackBuffer subroutine is called while the render mode is
GL_FEEDBACK, or glRenderMode is called with the GL_FEEDBACK
argument before glFeedbackBuffer is called at least once.

The glRenderMode subroutine is called between a call to glBegin and the
corresponding call to glEnd.

The glVisibilityBufferIBM subroutine is called while the render mode is
GL_VISIBILITY_IBM, or glRenderMode is called with the
GL_VISIBILITY_IBM argument before glVisibilityBufferIBM is called at least
once.

Chapter 1. OpenGL Subroutines 295



Associated Gets

Associated gets for the glRenderMode subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_RENDER_MODE.

Return Values

GL_RENDER 0.

GL_SELECT The number of hit records transferred to the select buffer.

GL_FEEDBACK The number of values (not vertices) transferred to the feedback buffer.
GL_VISIBILITY_IBM The number of hit records transferred to the visibility buffer.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The |gIBegin or glEnd| subroutine, |gIFeedbackBuffer] subroutine, |gVisibilityBufferlBM| subroutine,
%IlnitNames! subroutine, |gILoadNamg| subroutine, |gIPassThrough| subroutine, |gIPushNamg| subroutine,

glSelectBuffer| subroutine.

glRotate Subroutine

Purpose
Multiplies the current matrix by a rotation matrix.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glRotated(GLdouble Angle,
GLdouble X,
GLdouble Y,
GLdouble 7)

void glRotatef(GLfloat Angle,
GLfloat X,
GLfloat VY,
GLfloat 7)

Parameters

Angle Specifies the angle of rotation, in degrees.
XY Z Specify the X, Y, and Z coordinates of a vector, respectively.

Description

The glRotate subroutine computes a matrix that performs a counterclockwise rotation of Angle degrees
about the vector from the origin through the point (X, Y, 2).

296 OpenGL 1.2 Reference Manual



The current matrix is multiplied by this rotation matrix, with the product replacing the current matrix. That
is, if M is the current matrix and R is the translation matrix, M is replaced with MR. (See the |gIMatrixMode
subroutine for information on specifying the current matrix.)

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glRotate is
called are rotated. Use the glPushMatrix and glPopMatrix subroutines to save and restore the unrotated
coordinate system.

Associated Gets

Associated gets for the glRotate subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX.

Errors

GL_INVALID_OPERATION The glRotate subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The [gIBegin or glEnd|subroutine, [gIMatrixMode| subroutine, subroutine,
subroutine, |glScale| subroutine, subroutine.

glScale Subroutine

Purpose
Multiplies the current matrix by a general scaling matrix.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1Scaled(GLdouble X,
GLdouble Y,
GLdouble 7)

void glScalef(GLfloat X,
GLfloat VY,
GLfloat 7)

Chapter 1. OpenGL Subroutines 297



Parameters

XY Z Specify scale factors along the X, Y, and Z axes, respectively.

Description

The glScale subroutine produces a general scaling along the X, Y, and Z axes. The three arguments
indicate the desired scale factors along each of the three axes. The resulting matrix is as follows:

0

o O
o O o

X
0
00
0

O N

0 1
\ /
Figure 22. Resulting Matrix. This diagram shows a matrix enclosed in brackets. The matrix consists of four lines
containing four characters each. The first line contains the following (from left to right): x, zero, zero, zero. The second

line contains the following (from left to right): zero, y, zero, zero. The third line contains the following (from left to right):
zero, zero, z, zero. The fourth line contains the following (from left to right): zero, zero, zero, one.

The current matrix is multiplied by this scale matrix, with the product replacing the current matrix. That is, if
M is the current matrix and S is the scale matrix, M is replaced with MS. (See the |gIMatrixMode
subroutine for information on specifying the current matrix.)

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glScale is
called are scaled. Use the glPushMatrix and glPopMatrix subroutines to save and restore the unscaled
coordinate system.

Notes

If scale factors other than 1.0 are applied to the modelview matrix and lighting is enabled, automatic
normalization of normals should probably also be enabled. (Use the glEnable and glDisable subroutines
with the GL_NORMALIZE argument.)

Errors

GL_INVALID_OPERATION The glScale subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glScale subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_MATRIX_MODE
glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX.

298 OpenGL 1.2 Reference Manual



Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin or glEnd| subroutine, [glEnable] subroutine, |giMatrixMode| subroutine,

subroutine, |gIPushMatri)_<| subroutine, |glRotate| subroutine, e| subroutine.

glScissor Subroutine

Purpose
Defines the scissor box.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1Scissor(GLint X,
GLint VY,
GLsizei Width,
GLsizei Height)

When the scissor test is disabled, it is as though the scissor box includes the entire window.

Parameters

XY Specify the lower left corner of the scissor box. Initially (0,0).

Width, Height Specify the width and height of the scissor box. When a GL context is first attached to a
window, Width and Height are set to the dimensions of that window.

Description

The glScissor subroutine defines a rectangle, called the scissor box, in window coordinates. The first two
arguments, X and Y, specify the lower left corner of the box. The Width and Height parameters specify the
width and height of the box.

The scissor test is enabled and disabled with the glEnable and glDisable subroutines with the
GL_SCISSOR_TEST argument. While the scissor test is enabled, only pixels that lie within the scissor box
can be modified by drawing commands. Window coordinates have integer values at the shared corners of
frame buffer pixels, so g1Scissor(0,0,1,1) allows only the lower left pixel in the window to be modified,
and g1Scissor(0,0,0,0) disallows modification to all pixels in the window.

Errors
GL_INVALID_VALUE Width or Height is negative.
GL_INVALID_OPERATION The glScissor subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Chapter 1. OpenGL Subroutines 299



Associated Gets

Associated gets for the glScissor subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_SCISSOR_BOX

glisEnabled| with argument GL_SCISSOR_TEST.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |gIBegin or gIEnd| subroutine, |gIEnabIe or glDisable| subroutine, [glViewport subroutine.

glSecondaryColorEXT Subroutine

Purpose
Specifies an RGB color used by the Color Sum stage.

Library
OpenGL C bindings library: (libGL.a)

C Syntax

void glSecondaryColorbEXT(GLbyte [Redl|,
GLbyte [Green),

GLbyte [Blue))
void glSecondaryColorsEXT(GLshort |Red|,
GLshort |Green|,
GLshort |Blue
void glSecondaryColoriEXT(GLint [Red|,
GLint |Green|,
GLint |Blue
void glSecondaryColorfEXT(GLfloat |Red|,
GLfloat |Green),
GLfloat [Blue)
void glSecondaryColordEXT(GLdouble
GLdouble
GLdouble
void glSecondaryColorubEXT (GLubyte
GLubyte
GLubyte
void glSecondaryColorusEXT(GLushort [|Red|,
GLushort |Green|,
GLushort |[Blue
void glSecondaryColoruiEXT(GLuint
GLuint
GLuint
void glSecondaryColorbvEXT (GLbyte
void glSecondaryColorsvEXT(GLshort
void glSecondaryColorivEXT(GLint [<Variable)

300 OpenGL 1.2 Reference Manual



void glSecondaryColorfvEXT(GLfloat |*Variable|b
void glSecondaryColordvEXT (GLdouble [xVariable
void glSecondaryColorubvEXT(GLubyte [<Variable

void glSecondaryColorusvEXT(GLushort |[x/ariablel
void glSecondaryColoruivEXT(GLuint [«Variable)
Description

This extension allows specifying the RGB components of the secondary color used in the Color Sum
stage, instead of using the default (0,0,0,0) color. It applies only in RGBA mode and when LIGHTING is
disabled.

Secondary alpha is always implicitly set to 0.0.

After texturing, a fragment has two RGBA colors: a primary color c_pri (which texturing, if enabled, may
have modified) and a secondary color c_sec.

If color sum is enabled, the components of these two colors are summed to produce a single
post-texturing RGBA color ¢ (the A component of the secondary color is always 0). The components of ¢
are then clamped to the range [0,1]. If color sum is disabled, then c_pri is assigned to the post texturing
color. Color sum is enabled or disabled using the generic Enable and Disable commands, respectively,
with the symbolic constant GL_COLOR_SUM_EXT.

Parameters

Red,Green,Blue Specify the red, green and blue values of the Secondary
color.

Variable Specifies a pointer to an array of three values. These are
interpreted, respectively, as the red, green and blue
values of the Secondary color.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

glSecondaryColorPointerEXT Subroutine

Purpose

Specifies an array of secondary colors.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glSecondaryColorPointerEXT(GLint [size),
GLenum [typel,
GLsizei

*pointer|)

const GLvoid

Chapter 1. OpenGL Subroutines 301



Description

The glSecondaryColorPointerEXT extension specifies the location and data format of an array of
secondary color components to use when rendering. The size parameter specifies the number of
components per color, and must be 3 or 4. The type parameter specifies the data type of each color
component and stride gives the byte stride from one color to the next allowing vertices and attributes to be
packed into a single array or stored in separate arrays. (Single-array storage may be more efficient on
some implementations; see |g|lnter|eavedArraysb.

When a secondary color array is specified, size, type, stride, and pointer are saved as client side state.

To enable and disable the secondary color array, call glEnableClientState and glDisableClientState with
the argument GL_SECONDARY_COLOR_ARRAY. If enabled, the secondary color array is used when
glDrawArrays, glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Secondary Color array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

size specifies the number of components per color. It must be
3 or 4. The initial value is 4.

type specifies the data type of each color component in the

array. Symbolic constants GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, or GL_DOUBLE are accepted. The initial
value is GL_FLOAT.

stride specifies the byte offset between consecutive colors. If
stride is zero (the initial value), the colors are understood
to be tightly packed in the array. The initial value is 0.

pointer specifies a pointer to the first component of the first color
element in the array. The initial value is 0 (NULL pointer).

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The [glArrayElement] subroutine, the [giColorPointer] subroutine, the subroutine, the

IDrawElements]| subroutine, the [glIEdgeFlagPointer| subroutine, the |glEnable| subroutine, the
IGetPointerv| subroutine, the |glindexPointer| subroutine, the |9IInterIeavedArrays| subroutine, the
INormalPointer] subroutine, the [gIPushClientAttrib| or glPopClientAttrib subroutine, the

ISecondaryColorPointerListIBM| subroutine, the [giTexCoordPointer| subroutine, the [glVertexPointer|
subroutine.

302 OpenGL 1.2 Reference Manual



glSecondaryColorPointerListiBM Subroutine

Purpose

Defines a list of arrays of secondary colors.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glColorPointerListIBM (GLint |[size,
GLenum |typel,
GLint |stride|,
const GLvoid [«*pointer],
GLint |Qtrstride|)

Description

The glSecondaryColorPointerListIBM subroutine specifies the location and data format of a list of arrays
of color components to use when rendering. The size parameter specifies the number of components per
color, and must be 3 or 4. The type parameter specifies the data type of each color component. The stride
parameter gives the byte stride from one color to the next allowing vertices and attributes to be packed
into a single array or stored in separate arrays. (Single-array storage may be more efficient on some
implementations; see |g||nter|eavedArrays[). The ptrstride parameter specifies the byte stride from one
pointer to the next in the pointer array.

When a secondary color array is specified, size, type, stride, pointer and plrstride are saved as client side
state.

A stride value of 0 does not specify a "tightly packed” array as it does in glSecondaryColorPointer.
Instead, it causes the first array element of each array to be used for each vertex. Also, a negative value
can be used for stride, which allows the user to move through each array in reverse order.

To enable and disable the secondary color arrays, call glEnableClientState and glDisableClientState
with the argument GL_COLOR_ARRAY. The secondary color array is initially disabled. When enabled, the
secondary color arrays are used when glMultiDrawArraysEXT, glMultiDrawElementsEXT,
glMultiModeDrawArraysIBM, giMultiMlodeDrawElementsIBM, glDrawArrays, glDrawElements or
glArrayElement is called. The last three calls in this list will only use the first array (the one pointed at by
pointer[0]). See the descriptions of these routines for more information on their use.

Use giDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
gliMultiModeDrawElementsIBM, or giIDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Secondary Color array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

size specifies the number of components per secondary color.
This must be 3 or 4. The initial value is 4.

Chapter 1. OpenGL Subroutines 303



type specifies the data type of each secondary color
component in the array. Symbolic constants GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, or GL_DOUBLE are accepted. The initial
value is GL_FLOAT.

stride specifies the byte offset between consecutive secondary
colors. The initial value is 0.

pointer specifies a list of secondary color arrays. The initial value
is 0 (NULL pointer).

ptrstride specifies the byte stride between successive pointers in

the pointer array. The initial value is 0.

Notes

The glSecondaryColorPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists
extension is supported.

Execution of glSecondaryColorPointerListiIBM is not allowed between glBegin and the corresponding
glEnd, but an error may or may not be generated. If an error is not generated, the operation is undefined.

The glSecondaryColorPointerListIBM subroutine is typically implemented on the client side.

Since the secondary color array parameters are client side state, they are not saved or restored by
glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glSecondaryColorPointerListIBM call is encountered while compiling a display list, the
information it contains does NOT contribute to the display list, but is used to update the immediate context
instead.

The glSecondaryColorPointer call and the glSecondaryColorPointerListIBM call share the same state
variables. A glSecondaryColorPointer call will reset the secondary color list state to indicate that there is

only one secondary color list, so that any and all lists specified by a previous
glSecondaryColorPointerListIBM call will be lost, not just the first list that it specified.

Error Codes

GL_INVALID_VALUE is generated if size is not 3 or 4.
GL_INVALID_ENUM is generated if fype is not an accepted value.

Associated gets for the glSecondaryColorPointerListIBM subroutine are as follows. (See the [gIGef]
subroutine for more information.)

glisEnabled| with argument GL_COLOR_ARRAY..

with argument GL_COLOR_ARRAY_LIST_IBM.
[g1Get] with argument GL_COLOR_ARRAY_LIST_STRIDE_IBM.

[g1Get] with argument GL_COLOR_ARRAY_SIZE.
[olGeq with argument GL_COLOR_ARRAY_STRIDE.

[gIGeq with argument GL_COLOR_ARRAY_TYPE.

304 OpenGL 1.2 Reference Manual



Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The |glArrayElement| subroutine, the|gICoIorPointeF| subroutine, the|§IDrawArray§| subroutine, the
glEnabl

IDrawElements]| subroutine, the |[gIEdgeFlagPointer| subroutine, the subroutine, the
IGetPointerv| subroutine, the |glindexPointer subroutine, the bLMerleavedArraysl subroutine, the
IMultiDrawArraysEXT] subroutine, the [gIMultiDrawElementsEXT] subroutine, the
IMultiModeDrawArraysIBM| subroutine, the |gIMuItiModeDrawEIementsIBM| subroutine, the

INormalPointer] subroutine, the [gIPushClientAttrib| or glPopClientAttrib subroutine, the
ITexCoordPointer| subroutine, the |gIVertexPointe|_‘| subroutine.

glSelectBuffer Subroutine

Purpose
Establishes a buffer for selection mode values.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glSelectBuffer(GLsizei Size,
GLuint *Buffer)

Parameters

Size Specifies the size of Buffer.
Buffer Returns the selection data.

Description

The glSelectBuffer subroutine has two arguments: the Buffer parameter is a pointer to an array of
unsigned integers, and the Size parameter indicates the size of the arrai. Buffer returns values from the

name stack when the renderini mode is GL_SELECT. (See the [glinitNames| subroutine for information on

initializing the name stack; the |glLoadName| subroutine for information on loading names onto the name
stack; the [gIlPushName| subroutine for pushing and popping the name stack; and the
subroutine for information on setting the rasterization mode.) The glSelectBuffer subroutine must be
issued before selection mode is enabled, and it must not be issued while the rendering mode is
GL_SELECT.

Selection is used by a programmer to determine which primitives are drawn into some region of a window.
The region is defined by the current modelview and perspective matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if a primitive intersects the
clipping volume defined by the viewing frustum and the user-defined clipping planes, this primitive causes
a selection hit. (With polygons, no hit occurs if the polygon is culled.) When a change is made to the name
stack, or when the glRenderMode subroutine is called, a hit record is copied to Buffer if any hits have
occurred since the last such event (hame stack change or glRenderMode call). The hit record consists of

Chapter 1. OpenGL Subroutines 305



the number of names in the name stack at the time of the event, followed by the minimum and maximum
depth values of all vertices that hit since the previous event, followed by the name stack contents, bottom
name first.

Returned depth values are mapped such that the largest unsigned integer value corresponds to window
coordinate depth 1.0, and O (zero) corresponds to window coordinate depth 0.0.

An internal index into Buffer is reset to 0 whenever selection mode is entered. Each time a hit record is
copied into Buffer, the index is incremented to point to the cell just past the end of the block of names,
that is, to the next available cell. If the hit record is larger than the number of remaining locations in Buffer,
as much data as can fit is copied, and the overflow flag is set. If the name stack is empty when a hit
record is copied, that record consists of 0 followed by the minimum and maximum depth values.

Selection mode is exited by calling glIRenderMode with an argument other than GL_SELECT. Whenever
glRenderMode is called while the render mode is GL_SELECT, it returns the number of hit records
copied to Buffer, resets the overflow flag and the selection buffer pointer, and initializes the name stack to
be empty. If the overflow bit was set when glRenderMode was called, a negative hit record count is
returned.

Notes

The contents of Buffer are undefined until glIRenderMode is called with an argument other than
GL_SELECT.

The glBegin/glEnd subroutine primitives and calls to glRasterPos can result in hits.

Errors
GL_INVALID_VALUE Size is negative.
GL_INVALID_OPERATION The glSelectBuffer subroutine is called while the render mode is

GL_SELECT, or glRenderMode is called with the GL_SELECT argument
before glSelectBuffer is called at least once.

GL_INVALID_OPERATION The glSelectBuffer subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glSelectBuffer subroutine are as follows. (See the [giGef subroutine for more
information.)

glGet with argument GL_NAME_STACK_DEPTH.
glGetPointerv with argument GL_SELECTION_BUFFER_POINTER.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |gIBegin or glEnd| subroutine, |gIFeedbackBuffer] subroutine, subroutine,
subroutine, |glLoadName| subroutine, |gIPushNamg| subroutine, |gIRenderMode| subroutine.

306 OpenGL 1.2 Reference Manual



glShadeModel Subroutine

Purpose
Selects flat or smooth shading.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1ShadeModel (GLenum Mode)

Parameters

Mode  Specifies a symbolic value representing a shading technique. Accepted values are GL_FLAT and
GL_SMOOTH. The default is GL_SMOOTH.

Description

GL primitives can have either flat or smooth shading. Smooth shading, the default, causes the computed
colors of vertices to be interpolated as the primitive is rasterized, typically assigning different colors to
each resulting pixel fragment. Flat shading selects the computed color of just one vertex and assigns it to
all the pixel fragments generated by rasterizing a single primitive. In either case, the computed color of a
vertex is the result of lighting, if lighting is enabled, or it is the current color at the time the vertex was
specified, if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Counting vertices and primitives from 1 (one)
starting when the glBegin subroutine is issued, each flat-shaded line segment i is given the computed
color of vertex i + 1, its second vertex. Counting similarly from 1, each flat-shaded polygon is given the
computed color of the vertex in the following list. This is the last vertex to specify the polygon in all cases
except single polygons, where the first vertex specifies the flat-shaded color.

Primitive type of polygon / Vertex
Single polygon (i == 1) 1
Triangle strip i+ 2
Triangle fan i+2
Independent triangle 3i
Quad strip 2i+2
Independent quad 4

Flat and smooth shading are specified by glShadeModel with the Mode parameter set to GL_FLAT and
GL_SMOOTH, respectively.

Errors
GL_INVALID_ENUM Mode is any value other than GL_FLAT or GL_SMOOTH.
GL_INVALID_OPERATION The glShadeModel subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glShadeModel subroutine are as follows. (See the subroutine for more
information.)

Chapter 1. OpenGL Subroutines 307



glGet with argument GL_SHADE_MODEL.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin or glEnd|subroutine, subroutine, subroutine, [glLightModel| subroutine.

glStencilFunc Subroutine

Purpose
Sets function and reference values for stencil testing.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1StencilFunc(GLenum Function,
GLint Reference,
GLuint Mask)

Parameters

Function Specifies the test function. Eight tokens are valid:

« GL_NEVER

« GL_LESS

* GL_LEQUAL

* GL_GREATER

« GL_GEQUAL

« GL_EQUAL

« GL_NOTEQUAL

* GL_ALWAYS

Reference Specifies the reference value for the stencil test. Reference is clamped to the range [0,2n-1], where
n is the number of bit planes in the stencil buffer.

Mask Specifies a mask that is ANDed with both the reference value and the stored stencil value when
the test is done.

Description

Stenciling, like z-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil
planes using GL drawing primitives, and then render geometry and images, using the stencil planes to
mask out portions of the screen. Stenciling is typically used in multipass rendering algorithms to achieve
special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the
reference value and the value in the stencil buffer. The test is enabled by the glEnable and glDisable
subroutines with the GL_STENCIL argument. Actions taken based on the outcome of the stencil test are
specified with the glStencilOp subroutine.

308 OpenGL 1.2 Reference Manual



The Function parameter is a symbolic constant that determines the stencil comparison function. It accepts
one of the eight following values. The Reference parameter is an integer reference value that is used in
the stencil comparison. It is clamped to the range [0,2n-1], where n is the number of bit planes in the
stencil buffer. The Mask parameter is bitwise ANDed with both the reference value and the stored stencil
value, with the ANDed values participating in the comparison.

If stencil represents the value stored in the corresponding stencil buffer location, the following list shows
the effect of each comparison function that can be specified by the Function parameter. Only if the
comparison succeeds is the pixel passed through to the next stage in the rasterization process. (See the
subroutine for information on setting stencil test actions.) All tests treat stencil values as
unsigned integers in the range [0,2n-1], where n is the number of bit planes in the stencil buffer.

The following values are accepted by the Function parameter:

GL_NEVER Always fails.

GL_LESS Passes if ( Reference & Mask ) is less than ( stencil & Mask ).

GL_LEQUAL Passes if ( Reference & Mask ) is less than or equal to ( stencil & Mask ).
GL_GREATER Passes if ( Reference & Mask ) is greater than ( stencil & Mask ).
GL_GEQUAL Passes if ( Reference & Mask ) is greater than or equal to ( stencil & Mask ).
GL_EQUAL Passes if ( Reference & Mask ) is equal to ( stencil & Mask ).
GL_NOTEQUAL Passes if ( Reference & Mask ) is not equal to ( stencil & Mask ).
GL_ALWAYS Always passes.

Notes

Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur and it is
as if the stencil test always passes.

Errors
GL_INVALID_ENUM Function is not one of the eight accepted values.
GL_INVALID_OPERATION The glStencilFunc subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets
Associated gets for the glStencilFunc subroutine are as follows. (See the subroutine.)

glGet with argument GL_STENCIL_FUNC

glGet with argument GL_STENCIL_VALUE_MASK
glGet with argument GL_STENCIL_REF

glGet with argument GL_STENCIL_BITS
[glisEnabled] with argument GL_STENCIL_TEST.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 309



Related Information

The |gIAIphaFunc| subroutine, |gIBegin or glEnd| subroutine, |gIBIendFunc| subroutine, |gIDepthFunE|

subroutine, [glEnable or glDisable[ subroutine, |glLogicOp| subroutine, [giStencilOp| subroutine.

glStencilMask Subroutine

Purpose
Controls the writing of individual bits in the stencil planes.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1StencilMask(GLuint Mask)
Parameters

Mask  Specifies a bit mask to enable and disable writing of individual bits in the stencil planes. Initially, the mask is
all 1s.

Description

The glIStencilMask subroutine controls the writing of individual bits in the stencil planes. The least
significant n bits of the Mask parameter, where n is the number of bits in the stencil buffer, specify a mask.
Wherever a 1 (one) appears in the mask, the corresponding bit in the stencil buffer is made writable.
Where a 0 (zero) appears, the bit is write-protected. Initially, all bits are enabled for writing.

Errors

GL_INVALID_OPERATION The glStencilMask subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glStencilMask subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_STENCIL_WRITEMASK
glGet with argument GL_STENCIL_BITS.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin or glEnd| subroutine, |giColorMask| subroutine, subroutine,
subroutine, |glStencilFunc| subroutine, [gIStencilOp| subroutine.

310 OpenGL 1.2 Reference Manual



glStencilOp Subroutine

Purpose
Sets stencil test actions.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1StencilOp(GLenum Fail,
GLenum zfail,
GLenum zPass)

Parameters

Fail Specifies the action to take when the stencil test fails. Six symbolic constants are accepted:
 GL_KEEP
+ GL_ZERO
 GL_REPLACE
* GL_INCR
 GL_DECR
* GL_INCR_WRAP_EXT
+ GL_DECR_WRAP_EXT
* GL_INVERT
zFail Specifies stencil action when the stencil test passes but the depth test fails. zFail accepts the same
symbolic constants as Fail.
zPass Specifies stencil action when both the stencil test and the depth test pass, or when the stencil test passes

and either there is no depth buffer or depth testing is not enabled. zPass accepts the same symbolic
constants as Fail.

Description

Stenciling, like z-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil
planes using GL drawing primitives, and then render geometry and images, using the stencil planes to
mask out portions of the screen. Stenciling is typically used in multipass rendering algorithms to achieve
special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the value
in the stencil buffer and a reference value. The test is enabled with the glEnable and glDisable
subroutine calls with the GL_STENCIL argument, and controlled with the glStencilFunc subroutine.

The glStencilOp subroutine takes three arguments that indicate what happens to the stored stencil value
while stenciling is enabled. If the stencil test fails, no change is made to the pixel's color or depth buffers,
and the Fail parameter specifies what happens to the stencil buffer contents. The eight possible actions
are as follows:

GL_KEEP Keeps the current value.

GL_ZERO Sets the stencil buffer value to 0 (zero).

GL_REPLACE Sets the stencil buffer value to the Reference parameter, as specified by the
glStencilFunc subroutine.

GL_INCR Increments the current stencil buffer value. Clamps to the maximum representable
unsigned value.

GL_DECR Decrements the current stencil buffer value. Clamps to 0.

Chapter 1. OpenGL Subroutines 311



GL_INCR_WRAP_EXT Increments the current stencil buffer value. A GL_INCR_WRAP_EXT on the
maximum representable unsigned value yields a 0 value.

GL_DECR_WRAP_EXT Decrements the current stencil buffer value. A GL_DECR_WRAP_EXT on 0 yields
the maximum representable unsigned value.
GL_INVERT Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. The maximum representable value is 2n-1, where n
is the value returned by querying GL_STENCIL_BITS.

The other two arguments to glStencilOp specify stencil buffer actions should subsequent depth buffer
tests succeed (the zPass parameter) or fail (the zFail parameter). (See thefor information
about specifying the function used for depth buffer comparisons.) They are specified using the same eight
symbolic constants as the Fail parameter. Note that the zFail parameter is ignored when there is no depth
buffer, or when the depth buffer is not enabled. In these cases, the Fail and zPass parameters specify
stencil action when the stencil test fails and passes, respectively.

Notes

Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur and it is as
if the stencil tests always pass, regardless of any call to the glStencilOp subroutine.

The GL_INCR_WRAP_EXT and GL_DECR_WRAP_EXT stencil actions are only supported if the
GL_EXT_stencil_wrap extension is supported.

Errors
GL_INVALID_ENUM Fail, zFail, or zPass is any value other than the eight defined constant values.
GL_INVALID_OPERATION The glIStencilOp subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glStencilOp subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_STENCIL_FAIL
glGet with argument GL_STENCIL_PASS_DEPTH_PASS
glGet with argument GL_STENCIL_PASS_DEPTH_FAIL

glGet with argument GL_STENCIL_BITS

glisEnabled| with argument GL_STENCIL_TEST.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The broutine, [gIBegin or glEnd| subroutine, |§IBIendFunc| subroutine, |§IDepthFunE|
glEnable

subroutine, or glDisable subroutine, |gILogicOp| subroutine, |gIStenciIFunc| subroutine.

312 OpenGL 1.2 Reference Manual



glTexCoord Subroutine

Purpose
Sets the current texture coordinates.

Library
OpenGL C bindings library: libGL.a

C Syntax
void gl1TexCoordld(GLdouble Eb

void gl1TexCoordlf(GLfloat Eb
void gl1TexCoordli(GLint Eb
void gl1TexCoordls(GLshort Eb

void glTexCoord2d(GLdouble EL
GLdouble

void gl1TexCoord2f(GLfloat EL
GLfloat

void glTexCoord2i (GLint [g]
GLint

void gl1TexCoord2s (GLshort El,
GLshort

void g1TexCoord3d(GLdouble [5],
GLdouble [T},
GLdouble

void gl1TexCoord3f(GLfloat El,
GLfloat |[7],
GLfloat

void g1TexCoord3i (6Lint [5],
GLint [f],
GLint

void g1TexCoord3s(GLshort [5],
GLshort |7],
GLshort

void gl1TexCoord4d(GLdouble EL

GLdouble |7},
GLdouble |R|,
GLdouble

void glTexCoord4f(GLfloat [,

GLfloat |7],
GLfloat |R|,
GLfloat

Chapter 1. OpenGL Subroutines

313



void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

g1TexCoord4i (GLint EI,

GLint |7],
GLint R,
GLint

g1TexCoord4s (GLshort Eﬂ,

GLshort 5
GLshort )
GLshort
g1TexCoordldv(const
g1TexCoordlfv(const
g1TexCoordliv(const
g1TexCoordlsv(const
g1TexCoord2dv(const
g1TexCoord2fv(const
g1TexCoord2iv(const
g1TexCoord2sv(const
g1TexCoord3dv(const
g1TexCoord3fv(const
g1TexCoord3iv(const
g1TexCoord3sv(const
g1TexCoord4dv(const
g1TexCoord4fv(const

g1TexCoord4iv(const

g1TexCoord4sv(const

Parameters

GLdouble * [)
GLfloat * [1)
GLint * [1)

GLshort * [1)
GLdouble * [)
GLfloat * [)
GLint * 1)

GLshort * [1)
GLdouble * [)
GLfloat * [1)
GLint * 1)

GLshort * )
GLdouble * [)
GLfloat * [
GLint = [1)

GLshort =* Eb

S T,RQ Specify S, T, R, and A texture coordinates. Not all parameters are present in all forms of the
command.
Vv Specifies a pointer to an array of one, two, three, or four elements, which in turn specify the S, T,

R, and Q texture coordinates.

Description

The glTexCoord subroutine specifies texture coordinates in one, two, three, or four dimensions. The
glTexCoord1 subroutine sets the current texture coordinates to (S,0,0,1); a call to glTexCoord2 sets them
to (S,7,0,1). Similarly, glTexCoord3 specifies the texture coordinates as (S,T,R,1), and glTexCoord4
defines all four components explicitly as (S, T,R,Q).

314 OpenGL 1.2 Reference Manual



The current texture coordinates are part of the data that is associated with each vertex and with the
current raster position. Initially, the values for S, T, R, and Q are (0, 0, 0, 1).

Notes

The current texture coordinates can be updated at any time. In particular, the glTexCoord subroutine can
be called between a call to glBegin and the corresponding call to glEnd.

If the GL_ARB_multitexture extension is present, then there will be multiple texture units present. This
call will only affect the current textrue coordinate on Texture Unit 0. Use glMultiTexCoord*ARB to affect
texture coordinates on other Texture Units.

Associated Gets

Associated gets for the glTexCoord subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_CURRENT_TEXTURE_COORDS.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |gIBegin or glEnd| subroutine, [gITexCoordPointer] subroutine, [gITexCoordPointerEXT]| subroutine,

|gIVertex| subroutine.

glTexCoordColorNormalVertexSUN Subroutine

Purpose

Specifies a texture coordinate, a color, a normal and a vertex in one call.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void g1TexCoord2fColord4fNormal3fVertex3fSUN (GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat

void g1TexCoord2fColor4fNormal3fVertex3fvSUN (const GLfloat
const GLfloat
const GLfloat
const GLfloat

Chapter 1. OpenGL Subroutines 315



void glTexCoord4fColordfNormal3fVertex4fSUN (GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
GLfloat
void g1TexCoord4fColor4fNormal3fVertex4fvSUN (const GLfloat
const GLfloat
const GLfloat
const GLfloat

Description
This subroutine can be used as a replacement for the following calls:

g1TexCoord();
glColor();
gTNormal();
glVertex();

For example:

glTexCoord4fColordfNormal3fVertex4fvSUN replaces the following calls:

g1TexCoord4df();
glColordf();
gINormal3f();
glVertex4fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

s, t,pq Specifies the s, t, p, and g components of the texture
coordinate for this vertex. Not all parameters are present
in all forms of the command.

tc Specifies a pointer to an array of texture coordinate
values. The elements of a two-element array are s and t.
The elements of a four-element array are s, t, p, and q.

rng b a Specifies the r, g, b, and a components of the color for
this vertex.

c Specifies a pointer to an array of the four components r,
g, b, and a.

nx, ny, nz Specifies the x, y, and z coordinates of the normal vector
for this vertex.

n Specifies a pointer to an array of the three elements nx,
ny and nz.

X Y zw Specifies the x, y, z, and w coordinates of a vertex. Not all

parameters are present in all forms of the command.

316 OpenGL 1.2 Reference Manual



v Specifies a pointer to an array of vertex coordinates. The
elements of a three-element array are x, y, and z. The
elements of a four-element array are x, y, z, and w.

Notes

Calling glTexCoordColorNormalVertexSUN outside of a glBegin/glEnd subroutine pair results in
undefined behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The [gIBegin] or glEnd subroutine, the subroutine, the [gINormal| subroutine, the [gITexCoord
_

subroutine, the [glVertex| subroutine.

glTexCoordColorVertexSUN Subroutine

Purpose

Specifies a texture coordinate, a color, and a vertex in one call.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

extern void glTexCoord2fColordubVertex3fSUN (GLfloat
GLfloat
GLubyte
GLubyte
GLubyte
GLubyte
GLfloat
GLfloat
GLfloat

extern void glTexCoord2fColordubVertex3fvSUN (const GLfloat
const GLubyte

extern void glTexCoord2fColor3fVertex3fSUN (GLfloat
GLfloat

GLfloat

GLfloat

GLfloat

GLfloat

GLfloat

GLfloat

extern void glTexCoord2fColor3fVertex3fvSUN (const GLfloat
const GLfloat

const GLfloat

Chapter 1. OpenGL Subroutines 317



Description
This subroutine can be used as a replacement for the following calls:

g1TexCoord();
giColor();
glVertex();

For example, glTexCoord2fColor3fVertex3fvSUN replaces the following calls:

g1TexCoord2f();
glColor3f();
glVertex3fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

s, t Specifies the s and t components of the texture coordinate
for this vertex.

fc Specifies a pointer to an array of texture coordinate
values. The elements of a two-element array are s and t.
The elements of a four-element array are s, t, p, and q.

rg b, a Specifies the red, green, blue, and alpha components of a
color. Not all parameters are present in all forms of the
command.

c Specifies a pointer to an array of three or four elements.
The elements of a three-element array are r, g, and b.
The elements of a four-element array are r, g, b, and a.

X ¥z Specifies the x, y, and z coordinates of a vertex.

v Specifies a pointer to an array of the three elements x, y,
and z.

Notes

Calling glTexCoordColorVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined
behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

/usr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The [gIBegin| or glEnd subroutine, the subroutine, the [gINormal| subroutine, the [gITexCoord

subroutine, the subroutine.

giTexCoordNormalVertexSUN Subroutine

Purpose
Specifies a texture coordinate, a normal and a vertex in one call.

Library
OpenGL C bindings library: (libGL.a)

318 OpenGL 1.2 Reference Manual



C Syntax

void glTexCoord2fNormal3fVertex3fSUN (GLfloat
GLfloat

GLfloat

GLfloat

GLfloat

GLfloat

GLfloat

GLfloat

void glTexCoord2fNormal3fVertex3fvSUN (const GLfloat
const GLfloat

const GLfloat

Description
This subroutine can be used as a replacement for the following calls:

g1TexCoord();
gTNormal();
glVertex();

For example, glTexCoord2fNormal3fVertex3fvSUN replaces the following calls:

g1TexCoord2f();
gTNormal3f();
glVertex3fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

s, t Specifies the texture coordinate s and t values.

tc Specifies a pointer to an array of the two texture coordinate values s and t.
X,V Z Specifies the x, y, and z coordinates of a vertex.

v Specifies a pointer to an array of the three elements x, y, and z.

nx, ny, nz Specifies the x, y, and z coordinates of the normal vector for this vertex.

n Specifies a pointer to an array of the three elements nx, ny and nz.
Notes

Calling glTexCoordNormalVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined
behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The [gIBegin] or glEnd subroutine, the subroutine, the [gINormal| subroutine, the [gITexCoord

subroutine, the subroutine.

Chapter 1. OpenGL Subroutines 319



glTexCoordPointer Subroutine

Purpose
Defines an array of texture coordinates.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glTexCoordPointer( GLint ,

GLenum , ]
GLsizei |stride|,

const GLvoid = _pointer|)

Description

The glTexCoordPointer subroutine specifies the location and data format of an array of texture
coordinates to use when rendering. The size parameter specifies the number of coordinates per element,
and must be 1, 2, 3, or 4. The type parameter specifies the data type of each texture coordinate and stride
gives the byte stride from one array element to the next allowing vertices and attributes to be packed into
a single array or stored in separate arrays. (Single array storage may be more efficient on some
implementations; see [glinterleavedArrays). When a texture coordinate array is specified, size, type,
stride, and pointer are saved client side state.

To enable and disable the texture coordinate array, call glEnableClientState and glDisableClientState
with the argument GL_TEXTURE_COORD_ARRAY. If enabled, the texture coordinate array is used when
glDrawArrays, glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
gliMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Tex Coord array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysiBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

size Specifies the number of coordinates per array element. Must be 1, 2, 3 or 4. The initial value is 4.

type Specifies the data type of each texture coordinate. Symbolic constants GL_SHORT, GL_INT,
GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive array elements. If stride is 0, the array elements are
understood to be tightly packed. The initial value is 0.

pointer Specifies a pointer to the first coordinate of the first element in the array. The initial value is 0 (NULL
pointer).

Notes

The glTexCoordPointer subroutine is available only if the GL version is 1.1 or greater.

The texture coordinate array is initially disabled and it won’t be accessed when glArrayElement,
glDrawElements or glDrawArrays is called.

320 OpenGL 1.2 Reference Manual



Execution of glTexCoordPointer is not allowed between giBegin and the corresponding glEnd, but an
error may or may not be generated. If an error is not generated, the operation is undefined.

The glTexCoordPointer subroutine is typically implemented on the client side with no protocol.

Since the texture coordinate array parameters are client side state, they are not saved or restored by
glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glTexCoordPointer subroutine is not included in display lists.

Errors

* GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4.

* GL_INVALID_ENUM is generated if type is not an accepted value.
* GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

+ glisEnabled with argument GL_TEXTURE_COORD_ARRAY

» glGet with argument GL_TEXTURE_COORD_ARRAY_SIZE

+ glGet with argument GL_TEXTURE_COORD_ARRAY_TYPE

» glGetPointerv with argument GL_TEXTURE_COORD_ARRAY_POINTER

Related Information

The [glArrayElement] subroutine, [giClientActiveTextureARB| subroutine, [giColorPointer subroutine,
glDrawArrays| subroutine, [glDrawElements| subroutin|i|gIDrawRangeElements| subroutine,
glEdgeFlagPointer subroutine, |gIEnable] subroutine, gIGetPointervrsubroutine, Lo_lllndexPointeri
subroutine, [gINormalPointer| subroutine, [gIPopClientAttrib| subroutine, quPushCIientAttribI subroutine,
ITexCoord| subroutine, [glTexCoordPointerListIBM| subroutine, |gIVertexPointer subroutine.

glTexCoordPointerEXT Subroutine

Purpose
Defines an array of texture coordinates.

Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1TexCoordPointerEXT(GLint size,
GLenum type,
GLsizei stride,
GLsizei count,
const GLvoid *pointer)

Parameters

size Specifies the number of coordinates per array element. It must be 1, 2, 3 or 4.

type Specifies the data type of each texture coordinate. Symbolic constants GL_SHORT, GL_INT,
GL_FLOAT, or GL_DOUBLE_EXT, are accepted.

stride Specifies the byte offset between consecutive array elements. If stride is zero the array elements are
understood to be tightly packed.

count Specifies the number of array elements, counting from the first, that are static.

Chapter 1. OpenGL Subroutines 321



pointer Specifies a pointer to the first coordinate of the first element in the array.

Description

glTexCoordPointerEXT specifies the location and data format of an array of texture coordinates to use
when rendering. size specifies the number of coordinates per element, and must be 1, 2, 3, or 4. fype
specifies the data type of each texture coordinate and stride gives the byte stride from one array element
to the next allowing vertexes and attributes to be packed into a single array or stored in separate arrays.
(Single-array storage may be more efficient on some implementations.) count indicates the number of
array elements (counting from the first) that are static. Static elements may be modified by the application,
but once they are modified, the application must explicitly respecify the array before using it for any
rendering. When a texture coordinate array is specified, size, type, stride, count, and pointer are saved as
client-side state, and static array elements may be cached by the implementation.

The texture coordinate array is enabled and disabled using glEnable and glDisable with the argument
GL_TEXTURE_COORD_ARRAY_EXT. If enabled, the texture coordinate array is used when
giDrawArraysEXT or glArrayElementEXT is called.

Notes
Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the texture coordinate array is disabled and it won’t be accessed when glArrayElementEXT or
glDrawArraysEXT is called.

Although, it is not an error to call glTexCoordPointerEXT between the execution of glBegin and the
corresponding execution of glEnd, the results are undefined.

glTexCoordPointerEXT will typically be implemented on the client side with no protocol.

Since the texture coordinate array parameters are client side state, they are not saved or restored by
glPushAttrib and glPopAttrib.

glTexCoordPointerEXT commands are not entered into display lists.

glTexCoordPointerEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL
command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when
called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
gliMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Tex Coord array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Errors
GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride or count is negative

322 OpenGL 1.2 Reference Manual



Associated Gets
glisEnabled with argument GL_TEXTURE_COORD_ARRAY_EXT

glGet with argument GL_TEXTURE_COORD_ARRAY_SIZE_EXT

glGet with argument GL_TEXTURE_COORD_ARRAY_TYPE_EXT

glGet with argument GL_TEXTURE_COORD_ARRAY_STRIDE_EXT

glGet with argument GL_TEXTURE_COORD_ARRAY_COUNT_EXT

glGetPointervEXT with argument GL_TEXTURE_COORD_ARRAY_POINTER_EXT

File

lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The |glArrayElementEXT]| subroutine, [giColorPointerEXT]| subroutine, |giDrawArraysEXT] subroutine,
IEdgeFlagPointerEXT| subroutine, [glGetPointervEXT] subroutine, |glindexPointerEXT| subroutine,
INormalPointerEXT| subroutine, |glVertexPointerEXT]| subroutine.

glTexCoordPointerListiBM Subroutine

Purpose
Defines a list of texture coordinate arrays.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glTexCoordPointerListIBM(GLint [size],
GLenum |typel,
GLint |[stride),
const GLvoid ** |pointer],

GLint lt_)trstride

Description

The glTexCoordPointerListIBM subroutine specifies the location and data format of a list of arrays of
texture coordinate components to use when rendering. The size parameter specifies the number of
components per texture coordinate, and must be 1, 2, 3 or 4. The type parameter specifies the data type
of each texture coordinate component. The stride parameter gives the byte stride from one texture
coordinate to the next allowing vertices and attributes to be packed into a single array or stored in
separate arrays. (Single-array storage may be more efficient on some implementations; see
glinterleavedArrays). The pirstride parameter specifies the byte stride from one pointer to the next in the
pointer array.

When a texture coordinate array is specified, size, type, stride, pointer and pirstride are saved as client
side state.

Chapter 1. OpenGL Subroutines 323



A stride value of 0 does not specify a “tightly packed” array as it does in glTexCoordPointer. Instead, it
causes the first array element of each array to be used for each vertex. Also, a negative value can be
used for stride, which allows the user to move through each array in reverse order.

To enable and disable the texture coordinate arrays, call glEnableClientState and glDisableClientState
with the argument GL_TEXTURE_COORD_ARRAY. The texture coordinate array is initially disabled.
When enabled, the texture coordinate arrays are used when glMultiDrawArraysEXT,
glMultiDrawElementsEXT, glMultiModeDrawArraysiBM, glMultiModeDrawElementsIBM,
giDrawArrays, glDrawElements or glArrayElement is called. The last three calls in this list will only use
the first array (the one pointed at by pointer[0]). See the descriptions of these routines for more information
on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Tex Coord array is used when glDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

size Specifies the number of components per texture coordinate. It must be 1, 2, 3 or 4. The initial value
is 4.

type Specifies the data type of each texture coordinate component in the array. Symbolic constants

GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive texture coordinates. The initial value is 0.
pointer Specifies a list of texture coordinate arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.
Notes

The glTexCoordPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is
supported.

Execution of glTexCoordPointerListIBM is not allowed between glBegin and the corresponding glEnd,
but an error may or may not be generated. If an error is not generated, the operation is undefined.

The glTexCoordPointerListIBM subroutine is typically implemented on the client side.

Since the texture coordinate array parameters are client side state, they are not saved or restored by
glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glTexCoordPointerListIBM call is encountered while compiling a display list, the information it
contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glTexCoordPointer call and the glTexCoordPointerListIBM call share the same state variables. A
glTexCoordPointer call will reset the texture coordinate list state to indicate that there is only one texture
coordinate list, so that any and all lists specified by a previous glTexCoordPointerListiIBM call will be lost,
not just the first list that it specified.

324 OpenGL 1.2 Reference Manual



Error Codes

* GL_INVALID_VALUE is generated if size is not 1, 2, 3 or 4.
* GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets

» glisEnabled with argument GL_TEXTURE_COORD_ARRAY

» glGetPointerv with argument GL_TEXTURE_COORD_ARRAY_LIST_IBM
» glGet with argument GL_TEXTURE_COORD_ARRAY_LIST_STRIDE_IBM
» glGet with argument GL_TEXTURE_COORD_ARRAY_SIZE

» glGet with argument GL_TEXTURE_COORD_ARRAY_STRIDE

» glGet with argument GL_TEXTURE_COORD_ARRAY_TYPE

Related Information

The [glArrayElement] subrouti’&hICIientActiveTextureARB| subroutine, [giDrawArrays| subroutine,
IDrawElements| subroutine, |gIDrawRangeElements| subroutine, |gIEdgeFlagPointer] subroutine,
IEnable] subroutine, [gIGetPointerv| subroutine,ljglIndexPointeri subroutine, [glinterleavedArrays|

subroutine, [gIMultiDrawArraysEXT| subroutine, [gIMultiDrawElementsEXT| subroutine,

[gIMultiModeDrawArraysIBM| subroutine, |giMultiModeDrawElementsIBM| subroutine, |gINormalPointer|

subroutine, [gIPopClientAttrib| subroutine, [gIPushClientAttrib| subroutine, [gITexCoordPointer| subroutine,

|gIVertexPointe[| subroutine.
glTexCoordVertexSUN Subroutine

Purpose
Specifies a texture coordinate and a vertex in one call.
Library
OpenGL C bindings library: (libGL.a)
C Syntax
void glTexCoord2fVertex3fSUN (GLfloat |s|,
GLfloat |t|,
GLfloat |x|,
GLfloat |,
GLfloat |7

void glTexCoord2fVertex3fvSUN (const GLfloat |[+tc|,
const GLfloat [*v)
void glTexCoord4fVertex4fSUN (GLfloat |s|,

GLfloat |t],
GLfloat |p|,
GLfloat |q],
GLfloat x|,
GLfloat |,
GLfloat |7,
GLfloat

void glTexCoord4fVertex4fvSUN (const GLfloat [tc|,
const GLfloat [xv]

Description
This subroutine can be used as a replacement for the following calls:

Chapter 1. OpenGL Subroutines 325



g1TexCoord();
glVertex();

For example, glTexCoord4fVertex4fvSUN replaces the following calls:

g1TexCoord4df();
glVertex4fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

s, tpq Specifies the s, t, p, and g components of the texture
coordinate for this vertex. Not all parameters are present
in all forms of the command.

tc Specifies a pointer to an array of texture coordinate
values. The elements of a two-element array are s and &
The elements of a four-element array are s, t, p, and q.

X, ¥, Z, W Specifies the x, y, z, and w coordinates of a vertex. Not all
parameters are present in all forms of the command.
v Specifies a pointer to an array of vertex coordinates. The

elements of a three-element array are x, y, and z. The
elements of a four-element array are x, y, z, and w.

Notes
Calling glTexCoordVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The [gIBegin] or glEnd subroutine, the subroutine, the [gINormal| subroutine, the [gITexCoord

subroutine, the subroutine.

glTexEnv Subroutine

Purpose
Sets texture environment parameters.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1TexEnvf(GLenum
GLenum ,
GLfloat [Parameter)

326 OpenGL 1.2 Reference Manual



void gl1TexEnvi(GLenum |Target|,
GLenum [pName|,

GLint |Parameter]

void g1TexEnvfv(GLenum |Target|,
GLenum |pNamel,

const GLfloat * |Par‘ameters|)

void gl1TexEnviv(GLenum |Target|,
GLenum |pNamel,

const GLint »* |Parameters|)

Parameters

glTexEnvf or giTexEnvi
Target

pName

Parameter

glTexEnvfv or giTexEnviv

Specifies a texture environment. Must be
GL_TEXTURE_ENV.

Specifies the symbolic name of a single-valued texture
environment parameter. Accepted values are:

GL_TEXTURE_ENV_MODE
GL_COMBINE_RGB_EXT
GL_COMBINE_ALPHA_EXT
GL_SOURCEO_RGB_EXT
GL_SOURCE1_RGB_EXT
GL_SOURCE2_RGB_EXT
GL_SOURCEO_ALPHA_EXT
GL_SOURCE1_ALPHA_EXT
GL_SOURCE2_ALPHA_EXT
GL_OPERANDO_RGB_EXT
GL_OPERAND1_RGB_EXT
GL_OPERAND2_RGB_EXT
GL_OPERANDO_ALPHA_EXT
GL_OPERAND1_ALPHA_EXT
GL_OPERAND2_ALPHA_EXT
GL_RGB_SCALE_EXT, or
GL_ALPHA_SCALE

Specifies a single symbolic constant, one of
GL_MODULATE, GL_DECAL, GL_BLEND,
GL_COMBINE_EXT, GL_ADD, GL_REPLACE,

GL_ADD_SIGNED_EXT or GL_INTERPOLATE_EXT.

Target Specifies a texture environment. Must be GL_TEXTURE_ENV.

Chapter 1. OpenGL Subroutines

327



pName Specifies the symbolic name of a texture environment parameter. Accepted values are:

* GL_TEXTURE_ENV_MODE

* GL_TEXTURE_ENV_COLOR
* GL_COMBINE_RGB_EXT

* GL_COMBINE_ALPHA_EXT
* GL_SOURCEO_RGB_EXT

* GL_SOURCE1_RGB_EXT

» GL_SOURCE2_RGB_EXT

* GL_SOURCEO_ALPHA_EXT
* GL_SOURCE1_ALPHA_EXT
* GL_SOURCE2_ALPHA_EXT
+ GL_OPERANDO_RGB_EXT

» GL_OPERAND1_RGB_EXT

* GL_OPERAND2_RGB_EXT

* GL_OPERANDO_ALPHA_EXT
 GL_OPERAND1_ALPHA_EXT
« GL_OPERAND2_ALPHA_EXT
* GL_RGB_SCALE_EXT

 GL_ALPHA_SCALE
Parameters Specifies a pointer to an array of parameters: either a single symbolic constant or an RGBA
color.

Description
A texture environment specifies how texture values are interpreted when a fragment is textured.

If the pName parameter is GL_TEXTURE_ENV_MODE, the Parameter(s) parameter is (or points to) the
symbolic name of a texture function. Six texture functions are defined: GL_MODULATE, GL_DECAL,
GL_BLEND, GL_REPLACE, GL_ADD or GL_COMBINE. GL_TEXTURE_ENV_MODE defaults to
GL_MODULATE

If the pName parameter is GL_TEXTURE_ENV_COLOR, the Parameters parameter is a pointer to an
array that holds an RGBA color consisting of four values. Integer color components are interpreted linearly
such that the most positive integer maps to 1.0, and the most negative integer maps to -1.0. The values
are clamped to the range [0,1] when they are specified. Cc (see tables below) takes these four values.
GL_TEXTURE_ENV_COLOR defaults to (0,0,0,0).

If the pName parameter is GL_COMBINE_RGB_EXT or GL_COMBINE_ALPHA_EXT, the Parameter(s)
parameter is (or points to) the symbolic name of a texture function. Five texture functions are defined:
GL_MODULATE, GL_REPLACE, GL_ADD, GL_ADD_SIGNED_EXT or GL_INTERPOLATE_EXT. The
default value for these pNames is GL_MODULATE.

If the pName parameter is GL_SOURCEQO_RGB_EXT, GL_SOURCE1_RGB_EXT,
GL_SOURCE2_RGB_EXT, GL_SOURCEO_ALPHA_EXT, GL_SOURCE1_ALPHA_EXT, or
GL_SOURCE2_ALPHA_EXT, the Parameter(s) parameter is (or points to) the symbolic name of a texture
operator. Four texture operators are defined: GL_TEXTURE, GL_CONSTANT_EXT,
GL_PRIMARY_COLOR_EXT, or GL_PREVIOUS_EXT. The default value for these pNames are shown in
the following table:

Parameter Default value
GL_SOURCEO_RGB_EXT GL_TEXTURE
GL_SOURCE1_RGB_EXT GL_PREVIOUS_EXT

328 OpenGL 1.2 Reference Manual



Parameter Default value
GL_SOURCE2_RGB_EXT GL_CONSTANT_EXT
GL_SOURCEO_ALPHA_EXT GL_TEXTURE
GL_SOURCE1_ALPHA_EXT GL_PREVIOUS_EXT
GL_SOURCE2_ALPHA_EXT GL_CONSTANT_EXT

If the pName parameter is GL_OPERANDO_RGB_EXT, or GL_OPERAND1_RGB_EXT, the Parameter(s)
parameter is (or points to) the symbolic name of a texture operand. Four texture operands are defined:
GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA, or
GL_ONE_MINUS_SRC_ALPHA. The default value for these pNames is GL_SRC_COLOR.

If the pName parameter is GL_OPERANDO_ALPHA_EXT, or GL_OPERAND1_ALPHA_EXT, the
Parameter(s) parameter is (or points to) the symbolic name of a texture operand. Two texture operands
are defined: GL_SRC_ALPHA, or GL_ONE_MINUS_SRC_ALPHA. The default value for these pNames is
GL_SRC_ALPHA.

If the pName parameter is GL_OPERAND2_RGB_EXT, or GL_OPERAND2_ALPHA_EXT, the
Parameter(s) parameter is (or points to) the symbolic name of a texture operand. One texture operand is
defined: GL_SRC_ALPHA.

If the pName parameter is GL_RGB_SCALE_EXT, or GL_ALPHA_SCALE, the Parameter(s) parameter is
(or points to) a floating-point scale factor. Only three such scale factors are valid: 1.0, 2.0, and 4.0. The
default value is 1.0.

A texture function acts on the fragment to be textured using the texture image value that applies to the
fragment and produces a red, green, blue, alpha (RGBA) color for that fragment. (See the
[gITexParameter| subroutine for details on setting texture parameters.)

A texture image can have up to four components per texture element. (See the subroutine,
ﬁ

the glTexlmage2D| subroutine, and the |g|TexImage3DEXT| subroutine.) In a one-component image, Lt
indicates that single component. A two-component image uses Lt and At. A three-component image has
only a color value, Ct. A four-component image has both a color value, Ct, and an alpha value, At.

The following table shows how the RGBA color is produced when the GL_TEXTURE_ENV_MODE is NOT
GL_COMBINE_EXT. C is a triple of color values (RGB) and A is the associated alpha value. RGBA values
extracted from a texture image are in the range [0,1]. The subscript f refers to the incoming fragment, the
subscript f to the texture image, the subscript ¢ to the texture environment color, and subscript v indicates
a value produced by the texture function.

Note: In the following table, "It" equals the texture intensity.

Texture Functions
Internal Formats | GL_ MODULATE |GL_ DECAL GL_ BLEND GL_REPLACE |GL_ADD
GL_ LUMINANCE | Cv=LtCf Av=Af undefined Cv=(1- Cv=Lt Av=Af Cv=Cf+Lt Av=Af
or 1 <I>Lt) Cf+LtCc
Av=Af
GL_ Cv=LtCf Av=AtAf |undefined Cv=(1- Cv=Lt Av=At Cv=Cf+Lt Av=AfAt
LUMINANCE_ Lt) CtLtCe
ALPHA or 2 Av=AtAf
GL_RGB or 3 Cv=CtCf Av=Af Cv=Ct Av=Af Cv=(1- Cv=Ct Av=Af Cv=Cf+Ct Av=Af
Ct) CHCtCc
Av=Af

Chapter 1. OpenGL Subroutines 329



Texture Functions

Internal Formats |GL_ MODULATE |GL_ DECAL GL_ BLEND GL_REPLACE |GL_ADD
GL_RGBAor4 | Cv=CtCf Av=AtAf | Cv=(1- Cv=(1- Cv=Ct Av=At Cv=Cf+Ct

Al) CHALCt Ct) Cf+CtCc Av=AfAt

Av=Af Av=AtAf
GL_ INTENSITY | Cv=ItCf Av=ItAf undefined Cv=(1-Ity CHItCc | Cv=It Av=It Cv=Cf+It Av=Af+It

Av=(1-1) Af+ltAc

GL_ ALPHA Cv=Cf Av=AtAf undefined Cv=Cf Av=AtAf Cv=Cf Av=At Cv=Cf Av=AfAt

If the value of GL_TEXTURE_ENV_MODE is GL_COMBINE_EXT, the form of the texture function
depends on the values of GL_COMBINE_RGB_EXT and GL_COMBINE_ALPHA_EXT, according to the

following table:

Combine Function

Texture Function

GL_REPLACE Arg0
GL_MODULATE Arg0 * Arg1
GL_ADD Arg0 + Arg1

GL_ADD_SIGNED_EXT

Arg0 + Arg1 - 0.5

GL_INTERPOLATE_EXT

Arg0 * (Arg2) + Arg1 * (1-Arg2)

The RGB and ALPHA results of the texture function are then multiplied by the values of
GL_RGB_SCALE_EXT and GL_ALPHA_SCALE, respectively. The results are clamped to [0,1].

The arguments Arg0, Arg1 and Arg2 are determined by the values of GL_SOURCE(n)_RGB_EXT,
GL_SOURCE(n)_ALPHA_EXT, GL_OPERAND(n)_RGB_EXT and GL_OPERAND(n)_ALPHA_EXT. In
the following two tables, Ct and At are the filtered texture RGB and alpha values; Cc and Ac are the
texture environment RGB and alpha values; Cf and Af are the RGB and alpha of the primary color of the
incoming fragment; and Cp and Ap are the RGB and alpha values resulting from the previous texture
environment. On texture unit 0, Cp and Ap are identical to Cf and Af, respectively. The relationship is
described in the following two tables:

GL_ SOURCE(n)_ GL_SRC_COLOR |GL_ONE_MINUS_ |GL_SRC_ALPHA GL_ ONE_ MINUS_
RGB_ EXT SRC_ COLOR SRC_ ALPHA
GL_ TEXTURE Ct (1-Ct) At (1-At)

GL_ CONSTANT_ Cc (1-Cc) Ac (1-Ac)

EXT

GL_ PRIMARY_ Cf (1-Cf) Af (1-Af)
COLOR_ EXT

GL_ PREVIOUS _ Cp (1-Cp) Ap (1-Ap)

EXT

GL_SOURCE(n)_ALPHA_EXT GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA
GL_TEXTURE At (1-At)

GL_CONSTANT_EXT Ac (1-Ac)

GL_PRIMARY_COLOR_EXT Af (1-Af)

GL_PREVIOUS_EXT Ap (1-Ap)

330 OpenGL 1.2 Reference Manual




The mapping of texture components to source components is summarized in the following table, where Af,
Lt It, Rt, Gt and Bt are the filtered texel values.

Base Internal Format> RGB Values Alpha Value
GL_ALPHA 0,0,0 At
GL_LUMINANCE Lt, Lt, Lt 1
GL_LUMINANCE_ALPHA Lt, Lt, Lt At
GL_INTENSITY It, It, It It

GL_RGB Rt, Gt, Bt 1
GL_RGBA Rt, Gt, Bt At

Notes

GL_ADD is only valid if the GL_EXT_texture_env_add extension is present.

GL_COMBINE_EXT, GL_ADD_SIGNED_EXT, GL_INTERPOLATE_EXT, GL_COMBINE_RGB_EXT,
GL_COMBINE_ALPHA_EXT,GL_SOURCENn_RGB_EXT, GL_SOURCENn_ALPHA_EXT,
GL_OPERANDN_RGB_EXT, GL_OPERANDNn_ALPHA_EXT, GL_RGB_SCALE_EXT, and
GL_ALPHA_SCALE are only valid if the GL_EXT_texture_env_combine extension is present.

Error Codes

GL_INVALID_ENUM Target or pName is not one of the accepted defined values, or Parameters
should have a defined constant value (based on the value of pName) and
does not.

INVALID_ENUM The Parameter(s) value for GL_COMBINE_RGB_EXT or

GL_COMBINE_ALPHA_EXT is not one of GL_REPLACE, GL_MODULATE,
GL_ADD, GL_ADD_SIGNED_EXT, or GL_INTERPOLATE_EXT.

INVALID_ENUM The Parameter(s) value for GL_SOURCEO_RGB_EXT,
GL_SOURCE1_RGB_EXT, GL_SOURCE2_RGB_EXT,
GL_SOURCEO_ALPHA_EXT, GL_SOURCE1_ALPHA_EXT or
GL_SOURCE2_ALPHA_EXT is not one of GL_TEXTURE,
GL_CONSTANT_EXT, GL_PRIMARY_COLOR_EXT or
GL_PREVIOUS_EXT.

INVALID_ENUM The Parameter(s) value for GL_OPERANDO_RGB_EXT or
GL_OPERAND1_RGB_EXT is not one of GL_SRC_COLOR,
GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA or
GL_ONE_MINUS_SRC_ALPHA.

INVALID_ENUM The Parameter(s) value for GL_OPERANDO_ALPHA_EXT or
GL_OPERAND1_ALPHA_EXT is not one of GL_SRC_ALPHA or
GL_ONE_MINUS_SRC_ALPHA.

INVALID_ENUM The Parameter(s) value for GL_OPERAND2_RGB_EXT or
GL_OPERAND2_ALPHA_EXT is not GL_SRC_ALPHA.

INVALID_VALUE The Parameter(s) value for RGB_SCALE_EXT or ALPHA_SCALE is not one
of 1.0, 2.0, or 4.0.

GL_INVALID_OPERATION The glTexEnv subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glTexEnv subroutine are as follows. (See the subroutine for more
information.)

glGetTexEnv.

Chapter 1. OpenGL Subroutines 331




Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The |gIBegin or glEnd| subroutine, |gIGetTexEnV| subroutine, |glTexlmage1D| subroutine, |giTeximage2D
subroutine, |9ITexParamete|_‘| subroutine.

glTexGen Subroutine

Purpose
Controls the generation of texture coordinates.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1TexGend (GLenum |Coordinate|,
GLenum [pName|,

GLdouble [Parameter)

void glTexGenf(GLenum [Coordinate|,
GLenum |pName),
GLfloat [Parameter)

void g1TexGeni(GLenum [Coordinate|,
GLenum [pName|,
GLint |Parameter)

void glTexGendv(GLenum |Coor‘dinate|,
GLenum |pName),

const GLdouble = |Parameters|)

void g1TexGenfv(GLenum |Coordinate|,
GLenum |pName),

const GLfloat * |Parameters|b

void glTexGeniv(GLenum |Coor‘dinate|,
GLenum [pNamel,

const GLint * |Parameter‘s|)

Parameters

glTexGend, giTexGenf or glTexGeni

Coordinate Specifies a texture coordinate. Must be one of the following:
+ GL_S
« GL_T
« GL_R
- GL_Q

332 OpenGL 1.2 Reference Manual



pName Specifies the symbolic name of the texture-coordinate generation function. Must be
GL_TEXTURE_GEN_MODE.

Parameter Specifies a single-valued texture generation parameter, one of GL_OBJECT_LINEAR,
GL_EYE_LINEAR, or GL_SPHERE_MAP.

glTexGendyv, giTexGenfv or glTexGeniv

Coordinate Specifies a texture coordinate. Must be one of the following:
« GL_S
« GL_T
« GL_R
- GL_Q
pName Specifies the symbolic name of the texture-coordinate generation function or function parameters.
Must be GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE.
Parameters Specifies a pointer to an array of texture generation parameters. If pName is

GL_TEXTURE_GEN_MODE, the array must contain a single symbolic constant, one of
GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. Otherwise, Parameters holds
the coefficients for the texture-coordinate generation function specified by pName.

Description

The glTexGen subroutine selects a texture-coordinate generation function or supplies coefficients for one
of the functions. The Coordinate parameter names one of the (s, t, r, q) texture coordinates, and it must be
one of these symbols: GL_S, GL_T, GL_R, or GL_Q. The pName parameter must be one of three
symbolic constants: GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE. If pName
is GL_TEXTURE_GEN_MODE, the Parameters parameter chooses a mode, one of
GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. If pName is either
GL_OBJECT_PLANE or GL_EYE_PLANE, the Parameters parameter contains coefficients for the
corresponding texture generation function.

If the texture generation function is GL_OBJECT_LINEAR, the following function is used:

9=P1Xo+P2Yo+P320+P4Wo

Figure 23. GL_OBJECT_LINEAR Function. This figure shows that g is equal to p subscript one x subscript zero + p
subscript two y subscript zero + p subscript three z subscript zero + p subscript four w subscript zero.

where g is the value computed for the coordinate named in the Coordinate parameter, p1, p2, p3, and p4
are the four values supplied in the Parameters parameter, and x0, y0, z0, w0 are the object coordinates of
the vertex. This function can be used to texture-map terrain using sea level as a reference plane (defined
by p1, p2, p3, and p4). The altitude of a terrain vertex is computed by the GL_OBJECT_LINEAR
coordinate generation function as its distance from sea level; that altitude is used to index the texture
image to map white snow onto peaks and green grass onto foothills, for example.

If the texture generation function is GL_EYE_LINEAR, the following function is used:

Chapter 1. OpenGL Subroutines 333



9=P1Xe+P2 Yo t+P3 Zg+Py We

Figure 24. GL_EYE_LINEAR Function. This figure shows that g is equal to p subscript one' x subscript e + p subscript
two' y subscript e + p subscript three' z subscript e + p subscript four w subscript e.

where:

(p1 P2 P3 P2)=(P1 P2 P3 P4)YM™T

Figure 25. GL_EYE_LINEAR Function Definition. This figure shows that (p subscript one' p subscript two' p subscript
three' p subscript four') equals (p subscript one p subscript two p subscript three p subscript four)M to the power of -1.

and xe, ye, ze, and we are the eye coordinates of the vertex, p1, p2, p3, p4 are the values supplied in
Parameters, and M is the modelview matrix when glTexGen is invoked. If M is poorly conditioned or
singular, texture coordinates generated by the resulting function may be inaccurate or undefined.

Note that the values in the Parameters parameter define a reference plane in eye coordinates. The
modelview matrix that is applied to them may not be the same one in effect when the polygon vertices are
transformed. This function establishes a field of texture coordinates that can produce dynamic contour
lines on moving objects.

If the pName parameter is GL_SPHERE_MAP and the Coordinate parameter is either GL_R or GL_Q, s
and t texture coordinates are generated as follows. Let u be the unit vector pointing from the origin to the
polygon vertex (in eye coordinates). Let n’ be the current normal, after transformation to eye coordinates.
Let f=(ix fy fz)T be the reflection vector such that

f=u-2n'n'Tu

Finally, let m=2(square root (x2+fy2+(fz+1)2)). Then the values assigned to the s and t texture
coordinates are the following:

K
s=—— +1/2
m

£
= L
m

Figure 26. s and t Values. This figure shows two equations, one for each texture coordinate. The first equation shows
that texture coordinate s is equal to f subscript x / m + 1/2. The second equation shows that texture coordinate t is
equal to f subscripty / m + 1/2.

A texture-coordinate generation function is enabled or disabled using the glEnable or giDisable
subroutines with one of the symbolic texture-coordinate names (GL_TEXTURE_GEN_S,
GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q) as the argument. When
enabled, the specified texture coordinate is computed according to the generating function associated with
that coordinate. When disabled, subsequent vertices take the specified texture coordinate from the current

334 OpenGL 1.2 Reference Manual



set of texture coordinates. Initially, all texture generation functions are set to GL_EYE_LINEAR and are
disabled. Both s plane equations are (1,0,0,0), both ¢ plane equations are (0,1,0,0), and all r and g plane
equations are (0,0,0,0).

Error Codes

GL_INVALID_ENUM Coordinate or pName is not an accepted defined value, or pName is
GL_TEXTURE_GEN_MODE and Parameters is not an accepted defined
value.

GL_INVALID_ENUM pName is GL_TEXTURE_GEN_MODE, Parameters is GL_SPHERE_MAP,
and Coordinate is either GL_R or GL_Q.

GL_INVALID_OPERATION The glTexGen subroutine is called between a call to giBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the gITexGen subroutine are as follows. (See the [giGef] subroutine for more
information.)

glGetTexGen

[glisEnabled| with argument GL_TEXTURE_GEN_S
gllsEnabled with argument GL_TEXTURE_GEN_T
glisEnabled with argument GL_TEXTURE_GEN_R
glisEnabled with argument GL_TEXTURE_GEN_Q.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gIBegin or glEnd|subroutine, |glEnable or glDisable| subroutine, |glGetTexGen| subroutine,

subroutine, |gITexImage1 D| subroutine,|9ITexImage2D| subroutine, |gITexlmage3DEXT] subroutine,

|9ITexParamete[| subroutine.

glTeximage1D Subroutine

Purpose
Specifies a one-dimensional (1D) texture image.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1TexImagelD (GLenum
GLint
GLint
GLsizei

Chapter 1. OpenGL Subroutines 335



GLint
GLenum
GLenum
const GLvoid * [pixels)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D of GL_PROXY_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

internalformat Specifies the number of color components in the texture. Must be 1, 2, 3, or 4, or one of

the following symbolic constants: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4,
GL_ALPHAS8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4,
GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCEG6_ALPHAZ2,
GL_LUMINANCES_ALPHAS8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,
GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1,GL_RGBAS,
GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

width Specifies the width of the texture image. Must be 2n + 2 x border for some integer n. All
implementations support texture images that are at least 64 texels wide. The height of the
1D texture image is 1.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA,
GL_ABGR_EXT, GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT,
GL_422 AVERAGE_EXT, GL_422_REV_AVERAGE_EXT, and
GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,
GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,
GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4 4 4, GL_UNSIGNED_SHORT_4_4 4 4 REV,
GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5 5 5 REV,
GL_UNSIGNED_INT_8_8_8_8, GL
GL_UNSIGNED_INT_10_10_10
accepted.

pixels Specifies a pointer to the image data in memory.

UNSIGNED_INT_8_8_8_8_REV,

and GL_UNSIGNED_INT_2_10_10_10_REV are

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable and disable one-dimensional texturing, call glEnable and glDisable with argument
GL_TEXTURE_1D.

Texture images are defined with glTexlmage1D. The arguments describe the parameters of the texture
image, such as width, width of the border, level-of-detail number (See |gITexParameteﬂb, and the internal
resolution and format used to store the image. The last three arguments describe how the image is
represented in memory; they are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_1D no data is read from pixels, but all of the texture image state is
recalculated, checked for consistency, and checked against the

implementation’s capabilities. If the implementation cannot handle a texture of the requested texture size, it
sets all of the image state to 0, but does not generate an error (See . To query for an entire
mipmap array, use an image array level greater than or equal to 1.

336 OpenGL 1.2 Reference Manual



If target is GL_TEXTURE_1D, data is read from pixels as a sequence of signed or unsigned bytes, shorts,
or longs, or single-precision floating-point values, depending on type. These values are grouped into sets
of one, two, three, or four values, depending on format, to form elements. If type is GL_BITMAP, the data
is considered as a string of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is
treated as eiiht 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (See

glPixelStore).

The first element corresponds to the left end of the texture array. Subsequent elements progress
left-to-right through the remaining texels in the texture array. The final element corresponds to the right
end of the texture array.

The format parameter determines the composition of each element in pixels. It can assume one of 16
symbolic values:

GL_COLOR_INDEX Each element is a single value, a color index. The GL converts it to fixed
point (with an unspecified number of zero bits to the right of the binary
point), shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (See
[glPixelTransfer). The resulting index is converted to a set of color
components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for green
and blue, and 1.0 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS,
and clamped to the range [0,1] (See [gIPixelTransfer).

GL_GREEN Each element is a single green component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for red and
blue, and 1.0 for alpha. Each component is then multiplied by the signed
scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (See [gIPixelTransfer).

GL_BLUE Each element is a single blue component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for red and
green, and 1.0 for alpha. Each component is then multiplied by the signed
scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (See [gIPixelTransfer).

GL_ALPHA Each element is a single alpha component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for red,
green, and blue. Each component is then multiplied by the signed scale
factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (See |[gIPixelTransfer).

GL_RGB Each element is an RGB triple. The GL converts it to floating point and
assembles it into an RGBA element by attaching 1.0 for alpha.
Eachcomponent is then multiplied by the signed scale factor
GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the

range [0,1] (See [glIPixelTransfer).

GL_RGBA Each element contains all four components. Each *component is then
multiplied by the signed scale factor GL_c_SCALE, added to the signed
bias GL_c_BIAS, and clamped to the range [0,1] (See .

GL_BGR Each pixel is a three-component group, blue first, followed by green,

followed by red. Each component is converted to the internal floating-point
format in the same way as the blue, green, and red components of an
BGRA pixel are. The color triple is converted to an BGRA pixel with alpha
set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an BGRA pixel.

Chapter 1. OpenGL Subroutines 337



GL_BGRA

GL_ABGR_EXT

GL_LUMINANCE

338 OpenGL 1.2 Reference Manual

Each pixel is a four-component group, blue first, followed by green,
followed by red, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,
GREEN, RED, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

Each pixel is a four-component group: for GL_RGBA, the red component
is first, followed by green, followed by blue, followed by alpha; for
GL_BGRA, the blue component is first, followed by green, followed by
red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,
green, and then red. Floating-point values are converted directly to an
internal floatingpoint format with unspecified precision. Signed integer
values are mapped linearly to the internal floating-point format such that
the most positive representable integer value maps to 1.0, and the most
negative representable value maps to -1.0. Unsigned integer data is
mapped similarly: the largest integer value maps to 1.0, and zero maps to
0.0. The resulting floating-point color values are then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,
BLUE, and ALPHA for the respective color components. The results are
clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size
of lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value
that it references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that

xn = xr + n mod width
yn=yr+ | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each element is a single luminance value. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the
luminance value three times for red, green, and blue and attaching 1.0 for
alpha. Each component is then multiplied by the signed scale factor

GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the
range [0,1] (See|glPixelTransfer).



GL_LUMINANCE_ALPHA

GL_422_EXT

GL_422_REV_EXT

GL_422_AVERAGE_EXT

Each element is a luminance/alpha pair. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the
luminance value three times for red, green, and blue. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the

signed bias GL_c_BIAS, and clamped to the range [0,1] (See
glPixelTransfer).

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. The Cb for each even pixel is used as the Cb value for that pixel
and its neighbor to the right. The Cr in each odd pixel is used as the Cr
value for that pixel and its neighbor to the left. (If the width of the image is
odd, then the colors will be undefined in the rightmost column.) Through
the use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. The Cb for each even pixel is used as the Cb value for that pixel and
its neighbor to the right. The Cr in each odd pixel is used as the Cr value
for that pixel and its neighbor to the left. (If the width of the image is odd,
then the colors will be undefined in the rightmost column.) Through the
use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it ha d been sent in as an RGB pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor
to the right. Each odd pixel gets its Cb from the average of its left and
right neighbor, and its Cr from the average of itself and its neighbor two to
the right. (If the width of the image is odd, then the colors will be
undefined in the rightmost column. If the neighbors to the right are not
present for a given fragment, we use GL_422_EXT to compute that
fragment.) Through the use of the color matrix, Y then assumes the role
of red, Cb becomes green and Cr becomes blue. After this conversion,
the pixel is treated just as if it had been sent in as an RGB pixel.

Chapter 1. OpenGL Subroutines 339



GL_422_REV_AVERAGE_EXT This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to
the right. Each odd pixel gets its Cb from the average of its left and right
neighbor, and its Cr from the average of itself and its neighbor two to the
right. (If the width of the image is odd, then the colors will be undefined in
the rightmost column. If the neighbors to the right are not present for a
given fragment, we use GL_422_REV_EXT to compute that fragment.)
Through the use of the color matrix, Y then assumes the role of red, Cb
becomes green and Cr becomes blue. After this conversi on, the pixel is
treated just as if it had been sent in as an RGB pixel.

For applications that store the texture at a certain resolution or in a certain format, request the resolution
and format with internalformat. The GL will choose an internal representation that closely approximates
that requested by internalformat, but it may not match exactly. (The representations specified by
GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly. The numeric
values 1, 2, 3, and 4 may also be used to specify the above representations.)

Use the GL_PROXY_TEXTURE_1D target to try out a resolution and format. The implementation will
update and recompute its best match for the requested storage resolution and format. To query this state,
call glGetTexLevelParameter. If the texture cannot be accomodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A

two-component image uses the R and A values. A three-component image uses the R, G, and B values. A
four-component image uses all of the RGBA components.

Notes
GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels
command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

GL_PROXY_TEXTURE_1D can only be used if the GL version is 1.1 or greater.

Internal formats other than 1, 2, 3, or 4 can only be used if the GL version is 1.1 or greater.

In GL version 1.1 or greater, pixels may be a null pointer. In this case texture memory is allocated to
accomodate a texture of width width. You can then download subtextures to initialize the texture memory.

The image is undefined if the user tries to apply an uninitialized portion of the texture image to a primitive.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL
command set.

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_1D or GL_PROXY_TEXTURE_1D.

340 OpenGL 1.2 Reference Manual



GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other
than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.
GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value
of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution and
format symbolic constants.

GL_INVALID_VALUE is generated if width is less than zero or greater than 2 +
GL_MAX_TEXTURE_SIZE, or if it cannot be represented as 2n + 2 x border for some integer value of n.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if glTeximage1D is executed between the execution of glBegin
and the corresponding execution of glEnd.

Associated Gets

lglGetTexlmage|
glisEnabled| with argument GL_TEXTURE_1D.

Related Information

The [gICopyTexlmage1D] subroutine, [giDrawPixels| subroutine, [gIFog| subroutine, [gIPixelStore]
subroutine, [glIPixelTransfer| subroutine, |giTexEnv| subroutine, |gITexGen subroutine,|gITexImage29|
H

subroutine, |glTexParameter| subroutine, [gITexSublmage1 D| subroutine.

glTeximage2D Subroutine

Purpose
Specifies a two-dimensional (2D) texture image.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glTexImage2D(GLenum [target|,
GLint |level|,
GLint |internalformat),
GLsizei
GLsizei

GLenum
GLenum

Chapter 1. OpenGL Subroutines 341



Parameters

target
level

internalformat

width
height

border
format

type

pixels

Description

Specifies the target texture. Must be GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D.
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

Specifies the number of color components in the texture. Must be 1, 2, 3, or 4, or one of
the following symbolic constants: GL_ABGR_EXT, GL_ALPHA,GL_ALPHAA4,
GL_ALPHAS8, GL_ALPHA12, GL_ALPHA16,GL_LUMINANCE, GL_LUMINANCE4,
GL_LUMINANCES,GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA,GL_LUMINANCE4_ALPHAA4,
GL_LUMINANCE6_ALPHA2,GL_LUMINANCES_ALPHAS,
GL_LUMINANCE12_ALPHA4,GL_LUMINANCE12_ALPHA12,
GL_LUMINANCE16_ALPHA16,GL_INTENSITY, GL_INTENSITY4,
GL_INTENSITY8,GL_INTENSITY12, GL_INTENSITY16, GL_R3_G3_B2,
GL_RGB,GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10,GL_RGB12, GL_RGB16,
GL_RGBA, GL_RGBA2,GL_RGBA4, GL_RGB5_A1, GL_RGBAS,
GL_RGB10_A2,GL_RGBA12, or GL_RGBA16.

Specifies the width of the texture image. Must be 2n + 2 x border for some integer n. All
implementations support texture images that are at least 64 texels wide.

Specifies the height of the texture image. Must be 2m + 2 x border for some integer m.
All implementations support texture images that are at least 64 texels high.

Specifies the width of the border. Must be either 0 or 1.

Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA,
GL_ABGR_EXT, GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT,

GL_422 AVERAGE_EXT, GL_422_REV_AVERAGE_EXT, and
GL_LUMINANCE_ALPHA are accepted.

Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,
GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4 4 4 REV,
GL_UNSIGNED_SHORT_5_5 5_1, GL_UNSIGNED_SHORT_1_5_5 5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV, are

accepted.
Specifies a pointer to the image data in memory.

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable with argument

GL_TEXTURE_2D.

To define texture images, call glTeximage2D. The arguments describe the parameters of the texture
image, such as height, width, width of the border, level-of-detail number (see |gITexParamete[|D, and
number of color components provided. The last three arguments describe how the image is represented in
memory. They are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_2D no data is read from pixels, but all of the texture image state is
recalculated, checked for consistency, and checked against the implementation’s capabilities. If the
implementation cannot handle a texture of the requested texture size, it sets all of the image state to 0, but
does not generate an error (see . To query for an entire mipmap array, use an image array
level greater than or equal to 1.

If target is GL_TEXTURE_2D, data is read from pixels as a sequence of signed or unsigned bytes, shorts,
or longs, or single-precision floating-point values, depending on type. These values are grouped into sets
of one, two, three, or four values, depending on format, to form elements. If type is GL_BITMAP, the data

342 OpenGL 1.2 Reference Manual



is considered as a string of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is
treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see
glPixelStore).

The first element corresponds to the lower-left corner of the texture image. Subsequent elements progress
left-to-right through the remaining texels in the lowest row of the texture image, and then in successively
higher rows of the texture image. The final element corresponds to the upper-right corner of the texture

image.

The format parameter determines the composition of each element in pixels. It can assume one of 16

symbolic values:

GL_COLOR_INDEX

GL_RED

GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

GL_RGBA

GL_BGR

Each element is a single value, a color index. The GL converts it to fixed
point (with an unspecified number of zero bits to the right of the binary
point), shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see
[glPixelTransfer). The resulting index is converted to a set of color
components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

Each element is a single red component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for green
and blue, and 1.0 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS,
and clamped to the range [0,1] (see [gIPixelTransfer).

Each element is a single green component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for red and
blue, and 1.0 for alpha. Each component is then multiplied by the signed
scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see [gIPixelTransfer).

Each element is a single blue component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for red and
green, and 1.0 for alpha. Each component is then multiplied by the signed
scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see [gIPixelTransfer).

Each element is a single alpha component. The GL converts it to floating
point and assembiles it into an RGBA element by attaching 0.0 for red,
green, and blue. Each component is then multiplied by the signed scale
factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see [gIPixelTransfer).

Each element is an RGB triple. The GL converts it to floating point and
assembles it into an RGBA element by attaching 1.0 for alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE,

added to the signed bias GL_c_BIAS, and clamped to the range [0,1]
(see|glPixelTransfer).

Each element contains all four components. Each *component is
multiplied by the signed scale factor GL_c_SCALE, added to the signed
bias GL_c_BIAS, and clamped to the range [0,1] (see .
Each pixel is a three-component group, blue first, followed by green,
followed by red. Each component is converted to the internal floating-point
format in the same way as the blue, green, and red components of an
BGRA pixel are. The color triple is converted to an BGRA pixel with alpha

set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an BGRA pixel.

Chapter 1. OpenGL Subroutines 343



GL_BGRA

GL_ABGR_EXT

GL_LUMINANCE

344 OpenGL 1.2 Reference Manual

Each pixel is a four-component group, blue first, followed by green,
followed by red, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,
GREEN, RED, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

Each pixel is a four-component group: for GL_RGBA, the red component
is first, followed by green, followed by blue, followed by alpha; for
GL_BGRA, the blue component is first, followed by green, followed by
red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,
green, and then red. Floating-point values are converted directly to an
internal floatingpoint format with unspecified precision. Signed integer
values are mapped linearly to the internal floating-point format such that
the most positive representable integer value maps to 1.0, and the most
negative representable value maps to -1.0. Unsigned integer data is
mapped similarly: the largest integer value maps to 1.0, and zero maps to
0.0. The resulting floating-point color values are then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,
BLUE, and ALPHA for the respective color components. The results are
clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size
of lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value
that it references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that

xn = xr + n mod width
yn=yr+ | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each element is a single luminance value. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the
luminance value three times for red, green, and blue and attaching 1.0 for
alpha. Each component is then multiplied by the signed scale factor

GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the
range [0,1] (see [gIPixelTransfer).



GL_LUMINANCE_ALPHA

GL_422_EXT

GL_422_AVERAGE_EXT

GL_422_REV_AVERAGE_EXT

Each element is a luminance/alpha pair. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the
luminance value three times for red, green, and blue. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the

signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. The Cb for each even pixel is used as the Cb value for that pixel
and its neighbor to the right. The Cr in each odd pixel is used as the Cr
value for that pixel and its neighbor to the left. (If the width of the image is
odd, then the colors will be undefined in the rightmost column.) Through
the use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor
to the right. Each odd pixel gets its Cb from the average of its left and
right neighbor, and its Cr from the average of itself and its neighbor two to
the right. (If the width of the image is odd, then the colors will be
undefined in the rightmost column. If the neighbors to the right are not
present for a given fragment, we use GL_422_EXT to compute that
fragment.) Through the use of the color matrix, Y then assumes the role
of red, Cb becomes green and Cr becomes blue. After this conversion,
the pixel is treated just as if it had been sent in as an RGB pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to
the right. Each odd pixel gets its Cb from the average of its left and right
neighbor, and its Cr from the average of itself and its neighbor two to the
right. (If the width of the image is odd, then the colors will be undefined in
the rightmost column. If the neighbors to the right are not present for a
given fragment, we use GL_422_REV_EXT to compute that fragment.)
Through the use of the color matrix, Y then assumes the role of red, Cb
becomes green and Cr becomes blue. After this convers ion, the pixel is
treated just as if it had been sent in as an RGB pixel.

Refer to the subroutine for a description of the acceptable values for the type parameter.
For applications that store the texture at a certain resolution or in a certain format, request the resolution
and format with internalformat. The GL will choose an internal representation that closely approximates
that requested by internalformat, but it may not match exactly. (The representations specified by
GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly. The numeric
values 1, 2, 3, and 4 may also be used to specify the above representations.)

Chapter 1. OpenGL Subroutines 345



Use the GL_PROXY_TEXTURE_2D target to try out a resolution and format. The implementation will
update and recompute its best match for the requested storage resolution and format. To then query this
state, call glGetTexLevelParameter. If the texture cannot be accomodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A

two-component image uses the R and A values. A three-component image uses the R, G, and B values. A
four-component image uses all of the RGBA components.

Notes
GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels
command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

The GL_PROXY_TEXTURE_2D target are only available if the GL version is 1.1 or greater.

Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.1 or greater.

In GL version 1.1 or greater, pixels may be a null pointer. In this case texture memory is allocated to
accomodate a texture of width width and height height. You can then download subtextures to initialize this
texture memory. The image is undefined if the user tries to apply an uninitialized portion of the texture

image to a primitive.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL
command set.

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other
than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.
GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned
value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution and
format symbolic constants.

GL_INVALID_VALUE is generated if width or height is less than zero or greater than 2 +
GL_MAX_TEXTURE_SIZE, or if either cannot be represented as 2k + 2 x border for some integer value of
k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

346 OpenGL 1.2 Reference Manual



GL_INVALID_OPERATION is generated if glTeximage2D is executed between the execution of glBegin
and the corresponding execution of glEnd.

Associated Gets

|9IGetTexImage|

glisEnabled| with argument GL_TEXTURE_2D.

Related Information

The [gICopyTexImage2D| subroutine,

DrawPixels| subroutine,

gIFog] subroutine, [gIPixelStore]

subroutine, |gIPixelTransfer subroutine, |gITexEnv] subroutine, [gITexGen subroutine,|gITexImage1Q|
subroutine, |glTexParamete

subroutine, |gITexSublmage2D| subroutine.

glTeximage3D Subroutine

Purpose

Specifies a three-dimensional (3D) texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void g1TexImage3D (GLenum

Parameters

target
level

internalformat

width
height
depth
border

GLint
GLint
GLsizei
GLsizei
GLsizei

target],
levell,

internal format),

widthl,
height|,
depth,

GLint |porder],

GLenum
GLenum

Specifies the target texture. Must be GL_TEXTURE_3D or GL_PROXY_TEXTURE_3D.
Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

Specifies the number of color components in the texture. Must be 1, 2, 3, or 4, or one of
the following symbolic constants: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4,
GL_ALPHAS8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4,
GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCEG6_ALPHAZ2,
GL_LUMINANCES_ALPHAS8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGBS8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBAS,
GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

Specifies the width of the texture image. Must be 2n + 2 x border for some integer n.
Specifies the height of the texture image. Must be 2m + 2 x border for some integer m.
Specifies the depth of the texture image. Must be 21 + 2 x border for some integer .
Specifies the width of the border. Must be either 0 or 1.

Chapter 1. OpenGL Subroutines 347



format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA,
GL_ABGR_EXT, GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT,
GL_422_AVERAGE_EXT, GL_422_REV_AVERAGE_EXT, and accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,
GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,
GL_UNSIGNED_SHORT 4_4 4 4, GL_UNSIGNED_SHORT 4_4 4 4 _REV,
GL_UNSIGNED_SHORT_5_5 5 1, GL_UNSIGNED_SHORT_1_5 5 5_REV,
GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,
GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV are
accepted.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable and disable three-dimensional texturing, call glEnable and glDisable with argument
GL_TEXTURE_3D.

To define 3D texture images, call glTeximage3D. The arguments describe the parameters of the texture
image, such as height, width, depth, width of the border, level-of-detail number (see glTexParameter), and
number of color components provided. The last three arguments describe how the image is represented in
memory; they are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_3D no data is read from pixels, but all of the texture image state is
recalculated, checked for consistency, and checked against the implementation’s capabilities. If the
implementation cannot handle a texture of the requested texture size, it sets all of the image state to 0, but
does not generate an error (see glGetError). To query for an entire mipmap array, use an image array
level greater than or equal to 1.

If target is GL_TEXTURE_3D, data is read from pixels as a sequence of signed or unsigned bytes, shorts,
or longs, or single-precision floating-point values, depending on tfype. These values are grouped into sets
of one, two, three, or four values, depending on format, to form elements. If type is GL_BITMAP, the data
is considered as a string of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is
treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see
glPixelStore).

The first element corresponds to the lower-left corner of the texture image. Subsequent elements progress
left-to-right through the remaining texels in the lowest row of the texture image, and then in successively
higher rows of the texture image. The final element corresponds to the upper-right corner of the texture
image.

The format parameter determines the composition of each element in pixels. It can assume one of 16
symbolic values:

GL_COLOR_INDEX Each element is a single value, a color index. The GL converts it to fixed
point (with an unspecified number of zero bits to the right of the binary
point), shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see
. The resulting index is converted to a set of color
components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

348 OpenGL 1.2 Reference Manual



GL_RED

GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

GL_RGBA

GL_BGR

GL_BGRA

Each element is a single red component. The GL converts it to floating
point and assembiles it into an RGBA element by attaching 0.0 for green
and blue, and 1.0 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS,
and clamped to the range [0,1] (see |gIPixelTransfer).

Each element is a single green component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for red and
blue, and 1.0 for alpha. Each component is then multiplied by the signed
scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see [gIPixelTransfer).

Each element is a single blue component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for red and
green, and 1.0 for alpha. Each component is then multiplied by the signed
scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see [gIPixelTransfer).

Each element is a single alpha component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for red,
green, and blue. Each component is then multiplied by the signed scale
factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see [gIPixelTransfer).

Each element is an RGB triple. The GL converts it to floating point and
assembles it into an RGBA element by attaching 1.0 for alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE,

added to the signed bias GL_c_BIAS, and clamped to the range [0,1]
(see|glPixelTransfer).

Each element contains all four components. Each *component is
multiplied by the signed scale factor GL_c_SCALE, added to the signed
bias GL_c_BIAS, and clamped to the range [0,1] (see .
Each pixel is a three-component group, blue first, followed by green,
followed by red. Each component is converted to the internal floating-point
format in the same way as the blue, green, and red components of an
BGRA pixel are. The color triple is converted to an BGRA pixel with alpha
set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an BGRA pixel.

Each pixel is a four-component group, blue first, followed by green,
followed by red, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,
GREEN, RED, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

Chapter 1. OpenGL Subroutines 349



GL_ABGR_EXT

GL_LUMINANCE

GL_LUMINANCE_ALPHA

GL_422_EXT

350 OpenGL 1.2 Reference Manual

Each pixel is a four-component group: for GL_RGBA, the red component
is first, followed by green, followed by blue, followed by alpha; for
GL_BGRA, the blue component is first, followed by green, followed by
red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,
green, and then red. Floating-point values are converted directly to an
internal floatingpoint format with unspecified precision. Signed integer
values are mapped linearly to the internal floating-point format such that
the most positive representable integer value maps to 1.0, and the most
negative representable value maps to -1.0. Unsigned integer data is
mapped similarly: the largest integer value maps to 1.0, and zero maps to
0.0. The resulting floating-point color values are then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where ¢ is RED, GREEN,
BLUE, and ALPHA for the respective color components. The results are
clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size
of lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value
that it references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that

xn = xr + n mod width

yn=yr+ | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each element is a single luminance value. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the
luminance value three times for red, green, and blue and attaching 1.0 for
alpha. Each component is then multiplied by the signed scale factor

GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the
range [0,1] (see .

Each element is a luminance/alpha pair. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the

signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. The Cb for each even pixel is used as the Cb value for that pixel
and its neighbor to the right. The Cr in each odd pixel is used as the Cr
value for that pixel and its neighbor to the left. (If the width of the image is
odd, then the colors will be undefined in the rightmost column.) Through
the use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.



GL_422_REV_EXT This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. The Cb for each even pixel is used as the Cb value for that pixel and
its neighbor to the right. The Cr in each odd pixel is used as the Cr value
for that pixel and its neighbor to the left. (If the width of the image is odd,
then the colors will be undefined in the rightmost column.) Through the
use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

GL_422 AVERAGE_EXT This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor
to the right. Each odd pixel gets its Cb from the average of its left and
right neighbor, and its Cr from the average of itself and its neighbor two to
the right. (If the width of the image is odd, then the colors will be
undefined in the rightmost column. If the neighbors to the right are not
present for a given fragment, we use GL_422_EXT to compute that
fragment.) Through the use of the color matrix, Y then assumes the role
of red, Cb becomes green and Cr becomes blue. After this conversion,
the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422 REV_AVERAGE_EXT This extension is for use with the "YCbCr" color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to
the right. Each odd pixel gets its Cb from the average of its left and right
neighbor, and its Cr from the average of itself and its neighbor two to the
right. (If the width of the image is odd, then the colors will be undefined in
the rightmost column. If the neighbors to the right are not present for a
given fragment, we use GL_422_REV_EXT to compute that fragment.)
Through the use of the color matrix, Y then assumes the role of red, Cb
becomes green and Cr becomes blue. After this conversion, the pixel is
treated just as if it had been sent in as an RGB pixel.

Refer to the glDrawPixels reference page for a description of the acceptable values for the type
parameter. If an application must store the texture at a certain resolution or in a certain format, use
internalformat to request the resolution and format. The GL will choose an internal representation that
closely approximates that requested by internalformat, but it may not match exactly. (The representations
specified by GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly.
The numeric values 1, 2, 3, and 4 may also be used to specify the above representations.)

Use the GL_PROXY_TEXTURE_3D target to try out a resolution and format. The implementation will
update and recompute its best match for the requested storage resolution and format. To then query this
state, call glGetTexLevelParameter. If the texture cannot be accommodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A

two-component image uses the R and A values. A three-component image uses the R, G, and B values. A
four-component image uses all of the RGBA components.

Chapter 1. OpenGL Subroutines 351



Notes
GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels
command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The
glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.2 or greater.

In GL version 1.2 or greater, pixels may be a null pointer. In this case texture memory is allocated to
accomodate a texture of width width and height height. You can then download subtextures to initialize this
texture memory. The image is undefined if the user tries to apply an uninitialized portion of the texture
image to a primitive.

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D or GL_PROXY_TEXTURE_3D.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other
than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.
GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned
value of GL_MAX_3D_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution and
format symbolic constants.

GL_INVALID_VALUE is generated if width, height, or depth is less than zero or greater than 2 +
GL_MAX_3D_TEXTURE_SIZE, or if either cannot be represented as 2k + 2 x border for some integer
value of k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if glTexlmage3D is executed between the execution of glBegin
and the corresponding execution of glEnd.

Associated Gets
glGetTeximage

glisEnabled with argument GL_TEXTURE_3D

Related Information

The |glCopyTexSublmage3D| subroutine, |giDrawPixels| subroutine, [gIFog| subroutine, |g e|
subroutine, [gIPixelTransfer subroutine, subroutine, subroutine, |gITeximage1D)|
subroutine, |glTexParameter| subroutine,

glTexlmage2Dj| subroutine.
352 OpenGL 1.2 Reference Manual




glTeximage3DEXT Subroutine

Purpose
Specifies a three-dimensional (3D) texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void g1TexImage3DEXT(GLenum |targe tl,

GLint
GLint
GLsizei
GLsizei
GLsizei
GLint
GLenum
GLenum

Parameters

target

level

internalformat

width
height
depth
border
format

type

pixels

internalformatL

Specifies the target texture. Must be GL_TEXTURE_3D_EXT or
GL_PROXY_TEXTURE_3D_EXT.

Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth
mipmap reduction image.

Specifies the number of color components in the texture. Must be 1, 2, 3, or 4, or one of
the following symbolic constants: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4,
GL_ALPHAS8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4,
GL_LUMINANCES, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCEG6_ALPHAZ2,
GL_LUMINANCES_ALPHAS8, GL_LUMINANCE12_ALPHA4,
GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,
GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,
GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBAS,
GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

Specifies the width of the texture image. Must be 2n + 2 x border for some integer n.
Specifies the height of the texture image. Must be 2m + 2 x border for some integer m.
Specifies the depth of the texture image. Must be 2| + 2 x border for some integer .
Specifies the width of the border. Must be either 0 or 1.

Specifies the format of the pixel data. The following symbolic values are accepted:
GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,
GL_RGBA, GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT

GL_422 AVERAGE_EXT, GL_422_REV_AVERAGE_EXT, and
GL_LUMINANCE_ALPHA.

Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

Specifies a pointer to the image data in memory.

Chapter 1. OpenGL Subroutines 353



Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable and disable three-dimensional texturing, call glEnable and glDisable with argument
GL_TEXTURE_3D_EXT.

To define 3D texture images, call glTeximage3DEXT. The arguments describe the parameters of the
texture image, such as height, width, depth, width of the border, level-of-detail number (see
glTexParameter), and number of color components provided. The last three arguments describe how the
image is represented in memory; they are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_3D_EXT no data is read from pixels, but all of the texture image state
is recalculated, checked for consistency, and checked against the implementation’s capabilities. If the
implementation cannot handle a texture of the requested texture size, it sets all of the image state to 0, but
does not generate an error (see glGetError). To query for an entire mipmap array, use an image array
level greater than or equal to 1.

If target is GL_TEXTURE_3D_EXT, data is read from pixels as a sequence of signed or unsigned bytes,
shorts, or longs, or single-precision floating-point values, depending on type. These values are grouped
into sets of one, two, three, or four values, depending on format, to form elements. If type is GL_BITMAP,
the data is considered as a string of unsigned bytes (and format must be GL_COLOR_INDEX). Each data
byte is treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see
glPixelStore).

The first element corresponds to the lower-left corner of the texture image. Subsequent elements progress
left-to-right through the remaining texels in the lowest row of the texture image, and then in successively
higher rows of the texture image. The final element corresponds to the upper-right corner of the texture
image.

The format parameter determines the composition of each element in pixels. It can assume one of 16
symbolic values:

GL_COLOR_INDEX Each element is a single value, a color index. The GL converts it to fixed
point (with an unspecified number of zero bits to the right of the binary
point), shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see
[glPixelTransfer). The resulting index is converted to a set of color
components using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for green
and blue, and 1.0 for alpha. Each component is then multiplied by the
signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS,
and clamped to the range [0,1] (see .

GL_GREEN Each element is a single green component. The GL converts it to floating
point and assembles it into an RGBA element by attaching 0.0 for red and
blue, and 1.0 for alpha. Each component is then multiplied by the signed
scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see .

GL_BLUE Each element is a single blue component. The GL converts it to floating

point and assembiles it into an RGBA element by attaching 0.0 for red and
green, and 1.0 for alpha. Each component is then multiplied by the signed

scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and
clamped to the range [0,1] (see |gIPixelTransfer).

354 OpenGL 1.2 Reference Manual



GL_ALPHA

GL_RGB

GL_RGBA

GL_LUMINANCE

GL_LUMINANCE_ALPHA

GL_422_EXT

GL_422_REV_EXT

Each element is a single alpha component. The GL converts it to floating
point and assembiles it into an RGBA element by attaching 0.0 for red,
green, and blue. Each component is then multiplied by the signed scale

factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped
to the range [0,1] (see |gIPixelTransfer).
Each element is an RGB triple. The GL converts it to floating point and

assembles it into an RGBA element by attaching 1.0 for alpha. Each
component is then multiplied by the signed scale factor GL_c_SCALE,

added to the signed bias GL_c_BIAS, and clamped to the range [0,1]
(see|glPixelTransfer).

Each element contains all four components. Each *component is
multiplied by the signed scale factor GL_c_SCALE, added to the signed
bias GL_c_BIAS, and clamped to the range [0,1] (see .
Each element is a single luminance value. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue and attaching 1.0 for
alpha. Each component is then multiplied by the signed scale factor

GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the
range [0,1] (see .

Each element is a luminance/alpha pair. The GL converts it to floating
point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue. Each component is
then multiplied by the signed scale factor GL_c_SCALE, added to the

signed bias GL_c_BIAS, and clamped to the range [0,1] (see
glPixelTransfer).

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. The Cb for each even pixel is used as the Cb value for that pixel
and its neighbor to the right. The Cr in each odd pixel is used as the Cr
value for that pixel and its neighbor to the left. (If the width of the image is
odd, then the colors will be undefined in the rightmost column.) Through
the use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. The Cb for each even pixel is used as the Cb value for that pixel and
its neighbor to the right. The Cr in each odd pixel is used as the Cr value
for that pixel and its neighbor to the left. (If the width of the image is odd,
then the colors will be undefined in the rightmost column.) Through the
use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

Chapter 1. OpenGL Subroutines 355



GL_422_AVERAGE_EXT This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor
to the right. Each odd pixel gets its Cb from the average of its left and
right neighbor, and its Cr from the average of itself and its neighbor two to
the right. (If the width of the image is odd, then the colors will be
undefined in the rightmost column. If the neighbors to the right are not
present for a given fragment, we use GL_422_EXT to compute that
fragment.) Through the use of the color matrix, Y then assumes the role
of red, Cb becomes green and Cr becomes blue. After this conversion,
the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422_REV_AVERAGE_EXT This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to
the right. Each odd pixel gets its Cb from the average of its left and right
neighbor, and its Cr from the average of itself and its neighbor two to the
right. (If the width of the image is odd, then the colors will be undefined in
the rightmost column. If the neighbors to the right are not present for a
given fragment, we use GL_422_REV_EXT to compute that fragment.)
Through the use of the color matrix, Y then assumes the role of red, Cb
becomes green and Cr becomes blue. After this convers ion, the pixel is
treated just as if it had been sent in as an RGB pixel.

Refer to the glDrawPixels reference page for a description of the acceptable values for the type
parameter. If an application must store the texture at a certain resolution or in a certain format, use
internalformat to request the resolution and format. The GL will choose an internal representation that
closely approximates that requested by internalformat, but it may not match exactly. (The representations
specified by GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly.
The numeric values 1, 2, 3, and 4 may also be used to specify the above representations.)

Use the GL_PROXY_TEXTURE_3D_EXT target to try out a resolution and format. The implementation will
update and recompute its best match for the requested storage resolution and format. To then query this
state, call glGetTexLevelParameter. If the texture cannot be accomodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A
two-component image uses the R and A values. A three-component image uses the R, G, and B values. A
four-component image uses all of the RGBA components.

Notes
GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Texturing has no effect in color index mode.
The texture image can be represented by the same data formats as the pixels in a glDrawPixels
command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

356 OpenGL 1.2 Reference Manual



The glTexlmage3DEXT subroutine and GL_PROXY_TEXTURE_3D_EXT are available only if the
EXT_texture3D extension is supported.

Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.1 or greater.

In GL version 1.1 or greater, pixels may be a null pointer. In this case texture memory is allocated to
accomodate a texture of width width and height height. You can then download subtextures to initialize this
texture memory. The image is undefined if the user tries to apply an uninitialized portion of the texture
image to a primitive.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL
command set.

Errors

GL_INVALID_ENUM is generated if farget is not GL_TEXTURE_3D_EXT or
GL_PROXY_TEXTURE_3D_EXT.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other
than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.
GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned
value of GL_MAX_3D_TEXTURE_SIZE_EXT.

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution and
format symbolic constants.

GL_INVALID_VALUE is generated if width, height, or depth is less than zero or greater than 2 +
GL_MAX_3D_TEXTURE_SIZE_EXT, or if either cannot be represented as 2k + 2 x border for some
integer value of k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if glTeximage3DEXT is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTeximage

glisEnabled with argument GL_TEXTURE_3D_EXT

Related Information
The blCopyTexSubImag@DEXTI subroutine, L|IDrawPier§| subroutine, [gIFog] subroutine, |9IPierStor€|

subroutine, |glPixelTransfer| subroutine, |gITexEnv| subroutine,|9ITexGen subroutine, |gITexImage1 D|
subroutine, [gITexParameter| subroutine, |[glTeximage2D| subroutine.

Chapter 1. OpenGL Subroutines 357



glTexParameter Subroutine

Purpose
Sets texture parameters.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexParameterf (GLenum

void glTexParameteri (GLenum

void glTexParameterfv(GLenum

GLenum
GLfloat

GLenum
GLint

target|,
GLenum [pname|,

const GLfloat =

void glTexParameteriv(GLenum |target|,

GLenum [pname|,

const GLint *

Parameters

glTexParameterf or glTexParameteri

target

pname

param

Specifies the target texture, which must be either GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, or GL_TEXTURE_3D_EXT.

Specifies the symbolic name of a single-valued texture parameter. The pname parameter can be one of
the following: GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER, GL_TEXTURE_WRAP_S,
GL_TEXTURE_WRAP_T, GL_TEXTURE_WRAP_R, GL_TEXTURE_PRIORITY,
GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD, GL_TEXTURE_BASE_LEVEL,
GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_MAX_ANISOTROPY_EXT.

Specifies the value of pname.

glTexParameterfv or glTexParameteriv

target

pname

params

Specifies the target texture, which must be either GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, or GL_TEXTURE_3D_EXT.

Specifies the symbolic name of a texture parameter. The pname parameter can be one of the following:
GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER, GL_TEXTURE_WRAP_S,
GL_TEXTURE_WRAP_T, GL_TEXTURE_WRAP_R, GL_TEXTURE_BORDER_COLOR,
GL_TEXTURE_PRIORITY, GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD,
GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_MAX_ANISOTROPY_EXT

Specifies a pointer to an array where the value or values of pname are stored.

358 OpenGL 1.2 Reference Manual



Description

Texture mapping is a technique that applies an image onto an object’s surface as if the image were a
decal or cellophane shrink-wrap. The image is created in texture space, with an (s, f) coordinate system. A
texture is a one-dimensional (1D) or two-dimensional (2D) image and a set of parameters that determine
how samples are derived from the image.

The glTexParameter subroutine assigns the value or values in params to the texture parameter specified
as pname. The target parameter defines the target texture, either GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_TEXTURE_3D, or GL_TEXTURE_3D_EXT. The following symbols are accepted in pname:

GL_TEXTURE_BORDER_COLOR
Sets a border color. The params parameter contains four values that comprise the red, green,
blue, alpha (RGBA) color of the texture border. Integer color components are interpreted linearly
such that the most positive integer maps to 1.0, and the most negative integer maps to -1.0. The
values are clamped to the range [0,1] when they are specified. Initially, the border color is (0, 0, O,
0).

GL_TEXTURE_MIN_FILTER
The texture minifying function is used whenever the pixel being textured maps to an area greater
than one texture element. There are six defined minifying functions. Two of them use the nearest
one or nearest four texture elements to compute the texture value. The other four use mipmaps.

A mipmap is an ordered set of arrays representing the same image at progressively lower
resolutions. If the texture has dimensions 2n x 2m there are max(n,m)+1 mipmaps. The first
mipmap is the original texture, with dimensions 2n x 2m. Each subsequent mipmap has
dimensions 2k-1 x 2I-1 where 2k x 2l are the dimensions of the previous mipmap, until either
k=0 or /=0. At that point, subsequent mipmaps have the dimension 1 x 2I-1 or 2k-1 x 1 until the
final mipmap, which has the dimension 1 x 1. Mipmaps are defined using the glTexlmage1D,
glTeximage2D, or glTeximage3DEXT subroutines with the level-of-detail argument indicating the
order of the mipmaps. Level 0 is the original texture; level max(n,m) is the final 1 x 1 mipmap.

The paramrs parameter supplies a function for minifying the texture as one of the following:

GL_NEAREST returns the value of the texture element that is nearest (in Manhattan distance) to
the center of the pixel being textured.

GL_LINEAR returns the weighted average of the four texture elements that are closest to the
center of the pixel being textured. These can include border texture elements, depending on the
values of GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_NEAREST_MIPMAP_NEAREST chooses the mipmap that most closely matches the size of
the pixel being textured and uses the GL_NEAREST criterion (the texture element nearest to the
center of the pixel) to produce a texture value.

GL_LINEAR_MIPMAP_NEAREST chooses the mipmap that most closely matches the size of the
pixel being textured and uses the GL_LINEAR criterion (a weighted average of the four texture
elements that are closest to the center of the pixel) to produce a texture value.

GL_NEAREST_MIPMAP_LINEAR chooses the two mipmaps that most closely match the size of
the pixel being textured and uses the GL_NEAREST criterion (the texture element nearest to the
center of the pixel) to produce a texture value from each mipmap. The final texture value is a
weighted average of those two values.

GL_LINEAR_MIPMAP_LINEAR chooses the two mipmaps that most closely match the size of the
pixel being textured and uses the GL_LINEAR criterion (a weighted average of the four texture
elements that are closest to the center of the pixel) to produce a texture value from each mipmap.
The final texture value is a weighted average of those two values.

As more texture elements are sampled in the minification process, fewer aliasing artifacts will be
apparent. While the GL_NEAREST and GL_LINEAR minification functions can be faster than the
other four, they sample only one or four texture elements to determine the texture value of the

Chapter 1. OpenGL Subroutines 359



pixel being rendered and can produce moire patterns or ragged transitions. The default value of
GL_TEXTURE_MIN_FILTER is GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MAG_FILTER
The texture magnification function is used when the pixel being textured maps to an area less than
or equal to one texture element. It sets the texture magnification function to either GL_NEAREST
or GL_LINEAR. GL_NEAREST is generally faster than GL_LINEAR, but it can produce textured
images with sharper edges because the transition between texture elements is not as smooth. The
initial value of GL_TEXTURE_MAG_FILTER is GL_LINEAR.

GL_NEAREST returns the value of the texture element that is nearest (in Manhattan distance) to
the center of the pixel being textured.

GL_LINEAR returns the weighted average of the four texture elements that are closest to the
center of the pixel being textured. These can include border texture elements, depending on the
values of GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact mapping.

GL_NEAREST is generally faster than GL_LINEAR, but can produce textured images with
sharper edges because the transition between texture elements is not as smooth. The default
value of GL_TEXTURE_MAG_FILTER is GL_LINEAR.

GL_TEXTURE_PRIORITY
Specifies the texture residence priority of the currently bound texture. Permissible values are in the
range [0.0, 1.0]. See |9IPrioritizeTextures| and |9IBindTexturg| for more information.

GL_TEXTURE_MAX_LOD
Specifies for the texture the maximum level of detail of the image array. Any floating-point value is
permissable. Supported in OpenGL 1.2 and later.

GL_TEXTURE_MIN_LOD
Specifies for the texture the minimum level of detail of the image array. Any floating-point value is
permissable. Supported in OpenGL 1.2 and later.

GL_TEXTURE_BASE_LEVEL
Specifies for the texture the base array level. Any non-negative integer value is permissable.
Supported in OpenGL 1.2 and later.

GL_TEXTURE_MAX_LEVEL
Specifies for the texture the maximum array level. Any non-negative integer value is permissable.
Supported in OpenGL 1.2 and later.

GL_TEXTURE_WRAP_R
Sets the wrap parameter for texture coordinate r to either GL_CLAMP,
GL_CLAMP_NODRAW_IBM, GL_CLAMP_TO_EDGE, or GL_REPEAT. See the discussion under
GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_R is set to GL_REPEAT.

GL_TEXTURE_WRAP_S
Sets the wrap parameter for texture coordinate s to either GL_CLAMP,
GL_CLAMP_NODRAW_IBM, GL_CLAMP_TO_EDGE, or GL_REPEAT. GL_CLAMP causes s, {,
or r coordinates to be clamped to the range [0,1] and is useful for preventing wrapping artifacts
when mapping a single image onto an object. GL_CLAMP_NODRAW_IBM clamps texture
coordinates at all mipmap levels such that any pixels whose corresponding texture coordinate falls
outside the specified texture map are not drawn at all. GL_CLAMP_TO_EDGE clamps texture
coordinates at all mipmap levels such that the texture filter never samples a border texel. The
color returned when clamping is derived only from texels at the edge of the texture image.
GL_REPEAT causes the integer part of the s, t, or r coordinates to be ignored; the GL uses only
the fractional part, thereby creating a repeating pattern. Border texture elements are accessed only
if wrapping is set to GL_CLAMP. Initially, GL_TEXTURE_WRAP_S is set to GL_REPEAT.

GL_TEXTURE_WRAP_T
Sets the wrap parameter for texture coordinate t to either GL_CLAMP,

360 OpenGL 1.2 Reference Manual



GL_CLAMP_NODRAW_IBM, GL_CLAMP_TO_EDGE, or GL_REPEAT. See the discussion under
GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_T is set to GL_REPEAT.

GL_TEXTURE_MAX_ANISOTROPIC_EXT
Sets the maximum degree of anisotropy for this texture map. Initially,
GL_TEXTURE_MAX_ANISOTROPIC_EXT is set to 1.0.

Notes

Suppose that a program has enabled texturing (by calling glEnable with argument GL_TEXTURE_1D,
GL_TEXTURE_2D, or GL_TEXTURE_3D) and has set GL_TEXTURE_MIN_FILTER to one of the
functions that requires a mipmap. If either the dimensions of the texture images currently defined (with
previous calls to glTeximage1D, giTeximage2D, or glTeximage3D) do not follow the proper sequence for
mipmaps (described above) or there are fewer texture images defined than are needed or the set of
texture images have differing numbers of texture components, then it is as if texture mapping were
disabled.

Linear filtering accesses the four nearest texture elements only in 2D textures. In 1D textures, linear
filtering accesses the two nearest texture elements.

GL_TEXTURE_3D is supported in OpenGL 1.2 and later.
GL_TEXTURE_3D_EXT requires the 3D texture extension.

GL_TEXTURE_MAX_ANISOTROPY_EXT requires the EXT_texture_filter_anisotropic extension.

Errors
GL_INVALID_ENUM is generated if target or pname is not one of the accepted defined values.

GL_INVALID_ENUM is generated if params should have a defined constant value (based on the value of
pname) and does not.

GL_INVALID_OPERATION is generated if glTexParameter is executed between the execution of glBegin
and the corresponding execution of glEnd.

Associated Gets
lglGetTexParameter|

[olGetTexLevelParameter|

Related Information

The |§IBindTexture| subroutine, |gIPrioritizeTextures| subroutine, |§ITexEnV| subroutine, |§ITexGen|

subroutine, |gITexImage1 D| subroutine, |gITexImage2D| subroutine, |gITexImage3Q| subroutine,
[gITeximage3DEXT] subroutine.

glTexSublmage1D Subroutine

Purpose
Specifies a one-dimensional (1D) texture subimage.

Library
OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 361



C Syntax

void glTexSubImagelD(GLenum |[target],

GLint |levell,
GLint Koffset|,
GLsizei |width),
GLenum [format|,

GLenum type|,
const GLvoid *

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

width Specifies the width of the texture subimage.

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA, GL_ABGR_EXT,
GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT, GL_422_AVERAGE_EXT,
GL_422 REV_AVERAGE_EXT, and GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,
GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_ 3 REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4 4 4,
GL_UNSIGNED_SHORT_4_4 4 4 REV, GL_UNSIGNED_SHORT_5_5_5_1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,
GL_UNSIGNED_INT_8_8 8 8 REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable or disable one-dimensional texturing, call glEnable and glDisable with argument
GL_TEXTURE_1D.

The glTexSublmage1D subroutine redefines a contiguous subregion of an existing one-dimensional
texture image. The texels referenced by pixels replace the portion of the existing texture array with x
indices xoffset and xoffset + width - 1, inclusive. This region may not include any texels outside the range

of the texture

array as it was originally specified. It is not an error to specify a subtexture with zero width,

but such a specification has no effect.

362 OpenGL 1.2 Reference Manual



GL_COLOR_INDEX

GL_RED

GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

Each pixel is a single value, a color index. It is converted to fixed point,
with an unspecified number of bits to the right of the binary point,
regardless of the memory data type. Floating-point values convert to true
fixed-point values. Signed and unsigned integer data is converted with all
fraction bits set to 0 (zero). Bitmap data converts to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and
added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift
is to the right. In either case, 0 bits fill otherwise unspecified bit locations
in the result.

If the GL is in red, green, blue, alpha (RGBA) mode, the resulting index is
converted to an RGBA pixel using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables. If the GL is in color index mode and
GL_MAP_COLOR is True, the index is replaced with the value that it
references in the lookup table GL_PIXEL_MAP_I_TO_Il. Whether the
lookup replacement of the index is done or not, the integer part of the
index is then ANDed with 2b -1, where b is the number of bits in a color
index buffer.

The resulting indices or RGBA colors are then converted to fragments by
attaching the current raster position z coordinate and texture coordinates
to each pixel, then assigning x and y window coordinates to the nth
fragment such that xn = xr + n mod Width and yn = yr + [n/Width], where
(xr, yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each pixel is a single red component. This component is converted to the
internal floating-point format in the same way as the red component of an
RGBA pixel is, then it is converted to an RGBA pixel with green and blue
set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated
just as if it had been read as an RGBA pixel.

Each pixel is a single green component. This component is converted to
the internal floating-point format in the same way as the green component
of an RGBA pixel is, then it is converted to an RGBA pixel with red and
blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is
treated just as if it had been read as an RGBA pixel.

Each pixel is a single blue component. This component is converted to
the internal floating-point format in the same way as the blue component
of an RGBA pixel is, then it is converted to an RGBA pixel with red and
green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is
treated just as if it had been read as an RGBA pixel.

Each pixel is a single alpha component. This component is converted to
the internal floating-point format in the same way as the alpha component
of an RGBA pixel is, then it is converted to an RGBA pixel with red,
green, and blue set to 0.0. After this conversion, the pixel is treated just
as if it had been read as an RGBA pixel.

Each pixel is a three-component group, red first, followed by green,
followed by blue. Each component is converted to the internal
floating-point format in the same way as the red, green, and blue
components of an RGBA pixel are. The color triple is converted to an
RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated
just as if it had been read as an RGBA pixel.

Chapter 1. OpenGL Subroutines 363



GL_RGBA

GL_BGR

GL_BGRA

364 OpenGL 1.2 Reference Manual

Each pixel is a four-component group, red first, followed by green,
followed by blue, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where cis RED,
GREEN, BLUE, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

Each pixel is a three-component group, blue first, followed by green,
followed by red. Each component is converted to the internal floating-point
format in the same way as the blue, green, and red components of an
BGRA pixel are. The color triple is converted to an BGRA pixel with alpha
set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an BGRA pixel.

Each pixel is a four-component group, blue first, followed by green,
followed by red, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,
GREEN, RED, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.



GL_ABGR_EXT

GL_LUMINANCE

GL_LUMINANCE_ALPHA

GL_422_EXT

Each pixel is a four-component group: for GL_RGBA, the red component
is first, followed by green, followed by blue, followed by alpha; for
GL_BGRA, the blue component is first, followed by green, followed by
red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,
green, and then red. Floating-point values are converted directly to an
internal floatingpoint format with unspecified precision. Signed integer
values are mapped linearly to the internal floating-point format such that
the most positive representable integer value maps to 1.0, and the most
negative representable value maps to -1.0. Unsigned integer data is
mapped similarly: the largest integer value maps to 1.0, and zero maps to
0.0. The resulting floating-point color values are then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,
BLUE, and ALPHA for the respective color components. The results are
clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size
of lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value
that it references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that

xn = xr + n mod width

yn=yr+ | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each pixel is a single luminance component. This component is converted
to the internal floating-point format in the same way as the red component
of an RGBA pixel is, then it is converted to an RGBA pixel with red,
green, and blue set to the converted luminance value, and alpha set to
1.0. After this conversion, the pixel is treated just as if it had been read as
an RGBA pixel.

Each pixel is a two-component group, luminance first, followed by alpha.
The two components are converted to the internal floating-point format in
the same way as the red component of an RGBA pixel is, then they are
converted to an RGBA pixel with red, green, and blue set to the converted
luminance value, and alpha set to the converted alpha value. After this
conversion, the pixel is treated just as if it had been read as an RGBA
pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. The Cb for each even pixel is used as the Cb value for that pixel
and its neighbor to the right. The Cr in each odd pixel is used as the Cr
value for that pixel and its neighbor to the left. (If the width of the image is
odd, then the colors will be undefined in the rightmost column.) Through
the use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

Chapter 1. OpenGL Subroutines 365



GL_422_REV_EXT This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. The Cb for each even pixel is used as the Cb value for that pixel and
its neighbor to the right. The Cr in each odd pixel is used as the Cr value
for that pixel and its neighbor to the left. (If the width of the image is odd,
then the colors will be undefined in the rightmost column.) Through the
use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

GL_422 AVERAGE_EXT This extension is for use with the "YCbCr" color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor
to the right. Each odd pixel gets its Cb from the average of its left and
right neighbor, and its Cr from the average of itself and its neighbor two to
the right. (If the width of the image is odd, then the colors will be
undefined in the rightmost column. If the neighbors to the right are not
present for a given fragment, we use GL_422_EXT to compute that
fragment.) Through the use of the color matrix, Y then assumes the role
of red, Cb becomes green and Cr becomes blue. After this conversion,
the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422 REV_AVERAGE_EXT This extension is for use with the "YCbCr" color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to
the right. Each odd pixel gets its Cb from the average of its left and right
neighbor, and its Cr from the average of itself and its neighbor two to the
right. (If the width of the image is odd, then the colors will be undefined in
the rightmost column. If the neighbors to the right are not present for a
given fragment, we use GL_422_REV_EXT to compute that fragment.)
Through the use of the color matrix, Y then assumes the role of red, Cb
becomes green and Cr becomes blue. After this conversion, the pixel is
treated just as if it had been sent in as an RGB pixel.

Notes
Texturing has no effect in color index mode.

The glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL
command set.

Errors
GL_INVALID_ENUM is generated if target is not one of the allowable values.

366 OpenGL 1.2 Reference Manual



GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
glTeximage1D operation.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned
value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width < -b, where b is the border width of the texture array.
GL_INVALID_VALUE is generated if xoffset < -b, or if (xoffset + width) > (w - b). Where w is the
GL_TEXTURE_WIDTH, and b is the width of the GL_TEXTURE_BORDER of the texture image being
modified. Note that w includes twice the border width.

GL_INVALID_ENUM is generated if format is not an accepted format constant.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSublmage1D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTeximage

glisEnabled with argument GL_TEXTURE_1D
Related Information

The [gIDrawPixels] subroutine, [gIFog]| subroutine, [gIPixelStore] subroutine, [gIPixelTransfer] subroutine,
glTexParamete

|gITexEnv| subroutine, |glTexGen| subroutine, |gITexImage1 QI subroutine, subroutine.

glTexSubimage1DEXT Subroutine

Purpose
Specifies a one-dimensional texture subimage.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1TexSubImagelDEXT (GLenum target,
GLint level,
GLint xoffset,
GLsizei width,
GLenum format,
GLenum type,
const GLvoid *pixels)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_1D

Chapter 1. OpenGL Subroutines 367



level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.
width Specifies the width of the texture subimage.
format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
GL_ABGR_EXT, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_422_EXT, GL_422_REV_EXT,
GL_422_AVERAGE_EXT, and GL_422_REV_AVERAGE_EXT.

type Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified fexture image onto each graphical primitive for which texturing is
enabled. One-dimensional texturing is enabled and disabled using glEnable and glDisable with argument
GL_TEXTURE_1D.

glTexSubimage1DEXT redefines a contiguous subregion of an existing one-dimensional texture image.
The texels referenced by pixels replace the portion of the existing texture array with x indices xoffset and
xoffset+width-1, inclusive. This region may not include any texels outside the range of the texture array as
it was originally specified. It is not an error to specify a subtexture with zero width, but such a specification
has no effect.

Notes
Texturing has no effect in color index mode.

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL
command set.

Errors
GL_INVALID_ENUM is generated when target is not one of the allowable values.

GL_INVALID_OPERATION is generated when the texture array has not been defined by a previous
glTeximage1D operation.

GL_INVALID_VALUE is generated if level is less than zero or greater than log2(max), where max is the
returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width <-TEXTURE_BORDER, where TEXTURE_BORDER is the
border width of the texture array.

GL_INVALID_VALUE is generated if xoffset <-TEXTURE_BORDER, (xoffset+width) >
(TEXTURE_WIDTH- TEXTURE_BORDER). Where TEXTURE_WIDTH and TEXTURE_BORDER are the
state values of the texture image being modified. Note that TEXTURE_WIDTH includes twice the border
width.

GL_INVALID_ENUM is generated when format is not an accepted format constant.

GL_INVALID_ENUM is generated when type is not a type constant.

368 OpenGL 1.2 Reference Manual



GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSublmage1DEXT is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTeximage

gllsEnabled with argument GL_TEXTURE_1D
File
lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The [gIDrawPixels] subroutine, [gIFog] subroutine, [gIPixelStore] subroutine, [gIPixelTransfer] subroutine,
glTexParamete

|gITexEnv| subroutine, |glTexGen| subroutine, |gITexImage1 QI subroutine, subroutine.

glTexSublmage2D Subroutine

Purpose
Specifies a two-dimensional (2D) texture subimage.

Library
OpenGL C bindings library: libGL.a

C Syntax
void g1TexSubImage2D(GLenum ,

GLint |level],

GLint [xoffset],

GLint [yoffset|,
GLsizei [width|,
GLsizei ,
GLenum |format|,
GLenum ,

const GLvoid *

Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D.

Chapter 1. OpenGL Subroutines 369



level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED, GL_GREEN,

GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA, GL_ABGR_EXT,
GL_LUMINANCE, GL_422_EXT, GL_422_ REV_EXT, GL_422_AVERAGE_EXT,
GL_422_REV_AVERAGE_EXT, and GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,
GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,

GL_UNSIGNED_SHORT__5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4 4,
GL_UNSIGNED_SHORT_4_4 4 4 REV, GL_UNSIGNED_SHORT_ 5 5 5_1,
GL_UNSIGNED_SHORT_1_5_5

5_REV, GL_UNSIGNED_INT_8_8_8_8,

_____ 2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

pixels Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,

GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10__10

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable with argument
GL_TEXTURE_2D.

The glTexSublmage2D subroutine redefines a contiguous subregion of an existing two-dimensional
texture image. The texels referenced by pixels replace the portion of the existing texture array with x
indices xoffset and xoffset + width - 1, inclusive, and y indices yoffset and yoffset + height - 1, inclusive.
This region may not include any texels outside the range of the texture array as it was originally specified.
It is not an error to specify a subtexture with zero width or height, but such a specification has no effect.

370 OpenGL 1.2 Reference Manual



GL_COLOR_INDEX

GL_RED

GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

Each pixel is a single value, a color index. It is converted to fixed point,
with an unspecified number of bits to the right of the binary point,
regardless of the memory data type. Floating-point values convert to true
fixed-point values. Signed and unsigned integer data is converted with all
fraction bits set to 0 (zero). Bitmap data converts to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and
added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift
is to the right. In either case, 0 bits fill otherwise unspecified bit locations
in the result.

If the GL is in red, green, blue, alpha (RGBA) mode, the resulting index is
converted to an RGBA pixel using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables. If the GL is in color index mode and
GL_MAP_COLOR is True, the index is replaced with the value that it
references in the lookup table GL_PIXEL_MAP_I_TO_Il. Whether the
lookup replacement of the index is done or not, the integer part of the
index is then ANDed with 2b -1, where b is the number of bits in a color
index buffer.

The resulting indices or RGBA colors are then converted to fragments by
attaching the current raster position z coordinate and texture coordinates
to each pixel, then assigning x and y window coordinates to the nth
fragment such that xn = xr + n mod Width and yn = yr + [n/Width], where
(xr, yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each pixel is a single red component. This component is converted to the
internal floating-point format in the same way as the red component of an
RGBA pixel is, then it is converted to an RGBA pixel with green and blue
set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated
just as if it had been read as an RGBA pixel.

Each pixel is a single green component. This component is converted to
the internal floating-point format in the same way as the green component
of an RGBA pixel is, then it is converted to an RGBA pixel with red and
blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is
treated just as if it had been read as an RGBA pixel.

Each pixel is a single blue component. This component is converted to
the internal floating-point format in the same way as the blue component
of an RGBA pixel is, then it is converted to an RGBA pixel with red and
green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is
treated just as if it had been read as an RGBA pixel.

Each pixel is a single alpha component. This component is converted to
the internal floating-point format in the same way as the alpha component
of an RGBA pixel is, then it is converted to an RGBA pixel with red,
green, and blue set to 0.0. After this conversion, the pixel is treated just
as if it had been read as an RGBA pixel.

Each pixel is a three-component group, red first, followed by green,
followed by blue. Each component is converted to the internal
floating-point format in the same way as the red, green, and blue
components of an RGBA pixel are. The color triple is converted to an
RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated
just as if it had been read as an RGBA pixel.

Chapter 1. OpenGL Subroutines 371



GL_RGBA

GL_BGR

GL_BGRA

372 OpenGL 1.2 Reference Manual

Each pixel is a four-component group, red first, followed by green,
followed by blue, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where cis RED,
GREEN, BLUE, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

Each pixel is a three-component group, blue first, followed by green,
followed by red. Each component is converted to the internal floating-point
format in the same way as the blue, green, and red components of an
BGRA pixel are. The color triple is converted to an BGRA pixel with alpha
set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an BGRA pixel.

Each pixel is a four-component group, blue first, followed by green,
followed by red, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,
GREEN, RED, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.



GL_ABGR_EXT

GL_LUMINANCE

GL_LUMINANCE_ALPHA

GL_422_EXT

Each pixel is a four-component group: for GL_RGBA, the red component
is first, followed by green, followed by blue, followed by alpha; for
GL_BGRA, the blue component is first, followed by green, followed by
red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,
green, and then red. Floating-point values are converted directly to an
internal floatingpoint format with unspecified precision. Signed integer
values are mapped linearly to the internal floating-point format such that
the most positive representable integer value maps to 1.0, and the most
negative representable value maps to -1.0. Unsigned integer data is
mapped similarly: the largest integer value maps to 1.0, and zero maps to
0.0. The resulting floating-point color values are then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,
BLUE, and ALPHA for the respective color components. The results are
clamped to the range [0,1].

If GL_MAP_COLOR:s true, each color component is scaled by the size of
lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value that it
references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that

xn = xr + n mod width

yn=yr+ | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each pixel is a single luminance component. This component is converted
to the internal floating-point format in the same way as the red component
of an RGBA pixel is, then it is converted to an RGBA pixel with red,
green, and blue set to the converted luminance value, and alpha set to
1.0. After this conversion, the pixel is treated just as if it had been read as
an RGBA pixel.

Each pixel is a two-component group, luminance first, followed by alpha.
The two components are converted to the internal floating-point format in
the same way as the red component of an RGBA pixel is, then they are
converted to an RGBA pixel with red, green, and blue set to the converted
luminance value, and alpha set to the converted alpha value. After this
conversion, the pixel is treated just as if it had been read as an RGBA
pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. The Cb for each even pixel is used as the Cb value for that pixel
and its neighbor to the right. The Cr in each odd pixel is used as the Cr
value for that pixel and its neighbor to the left. (If the width of the image is
odd, then the colors will be undefined in the rightmost column.) Through
the use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it hadbeen sent in as an RGB pixel.

Chapter 1. OpenGL Subroutines 373



GL_422_REV_EXT This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. The Cb for each even pixel is used as the Cb value for that pixel and
its neighbor to the right. The Cr in each odd pixel is used as the Cr value
for that pixel and its neighbor to the left. (If the width of the image is odd,
then the colors will be undefined in the rightmost column.) Through the
use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

GL_422 AVERAGE_EXT This extension is for use with the "YCbCr" color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor
to the right. Each odd pixel gets its Cb from the average of its left and
right neighbor, and its Cr from the average of itself and its neighbor two to
the right. (If the width of the image is odd, then the colors will be
undefined in the rightmost column. If the neighbors to the right are not
present for a given fragment, we use GL_422_EXT to compute that
fragment.) Through the use of the color matrix, Y then assumes the role
of red, Cb becomes green and Cr becomes blue. After this conversion,
the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422 REV_AVERAGE_EXT This extension is for use with the "YCbCr" color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to
the right. Each odd pixel gets its Cb from the average of its left and right
neighbor, and its Cr from the average of itself and its neighbor two to the
right. (If the width of the image is odd, then the colors will be undefined in
the rightmost column. If the neighbors to the right are not present for a
given fragment, we use GL_422_REV_EXT to compute that fragment.)
Through the use of the color matrix, Y then assumes the role of red, Cb
becomes green and Cr becomes blue. After this convers ion, the pixel is
treated just as if it had been sent in as an RGB pixel.

Notes
Texturing has no effect in color index mode.

The glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL
command set.

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

374 OpenGL 1.2 Reference Manual



GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
glTeximage2D operation.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned
value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width < -b or if height < -b, where b is the border width of the texture
array.

GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, or (yoffset +
height) > (h - b). Where w is the GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT, and b is the
border width of the texture image being modified. Note that w and h include twice the border width.
GL_INVALID_ENUM is generated if format is not an accepted format constant.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSublmage2D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTeximage

glilsEnabled with argument GL_TEXTURE_2D
Related Information

The|§IDrawPiers|subroutine, IFo subroutine,|§IPierStorE|subroutine, glPixelTransfer| subroutine,
glTexParamete

|gITexEnv|subroutine, ITexGen| subroutine, |ngexImage29| subroutine, subroutine.

glTexSubimage2DEXT Subroutine

Purpose
Specifies a two-dimensional texture subimage.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1TexSubImage2DEXT( GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
const GLvoid *pixels)

Chapter 1. OpenGL Subroutines 375



Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
GL_ABGR_EXT, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_422_EXT, GL_422_REV_EXT,
GL_422 AVERAGE_EXT, and GL_422_REV_AVERAGE_EXT.

type Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. Two-dimensional texturing is enabled and disabled using glEnable and glDisable with argument
GL_TEXTURE_2D.

glTexSublimage2DEXT redefines a contiguous subregion of an existing two-dimensional texture image.
The texels referenced by pixels replace the portion of the existing texture array with x indices xoffset and
xoffset+width-1, inclusive, and y indices yoffset and yoffset+height-1, inclusive. This region may not include
any texels outside the range of the texture array as it was originally specified. It is not an error to specify a
subtexture with zero width or height, but such a specification has no effect.

Notes
Texturing has no effect in color index mode.

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is present.

Errors
GL_INVALID_ENUM is generated when target is not one of the allowable values.

GL_INVALID_OPERATION is generated when the texture array has not been defined by a previous
glTexlmage2D operation.

GL_INVALID_VALUE is generated if level is less than zero or greater than log2(max), where max is the
returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width height

GL_INVALID_VALUE is generated if xoffset <-TEXTURE_BORDER, (xoffset+width) > (TEXTURE_WIDTH
- TEXTURE_BORDER), yoffset <-TEXTURE_BORDER, or (yoffset+height)> (TEXTURE_HEIGHT -
TEXTURE_BORDER), where TEXTURE_WIDTH, TEXTURE_HEIGHT, and TEXTURE_BORDER are the
state values of the texture image being modified. Note that TEXTURE_WIDTH and TEXTURE_HEIGHT
include twice the border width.

376 OpenGL 1.2 Reference Manual



GL_INVALID_ENUM is generated when format is not an accepted format constant.
GL_INVALID_ENUM is generated when type is not a fype constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSublmage2DEXT is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTeximage

glisEnabled with argument GL_TEXTURE_2D
File
lusr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The|gIDrawPiers|subroutine, IFo subroutine,|§IPierStor5|subroutine, glPixelTransfer| subroutine,
glTexParamete

|gITexEnv|subroutine, ITexGen| subroutine, |gITexImage29| subroutine, subroutine.

glTexSublmage3D Subroutine

Purpose

Specifies a three-dimensional (3D) texture subimage.
Library

OpenGL C bindings library: libGL.a

C Syntax

void g1TexSubImage3D(GLenum [target|,

GLint
GLint |xoffset|,
GLint |yoffset|,
GLint |zoffset|,
GLsizei |width|,
GLsizei [peight],
GLsizei |depth],

GLenum ,

—
[g°)
<
(o)
~
0

Chapter 1. OpenGL Subroutines 377



GLenum ,
const GLvoid =

Parameters

target Specifies the target texture. Must be GL_TEXTURE_3D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

zoffset Specifies a texel offset in the z direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

depth Specifies the depth of the texture subimage.

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA, GL_ABGR_EXT,
GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT, GL_422_AVERAGE_EXT,
GL_422 REV_AVERAGE_EXT, and GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,
GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4 4 4,
GL_UNSIGNED_SHORT_4_4 4 4 REV, GL_UNSIGNED_SHORT 5 5 5 1,
GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_38,
GL_UNSIGNED_INT_8_8_8_8 REV, GL_UNSIGNED_INT_10_10_10_2, and
GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable and disable three-dimensional texturing, call glEnable and glDisable with argument
GL_TEXTURE_3D.

The glTexSublmage3D subroutine redefines a contiguous subregion of an existing three-dimensional
texture image. The texels referenced by pixels replace the portion of the existing texture array with x
indices xoffset and xoffset + width - 1, inclusive, y indices yoffset and yoffset + height - 1, inclusive, z
indices zoffset and zoffset + depth - 1, inclusize. This region may not include any texels outside the range
of the texture array as it was originally specified. It is not an error to specify a subtexture with zero width,
height or depth, but such a specification has no effect.

378 OpenGL 1.2 Reference Manual



GL_COLOR_INDEX

GL_RED

GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

Each pixel is a single value, a color index. It is converted to fixed point,
with an unspecified number of bits to the right of the binary point,
regardless of the memory data type. Floating-point values convert to true
fixed-point values. Signed and unsigned integer data is converted with all
fraction bits set to 0 (zero). Bitmap data converts to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and
added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift
is to the right. In either case, 0 bits fill otherwise unspecified bit locations
in the result.

If the GL is in red, green, blue, alpha (RGBA) mode, the resulting index is
converted to an RGBA pixel using the GL_PIXEL_MAP_I_TO_R,
GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and
GL_PIXEL_MAP_I_TO_A tables. If the GL is in color index mode and
GL_MAP_COLOR is True, the index is replaced with the value that it
references in the lookup table GL_PIXEL_MAP_I_TO_Il. Whether the
lookup replacement of the index is done or not, the integer part of the
index is then ANDed with 2b -1, where b is the number of bits in a color
index buffer.

The resulting indices or RGBA colors are then converted to fragments by
attaching the current raster position z coordinate and texture coordinates
to each pixel, then assigning x and y window coordinates to the nth
fragment such that xn = xr + n mod Width and yn = yr + [n/Width], where
(xr, yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each pixel is a single red component. This component is converted to the
internal floating-point format in the same way as the red component of an
RGBA pixel is, then it is converted to an RGBA pixel with green and blue
set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated
just as if it had been read as an RGBA pixel.

Each pixel is a single green component. This component is converted to
the internal floating-point format in the same way as the green component
of an RGBA pixel is, then it is converted to an RGBA pixel with red and
blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is
treated just as if it had been read as an RGBA pixel.

Each pixel is a single blue component. This component is converted to
the internal floating-point format in the same way as the blue component
of an RGBA pixel is, then it is converted to an RGBA pixel with red and
green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is
treated just as if it had been read as an RGBA pixel.

Each pixel is a single alpha component. This component is converted to
the internal floating-point format in the same way as the alpha component
of an RGBA pixel is, then it is converted to an RGBA pixel with red,
green, and blue set to 0.0. After this conversion, the pixel is treated just
as if it had been read as an RGBA pixel.

Each pixel is a three-component group, red first, followed by green,
followed by blue. Each component is converted to the internal
floating-point format in the same way as the red, green, and blue
components of an RGBA pixel are. The color triple is converted to an
RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated
just as if it had been read as an RGBA pixel.

Chapter 1. OpenGL Subroutines 379



GL_RGBA

GL_BGR

GL_BGRA

380 OpenGL 1.2 Reference Manual

Each pixel is a four-component group, red first, followed by green,
followed by blue, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where cis RED,
GREEN, BLUE, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.

Each pixel is a three-component group, blue first, followed by green,
followed by red. Each component is converted to the internal floating-point
format in the same way as the blue, green, and red components of an
BGRA pixel are. The color triple is converted to an BGRA pixel with alpha
set to 1.0. After this conversion, the pixel is treated just as if it had been
read as an BGRA pixel.

Each pixel is a four-component group, blue first, followed by green,
followed by red, followed by alpha. Floating-point values are converted
directly to an internal floating-point format with unspecified precision.
Signed integer values are mapped linearly to the internal floating-point
format such that the most positive representable integer value maps to
1.0, and the most negative representable value maps to -1.0. Unsigned
integer data are mapped similarly: the largest integer value maps to 1.0,
and 0 maps to 0.0. The resulting floating-point color values are then
multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,
GREEN, RED, and ALPHA for the respective color components. The
results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size
of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value
that it references in that table. cis B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the
current raster position. These pixel fragments are then treated just like the
fragments generated by rasterizing points, lines, or polygons. Texture
mapping, fog, and all the fragment operations are applied before the
fragments are written to the frame buffer.



GL_ABGR_EXT

GL_LUMINANCE

GL_LUMINANCE_ALPHA

GL_422_EXT

Each pixel is a four-component group: for GL_RGBA, the red component
is first, followed by green, followed by blue, followed by alpha; for
GL_BGRA, the blue component is first, followed by green, followed by
red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,
green, and then red. Floating-point values are converted directly to an
internal floatingpoint format with unspecified precision. Signed integer
values are mapped linearly to the internal floating-point format such that
the most positive representable integer value maps to 1.0, and the most
negative representable value maps to -1.0. Unsigned integer data is
mapped similarly: the largest integer value maps to 1.0, and zero maps to
0.0. The resulting floating-point color values are then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,
BLUE, and ALPHA for the respective color components. The results are
clamped to the range [0,1].

If GL_MAP_COLOR:s true, each color component is scaled by the size of
lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value that it
references in that table. cis R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching
the current raster position z coordinate and texture coordinates to each
pixel, then assigning x and y window coordinates to the nth fragment such
that

xn = xr + n mod

width
yn=yr+ | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then
treated just like the fragments generated by rasterizing points, lines, or
polygons. Texture mapping, fog, and all the fragment operations are
applied before the fragments are written to the frame buffer.

Each pixel is a single luminance component. This component is converted
to the internal floating-point format in the same way as the red component
of an RGBA pixel is, then it is converted to an RGBA pixel with red,
green, and blue set to the converted luminance value, and alpha set to
1.0. After this conversion, the pixel is treated just as if it had been read as
an RGBA pixel.

Each pixel is a two-component group, luminance first, followed by alpha.
The two components are converted to the internal floating-point format in
the same way as the red component of an RGBA pixel is, then they are
converted to an RGBA pixel with red, green, and blue set to the converted
luminance value, and alpha set to the converted alpha value. After this
conversion, the pixel is treated just as if it had been read as an RGBA
pixel.

This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. The Cb for each even pixel is used as the Cb value for that pixel
and its neighbor to the right. The Cr in each odd pixel is used as the Cr
value for that pixel and its neighbor to the left. (If the width of the image is
odd, then the colors will be undefined in the rightmost column.) Through
the use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

Chapter 1. OpenGL Subroutines 381



GL_422_REV_EXT This extension is for use with the "YCbCr” color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. The Cb for each even pixel is used as the Cb value for that pixel and
its neighbor to the right. The Cr in each odd pixel is used as the Cr value
for that pixel and its neighbor to the left. (If the width of the image is odd,
then the colors will be undefined in the rightmost column.) Through the
use of the color matrix, Y then assumes the role of red, Cb becomes
green and Cr becomes blue. After this conversion, the pixel is treated just
as if it had been sent in as an RGB pixel.

GL_422 AVERAGE_EXT This extension is for use with the "YCbCr" color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Y. The second component is Cb in the even pixels and Cr in the odd
pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor
to the right. Each odd pixel gets its Cb from the average of its left and
right neighbor, and its Cr from the average of itself and its neighbor two to
the right. (If the width of the image is odd, then the colors will be
undefined in the rightmost column. If the neighbors to the right are not
present for a given fragment, we use GL_422_EXT to compute that
fragment.) Through the use of the color matrix, Y then assumes the role
of red, Cb becomes green and Cr becomes blue. After this conversion ,
the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422 REV_AVERAGE_EXT This extension is for use with the "YCbCr" color space, and should only
be used in systems that have the IBM_YCbCr extension. The
GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using
glLoadNamedMatrixIBM before glDrawPixels is called with this
parameter. Each pixel is a two-component group. The first component is
Cb in the even pixels and Cr in the odd pixels. The second component is
Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to
the right. Each odd pixel gets its Cb from the average of its left and right
neighbor, and its Cr from the average of itself and its neighbor two to the
right. (If the width of the image is odd, then the colors will be undefined in
the rightmost column. If the neighbors to the right are not present for a
given fragment, we use GL_422_REV_EXT to compute that fragment.)
Through the use of the color matrix, Y then assumes the role of red, Cb
becomes green and Cr becomes blue. After this convers ion, the pixel is
treated just as if it had been sent in as an RGB pixel.

Notes
Texturing has no effect in color index mode.

The glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
glTexImage3D operation.

GL_INVALID_VALUE is generated if level is less than zero.

382 OpenGL 1.2 Reference Manual



GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned
value of GL_MAX_3D_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width < -b or if height < -b, or if depth < -b where b is the border
width of the texture array.

GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, (yoffset + height)

> (h - b), zoffset < -b, (zoffset + depth) > (d -b). Where w is the GL_TEXTURE_WIDTH, h is the

GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH, and b is the border width of the texture image

being modified. Note that w, h, and d include twice the border width.

GL_INVALID_ENUM is generated if format is not an accepted format constant.
GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSublmage3D is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTeximage

glisEnabled with argument GL_TEXTURE_3D

Related Information
The [gIDrawPixels| subroutine, [gIFog| subroutine, [gIPixelStore] subroutine, [gIPixelTransfer] subroutine,
|gITexEnv|subroutine, glTexGen| subroutine, |gITexImage39| subroutine, |glTexParameter| subroutine.

glTexSublmage3DEXT Subroutine

Purpose
Specifies a three-dimensional (3D) texture subimage.

Library
OpenGL C bindings library: libGL.a

C Syntax

void g1TexSubImage3DEXT(GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLsizei width,
GLsizei height,
GLsizei depth,
GLenum format,
GLenum type,
const GLvoid *pixels)

Parameters

target Specifies the target texture. Must be GL_TEXTURE_3D_EXT.

Chapter 1. OpenGL Subroutines

383



level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap
reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

zoffset Specifies a texel offset in the z direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

depth Specifies the depth of the texture subimage.

format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
GL_ABGR_EXT, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_422_EXT, GL_422_REV_EXT,
GL_422 AVERAGE_EXT, and GL_422_REV_AVERAGE_EXT.

type Specifies the data type of the pixel data. The following symbolic values are accepted:
GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is
enabled. To enable and disable three-dimensional texturing, call glEnable and glDisable with argument
GL_TEXTURE_3D_EXT.

The glTexSublmage3DEXT subroutine redefines a contiguous subregion of an existing three-dimensional
texture image. The texels referenced by pixels replace the portion of the existing texture array with x
indices xoffset and xoffset + width - 1, inclusive, y indices yoffset and yoffset + height - 1, inclusive, z
indices zoffset and zoffset + depth - 1, inclusize. This region may not include any texels outside the range
of the texture array as it was originally specified. It is not an error to specify a subtexture with zero width,
height or depth, but such a specification has no effect.

Notes
Texturing has no effect in color index mode.

The glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect
glDrawPixels.

Format of GL_ABGR_EXT is part of the _extstring(EXT_abgr) extension, not part of the core GL
command set.

Errors
GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D_EXT.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous
glTeximage3D operation.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned
value of GL_MAX_3D_TEXTURE_SIZE_EXT.

GL_INVALID_VALUE is generated if width < -b or if height < -b, or if depth < -b where b is the border
width of the texture array.

GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, (yoffset + height)
> (h - b), zoffset < -b, (zoffset + depth) > (d -b). Where w is the GL_TEXTURE_WIDTH, h is the

384 OpenGL 1.2 Reference Manual



GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH_EXT, and b is the border width of the texture
image being modified. Note that w, h, and d include twice the border width.

GL_INVALID_ENUM is generated if format is not an accepted format constant.
GL_INVALID_ENUM is generated if type is not a type constant.
GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSublmage3DEXT is executed between the execution of
glBegin and the corresponding execution of glEnd.

Associated Gets
glGetTeximage

glisEnabled with argument GL_TEXTURE_3D_EXT

Related Information

The [gIDrawPixels| subroutine, [gIFog| subroutine, [gIPixelStore] subroutine, [glPixelTransfer] subroutine,
[glTexEnv| subroutine, |gITexGen| subroutine, |glTeximage3DEXT]| subroutine, [gITexParameter| subroutine.

glTranslate Subroutine

Purpose
Multiplies the current matrix by a translation matrix.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glTranslated(GLdouble X,
GLdouble VY,
GLdouble 7)

void glTranslatef(GLfloat X,
GLfloat VY,
GLfloat 7)

Parameters

XY, Z Specify the X, Y, and Z coordinates of a translation vector.

Description

The glTranslate subroutine moves the coordinate system origin to the point specified by (X,Y,2). The
translation vector is used to compute a 4 x 4 translation matrix as follows:

Chapter 1. OpenGL Subroutines 385



Figure 27. Translation Matrix. This diagram shows a matrix in brackets. The matrix consists of four lines containing
four characters each. The first line contains the following (from left to right): one, zero, zero, x. The second line
contains the following (from left to right): zero, one, zero, y. The third line contains the following (from left to right):
zero, zero, one, z. The fourth line contains the following (from left to right): zero, zero, zero, one.

The current matrix (see the |gIMatrixMode| subroutine for information on specifying the current matrix) is
multiplied by this translation matrix, with the product replacing the current matrix. That is, if M is the
current matrix and T is the translation matrix, M is replaced with MT.

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glTranslate is

called are translated. Use the glPushMatrix and glPopMatrix subroutines to save and restore the
untranslated coordinate system.

Errors

GL_INVALID_OPERATION The glTranslate subroutine is called between a call to glBegin and the
corresponding call to glEnd.

Associated Gets

Associated gets for the glTranslate subroutine are as follows. (See the [giGef subroutine for more
information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX
glGet with argument GL_PROJECTION_MATRIX
glGet with argument GL_TEXTURE_MATRIX.

Files

lust/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gIBegin or glEnd| subroutine, [giMatrixMode] subroutine, subroutine,
subroutine, |9IRotate| subroutine, |9IScaIg| subroutine.

glUnLockArraysEXT Subroutine

Purpose
Unlocks the currently enabled vertex arrays.

386 OpenGL 1.2 Reference Manual



Library

OpenGL C bindings library: libGL.a

C Syntax

void glUnlockArraysEXT (void)

Description

The glUnlockArraysEXT subroutine unlocks vertex arrays locked by the |gILockArraysEXT| subroutine.

Errors

INVALID_OPERATION

INVALID_OPERATION

Related Information

The |glLockArraysEXT] subroutine.

The glUnlockArraysEXT subroutine is called without a corresponding previous
execution of glLockArraysEXT.

The glUnlockArraysEXT subroutine is called between execution of Begin and the
corresponding execution of End.

glVertex Subroutine

Purpose
Specifies a vertex.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glVertex2d(GLdouble I)__(l,
GLdouble [1)

void glVertex2f(6Lfloat [,
GLfloat

void glVertex2i(GLint m,
GLint

void glVertex2s(GLshort E,
GLshort

void glVertex3d(GLdouble [,
GLdouble |V},
GLdouble

void glVertex3f(GLfloat E,
GLfloat Y,
GLfloat

void glVertex3i(GLint IXl,
GLint s
GLint

Chapter 1. OpenGL Subroutines

387



void glVertex3s(GLshort @,
GLshort Y],
GLshort

void glVertex4d(GLdouble [,

GLdouble s
GLdouble )
GLdouble

void glVertex4f(GLfloat m,

GLfloat 5
GLfloat s
GLfloat

void glVertex4i(GLint Izl,

GLint )
GLint N
GLint

void glVertex4ds(GLshort m,

GLshort Y],
GLshort |7,
GLshort

void glVertex2dv(const GLdouble = Eb
void glVertex2fv(const GLfloat »* Eb
void glVertex2iv(const GLint * Eb

void glVertex2sv(const GLshort = Eb
void glVertex3dv(const GLdouble = Eb
void glVertex3fv(const GLfloat = Eb
void glVertex3iv(const GLint * Eb

void glVertex3sv(const GLshort = Eb
void gl1Vertex4dv(const GLdouble x Eb
void glVertex4fv(const GLfloat = Eb
void glVertex4iv(const GLint * Eb

void glVertex4sv(const GLshort = Eb

Parameters

XY, Z W Specify X, Y, Z, and W coordinates of a vertex. Not all parameters are present in all forms of the
command.

Vv Specifies a pointer to an array of two, three, or four elements. The elements of a two-element

array are X and Y. The elements of a three-element array are X, Y, and Z The elements of a
four-element array are X, Y, Z and W.

388 OpenGL 1.2 Reference Manual



Description

The glVertex subroutines are used within the giBegin and glEnd subroutine pairs to specify point, line,
and polygon vertices. The current color, normal, texture coordinate, edge flag, secondary color, fog
coordinate and color index are associated with the vertex when glVertex is called.

When only X and Y are specified, Z defaults to 0.0 and W defaults to 1.0. When X, Y, and Z are specified,
W defaults to 1.0.

Notes

Calling glVertex outside of a glBegin/glEnd subroutine pair results in undefined behavior.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The [gIBegin| or glEnd subroutine, [gICallList| subroutine, [giColor] subroutine, |?IEdgeFIa§| subroutine,

glEvalCoord| subroutine, |g||ndex|subroutine, |gIMateriaI| subroutine, [gINormal| subroutine, |gIRec!|
subroutine, |gITexCoord| subroutine.

glVertexPointer Subroutine

Purpose
Defines an array of vertex data.

Library
OpenGL C bindings library: libGL.a

C Syntax
void glVertexPointer(GLint ,

GLenum |typel,
GLsizei |stridel,

const GLvoid = _pointer|D

Description

The glVertexPointer subroutine specifies the location and data format of an array of vertex coordinates to
use when rendering. The size parameter specifies the number of coordinates per vertex and type the data
type of the coordinates. The stride parameter specifies the byte stride from one vertex to the next allowing
vertices and attributes to be packed into a single array or stored in separate arrays. (Single array storage
may be more efficient on some implementations; see |g||nterleavedArraysb. When a vertex array is
specified, size, type, stride, and pointer are saved as client side state.

To enable and disable the vertex array, call glEnableClientState and glDisableClientState with the
argument GL_VERTEX_ARRAY. If enabled, the vertex array is used when glDrawArrays,
glDrawElements, or glArrayElement is called.

Use glDrawArrays to construct a sequence of primitives (all of the same type) from prespecified vertex
and vertex attribute arrays. Use glArrayElement to specify primitives by indexing vertices and vertex
attributes and glDrawElements to construct a sequence of primitives by indexing vertices and vertex
attributes.

Chapter 1. OpenGL Subroutines 389



Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
giMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Vertex array is used when giDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters

size Specifies the number of coordinates per vertex; must be 2, 3, or 4. The initial value is 4.

type Specifies the data type of each coordinate in the array. Symbolic constants GL_SHORT, GL_INT,
GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive vertices. If stride is 0, the vertices are understood to be
tightly packed in the array. The initial value is 0.

pointer Specifies a pointer to the first coordinate of the first vertex in the array. The initial value is 0 (NULL
pointer).

Notes

The glVertexPointer subroutine is available only if the GL version is 1.1 or greater.

The vertex array is initially disabled and it won’t be accessed when glArrayElement, glDrawElements or
glDrawArrays is called.

Execution of glVertexPointer is not allowed between gIBegin and the corresponding glEnd, but an error
may or may not be generated. If an error is not generated, the operation is undefined.

The glVertexPointer subroutine is typically implemented on the client side with no protocol.

Since the vertex array parameters are client side state, they are not saved or restored by glPushAttrib
and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glVertexPointer subroutine is not included in display lists.

Errors

* GL_INVALID_VALUE is generated if size is not 2, 3, or 4.

* GL_INVALID_ENUM is generated if type is is not an accepted value.
* GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

+ gllsEnabled with argument GL_VERTEX_ARRAY

» glGet with argument GL_VERTEX_ARRAY_SIZE

» glGet with argument GL_VERTEX_ARRAY_TYPE

+ glGet with argument GL_VERTEX_ARRAY_STRIDE

* glGetPointerv with argument GL_VERTEX_ARRAY_POINTER

Related Information
The |9IArrayEIement| subroutine, |§ICoIorPointeF| subroutine, |§IDrawArrays| subroutine, |gIDrawEIements|

subroutine, |gIEdgeFIagPointe[| subroutine, |gIEnabIg| subroutine, |gIGetPointer!| subroutine,

390 OpenGL 1.2 Reference Manual



|§IIndexPointer| subroutine, |gINormalPointer] subroutine, |gIPopClientAttrib| subroutine,

glPushClientAttrib| subroutine, [glITexCoordPointer| subroutine. |gIVertexPointerListIBM| subroutine.

glVertexPointerEXT Subroutine

Purpose
Defines an array of vertex data.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glVertexPointerEXT(GLint size,
GLenum type,
GLsizei stride,
GLsizei count,
const GLvoid *pointer)

Parameters

size Specifies the number of coordinates per vertex, must be 2,3, or 4.

type Specifies the data type of each coordinate in the array. Symbolic constants GL_SHORT, GL_INT,
GL_FLOAT, or GL_DOUBLE_EXT are accepted.

stride Specifies the byte offset between consecutive vertexes. If stride is 0 the vertexes are understood to be
tightly packed in the array.

count Specifies the number of vertexes, counting from the first, that are static.

pointer Specifies a pointer to the first coordinate of the first vertex in the array.

Description

The glVertexPointerEXT subroutine specifies the location and data format of an array of vertex
coordinates to use when rendering. size specifies the number of coordinates per vertex and fype the data
type of the coordinates. stride gives the byte stride from one vertex to the next allowing vertexes and
attributes to be packed into a single array or stored in separate arrays. (Single-array storage may be more
efficient on some implementations.) count indicates the number of array elements (counting from the first)
that are static. Static elements may be modified by the application, but once they are modified, the
application must explicitly respecify the array before using it for any rendering. When a vertex array is
specified, size, type, stride, count, and pointer are saved as client-side state, and static array elements
may be cached by the implementation.

The vertex array is enabled and disabled using glEnable and glDisable with the argument
GL_VERTEX_ARRAY_EXT. If enabled, the vertex array is used when glDrawArraysEXT or
glArrayElementEXT is called.

Notes
Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the vertex array is disabled and it won’t be accessed when glArrayElementEXT or
glDrawArraysEXT is called.

Although, it is not an error to call glVertexPointerEXT between the execution of glBegin and the
corresponding execution of glEnd, the results are undefined.

The glVertexPointerEXT subroutine will typically be implemented on the client side with no protocol.

Chapter 1. OpenGL Subroutines 391



Since the vertex array parameters are client side state, they are not saved or restored by glPushAttrib
and glPopAttrib.

The glVertexPointerEXT commands are not entered into display lists.

The glVertexPointerEXT subroutine is part of the _extname(EXT_vertex_array) extension, not part of the
core GL command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString,
when called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Use glDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
giMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Vertex array is used when giDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Errors
GL_INVALID_VALUE is generated if size is not 2, 3, or 4.

GL_INVALID_ENUM is generated if type is is not an accepted value.

GL_INVALID_VALUE is generated if stride or count is negative.

Associated Gets
glisEnabled with argument GL_VERTEX_ARRAY_EXT

glGet with argument GL_VERTEX_ARRAY_SIZE_EXT

glGet with argument GL_VERTEX_ARRAY_TYPE_EXT

glGet with argument GL_VERTEX_ARRAY_STRIDE_EXT

glGet with argument GL_VERTEX_ARRAY_COUNT_EXT

glGetPointervEXT with argument GL_VERTEX_ARRAY_POINTER_EXT

File

/usrfinclude/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The |glArrayElementEXT]| subroutine, [giColorPointerEXT]| subroutine, [giDrawArraysEXT]| subroutine,
IEdgeFlagPointerEXT| subroutine, [glGetPointervEXT] subroutine, |glindexPointerEXTjsubroutine,
INormalPointerEXT| subroutine, |gITexCoordPointerEXT| subroutine.

392 OpenGL 1.2 Reference Manual



glVertexPointerListiBM Subroutine

Purpose
Defines a list of vertex arrays.

Library
OpenGL C bindings library: libGL.a

C Syntax

void glVertexPointerListIBM( GLint [size],
GLenum [typel,
GLint |stride|,
const GLvoid ** |pointer],
GLint [ptrstride

Description

The glVertexPointerListIBM subroutine specifies the location and data format of a list of arrays of vertex
components to use when rendering. The size parameter specifies the number of components per vertex,
and must be 2, 3 or 4. The type parameter specifies the data type of each vertex component. The stride
parameter gives the byte stride from one vertex to the next allowing vertices and attributes to be packed
into a single array or stored in separate arrays. (Single-array storage may be more efficient on some
implementations; see glinterleavedArrays). The ptrstride parameter specifies the byte stride from one
pointer to the next in the pointer array.

When a vertex array is specified, size, type, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a “tightly packed” array as it does in glVertexPointer. Instead, it
causes the first array element of each array to be used for each vertex. Also, a negative value can be
used for stride, which allows the user to move through each array in reverse order.

To enable and disable the vertex arrays, call glEnableClientState and glDisableClientState with the
argument GL_VERTEX_ARRAY. The vertex array is initially disabled. When enabled, the vertex arrays are
used when glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or glArrayElement is called. The last
three calls in this list will only use the first array (the one pointed at by pointer{0]). See the descriptions of
these routines for more information on their use.

Use giDrawArrays, glMultiDrawArraysEXT, or giMultiModeDrawArraysIBM to construct a sequence of
primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives
by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,
glMultiModeDrawElementsIBM, or giDrawRangeElements to construct a sequence of primitives by
indexing vertices and vertex attributes.

If enabled, the Vertex array is used when giDrawArrays, glDrawElements, glArrayElements,
glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,
glMultiModeDrawElementsIBM, or giDrawRangeElements is called.

Parameters
size Specifies the number of components per vertex. It must be 2, 3 or 4. The initial value is 4.
type Specifies the data type of each vertex component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

Chapter 1. OpenGL Subroutines 393



stride Specifies the byte offset between consecutive vertices. The initial value is 0.

pointer Specifies a list of vertex arrays. The initial value is 0 (NULL pointer).
ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.
Notes

The glVertexPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is
supported.

Execution of glVertexPointerListIBM is not allowed between giBegin and the corresponding glEnd, but
an error may or may not be generated. If an error is not generated, the operation is undefined.

The glVertexPointerListIBM subroutine is typically implemented on the client side.

Since the vertex array parameters are client side state, they are not saved or restored by glPushAttrib
and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glVertexPointerListIBM call is encountered while compiling a display list, the information it
contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glVertexPointer call and the glVertexPointerListIBM call share the same state variables. A
glVertexPointer call will reset the vertex list state to indicate that there is only one vertex list, so that any
and all lists specified by a previous glVertexPointerListIBM call will be lost, not just the first list that it
specified.

Error Codes

* GL_INVALID_VALUE is generated if size is not 2, 3 or 4.
* GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets

+ glisEnabled with argument GL_VERTEX_ARRAY

» glGetPointerv with argument GL_VERTEX_ARRAY_LIST_IBM
+ glGet with argument GL_VERTEX_ARRAY_LIST_STRIDE_IBM
* glGet with argument GL_VERTEX_ARRAY_SIZE

+ glGet with argument GL_VERTEX_ARRAY_STRIDE

» glGet with argument GL_VERTEX_ARRAY_TYPE

Related Information

The [glArrayElement] subroutine, [gIVertexPointer] subroutine, [giDrawArrays] subroutine, [giDrawElements|

subroutine, |gIEdgeFlagPointer] subroutine, IgIEnabIgI subroutine, |gIGetPointerv| subroutine,
lindexPointer| subroutine, |g||nterleavedArrays subroutine, |9IMuItiDrawArraysEXT| subroutine,
IMultiDrawElementsEXT] subroutine, |giMultiModeDrawArraysIBM| subroutine,
IMultiModeDrawElementsIBM| subroutine, |gINormalPointer| subroutine, [giPopClientAttrib| subroutine,
IPushClientAttrib| subroutine, [gITexCoordPointer| subroutine, [glVertexPointer| subroutine.

glViewport Subroutine

Purpose
Sets the viewport.

394 OpenGL 1.2 Reference Manual



Library
OpenGL C bindings library: libGL.a

C Syntax

void gl1Viewport(GLint X,
GLint VY,
GLsizei Width,
GLsizei Height)

Parameters

XY Specify the lower left corner of the viewport rectangle in pixels. The default is (0,0).

Width, Height Specify the width and height, respectively, of the viewport. When a GL context is first
attached to a window, Width and Height are set to the dimensions of that window.

Description

The glViewport subroutine specifies the affine transformation of X and Y from normalized device
coordinates to window coordinates. Let (Xnd, Ynd) be normalized device coordinates. Then the window
coordinates (Xw, Yw) are computed as follows:

Viewport width and height are silently clamped to a range that depends on the implementation. This range
is queried by calling the glGet subroutine with the GL_MAX_VIEWPORT_DIMS argument.

Errors
GL_INVALID_VALUE Width or Height is negative.
GL_INVALID_OPERATION The glViewport subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glViewport subroutine are as follows. (See the subroutine for more
information.)

glGet with argument GL_VIEWPORT
glGet with argument GL_MAX_VIEWPORT_DIMS.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |gIBegin or gIEnd| subroutine, subroutine.

glVisibilityBufferIBM Subroutine

Purpose
Specifies the array in which visibility calculation results are stored.

Chapter 1. OpenGL Subroutines 395



Library
OpenGL C bindings library: (libGL.a)

C Syntax

void glVisibilityBufferIBM(GLsizei [sizel,

GLuint [xbuffer)

Description

This call helps implement an extension providing a mechanism similar to selection and feedback that can
be used to perform occlusion culling. The basic algorithm is as follows:

1. Render the occluders (objects most likely to occlude other objects) into the frame buffer.

2. Specify the visibility buffer (the buffer in which non-occluded names are returned,
glVisibiltyBufferIBM(len, ptr)).

3. Disable z-buffer, stencil-buffer, and color-buffer updates.
4. Select GL_VISIBILITY_IBM rendering mode (glRenderMode(GL_VISIBILITY_IBM)).

5. For each possible occludee: a) identify its name using the glLoadName command. b) render a
simplified representation of the occludee

6. Restore the render mode to GL_RENDER (glRenderMode(GL_RENDER)). The return value from
glRenderMode in this case is the number of visible (picked) objects.

7. Restore z-buffer, stencil-buffer, and color-buffer updates.
8. Render all objects that are found to be non-occluded (those appearing in the visibility buffer).

GL_VISIBILITY render mode is identical to GL_RENDER render mode except whenever a fragment
passes all tests (ie, depth, stencil, alpha, scissor and window-ownership) then a visibility hit results.
Whenever a name stack manipulation command is executed or glRenderMode is called and there is a hit
since the last time the stack was manipulated or glRenderMode was called, then a hit record is written
into the visibility array. The hit record consists of the number of names in the name stack at the time of the
event followed by the name stack contents (bottom name first).

Besides occlusion culling, this extension can also be used to refine selection (picking) to include visiblity.
The basic algorithm is a follows:

1. Application renders a scene in which the user wishes to pick a object in the scene.
Application uses the base OpenGL select feature to obtain a list of pick candidates.
Disable z-buffer, stencil-buffer, and color-buffer updates.

Change depth test to GL_EQUAL

Set the Scissor region to match the Pick aperture.

Select GL_VISIBILITY_IBM rendering mode (glRenderMode(GL_VISIBILITY_IBM)).
Render each pick candidate with name identifiers.

Restore the render mode to RENDER (glRenderMode(GL_RENDERY)). The return value from
glRenderMode in this case is the number of visible (picked) objects.

Restore the depth test.
10. Restore z-buffer, stencil-buffer, and color-buffer updates.

© N oA D

©

Parameters

size is an integer indicating the maximum number of values
that can be stored in the visibility array.

buffer is a pointer to an array of unsigned integers (called the

visibility array) to be filled with names.

396 OpenGL 1.2 Reference Manual



Notes
This subroutine is only valid if the GL_IBM_occlusion_cull extension is defined.

Error Codes

GL_INVALID_VALUE is generated if size is negative.

GL_INVALID_OPERATION is generated if glVisibilityBufferIBM is executed between
the execution of glBegin and the corresponding execution
of glEnd.

GL_INVALID_OPERATION is generated if glVisibilityBufferIBM is executed while the

glRenderMode is GL_VISIBILITY_IBM.

Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The |[gIRenderMode| subroutine, the |g|VisibiIityThreshoIdIBMl subroutine.

glVisibilityThresholdiIBM Subroutine

Purpose
Specifies the number of visible fragments rendered before a visibility hit is registered.

Library
OpenGL C bindings library: (libGL.a)

C Syntax
void glVisibilityThresholdIBM(GLsizei [threshold)

Description

glVisibilityThresholdIBM specifies the number of visible fragments rendered before a visibility hit is
registered. A value of 0 results in a visibility hit on the first visible fragment; a value of 1 results in a
visilibility hit on the second visible fragment. The threshold parameter is silently clamped to an
implementation dependent range 0 - GL_MAX_VISIBILITY_THRESHOLD_IBM.

Parameters

threshold is an integer indicating the number visible fragments prior
to registering a visibility hit.

Error Codes

GL_INVALID_OPERATION is generated if one of the following conditions exists:

« glVisibilityThresholdIBM is executed between the execution of glBegin
and the corresponding execution of glEnd.

» glVisibilityThresholdIBM is executed while RenderMode is
GL_VISIBILITY_IBM.

Chapter 1. OpenGL Subroutines 397



Files

lusr/include/GL/gl.h Contains C language constants, variable type definitions,
and ANSI function prototypes for OpenGL.

Related Information
The [gIRenderMode| subroutine, the [glVisibilityBufferlBM| subroutine.

398 OpenGL 1.2 Reference Manual



Chapter 2. OpenGL Utility (GLU) Library

Following is a list of the subroutines available in the OpenGL utility library and the purpose of each

subroutine.

Select the subroutine about which you want to read.

B
gluBeginCurve)

gluBeginPolygon

gluBeginSurface

C
luCheckExtension|
luCylinde

D
gluDeleteNurbsRenderer|
gluDeleteQuadric
gluDeleteTess|

0 {

]

E

G
luGetNurbsProperty|
luGetStrin

[gluGetTessProperty|

L
[gluLoadSamplingMatrices|

gluLookAt

N
gluNewNurbsRenderer|

© Copyright IBM Corp. 1994, 2002

Delimits the beginning or end of a non-uniform rational B-spline
(NURBS) curve definition.

Delimits the beginning or end of a polygon description.

Delimits the beginning or end of a non-uniform rational B-spline
(NURBS) surface definition.

Delimits the beginning or end of a non-uniform rational B-spline
(NURBS) trimming loop definition.

Builds a subset of 1D mipmap levels.

Creates 1-dimensional (1D) mipmaps.

Builds a subset of 2D mipmap levels.

Creates 2-dimensional (2D) mipmaps.

Builds a subset of 3D mipmap levels.

Builds a 3-dimensional (3D) mipmap.

Determines if an extension name is supported.
Draws a cylinder.

Destroys a non-uniform rational B-spline (NURBS) object.
Destroys a quadrics object.

Destroys a tessellation object.

Draws a disk.

Produces an error string from an OpenGL or GLU error code.

Gets a non-uniform rational B-spline (NURBS) property.

Returns a pointer to a static string describing the GLU version or the
GLU extensions that are supported.

Gets a tessellation object property.

Loads non-uniform rational B-spline (NURBS) sampling and culling
matrices.
Defines a viewing transformation.

Creates a non-uniform rational B-spline (NURBS) object.

Creates a quadrics object.

Creates a tessellation object.

Marks the beginning of another contour.

Defines a callback for a non-uniform rational B-spline (NURBS) object.
Sets a user data pointer.

Sets a user data pointer.

Defines the shape of a non-uniform rational B-spline (NURBS) curve.

399



luNurbsProperty|
luNurbsSurfac
(0]

P

gluPwiICurve|

Q
EluQuadricCallbackI
S

luQuadricDrawStyle|
luQuadricNormals|
luQuadricOrientation|
luQuadricTexture)

gluScalelmage)
gluSpherd

T
0 IuTessBeginContou
gluTessBeginPolygon
gluTessCallback|
gluTessEndPolygon

gluTessNormal

gluTessProperty

U

gluUnProject
gluUnProject4

Sets a non-uniform rational B-spline (NURBS) property.

Defines the shape of a non-uniform rational B-spline (NURBS) surface.

Defines a 2-dimensional (2D) orthographic projection matrix.

Draws an arc of a disk.

Sets up a perspective projection matrix.

Defines a picking region.

Maps object coordinates to window coordinates.

Defines a piecewise linear non-uniform rational B-spline (NURBS)
trimming curve.

Defines a callback for a quadrics object.

Specifies the desired quadric drawing style.

Specifies the desired normals for quadrics.

Specifies the desired inside/outside orientation for quadrics.
Specifies if texturing is desired for quadrics.

Scales an image to an arbitrary size.
Draws a sphere.

Delimits a contour description.

Delimits a polygon description.

Defines a callback for a tessellation object.
Delimits a polygon description.

Specifies a normal for a polygon.

Sets a tessellation object property.
Specifies a vertex on a polygon.

Projects world space coordinates to object space.
Maps window and clip coordinates to object coordinates.

gluBeginCurve or gluEndCurve Subroutine

Purpose

Delimits the beginning or end of a non-uniform rational B-spline (NURBS) curve definition.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax
void gluBeginCurve(GLUnurbs* |nurb)

void gluEndCurve(GLUnurbsx |ourb)

400 OpenGL 1.2 Reference Manual



Description

Use the gluBeginCurve subroutine to mark the beginning of a NURBS curve definition. After calling the
gluBeginCurve subroutine, make one or more calls to the gluNurbsCurve subroutine to define the
attributes of the curve. One (and only one) of these calls must have a curve type of
GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4.

Use the gluEndCurve subroutine to mark the end of the NURBS curve definition.

OpenGL evaluators render the NURBS curve as a series of line segments. Evaluator state is preserved
during rendering with the glPushAttrib(GL_EVAL_BIT) and glPopAttrib attributes. (See the

subroutine for details on what state these calls preserve.)

Parameters

nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

Examples

The following commands render a textured NURBS curve with normals. Texture coordinates and normals
are also specified as NURBS curves.

gTuBeginCurve(nobj);
gluNurbsCurve(nobj, ..., GL_MAP1 _TEXTURE_COORD 2);
gluNurbsCurve(nobj, ..., GL_MAP1 NORMAL);
gluNurbsCurve(nobj, ..., GL_MAP1 _VERTEX 4);
gluEndCurve(nobj);
Files
lust/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The [gIPushAttrib] or gIPopAttrib subroutine, [gluBeginSurface] subroutine, subroutine,
|g|uNewNurbsRende|ge_r| subroutine, |gluNurbsCurve| subroutine.

gluBeginPolygon or gluEndPolygon Subroutine

Purpose
Delimits the beginning or end of a polygon description.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax

void gluBeginPolygon(GLUtesselator* [tess]

void gluEndPolygon(GLUtesselator* |tess]

Description

The gluBeginPolygon and gluEndPolygon subroutines delimit the definition of a nonconvex polygon. To
define a nonconvex polygon, first call the gluBeginPolygon subroutine. Then, call the gluTessVertex
subroutine to define the contours of the polygon for each vertex and the gluNextContour subroutine to

Chapter 2. OpenGL Utility (GLU) Library 401



start each new contour. (See the |gluTessVertex| subroutine for details about defining a polygon vertex;
and the |quNextContou[| subroutine for details about describing polygons with multiple contours.) Finally,
call the gluEndPolygon subroutine to signal the end of the definition.

Once the gluEndPolygon subroutine is called, the polygon is tessellated and the resulting triangles are
described through the callbacks. (See the |quTessCaIIback| subroutine for a list of definitions for the
callback routines.)

Parameters

tess Specifies the tessellation object created with the gluNewTess subroutine.

Notes

This command is obsolete and is provided for backward compatibility only. Calls to gluBeginPolygon are
mapped to gluTessBeginPolygon followed by gluTessBeginContour. Calls to gluEndPolygon are
mapped to gluTessEndContour followed by gluTessEndPolygon.

Examples
A quadrilateral with a triangular hole can be described as follows:

gluBeginPolygon(tobj);
gluTessVertex(tobj, v1, vl);
gluTessVertex(tobj, v2, v2);
gluTessVertex(tobj, v3, v3);
gluTessVertex(tobj, v4, v4);

gluNextContour(tobj, GLU_INTERIOR);
gluTessVertex(tobj, v5, v5);
gluTessVertex(tobj, v6, v6);
gluTessVertex(tobj, v7, v7);

gluEndPolygon(tobj);

Files

lusr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

The [gluNewTess]| subroutine, [gluNextContour subroutine, [gluTessBeginContour] subroutine,
[gluTessBeginPolygon| subroutine, |gluTessCallback| subroutine, [gluTessVertex| subroutine.

gluBeginSurface or gluEndSurface Subroutine

Purpose
Delimits the beginning or end of a non-uniform rational B-spline (NURBS) surface definition.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax

void gluBeginSurface(GLUnurbs* |nurb)

void gluEndSurface(GLUnurbs* |nurb]

402 OpenGL 1.2 Reference Manual



Description

Use the gluBeginSurface subroutine to mark the beginning of a NURBS surface definition. After calling
the gluBeginSurface subroutine, make one or more calls to the gluNurbsSurface subroutine to define
the attributes of the surface. One (and only one) of these calls must have a surface type of
GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4.

Use the gluEndSurface subroutine to mark the end of the NURBS surface definition.

Trimming of NURBS surfaces is supported with the gluBeginTrim, gluPwICurve, gluNurbsCurve, and
gluEndTrim subroutines. (See the [gluBeginTrim| subroutine for details about delimiting a NURBS

trimming loop.)

OpenGL evaluators render the NURBS surface as a series of polygons. Evaluator state is preserved
during rendering with the glPushAttrib (GL_EVAL_BIT) and glPopAttrib( ) attributes. (See the
for details on what state these calls preserve.)

Parameters

nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

Examples

The following commands render a textured NURBS surface with normals. Texture coordinates and normals
are also specified as NURBS surfaces.

gluBeginSurface(nobj);

gluNurbsSurface(nobj, ..., GL_MAP2_TEXTURE_COORD 2);
gluNurbsSurface(nobj, ..., GL_MAP2_NORMAL);
gluNurbsSurface(nobj, ..., GL_MAP2_VERTEX 4);
gluEndSurface(nobj);
Files
lusr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The |gIPushAttrib| subroutine, |g|uBeginCurve| subroutine, |§IuBe inTrim| subroutine,
EluNewNurbsRendered subroutine, |quNurbsCurve| subroutine, |gluNurbsSurface| subroutine,

luPwICurve| subroutine.

gluBeginTrim or gluEndTrim Subroutine

Purpose
Delimits the beginning or end of a non-uniform rational B-spline (NURBS) trimming loop definition.

Library

OpenGL C bindings library: TibGL.a

C Syntax

void gluBeginTrim(GLUnurbs* |rurb)
void gluEndTrim(GLUnurbs* |ourb)

Chapter 2. OpenGL Utility (GLU) Library 403



Description

Use the gluBeginTrim subroutine to mark the beginning of a NURBS trimming loop. A trimming loop is a
set of oriented curve segments (forming a closed curve) that define boundaries of a NURBS surface.
Trimming loops are included in a NURBS surface definition between calls to the gluBeginSurface and
gluEndSurface subroutine pair.

Use the gluEndTrim subroutine to mark the end of a trimming loop.

The definition for a NURBS surface can contain multiple trimming loops. For example, if a NURBS surface
definition resembles a rectangle with a hole through it, the definition contains two trimming loops. One
trimming loop defines the outer edge of the rectangle and the other defines the hole in the rectangle.
Definitions for each of these trimming loops are bracketed by a gluBeginTrim and gluEndTrim subroutine
pair.

The definition of a single closed trimming loop can consist of multiple curve segments, each described as
a piecewise linear curve or as a single NURBS curve, or a combination of both in any order. (See the
subroutine for details on defining a piecewise linear NURBS trimming curve; and the
subroutine for details on defining a NURBS curve.) The only library calls that can appear

in a trimming loop definition (between the calls to the gluBeginTrim and gluEndTrim subroutine) are
gluPwiICurve and gluNurbsCurve.

The region of the NURBS surface displayed is in the domain to the left of the trimming curve as the curve
parameter increases. Therefore, the retained region of the NURBS surface is inside a counterclockwise
trimming loop and outside a clockwise trimming loop. Using the rectangle with the hole mentioned in the
preceding example, the trimming loop for the outer edge of the rectangle runs counterclockwise; the
trimming loop for the hole runs clockwise.

If you use more than one curve to define a single trimming loop, the curve segments must form a closed
loop. That is, the endpoint of each curve must be the starting point of the next curve and the endpoint of
the final curve must be the starting point of the first curve. If the endpoints of these curves are sufficiently
close together but not precisely coincident, they are forced to meet. If the endpoints are not sufficiently
close, an error is generated. (See [gluNurbsCallback] for details on defining a NURBS object callback.)

If a trimming loop definition contains multiple curves, the direction of the curves must be consistent. (The
inside must be to the left of the curves.) Nested trimming loops are acceptable as long as curve
orientations alternate correctly. Trimming curves cannot be self-intersecting; nor can they intersect each
other.

If no trimming information is given for a NURBS surface, the entire surface is drawn.

Parameters

nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

Examples

This code fragment defines a trimming loop that consists of one piecewise linear curve and two NURBS
curves:
gluBeginTrim(nobj);
gluPwlCurve(..., GL_MAP1_TRIM_2);
gluNurbsCurve(..., GL_MAP1 TRIM 2);
gluNurbsCurve(..., GL_MAP1 TRIM 3);
gluEndTrim(nobj);

404 OpenGL 1.2 Reference Manual



Files

lust/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gluBeginSurface| subroutine, [gluNewNurbsRenderer subroutine, [gluNurbsCallback| subroutine,

|quNurbsCurve| subroutine, |9IquICurvg| subroutine.
gluBuild1DMipmapLevels Subroutine

Purpose
Builds a subset of 1D mipmap levels.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax

GLint gluBuildlDMipmapLevels( GLenum [target|,
GLint linternalFormat|,
GLsizei |width|,

GLenum [format|,
GLenum [typel,
GLint |levell,
GLint |basel,
GLint max|,

const void * )

Description

gluBuild1DMipmapLevels builds a subset of prefiltered 1D texture maps of decreasing resolutions called
a mipmap. This is used for the antialiasing of texture mapped primitives.

A return value of 0 indicates success, otherwise a GLU error code is returned (see gluErrorString).

A series of mipmap levels from base to max is built by decimating data in half until size 1x1 is reached. At
each level, each texel in the halved mipmap level is an average of the corresponding two texels in the
larger mipmap level. glTexlmage1D is called to load these mipmap levels from base to max. If max is
larger than the highest mipmap level for the texture of the specified size, then a GLU error code is
returned (see gluErrorString) and nothing is loaded.

For example, if level is 2 and width is 16, the following levels are possible: 16x1, 8x1, 4x1, 2x1, 1x1.
These correspond to levels 2 through 6 respectively. If base is 3 and max is 5, then only mipmap levels
8x1, 4x1 and 2x1 are loaded. However, if max is 7 then an error is returned and nothing is loaded since
max is larger than the highest mipmap level which is, in this case, 6.

The highest mipmap level can be derived from the formula log2(width)*(2~level)). See the glTeximage1D

reference page for a description of the acceptable values for fype parameter. See the glDrawPixels
reference page for a description of the acceptable values for level parameter.

Parameters
target Specifies the target texture. Must be GL_TEXTURE_1D.

Chapter 2. OpenGL Utility (GLU) Library 405



internalFormat Requests the internal storage format of the texture image.
Must be 1, 2, 3, or 4 or one of the following symbolic
constants:

* GL_ABGR_EXT

*+ GL_ALPHA

* GL_ALPHA4

+ GL_ALPHAS8

* GL_ALPHA12

* GL_ALPHA16

* GL_LUMINANCE

* GL_LUMINANCE4

* GL_LUMINANCES

* GL_LUMINANCE12

* GL_LUMINANCE16

* GL_LUMINANCE_ALPHA

* GL_LUMINANCE4_ALPHA4
* GL_LUMINANCE6_ALPHA2
* GL_LUMINANCES8_ALPHAS
* GL_LUMINANCE12_ALPHA4
* GL_LUMINANCE12_ALPHA12
* GL_LUMINANCE16_ALPHA16
* GL_INTENSITY

* GL_INTENSITY4

* GL_INTENSITY8

* GL_INTENSITY12

* GL_INTENSITY16

« GL_RGB

* GL_R3_G3_B2

* GL_RGB4

* GL_RGB5

+ GL_RGBS8

« GL_RGB10

+ GL_RGB12

*+ GL_RGB16

+ GL_RGBA

* GL_RGBA2

*+ GL_RGBA4

+ GL_RGB5_A1

*+ GL_RGBAS8

+ GL_RGB10_A2

+ GL_RGBA12

- GL_RGBA16
width Specifies the width in pixels of the texture image. This
should be a power of 2.

406 OpenGL 1.2 Reference Manual



format Specifies the format of the pixel data. Must be one of:

GL_COLOR_INDEX
GL_DEPTH_COMPONENT
GL_RED

GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

GL_RGBA

GL_BGRA
GL_LUMINANCE
GL_LUMINANCE_ALPHA

type Specifies the data type for data. Must be one of:

GL_UNSIGNED_BYTE

GL_BYTE

GL_BITMAP
GL_UNSIGNED_SHORT
GL_SHORT

GL_UNSIGNED_INT

GL_INT

GL_FLOAT
GL_UNSIGNED_BYTE_3_3_2
GL_UNSIGNED_BYTE_2_3_3_REV
GL_UNSIGNED_SHORT_5_6_5
GL_UNSIGNED_SHORT_5_6_5_REV

GL_UNSIGNED_SHORT_4_4 4 4

GL_UNSIGNED_INT_10_10_10_2
GL_UNSIGNED_INT_2_10_10_10_REV

level Specifies the mipmap level of the image data.

base Specifies the minimum mipmap level to pass to
glTeximage1D.

max Specifies the maximum mipmap level to pass to
glTexlmageiD.

data Specifies a pointer to the image data in memory.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Error Codes

* GLU_INVALID_VALUE is returned if level > base, base < 0, max< base or max is > the highest

mipmap level for data.
* GLU_INVALID_VALUE is returned if width is < 1.

* GLU_INVALID_ENUM is returned if internalFormat, format or type are not legal.

Chapter 2. OpenGL Utility (GLU) Library

407



* GLU_INVALID_OPERATION is returned if /evel is GL_UNSIGNED_BYTE_3_3_2 or
GL_UNSIGNED_BYTE_2_3_3_REV and type is not GL_RGB.

* GLU_INVALID_OPERATION is returned if level is GL_UNSIGNED_SHORT_5_6_5 or
GL_UNSIGNED_SHORT_5_6_5_REYV and type is not GL_RGB.

* GLU_INVALID_OPERATION is returned if level is GL_UNSIGNED_SHORT_4_4_4 4 or

* GLU_INVALID_OPERATION is returned if /evel is GL_UNSIGNED_INT_10_10_10_2 or
GL_UNSIGNED_INT_2_10_10_10_REYV and type is neither GL_RGBA nor GL_BGRA.

Files

lusr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |§IDrawPiers| subroutine, [gITeximage1D| subroutine, |ngexImage2IZ_)| subroutine, |gITexImage35|

subroutine, |quBuiId1 DMipmaps| subroutine, |gluBuild2DMipmaps]| subroutine, [gluBuild3DMipmaps|
subroutine, [gluErrorString| subroutine, |glGetTexlmage| subroutine, [glGetTexLevelParameter| subroutine,
|g|uBuiId2DMipmapLeveIs subroutine and |quBuiId3DMipmapLevels| subroutine.

gluBuild1DMipmaps Subroutine

Purpose
Creates 1-dimensional (1D) mipmaps.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax

GLint gluBuildlDMipmaps(GLenum [target|,
GLint l|internalFormat),
GLsizei |widthl,

GLenum |format|,

GLenum type|,

const void =

Description

The gluBuild1DMipmaps subroutine builds a series of prefiltered 1D texture maps of decreasing
resolutions called a mipmap. This is used for the antialiasing of texture mapped primitives.

A return value of 0 indicates success, otherwise a GLU error code is returned (see gluErrorString).
Initially, the width of data is checked to see if it is a power of two. If not, a copy of data is scaled up or
down to the nearest power of two. This copy will be used for subsequent mipmapping operations

described below. (If width is exactly between powers of 2, then the copy of data will scale upwards.) For
example, if width is 57 then a copy of data will scale up to 64 before mipmapping takes place.

408 OpenGL 1.2 Reference Manual



Then, proxy textures (see glTexlmage1D) are used to determine if the implementation can fit the
requested texture. If not, width is continually halved until it fits.

Next, a series of mipmap levels is built by decimating a copy of data in half until size 1x1 is reached. At
each level, each texel in the halved mipmap level is an average of the corresponding two texels in the
larger mipmap level.

glTeximage1D is called to load each of these mipmap levels. Level 0 is a copy of data. The highest level
is log2(width). For example, if width is 64 and the implementation can store a texture of this size, the
following mipmap levels are built: 64x1, 32x1, 16x1, 8x1, 4x1, 2x1 and 1x1. These correspond to levels 0
through 6, respectively.

See the |§ITexImage1 D| subroutine for a description of the acceptable values for the format parameter. See
the |gIDrawPiers| subroutine for acceptable values for the type parameter.

Parameters

target Specifies the target texture. This value must be GL_TEXTURE_1D.

Chapter 2. OpenGL Utility (GLU) Library 409



internalFormat Specifies the number of color components in the texture. Values must be 1, 2, 3, or 4 or
one of the following symbolic constants:

* GL_ABGR_EXT

+ GL_ALPHA

* GL_ALPHA4

* GL_ALPHAS8

* GL_ALPHA12

+ GL_ALPHA16

* GL_LUMINANCE

* GL_LUMINANCE4

* GL_LUMINANCES

* GL_LUMINANCE12

* GL_LUMINANCE16

* GL_LUMINANCE_ALPHA

* GL_LUMINANCE4_ALPHA4
* GL_LUMINANCE6_ALPHA2
* GL_LUMINANCES8_ALPHAS8
* GL_LUMINANCE12_ALPHA4
* GL_LUMINANCE12_ALPHA12
* GL_LUMINANCE16_ALPHA16
* GL_INTENSITY

* GL_INTENSITY4

* GL_INTENSITY8

* GL_INTENSITY12

* GL_INTENSITY16

+ GL_RGB

+ GL_R3_G3_B2

+ GL_RGB4

+ GL_RGB5

* GL_RGBS8

« GL_RGB10

+ GL_RGB12

+ GL_RGB16

+ GL_RGBA

+ GL_RGBA2

* GL_RGBA4

+ GL_RGB5_A1

+ GL_RGBAS

+ GL_RGB10_A2

*+ GL_RGBA12

- GL_RGBA16
width Specifies the width, in pixels, of the texture image.

410 OpenGL 1.2 Reference Manual



format Specifies the format of the pixel data. The following symbolic values are valid:
*+ GL_COLOR_INDEX
* GL_DEPTH_COMPONENT
« GL_RED
* GL_GREEN
*+ GL_BLUE
 GL_ALPHA
- GL_RGB
« GL_RGBA
+ GL_BGRA
+ GL_LUMINANCE

* GL_LUMINANCE_ALPHA
(See the subroutine for a description of the acceptable values for the

format parameter.)
type Specifies the data type. The following data types for data are valid:
* GL_UNSIGNED_BYTE
« GL_BYTE
+ GL_BITMAP
* GL_UNSIGNED_SHORT
* GL_SHORT
* GL_UNSIGNED_INT
* GL_INT
* GL_FLOAT
*+ GL_UNSIGNED_BYTE_3_3 2
* GL_UNSIGNED_BYTE_2_3 3_REV
* GL_UNSIGNED_SHORT_ 5 _6_5
* GL_UNSIGNED_SHORT_5_6_5_REV
* GL_UNSIGNED_SHORT_ 4.4 4 4
* GL_UNSIGNED_SHORT_5 5 5 1

* GL_UNSIGNED_INT_10_10_10_2
* GL_UNSIGNED_INT_2_10_10_10_REV

(See the |glDrawPixels| subroutine for acceptable values for the type parameter.)
data Specifies a pointer to the image data in memory.

NOTES
GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Note that there is no direct way of querying the maximum level. This can be derived indirectly via
glGetTexLevelParameter. First, query for the width actually used at level 0. (The width may not be equal
to width since proxy textures might have scaled it to fit the implementation.) Then the maximum level can
be derived from the formula log2(width).

Chapter 2. OpenGL Utility (GLU) Library 411



ERRORS
* GLU_INVALID_VALUE is returned if width is < 1.
* GLU_INVALID_ENUM is returned if format or type are not legal.

* GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_BYTE_3_3_2 or
GL_UNSIGNED BYTE_2 3 3 REV and format is not GL_RGB.

e GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_6_5 or
GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

* GLU_INVALID_OPERATION is returned if fype is GL_UNSIGNED_SHORT_4_4_4 4 or

* GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_10_10_10_2 or
GL_UNSIGNED INT_2 10 _10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

lusr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The [gluBuild1DMipmaps| subroutine,’H;uBuileDMipmapsl subroutine, [gluBuild3DMipmaps| subroutine,

[gluBuild1DMipmapLevels| subroutine, [gluBuild2DMipmapLevels| subroutine, |gluBuild3DMipmapLevels|
subroutine,l@rawPixels| subroutine, glGetTexLeveIParameted subroutine, [glGetTexImage| subroutine,
|gITexImage1 D| subroutine, |gITexImage2D| subroutine, |gITexImage3D| subroutine .
gluBuild2DMipmapLevels Subroutine

Purpose
Builds a subset of 2D mipmap levels.

Library

OpenGL C bindings library: TibGL.a

C Syntax

GLint gluBuild2DMipmapLevels( GLenum [target|,
GLint [internalFormat|,
GLsizei |width|,

GLsizei |height],
GLenum |[format|,
GLenum [typel,
GLint |level],
GLint |basel,
GLint fmax|,

const void * )

Description

gluBuild2DMipmapLevels builds a subset of prefiltered 2D texture maps of decreasing resolutions called
a mipmap. This is used for the antialiasing of texture mapped primitives.

412 OpenGL 1.2 Reference Manual



A return value of 0 indicates success, otherwise a GLU error code is returned (see .

A series of mipmap levels from base to max is built by decimating data in half along both dimensions until
size 1x1 is reached. At each level, each texel in the halved mipmap level is an average of the
corresponding four texels in the larger mipmap level. (In the case of rectangular images, the decimation
will ultimately reach an N x 1 or 1 x N configuration. Here, two texels are averaged instead.)
glTexlmage2D is called to load these mipmap levels from base to max. If max is larger than the highest
mipmap level for the texture of the specified size, then a GLU error code is returned (see
and nothing is loaded.

For example, if level is 2 and width is 16 and height is 8, the following levels are possible: 16x8, 8x4, 4x2,
2x1, 1x1. These correspond to levels 2 through 6 respectively. If base is 3 and max is 5, then only
mipmap levels 8x4, 4x2 and 2x1 are loaded. However, if max is 7 then an error is returned and nothing is
loaded since max is larger than the highest mipmap level which is, in this case, 6.

The highest mipmap level can be derived from the formula log2(max(width, height)* (2" level)).

See the g| ITeximagel D| subroutine for a description of the acceptable values for format parameter. See the
|gIDrawPiers| subroutine for a description of the acceptable values for type parameter.

Parameters

target Specifies the target texture. Must be GL_TEXTURE_2D.

Chapter 2. OpenGL Utility (GLU) Library 413



internalFormat Requests the internal storage format of the texture image.
Must be 1, 2, 3, or 4 or one of the following symbolic
constants:

* GL_ABGR_EXT

*+ GL_ALPHA

* GL_ALPHA4

+ GL_ALPHAS8

* GL_ALPHA12

* GL_ALPHA16

* GL_LUMINANCE

* GL_LUMINANCE4

* GL_LUMINANCES

* GL_LUMINANCE12

* GL_LUMINANCE16

* GL_LUMINANCE_ALPHA

* GL_LUMINANCE4_ALPHA4
* GL_LUMINANCE6_ALPHA2
* GL_LUMINANCES8_ALPHAS
* GL_LUMINANCE12_ALPHA4
* GL_LUMINANCE12_ALPHA12
* GL_LUMINANCE16_ALPHA16
* GL_INTENSITY

* GL_INTENSITY4

* GL_INTENSITY8

* GL_INTENSITY12

* GL_INTENSITY16

« GL_RGB

* GL_R3_G3_B2

* GL_RGB4

* GL_RGB5

+ GL_RGBS8

« GL_RGB10

+ GL_RGB12

*+ GL_RGB16

+ GL_RGBA

* GL_RGBA2

*+ GL_RGBA4

+ GL_RGB5_A1

*+ GL_RGBAS8

+ GL_RGB10_A2

+ GL_RGBA12

- GL_RGBA16
width, height Specifies the width and height, respectively, in pixels of
the texture image. These should be a power of 2.

414 OpenGL 1.2 Reference Manual



format Specifies the format of the pixel data. Must be one of:
* GL_COLOR_INDEX
* GL_DEPTH_COMPONENT
« GL_RED
* GL_GREEN
« GL_BLUE
« GL_ALPHA
- GL_RGB
« GL_RGBA
« GL_BGRA
* GL_LUMINANCE

* GL_LUMINANCE_ALPHA
type Specifies the data type for data. Must be one of:
* GL_UNSIGNED _BYTE
- GL_BYTE
* GL_BITMAP
* GL_UNSIGNED_SHORT
* GL_SHORT
* GL_UNSIGNED_INT
* GL_INT
* GL_FLOAT
* GL_UNSIGNED_BYTE_ 3 3 2
* GL_UNSIGNED_BYTE_2 3 3 REV
* GL_UNSIGNED_SHORT 5 6_5
* GL_UNSIGNED_SHORT 5 _6_5 REV

* GL_UNSIGNED_SHORT_4_4 4 4

* GL_UNSIGNED_INT_10_10_10_2
* GL_UNSIGNED_INT_2_10_10_10_REV

level Specifies the mipmap level of the image data.

base Specifies the minimum mipmap level to pass to
glTeximage2D.

max Specifies the maximum mipmap level to pass to
glTexlmage2D.

data Specifies a pointer to the image data in memory.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Error Codes

GLU_INVALID_VALUE is returned if level > base, base < 0, max < base or max is > the highest mipmap
level for data.

GLU_INVALID_VALUE is returned if width or height are < 1.

Chapter 2. OpenGL Utility (GLU) Library 415



GLU_INVALID_ENUM is returned if internalFormat, format or type are not legal.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_BYTE_3_3_2 or
GL_UNSIGNED_BYTE_2_ 3 3 REV and format is not GL_RGB.
GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_6_5 or
GL_UNSIGNED_SHORT _5_6_5_ REV and format is not GL_RGB.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_4_4 4 4 or

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_5_5_1 or
GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_8 8 8 8 or

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_10_10_10_2 or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

lusr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |§IDrawPiers| subroutine, |ngexImage1 D| subroutine, |gITexImage25| subroutine, |gITexImage35|

subroutine, [gluBuild1DMipmaps]| subroutine, [gluBuild2DMipmaps| subroutine, |gluBuild3DMipmaps|
subroutine, |gluErrorString| subroutine, IGetTexImagel subroutine, |9IGetTexLeveIParamete|1 subroutine,
|g|uBuiId1 DMipmapLevels| subroutine, |gluBuild3DMipmapLevels| subroutine.

gluBuild2DMipmaps Subroutine

Purpose
Creates 2-dimensional (2D) mipmaps.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax

GLint gluBuild2DMipmaps(GLenum [target|,
GLint |internalFormat

GLsizei width
GLsizei
GLenum
GLenum

-

Description

The gluBuild2DMipmaps subroutine builds a series of prefiltered 2-D texture maps of decreasing
resolutions called a mipmap. This is used for the antialiasing of texture mapped primitives.

416 OpenGL 1.2 Reference Manual



A return value of 0 indicates success, otherwise a GLU error code is returned (see .

Initially, the width and height of data are checked to see if they are a power of two. If not, a copy of data
(not data), is scaled up or down to the nearest power of two. This copy will be used for subsequent
mipmapping operations described below. (If width or height is exactly between powers of 2, then the copy
of data will scale upwards.) For example, if width is 57 and height is 23 then a copy of data will scale up
to 64 in width and down to 16 in depth, before mipmapping takes place.

Then, proxy textures (see glTexlmage2D) are used to determine if the implementation can fit the
requested texture. If not, both dimensions are continually halved until it fits. (If the OpenGL version is <=
1.0, both maximum texture dimensions are clamped to the value returned by glGetintegerv with the
argument GL_MAX_TEXTURE_SIZE.)

Next, a series of mipmap levels is built by decimating a copy of data in half along both dimensions until
size 1x1 is reached. At each level, each texel in the halved mipmap level is an average of the
corresponding four texels in the larger mipmap level. (In the case of rectangular images, the decimation
will ultimately reach an N x 1 or 1 x N configuration. Here, two texels are averaged instead.)

glTeximage2D is called to load each of these mipmap levels. Level 0 is a copy of data. The highest level
is log2(max(width,height)). For example, if width is 64 and height is 16 and the implementation can store a
texture of this size, the following mipmap levels are built: 64x16, 32x8, 16x4, 8x2, 4x1, 2x1 and 1x1.
These correspond to levels 0 through 6, respectively.

See the |§ITexImage1 D| subroutine for a description of the acceptable values for format parameter. See the
|gIDrawPiers| subroutine for a description of the acceptable values for type parameter.

Parameters

target Specifies the target texture. This value must be GL_TEXTURE_2D.

Chapter 2. OpenGL Utility (GLU) Library 417



internalFormat Specifies the number of color components in the texture. Values must be 1, 2, 3, or 4 or
one of the following symbolic constants:

* GL_ABGR_EXT

+ GL_ALPHA

* GL_ALPHA4

* GL_ALPHAS8

* GL_ALPHA12

+ GL_ALPHA16

* GL_LUMINANCE

* GL_LUMINANCE4

* GL_LUMINANCES

* GL_LUMINANCE12

* GL_LUMINANCE16

* GL_LUMINANCE_ALPHA

* GL_LUMINANCE4_ALPHA4
* GL_LUMINANCE6_ALPHA2
* GL_LUMINANCES8_ALPHAS8
* GL_LUMINANCE12_ALPHA4
* GL_LUMINANCE12_ALPHA12
* GL_LUMINANCE16_ALPHA16
* GL_INTENSITY

* GL_INTENSITY4

* GL_INTENSITY8

* GL_INTENSITY12

* GL_INTENSITY16

+ GL_RGB

+ GL_R3_G3_B2

+ GL_RGB4

+ GL_RGB5

* GL_RGBS8

« GL_RGB10

+ GL_RGB12

+ GL_RGB16

+ GL_RGBA

+ GL_RGBA2

* GL_RGBA4

+ GL_RGB5_A1

+ GL_RGBAS

+ GL_RGB10_A2

*+ GL_RGBA12

+ GL_RGBA16
width Specifies the width, in pixels, of the texture image.
height Specifies the height, in pixels, of the texture image.

418 OpenGL 1.2 Reference Manual



format Specifies the format of the pixel data. The following symbolic values are valid:
*+ GL_COLOR_INDEX
* GL_DEPTH_COMPONENT
« GL_RED
* GL_GREEN
*+ GL_BLUE
 GL_ALPHA
- GL_RGB
« GL_RGBA
+ GL_BGRA
+ GL_LUMINANCE

* GL_LUMINANCE_ALPHA
(See the subroutine for acceptable values for the Format parameter.)

type Specifies the data type. The following data types are valid for data:
* GL_UNSIGNED_BYTE
« GL_BYTE
+ GL_BITMAP
* GL_UNSIGNED_SHORT
* GL_SHORT
* GL_UNSIGNED_INT
 GL_INT
* GL_FLOAT
* GL_UNSIGNED_BYTE_3_3 2
* GL_UNSIGNED_BYTE_2 3 3 REV
* GL_UNSIGNED_SHORT 5 _6_5
* GL_UNSIGNED_SHORT 5 _6_5 REV
* GL_UNSIGNED_SHORT_4.4 4 4

* GL_UNSIGNED_INT_10_10_10_2
* GL_UNSIGNED_INT_2_10_10_10_REV
(See the [gIDrawPixels| subroutine for acceptable values for the Type parameter.)

data Specifies a pointer to the image data in memory.

Notes
GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

There is no direct way of querying the maximum level. This can be derived indirectly via
glGetTexLevelParameter. First, query for the width & height actually used at level 0. (The width & height
may not be equal to width & height respectively since proxy textures might have scaled them to fit the
implementation.) Then the maximum level can be derived from the formula log2(max(width,height)).

Error Codes
* GLU_INVALID_VALUE is returned if width or height are < 1.
* GLU_INVALID_ENUM is returned if internalFormat, format or type are not legal.

Chapter 2. OpenGL Utility (GLU) Library 419



* GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_BYTE_3_3_2 or
GL_UNSIGNED_BYTE_2_3_3_REV and format is not GL_RGB.

* GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_6_5 or
GL_UNSIGNED_SHORT_5_6_5 REV and format is not GL_RGB.

* GLU_INVALID_OPERATION is returned if fype is GL_UNSIGNED_SHORT_4_4 4 4 or

* GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_10_10_10_2 or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

lusr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |§IDrawPiers| subroutine, [gITeximage1D| subroutine, |ngexImage2IZ_)| subroutine, |gITexImage35|

subroutine, [gluBuild1DMipmaps| subroutine, [gluBuild3DMipmaps| subroutine, bluErrorStrin% subroutine,
IGetTexlmage| subroutine, |glGetTexLevelParameter| subroutine, [gluBuild1DMipmapLevels| subroutine,
luBuild2DMipmapLevels| subroutine, |9IuBuiIdSDMipmapLeveIs subroutine .

gluBuild3DMipmapLevels Subroutine

Purpose

Builds a subset of 3D mipmap levels.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax

GLint gluBuild3DMipmapLevels( GLenum ,
GLint l|internalFormat),

GLsizei
GLsizei
GLsizei |depth],
GLenum [format|,
GLenum [typel,
GLint |level],

GLint |basel,
GLint |max|,

Description

gluBuild3DMipmapLevels builds a subset of prefiltered 3D texture maps of decreasing resolutions called
a mipmap. This is used for the antialiasing of texture mapped primitives.

A return value of 0 indicates success, otherwise a GLU error code is returned (see .

420 OpenGL 1.2 Reference Manual



A series of mipmap levels from base to max is built by decimating data in half along both dimensions until
size 1x1x1 is reached. At each level, each texel in the halved mipmap level is an average of the
corresponding eight texels in the larger mipmap level. (If exactly one of the dimensions is 1, four texels are
averaged. If exactly two of the dimensions are 1, two texels are averaged.) glTeximage3D is called to
load these mipmap levels from base to max. If max is larger than the highest mipmap level for the texture
of the specified size, then a GLU error code is returned (see and nothing is loaded.

For example, if level is 2 and width is 16, height is 8 and depth is 4, the following levels are possible:
16x8x4, 8x4x2, 4x2x1, 2x1x1, 1x1x1. These correspond to levels 2 through 6 respectively. If base is 3 and
max is 5, then only mipmap levels 8x4x2, 4x2x1 and 2x1x1 are loaded. However, if max is 7 then an error
is returned and nothing is loaded since max is larger than the highest mipmap level which is, in this case,
6.

The highest mipmap level can be derived from the formula log2(max(width, height,depth)*(2/level)).

See the |gITexImage1 D| subroutine for a description of the acceptable values for format parameter. See the
|gIDrawPiers| subroutine for a description of the acceptable values for type parameter.

Parameters

target Specifies the target texture. Must be GL_TEXTURE_3D.

Chapter 2. OpenGL Utility (GLU) Library 421



internalFormat

width
height

depth

422 OpenGL 1.2 Reference Manual

Requests the internal storage format of the texture image.
Must be 1, 2, 3, or 4 or one of the following symbolic
constants:

GL_ABGR_EXT

GL_ALPHA

GL_ALPHA4

GL_ALPHAS8

GL_ALPHA12
GL_ALPHA16
GL_LUMINANCE
GL_LUMINANCE4
GL_LUMINANCES
GL_LUMINANCE12
GL_LUMINANCE16
GL_LUMINANCE_ALPHA
GL_LUMINANCE4_ALPHA4
GL_LUMINANCE6_ALPHA2
GL_LUMINANCES_ALPHAS
GL_LUMINANCE12_ALPHA4
GL_LUMINANCE12_ALPHA12
GL_LUMINANCE16_ALPHA16
GL_INTENSITY
GL_INTENSITY4
GL_INTENSITYS8
GL_INTENSITY12
GL_INTENSITY16

GL_RGB

GL_R3_G3_B2

GL_RGB4

GL_RGB5

GL_RGB8

GL_RGB10

GL_RGB12

GL_RGB16

GL_RGBA

GL_RGBA2

GL_RGBA4

GL_RGB5_A1

GL_RGBAS

GL_RGB10_A2
GL_RGBA12

GL_RGBA16

Specifies the width, in pixels, of the texture image. These
should be a power of 2.
Specifies the height, in pixels, of the texture image. These
should be a power of 2.
Specifies the depth, in pixels, of the texture image. These
should be a power of 2.



format Specifies the format of the pixel data. Must be one of:
* GL_COLOR_INDEX
* GL_DEPTH_COMPONENT
« GL_RED
* GL_GREEN
« GL_BLUE
« GL_ALPHA
- GL_RGB
« GL_RGBA
« GL_BGRA
* GL_LUMINANCE

* GL_LUMINANCE_ALPHA
type Specifies the data type for data. Must be one of:
* GL_UNSIGNED _BYTE
- GL_BYTE
* GL_BITMAP
* GL_UNSIGNED_SHORT
* GL_SHORT
* GL_UNSIGNED_INT
* GL_INT
* GL_FLOAT
* GL_UNSIGNED_BYTE_ 3 3 2
* GL_UNSIGNED_BYTE_2 3 3 REV
* GL_UNSIGNED_SHORT 5 6_5
* GL_UNSIGNED_SHORT 5 _6_5 REV

* GL_UNSIGNED_SHORT_4_4 4 4

* GL_UNSIGNED_INT_10_10_10_2
* GL_UNSIGNED_INT_2_10_10_10_REV

level Specifies the mipmap level of the image data.

base Specifies the minimum mipmap level to pass to
glTeximage3D.

max Specifies the maximum mipmap level to pass to
glTexlmage3D.

data Specifies a pointer to the image data in memory.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Error Codes

GLU_INVALID_VALUE is returned if level > base, base < 0, max < base or max is > the highest mipmap
level for data.

GLU_INVALID_VALUE is returned if width, height or depth are < 1.

Chapter 2. OpenGL Utility (GLU) Library 423



GLU_INVALID_ENUM is returned if internalFormat, format or type are not legal.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_BYTE_3_3_2 or
GL_UNSIGNED_BYTE_2_ 3 3 REV and format is not GL_RGB.
GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_6_5 or
GL_UNSIGNED_SHORT _5_6_5_ REV and format is not GL_RGB.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_4_4 4 4 or

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_5_5_1 or
GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_8 8 8 8 or

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_10_10_10_2 or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

lusr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

|§IDrawPiers| subroutine, |§ITexIma9e1 D| subroutine, |§ITexImaggD| subroutine, |§ITexImageSD|

subroutine, [gluBuild1 DMipmaps| subroutine,|quBuiId2DMipmaps| subroutine, quBuiIdSDMipmaps|
subroutine, |gluErrorString| subroutine, IGetTexImagel subroutine, |9IGetTexLeveIParamete|1 subroutine,
|g|uBuiId1 DMipmapLevels| subroutine, |gluBuild2DMipmapLevels| subroutine.

gluBuild3DMipmaps Subroutine

Purpose
Builds a 3-D mipmap.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax
GLint gluBuild3DMipmaps( GLenum ,

GLint l|internalFormat
GLsizei
GLsizei
GLsizei |depth],
GLenum |format|,

GLenum [typ |,

const void = )

Description

gluBuild3DMipmaps builds a series of prefiltered 3D texture maps of decreasing resolutions called a
mipmap. This is used for the antialiasing of texture mapped primitives.

424 OpenGL 1.2 Reference Manual



A return value of 0 indicates success, otherwise a GLU error code is returned (see .

Initially, the width, height and depth of data are checked to see if they are a power of two. If not, a copy of
data (not data), is scaled up or down to the nearest power of two. This copy will be used for subsequent
mipmapping operations described below. (If width, height or depth is exactly between powers of 2, then
the copy of data will scale upwards.) For example, if width is 57, height is 23 and depth is 24 then a copy
of data will scale up to 64 in width, down to 16 in height and up to 32 in depth, before mipmapping takes
place.

Then, proxy textures (see [glTeximage3D) are used to determine if the implementation can fit the
requested texture. If not, all three dimensions are continually halved until it fits.

Next, a series of mipmap levels is built by decimating a copy of data in half along all three dimensions
until size 1x1x1 is reached. At each level, each texel in the halved mipmap level is an average of the
corresponding eight texels in the larger mipmap level. (If exactly one of the dimensions is 1, four texels are
averaged. If exactly two of the dimensions are 1, two texels are averaged.)

glTexlmage3D is called to load each of these mipmap levels. Level 0 is a copy of data. The highest level
is log2(max(width,height,depth)). For example, if width is 64, height is 16 and depth is 32, and the
implementation can store a texture of this size, the following mipmap levels are built: 64x16x32, 32x8x16,
16x4x8, 8x2x4, 4x1x2, 2x1x1 and 1x1x1. These correspond to levels 0 through 6, respectively.

See the |§ITexImage1 D| subroutine for a description of the acceptable values for format parameter. See the
|gIDrawPiers| subroutine for a description of the acceptable values for type parameter.

Parameters

target Specifies the target texture. Must be GL_TEXTURE_3D.

Chapter 2. OpenGL Utility (GLU) Library 425



internalFormat Requests the internal storage format of the texture image.
Must be 1, 2, 3, or 4 or one of the following symbolic
constants:

* GL_ABGR_EXT

*+ GL_ALPHA

* GL_ALPHA4

+ GL_ALPHAS8

* GL_ALPHA12

* GL_ALPHA16

* GL_LUMINANCE

* GL_LUMINANCE4

* GL_LUMINANCES

* GL_LUMINANCE12

* GL_LUMINANCE16

* GL_LUMINANCE_ALPHA

* GL_LUMINANCE4_ALPHA4
* GL_LUMINANCE6_ALPHA2
* GL_LUMINANCES8_ALPHAS
* GL_LUMINANCE12_ALPHA4
* GL_LUMINANCE12_ALPHA12
* GL_LUMINANCE16_ALPHA16
* GL_INTENSITY

* GL_INTENSITY4

* GL_INTENSITY8

* GL_INTENSITY12

* GL_INTENSITY16

« GL_RGB

* GL_R3_G3_B2

* GL_RGB4

* GL_RGB5

+ GL_RGBS8

« GL_RGB10

+ GL_RGB12

*+ GL_RGB16

+ GL_RGBA

* GL_RGBA2

*+ GL_RGBA4

+ GL_RGB5_A1

*+ GL_RGBAS8

+ GL_RGB10_A2

+ GL_RGBA12

- GL_RGBA16
width Specifies the width, in pixels, of the texture image.
height Specifies the height, in pixels, of the texture image.
depth Specifies the depth, in pixels, of the texture image.

426 OpenGL 1.2 Reference Manual



format Specifies the format of the pixel data. Must be one of:
* GL_COLOR_INDEX
* GL_DEPTH_COMPONENT
« GL_RED
* GL_GREEN
« GL_BLUE
« GL_ALPHA
- GL_RGB
« GL_RGBA
« GL_BGRA
* GL_LUMINANCE

* GL_LUMINANCE_ALPHA
type Specifies the data type for data. Must be one of:
* GL_UNSIGNED _BYTE
- GL_BYTE
* GL_BITMAP
* GL_UNSIGNED_SHORT
* GL_SHORT
* GL_UNSIGNED_INT
* GL_INT
* GL_FLOAT
* GL_UNSIGNED_BYTE_ 3 3 2
* GL_UNSIGNED_BYTE_2 3 3 REV
* GL_UNSIGNED_SHORT 5 6_5
* GL_UNSIGNED_SHORT 5 _6_5 REV

* GL_UNSIGNED_SHORT_4_4 4 4

* GL_UNSIGNED_INT_10_10_10_2

* GL_UNSIGNED_INT_2_10_10_10_REV
data Specifies a pointer to the image data in memory.

Notes
GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

There is no direct way of querying the maximum level. This can be derived indirectly via
glGetTexLevelParameter. First, query for the width, height and depth actually used at level 0. (The width,
height and depth may not be equal to width, height and depth respectively since proxy textures might have
scaled them to fit the implementation.) Then the maximum level can be derived from the formula
log2(max(width,height,depth)).

Error Codes
GLU_INVALID_VALUE is returned if width, height or depth are < 1.

GLU_INVALID_ENUM is returned if internalFormat, format or type are not legal.

Chapter 2. OpenGL Utility (GLU) Library =~ 427



GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_BYTE_3_3_2 or
GL_UNSIGNED_BYTE_2_3_3_REV and format is not GL_RGB.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_6_5 or
GL_UNSIGNED_SHORT 5 _6_5 REV and format is not GL_RGB.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_4_4 4 4 or

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_10_10_10_2 or
GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

lust/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information

* |glDrawPixels
* |giTeximage1

¢ |giTexlmage2

* |giTeximage3D

|gluBuild1DMipmaps|
[gluBuild3DMipmaps|

IGetTexIma
lglGetTexLevelParameter|
[gluBuild1DMipmapLevels|
[gluBuild2DMipmapLevels|
|gluBuild3DMipmapLevels|

i

gluCheckExtension Subroutine

Purpose
Determines if an extension name is supported.

Library

OpenGL C bindings library: TibGL.a

C Syntax

GLboolean gluCheckExtension( const GLubyte * ,
const GLubyte * |extString| )

428 OpenGL 1.2 Reference Manual



Description
gluCheckExtension returns GL_TRUE if extName is supported otherwise GL_FALSE is returned.

This is used to check for the presence for OpenGL, GLU or GLX extension names by passing the
extensions strings returned by glGetString, gluGetString, or giXGetClientString, respectively, as
extString.

Parameters

extName Specifies an extension name.

extString Specifies a space-separated list of extension names supported.
Notes

Cases where one extension name is a substring of another are correctly handled.
There may or may not be leading or trailing blanks in extString.

Extension names should not contain embedded spaces.

All strings are null-terminated.

Files

lusr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The subroutine, subroutine, [gIXGetClientString| subroutine.

gluCylinder Subroutine

Purpose
Draws a cylinder.

Library

OpenGL C bindings library: TibGL.a

C Syntax
void gluCylinder(GLUquadricx [guad],
GLdouble |basel,
GLdouble |topl,
GLdouble |height|,
GLint |slices|,
GLint [stacks)

Description

The gluCylinder subroutine draws a cylinder that is oriented along the z axis. The base of the cylinder is
placed at z = 0; the top of the cylinder is placed at z=height. Like a sphere, the cylinder is subdivided
around the z axis into slices and along the z axis into stacks.

Chapter 2. OpenGL Utility (GLU) Library 429



Note: If the top parameter is set to zero, this subroutine will generate a cone.

If the orientation is set to GLU_OUTSIDE (with the gluQuadricOrientation subroutine), any generated
normals point away from the z axis. Otherwise, they point toward the z axis.

If texturing is turned on using the gluQuadricTexture subroutine, texture coordinates are generated so
that t ranges linearly from 0.0 at z=0 to 1.0 at z=height, and s ranges from 0.0 at the +y axis to 0.25 at the
+x axis, as well as up to 0.5 at the -y axis and 0.75 at the -x axis, then back to 1.0 at the +y axis.

Parameters

quad Specifies the quadrics object created with the gluNewQuadric subroutine.

base Specifies the radius of the cylinder at z=0.

top Specifies the radius of the cylinder at z=Height. If top is set to 0, this subroutine generates a cone.
height Specifies the height of the cylinder.

slices Specifies the number of subdivisions around the z axis.

stacks Specifies the number of subdivisions along the z axis.

Files

lusr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The|§IuDisﬂsubroutine,|g|uNeruadric|subroutine, luPartialDis subroutine,|9IuQuadric0rientation|
subroutine, [gluQuadricTexture| subroutine, [gluSphere subroutine.

gluDeleteNurbsRenderer Subroutine

Purpose
Destroys a non-uniform rational B-spline (NURBS) object.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax

void gluDeleteNurbsRenderer(GLUnurbs* jurb)

Description

The gluDeleteNurbsRenderer subroutine destroys the NURBS object and frees any memory used by that
object. Once this gluDeleteNurbsRenderer subroutine is called, the previously defined value for the nobj
parameter cannot be used.

Parameters

nurb Specifies the NURBS object (created with the gluNewNurbsRenderer subroutine) to be destroyed.

430 OpenGL 1.2 Reference Manual



Files

lust/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |gluNewNurbsRenderer] subroutine.

gluDeleteQuadric Subroutine

Purpose
Destroys a quadrics object.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax
void gluDeleteQuadric(GLUquadric* |guad)

Description

The gluDeleteQuadric subroutine destroys the quadrics object and frees any memory used by that object.
Once the gluDeleteQuadric subroutine has been called, the quad parameter cannot be used again.

Parameters

quad Specifies the quadrics object (created with the gluNewQuadric subroutine) to be destroyed.

Files

lusr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function
prototypes for OpenGL.

Related Information
The |quNeruadric| subroutine.

gluDeleteTess Subroutine

Purpose
Destroys a tessellation object.

Library

OpenGL C bindings library: TibGL.a

C Syntax

void gluDeleteTess(GLUtesselatorx |[tess)

Chapter 2. OpenGL Utility (GLU) Library 431



Description

The gluDeleteTess subroutine destroys the tessellation object and frees any memory used by that object.
Once this subroutine has been called, the value previously defined for the tess parameter cannot be used
again.

Parameters

tess Specifies the tessellation object (created with the gluNewTess subroutine) to be destroyed.

Files

/usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information
The [gluBeginPolygon| subroutine, subroutine, |gluTessCallback| subroutine.

gluDisk Subroutine

Purpose
Draws a disk.

Library

OpenGL C bindings Tibrary: 1ibGL.a

C Syntax

void gluDisk(GLquadric [guad),
GLdouble inner,|
GLdouble |outer|,
GLint |slices|,
GLint |loops
Description

The gluDisk subroutine renders a disk on the z=0 plane. The disk has a radius defined by the outer
parameter and contains a concentric circular hole with a radius defined by the inner parameter. If the value
of inneris 0, no hole is generated. The disk is subdivided around the z axis into slices and rings (as
specified by the slices and loops parameters, respectively).

With regard to orientation, the +z side of the disk is considered to be outside. (See the
|g_1lu0uadricOrientation| subroutine for details on specifying quadrics orientation.) If orientation is set to
GLU_OUTSIDE, any normals generated point along the +z axis. Otherwise, they point along the -z axis.

If texturing is turned on with the gluQuadricTexture subroutine, texture coordinates are generated linearly,
consistent with the following table:

XYZ Coordinates (u, v) Texture Coordinates
(outer, 0.0, 0.0) (1.0, 0.5)
(0.0, outer, 0.0) (0.5,1.0)
(-outer, 0.0, 0.0) (0.5, 0.0)
