
OpenGL 1.2 Reference Manual

SR28-5125-01

���

OpenGL 1.2 Reference Manual

SR28-5125-01

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 553.

Second Edition (October 2000)

This edition applies to OpenGL Version 1.2 for AIX and to all subsequent releases of this product until otherwise

indicated in new editions.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . ix

Who Should Use This Book . ix

Highlighting . ix

ISO 9000 . ix

Related Publications . ix

Chapter 1. OpenGL Subroutines . 1

glAccum Subroutine . 6

glActiveTextureARB Subroutine . 8

glAlphaFunc Subroutine . 9

glAreTexturesResident Subroutine . 10

glAreTexturesResidentEXT Subroutine . 11

glArrayElement Subroutine . 13

glArrayElementEXT Subroutine . 14

glBegin or glEnd Subroutine . 15

glBindTexture Subroutine . 16

glBindTextureEXT Subroutine . 18

glBitmap Subroutine . 19

glBlendColor Subroutine . 21

glBlendColorEXT Subroutine . 22

glBlendEquation Subroutine . 23

glBlendEquationEXT Subroutine . 24

glBlendFunc Subroutine . 25

glBlendFuncSeparateEXT Subroutine . 28

glCallList Subroutine . 30

glCallLists Subroutine . 31

glClear Subroutine . 33

glClearAccum Subroutine . 34

glClearColor Subroutine . 35

glClearDepth Subroutine . 36

glClearIndex Subroutine . 37

glClearStencil Subroutine . 38

glClientActiveTextureARB Subroutine . 39

glClipBoundingBoxIBM or glClipBoundingSphereIBM or glClipBoundingVerticesIBM Subroutine 40

glClipPlane Subroutine . 42

glColor Subroutine . 43

glColorMask Subroutine . 46

glColorMaterial Subroutine . 47

glColorNormalVertexSUN Subroutine . 48

glColorPointer Subroutine . 50

glColorPointerEXT Subroutine . 51

glColorPointerListIBM Subroutine . 53

glColorSubTable Subroutine . 55

glColorTable Subroutine . 57

glColorTableParameter Subroutine . 60

glColorVertexSUN Subroutine . 61

glCopyColorSubTable Subroutine . 63

glCopyColorTable Subroutine . 64

glCopyPixels Subroutine . 66

glCopyTexImage1D Subroutine . 69

glCopyTexImage2D Subroutine . 71

glCopyTexSubImage1D Subroutine . 73

glCopyTexSubImage2D Subroutine . 74

© Copyright IBM Corp. 1994, 2002 iii

glCopyTexSubImage3D Subroutine . 76

glCopyTexSubImage3DEXT Subroutine . 78

glCullFace Subroutine . 80

glDeleteLists Subroutine . 81

glDeleteTextures Subroutine . 81

glDeleteTexturesEXT Subroutine . 82

glDepthFunc Subroutine . 83

glDepthMask Subroutine . 85

glDepthRange Subroutine . 85

glDrawArrays Subroutine . 86

glDrawArraysEXT Subroutine . 88

glDrawBuffer Subroutine . 89

glDrawElements Subroutine . 91

glDrawPixels Subroutine . 92

glDrawRangeElements Subroutine . 99

glEdgeFlag Subroutine . 100

glEdgeFlagPointer Subroutine . 101

glEdgeFlagPointerEXT Subroutine . 103

glEdgeFlagPointerListIBM Subroutine . 105

glEnable or glDisable Subroutine . 106

glEnableClientState or glDisableClientState Subroutine 111

glEvalCoord Subroutine . 112

glEvalMesh Subroutine . 114

glEvalPoint Subroutine . 117

glFeedbackBuffer Subroutine . 118

glFinish Subroutine . 120

glFlush Subroutine . 121

glFog Subroutine . 122

glFogCoordEXT Subroutine . 125

glFogCoordPointerEXT Subroutine . 126

glFogCoordPointerListIBM Subroutine . 127

glFrontFace Subroutine . 129

glFrustum Subroutine . 130

glGenLists Subroutine . 132

glGenTextures Subroutine . 133

glGenTexturesEXT Subroutine . 134

glGet Subroutine . 135

glGetClipPlane Subroutine . 157

glGetColorTable Subroutine . 158

glGetColorTableParameter Subroutine . 160

glGetError Subroutine . 162

glGetLight Subroutine . 163

glGetMap Subroutine . 165

glGetMaterial Subroutine . 166

glGetPixelMap Subroutine . 168

glGetPointerv Subroutine . 170

glGetPointervEXT Subroutine . 171

glGetPolygonStipple Subroutine . 172

glGetString Subroutine . 173

glGetTexEnv Subroutine . 174

glGetTexGen Subroutine . 176

glGetTexImage Subroutine . 178

glGetTexLevelParameter Subroutine . 180

glGetTexParameter Subroutine . 182

glHint Subroutine . 184

glIndex Subroutine . 186

iv OpenGL 1.2 Reference Manual

glIndexMask Subroutine . 187

glIndexPointer Subroutine . 188

glIndexPointerEXT Subroutine . 189

glIndexPointerListIBM Subroutine . 191

glInitNames Subroutine . 193

glInterleavedArrays Subroutine . 194

glIsEnabled Subroutine . 195

glIsList Subroutine . 197

glIsTexture Subroutine . 198

glIsTextureEXT Subroutine . 198

glLight Subroutine . 199

glLightModel Subroutine . 202

glLineStipple Subroutine . 205

glLineWidth Subroutine . 206

glListBase Subroutine . 208

glLoadIdentity Subroutine . 208

glLoadMatrix Subroutine . 210

glLoadName Subroutine . 211

glLoadNamedMatrixIBM Subroutine . 212

glLoadTransposeMatrixARB Subroutine . 213

glLockArraysEXT Subroutine . 214

glLogicOp Subroutine . 215

glMap1 Subroutine . 217

glMap2 Subroutine . 221

glMapGrid Subroutine . 225

glMaterial Subroutine . 227

glMatrixMode Subroutine . 229

glMultiDrawArraysEXT Subroutine . 230

glMultiDrawElementsEXT Subroutine . 232

glMultiModeDrawArraysIBM Subroutine . 233

glMultiModeDrawElementsIBM Subroutine . 234

glMultiTexCoordARB Subroutine . 235

glMultMatrix Subroutine . 238

glMultTransposeMatrixARB Subroutine . 239

glNewList or glEndList Subroutine . 240

glNormal Subroutine . 242

glNormalPointer Subroutine . 243

glNormalPointerEXT Subroutine . 245

glNormalPointerListIBM Subroutine . 247

glNormalVertexSUN Subroutine . 249

glOrtho Subroutine . 250

glPassThrough Subroutine . 252

glPixelMap Subroutine . 253

glPixelStore Subroutine . 255

glPixelTransfer Subroutine . 261

glPixelZoom Subroutine . 265

glPointSize Subroutine . 266

glPolygonMode Subroutine . 268

glPolygonOffset Subroutine . 269

glPolygonOffsetEXT Subroutine . 270

glPolygonStipple Subroutine . 271

glPrioritizeTextures Subroutine . 272

glPrioritizeTexturesEXT Subroutine . 273

glPushAttrib or glPopAttrib Subroutine . 275

glPushClientAttrib or glPopClientAttrib Subroutine . 279

glPushMatrix or glPopMatrix Subroutine . 280

Contents v

glPushName or glPopName Subroutine . 281

glRasterPos Subroutine . 282

glReadBuffer Subroutine . 285

glReadPixels Subroutine . 287

glRect Subroutine . 293

glRenderMode Subroutine . 294

glRotate Subroutine . 296

glScale Subroutine . 297

glScissor Subroutine . 299

glSecondaryColorEXT Subroutine . 300

glSecondaryColorPointerEXT Subroutine . 301

glSecondaryColorPointerListIBM Subroutine . 303

glSelectBuffer Subroutine . 305

glShadeModel Subroutine . 307

glStencilFunc Subroutine . 308

glStencilMask Subroutine . 310

glStencilOp Subroutine . 311

glTexCoord Subroutine . 313

glTexCoordColorNormalVertexSUN Subroutine . 315

glTexCoordColorVertexSUN Subroutine . 317

glTexCoordNormalVertexSUN Subroutine . 318

glTexCoordPointer Subroutine . 320

glTexCoordPointerEXT Subroutine . 321

glTexCoordPointerListIBM Subroutine . 323

glTexCoordVertexSUN Subroutine . 325

glTexEnv Subroutine . 326

glTexGen Subroutine . 332

glTexImage1D Subroutine . 335

glTexImage2D Subroutine . 341

glTexImage3D Subroutine . 347

glTexImage3DEXT Subroutine . 353

glTexParameter Subroutine . 358

glTexSubImage1D Subroutine . 361

glTexSubImage1DEXT Subroutine . 367

glTexSubImage2D Subroutine . 369

glTexSubImage2DEXT Subroutine . 375

glTexSubImage3D Subroutine . 377

glTexSubImage3DEXT Subroutine . 383

glTranslate Subroutine . 385

glUnLockArraysEXT Subroutine . 386

glVertex Subroutine . 387

glVertexPointer Subroutine . 389

glVertexPointerEXT Subroutine . 391

glVertexPointerListIBM Subroutine . 393

glViewport Subroutine . 394

glVisibilityBufferIBM Subroutine . 395

glVisibilityThresholdIBM Subroutine . 397

Chapter 2. OpenGL Utility (GLU) Library . 399

gluBeginCurve or gluEndCurve Subroutine . 400

gluBeginPolygon or gluEndPolygon Subroutine . 401

gluBeginSurface or gluEndSurface Subroutine . 402

gluBeginTrim or gluEndTrim Subroutine . 403

gluBuild1DMipmapLevels Subroutine . 405

gluBuild1DMipmaps Subroutine . 408

gluBuild2DMipmapLevels Subroutine . 412

vi OpenGL 1.2 Reference Manual

gluBuild2DMipmaps Subroutine . 416

gluBuild3DMipmapLevels Subroutine . 420

gluBuild3DMipmaps Subroutine . 424

gluCheckExtension Subroutine . 428

gluCylinder Subroutine . 429

gluDeleteNurbsRenderer Subroutine . 430

gluDeleteQuadric Subroutine . 431

gluDeleteTess Subroutine . 431

gluDisk Subroutine . 432

gluErrorString Subroutine . 433

gluGetNurbsProperty Subroutine . 434

gluGetString Subroutine . 435

gluGetTessProperty . 436

gluLoadSamplingMatrices Subroutine . 436

gluLookAt Subroutine . 437

gluNewNurbsRenderer Subroutine . 438

gluNewQuadric Subroutine . 439

gluNewTess Subroutine . 439

gluNextContour Subroutine . 440

gluNurbsCallback Subroutine . 441

gluNurbsCallbackData Subroutine . 444

gluNurbsCallbackDataEXT Subroutine . 445

gluNurbsCurve Subroutine . 446

gluNurbsProperty Subroutine . 447

gluNurbsSurface Subroutine . 451

gluOrtho2D Subroutine . 452

gluPartialDisk Subroutine . 453

gluPerspective Subroutine . 454

gluPickMatrix Subroutine . 455

gluProject Subroutine . 457

gluPwlCurve Subroutine . 458

gluQuadricCallback Subroutine . 459

gluQuadricDrawStyle Subroutine . 459

gluQuadricNormals Subroutine . 460

gluQuadricOrientation Subroutine . 461

gluQuadricTexture Subroutine . 462

gluScaleImage Subroutine . 463

gluSphere Subroutine . 465

gluTessBeginContour, gluTessEndContour . 466

gluTessBeginPolygon Subroutine . 467

gluTessCallback Subroutine . 468

gluTessEndPolygon Subroutine . 472

gluTessNormal Subroutine . 473

gluTessProperty Subroutine . 474

gluTessVertex Subroutine . 476

gluUnProject Subroutine . 477

gluUnProject4 Subroutine . 478

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 481

Related Information . 481

How to Render into an X Drawable . 481

OpenGL in the AIXwindows environment (GLX) Subroutines 484

glXChooseFBConfig Subroutine . 486

glXChooseVisual Subroutine . 489

glXCopyContext Subroutine . 493

glXCreateContext Subroutine . 494

Contents vii

glXCreateGLXPixmap Subroutine . 496

glXCreateNewContext Subroutine . 497

glXCreatePbuffer Subroutine . 499

glXCreatePixmap Subroutine . 501

glXCreateWindow Subroutine . 502

glXDestroyContext Subroutine . 503

glXDestroyGLXPixmap Subroutine . 504

glXDestroyPbuffer Subroutine . 505

glXDestroyPixmap Subroutine . 505

glXDestroyWindow Subroutine . 506

glXFreeContextEXT Subroutine . 507

glXGetClientString Subroutine . 508

glXGetConfig Subroutine . 509

glXGetContextIDEXT Subroutine . 512

glXGetCurrentContext Subroutine . 513

glXGetCurrentDisplay Subroutine . 514

glXGetCurrentDrawable Subroutine . 514

glXGetCurrentReadDrawable Subroutine . 515

glXGetFBConfigAttrib Subroutine . 516

glXGetFBConfigs Subroutine . 519

glXGetProcAddressARB Subroutine . 520

glXGetSelectedEvent Subroutine . 522

glXGetVisualFromFBConfig Subroutine . 522

glXImportContextEXT Subroutine . 523

glXIsDirect Subroutine . 524

glXMakeContextCurrent Subroutine . 525

glXMakeCurrent Subroutine . 527

glXQueryContext Subroutine . 529

glXQueryContextInfoEXT Subroutine . 530

glXQueryDrawable Subroutine . 531

glXQueryExtension Subroutine . 532

glXQueryExtensionsString Subroutine . 533

glXQueryServerString Subroutine . 533

glXQueryVersion Subroutine . 534

glXSelectEvent Subroutine . 535

glXSwapBuffers Subroutine . 537

glXUseXFont Subroutine . 538

glXWaitGL Subroutine . 540

glXWaitX Subroutine . 540

Chapter 4. OpenGL Drawing Widgets and Related Functions 543

GLwCreateMDrawingArea Function . 543

GLwDrawingArea or GLwMDrawingArea Widget . 544

GLwDrawingAreaMakeCurrent Function . 551

GLwDrawingAreaSwapBuffers Function . 552

Appendix. Notices . 553

Trademarks . 554

Index . 555

viii OpenGL 1.2 Reference Manual

About This Book

OpenGL Programmer’s Reference provides reference information on the OpenGL application programming

interface (API).

This publication documents the functional interface of:

v OpenGL 1.2 (first introduced in AIX 4.3.2)

v GLX 1.3 (first introduced in AIX 4.3.2)

v GLU 1.3 (first introduced in AIX 4.3.3)

It also documents several OpenGL extensions supported on this operating system.

Applications/users should query OpenGL to determine if the extension is supported

(glXQueryExtensionsString, glGetString, and gluGetString) prior to making extension specific OpenGL,

GLX, or GLU calls.

Further information is also avaiable in /usr/lpp/OpenGL/README on your installed operating system.

Who Should Use This Book

This book is intended for programmers with C programming knowledge who want to develop 3D

applications.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files,

structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects

such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to

be supplied by the user.

Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of

portions of program code similar to what you might write

as a programmer, messages from the system, or

information you should actually type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to OpenGL Programmer’s Reference:

v OpenGL 2.1 Reference Manual

v AIX Version 6.1 General Programming Concepts: Writing and Debugging Programs

© Copyright IBM Corp. 1994, 2002 ix

x OpenGL 1.2 Reference Manual

Chapter 1. OpenGL Subroutines

Following is a list of the basic OpenGL subroutines and the purpose of each.

 A

glAccum Operates on the accumulation buffer.

glActiveTextureARB Specifies which texture unit is active.

glAlphaFunc Specifies the alpha test function.

glAreTexturesResident Determines if textures are loaded in texture memory.

glAreTexturesResidentEXT Determines if textures are loaded in texture memory.

glArrayElement Renders a vertex using the specified vertex array

element.

glArrayElementEXT Renders a vertex using the specified vertex array

element.

B

glBegin or glEnd Delimits the vertices of a primitive or group of like

primitives.

glBindTexture Binds a named texture to a texturing target.

glBindTextureEXT Binds a named texture to a texturing target.

glBitmap Draws a bitmap.

glBlendColor Sets the blend color.

glBlendColorEXT Sets the blend color.

glBlendEquation Specifies the RGB color blend equation.

glBlendEquationEXT Specifies the RGB color blend equation.

glBlendFunc Specifies pixel arithmetic.

glBlendFuncSeparateEXT Specifies separate RGB and Alpha blend factors.

C

glCallList Executes a display list.

glCallLists Executes a list of display lists.

glClear Clears buffers within the viewport.

glClearAccum Specifies clear values for the accumulation buffer.

glClearColor Specifies clear values for the color buffers.

glClearDepth Specifies the clear value for the depth buffer.

glClearIndex Specifies the clear value for the color index buffers.

glClearStencil Specifies the clear value for the stencil buffer.

glClientActiveTextureARB Specifies which texture unit is active.

glClipBoundingBoxIBM or glClipBoundingSphereIBM or

glClipBoundingVerticesIBM

Determines whether the specified object is trivially

accepted, trivially rejected, or clipped by the current set

of clipping planes.

glClipPlane Specifies a plane against which all geometry is clipped.

glColor Sets the current color.

glColorMask Enables and disables the writing of frame buffer color

components.

glColorMaterial Causes a material color to track the current color.

glColorNormalVertexSUN Specifies a color, a normal and a vertex in one call.

glColorPointer Defines an array of colors.

glColorPointerEXT Defines an array of colors.

glColorPointerListIBM Defines a list of color arrays.

glColorSubTable Defines a contiguous subset of a color lookup table.

glColorTable Defines a color lookup table.

glColorTableParameter Specifies attributes to be used when loading a color

table.

glColorVertexSUN Specifies a color and a vertex in one call.

© Copyright IBM Corp. 1994, 2002 1

glCopyColorSubTable Loads a subset of a color lookup table from the current

GL_READ_BUFFER.

glCopyColorTable Load a color lookup table from the current

GL_READ_BUFFER.

glCopyPixels Copies pixels in the frame buffer.

glCopyTexImage1D Defines a one-dimensional (1D) texture image.

glCopyTexImage2D Defines a two-dimensional (2D) texture image.

glCopyTexSubImage1D Copies a one-dimensional (1D) texture subimage.

glCopyTexSubImage2D Copies a two-dimensional (2D) texture subimage.

glCopyTexSubImage3D Copies a three-dimensional (3D) texture subimage.

glCopyTexSubImage3DEXT Copies a three-dimensional (3D) texture subimage.

glCullFace Specifies whether frontfacing or backfacing facets may

be culled.

D

glDeleteLists Deletes a contiguous group of display lists.

glDeleteTextures Deletes named textures.

glDeleteTexturesEXT Deletes named textures.

glDepthFunc Specifies the function used for depth buffer

comparisons.

glDepthMask Enables or disables writing into the depth buffer.

glDepthRange Specifies the mapping of z values from normalized

device coordinates to window coordinates.

glDisable Tests whether a capability is enabled.

glDisableClientState Disables an array.

glDrawArrays Renders primitives from array data.

glDrawArraysEXT Renders primitives from array data.

glDrawBuffer Specifies which color buffers are to be used for drawing.

glDrawElements Renders primitives from array data.

glDrawPixels Writes a block of pixels to the frame buffer.

glDrawRangeElements Renders primitives from array data.

E

glEdgeFlag Marks edges as either boundary or nonboundary.

glEdgeFlagPointer Defines an array of edge flags.

glEdgeFlagPointerEXT Defines an array of edge flags.

glEdgeFlagPointerListIBM Defines a list of edge flag arrays.

glEnable or glDisable Tests whether a capability is enabled.

glEnableClientState orglDisableClientState Enables or disables an array.

glEnd Delimits the vertices of a primitive or group of like

primitives.

glEvalCoord Evaluates enabled one-dimensional (1D) and

two-dimensional (2D) maps.

glEvalMesh Computes a one-dimensional (1D) or two-dimensional

(2D) grid of points or lines.

glEvalPoint Generates and evaluates a single point in a mesh.

F

glFeedbackBuffer Controls the feedback mode.

glFinish Blocks until all GL execution is complete.

glFlush Forces the running of GL subroutines in finite time.

glFog Specifies fog parameters.

glFogCoordEXT Specifies a Fog Coordinate.

glFogCoordPointerEXT Specifies an array of fog coordinates.

glFogCoordPointerListIBM Defines a list of arrays of fog coordinates.

glFrontFace Defines frontfacing and backfacing polygons.

2 OpenGL 1.2 Reference Manual

glFrustum Multiplies the current matrix by a perspective matrix.

G

glGenLists Generates a contiguous set of empty display lists.

glGenTextures Generate texture names.

glGenTexturesEXT Generates texture names.

glGet Returns the value or values of a selected parameter.

glGetClipPlane Returns the coefficients of the clipping plane.

glGetColorTable Returns a color lookup table to the user.

glGetColorTableParameter Returns attributes used when loading a color table.

glGetError Returns error information.

glGetLight Returns light source parameter values.

glGetMap Returns evaluator parameters.

glGetMaterial Returns material parameters.

glGetPixelMap Returns the specified pixel map.

glGetPointerv Returns the address of the specified pointer.

glGetPointervEXT Returns the address of a vertex data array.

glGetPolygonStipple Returns the polygonstipple pattern.

glGetString Returns a string describing the current GL connection.

glGetTexEnv Returns texture environment parameters.

glGetTexGen Returns texture coordinate generation parameters.

glGetTexImage Returns a texture image.

glGetTexLevelParameter Returns texture parameter levels for a specific level of

detail.

glGetTexParameter Returns texture parameter values.

H

glHint Specifies implementation-specific hints.

I

glIndex Sets the current color index.

glIndexMask Controls the writing of individual bits in the color index

buffers.

glIndexPointer Defines an array of color indexes.

glIndexPointerEXT Defines an array of color indexes.

glIndexPointerListIBM Defines a list of color index arrays.

glInitNames Initializes the name stack.

glInterleavedArrays Simultaneously specifies and enables several

interleaved arrays.

glIsEnabled Tests whether a capability is enabled.

glIsList Tests for display list existence.

glIsTexture Determines if a name corresponds to a texture.

glIsTextureEXT Determines if a name corresponds to a texture.

L

glLight Sets light source parameters.

glLightModel Sets the lighting model parameters.

glLineStipple Specifies the line stipple pattern.

glLineWidth Specifies the width of rasterized lines.

glListBase Sets the display-list base for the glCallLists subroutine.

glLoadIdentity Replaces the current matrix with the identity matrix.

glLoadMatrix Replaces the current matrix with an arbitrary matrix.

glLoadName Loads a name onto the name stack.

glLoadNamedMatrixIBM Loads a pre-defined matrix into the top of the named

matrix stack.

Chapter 1. OpenGL Subroutines 3

glLoadTransposeMatrixARB Loads a matrix in row-major order, rather than

column-major order.

glLockArraysEXT Locks the currently enabled vertex arrays.

glLogicOp Specifies a logical pixel operation for color index

rendering.

M

glMap1 Defines a one-dimensional (1D) evaluator.

glMap2 Defines a two-dimensional (2D) evaluator.

glMapGrid Defines a one-dimensional (1D) or two-dimensional (2D)

mesh.

glMaterial Specifies material parameters for the lighting model.

glMatrixMode Specifies the current matrix.

glMultiDrawArraysEXT Renders multiple primitives from array data.

glMultiDrawElementsEXT Renders multiple primitives from array data.

glMultiModeDrawArraysIBM Renders primitives of multiple primitive types from array

data.

glMultiModeDrawElementsIBM Renders primitives of multiple primitive types from array

data.

glMultiTexCoordARB Sets the current texture coordinates.

glMultMatrix Multiplies the current matrix by an arbitrary matrix.

glMultTransposeMatrixARB Multiplies the current matrix by a matrix specified in

row-major order, rather than column-major order.

N

glNewList Creates or replaces a display list.

glNormal Sets the current normal vector.

glNormalPointer Defines an array of normals.

glNormalPointerEXT Defines an array of normals.

glNormalPointerListIBM Defines a list of normal arrays.

glNormalVertexSUN Specifies a normal and a vertex in one call.

O

glOrtho Multiplies the current matrix by an orthographic matrix.

P

glPassThrough Places a marker in the feedback buffer.

glPixelMap Sets up pixel transfer maps.

glPixelStore Sets pixel storage modes.

glPixelTransfer Sets pixel transfer modes.

glPixelZoom Specifies the pixel zoom factors.

glPointSize Specifies the diameter of rasterized points.

glPolygonMode Selects a polygon rasterization mode.

glPolygonOffset Sets the scale and bias used to calculate depth values.

glPolygonOffsetEXT Sets the scale and bias used to calculate z values.

glPolygonStipple Sets the polygon stippling pattern.

glPrioritizeTextures Sets texture residence priority.

glPrioritizeTexturesEXT Sets texture residence priority.

glPushAttrib or glPopAttrib Pushes and pops the attribute stack.

glPushClientAttrib or glPopClientAttrib Pushes and pops the attribute stack.

glPushMatrix or glPopMatrix Pushes and pops the current matrix stack.

glPushName or glPopName Pushes and pops the name stack.

R

glRasterPos Specifies the raster position for pixel operations.

glReadBuffer Selects a color buffer source for pixels.

4 OpenGL 1.2 Reference Manual

glReadPixels Reads a block of pixels from the frame buffer.

glRect Draws a rectangle.

glRenderMode Sets rasterization mode.

glRotate Multiplies the current matrix by a rotation matrix.

S

glScale Multiplies the current matrix by a general scaling matrix.

glScissor Defines the scissor box.

glSecondaryColorEXT Specifies an RGB color used by the Color Sum stage.

glSecondaryColorPointerEXT Specifies an array of secondary colors.

glSecondaryColorPointerListIBM Defines a list of arrays of secondary colors.

glSelectBuffer Establishes a buffer for selection mode values.

glShadeModel Selects flat or smooth shading.

glStencilFunc Sets function and reference values for stencil testing.

glStencilMask Controls the writing of individual bits in the stencil

planes.

glStencilOp Sets stencil test actions.

T

glTexCoord Sets the current texture coordinates.

glTexCoordColorNormalVertexSUN Specifies a texture coordinate, a color, a normal and a

vertex in one call.

glTexCoordColorVertexSUN Specifies a texture coordinate, a color, and a vertex in

one call.

glTexCoordNormalVertexSUN Specifies a texture coordinate, a normal and a vertex in

one call.

glTexCoordPointer Defines an array of texture coordinates.

glTexCoordPointerEXT Defines an array of texture coordinates.

glTexCoordPointerListIBM Defines a list of texture coordinate arrays.

glTexCoordVertexSUN Specifies a texture coordinate and a vertex in one call.

glTexEnv Sets texture environment parameters.

glTexGen Controls the generation of texture coordinates.

glTexImage1D Specifies a one-dimensional (1D) texture image.

glTexImage2D Specifies a two-dimensional (2D) texture image.

glTexImage3D Specifies a three-dimensional (3D) texture image.

glTexImage3DEXT Specifies a three-dimensional (3D) texture image.

glTexParameter Sets texture parameters.

glTexSubImage1D Specifies a one-dimensional (1D) texture subimage.

glTexSubImage1DEXT Specifies a one-dimensional (1D) texture subimage.

glTexSubImage2D Specifies a two-dimensional (2D) texture subimage.

glTexSubImage2DEXT Specifies a two-dimensional (2D) texture subimage.

glTexSubImage3D Specifies a three-dimensional (3D) texture subimage.

glTexSubImage3DEXT Specifies a three-dimensional (3D) texture subimage.

glTranslate Multiplies the current matrix by a translation matrix.

U

glUnLockArraysEXT Unlocks the currently enabled vertex arrays.

V

glVertex Specifies a vertex.

glVertexPointer Defines an array of vertex data.

glVertexPointerEXT Defines an array of vertex data.

glVertexPointerListIBM Defines a list of vertex arrays.

glViewport Sets the viewport.

glVisibilityBufferIBM Specifies the array in which visibility calculation results

are stored.

Chapter 1. OpenGL Subroutines 5

glVisibilityThresholdIBM Specifies the number of visible fragments rendered

before a visibility hit is registered.

glAccum Subroutine

Purpose

Operates on the accumulation buffer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glAccum(GLenum Operation,

 GLfloat Value)

Description

The accumulation buffer is an extended-range color buffer. Images are not rendered into it. Rather, images

rendered into one of the color buffers are added to the contents of the accumulation buffer after rendering.

Effects such as antialiasing (of points, lines, and polygons), motion-blur, and depth of field can be created

by accumulating images generated with different transformation matrices.

Each pixel in the accumulation buffer consists of red, green, blue, and alpha (RGBA) values. The number

of bits per component in the accumulation buffer depends on the implementation. You can examine this

number by calling glGetInteger four times, with arguments GL_ACCUM_RED_BITS,

GL_ACCUM_GREEN_BITS, GL_ACCUM_BLUE_BITS, and GL_ACCUM_ALPHA_BITS, respectively.

(See the glGet subroutine for more information on glGetInteger.) Regardless of the number of bits per

component, however, the range of values stored by each component is [-1,1]. The accumulation buffer

pixels are mapped 1-to-1 with frame buffer pixels.

The glAccum subroutine operates on the accumulation buffer. The first argument, Operation, is a symbolic

constant that selects an accumulation buffer operation. The second argument, Value, is a floating-point

value to be used in that operation. Five operations are specified: GL_LOAD, GL_ACCUM, GL_ADD,

GL_MULT, and GL_RETURN.

All accumulation buffer operations are limited to the area of the current scissor box and are applied

identically to the RGBA components of each pixel. The contents of an accumulation buffer pixel

component are undefined if the glAccum operation results in a value outside the range [-1,1].

The operations are:

 GL_ACCUM Obtains RGBA values from the buffer currently selected for reading. (See glReadBuffer.) Each

component value is divided by 2n-1, where n is the number of bits allocated to each color

component in the currently selected buffer. The result is a floating-point value in the range [0,1],

which is multiplied by value and added to the corresponding pixel component in the accumulation

buffer, thereby updating the accumulation buffer.

GL_LOAD Functions similarly to GL_ACCUM, except that the current value in the accumulation buffer is not

used in the calculation of the new value. That is, the RGBA values from the currently selected

buffer are divided by 2n-1, multiplied by Value, and then stored in the corresponding accumulation

buffer cell, overwriting the current value.

GL_ADD Adds Value to each R, G, B, and A in the accumulation buffer.

GL_MULT Multiplies each RGBA in the accumulation buffer by Value and returns the scaled component to its

corresponding accumulation buffer location.

6 OpenGL 1.2 Reference Manual

GL_RETURN Transfers accumulation buffer values to the color buffer or buffers currently selected for writing.

Each RGBA component is multiplied by Value, then multiplied by 2n-1, clamped to the range [0,

2n-1] and stored in the corresponding display buffer cell. The only fragment operations that are

applied to this transfer are pixel ownership, scissor, dithering, and color writemasks.

The accumulation buffer is cleared by specifying R, G, B, A values to set it to with the glClearAccum

directive, and then issuing a glClear subroutine with the accumulation buffer enabled.

Parameters

 Operation Specifies the accumulation buffer operation. Symbolic constants GL_LOAD, GL_ACCUM,

GL_MULT, GL_ADD, and GL_RETURN are accepted.

Value Specifies a floating-point value used in the accumulation buffer operation. The Operation parameter

determines how Value is used.

Notes

All glAccum operations update only those pixels within the current scissor box.

Errors

 GL_INVALID_ENUM Operation is set to an unaccepted value.

GL_INVALID_OPERATION There is no accumulation buffer.

GL_INVALID_OPERATION The glAccum subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glAccum subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_ACCUM_RED_BITS

glGet with argument GL_ACCUM_GREEN_BITS

glGet with argument GL_ACCUM_BLUE_BITS

glGet with argument GL_ACCUM_ALPHA_BITS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glBlendFunc subroutine, glClear subroutine, glClearAccum

subroutine, glCopyPixels subroutine, glLogicOp subroutine, glPixelStore subroutine, glPixelTransfer

subroutine, glReadBuffer subroutine, glReadPixels subroutine, glScissor subroutine, glStencilOp

subroutine.

Chapter 1. OpenGL Subroutines 7

glActiveTextureARB Subroutine

Purpose

Specify which texture unit is active.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glActiveTextureARB(GLenum texture)

Description

glActiveTextureARB selects which texture unit subsequent texture state calls will affect. The number of

texture units an implementation supports is implementation dependent, but must be at least two. The

texture parameter must be one of GL_TEXTUREi_ARB, where 0 <= i <

GL_MAX_TEXTURE_UNITS_ARB. The initial value is GL_TEXTURE0_ARB.

Parameters

 texture specifies which texture unit to make active.

Notes

Vertex arrays are client-side GL resources, which are selected by the glClientActiveTextureARB routine.

If the GL_ARB_multitexture extension is NOT present, then the number of texture units supported by the

implementation is one, not two, as described above.

The following OpenGL subroutines will be routed to different texture units based on this call:

v glEnable (GL_TEXTURE_GEN_*)

v glDisable (GL_TEXTURE_GEN_*)

v glTexGen*

v glTexEnv*

v glTexImage*

v glTexSubImage*

v glCopyTexImage*

v glCopyTexSubImage*

v glBindTexture

Errors

 GL_INVALID_OPERATION is generated if texture is not one of the accepted values.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

8 OpenGL 1.2 Reference Manual

Related Information

The glEnableClientState or glDisableClientState subroutine, the glMultiTexCoordARB subroutine, the

glTexCoordPointer.

glAlphaFunc Subroutine

Purpose

Specifies the alpha test function.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glAlphaFunc(GLenum Function,

 GLclampf Reference)

Description

The alpha test discards fragments conditional on the outcome of a comparison between the incoming

fragment’s alpha value and a constant reference value. The glAlphaFunc subroutine specifies the

reference and comparison function. The comparison is performed only if alpha testing is enabled. (See

glEnable or glDisable of GL_ALPHA_TEST.)

The Function and Reference parameters specify the conditions under which the pixel is drawn. The

incoming alpha value is compared to the Reference parameter using the function specified by Function. If

the comparison passes, the incoming fragment is drawn, conditional on subsequent stencil and

depth-buffer tests. If the comparison fails, no change is made to the frame buffer at that pixel location.

The comparison functions are:

 GL_NEVER Never passes.

GL_LESS Passes if the incoming alpha value is less than the reference value.

GL_EQUAL Passes if the incoming alpha value is equal to the reference value.

GL_LEQUAL Passes if the incoming alpha value is less than or equal to the reference value.

GL_GREATER Passes if the incoming alpha value is greater than the reference value.

GL_NOTEQUAL Passes if the incoming alpha value is not equal to the reference value.

GL_GEQUAL Passes if the incoming alpha value is greater than or equal to the reference value.

GL_ALWAYS Always passes.

The glAlphaFunc subroutine operates on all pixel write operations, including those resulting from the scan

conversion of points, lines, polygons, and bitmaps, and those resulting from pixel draw and copy

operations. The glAlphaFunc subroutine does not affect screen clear operations.

Parameters

 Function Specifies the alpha comparison function. Symbolic constants GL_NEVER, GL_LESS, GL_EQUAL,

GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS are accepted.

The default function is GL_ALWAYS.

Reference Specifies the reference value to which incoming alpha values are compared. This value is clamped

to the range 0 (zero) through 1 (one), where 0 represents the lowest possible alpha value, and 1

the highest possible value. The default reference is 0.

Chapter 1. OpenGL Subroutines 9

Notes

Alpha testing is done only in RGBA mode.

Errors

 GL_INVALID_ENUM Function is set to an unaccepted value.

GL_INVALID_OPERATION The glAlphaFunc subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glAlphaFunc subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_ALPHA_TEST_FUNC

glGet with argument GL_ALPHA_TEST_REF

glIsEnabled with argument GL_ALPHA_TEST.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glBlendFunc subroutine, glClear subroutine, glDepthfunc subroutine,

glEnable or glDisable subroutine, glStencilFunc subroutine.

glAreTexturesResident Subroutine

Purpose

Determines if textures are loaded in texture memory.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLboolean glAreTexturesResident(GLsizei n,

 const GLuint * textures,

 GLboolean * residences)

Description

On machines with a limited amount of texture memory, OpenGL establishes a “working set” of textures that

are resident in texture memory. These textures may be bound to a texture target much more efficiently

than textures that are not resident.

The glAreTexturesResident subroutine queries the texture residence status of the n textures named by

the elements of textures. If all the named textures are resident, glAreTexturesResident returns GL_TRUE

and the contents of residences are undisturbed. If not all the named textures are resident,

10 OpenGL 1.2 Reference Manual

glAreTexturesResident returns GL_FALSE and detailed status is returned in the n elements of

residences. If an element of residences is GL_TRUE, then the texture named by the corresponding

element of textures is resident.

The residence status of a single bound texture may also be queried by calling glGetTexParameter with

the target argument set to the target to which the texture is bound, and the parameter name argument set

to GL_TEXTURE_RESIDENT. This is the only way that the residence status of a default texture can be

queried.

The glAreTexturesResident subroutine is not included in display lists.

Parameters

 n Specifies the number of textures to be queried.

textures Specifies an array containing the names of the textures to be queried.

residences Specifies an array in which the texture residence status is returned. The residence status of a

texture named by an element of textures is returned in the corresponding element of residences.

Notes

The glAreTexturesResident subroutine is available only if the GL version is 1.1 or greater.

The glAreTexturesResident subroutine returns the residency status of the textures at the time of

invocation. It does not guarantee that the textures will remain resident at any other time.

If textures live in virtual memory (there is no texture memory) they are considered always resident.

Errors

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_VALUE is generated if any element in textures is zero or does not name a texture. In that

case, the function returns GL_FALSE and the contents of residences is indeterminate.

GL_INVALID_OPERATION is generated if glAreTexturesResident is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter with parameter name GL_TEXTURE_RESIDENT retrieves the residence status of a

currently-bound texture.

Related Information

The glBindTexture subroutine, glPrioritizeTextures subroutine, glTexImage1D subroutine,

glTexImage2D subroutine, glTexParameter subroutine.

glAreTexturesResidentEXT Subroutine

Purpose

Renders a vertex using the specified vertex array element.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 11

C Syntax

GLboolean glAreTexturesResidentEXT(GLsizei n,

 const GLuint * textures,

 GLboolean * residences)

Description

On machines with a limited amount of texture memory, OpenGL establishes a “working set” of textures that

are resident in texture memory. These textures may be bound to a texture target much more efficiently

than textures that are not resident.

The glAreTexturesResidentEXT subroutine queries the texture residence status of the n textures named

by the elements of textures. If all the named textures are resident, glAreTexturesResidentEXT returns

GL_TRUE and the contents of residences are undisturbed. If not all the named textures are resident,

glAreTexturesResidentEXT returns GL_FALSE and detailed status is returned in the n elements of

residences. If an element of residences is GL_TRUE, then the texture named by the corresponding

element of textures is resident.

The residence status of a single bound texture may also be queried by calling glGetTexParameter with

the target argument set to the target to which the texture is bound, and the parameter name argument set

to GL_TEXTURE_RESIDENT_EXT. This is the only way that the residence status of a default texture can

be queried.

The glAreTexturesResidentEXT subroutine is not included in display lists.

Parameters

 n Specifies the number of textures to be queried.

textures Specifies an array containing the names of the textures to be queried.

residences Specifies an array in which the texture residence status is returned. The residence status of a

texture named by an element of textures is returned in the corresponding element of residences.

Notes

The glAreTexturesResidentEXT subroutine is part of the EXT_texture_object extension, not part of the

core GL command set. If GL_EXT_texture_object is included in the string returned by glGetString (when

called with argument GL_EXTENSIONS), extension EXT_texture_object is supported by the connection.

Errors

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_VALUE is generated if any element in textures is zero or does not name a texture.

GL_INVALID_OPERATION is generated if glAreTexturesResidentEXT is executed between the

execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter with parameter name GL_TEXTURE_RESIDENT_EXT retrieves the residence status

of a currently-bound texture.

Files

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

12 OpenGL 1.2 Reference Manual

Related Information

The glBindTextureEXT subroutine, glPrioritizeTexturesEXT subroutine, glTexImage1D subroutine,

glTexImage2D subroutine, glTexParameter subroutine.

glArrayElement Subroutine

Purpose

Renders a vertex using the specified vertex array element.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glArrayElement(GLint i)

Description

The glArrayElement commands are used within glBegin/glEnd pairs to specify vertex and attribute data

for point, line, and polygon primitives. If GL_VERTEX_ARRAY is enabled when glArrayElement is called,

a single vertex is drawn, using vertex and attribute data taken from location i of the enabled arrays. If

GL_VERTEX_ARRAY is not enabled, no drawing occurs but the attributes correspoinding to the enabled

arrays are modified.

Use glArrayElement to construct primitives by indexing vertex data, rather than by streaming through

arrays of data in first-to-last order. Because each call specifies only a single vertex, it is possible to

explicitly specify per- primitive attributes, such as a single normal per individual triangle.

Changes made to array data between the execution of glBegin and the corresponding execution of glEnd

may affect calls to glArrayElement that are made within the same glBegin/glEnd period in non-sequential

ways. That is, a call to glArrayElement that precedes a change to array data may access the changed

data, and a call that follows a change to array data may access original data.

Parameters

 i Specifies an index into the enabled vertex data arrays.

Notes

The glArrayElement subroutine is available only if the GL version is 1.1 or greater.

The glArrayElement subroutine is included in display lists. If glArrayElement is entered into a display list,

the necessary array data (determined by the array pointers and enables) is also entered into the display

list. Because the array pointers and enables are client side state, their values affect display lists when the

lists are created, not when the lists are executed.

Related Information

The glClientActiveTextureARB subroutine, glColorPointer subroutine, glDrawArrays subroutine,

glEdgeFlagPointer subroutine, glGetPointerv subroutine, glIndexPointer subroutine,

glInterleavedArrays subroutine, glNormalPointer subroutine, glTexCoordPointer subroutine,

glVertexPointer subroutine.

Chapter 1. OpenGL Subroutines 13

glArrayElementEXT Subroutine

Purpose

Specifies the array elements used to render a vertex.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glArrayElementEXT(GLint i)

Description

The glArrayElementEXT commands are used within glBegin/glEnd pairs to specify vertex and attribute

data for point, line and polygon primitives. When glArrayElementEXT is called, a single vertex is drawn,

using vertex and attribute data taken from location i of the enabled arrays.

Use glArrayElementEXT to construct primitives by indexing vertex data, rather than by streaming through

arrays of data in first-to-last order. Because each call specifies only a single vertex, it is possible to

explicitly specify perprimitive attributes, such as a single normal per individual triangle.

Parameters

 i Specifies an index in the enabled arrays.

Notes

The glArrayElementEXT subroutine may be included in display lists. If glArrayElementEXT is entered

into a display list, the necessary array data (determined by the array pointers and enables) is also entered

into the display list. Because the array pointers and enables are client side state, their values affect display

lists when the lists are created, not when the lists are executed.

Static array data may be read and cached by the implementation at any time. If static array elements are

modified and the arrays are not respecified, the results of any subsequent calls to glArrayElementEXT

are undefined.

The glArrayElementEXT subroutine executes even if GL_VERTEX_ARRAY_EXT is not enabled. No

drawing occurs in this case, but the attributes corresponding to enabled arrays are modified.

Although it is not an error to respecify an array between the execution of glBegin and the corresponding

execution of glEnd, the result of such respecification is undefined.

The glArrayElementEXT subroutine is part of the _extname(EXT_vertex_array) extension, not part of the

core GL command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString,

when called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

14 OpenGL 1.2 Reference Manual

Related Information

The glClientActiveTextureARB subroutine, glColorPointerEXT subroutine, glDrawArraysEXT

subroutine, glEdgeFlagPointerEXT subroutine, glGetPointervEXT subroutine, glIndexPointerEXT

subroutine, glInterleavedArrays subrou glNormalPointerEXT subroutine, glTexCoordPointerEXT

subroutine, glVertexPointerEXT subroutine.

glBegin or glEnd Subroutine

Purpose

Delimits the vertices of a primitive or group of like primitives.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glBegin(GLenum mode)

void glEnd(void)

Description

The glBegin and glEnd subroutines delimit the vertices that define a primitive or group of like primitives.

The glBegin subroutine accepts a single argument that specifies which of 10 ways the vertices will be

interpreted. Taking n as an integer count starting at 1 (one), and N as the total number of vertices

specified, the interpretations are:

 GL_POINTS Treats each vertex as a single point. Vertex n defines point n. N points are drawn.

GL_LINES Treats each pair of vertices as an independent line segment. Vertices 2n-1 and 2n

define line n. N/2 lines are drawn.

GL_LINE_STRIP Draws a connected group of line segments from the first vertex to the last. Vertices

n and n+1 define line n. N-1 lines are drawn.

GL_LINE_LOOP Draws a connected group of line segments from the first vertex to the last, then

back to the first. Vertices n and n+1 define line n. The last line, however, is defined

by vertices N and 1. N lines are drawn.

GL_TRIANGLES Treats each triplet of vertices as an independent triangle. Vertices 3n-2, 3n-1, and

3n define triangle n. N/3 triangles are drawn.

GL_TRIANGLE_STRIP Draws a connected group of triangles. One triangle is defined for each vertex

presented after the first two vertices. For odd n, vertices n, n+1, and n+2 define

triangle n. For even n, vertices n+1, n, and n+2 define triangle n. N-2 triangles are

drawn.

GL_TRIANGLE_FAN Draws a connected group of triangles. One triangle is defined for each vertex

presented after the first two vertices. Vertices 1, n+1, and n+2 define triangle n. N-2

triangles are drawn.

GL_QUADS Treats each group of four vertices as an independent quadrilateral. Vertices 4n-3,

4n-2, 4n-1, and 4n define quadrilateral n. N/4 quadrilaterals are drawn.

GL_QUAD_STRIP Draws a connected group of quadrilaterals. One quadrilateral is defined for each

pair of vertices presented after the first pair. Vertices 2n-1, 2n, 2n+2, and 2n+1

define quadrilateral n. N/2-1 quadrilaterals are drawn. Note that the order in which

vertices are used to construct a quadrilateral from strip data is different from that

used with independent data.

GL_POLYGON Draws a single, convex polygon. Vertices 1 through N define this polygon.

Only a subset of GL subroutines can be used between the glBegin and glEnd subroutines. The

subroutines are: glVertex, glColor, glIndex, glNormal, glTexCoord, glEvalCoord, glEvalPoint,

glMaterial, and glEdgeFlag. Also, it is acceptable to use glCallList or glCallLists to execute display lists

Chapter 1. OpenGL Subroutines 15

that include only the preceding subroutines. If any other GL subroutine is called between the glBegin and

glEnd subroutines, the error flag is set and the subroutine is ignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices that can be defined

between the glBegin and glEnd subroutines. Lines, triangles, quadrilaterals, and polygons that are

incompletely specified are not drawn. Incomplete specification results when either too few vertices are

provided to specify even a single primitive or when an incorrect multiple of vertices is specified. The

incomplete primitive is ignored; the rest are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point, 2 for a line, 3 for a

triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a certain multiple of vertices are:

GL_LINES (2), GL_TRIANGLES (3), GL_QUADS (4), and GL_QUAD_STRIP (2).

Parameters

 mode Specifies the primitive or primitives that will be created from vertices presented between glBegin and the

subsequent glEnd. Ten symbolic constants are accepted: GL_POINTS, GL_LINES, GL_LINE_STRIP,

GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS,

GL_QUAD_STRIP, and GL_POLYGON.

Errors

 INVALID_ENUM Indicates that mode is set to an unaccepted value.

GL_INVALID_OPERATION Indicates that a subroutine other than glVertex, glColor, glIndex, glNormal,

glTexCoord, glEvalCoord, glEvalPoint, glMaterial, glEdgeFlag, glCallList,

or glCallLists subroutine is called between glBegin and the corresponding

glEnd.

GL_INVALID_OPERATION Indicates that glEnd is called before the corresponding glBegin is called.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glArrayElement subroutine, glArrayElementEXT subroutine, glColor subroutine, glCallList

subroutine, glCallLists subroutine, glEdgeFlag subroutine, glEvalCoord subroutine, glEvalPoint

subroutine, glIndex subroutine, glMaterial subroutine, glNormal subroutine, glTexCoord subroutine,

glVertex subroutine.

glBindTexture Subroutine

Purpose

Binds a named texture to a texturing target.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glBindTexture(GLenum target,

 GLuint texture)

16 OpenGL 1.2 Reference Manual

Description

The glBindTexture subroutine lets you create or use a named texture. Calling glBindTexture with target

set to GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_3D_EXT and texture

set to the name of the new texture binds the texture name to the target. When a texture is bound to a

target, the previous binding for that target is automatically broken.

Texture names are unsigned integers. The value zero is reserved to represent the default texture for each

texture target. Texture names and the corresponding texture contents are local to the shared display-list

space (see glXCreateContext) of the current GL rendering context; two rendering contexts share texture

names only if they also share display lists.

You can use glGenTextures to generate a set of new texture names.

When a texture is first bound, it assumes the dimensionality of its target: A texture first bound to

GL_TEXTURE_1D becomes one-dimensional (1D), a texture first bound to GL_TEXTURE_2D becomes

two-dimensional (2D), a texture first bound to GL_TEXTURE_3D becomes three-dimensional (3D), a

texture first bound to GL_TEXTURE_3D_EXT becomes three-dimensional (3D). The state of a (1D)

texture immediately after it is first bound is equivalent to the state of the default GL_TEXTURE_1D at GL

initialization, and similarly for 2D and 3D textures.

While a texture is bound, GL operations on the target to which it is bound affect the bound texture, and

queries of the target to which it is bound return state from the bound texture. If texture mapping of the

dimensionality of the target to which a texture is bound is active, the bound texture is used. In effect, the

texture targets become aliases for the textures currently bound to them, and the texture name zero refers

to the default textures that were bound to them at initialization.

A texture binding created with glBindTexture remains active until a different texture is bound to the same

target, or until the bound texture is deleted with glDeleteTextures.

Once created, a named texture may be rebound to the target of the matching dimensionality as often as

needed. It is usually much faster to use glBindTexture to bind an existing named texture to one of the

texture targets than it is to reload the texture image using glTexImage1D or glTexImage2D. For additional

control over performance, use glPrioritizeTextures.

The glBindTexture subroutine is included in display lists.

Parameters

 target Specifies the target to which the texture is bound. Must be either GL_TEXTURE_1D,

GL_TEXTURE_2D, GL_TEXTURE_3D, or GL_TEXTURE_3D_EXT (EXT_texture3D).

texture Specifies the name of a texture.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_OPERATION is generated if texture has a dimensionality which doesn’t match that of target.

GL_INVALID_OPERATION is generated if glBindTexture is executed between the execution of glBegin

and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_TEXTURE_1D_BINDING

glGet with argument GL_TEXTURE_2D_BINDING

Chapter 1. OpenGL Subroutines 17

glGet with argument GL_TEXTURE_3D_BINDING

glGet with argument GL_TEXTURE_3D_BINDING_EXT

Related Information

The glAreTexturesResident subroutine, glDeleteTextures subroutine, glGenTextures subroutine, glGet

subroutine, glGetTexParameter subroutine, glIsTexture subroutine, glPrioritizeTextures subroutine,

glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3DEXT subroutine, glTexParameter

subroutine.

glBindTextureEXT Subroutine

Purpose

Binds a named texture to a texturing target.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glBindTextureEXT(GLenum target,

 GLuint texture)

Description

glBindTextureEXT is part of the EXT_texture_object extension. This extension makes it possible to use

named 1-, 2-dimensional textures in addition to the usual OpenGL texture targets designated by

GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D_EXT, etc.

Texture names are unsigned integers. The value zero is reserved to represent the default texture for each

texture target. Texture names and the corresponding texture contents are local to the shared display-list

space (see glXCreateContext) of the current OpenGL rendering context; two rendering contexts will share

texture names only if they also share display lists.

To create a named texture, simply bind a previously-unused texture name to one of the texture targets

listed above. This can be accomplished by calling glBindTextureEXT with target set to the appropriate

texture target, and texture set to the name of the new texture. When a texture is bound to a target, the

previous binding for that target is automatically broken.

Note that glGenTexturesEXT may be used to generate a set of fresh texture names.

When a texture is first bound, it assumes the dimensionality of its target: A texture first bound to

GL_TEXTURE_1D becomes one-dimensional (1D), a texture first bound to GL_TEXTURE_2D becomes

two-dimensional (2D), a texture first bound to GL_TEXTURE_3D_EXT becomes three-dimensional (3D).

The state of a (1D) texture immediately after it is first bound is equivalent to the state of the default

GL_TEXTURE_1D at GL initialization, and similarly for 2D and 3D textures.

While a texture is bound, GL operations on the target towhich it is bound affect the bound texture, and

queries of the target to which it is bound return state from the bound texture. If texture mapping of the

dimensionality of the target to which a texture is bound is active, the bound texture is used. In effect, the

texture targets become aliases for the textures currently bound to them, and the texture name zero refers

to the default textures that were bound to them at initialization.

A texture binding created with glBindTextureEXT remains active until a different texture is bound to the

same target, or until the bound texture is deleted with glDeleteTexturesEXT.

18 OpenGL 1.2 Reference Manual

Once created, a named texture may be re-bound to the appropriate target as often as needed. It is usually

much faster to bind an existing named texture to one of the texture targets using glBindTextureEXT than

it is to reload the texture image using glTexImage*. For additional control over performance, consider

using glPrioritizeTexturesEXT.

glBindTextureEXT is included in display lists.

Parameters

 target The target to which the texture will be bound. Must be one of GL_TEXTURE_1D, GL_TEXTURE_2D,

or GL_TEXTURE_3D_EXT (EXT_texture3D).

texture The name of a texture.

Notes

glBindTextureEXT is part of the EXT_texture_object extension, not part of the core GL command set. If

GL_EXT_texture_object is included in the string returned by glGetString, when called with argument

GL_EXTENSIONS, extension EXT_texture_object is supported by the connection.

Errors

 GL_INVALID_ENUM Generated if target is not one of the allowable values.

GL_INVALID_OPERATION Generated if texture has a dimensionality and it doesn’t match that of target.

GL_INVALID_OPERATION Generated if glBindTextureEXT is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGet with argument GL_TEXTURE_1D_BINDING_EXT

glGet with argument GL_TEXTURE_2D_BINDING_EXT

glGet with argument GL_TEXTURE_3D_BINDING_EXT

Files

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glDeleteTexturesEXT subroutine, glGenTexturesEXT subroutine, glGet subroutine,

glGetTexParameter subroutine, glIsTexture subroutine, glTexImage1D subroutine, glTexImage2D

subroutine, glTexImage3DEXT subroutine, glTexParameter subroutine.

glBitmap Subroutine

Purpose

Draws a bitmap.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 19

C Syntax

void glBitmap(GLsizei Width,

 GLsizei Height,

 GLfloat xOrigin,

 GLfloat yOrigin,

 GLfloat xMove,

 GLfloat yMove,

 const GLubyte * Bitmap)

Description

A bitmap is a binary image. When drawn, the bitmap is positioned relative to the current raster position,

and frame buffer pixels corresponding to 1’s in the bitmap are written using the current raster color or

index. Frame buffer pixels corresponding to 0’s in the bitmap are not modified.

The glBitmap subroutine takes seven arguments. The first pair of arguments specify the width and height

of the bitmap image. The second pair of arguments specify the location of the bitmap origin relative to the

lower left corner of the bitmap image. The final pair of arguments specify x and y offsets to be added to

the current raster position after the bitmap has been drawn. The final argument is a pointer to the bitmap

image itself.

The bitmap image is interpreted like image data for the glDrawPixels subroutine, with Width and Height

corresponding to the width and height arguments of that subroutine, and with Type set to GL_BITMAP and

Format set to GL_COLOR_INDEX. Modes specified using the glPixelStore subroutine affect the

interpretation of bitmap image data; modes specified using the glPixelTransfer subroutine do not.

If the current raster position is not valid, the glBitmap subroutine is ignored. Otherwise, the lower left

corner of the bitmap image is positioned at the following window coordinates:

xw = [xr - xo]

yw = [yr - yo]

where (xr, yr) is the raster position, and (xo, yo) is the bitmap origin.

Fragments are then generated for each pixel corresponding to a 1 in the bitmap image. These fragments

are generated using the current raster z coordinate, color or color index, and current raster texture

coordinates. They are then treated just as if they had been generated by a point, line, or polygon,

including texture mapping, fogging, and all per-fragment operations such as alpha and depth testing.

After the bitmap has been drawn, the x and y coordinates of the current raster position are offset by

xMove and yMove. No change is made to the z coordinate of the current raster position, or to the current

raster color, index, or texture coordinates.

Parameters

 Width Specifies the pixel width of the bitmap image.

Height Specifies the pixel height of the bitmap image.

xOrigin Specifies the location of the x origin in the bitmap image. The x origin is measured from the lower left

corner of the bitmap, with right and up being the positive axes.

yOrigin Specifies the location of the y origin in the bitmap image. The y origin is measured from the lower left

corner of the bitmap, with right and up being the positive axes.

xMove Specifies the x offset to be added to the current raster position after the bitmap is drawn.

yMove Specifies the y offset to be added to the current raster position after the bitmap is drawn.

Bitmap Specifies the address of the bitmap image.

20 OpenGL 1.2 Reference Manual

Errors

 GL_INVALID_VALUE Either Width or Height is negative.

GL_INVALID_OPERATION The glBitmap subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glBitmap subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_CURRENT_RASTER_POSITION

glGet with argument GL_CURRENT_RASTER_COLOR

glGet with argument GL_CURRENT_RASTER_INDEX

glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS

glGet with argument GL_CURRENT_RASTER_POSITION_VALID.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glDrawPixels subroutine, glPixelStore subroutine, glPixelTransfer

subroutine, glRasterPos subroutine.

glBlendColor Subroutine

Purpose

Sets the blend color. This subroutine is part of OpenGL 1.2 ARB Imaging subset extension.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glBlendColor(GLclampf red,

 GLclampf green,

 GLclampf blue,

 GLclampf alpha)

Description

The GL_BLEND_COLOR may be used to calculate the source and destination blending factors. See

glBlendFunc for a complete description of the blending operations. Initially the GL_BLEND_COLOR is set

to (0, 0, 0, 0).

Chapter 1. OpenGL Subroutines 21

Parameters

 red, green, blue, alpha Specify the components of GL_BLEND_COLOR.

Notes

The glBlendColor subroutine is available only if the GL version is 1.1 or greater.

Errors

 GL_INVALID_OPERATION The glBlendColor is called between a call to glBegin and the corresponding

call to glEnd.

Associated Gets

glGet with argument GL_BLEND_COLOR.

Related Information

The glBlendFunc subroutine, glGetString subroutine.

glBlendColorEXT Subroutine

Purpose

Sets the blend color. This subroutine is part of OpenGL 1.2 ARB Imaging subset extension.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glBlendColorEXT(GLclampf red,

 GLclampf green,

 GLclampf blue,

 GLclampf alpha)

Description

The GL_BLEND_COLOR_EXT may be used to calculate the source and destination blending factors. See

glBlendFunc for a complete description of the blending operations. Initially the GL_BLEND_COLOR_EXT

is set to (0, 0, 0, 0).

Parameters

 red, green, blue, alpha Specify the components of GL_BLEND_COLOR_EXT.

Notes

The glBlendColorEXT subroutine is available only if the GL version is 1.1 or greater.

Errors

 GL_INVALID_OPERATION The glBlendColorEXT is called between a call to glBegin and the

corresponding call to glEnd.

22 OpenGL 1.2 Reference Manual

Associated Gets

glGet with argument GL_BLEND_COLOR_EXT.

Related Information

The glBlendFunc subroutine, glGetString subroutine.

glBlendEquation Subroutine

Purpose

Specifies the RGB color blend equation. This subroutine is part of the OpenGL 1.2 ARB Imaging subset.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glBlendEquation(GLenum mode)

Description

Blending combines corresponding source and destination color components according to the blending

operation specified by the mode. The blend equations are:

 GL_FUNC_ADD min(Cs*sf + Cd*df, 1)

GL_FUNC_SUBTRACT max(Cs*sf - Cd*df, 0)

GL_FUNC_REVERSE_SUBTRACT max(Cd*df - Cs*sf, 0)

GL_LOGIC_OP Cs Lop Cd

GL_MIN min(Cs, Cd)

GL_MAX max(Cs, Cd)

where Cs and Cd are the source and destination color components, respectively; sf and df are the source

and destination blending factors are specified by glBlendFunc; Lop is one of the 16 bitwise operators

specified by glLogicOp.

Parameters

 mode Specifies how source and destination RGBA color components are combined. The symbolic constants

GL_FUNC_ADD, GL_MIN, GL_MAX, GL_FUNC_SUBTRACT, GL_REVERSE_SUBTRACT are accepted.

The initial mode is GL_FUNC_ADD.

Notes

The mode GL_LOGIC_OP is part of the EXT_blend_logic_op extension, not part of the core GL command

set. If GL_EXT_blend_logic_op is included in the string returned by glGetString, when called with

argument GL_EXTENSIONS, extension EXT_blend_logic_op is supported by the connection.

Errors

 GL_INVALID_ENUM The mode parameter is not an accepted or supported value.

GL_INVALID_OPERATION The glBlendEquation is called between a call to glBegin and the

corresponding call to glEnd.

Chapter 1. OpenGL Subroutines 23

Associated Gets

glGet with argument GL_BLEND_EQUATION.

Related Information

The glBlendFunc subroutine, glEnable or glDisable subroutine, glGet subroutine, glLogicOp subroutine.

glBlendEquationEXT Subroutine

Purpose

Specifies the RGB color blend equation.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glBlendEquationEXT(GLenum mode)

Description

Blending combines corresponding source and destination color components according to the blending

operation specified by the mode. The blend equations are:

 GL_FUNC_ADD_EXT min(Cs*sf + Cd*df, 1)

GL_FUNC_SUBTRACT_EXT max(Cs*sf - Cd*df, 0)

GL_FUNC_REVERSE_SUBTRACT_EXT max(Cd*df - Cs*sf, 0)

GL_LOGIC_OP Cs Lop Cd

GL_MIN_EXT min(Cs, Cd)

GL_MAX_EXT max(Cs, Cd)

where Cs and Cd are the source and destination color components, respectively; sf and df are the source

and destination blending factors are specified by glBlendFunc; Lop is one of the 16 bitwise operators

specified by glLogicOp.

Parameters

 mode Specifies how source and destination RGBA color components are combined. The symbolic constants

GL_FUNC_ADD_EXT, GL_MIN_EXT, GL_MAX_EXT, GL_FUNC_SUBTRACT_EXT,

GL_REVERSE_SUBTRACT_EXT are accepted. The initial mode is GL_FUNC_ADD_EXT.

Notes

The modes GL_FUNC_SUBTRACT_EXT and GL_FUNC_REVERSE_SUBTRACT_EXT are part of the

EXT_blend_subtract extension, not part of the core GL command set. If GL_EXT_blend_subtract is

included in the string returned by glGetString, when called with argument GL_EXTENSIONS, extension

EXT_blend_subtract is supported by the connection.

The mode GL_LOGIC_OP is part of the EXT_blend_logic_op extension, not part of the core GL command

set. If GL_EXT_blend_logic_op is included in the string returned by glGetString, when called with

argument GL_EXTENSIONS, extension EXT_blend_logic_op is supported by the connection.

24 OpenGL 1.2 Reference Manual

The modes GL_MIN_EXT and GL_MAX_EXT are part of the EXT_blend_minmax extension, not part of

the core GL command set. If GL_EXT_blend_minmax is included in the string returned by glGetString,

when called with argument GL_EXTENSIONS, extension EXT_blend_minmax is supported by the

connection.

Errors

 GL_INVALID_ENUM The mode parameter is not an accepted or supported value.

GL_INVALID_OPERATION The glBlendEquation is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

glGet with argument GL_BLEND_EQUATION_EXT.

Related Information

The glBegin subroutine, glBlendFunc subroutine, glEnable or glDisable subroutine, glGet subroutine,

glGetString subroutine, glLogicOp subroutine.

glBlendFunc Subroutine

Purpose

Specifies pixel arithmetic.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glBlendFunc(GLenum SourceFactor,

 GLenum DestinationFactor)

Description

In RGB mode, pixels can be drawn using a function that blends the incoming (source) red, green, blue,

and alpha (RGBA) values with the RGBA values that are already in the frame buffer (the destination

values). By default, blending is disabled. Use the glEnable and glDisable subroutines with argument

GL_BLEND to enable and disable blending.

When blending is enabled, glBlendFunc and glBlendEquationEXT determine the blending operation.

SourceFactor and DestinationFactor specify the scaling rules used for scaling the source and destination

color components, respectively. Each rule defines four scale factors, one each for red, green, blue, and

alpha. The rules are described in the table below.

In the table and in subsequent equations, source color components are referred to as:

(Rs, Gs, Bs, As)

Destination color components are referred to as:

(Rd, Gd, Bd, Ad)

Constant color components are referred to as:

(Rc, Gc, Bc, Ac)

They are understood to have integer values between 0 (zero) and:

Chapter 1. OpenGL Subroutines 25

(kR, kG, kB, kA)

where

(kc = 2mc - 1)

(m R, m G, m B, m A)

represents the number of RGBA bit planes.

Source scale factors are referred to as:

(s R, s G, s B, s A)

Destination scale factors are referred to as:

(d R, d G, d B, d A)

The scale factors:

(fR, fG, fB, fA)

represent either source or destination factors. All scale factors have the range [0,1].

 Parameter (fR, fG, fB, fA)

GL_ZERO (0, 0, 0, 0)

GL_ONE (1, 1, 1, 1)

GL_SRC_COLOR (Rs/kR, Gs/kG, Bs/kB, As/kA)

GL_ONE_MINUS_SRC_COLOR (1, 1, 1, 1) - (Rs/kR, Gs/kG, Bs/kB, As/kA)

GL_DST_COLOR (Rd/kR, Gd/kG, Bd/kB, Ad/kA)

GL_ONE_MINUS_DST_COLOR (1, 1, 1, 1) - (Rd/kR, Gd/kG, Bd/kB, Ad/kA)

GL_SRC_ALPHA (As/kA, As/kA, As/kA, As/kA)

GL_ONE_MINUS_SRC_ALPHA (1, 1, 1, 1) - (As/kA, As/kA, As/kA, As/kA)

GL_DST_ALPHA (Ad/kA, Ad/kA, Ad/kA, Ad/kA)

GL_ONE_MINUS_DST_ALPHA (1, 1, 1, 1) - (Ad/kA, Ad/kA, Ad/kA, Ad/kA)

GL_CONSTANT_COLOR (Rc/kR, Gc/kG, Bc/kB, Ac/kA)

GL_ONE_MINUS_CONSTANT_COLOR (1, 1, 1, 1) - (Rc/kR, Gc/kG, Bc/kB, Ac/kA)

GL_CONSTANT_ALPHA (Ac/kA, Ac/kA, Ac/kA, Ac/kA)

GL_ONE_MINUS_CONSTANT_ALPHA (1, 1, 1, 1) - (Ac/kA, Ac/kA, Ac/kA, Ac/kA)

GL_SRC_ALPHA_SATURATE (i, i, i, 1)

i = min (As, kA - Ad)/kA

To determine the blended RGBA values of a pixel when drawing in RGB mode, the system uses the

following equations:

Rd = min (kR, RssR + RddR)

Gd = min (kG, GssG + GddG)

Bd = min (kB, BssB + BddB)

Ad = min (kA, AssA + AddA)

Blending combines corresponding source and destination color components according to the blending

operation specified by GL_BLEND_EQUATION_EXT. The blending operations are:

 GL_BLEND_EQUATION_EXT Binary Operation

GL_FUNC_ADD_EXT min(Cs x sC+Cd x dC,kC)

26 OpenGL 1.2 Reference Manual

GL_BLEND_EQUATION_EXT Binary Operation

GL_FUNC_SUBTRACT_EXT max(Cs x sC-Cd x dC,0)

GL_FUNC_REVERSE_SUBTRACT_EXT max(Cd x dC-Cs x sC,0)

GL_LOGIC_OP Cs Lop Cd

GL_MIN_EXT min(Cs, Cd)

GL_MAX_EXT max(Cs, Cd)

where C is the relevant color component (R, G, B, or A), Cs and Cd are the source and destination color

components, respectively, sC and sD are the source and destination scale factors, respectively, and Lop is

one of 16 bitwise operators specified by glLogicOp.

Despite the apparent precision of the preceding equations, blending arithmetic is not exactly specified,

because blending operates with imprecise integer color values. However, a blend factor that should be

equal to 1 is guaranteed not to modify its multiplicand, and a blend factor equal to 0 reduces its

multiplicand to 0. Thus, for example, when SourceFactor is GL_SRC_ALPHA, DestinationFactor is

GL_ONE_MINUS_SRC_ALPHA, and As is equal to kA, the equations reduce to simple replacement:

Rd = Rs

Gd = Gs

Rd = Bs

Ad = As

Parameters

 SourceFactor Specifies how the RGBA source-blending factors are computed. Thirteen symbolic

constants are accepted: GL_ZERO, GL_ONE, GL_DST_COLOR,

GL_ONE_MINUS_DST_COLOR, GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,

GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR,

GL_CONSTANT_COLOR_EXT, GL_ONE_MINUS_CONSTANT_COLOR,

GL_ONE_MINUS_CONSTANT_COLOR_EXT, GL_CONSTANT_ALPHA,

GL_CONSTANT_ALPHA_EXT, GL_ONE_MINUS_CONSTANT_ALPHA,

GL_ONE_MINUS_CONSTANT_ALPHA_EXT, and GL_SRC_ALPHA_SATURATE.

These symbolic constants are defined in the Description section. The initial value is

GL_ONE.

DestinationFactor Specifies how the RGBA destination-blending factors are computed. Twelve

symbolic constants are accepted: GL_ZERO, GL_ONE, GL_SRC_COLOR,

GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA ,

GL_ONE_MINUS_DST_ALPHA, GL_CONSTANT_COLOR,

GL_CONSTANT_COLOR_EXT, GL_ONE_MINUS_CONSTANT_COLOR,

GL_ONE_MINUS_CONSTANT_COLOR_EXT, GL_CONSTANT_ALPHA,

GL_CONSTANT_ALPHA_EXT, GL_ONE_MINUS_CONSTANT_ALPHA, and

GL_ONE_MINUS_CONSTANT_ALPHA_EXT. These symbolic constants are

defined in the Description section. The initial value is GL_ZERO.

Notes

Incoming (source) alpha is correctly thought of as a material opacity, ranging from 1.0 (KA), representing

complete opacity, to 0.0 (0), representing complete transparency.

When more than one color buffer is enabled for drawing, blending is done separately for each enabled

buffer, using for destination color the contents of that buffer. (See the glDrawBuffer subroutine.)

Blending affects only RGB rendering. It is ignored by color index renderers.

Chapter 1. OpenGL Subroutines 27

The Source and destination factors GL_CONSTANT_COLOR, GL_ONE_MINUS_CONSTANT_COLOR,

GL_CONSTANT_ALPHA, GL_ONE_MINUS_CONSTANT_ALPHA, and their _EXT versions are only valid

if the ARB imaging subset is supported and/or the Blend Color extension.

Errors

 GL_INVALID_ENUM Either SourceFactor or DestinationFactor is set to an unaccepted value.

GL_INVALID_OPERATION The glBlendFunc subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glBlendFunc subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_BLEND_SRC, GL_BLEND_DST, GL_LOGIC_OP_MODE, or

GL_BLEND_EQUATION_EXT.

glIsEnabled with argument GL_BLEND

Examples

Transparency is best implemented using a blend function (GL_SRC_ALPHA,

GL_ONE_MINUS_SRC_ALPHA) with primitives sorted from farthest to nearest. Note that this

transparency calculation does not require the presence of alpha bit planes in the frame buffer.

The blend function operation (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) is also useful for

rendering antialiased points and lines in arbitrary order.

Polygon antialiasing is optimized using a blend function (GL_SRC_ALPHA_SATURATE, GL_ONE) with

polygons sorted from nearest to farthest. (See the glEnable or glDisable subroutine and the

GL_POLYGON_SMOOTH argument for information on polygon antialiasing.) Destination alpha bit planes,

which must be present for this blend function to operate correctly, store the accumulated coverage.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glAlphaFunc subroutine, glBegin or glEnd subroutine, glClear subroutine, glDrawBuffer subroutine,

glEnable or Disable ubroutine, glLogicOp subroutine, glStencilFunc subroutine.

glBlendFuncSeparateEXT Subroutine

Purpose

Specifies separate RGB and Alpha blend factors.

Library

OpenGL C bindings library: (libGL.a)

28 OpenGL 1.2 Reference Manual

C Syntax

void glBlendFuncSeparateEXT(enum sfactorRGB,

 enum dfactorRGB,

 enum sfactorAlpha,

 enum dfactorAlpha)

Description

Blending capability is extended by this function. It allows independent specification of the RGB and alpha

blend factors for blend operations that require source and destination blend factors. It is not always

desired that the blending used for RGB is also applied to alpha.

The accepted values for sfactorRGB and sfactorAlpha are:

GL_ZERO

GL_ONE

GL_DST_COLOR

GL_ONE_MINUS_DST_COLOR

GL_SRC_ALPHA

GL_ONE_MINUS_SRC_ALPHA

GL_DST_ALPHA

GL_ONE_MINUS_DST_ALPHA

GL_CONSTANT_COLOR (_EXT)

GL_ONE_MINUS_CONSTANT_COLOR (_EXT)

GL_CONSTANT_ALPHA (_EXT)

GL_ONE_MINUS_CONSTANT_ALPHA (_EXT)

GL_SRC_ALPHA_SATURATE

 The accepted values for sfactorRGB and sfactorAlpha are:

GL_ZERO

GL_ONE

GL_SRC_COLOR

GL_ONE_MINUS_SRC_COLOR

GL_SRC_ALPHA

GL_ONE_MINUS_SRC_ALPHA

GL_DST_ALPHA

GL_ONE_MINUS_DST_ALPHA

GL_CONSTANT_COLOR (_EXT)

GL_ONE_MINUS_CONSTANT_COLOR (_EXT)

GL_CONSTANT_ALPHA (_EXT)

GL_ONE_MINUS_CONSTANT_ALPHA (_EXT)

GL_SRC_ALPHA_SATURATE

 For further information on the mathematical function of each of these accepted values, see glBlendFunc.

Chapter 1. OpenGL Subroutines 29

Parameters

 sfactorRGB is the source blend factor for the RGB components.

sfactorAlpha is the source blend factor for the Alpha component.

dfactorRGB is the destination blend factor for the RGB components.

dfactorAlpha is the destination blend factor for the Alpha component.

Notes

This subroutine is only valid if the EXT_blend_func_separate extension is defined.

GL_CONSTANT_COLOR (_EXT), GL_ONE_MINUS_CONTANT_COLOR (_EXT),

GL_CONSTANT_ALPHA (_EXT), and GL_ONE_MINUS_CONSTANT_ALPHA (_EXT) are only valid if the

GL_EXT_blend_color extension is defined.

The (_EXT) at the end of these values above indicates that the enum can be specified with or without the

_EXT suffix, and behaves identically in both cases.

Error Codes

 GL_INVALID_ENUM is generated if any of sfactorRGB, dfactorRGB,

sfactorAlpha, or dfactorAlpha are not accepted values.

GL_INVALID_OPERATION is generated if glBlendFuncSeparateEXT is executed

between the execution of glBegin and the corresponding

execution of glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glBlendFunc sunbroutine.

glCallList Subroutine

Purpose

Executes a display list.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glCallList(GLuint List)

Description

The glCallList subroutine causes the named display list to be executed. The subroutines saved in the

display list are executed in order, just as if they were called without using a display list. If List has not been

defined as a display list, glCallList is ignored.

30 OpenGL 1.2 Reference Manual

The glCallList subroutine may appear inside a display list. To avoid the possibility of infinite recursion

resulting from display lists calling one another, an implementation-dependent limit is placed on the the

nesting level of display lists during display list execution. This limit is at least 64.

GL state is not saved and restored across a call to glCallList. Thus, changes made to GL state during the

execution of a display list will remain after execution of the display list is completed. Use the glPushAttrib,

glPopAttrib, PushMatrix, and glPopMatrix subroutines to preserve GL state across glCallList calls.

Parameters

 List Specifies the integer name of the display list to be executed.

Notes

Display lists can be executed between a call to glBegin and the corresponding call to glEnd, as long as

the display list includes only commands that are allowed in this interval.

Associated Gets

The associated get for the glCallList subroutine is as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MAX_LIST_NESTING

glIsList.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCallLists subroutine, glDeleteLists subroutine, glGenLists

subroutine, glNewList subroutine, glPushAttrib or glPopAttrib subroutine, glPushMatrix or glPopMatrix

subroutine.

glCallLists Subroutine

Purpose

Executes a list of display lists.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glCallLists(GLsizei Number,

 GLenum Type,

 const GLvoid * Lists)

Chapter 1. OpenGL Subroutines 31

Description

The glCallLists subroutine causes each display list in the list of names passed as lists to be executed. As

a result, the commands saved in each display list are executed in order, just as if they were called without

using a display list. Names of display lists that have not been defined are ignored.

The glCallLists subroutine provides an efficient means for executing display lists. The Number parameter

allows lists with various name formats to be accepted. The formats are:

 GL_BYTE Lists is treated as an array of signed bytes, each in the range -128 through 127.

GL_UNSIGNED_BYTE Lists is treated as an array of unsigned bytes, each in the range 0 through 255.

GL_SHORT Lists is treated as an array of signed 2-byte integers, each in the range -32,768

through 32,767.

GL_UNSIGNED_SHORT Lists is treated as an array of unsigned 2-byte integers, each in the range 0 through

65,535.

GL_INT Lists is treated as an array of signed 4-byte integers.

GL_UNSIGNED_INT Lists is treated as an array of unsigned 4-byte integers.

GL_FLOAT Lists is treated as an array of 4-byte floating-point values.

GL_2_BYTES Lists is treated as an array of unsigned bytes. Each pair of bytes specifies a single

display list name. The value of the pair is computed as 256 times the unsigned

value of the first byte plus the unsigned value of the second byte.

GL_3_BYTES Lists is treated as an array of unsigned bytes. Each triplet of bytes specifies a

single display list name. The value of the triplet is computed as 65,536 times the

unsigned value of the first byte, plus 256 times the unsigned value of the second

byte, plus the unsigned value of the third byte.

GL_4_BYTES Lists is treated as an array of unsigned bytes. Each quadruplet of bytes specifies a

single display list name. The value of the quadruplet is computed as 16,777,216

times the unsigned value of the first byte, plus 65,536 times the unsigned value of

the second byte, plus 256 times the unsigned value of the third byte, plus the

unsigned value of the fourth byte.

The list of display list names is not null-terminated. Rather, the Number parameter specifies how many

names are to be taken from Lists.

An additional level of indirection is made available with the glListBase subroutine, which specifies a

signed offset that is added to each display list name specified in Lists before that display list is executed.

The glCallLists subroutine can appear inside a display list. To avoid the possibility of infinite recursion

resulting from display lists calling one another, an implementation-dependent limit is placed on the the

nesting level of display lists during display list execution. This limit must be at least 64.

GL state is not saved and restored across a call to glCallLists. Thus, changes made to GL state during

the execution of the display lists remain after execution is completed. Use the glPushAttrib, glPopAttrib,

glPushMatrix, and glPopMatrix subroutines to preserve GL state across glCallLists calls.

Parameters

 Number Specifies the number of display lists to be executed.

Type Specifies the type of values in lists. Symbolic constants GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,

GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, GL_2_BYTES, GL_3_BYTES,

and GL_4_BYTES are accepted.

Lists Specifies the address of an array of name offsets in the display list. The pointer type is void because the

offsets can be bytes, shorts, ints, or floats, depending on the value of Type.

32 OpenGL 1.2 Reference Manual

Notes

Display lists can be executed between a call to glBegin and the corresponding call to glEnd, as long as

the display list includes only commands that are allowed in this interval.

Associated Gets

Associated gets for the glCallLists subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_LIST_BASE

glGet with argument GL_MAX_LIST_NESTING

glIsList.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCallList subroutine, glDeleteLists subroutine, glGenLists

subroutine, glListBase subroutine, glNewList subroutine, glPushAttrib or glPopAttrib subroutine,

glPushMatrix or glPopMatrix subroutine.

glClear Subroutine

Purpose

Clears buffers to preset values.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glClear(GLbitfield Mask)

Description

The glClear subroutine sets the bit plane area of the viewport to values previously selected by

glClearColor, glClearIndex, glClearDepth, glClearStencil and glClearAccum. Multiple color buffers can

be cleared simultaneously by selecting more than one buffer at a time using glDrawBuffer.

The pixel ownership test, the scissor test, dithering and the buffer writemasks affect the operation of

glClear. The scissor box bounds the cleared region. Alpha function, blend function, logical operation,

stenciling, texture mapping, and z-buffering are ignored by glClear.

The glClear subroutine takes a single argument that is the bitwise OR of several values indicating which

buffer is to be cleared.

The values are:

 GL_COLOR_BUFFER_BIT Indicates the buffers currently enabled for color writing.

GL_DEPTH_BUFFER_BIT Indicates the depth buffer.

Chapter 1. OpenGL Subroutines 33

GL_ACCUM_BUFFER_BIT Indicates the accumulation buffer.

GL_STENCIL_BUFFER_BIT Indicates the stencil buffer.

The value to which each buffer is cleared depends on the setting of the clear value for that buffer.

glGet with argument GL_COLOR_CLEAR_VALUE

glGet with argument GL_STENCIL_CLEAR_VALUE.

Parameters

 Mask Bitwise OR of masks that indicate the buffers to be cleared. The four masks are GL_COLOR_BUFFER_BIT,

GL_DEPTH_BUFFER_BIT, GL_ACCUM_BUFFER_BIT, and GL_STENCIL_BUFFER_BIT.

Notes

If a buffer is not present, then a glClear directed at that buffer has no effect.

Errors

 GL_INVALID_VALUE A bit other than the four defined bits is set in Mask.

GL_INVALID_OPERATION The glClear subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClear subroutine are as follows. (See the glGet subroutine for more information.)

glGet with argument GL_ACCUM_CLEAR_VALUE

glGet with argument GL_DEPTH_CLEAR_VALUE

glGet with argument GL_INDEX_CLEAR_VALUE

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glClearAccum subroutine, glClearColor subroutine, glClearDepth

subroutine, glClearIndex subroutine, glClearStencil subroutine, glDrawBuffer subroutine, glScissor

subroutine.

glClearAccum Subroutine

Purpose

Specifies clear values for the accumulation buffer.

Library

OpenGL C bindings library: libGL.a

34 OpenGL 1.2 Reference Manual

C Syntax

void glClearAccum(GLfloat Red,

 GLfloat Green,

 GLfloat Blue,

 GLfloat Alpha)

Description

The glClearAccum subroutine specifies the red, green, blue, and alpha values used by the glClear

subroutine to clear the accumulation buffer. Values specified by glClearAccum are clamped to the range

[-1,1].

Parameters

 Red Specifies the red value used when the accumulation buffer is cleared. The default value is 0 (zero).

Green Specifies the green value used when the accumulation buffer is cleared. The default value is 0.

Blue Specifies the blue value used when the accumulation buffer is cleared. The default value is 0.

Alpha Specifies the alpha value used when the accumulation buffer is cleared. The default value is 0.

Errors

 GL_INVALID_OPERATION The glClearAccum subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClearAccum subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_ACCUM_CLEAR_VALUE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glClear subroutine.

glClearColor Subroutine

Purpose

Specifies clear values for the color buffers.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 35

C Syntax

void glClearColor(GLclampf Red,

 GLclampf Green,

 GLclampf Blue,

 GLclampf Alpha)

Description

The glClearColor subroutine specifies the red, green, blue, and alpha values used by the glClear

subroutine to clear the color buffers. Values specified by glClearColor are clamped to the range [0,1].

Parameters

 Red Specifies the red value used when the color buffer is cleared. The default value is 0 (zero).

Green Specifies the green value used when the color buffer is cleared. The default value is 0.

Blue Specifies the blue value used when the color buffer is cleared. The default value is 0.

Alpha Specifies the alpha value used when the color buffer is cleared. The default value is 0.

Errors

 GL_INVALID_OPERATION The glClearColor subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClearColor subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_COLOR_CLEAR_VALUE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glClear subroutine.

glClearDepth Subroutine

Purpose

Specifies the clear value for the depth buffer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glClearDepth(GLclampd Depth)

36 OpenGL 1.2 Reference Manual

Description

The glClearDepth subroutine specifies the depth value used by the glClear subroutine to clear the depth

buffer. Values specified by glClearDepth are clamped to the range [0,1].

Parameters

 Depth Specifies the depth value used when the depth buffer is cleared. The default value is 0 (zero).

Errors

 GL_INVALID_OPERATION The glClearDepth subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClearDepth subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_DEPTH_CLEAR_VALUE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glClear subroutine.

glClearIndex Subroutine

Purpose

Specifies the clear value for the color index buffers.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glClearIndex(GLfloat Clear)

Description

The glClearIndex subroutine specifies the index used by glClear to clear the color index buffers. The

Clear parameter is not clamped. Rather, Clear is converted to a fixed-point value with unspecified

precision to the right of the binary point. The integer part of this value is then masked with 2m -1, where m

is the number of bits in a color index stored in the frame buffer.

Parameters

 Clear Specifies the index used when the color index buffers are cleared. The default value is 0 (zero).

Chapter 1. OpenGL Subroutines 37

Errors

 GL_INVALID_OPERATION The glClearIndex subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClearIndex subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_INDEX_CLEAR_VALUE

glGet with argument GL_INDEX_BITS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glClear subroutine.

glClearStencil Subroutine

Purpose

Specifies the clear value for the stencil buffer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glClearStencil(GLint Stencil)

Description

The glClearStencil subroutine specifies the index used by glClear to clear the stencil buffer. The Stencil

parameter is masked with 2m - 1, where m is the number of bits in the stencil buffer.

Parameters

 Stencil Specifies the index used when the stencil buffer is cleared. The default value is 0 (zero).

Errors

 GL_INVALID_OPERATION Indicates that glClearStencil is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClearStencil subroutine are as follows. (See the glGet subroutine for more

information.)

38 OpenGL 1.2 Reference Manual

glGet with argument GL_STENCIL_CLEAR_VALUE

glGet with argument GL_STENCIL_BITS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glClear subroutine.

glClientActiveTextureARB Subroutine

Purpose

Specify which texture unit is active.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glClientActiveTextureARB(GLenum texture)

Description

glClientActiveTextureARB selects which texture unit’s client state parameters will be modified by

glTexCoordPointer, and enabled or disabled with glEnableClientState or glDisableClientState,

respectively, when called with a parameter of GL_TEXTURE_COORD_ARRAY. The number of texture

units an implementation supports is implementation dependent, but must be at least two. The texture

parameter must be one of GL_TEXTUREi_ARB, where 0 <= i < GL_MAX_TEXTURE_UNITS_ARB. The

initial value is GL_TEXTURE0_ARB.

Parameters

 texture specifies which texture unit to make active.

Notes

If the GL_ARB_multitexture extension is NOT present, then the number of texture units supported by the

implementation is one, not two, as described above.

The following OpenGL subroutines will be routed to different texture units based on this call:

v glEnableClientState (GL_TEXTURE_COORD_ARRAY)

v glDisableClientState (GL_TEXTURE_COORD_ARRAY)

v glInterleavedArrays

v glTexCoordPointer

v glTexCoordPointerEXT

v glTexCoordPointerListIBM

Subroutine glClientActiveTextureARB is supported only if GL_ARB_multitexture is included in the string

returned by glGetString when called with the argument GL_EXTENSIONS.

Chapter 1. OpenGL Subroutines 39

Error Codes

 GL_INVALID_OPERATION is generated if texture is not one of the accepted values.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glActiveTextureARB subroutine, the glEnableClientState or glDisableClientState subroutine, the

glMultiTexCoordARB subroutine, the glTexCoordPointer subroutine.

glClipBoundingBoxIBM or glClipBoundingSphereIBM or

glClipBoundingVerticesIBM Subroutine

Purpose

Determine whether the specified object is trivially accepted, trivially rejected, or clipped by the current set

of clipping planes.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

GLenum glClipBoundingBoxIBM (GLfloat xmin,

 GLfloat ymin,

 GLfloat zmin,

 GLfloat xmax,

 GLfloat ymax,

 GLfloat zmax)

GLenum glClipBoundingSphereIBM (GLfloat x,

 GLfloat y,

 GLfloat z,

 GLfloat radius)

GLenum glClipBoundingVerticesIBM (GLint size,

 GLenum type,

 GLsizei stride,

 GLsizei count,

 GLvoid *data)

Description

These three new functions can be used by applications to determine if a complex object is fully outside,

inside, or both outside and inside the clip volume (ie, view volume plus any enabled clipping planes). The

complex object is generally defined by a simplified representation of the object. This extension provides for

3 different simplified object variants - a bounding box, a bounding sphere, and a set of bounding vertices.

These functions can not be inserted within a display list. If called while a display list is open, they are

executed immediately.

40 OpenGL 1.2 Reference Manual

An enable is also provided so that applications can directly update the clip volume hint without having to

make a separate OpenGL function call.

See GL_UPDATE_CLIP_VOLUME_HINT under glEnable.

All functions return the results of the clip check. These results include:

 GL_REJECT_IBM Indicates that the bounding object is trivially rejected.

Rendering the object will result in nothing being rendered.

GL_ACCEPT_IBM Indicates that the bounding object is trivially accepted.

Rendering the object should be entirely within the viewport

and can be rendering without clipping.

GL_CLIP_IBM Indicates that the bounding object is not trivially accepted

or rejected. Implementations that don’t support clip

checking for all rendering enviroments can return

CLIP_IBM for those unsupported environments.

Parameters

 xmin,ymin,zmin Specifies the minimum x,y and z modeling coordinates of

the bounding box.

xmax,ymax,zmax Specifies the maximum x,y and z modeling coordinates of

the bounding box.

x,y,z Specifies the center of the bounding sphere in modeling

coordinates.

radius Specifies the radius of the bounding sphere in modeling

coordinates.

size Specifies the number of coordinate components per

vertex; must be 2, 3 or 4.

type Specifies the data type for the data parameter. Symbolic

constants GL_SHORT, GL_INT, GL_FLOAT, and

GL_DOUBLE are accepted.

stride Specifies the byte offset between consecutive vertexes. If

stride is 0, the vertices are understood to be tightly

packed in the array.

count Specifies the number of vertices pointed to by the data

parameter.

data Specifies a pointer to the first coordinate of the vertex list.

Notes

These three functions are only available if the GL_IBM_clip_check extension is present.

Error Codes

 GL_INVALID_value is generated if size is not 2, 3, or 4.

GL_INVALID_ENUM is generated if type is not one of the acceptable values.

GL_INVALID_value is generated if count is negative.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 41

glClipPlane Subroutine

Purpose

Specifies a plane against which all geometry is clipped.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glClipPlane(GLenum Plane,

 const GLdouble * Equation)

By default, all clipping planes are defined as (0,0,0,0) in eye coordinates and are disabled.

Parameters

 Plane Specifies which clipping plane is being positioned. Symbolic names of the form GL_CLIP_PLANEi,

where i is an integer between 0 and GL_MAX_CLIP_PLANES-1, are accepted.

Equation Specifies the address of an array of four double-precision floating-point values. These values are

interpreted as a plane equation.

Description

Geometry is always clipped against the boundaries of a six-plane frustum in x, y, and z. The glClipPlane

subroutine allows the specification of additional planes, not necessarily perpendicular to the x, y, or z axes,

against which all geometry is clipped. Up to GL_MAX_CLIP_PLANES planes can be specified, where

GL_MAX_CLIP_PLANES is at least 6 in all implementations. Because the resulting clipping region is the

intersection of the defined half-spaces, it is always convex.

The glClipPlane subroutine specifies a half-space using a four-component plane equation. When

glClipPlane is called, Equation is transformed by the inverse of the modelview matrix and stored in the

resulting eye coordinates. Subsequent changes to the modelview matrix have no effect on the stored

plane equation components. If the dot product of the eye coordinates of a vertex with the stored plane

equation components is positive or 0 (zero), the vertex is in with respect to that clipping plane. Otherwise it

is out.

Clipping planes are enabled and disabled with glEnable and glDisable, called with the argument

GL_CLIP_PLANEi, where i is the plane number.

Notes

It is always the case that GL_CLIP_PLANEi = GL_CLIP_PLANE0 + i.

Errors

 GL_INVALID_ENUM Plane is set to an unaccepted value.

GL_INVALID_OPERATION The glClipPlane subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glClipPlane subroutine are as follows. (See the glGet subroutine for more

information.)

42 OpenGL 1.2 Reference Manual

glGetClipPlane

glIsEnabled Enabled with argument GL_CLIP_PLANEi.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL

Related Information

The glBegin or glEnd subroutine, glEnable or glDisable subroutine.

glColor Subroutine

Purpose

Sets the current color.

Library

OpenGL C bindings library: libGL.a

C Syntax

glColor3b, glColor3d, glColor3f, glColor3i, glColor3s,

glColor3ub, glColor3ui, glColor3us, glColor4b, glColor4d,

glColor4f, glColor4i,glColor4s, glColor4ub, glColor4ui,

glColor4us, glColor3bv, glColor3dv, glColor3fv, glColor3iv,

glColor3sv, glColor3ubv, glColor3uiv, glColor3usv, glColor4bv,

glColor4dv, glColor4fv, glColor4iv, glColor4sv, glColor4ubv,

glColor4uiv, glColor4usv

-set the current color

void glColor3b

void glColor3b(GLbyte Red,

 GLbyte Green,

 GLbyte Blue)

void glColor3d(GLdouble Red,

 GLdouble Green,

 GLdouble Blue)

void glColor3f(GLfloat Red,

 GLfloat Green,

 GLfloat Blue)

void glColor3i(GLint Red,

 GLint Green,

 GLint Blue)

void glColor3s(GLshort Red,

 GLshort Green,

 GLshort Blue)

Chapter 1. OpenGL Subroutines 43

void glColor3ub(GLubyte Red,

 GLubyte Green,

 GLubyte Blue)

void glColor3ui(GLuint Red,

 GLuint Green,

 GLuint Blue)

void glColor3us(GLshort Red,

 GLshort Green,

 GLshort Blue)

void glColor4b(GLbyte Red,

 GLbyte Green,

 GLbyte Blue,

 GLbyte Alpha)

void glColor4d(GLdouble Red,

 GLdouble Green,

 GLdouble Blue,

 GLdouble Alpha)

void glColor4f(GLfloat Red,

 GLfloat Green,

 GLfloat Blue,

 GLfloat Alpha)

void glColor4i(GLint Red,

 GLint Green,

 GLint Blue,

 GLint Alpha)

void glColor4s(GLshort Red,

 GLshort Green,

 GLshort Blue,

 GLshort Alpha)

void glColor4ub(GLubyte Red,

 GLubyte Green,

 GLubyte Blue,

 GLubyte Alpha)

void glColor4ui (GLuint Red,

 GLuint Green,

 GLuint Blue,

 GLuint Alpha)

void glColor4us(GLshort Red,

 GLshort Green,

 GLshort Blue,

 GLshort Alpha)

void glColor3bv(const GLbyte * Variable)

void glColor3dv(const GLdouble * Variable)

44 OpenGL 1.2 Reference Manual

void glColor3fv(const GLfloat * Variable)

void glColor3iv(const GLint * Variable)

void glColor3sv(const GLshort * Variable)

void glColor3ubv(const GLubyte * Variable)

void glColor3uiv(const GLuint * Variable)

void glColor3usv(const GLushort * Variable)

void glColor4bv(const GLbyte * Variable)

void glColor4dv(const GLdouble * Variable)

void glColor4fv(const GLfloat * Variable)

void glColor4iv(const GLint * Variable)

void glColor4sv(const GLshort * Variable)

void glColor4ubv(const GLubyte * Variable)

void glColor4uiv(const GLuint * Variable)

void glColorusv(const GLushort * Variable)

Description

The Graphics Library stores both a current single-valued color index and a current four-valued red, green,

blue, alpha (RGBA) color. The glColor subroutine sets a new four-valued RGBA color. The glColor

subroutine has two major variants: glColor3 and glColor4. glColor3 variants specify new red, green, and

blue values explicitly, and set the current alpha value to 1.0 implicitly. glColor4 variants specify all four

color components explicitly.

glColor3b, glColor4b, glColor3s, glColor4s, glColor3i, and glColor4i take 3 or 4 unsigned byte, short,

or long integers as arguments. When v is appended to the name, the color subroutines can take a pointer

to an array of such values.

Current color values are stored in floating-point format, with unspecified mantissa and exponent sizes.

Unsigned integer color components, when specified, are linearly mapped to floating-point values such that

the largest representable value maps to 1.0 (full intensity), and 0 (zero) maps to 0.0 (zero intensity).

Signed integer color components, when specified, are linearly mapped to floating-point values such that

the most positive representable value maps to 1.0, and the most negative representable value maps to

-1.0. Floating-point values are mapped directly.

Neither floating-point nor signed integer specified values are clamped to the range [0,1] before updating

the current color. However, color components are clamped to this range before they are interpolated or

written into a color buffer.

Parameters

 Red Specifies a red value for the current color. The initial value is 1 (one).

Green Specifies a green value for the current color. The initial value is 1 (one).

Blue Specifies a blue value for the current color. The initial value is 1 (one).

Chapter 1. OpenGL Subroutines 45

Alpha Specifies a new alpha value for the current color. Included only in the four-argument glColor

subroutine. The initial value is 1 (one).

Variable Specifies a pointer to an array that contains red, green, blue, and (sometimes) alpha values.

Notes

The current color can be updated at any time. In particular, glColor can be called between a call to

glBegin and the corresponding call to glEnd.

Associated Gets

Associated gets for the glColor subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_CURRENT_COLOR.

glGet with argument GL_RGBA_MODE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin subroutine, glColorPointer subroutine, glColorPointerEXT subroutine, glEnd subroutine,

glIndex subroutine.

glColorMask Subroutine

Purpose

Enables and disables the writing of frame buffer color components.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glColorMask(GLboolean Red,

 GLboolean Green,

 GLboolean Blue,

 GLboolean Alpha)

Description

The glColorMask subroutine specifies whether the individual color components in the frame buffer can or

cannot be written. If the Red parameter is GL_FALSE, for example, no change is made to the red

component of any pixel in any of the color buffers, regardless of the drawing operation attempted.

Changes to individual bits of components cannot be controlled. Rather, changes are either enabled or

disabled for entire color components.

46 OpenGL 1.2 Reference Manual

Parameters

 Red Specifies whether red can or cannot be written into the frame buffer. The default value is True, indicating

that the red color component can be written.

Green Specifies whether green can or cannot be written into the frame buffer. The default value is True, indicating

that the green color component can be written.

Blue Specifies whether blue can or cannot be written into the frame buffer. The default value is True, indicating

that the blue color component can be written.

Alpha Specifies whether alpha can or cannot be written into the frame buffer. The default value is True, indicating

that the alpha color component can be written.

Errors

 GL_INVALID_OPERATION The glColorMask subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glColorMask subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_COLOR_WRITEMASK

glGet with argument GL_RGBA_MODE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glColor subroutine, glDepthMask subroutine, glIndex subroutine,

glIndexMask subroutine, glStencilMask subroutine.

glColorMaterial Subroutine

Purpose

Causes a material color to track the current color.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glColorMaterial(GLenum face,

 GLenum mode)

Description

The glColorMaterial subroutine specifies which material parameters track the current color. When

GL_COLOR_MATERIAL is enabled, the material parameter or parameters specified by mode, of the

Chapter 1. OpenGL Subroutines 47

material or materials specified by face, track the current color at all times. GL_COLOR_MATERIAL is

enabled and disabled using the subroutines glEnable and glDisable, called with GL_COLOR_MATERIAL

as their argument. By default it is disabled.

Parameters

 face Specifies whether front, back, or both front and back material parameters should track the current color.

Accepted values are GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK. The default value is

GL_FRONT_AND_BACK.

mode Specifies which of several material parameters will track the current color. Accepted values are

GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, and GL_AMBIENT_AND_DIFFUSE. The

default value is GL_AMBIENT_AND_DIFFUSE.

Notes

The glColorMaterial subroutine allows a subset of material parameters to be changed for each vertex

using only the glColor subroutine, without calling glMaterial. If only such a subset of parameters is to be

specified for each vertex, the use of the glColorMaterial subroutine is preferred over calling glMaterial.

Calling glDrawElements may leave the current color indeterminate. If glColorMaterial is enabled while

the current color is indeterminate, the lighting material state specified by face and mode is also

indeterminate.

Errors

 GL_INVALID_ENUM face or mode is set to an unaccepted value.

GL_INVALID_OPERATION The glColorMaterial subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glColorMaterial subroutine are as follows. (See the glGet subroutine for more

information.)

glIsEnabled with argument GL_COLOR_MATERIAL

glGet with argument GL_COLOR_MATERIAL_PARAMETER

glGet with argument GL_COLOR_MATERIAL_FACE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glColor subroutine, glEnable or glDisable subroutine, glLight

subroutine, glLightModel subroutine, glMaterial subroutine.

glColorNormalVertexSUN Subroutine

Purpose

Specifies a color, a normal and a vertex in one call.

48 OpenGL 1.2 Reference Manual

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glColor4fNormal3fVertex3fSUN (GLfloat r,

 GLfloat g,

 GLfloat b,

 GLfloat a,

 GLfloat nx,

 GLfloat ny,

 GLfloat nz,

 GLfloat x,

 GLfloat y,

 GLfloat z)

void glColor4fNormal3fVertex3fvSUN (const GLfloat *c,

 const GLfloat *n,

 const GLfloat *v)

Description

This subroutine can be used as a replacement for the following calls:

 glColor();

 glNormal();

 glVertex();

For example, glColor4fNormal3fVertex3fvSUN replaces the following calls:

 glColor4f();

 glNormal3f();

 glVertex3fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

 r, g, b, a specifies r, g, b, and a components of the color for this vertex.

c specifies a pointer to an array of the four components r, g, b, and a.

nx, ny, nz specifies x, y, and z coordinates of the normal vector for this vertex.

n specifies a pointer to an array of the three elements nx, ny and nz.

x, y, z specifies the x, y, and z coordinates of a vertex. Not all parameters are present in all forms of

the command.

v specifies a pointer to an array of the three elements x, y, and z.

Notes

Calling glColorNormalVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined

behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 49

Related Information

The glBegin or glEnd subroutine, the glColor subroutine, the glNormal subroutine, the glTexCoord

subroutine, the glVertex subroutine.

glColorPointer Subroutine

Purpose

Defines an array of colors.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glColorPointer(GLint size,

 GLenum type,

 GLsizei stride,

 const GLvoid * pointer)

Description

The glColorPointer subroutine specifies the location and data format of an array of color components to

use when rendering. The size parameter specifies the number of components per color, and must be 3 or

4. The type parameter specifies the data type of each color component and stride gives the byte stride

from one color to the next allowing vertices and attributes to be packed into a single array or stored in

separate arrays. (Single-array storage may be more efficient on some implementations; see

glInterleavedArrays).

When a color array is specified, size, type, stride, and pointer are saved as client side state.

To enable and disable the color array, call glEnableClientState and glDisableClientState with the

argument GL_COLOR_ARRAY. If enabled, the color array is used when glDrawArrays, glDrawElements

or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Color array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 size Specifies the number of components per color. It must be 3 or 4. The initial value is 4.

type Specifies the data type of each color component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,

GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive colors. If stride is zero (the initial value), the colors are

understood to be tightly packed in the array. The initial value is 0.

pointer Specifies a pointer to the first component of the first color element in the array. The initial value is 0

(NULL pointer).

50 OpenGL 1.2 Reference Manual

Notes

The glColorPointer subroutine is available only if the GL version is 1.1 or greater.

The color array is initially disabled and it won’t be accessed when glArrayElement, glDrawElements, or

glDrawArrays is called.

Execution of glColorPointer is not allowed between glBegin and the corresponding glEnd, but an error

may or may not be generated. If an error is not generated, the operation is undefined.

The glColorPointer subroutine is typically implemented on the client side with no protocol.

Since the color array parameters are client side state, they are not saved or restored by glPushAttrib and

glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glColorPointer commands are not included in display lists.

Error Codes

GL_INVALID_VALUE is generated if size is not 3 or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_COLOR_ARRAY.

glGet with argument GL_COLOR_ARRAY_SIZE.

glGet with argument GL_COLOR_ARRAY_TYPE.

glGet with argument GL_COLOR_ARRAY_STRIDE.

glGetPointerv with argument GL_COLOR_ARRAY_POINTER.

Related Information

The glArrayElement subroutine, glColorPointerListIBM subroutine, glDrawArrays subroutine,

glDrawElements subroutine, glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv

subroutine, glIndexPointer subroutine, glInterleavedArrays subroutine, glNormalPointer subroutine,

glPopClientAttrib subroutine, glPushClientAttrib subroutine, glTexCoordPointer subroutine,

glVertexPointer subroutine.

glColorPointerEXT Subroutine

Purpose

Defines an array of colors.

Library

OpenGL and OpenGL C bindings library: libGL.a

C Syntax

void glColorPointerEXT(GLint size,

 GLenum type,

Chapter 1. OpenGL Subroutines 51

GLsizei stride,

 GLsizei count,

 const GLvoid *pointer)

Description

The glColorPointerEXT subroutine specifies the location and data format of an array of color components

to use when rendering. size specifies the number of components per color, and must be 3 or 4. The type

parameter specifies the data type of each color component and stride gives the byte stride from one color

to the next allowing vertexes and attributes to be packed into a single array or stored in separate arrays.

(Single-array storage may be more efficient on some implementations). The count parameter indicates the

number of array elements (counting from the first) that are static. Static elements may be modified by the

application, but once they are modified, the application must explicitly respecify the array before using it for

any rendering. When a color array is specified, size, type, stride, count and pointer are saved as

client-side state, and static array elements may be cached by the implementation.

The color array is enabled and disabled using glEnable and glDisable with the argument

GL_COLOR_ARRAY_EXT. If enabled, the color array is used when glDrawArraysEXT or

glArrayElementEXT is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Color array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 size Specifies the number of components per color. It must be 3 or 4.

type Specifies the data type of each color component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,

GL_FLOAT, or GL_DOUBLE_EXT, are accepted.

stride Specifies the byte offset between consecutive colors. If stride is zero the colors are understood to be

tightly packed in the array.

count Specifies the number of colors, counting from the first, that are static.

pointer Specifies a pointer to the first component of the first color element in the array.

Notes

Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the color array is disabled and it won’t be accessed when glArrayElementEXT or

glDrawArraysEXT is called.

Although, it is not an error to call glColorPointerEXT between the execution of glBegin and the

corresponding execution of glEnd, the results are undefined.

glColorPointerEXT will typically be implemented on the client side with no protocol.

Since the color array parameters are client side state, they are not saved or restored by glPushAttrib and

glPopAttrib.

52 OpenGL 1.2 Reference Manual

glColorPointerEXT commands are not entered into display lists.

glColorPointerEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL

command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when

called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors

GL_INVALID_VALUE is generated if size is not 3 or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride or count is negative.

Associated Gets

glIsEnabled with argument GL_COLOR_ARRAY_EXT.

glGet with argument GL_COLOR_ARRAY_SIZE_EXT.

glGet with argument GL_COLOR_ARRAY_TYPE_EXT.

glGet with argument GL_COLOR_ARRAY_STRIDE_EXT.

glGet with argument GL_COLOR_ARRAY_COUNT_EXT.

glGetPointervEXT with argument GL_COLOR_ARRAY_POINTER_EXT.

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElement subroutine, glDrawArraysEXT subroutine, glEdgeFlagPointerEXT subroutine,

glGetPointervEXT subroutine, glIndexPointerEXT subroutine, glNormalPointerEXT subroutine,

glTexCoordPointerEXT subroutine, glVertexPointerEXT subroutine.

glColorPointerListIBM Subroutine

Purpose

Defines a list of color arrays.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glColorPointerListIBM (GLint size,

 GLenum type,

 GLint stride,

 const GLvoid ** pointer,

 GLint ptrstride)

Chapter 1. OpenGL Subroutines 53

Description

The glColorPointerListIBM subroutine specifies the location and data format of a list of arrays of color

components to use when rendering. The size parameter specifies the number of components per color,

and must be 3 or 4. The type parameter specifies the data type of each color component. The stride

parameter gives the byte stride from one color to the next allowing vertices and attributes to be packed

into a single array or stored in separate arrays. (Single-array storage may be more efficient on some

implementations; see glInterleavedArrays). The ptrstride parameter specifies the byte stride from one

pointer to the next in the pointer array.

When a color array is specified, size, type, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a ″tightly packed″ array as it does in glColorPointer. Instead, it

causes the first array element of each array to be used for each vertex. Also, a negative value can be

used for stride, which allows the user to move through each array in reverse order.

To enable and disable the color arrays, call glEnableClientState and glDisableClientState with the

argument GL_COLOR_ARRAY. The color array is initially disabled. When enabled, the color arrays are

used when glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or glArrayElement is called. The last

three calls in this list will only use the first array (the one pointed at by pointer[0]). See the descriptions of

these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Color array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 size Specifies the number of components per color. It must be 3 or 4. The initial value is 4.

type Specifies the data type of each color component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,

GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive colors. The initial value is 0.

pointer Specifies a list of color arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.

Notes

The glColorPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is

supported.

Execution of glColorPointerListIBM is not allowed between glBegin and the corresponding glEnd, but an

error may or may not be generated. If an error is not generated, the operation is undefined.

The glColorPointerListIBM subroutine is typically implemented on the client side.

Since the color array parameters are client side state, they are not saved or restored by glPushAttrib and

glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

54 OpenGL 1.2 Reference Manual

When a glColorPointerListIBM call is encountered while compiling a display list, the information it

contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glColorPointer call and the glColorPointerListIBM call share the same state variables. A

glColorPointer call will reset the color list state to indicate that there is only one color list, so that any and

all lists specified by a previous glColorPointerListIBM call will be lost, not just the first list that it specified.

Error Codes

GL_INVALID_VALUE is generated if size is not 3 or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets

glIsEnabled with argument GL_COLOR_ARRAY.

glGetPointerv with argument GL_COLOR_ARRAY_LIST_IBM.

glGet with argument GL_COLOR_ARRAY_LIST_STRIDE_IBM.

glGet with argument GL_COLOR_ARRAY_SIZE.

glGet with argument GL_COLOR_ARRAY_STRIDE.

glGet with argument GL_COLOR_ARRAY_TYPE.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glDrawArrays subroutine, glDrawElements

subroutine, glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv subroutine,

glIndexPointer subroutine, glInterleavedArrays subroutine, glMultiDrawArraysEXT subroutine,

glMultiDrawElementsEXT subroutine, glMultiModeDrawArraysIBM subroutine,

glMultiModeDrawElementsIBM subroutine, glNormalPointer subroutine, glPopClientAttrib subroutine,

glPushClientAttrib subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glColorSubTable Subroutine

Purpose

Define a contiguous subset of a color lookup table.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glColorTable(GLenum target,

 GLsizei start,

 GLsizei count,

 GLenum format,

 GLenum type,

 const GLvoid *data)

void glColorTableEXT(GLenum target,

 GLsizei start,

 GLsizei count,

Chapter 1. OpenGL Subroutines 55

GLenum format,

 GLenum type,

 const GLvoid *data)

Description

glColorSubTable is used to respecify a contiguous portion of a color table previously defined using

glColorTable. The pixels reference by data replace the portion of the existing table from indices start to

start + count - 1, inclusive. This region may not include any entries outside the range of the color table as

it was originally specified. It is not an error to specify a subtable with width of 0, but such a specification

has no effect.

Parameters

 target must be GL_TEXTURE_COLOR_TABLE_EXT.

start is the starting index of the portion of the color table to be replaced.

count is the number of table entries to replace.

format is the format of the pixel data in data. The allowable values are GL_RED, GL_GREEN, GL_BLUE,

GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, GL_BGR, GL_RGBA and

GL_BGRA.

type is the type of the pixel data in table. The allowable values are GL_UNSIGNED_BYTE, GL_BYTE,

GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,

GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,

GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,

GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,

GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,

GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

data is a pointer to a one-dimensional array of pixel data that is processed to replace the specified region

of the color table.

Notes

GL_TEXTURE_COLOR_TABLE_SGI is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these

tokens may be used interchangeably. GL_PROXY_TEXTURE_COLOR_TABLE_SGI is an alias for

GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

 GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_VALUE is generated if start + count > width, where width is the

width of the previously defined color table.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_OPERATION is generated if glColorSubTable is executed between the

execution of glBegin and the corresponding execution of

glEnd.

Associated Gets

Associated gets for the glColorSubTable subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with arguement glGetColorTableParameter.

glGet with arguement glGetColorTable.

56 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glColorTable subroutine, the glColorTableParameter subroutine, the glCopyColorTable subroutine,

the glCopyColorSubTable subroutine, the glGetColorTable subroutine.

glColorTable Subroutine

Purpose

Define a color lookup table.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glColorTable(GLenum target,

 GLenum internalformat,

 GLsizei width,

 GLenum format,

 GLenum type,

 const GLvoid *table)

void glColorTableSGI(GLenum target,

 GLenum internalformat,

 GLsizei width,

 GLenum format,

 GLenum type,

 const GLvoid *table)

Description

glColorTable may be used in two ways: to test the actual size and color resolution of a lookup table given

a particular set of parameters, or to load the contents of a color lookup table. Use the targets

GL_PROXY_* for the first case and the other targets for the second case.

If target is GL_TEXTURE_COLOR_TABLE_EXT, glColorTable builds a color lookup table from an array

of pixels. The pixel array specified by width, format, type, and table is extracted from memory and

processed just as if glDrawPixels were called, but processing stops after the final expansion to RGBA is

completed.

The four scale parameters and the four bias parameters that are defined for the table are then used to

scale and bias the R, G, B, and A components of each pixel. (Use glColorTableParameter to set these

scale and bias parameters).

Next, the R, G, B, and A values are clamped to the range [0, 1]. Each pixel is then converted to the

internal format specified by internalformat. This conversion simply maps the component values of the pixel

(R, G, B, and A) to the values included in the internal format (red, green, blue, alpha, and intensity). The

mapping is as follows:

 Internal Format Red Green Blue Alpha Luminance Intensity

 GL_ALPHA A

Chapter 1. OpenGL Subroutines 57

GL_LUMINANCE R

 GL_LUMINANCE_ALPHA A R

 GL_INTENSITY R

 GL_RGB R G B

 GL_RGBA R G B A

Finally, the red, green, blue, alpha, luminance, and/or intensity components of the resulting pixels are

stored in the color table. They form a one-dimensional table with indices in the range [0, width-1].

If target is GL_PROXY_TEXTURE_COLOR_TABLE_EXT, glColorTable recomputes and stores the

values of the proxy color table’s state variables GL_COLOR_TABLE_FORMAT,

GL_COLOR_TABLE_WIDTH, GL_COLOR_TABLE_RED_SIZE, GL_COLOR_TABLE_GREEN_SIZE,

GL_COLOR_TABLE_BLUE_SIZE, GL_COLOR_TABLE_ALPHA_SIZE,

GL_COLOR_TABLE_LUMINANCE_SIZE, and GL_COLOR_TABLE_INTENSITY_SIZE. There is no effect

on the image or state of any actual color table. If the specified color table is too large to be supported,

then all the proxy state variables listed above are set to zero. Otherwise, the color table could be

supported by glColorTable using the corresponding non-proxy target, and the proxy state variable are set

as if that target were being defined.

The proxy state variables can be retrieved by calling glGetColorTableParameter with a target of

GL_PROXY_*. This allows the application to decide what the resulting color table attributes would be.

If a color table is enabled, and its width is non-zero, then its contents are used to replace a subset of the

components of each RGBA pixel group, based on the internal format of the table.

Each pixel group has color components (R, G, B, A) that are in the range [0.0, 1.0]. The color components

are rescaled to the size of the color lookup table to form an index. Then a subset of the components

based on the internal format of the table are replaced by the table entry specified by that index. If the color

components and contents of the table are represented as follows:

 Representation Meaning

 r Table index computed from R

 g Table index computed from G

 b Table index computed from B

 a Table index computed from A

 L[i] Luminance value at table index i

 I[i] Intensity value at table index i

 R[i] Red value at table index i

 G[i] Green value at table index i

 B[i] Blue value at table index i

 A[i] Alpha value at table index i

then the result of color table lookup is as follows:

 Resulting Color Components

 Table Internal Format R G B A

 GL_ALPHA R G B A[a]

 GL_LUMINANCE L[r] L[g] L[b] A

 GL_LUMINANCE_ALPHA L[r] L[g] L[b] A[a]

 GL_INTENSITY I[r] I[g] I[b] I[a]

 GL_RGB R[r] G[g] B[b] A

 GL_RGBA R[r] G[g] B[b] A[a]

Parameters

 target must be GL_TEXTURE_COLOR_TABLE_EXT or

GL_PROXY_TEXTURE_COLOR_TABLE_EXT.

58 OpenGL 1.2 Reference Manual

internalformat is the internal format of the color table. The allowable values are GL_ABGR_EXT,

GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,

GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,

GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,

GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,

GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,

GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_R3_G3_B2,

GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16,

GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGB8, GL_RGB10_A2,

GL_RGBA12, and GL_RGB16.

width is the number of entries in the color lookup table specified by table.

format is the format of the pixel data in table. The allowable values are GL_RED, GL_GREEN,

GL_BLUE, GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, GL_BGR,

GL_RGBA, GL_BGRA, GL_422_EXT, GL_422_REV_EXT, GL_422_AVERAGE_EXT, and

GL_422_REV_AVERAGE_EXT.

type is the type of the pixel data in table. The allowable values are GL_UNSIGNED_BYTE,

GL_BYTE, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,

GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,

GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,

GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,

GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,

GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV.

table is pointer to a one-dimensional array of pixel data that is processed to build the color table.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

GL_TEXTURE_COLOR_TABLE_SGI is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these

tokens may be used interchangeably. GL_PROXY_TEXTURE_COLOR_TABLE_SGI is an alias for

GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

 GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if internalformat is not one of the allowable values.

GL_INVALID_VALUE is generated if width is less than zero.

GL_INVALID_VALUE is generated if target is set to GL_TEXTURE_COLOR_TABLE_EXT and

width is not a power of two.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_TABLE_TOO_LARGE is generated if the requested color table is too large to be supported by

the implementation, and target is not a GL_PROXY_* target.

GL_INVALID_OPERATION is generated if glColorTable is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

Associated gets for the glColorTable subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with arguement glGetColorTableParameter.

glGet with arguement glGetColorTable.

Chapter 1. OpenGL Subroutines 59

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glColorSubTable subroutine, the glColorTableParameter subroutine, the glCopyColorTable

subroutine, the glCopyColorSubTable subroutine, the glGetColorTable subroutine.

glColorTableParameter Subroutine

Purpose

Specify attributes to be used when loading a color table.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glColorTableParameterfv(GLenum target,

 GLenum pname,

 const GLfloat *params)

void glColorTableParameteriv(GLenum target,

 GLenum pname,

 const GLint *params)

void glColorTableParameterfvSGI(GLenum target,

 GLenum pname,

 const GLfloat *params)

void glColorTableParameterivSGI(GLenum target,

 GLenum pname,

 const GLint *params)

Description

glColorTableParameter is used to specify the scale factors and bias terms applied to color components

when they are loaded into a color table. target indicates which color table the scale or bias terms apply to.

If pname is set to GL_COLOR_TABLE_SCALE, then the four values pointed to by params will be stored

as the red, green, blue and alpha scale factors, in that order.

If pname is set to GL_COLOR_TABLE_BIAS, then the four values pointed to by params will be stored as

the red, green, blue and alpha bias terms, in that order.

Parameters

 target is the target color table and must be

GL_TEXTURE_COLOR_TABLE_EXT.

pname is the symbolic name of a texture color lookup table

parameter. Must be GL_COLOR_TABLE_SCALE or

GL_COLOR_TABLE_BIAS.

60 OpenGL 1.2 Reference Manual

params is a pointer to an array where the values of the

paramaters are stored.

Notes

GL_TEXTURE_COLOR_TABLE_SGI is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these

tokens may be used interchangeably.

GL_PROXY_TEXTURE_COLOR_TABLE_SGI is an alias for

GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

 GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if pname is not one of the allowable values.

GL_INVALID_OPERATION is generated if glColorTable is executed between the

execution of glBegin and the corresponding execution of

glEnd.

Associated Gets

Associated gets for the glColorTableParameter subroutine are as follows. (See the glGet subroutine for

more information.)

glGet with arguement glGetColorTableParameter.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glPixelTransfer subroutine, the glColorTable subroutine.

glColorVertexSUN Subroutine

Purpose

Specifies a color and a vertex in one call.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glColor3fVertex3fSUN (GLfloat r,

 GLfloat g,

 GLfloat b,

 GLfloat x,

 GLfloat y,

 GLfloat z)

void glColor3fVertex3fvSUN (const GLfloat *c,

 const GLfloat *v)

void glColor4ubVertex2fSUN (GLubyte r,

Chapter 1. OpenGL Subroutines 61

GLubyte g,

 GLubyte b,

 GLubyte a,

 GLfloat x,

 GLfloat y)

void glColor4ubVertex2fvSUN (const GLubyte *c,

 const GLfloat *v)

void glColor4ubVertex3fSUN (GLubyte r,

 GLubyte g,

 GLubyte b,

 GLubyte a,

 GLfloat x,

 GLfloat y,

 GLfloat z)

void glColor4ubVertex3fvSUN (const GLubyte *c,

 const GLfloat *v)

Description

This subroutine can be used as a replacement for the following calls:

 glColor();

 glVertex();

For example, glColor4ubVertex3fvSUN replaces the following calls:

 glColor4ub();

 glVertex3fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

 x, y, z Specifies the x, y, and z coordinates of a vertex. Not all

parameters are present in all forms of the command.

v Specifies a pointer to an array of two, or three elements.

The elements of a two-element array are x and y. The

elements of a three-element array are x, y, and z.

r, g, b, a Specifies the red, green, blue, and alpha components of a

color. Not all parameters are present in all forms of the

command.

c Specifies a pointer to an array of three or four elements.

The elements of a three-element array are r, g, and b.

The elements of a four-element array are r, g, b, and a.

Notes

Calling glColorVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

62 OpenGL 1.2 Reference Manual

Related Information

The glBegin or glEnd subroutine, the glColor subroutine, the glNormal subroutine, the glTexCoord

subroutine, the glVertex subroutine.

glCopyColorSubTable Subroutine

Purpose

Load a subset of a color lookup table from the current GL_READ_BUFFER.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glCopyColorSubTable(GLenum target,

 GLsizei start,

 GLint x,

 GLint y,

 GLsizei width)

void glCopyColorSubTableSGI(GLenum target,

 GLsizei start,

 GLint x,

 GLint y,

 GLsizei width)

Description

glCopyColorSubTable is used to respecify a contiguous portion of a color table previously defined using

glColorTable. The pixels copied from the framebuffer replace the portion of the existing table from indices

start to start + x - 1, inclusive. This region may not include any entries outside the range of the color table

as it was originally specified. It is not an error to specify a subtexture with width of 0, but such a

specification has no effect.

Parameters

 target Must be GL_TEXTURE_COLOR_TABLE_EXT.

start is the starting index of the portion of the color table to be

replaced.

x, y is the window coordinates of the left end of the row of

pixels to be copied.

width is the width of the pixel rectangle.

Notes

GL_TEXTURE_COLOR_TABLE_SGI is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these

tokens may be used interchangeably. GL_PROXY_TEXTURE_COLOR_TABLE_SGI is an alias for

GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

 GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_VALUE is generated if width is less than zero.

Chapter 1. OpenGL Subroutines 63

GL_INVALID_OPERATION is generated if glCopyColorSubTable is executed

between the execution of glBegin and the corresponding

execution of glEnd.

Associated Gets

Associated gets for the glColorTable subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with arguement glGetColorTableParameter.

glGet with arguement glGetColorTable.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glColorSubTable subroutine, the glColorTableParameter subroutine, the glCopyColorTable

subroutine, the glGetColorTable subroutine.

glCopyColorTable Subroutine

Purpose

Load a color lookup table from the current GL_READ_BUFFER.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glCopyColorTable(GLenum target,

 GLenum internalformat,

 GLint x,

 GLint y,

 GLsizei width)

void glCopyColorTableSGI(GLenum target,

 GLenum internalformat,

 GLint x,

 GLint y,

 GLsizei width)

Description

glCopyColorTable loads a color table with pixels from the current GL_READ_BUFFER (rather than from

main memory, as is the case for glColorTable).

The screen-aligned pixel rectangle with lower-left corner at (x, y) having width width and height 1 is loaded

into the color table. If any pixels within this region are outside the window that is associated with the GL

context, the values obtained for those pixels are undefined

The pixels in the rectangle are processed just as if glReadPixels were called, with internalformat set to

RGBA, but processing stops after the final conversion to RGBA.

64 OpenGL 1.2 Reference Manual

The four scale parameters and the four bias parameters that are defined for the table are then used to

scale and bias the R, G, B, and A components of each pixel. (Use glColorTableParameter to set these

scale and bias parameters).

Next, the R, G, B, and A values are clamped to the range [0, 1]. Each pixel is then converted to the

internal format specified by internalformat. This conversion simply maps the component values of the pixel

(R, G, B, and A) to the values included in the internal format (red, green, blue, alpha, and intensity). The

mapping is as follows:

 Internal Format Red Green Blue Alpha Luminance Intensity

 GL_ALPHA A

 GL_LUMINANCE R

 GL_LUMINANCE_ALPHA A R

 GL_INTENSITY R

 GL_RGB R G B

 GL_RGBA R G B A

Finally, the red, green, blue, alpha, luminance, and/or intensity components of the resulting pixels are

stored in the color table. They form a one-dimensional table with indices in the range [0, width-1].

Parameters

 target Must be GL_TEXTURE_COLOR_TABLE_EXT or

GL_PROXY_TEXTURE_COLOR_TABLE_EXT.

internalformat is the internal format of the color table. The allowable

values are: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4,

GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,

GL_LUMINANCE, GL_LUMINANCE4,

GL_LUMINANCE8, GL_LUMINANCE12,

GL_LUMINANCE16, GL_LUMINANCE_ALPHA,

GL_LUMINANCE4_ALPHA4,

GL_LUMINANCE6_ALPHA2,

GL_LUMINANCE8_ALPHA8,

GL_LUMINANCE12_ALPHA4,

GL_LUMINANCE12_ALPHA12,

GL_LUMINANCE16_ALPHA16, GL_INTENSITY,

GL_INTENSITY4, GL_INTENSITY12, GL_INTENSITY16,

GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5,

GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16,

GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1,

GL_RGB8, GL_RGB10_A2, GL_RGBA12, and

GL_RGB16.

width The width of the pixel rectangle.

x is the x coordinate of the lower-left corner of the pixel

rectangle to be transferred to the color table.

y is the y coordinate of the lower-left corner of the pixel

rectangle to be transferred to the color table.

table is a pointer to a one-dimensional array of pixel data that is

processed to build the color table.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

GL_TEXTURE_COLOR_TABLE_SGI is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these

tokens may be used interchangeably. GL_PROXY_TEXTURE_COLOR_TABLE_SGI is an alias for

GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Chapter 1. OpenGL Subroutines 65

Error Codes

 GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if internalformat is not one of the allowable

values.

GL_INVALID_VALUE is generated if width is less than zero.

GL_TABLE_TOO_LARGE is generated if the requested color table is too large to be

supported by the implementation.

GL_INVALID_OPERATION is generated if glCopyColorTable is executed between

the execution of glBegin and the corresponding execution

of glEnd.

Associated Gets

Associated gets for the glColorTable subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with arguement glGetColorTableParameter.

glGet with arguement glGetColorTable.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glColorTable subroutine, the glColorTableParameter subroutine, the glCopyColorSubTable

subroutine, the glGetColorTable subroutine.

glCopyPixels Subroutine

Purpose

Copies pixels in the frame buffer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glCopyPixels(GLint xCoordinate,

 GLint yCoordinate,

 GLsizei Width,

 GLsizei Height,

 GLenum Type)

Description

The glCopyPixels subroutine copies a screen-aligned rectangle of pixels from the specified frame buffer

location to a region relative to the current raster position. Its operation is well defined only if the entire pixel

source region is within the exposed portion of the window. Results of copies from outside the window, or

from regions of the window that are not exposed, are hardware-dependent and undefined.

66 OpenGL 1.2 Reference Manual

The x and y parameters specify the window coordinates of the lower left corner of the rectangular region

to be copied. The Width and Height parameters specify the dimensions of the rectangular region to be

copied. Both Width and Height must be nonnegative numbers.

Several parameters control the processing of the pixel data while it is being copied. These parameters are

set with three subroutines: glPixelTransfer, glPixelMap, and glPixelZoom. This article describes the

effects on glCopyPixels of most, but not all, of the parameters specified by these three subroutines.

The glCopyPixels subroutine copies values from each pixel with lower left corner at (x + i, y + j) for 0 <= i

<Width and 0 <= j <Height. This pixel is said to be the ith pixel in the jth row. Pixels are copied in row

order from the lowest to the highest row, left to right in each row.

The Type parameter specifies whether color, depth, or stencil data is to be copied. The details of the

transfer for each data type are as follows.

 GL_COLOR Indices or red, green, blue, alpha (RGBA) colors are read from the buffer currently specified as

the read source buffer. (See the glReadBuffer subroutine.) If the GL is in color index mode, each

index that is read from this buffer is converted to a fixed-point format with an unspecified number

of bits to the right of the binary point. Each index is then shifted left by GL_INDEX_SHIFT bits

and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift is to the right. In

either case, 0 (zero) bits fill otherwise unspecified bit locations in the result. If GL_MAP_COLOR

is True, the index is replaced with the value that it references in lookup table

GL_PIXEL_MAP_I_TO_I. Whether the lookup replacement of the index is done or not, the

integer part of the index is then ANDed with 2b -1, where b is the number of bits in a color index

buffer.

If the GL is in RGBA mode, the red, green, blue, and alpha components of each pixel that is read

are converted to an internal floating-point format with unspecified precision. The conversion maps

the largest representable component value to 1.0, and component value 0 to 0.0. The resulting

floating-point color values are then multiplied by GL_c_SCALE and added to GL_c_BIAS, where

c is RED, GREEN, BLUE, and ALPHA for the respective color components. The results are

clamped to the range [0,1]. If GL_MAP_COLOR is True, each color component is scaled by the

size of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value that it references

in that table. c is R, G, B, or A, respectively.

The resulting indices or RGBA colors are then converted to fragments by attaching the current

raster position z coordinate and texture coordinates to each pixel, then assigning window

coordinates (xr + i , yr + j), where (xr, yr) is the current raster position, and the pixel was the ith

pixel in the jth row. These pixel fragments are then treated just like the fragments generated by

rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_DEPTH Depth values are read from the depth buffer and converted directly to an internal floating-point

format with unspecified precision. The resulting floating-point depth value is then multiplied by

GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is clamped to the range [0,1].

The resulting depth components are then converted to fragments by attaching the current raster

position color or color index and texture coordinates to each pixel, then assigning window

coordinates (xr + i , yr + j), where (xr, yr) is the current raster position, and the pixel was the ith

pixel in the jth row. These pixel fragments are then treated just like the fragments generated by

rasterizing points, lines, or polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

Chapter 1. OpenGL Subroutines 67

GL_STENCIL Stencil indices are read from the stencil buffer and converted to an internal fixed-point format with

an unspecified number of bits to the right of the binary point. Each fixed-point index is then

shifted left by GL_INDEX_SHIFT bits and added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is

negative, the shift is to the right. In either case, 0 bits fill otherwise unspecified bit locations in the

result. If GL_MAP_STENCIL is True, the index is replaced with the value that it references in the

lookup table GL_PIXEL_MAP_S_TO_S. Whether the lookup replacement of the index is done or

not, the integer part of the index is then ANDed with 2b -1, where b is the number of bits in the

stencil buffer. The resulting stencil indices are then written to the stencil buffer such that the index

read from the ith location of the jth row is written to location (xr + i, yr + j), where (xr, yr) is the

current raster position. Only the pixel ownership test, the scissor test, and the stencil writemask

affect these writes.

The rasterization described thus far assumes pixel zoom factors of 1.0. If glPixelZoom is used to change

the x and y pixel zoom factors, pixels are converted to fragments as follows. If (xr, yr) is the current raster

position, and a given pixel is in the ith location in the jth row of the source pixel rectangle, fragments are

generated for pixels whose centers are in the rectangle with corners at

Unmapped format: variant of paragraph

(xr + zoomx i, yr + zoomy j)

Unmapped format: variant of paragraph
and

Unmapped format: variant of paragraph

(xr + zoomx (i + 1), yr + zoomy (j + 1)),

 where zoom x is the value of GL_ZOOM_X and zoomy is the value of GL_ZOOM_Y.

Parameters

 xCoordinate Specifies the x window coordinate of the lower left corner of the rectangular region of pixels to

be copied.

yCoordinate Specifies the y window coordinate of the lower left corner of the rectangular region of pixels to

be copied.

Width Specifies the width of the rectangular region of pixels to be copied. This parameter does not

accept a negative value.

Height Specifies the height of the rectangular region of pixels to be copied. This parameter does not

accept a negative value.

Type Specifies whether color values, depth values, or stencil values are to be copied. Symbolic

constants GL_COLOR, GL_DEPTH, and GL_STENCIL are accepted.

Notes

Modes specified by glPixelStore have no effect on the operation of glCopyPixels.

Errors

 GL_INVALID_ENUM Type is not an accepted value.

GL_INVALID_VALUE Either Width or Height is negative.

GL_INVALID_OPERATION Type is GL_DEPTH and there is no depth buffer.

GL_INVALID_OPERATION Type is GL_STENCIL and there is no stencil buffer.

GL_INVALID_OPERATION The glCopyPixels subroutine is called between a call to glBegin and the

corresponding call to glEnd.

68 OpenGL 1.2 Reference Manual

Associated Gets

Associated gets for the glCopyPixels subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_CURRENT_RASTER_POSITION.

glGet with argument GL_CURRENT_RASTER_POSITION_VALID.

Examples

To copy the color pixel in the lower left corner of the window to the current raster position, enter the

following:

glCopyPixels(0, 0, 1, 1, GL_COLOR);

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glDepthFunc subroutine, glDrawBuffer subroutine, glDrawPixels

subroutine, glPixelMap subroutine, glPixelTransfer subroutine, glPixelZoom subroutine, glRasterPos

subroutine, glReadBuffer subroutine, glReadPixels subroutine, glStencilFunc subroutine.

glCopyTexImage1D Subroutine

Purpose

Defines a one-dimensional (1D) texture image.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glCopyTexImage1D(GLenum target,

 GLint level,

 GLenum internalFormat,

 GLint xCoordinate,

 GLint yCoordinate,

 GLsizei width,

 GLint border)

Description

The glCopyTexImage1D subroutine defines a one dimensional texture image with pixels from the current

GL_READ_BUFFER.

The screen aligned pixel row with left corner at (x,y) and with a length of width + 2 * border defines the

texture array at the mipmap level specified by level. IIternalFormat specifies the internal format of the

texture array.

The pixels in the row are processed exactly as if glCopyPixels had been called, but the process stops

just before final conversion. At this point all pixel component values are clamped to the range [0, 1] and

then converted to the texture’s internal format for storage in the texel array.

Chapter 1. OpenGL Subroutines 69

Pixel ordering is such that lower x screen coordinates correspond to lower texture coordinates.

If any of the pixels within the specified row of the current GL_READ_BUFFER are outside the window

associated with the current rendering context, then the values obtained for those pixels are undefined.

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.

internalFormat Specifies the internal format of the texture. Must be one of the following symbolic

constants: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12,

GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8,

GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA,

GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,

GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,

GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,

GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,

GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,

GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,

GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

xCoordinate Specifies the x window coordinate of the lower left corner of the row of pixels to be

copied.

yCoordinate Specifies the y window coordinate of the lower left corner of the row of pixels to be

copied.

width Specifies the width of the texture image. Must be 0 or 2**n + 2*border for some integer n.

The height of the texture image is 1.

border Specifies the width of the border. Must be either 0 or 1.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

The glCopyTexImage1D subroutine is available only if the GL version is 1.1 or greater.

1, 2, 3, or 4 are not accepted values for internalFormat.

An image with zero width indicates a null texture.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value

of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_VALUE is generated if width is less than zero, greater than 2 + GL_MAX_TEXTURE_SIZE,

or if width cannot be represented as 2**k+ 2 * border for some integer k.

GL_INVALID_VALUE is generated if width is less than zero or greater than 2 +

GL_MAX_TEXTURE_SIZE, or if it cannot be represented as 2**n + 2 * border for some integer value of n.

70 OpenGL 1.2 Reference Manual

GL_INVALID_OPERATION is generated if glCopyTexImage1D is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_1D

Related Information

The glCopyTexImage2D subroutine, glDrawPixels subroutine, glFog subroutine, glPixelStore

subroutine, glPixelTransfer subroutine, glTexEnv subroutine, glTexGen subroutine, glTexImage1D

subroutine, glTexParameter subroutine.

glCopyTexImage2D Subroutine

Purpose

Defines a two-dimensional (2D) texture image.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glCopyTexImage2D(GLenum target,

 GLint level,

 GLenum internalFormat,

 GLint xCoordinate,

 GLint yCoordinate,

 GLsizei width,

 GLsizei height,

 GLint border)

Description

The glCopyTexImage2D subroutine defines a two-dimensional texture image with pixels from the current

GL_READ_BUFFER.

The screen aligned pixel rectangle with lower left corner at (x, y) and with a width of width + 2 * border

and height height + 2 * border defines the texture array at the mipmap level specified by level.

internalFormat specifies the internal format of the texture array.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the process

stops just before final conversion. At this point all pixel component values are clamped to the range

[0.0,1.0] and then converted to the texture’s internal format for storage in the texel array.

Pixel ordering is such that lower x and y screen coordinates correspond to lower s and t texture

coordinates.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the

window associated with the current rendering context, then the values obtained for those pixels are

undefined.

Chapter 1. OpenGL Subroutines 71

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_2D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.

internalFormat Specifies the internal format of the texture. Must be one of the following symbolic

constants: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12,

GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4, GL_LUMINANCE8,

GL_LUMINANCE12, GL_LUMINANCE16, GL_LUMINANCE_ALPHA,

GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,

GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,

GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,

GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,

GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,

GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,

GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

xCoordinate Specifies the x window coordinate of the lower left corner of the row of pixels to be

copied.

yCoordinate Specifies the y window coordinate of the lower left corner of the row of pixels to be

copied.

width Specifies the width of the texture image. Must be 0 or 2**n + 2*border for some integer n.

The height of the texture image is 1.

height Specifies the height of the texture image. Must be 0 or 2**m + 2*border for some integer

m.

border Specifies the width of the border. Must be either 0 or 1.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

The glCopyTexImage2D subroutine is available only if the GL version is 1.1 or greater.

1, 2, 3, or 4 are not accepted values for internalFormat.

An image with height or width of 0 indicates a NULL texture.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value

of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width or height is less than zero, greater than 2 +

GL_MAX_TEXTURE_SIZE, or if width or height cannot be represented as 2**k + 2 * border for some

integer k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_VALUE is generated if internalFormat is not one of the allowable values.

GL_INVALID_OPERATION is generated if glCopyTexImage2D is executed between the execution of

glBegin and the corresponding execution of glEnd.

72 OpenGL 1.2 Reference Manual

Associated Gets

glGetTexImage.

glIsEnabled with argument GL_TEXTURE_2D.

Related Information

The glCopyPixels subroutine, glCopyTexImage1D subroutine, glPixelStore subroutine, glPixelTransfer

subroutine, glTexEnv subroutine, glTexImage2D subroutine, glTexParameter subroutine.

glCopyTexSubImage1D Subroutine

Purpose

Copies a one-dimensional (1D) texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glCopyTexSubImage1D(GLenum target,

 GLint level,

 GLint xoffset,

 GLint xCoordinate,

 GLint yCoordinate,

 GLsizei width)

Description

The glCopyTexSubImage1D subroutine replaces a portion of a one dimensional texture image with pixels

from the current GL_READ_BUFFER (rather than from main memory, as is the case for

glTexSubImage1D).

The screen aligned pixel row with left corner at (x, y), and with length width replaces the portion of the

texture array with x indices xoffset through xoffset + width - 1, inclusive. The destination in the texture

array may not include any texels outside the texture array as it was originally specified.

The pixels in the row are processed exactly as if glCopyPixels had been called, but the process stops

just before final conversion. At this point all pixel component values are clamped to the range [0, 1] and

then converted to the texture’s internal format for storage in the texel array.

It is not an error to specify a subtexture with zero width, but such a specification has no effect. If any of

the pixels within the specified row of the current GL_READ_BUFFER are outside the read window

associated with the current rendering context, then the values obtained for those pixels are undefined.

No change is made to the internalFormat, width, or border parameters of the specified texture array or to

texel values outside the specified subregion.

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap

reduction image.

xoffset Specifies the texel offset within the texture array.

xCoordinate Specifies the x window coordinate of the lower left corner of the row of pixels to be copied.

Chapter 1. OpenGL Subroutines 73

yCoordinate Specifies the y window coordinate of the lower left corner of the row of pixels to be copied.

width Specifies the width of the texture image subimage.

Notes

The glCopyTexSubImage1D subroutine is available only if the GL version is 1.1 or greater.

Texturing has no effect in color index mode.

The glPixelTransfer mode affects texture images in exactly the way they affect glDrawPixels.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_1D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage1D operation.

GL_INVALID_VALUE is generated if width is less than zero.

GL_INVALID_VALUE may be generated if level>log2 max, where max is the returned value of

GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if y < -b or if width < -b, where b is the border width of the texture

array.

GL_INVALID_VALUE is generated if xoffset < -b, or (xoffset + width) > (w-b). Where w is the

GL_TEXTURE_WIDTH, and b is the GL_TEXTURE_BORDER of the texture image being modified. Note

that w includes twice the border width.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_1D.

Related Information

The glCopyTexSubImage2D subroutine, glDrawPixels subroutine, glFog subroutine, glPixelStore

subroutine, glPixelTransfer subroutine, glTexEnv subroutine, glTexGen subroutine, glTexImage1D

subroutine, glTexSubImage1D subroutine, glTexParameter subroutine,

glCopyTexSubImage2D Subroutine

Purpose

Copies a two-dimensional (2D) texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glCopyTexSubImage2D(GLenum target,

 GLint level,

 GLint xoffset,

 GLint yoffset,

74 OpenGL 1.2 Reference Manual

GLint xCoordinate,

 GLint yCoordinate,

 GLsizei width,

 GLsizei height)

Description

The glCopyTexSubImage2D subroutine replaces a portion of a two dimensional texture image with pixels

from the current GL_READ_BUFFER (rather than from main memory, as is the case for

glTexSubImage2D).

The screen aligned pixel rectangle with lower left corner at (x, y) and with width width and height height

replaces the portion of the texture array with x indices xoffset through xoffset + width - 1, inclusive, and y

indices yoffset through yoffset + height - 1, inclusive, at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the process

stops just before final conversion. At this point all pixel component values are clamped to the range [0, 1]

and then converted to the texture’s internal format for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the texture array as it

was originally specified. It is not an error to specify a subtexture with zero width or height, but such a

specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the read

window associated with the current rendering context, then the values obtained for those pixels are

undefined.

No change is made to the internalformat, width, height, or border parameters of the specified texture array

or to texel values outside the specified subregion.

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_2D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap

reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

xCoordinate Specifies the x window coordinate of the lower left corner of the row of pixels to be copied.

yCoordinate Specifies the y window coordinate of the lower left corner of the row of pixels to be copied.

width Specifies the width of the texture image subimage.

height Specifies the height of the texture subimage.

Notes

The glCopyTexSubImage2D subroutine is available only if the GL version is 1.1 or greater.

Texturing has no effect in color index mode.

The glPixelTransfer mode affects texture images in exactly the way they affect glDrawPixels.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage2D operation.

Chapter 1. OpenGL Subroutines 75

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value

of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if x < -b or if y < -b, where b is the border width of the texture array.

GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, or (yoffset +

height) > (h - b). Where w is the GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT, and b is the

GL_TEXTURE_BORDER of the texture image being modified. Note that w and h include twice the border

width.

GL_INVALID_OPERATION is generated if glCopyTexSubImage2D is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_2D

Related Information

The glCopyTexImage2D subroutine, glDrawPixels subroutine, glFog subroutine, glPixelStore

subroutine, glPixelTransfer subroutine, glTexEnv subroutine, glTexGen subroutine, glTexImage2D

subroutine, glTexParameter subroutine.

glCopyTexSubImage3D Subroutine

Purpose

Copies a three-dimensional (3D) texture subimage. This subroutine is only supported on OpenGL 1.2 and

later.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glCopyTexSubImage3D (GLenum target,

 GLint level,

 GLint xoffset,

 GLint yoffset,

 GLint zoffset,

 GLint x,

 GLint y,

 GLsizei width,

 GLsizei height)

Description

The glCopyTexSubImage3D subroutine replaces a rectangular portion of a three-dimensional texture

image with pixels from the current GL_READ_BUFFER (rather than from main memory, as is the case for

glTexSubImage3D).

76 OpenGL 1.2 Reference Manual

The screen-aligned pixel rectangle with lower-left corner at (x, y) and with width width and height height

replaces the portion of the texture array with x indices xoffset through xoffset + width - 1, inclusive, and y

indices yoffset through yoffset + height - 1, inclusive, at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the process

stops just before final conversion. At this point all pixel component values are clamped to the range [0, 1]

and then converted to the texture’s internal format for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the texture array as it

was originally specified. It is not an error to specify a subtexture with zero width or height, but such a

specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the read

window associated with the current rendering context, then the values obtained for those pixels are

undefined.

No change is made to the internalformat, width, height, depth, or border parameters of the specified

texture array or to texel values outside the specified subregion.

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_3D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap

reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

zoffset Specifies a texel offset in the z direction within the texture array.

x, y Specify the window coordinates of the lower left corner of the rectangular region of pixels to be copied.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

Notes

Texturing has no effect in color index mode.

The glPixelTransfer mode affects texture images in exactly the way they affect glDrawPixels.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D.

GL_INVALID_OPERATION is generated if texture array has not been defined by a previous

glTexImage3D operation.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value

of GL_MAX_3D_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if x < -b or if y < -b, where b is the border width of the texture array.

GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, (yoffset + height)

> (h - b), zoffset < -b, or (zoffset + depth) > (d - b). Where w is the GL_TEXTURE_WIDTH, h is the

GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH, and b is the GL_TEXTURE_BORDER of the

texture image being modified. Note that w, h, and d include twice the border width.

Chapter 1. OpenGL Subroutines 77

GL_INVALID_OPERATION is generated if glCopyTexSubImage3D is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_3D.

Related Information

The glDrawPixels subroutine, glFog subroutine, glPixelStore subroutine, glPixelTransfer subroutine,

glTexEnv subroutine, glTexGen subroutine, glTexImage3D subroutine, glTexParameter subroutine.

glCopyTexSubImage3DEXT Subroutine

Purpose

Copies a three-dimensional (3D) texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glCopyTexSubImage3DEXT(GLenum target,

 GLint level,

 GLint xoffset,

 GLint yoffset,

 GLint zoffset,

 GLint x,

 GLint y,

 GLsizei width,

 GLsizei height)

Description

The glCopyTexSubImage3DEXT subroutine replaces a rectangular portion of a three-dimensional texture

image with pixels from the current GL_READ_BUFFER (rather than from main memory, as is the case for

glTexSubImage3DEXT).

The screen-aligned pixel rectangle with lower-left corner at (x, y) and with width width and height height

replaces the portion of the texture array with x indices xoffset through xoffset + width - 1, inclusive, and y

indices yoffset through yoffset + height - 1, inclusive, at the mipmap level specified by level.

The pixels in the rectangle are processed exactly as if glCopyPixels had been called, but the process

stops just before final conversion. At this point all pixel component values are clamped to the range [0, 1]

and then converted to the texture’s internal format for storage in the texel array.

The destination rectangle in the texture array may not include any texels outside the texture array as it

was originally specified. It is not an error to specify a subtexture with zero width or height, but such a

specification has no effect.

If any of the pixels within the specified rectangle of the current GL_READ_BUFFER are outside the read

window associated with the current rendering context, then the values obtained for those pixels are

undefined.

78 OpenGL 1.2 Reference Manual

No change is made to the internalformat, width, height, depth, or border parameters of the specified

texture array or to texel values outside the specified subregion.

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_3D_EXT.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap

reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

zoffset Specifies a texel offset in the z direction within the texture array.

x, y Specify the window coordinates of the lower left corner of the rectangular region of pixels to be copied.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

Notes

The glCopyTexSubImage3DEXT subroutine is available only if the EXT_texture_3d extension is

supported.

Texturing has no effect in color index mode.

The glPixelTransfer mode affects texture images in exactly the way they affect glDrawPixels.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D_EXT.

GL_INVALID_OPERATION is generated if texture array has not been defined by a previous

glTexImage3D operation.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value

of GL_MAX_3D_TEXTURE_SIZE_EXT.

GL_INVALID_VALUE is generated if x < -b or if y < -b, where b is the border width of the texture array.

GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, (yoffset + height)

> (h - b), zoffset < -b, or (zoffset + depth) > (d - b). Where w is the GL_TEXTURE_WIDTH, h is the

GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH_EXT, and b is the GL_TEXTURE_BORDER of

the texture image being modified. Note that w, h, and d include twice the border width.

GL_INVALID_OPERATION is generated if glCopyTexSubImage3DEXT is executed between the

execution of glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_3D_EXT.

Related Information

The glDrawPixels subroutine, glFog subroutine, glPixelStore subroutine, glPixelTransfer subroutine,

glTexEnv subroutine, glTexGen subroutine, glTexImage3DEXT subroutine, glTexParameter subroutine.

Chapter 1. OpenGL Subroutines 79

glCullFace Subroutine

Purpose

Specifies whether frontfacing or backfacing facets may be culled.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glCullFace(GLenum mode)

Parameters

 mode Specifies whether frontfacint or backfacing facets are candidates for culling. Symbolic constants GL_FRONT,

GL_BACK, and GL_FRONT_AND_BACK are accepted. The initial value is GL_BACK.

Description

The glCullFace subroutine specifies whether frontfacing or backfacing facets are culled (as specified by

the mode parameter) when facet culling is enabled. Facet culling is enabled and disabled using the

glEnable and glDisable subroutines with the argument GL_CULL_FACE. Facets include triangles,

quadrilaterals, polygons, and rectangles.

The glFrontFace subroutine specifies which of the clockwise and counterclockwise facets are frontfacing

and backfacing.

Notes

If mode is GL_FRONT_AND_BACK, no facets are drawn, but other primitives such as points and lines

are drawn.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glCullFace is executed between the execution of glBegin and

the corresponding execution of glEnd.

Associated Gets

glIsEnabled with argument GL_CULL_FACE.

glGet with argument GL_CULL_FACE_MODE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glEnable or glDisable subroutine, glFrontFace subroutine.

80 OpenGL 1.2 Reference Manual

glDeleteLists Subroutine

Purpose

Deletes a contiguous group of display lists.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glDeleteLists(GLunint List,

 GLsizei Range)

Description

The glDeleteLists subroutine causes a contiguous group of display lists to be deleted. The List parameter

is the name of the first display list to be deleted, and the Range parameter is the number of display lists to

be deleted. All display lists d with List <= d <= List + Range - 1 are deleted.

All storage locations allocated to the specified display lists are freed, and the names are available for

reuse at a later time. Names within the range that do not have an associated display list are ignored. If

Range is 0 (zero), nothing happens.

Parameters

 List Specifies the integer name of the first display list to delete.

Range Specifies the number of display lists to delete.

Errors

 GL_INVALID_VALUE Range is negative.

GL_INVALID_OPERATION The glDeleteLists subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCallList subroutine, glCallLists subroutine, glGenLists subroutine,

glIsList subroutine, glNewList subroutine.

glDeleteTextures Subroutine

Purpose

Deletes named textures.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 81

C Syntax

void glDeleteTextures(GLsizei n,

 const GLuint *textures)

Parameters

 n Specifies the number of textures to be deleted

textures Specifies an array of textures to be deleted.

Description

The glDeleteTextures subroutine deletes n textures named by the elements of the array textures. After a

texture is deleted, it has no contents or dimensionality, and its name is free for reuse (for example by

glGenTextures). If a texture that is currently bound is deleted, the binding reverts to 0 (the default

texture).

The glDeleteTextures subroutine silently ignores zeros and names that do not correspond to existing

textures.

Notes

The glDeleteTextures subroutine is available only if the GL version is 1.1 or greater.

The glDeleteTextures subroutine is not included in display lists.

Errors

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glDeleteTextures is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glIsTexture

Related Information

The glAreTexturesResident subroutine, glBindTexture subroutine, glGenTextures subroutine, glGet

subroutine, glGetTexParameter subroutine, glPrioritizeTextures subroutine, glTexImage1D subroutine,

glTexImage2D subroutine, glTexParameter subroutine.

glDeleteTexturesEXT Subroutine

Purpose

Deletes named textures.

Library

OpenGL and OpenGL C bindings library: libGL.a

C Syntax

void glDeleteTexturesEXT(GLsizei n,

 const GLuint *textures)

82 OpenGL 1.2 Reference Manual

Description

glDeleteTexturesEXT deletes n textures named by the elements of the array textures. After a texture is

deleted, it has no contents or dimensionality, and its name is free for reuse (by glGenTexturesEXT, for

example). If a texture that is currently bound is deleted, the binding reverts to zero (the default texture).

glDeleteTexturesEXT silently ignores zeros and names that do not correspond to existing textures.

glDeleteTexturesEXT is not included in display lists.

Parameters

 n The number of textures to be deleted.

textures An array in which each element is the name of a texture to be deleted.

Notes

glDeleteTexturesEXT is part of the EXT_texture_object extension, not part of the core GL command set.

If GL_EXT_texture_object is included in the string returned by glGetString, when called with argument

GL_EXTENSIONS, extension EXT_texture_object is supported by the connection.

Errors

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glDeleteTexturesEXT is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glIsTextureEXT

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glBindTextureEXT subroutine, glGenTexturesEXT subroutine, glGet subroutine, glGetTexParameter

subroutine, glTexParameter subroutine, glTexSubImage1D subroutine, glTexSubImage2D subroutine,

glTexSubImage3DEXT subroutine.

glDepthFunc Subroutine

Purpose

Specifies the function used for depth buffer comparisons.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glDepthFunc(GLenum function)

Chapter 1. OpenGL Subroutines 83

Description

The glDepthFunc subroutine specifies the function used to compare each incoming pixel z value with the

z value present in the depth buffer. The comparison is performed only if depth testing is enabled. (See

glEnable and glDisable of GL_DEPTH_TEST.)

The function parameter specifies the conditions under which the pixel will be drawn. The comparison

functions are as follows:

 GL_NEVER Never passes.

GL_LESS Passes if the incoming z value is less than the stored z value.

GL_EQUAL Passes if the incoming z value is equal to the stored z value.

GL_LEQUAL Passes if the incoming z value is less than or equal to the stored z value.

GL_GREATER Passes if the incoming z value is greater than the stored z value.

GL_NOTEQUAL Passes if the incoming z value is not equal to the stored z value.

GL_GEQUAL Passes if the incoming z value is greater than or equal to the stored z value.

GL_ALWAYS Always passes.

The default value of function is GL_LESS. Initially, depth testing is disabled.

Parameters

 function Specifies the depth comparison function. Symbolic constants GL_NEVER, GL_LESS, GL_EQUAL,

GL_LEQUAL, GL_GREATER, GL_NOTEQUAL, GL_GEQUAL, and GL_ALWAYS are accepted. The

default function is GL_LESS.

Errors

 GL_INVALID_ENUM function is not an accepted value.

GL_INVALID_OPERATION The glDepthFunc subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glDepthFunc subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_DEPTH_FUNC

glIsEnabled with argument GL_DEPTH_TEST.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glDepthRange subroutine, glEnable or glDisable subroutine, glGet

subroutine, glPolygonOffset subroutine, glPolygonOffsetEXT subroutine.

84 OpenGL 1.2 Reference Manual

glDepthMask Subroutine

Purpose

Enables or disables writing into the depth buffer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glDepthMask(GLboolean Flag)

Description

The glDepthMask subroutine specifies whether the depth buffer is enabled for writing. If the Flag

parameter is zero (0), depth buffer writing is disabled. Otherwise, it is enabled. Initially, depth buffer writing

is enabled.

Parameters

 Flag Specifies whether the depth buffer is enabled for writing. If Flag is 0, depth buffer writing is disabled.

Otherwise, it is enabled. Initially, depth buffer writing is enabled.

Errors

 GL_INVALID_OPERATION The glDepthMask subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glDepthMask subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_DEPTH_WRITEMASK.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glColorMask subroutine, glDepthFunc subroutine, glDepthRange

subroutine, glIndexMask subroutine, glStencilMask subroutine.

glDepthRange Subroutine

Purpose

Specifies the mapping of z values from normalized device coordinates to window coordinates.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 85

C Syntax

void glDepthRange(GLclampd near,

 GLclampd far)

Description

After clipping and division by w, z coordinates range from -1.0 to 1.0, corresponding to the near and far

clipping planes. The glDepthRange subroutine specifies a linear mapping of the normalized z coordinates

in this range to window z coordinates. Regardless of the actual depth buffer implementation, window

coordinate depth values are treated as though they range from 0.0 through 1.0 (like color components).

Thus, the values accepted by glDepthRange are both clamped to this range before they are accepted.

The default mapping of 0,1 maps the near plane to 0 (zero) and the far plane to 1 (one). With this

mapping, the depth buffer range is fully utilized.

Parameters

 near Specifies the mapping of the near clipping plane to window coordinates. The default value is 0.

far Specifies the mapping of the far clipping plane to window coordinates. The default value is 1.

Notes

It is not necessary that near be less than far. Reverse mappings such as 1,0 are acceptable.

Errors

 GL_INVALID_OPERATION The glDepthRange subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glDepthRange subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_DEPTH_RANGE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glDepthFunc subroutine, glPolygonOffset subroutine,

glPolygonOffsetEXT subroutine, glViewport subroutine.

glDrawArrays Subroutine

Purpose

Renders primitives from array data.

Library

OpenGL C bindings library: libGL.a

86 OpenGL 1.2 Reference Manual

C Syntax

void glDrawArrays(GLenum mode,

 GLint first,

 GLsizei count)

Description

The glDrawArrays subroutine lets you specify multiple geometric primitives with very few subroutine calls.

Instead of calling a GL procedure to pass each individual vertex, normal, texture coordinate, edge flage, or

color, you can prespecify separate arrays of vertexes, normals, and colors and use them to construct a

sequence of primitives with a single call to glDrawArrays.

When glDrawArrays is called, it uses count sequential elements from each enabled array to construct a

sequence of geometric primitives, beginning with element first. The mode parameter specifies what kind of

primitives are constructed, and how the array elements construct these primitives. If GL_VERTEX_ARRAY

is not enabled, no geometric primitives are generated.

Vertex attributes that are modified by glDrawArrays have an unspecified value after glDrawArrays

returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current color is undefined after

glDrawArrays executes. Attributes that are not modified remain well defined.

Parameters

 mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,

GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,

GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

first Specifies the starting index in the enabled arrays.

count Specifies the number of indices to be rendered.

Notes

The glDrawArrays subroutine is available only if the GL version is 1.1 or greater.

The glDrawArrays subroutine is included in display lists. If glDrawArrays is entered into a display list, the

necessary array data (determined by the array pointers and enables) is also entered into the display list.

Because the array pointers and enables are client side state, their values affect display lists when the lists

are created, not when the lists are executed.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if glDrawArrays is executed between the execution of glBegin

and the corresponding glEnd.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glDrawElements subroutine,

glEdgeFlagPointer subroutine, glGetPointerv subroutine, glIndexPointer subroutine,

glInterleavedArrays subroutine, glNormalPointer subroutine, glTexCoordPointer subroutine,

glVertexPointer subroutine.

Chapter 1. OpenGL Subroutines 87

glDrawArraysEXT Subroutine

Purpose

Renders primitives from array data.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glDrawArraysEXT(GLenum mode,

 GLint first,

 GLsizei count)

Description

glDrawArraysEXT makes it possible to specify multiple geometric primitives with very few subroutine

calls. Instead of calling an OpenGL procedure to pass each individual vertex, normal, or color, separate

arrays of vertexes, normals, and colors can be prespecified, and used to define a sequence of primitives

(all of the same type) with a single call to glDrawArraysEXT.

When glDrawArraysEXT is called, count sequential elements from each enabled array are used to

construct a sequence of geometric primitives, beginning with element first. mode specifies what kind of

primitives are constructed, and how the array elements are used to construct these primitives. If

GL_VERTEX_ARRAY_EXT is not enabled, no geometric primitives are generated.

Vertex attributes that are modified by glDrawArraysEXT have an unspecified value after

glDrawArraysEXT returns. For example, if GL_COLOR_ARRAY_EXT is enabled, the value of the current

color is undefined after glDrawArraysEXT executes. Attributes that aren’t modified remain well defined.

Operation of glDrawArraysEXT is atomic with respect to error generation. If an error is generated, no

other operations take place.

Parameters

 mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,

GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,

GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

first Specifies the starting index in the enabled arrays.

count Specifies the number of indices which should be rendered.

Notes

glDrawArraysEXT may be included in display lists. If glDrawArraysEXT is entered into a display list, the

necessary array data (determined by the array pointers and enables) is also entered into the display list.

Because the array pointers and enables are client side state, their values affect display lists when the lists

are created, not when the lists are executed.

Static array data may be read and cached by the implementation at any time. If static array elements are

modified and the arrays are not respecified, the results of any subsequent calls to glDrawArraysEXT are

undefined.

Although it is not an error to respecify an array between the execution of glBegin and the corresponding

execution of glEnd, the result of such respecification is undefined.

88 OpenGL 1.2 Reference Manual

glDrawArraysEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL

command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when

called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if glDrawArraysEXT is called between the execution of glBegin

and the corresponding execution of glEnd.

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElementEXT subroutine, glColorPointerEXT subroutine, glEdgeFlagPointerEXT subroutine,

glGetPointervEXT subroutine, glIndexPointerEXT subroutine, glNormalPointerEXT subroutine,

glTexCoordPointerEXT subroutine, glVertexPointerEXT subroutine.

glDrawBuffer Subroutine

Purpose

Specifies which color buffers are to be used for drawing.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glDrawBuffer(GLenum Mode)

Description

When colors are written to the frame buffer, they are written into the color buffers specified by the

glDrawBuffer subroutine. The specifications are:

 GL_NONE No color buffers are written.

GL_FRONT_LEFT Only the front left color buffer is written.

GL_FRONT_RIGHT Only the front right color buffer is written.

GL_BACK_LEFT Only the back left color buffer is written.

GL_BACK_RIGHT Only the back right color buffer is written.

GL_FRONT Only the front left and front right color buffers are written. If there is no front right

color buffer, only the front left color buffer is written.

GL_BACK Only the back left and back right color buffers are written. If there is no back right

color buffer, only the back left color buffer is written.

GL_LEFT Only the front left and back left color buffers are written. If there is no back left color

buffer, only the front left color buffer is written.

GL_RIGHT Only the front right and back right color buffers are written. If there is no back right

color buffer, only the front right color buffer is written.

Chapter 1. OpenGL Subroutines 89

GL_FRONT_AND_BACK All the front and the back color buffers (front left, front right, back left, back right)

are written. If there are no back color buffers, only the front left and front right color

buffers are written. If there are no right color buffers, only the front left and back left

color buffers are written. If there are no right or back color buffers, only the front left

color buffer is written.

GL_AUXi Only auxiliary color buffer i is written.

If more than one color buffer is selected for drawing, blending or logical operations are computed and

applied independently for each color buffer and may produce different results in each buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts include both left and right

buffers. Likewise, single-buffered contexts include only front buffers, while double-buffered contexts include

both front and back buffers. The context is selected at GL initialization.

Parameters

 Mode Specifies up to four color buffers to be drawn into. Symbolic constants GL_NONE, GL_FRONT_LEFT,

GL_FRONT_RIGHT, GL_BACK_LEFT, GL_BACK_RIGHT, GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT,

GL_FRONT_AND_BACK, and GL_AUXi, where i is between 0 and GL_AUX_BUFFERS - 1, are accepted.

(GL_AUX_BUFFERS is not the upper limit; use glGet to query the number of available aux buffers.) The

default value is GL_FRONT for single buffered contexts, and GL_BACK for double buffered contexts.

Notes

It is always the case that GL_AUXi = GL_AUX0 + i.

Errors

 GL_INVALID_ENUM Mode is not an accepted value.

GL_INVALID_OPERATION None of the buffers indicated by Mode exists.

GL_INVALID_OPERATION The glDrawBuffer subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glDrawBuffer subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_DRAW_BUFFER

glGet with argument GL_AUX_BUFFERS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glBlendFunc subroutine, glColorMask subroutine, glIndexMask

subroutine, glLogicOp subroutine, glReadBuffer subroutine.

90 OpenGL 1.2 Reference Manual

glDrawElements Subroutine

Purpose

Renders primitives from array data.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glDrawElements (GLenum mode,

 GLsizei count,

 GLenum type,

 const GLvoid *indices)

Description

The glDrawElements subroutine lets you specify multiple geometric primitives with very few subroutine

calls. Instead of calling a GL function to pass each individual vertex, normal, texture coordinate, edge

flage, or color, you can prespecify separate arrays of vertexes, normals, and so on and use them to

construct a sequence of primitives with a single call to glDrawElements.

When glDrawElements is called, it uses count sequential elements from an enabled array, starting at

indices to construct a sequence of geometric primitives. mode specifies what kind of primitives are

constructed and how the array elements construct these primitives. If GL_VERTEX_ARRAY is not

enabled, no geometric primitives are generated.

Vertex attributes that are modified by glDrawElements have an unspecified value after glDrawElements

returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current color is undefined after

glDrawElements executes. Attributes that are not modified maintain their previous values.

Notes

The glDrawElements subroutine is available only if the GL version is 1.1 or greater.

The glDrawElements subroutine is included in display lists. If glDrawElements is entered into a display

list, the necessary array data (determined by the array pointers and enables) is also entered into the

display list. Because the array pointers and enables are client side state, their values affect display lists

when the lists are created, not when the lists are executed.

Parameters

 mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,

GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,

GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

count Specifies the number of elements to be rendered.

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,

GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

Errors

GL_INVALID_ENUM is generated ifmode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

Chapter 1. OpenGL Subroutines 91

GL_INVALID_OPERATION is generated if glDrawElements is executed between the execution of

glBegin and the corresponding glEnd.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glDrawArrays subroutine,

glEdgeFlagPointer subroutine, glGetPointerv subroutine, glIndexPointer subroutine,

glInterleavedArrays subroutine, glNormalPointer subroutine, glTexCoordPointer subroutine,

glVertexPointer subroutine.

glDrawPixels Subroutine

Purpose

Writes a block of pixels to the frame buffer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glDrawPixels(GLsizei Width,

 GLsizei Height,

 GLenum Format,

 GLenum Type,

 const GLvoid * Pixels)

Description

The glDrawPixels subroutine reads pixel data from memory and writes it into the frame buffer relative to

the current raster position. Use glRasterPos to set the current raster position, and use glGet with

argument GL_CURRENT_RASTER_POSITION to query the raster position.

A number of parameters define the encoding of pixel data in memory and control the processing of the

pixel data before it is placed in the frame buffer. These parameters are set with four subroutines:

glPixelStore, glPixelTransfer, glPixelMap, and glPixelZoom. This article describes the effects on

glDrawPixels of many, but not all, of the parameters specified by these four subroutines.

Data is read from the Pixels parameter as a sequence of signed or unsigned bytes, signed or unsigned

shorts, signed or unsigned integers, or single-precision floating-point values, depending on Type. Each of

these bytes, shorts, integers, or floating-point values is interpreted as one color or depth component, or

one index, depending on Format. Indices are always treated individually. Color components are treated as

groups of one, two, three, or four values, again based on Format. Both individual indices and groups of

components are referred to as pixels. If Type is GL_BITMAP, the data must be unsigned bytes, and

Format must be either GL_COLOR_INDEX or GL_STENCIL_INDEX. Each unsigned byte is treated as

eight 1-bit pixels, with bit ordering determined by GL_UNPACK_LSB_FIRST. (See glPixelStore.)

Width multiplied by Height pixels are read from memory, starting at location Pixels. By default these pixels

are taken from adjacent memory locations, except that after every Width pixels are read, the read pointer

is advanced to the next 4-byte boundary. The 4-byte row alignment is specified by glPixelStore with

argument GL_UNPACK_ALIGNMENT, and it can be set to 1, 2, 4, or 8 bytes. Other pixel store

parameters specify different read pointer advancements, both before the first pixel is read, and after all

Width pixels are read. Refer to the glPixelStore subroutine for details on these options.

The Width multiplied by Height pixels that are read from memory are each operated on in the same way,

based on the values of several parameters specified by glPixelTransfer and glPixelMap. The details of

these operations, as well as the target buffer into which the pixels will be drawn, are specific to the format

92 OpenGL 1.2 Reference Manual

of the pixels, as specified by Format. Format can assume one of the following 18 symbolic values:

 GL_COLOR_INDEX Each pixel is a single value, a color index. It is converted to fixed point,

with an unspecified number of bits to the right of the binary point,

regardless of the memory data type. Floating-point values convert to true

fixed-point values. Signed and unsigned integer data is converted with all

fraction bits set to 0 (zero). Bitmap data converts to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and

added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift

is to the right. In either case, 0 bits fill otherwise unspecified bit locations

in the result.

If the GL is in red, green, blue, alpha (RGBA) mode, the resulting index is

converted to an RGBA pixel using the GL_PIXEL_MAP_I_TO_R,

GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and

GL_PIXEL_MAP_I_TO_A tables. If the GL is in color index mode and

GL_MAP_COLOR is True, the index is replaced with the value that it

references in the lookup table GL_PIXEL_MAP_I_TO_I. Whether the

lookup replacement of the index is done or not, the integer part of the

index is then ANDed with 2b -1, where b is the number of bits in a color

index buffer.

The resulting indices or RGBA colors are then converted to fragments by

attaching the current raster position z coordinate and texture coordinates

to each pixel, then assigning x and y window coordinates to the nth

fragment such that xn = xr + n mod Width and yn = yr + [n/Width], where

(xr, yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_STENCIL_INDEX Each pixel is a single value, a stencil index. It is converted to fixed point,

with an unspecified number of bits to the right of the binary point,

regardless of the memory data type. Floating-point values convert to true

fixed-point values. Signed and unsigned integer data is converted with all

fraction bits set to 0. Bitmap data converts to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and

added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift

is to the right. In either case, 0 bits fill otherwise unspecified bit locations

in the result. If GL_MAP_STENCIL is True, the index is replaced with the

value that it references in the lookup table GL_PIXEL_MAP_S_TO_S.

Whether the lookup replacement of the index is done or not, the integer

part of the index is then ANDed with 2b -1, where b is the number of bits

in the stencil buffer. The resulting stencil indices are then written to the

stencil buffer such that the nth index is written to location xn = xr + n mod

Width and yn = yr + [n/Width], where (xr, yr) is the current raster position.

Only the pixel ownership test, the scissor test, and the stencil writemask

affect these write operations.

Chapter 1. OpenGL Subroutines 93

GL_DEPTH_COMPONENT Each pixel is a single depth component. Floating-point data is converted

directly to an internal floating-point format with unspecified precision.

Signed integer data is mapped linearly to the internal floating-point format

such that the most positive representable integer value maps to 1.0, and

the most negative representable value maps to -1.0. Unsigned integer

data is mapped similarly: the largest integer value maps to 1.0, and 0

maps to 0.0. The resulting floating-point depth value is then multiplied by

GL_DEPTH_SCALE and added to GL_DEPTH_BIAS. The result is

clamped to the range [0,1].

The resulting depth components are then converted to fragments by

attaching the current raster position color or color index and texture

coordinates to each pixel, then assigning x and y window coordinates to

the nth fragment such that xn = xr + n mod Width and yn = yr +

[n/Width], where (xr, yr) is the current raster position. These pixel

fragments are then treated just like the fragments generated by rasterizing

points, lines, or polygons. Texture mapping, fog, and all the fragment

operations are applied before the fragments are written to the frame

buffer.

GL_RGBA Each pixel is a four-component group, red first, followed by green,

followed by blue, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED,

GREEN, BLUE, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

94 OpenGL 1.2 Reference Manual

GL_BGRA Each pixel is a four-component group, blue first, followed by green,

followed by red, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,

GREEN, RED, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

GL_ABGR_EXT Each pixel is a four-component group: for GL_RGBA, the red component

is first, followed by green, followed by blue, followed by alpha: for

GL_BGRA, the blue component is first, followed by green, followed by

red, followed by alpha: for GL_ABGR_EXT the order is alpha, blue,

green, and then red. Floating-point values are converted directly to an

internal floatingpoint format with unspecified precision. Signed integer

values are mapped linearly to the internal floating-point format such that

the most positive representable integer value maps to 1.0, and the most

negative representable value maps to -1.0. Unsigned integer data is

mapped similarly: the largest integer value maps to 1.0, and zero maps to

0.0. The resulting floating-point color values are then multiplied by

GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,

BLUE, and ALPHA for the respective color components. The results are

clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size

of lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value that

it references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that

xn = xr + n mod width

yn = yr + | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_RED Each pixel is a single red component. This component is converted to the

internal floating-point format in the same way as the red component of an

RGBA pixel is, then it is converted to an RGBA pixel with green and blue

set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated

just as if it had been sent in as an RGBA pixel.

Chapter 1. OpenGL Subroutines 95

GL_GREEN Each pixel is a single green component. This component is converted to

the internal floating-point format in the same way as the green component

of an RGBA pixel is, then it is converted to an RGBA pixel with red and

blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is

treated just as if it had been sent in as an RGBA pixel.

GL_BLUE Each pixel is a single blue component. This component is converted to

the internal floating-point format in the same way as the blue component

of an RGBA pixel is, then it is converted to an RGBA pixel with red and

green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is

treated just as if it had been sent in as an RGBA pixel.

GL_ALPHA Each pixel is a single alpha component. This component is converted to

the internal floating-point format in the same way as the alpha component

of an RGBA pixel is, then it is converted to an RGBA pixel with red,

green, and blue set to 0.0. After this conversion, the pixel is treated just

as if it had been sent in as an RGBA pixel.

GL_RGB Each pixel is a three-component group, red first, followed by green,

followed by blue. Each component is converted to the internal

floating-point format in the same way as the red, green, and blue

components of an RGBA pixel are. The color triple is converted to an

RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated

just as if it had been sent in as an RGBA pixel.

GL_BGR Each pixel is a three-component group, blue first, followed by green,

followed by red. Each component is converted to the internal floating-point

format in the same way as the blue, green, and red components of an

BGRA pixel are. The color triple is converted to an BGRA pixel with alpha

set to 1.0. After this conversion, the pixel is treated just as if it had been

sent in as an BGRA pixel.

GL_LUMINANCE Each pixel is a single luminance component. This component is converted

to the internal floating-point format in the same way as the red component

of an RGBA pixel is, then it is converted to an RGBA pixel with red,

green, and blue set to the converted luminance value, and alpha set to

1.0. After this conversion, the pixel is treated just as if it had been sent in

as an RGBA pixel.

GL_LUMINANCE_ALPHA Each pixel is a two-component group, luminance first, followed by alpha.

The two components are converted to the internal floating-point format in

the same way as the red component of an RGBA pixel is, then they are

converted to an RGBA pixel with red, green, and blue set to the converted

luminance value, and alpha set to the converted alpha value. After this

conversion, the pixel is treated just as if it had been sent in as an RGBA

pixel.

GL_422_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. The Cb for each even pixel is used as the Cb value for that pixel

and its neighbor to the right. The Cr in each odd pixel is used as the Cr

value for that pixel and its neighbor to the left. (If the width of the image is

odd, then the colors will be undefined in the rightmost column.) Through

the use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

96 OpenGL 1.2 Reference Manual

GL_422_REV_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. The Cb for each even pixel is used as the Cb value for that pixel and

its neighbor to the right. The Cr in each odd pixel is used as the Cr value

for that pixel and its neighbor to the left. (If the width of the image is odd,

then the colors will be undefined in the rightmost column.) Through the

use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

GL_422_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor

to the right. Each odd pixel gets its Cb from the average of its left and

right neighbor, and its Cr from the average of itself and its neighbor two to

the right. (If the width of the image is odd, then the colors will be

undefined in the rightmost column. If the neighbors to the right are not

present for a given fragment, we use GL_422_EXT to compute that

fragment.) Through the use of the color matrix, Y then assumes the role

of red, Cb becomes green and Cr becomes blue. After this conversion,

the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422_REV_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to

the right. Each odd pixel gets its Cb from the average of its left and right

neighbor, and its Cr from the average of itself and its neighbor two to the

right. (If the width of the image is odd, then the colors will be undefined in

the rightmost column. If the neighbors to the right are not present for a

given fragment, we use GL_422_REV_EXT to compute that fragment.)

Through the use of the color matrix, Y then assumes the role of red, Cb

becomes green and Cr becomes blue. After this convers ion, the pixel is

treated just as if it had been sent in as an RGB pixel.

The following table summarizes the meaning of the valid constants for the Type parameter:

 Type Corresponding Type

GL_UNSIGNED_BYTE Unsigned 8-bit integer

GL_BYTE Signed 8-bit integer

GL_BITMAP Single bits in unsigned 8-bit integers

GL_UNSIGNED_SHORT Unsigned 16-bit integer

GL_SHORT Signed 16-bit integer

GL_UNSIGNED_INT Unsigned 32-bit integer

GL_INT 32-bit integer

GL_FLOAT Single-precision floating-point

GL_UNSIGNED_BYTE_3_3_2 Unsigned 8-bit integer

GL_UNSIGNED_BYTE_2_3_3_REV Unsigned 8-bit integer

GL_UNSIGNED_SHORT_5_6_5 Unsigned 16-bit integer

Chapter 1. OpenGL Subroutines 97

GL_UNSIGNED_SHORT_5_6_5_REV Unsigned 16-bit integer

GL_UNSIGNED_SHORT_4_4_4_4 Unsigned 16-bit integer

GL_UNSIGNED_SHORT_4_4_4_4_REV Unsigned 16-bit integer

GL_UNSIGNED_SHORT_5_5_5_1 Unsigned 16-bit integer

GL_UNSIGNED_SHORT_1_5_5_5_REV Unsigned 16-bit integer

GL_UNSIGNED_INT_8_8_8_8 Unsigned 32-bit integer

GL_UNSIGNED_INT_8_8_8_8_REV Unsigned 32-bit integer

GL_UNSIGNED_INT_10_10_10_2 Unsigned 32-bit integer

GL_UNSIGNED_INT_2_10_10_10_REV Unsigned 32-bit integer

The rasterization described thus far assumed pixel zoom factors of 1.0. If glPixelZoom is used to change

the x and y pixel zoom factors, pixels are converted to fragments as follows. If (xr, yr) is the current raster

position, and a given pixel is in the nth column and mth row of the pixel rectangle, fragments are

generated for pixels whose centers are in the rectangle with corners at (xr + zoomx n, yr + zoomy m) and

(xr + zoomx (n + 1), yr + zoomy (m + 1)), where zoomx is the value of GL_ZOOM_X and zoomy is the

value of GL_ZOOM_Y.

Parameters

 Width Specifies the width of the pixel rectangle that will be written into the frame buffer.

Height Specifies the height of the pixel rectangle that will be written into the frame buffer.

Format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_STENCIL_INDEX,

GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,

GL_BGR, GL_BGRA, GL_ABGR_EXT, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_422_EXT,

GL_422_REV_EXT, GL_422_AVERAGE_EXT, and GL_422_REV_AVERAGE_EXT are accepted.

Type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,

GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,

GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,

GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,

GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,

GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,

GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and

GL_UNSIGNED_INT_2_10_10_10_REV, are accepted.

Pixels Specifies a pointer to the pixel data.

Notes

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL

command set.

Packed pixel types and BGR/BGRA formats are only supported in OpenGL 1.2 or later.

Errors

 GL_INVALID_VALUE Either Width or Height is negative.

GL_INVALID_ENUM Format or Type is not one of the accepted values.

GL_INVALID_OPERATION Format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,

GL_RGBA, GL_AGBR_EXT, GL_LUMINANCE, GL_LUMINANCE_ALPHA,

and the GL is in color index mode.

GL_INVALID_ENUM Type is GL_BITMAP and Format is not either GL_COLOR_INDEX or

GL_STENCIL_INDEX.

GL_INVALID_OPERATION Format is GL_STENCIL_INDEX and there is no stencil buffer.

GL_INVALID_OPERATION The glDrawPixels subroutine is called between a call to glBegin and the

corresponding call to glEnd.

98 OpenGL 1.2 Reference Manual

Associated Gets

Associated gets for the glDrawPixels subroutine are as follows. (See the glGet subroutine for more

information.)

 glGet with argument GL_CURRENT_RASTER_POSITION

glGet with argument GL_CURRENT_RASTER_POSITION_VALID.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glAlphaFunc subroutine, glBegin or glEnd subroutine, glBlendFunc subroutine, glCopyPixels

subroutine, glDepthFunc subroutine, glLogicOp subroutine, glPixelMap subroutine, glPixelStore

subroutine, glPixelTransfer subroutine, glPixelZoom subroutine, glRasterPos subroutine, glReadPixels

subroutine, glScissor subroutine, glStencilFunc subroutine.

glDrawRangeElements Subroutine

Purpose

Renders primitives from array data. This subrotuine is only supported on OpenGL 1.2 and later.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glDrawRangeElements(GLenum mode,

 GLuint start,

 GLuint end,

 GLsizei count,

 GLenum type,

 const GLvoid *indices)

Description

The glDrawRangeElements subroutine lets you specify multiple geometric primitives with very few

subroutine calls. Instead of calling a GL function to pass each individual vertex, normal, texture coordinate,

edge flage, or color, you can prespecify separate arrays of vertexes, normals, and so on and use them to

construct a sequence of primitives with a single call to glDrawRangeElements.

When glDrawRangeElements is called, it uses count sequential elements from indices to construct a

sequence of geometric primitives. GLuint start and GLuint end specify the values between which all

values in the array indices must lie. GLenum mode specifies what kind of primitives are constructed and

how the array elements construct these primitives. If GL_VERTEX_ARRAY is not enabled, no geometric

primitives are generated.

The recommended maximum amounts of vertex and index data can be determined by calling GetIntegerv

with the symbolic constants MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If

end-start+1 is greater than the value of MAX_ELEMENTS_VERTICES,or if count is greater than the value

Chapter 1. OpenGL Subroutines 99

of MAX_ELEMENTS_INDICES, then the call may operate at reduced performance. There is no

requirement that all vertices in the range [start,end] be referenced. However, the implementation may

partially process unused vertices, reducing performance from what could be achieved with an optimal

index set.

Vertex attributes that are modified by glDrawRangeElements have an unspecified value after

glDrawRangeElements returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current

color is undefined after glDrawRangeElements executes. Attributes that are not modified remain well

defined.

Parameters

 mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,

GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,

GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

start Specifies the start value in indices. Must be less than the end value in indices.

end Specifies the end value in indices. Must be greater than the start value in indices.

count Specifies the number of elements to be rendered.

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,

GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

Notes

The glDrawRangeElements subroutine is available only if the GL version is 1.1 or greater.

The glDrawRangeElements subroutine is included in display lists. If glDrawRangeElements is entered

into a display list, the necessary array data (determined by the array pointers and enables) is also entered

into the display list. Because the array pointers and enables are client side state, their values affect display

lists when the lists are created, not when the lists are executed.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative or the end value is less than the start value.

GL_INVALID_OPERATION is generated if glDrawRangeElements is executed between the execution of

glBegin and the corresponding glEnd.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glDrawArrays subroutine,

glEdgeFlagPointer subroutine, glGetPointerv subroutine, glIndexPointer subroutine, glNormalPointer

subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glEdgeFlag Subroutine

Purpose

Marks edges as either boundary or nonboundary.

Library

OpenGL C bindings library: libGL.a

100 OpenGL 1.2 Reference Manual

C Syntax

void glEdgeFlag(GLboolean Flag)

void glEdgeFlagv(const GLboolean *Flagv)

Description

Each vertex of a polygon, separate triangle, or separate quadrilateral specified between glBegin and

glEnd is marked as the start of either a boundary or nonboundary edge. If the current edge flag is True

when the vertex is specified, the vertex is marked as the start of a boundary edge. Otherwise, the vertex is

marked as the start of a nonboundary edge. glEdgeFlag sets the edge flag to True if the Flag parameter

is nonzero; otherwise, the edge flag is set to False.

The vertices of connected triangles and connected quadrilaterals are always marked as a boundary,

regardless of the value of the edge flag.

Boundary and nonboundary edge flags on vertices are significant only if GL_POLYGON_MODE is set to

GL_POINT or GL_LINE. See glPolygonMode.

Initially, the edge flag bit is True.

Parameters

 Flag Specifies the current edge flag value, either True or False.

Flagv Specifies a pointer to an array that contains a single Boolean element (either True or False). Replaces the

current edge flag value.

Notes

The current edge flag can be updated at any time. In particular, glEdgeFlag can be called between a call

to glBegin and the corresponding call to glEnd.

Associated Gets

Associated gets for the glEdgeFlag subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_EDGE_FLAG.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin subroutine, glEdgeFlagPointer subroutine, glEdgeFlagPointerEXT subroutine, glEnd

subroutine, glPolygonMode subroutine.

glEdgeFlagPointer Subroutine

Purpose

Defines an array of edge flags.

Chapter 1. OpenGL Subroutines 101

Library

OpenGL C bindings library: libGL.a

C Syntax

void glEdgeFlagPointer(GLsizei stride,

 const GLvoid * pointer)

Description

The glEdgeFlagPointer subroutine specifies the location and data format of an array of Boolean edge

flags to use when rendering. The stride parameter gives the byte stride from one edge flag to the next

allowing vertices and attributes to be packed into a single array or stored in separate arrays. (Single array

storage may be more efficient on some implementations; see glInterleavedArrays.)

When an edge flag array is specified, stride and pointer are saved as client side state.

To enable and disable the edge flag array, call glEnableClientState and glDisableClientState with the

argument GL_EDGE_FLAG_ARRAY. If enabled, the edge flag array is used when glDrawArrays,

glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Edge Flag array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 stride Specifies the byte offset between consecutive edge flags. If stride is zero (the initial value), the edge

flags are understood to be tightly packed in the array. The initial value is 0.

pointer Specifies a pointer to the first edge flag in the array. The initial value is 0 (NULL pointer).

Notes

The glEdgeFlagPointer subroutine is available only if the GL version is 1.1 or greater.

The edge flag array is initially disabled and it won’t be accessed when glArrayElement, glDrawElements,

or glDrawArrays is called.

Execution of glEdgeFlagPointer is not allowed between glBegin and the corresponding glEnd, but an

error may or may not be generated. If an error is not generated, the operation is undefined.

The glEdgeFlagPointer subroutine is typically implemented on the client side with no protocol.

Since the edge flag array parameters are client side state, they are not saved or restored by glPushAttrib

and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glEdgeFlagPointer subroutine is not included in display lists.

Error Codes

GL_INVALID_ENUM is generated if stride is negative.

102 OpenGL 1.2 Reference Manual

Associated Gets

glIsEnabled with argument GL_EDGE_FLAG_ARRAY

glGet with argument GL_EDGE_FLAG_ARRAY_STRIDE

glGetPointerv with argument GL_EDGE_FLAG_ARRAY_POINTER

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glDrawArrays subroutine, glDrawElements

subroutine, glEdgeFlagPointerListIBM subroutine, glEnable subroutine, glGetPointerv subroutine,

glIndexPointer subroutine, glNormalPointer subroutine, glPopClientAttrib subroutine,

glPushClientAttrib subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glEdgeFlagPointerEXT Subroutine

Purpose

Defines an array of edge flags.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glEdgeFlagPointerEXT(GLsizei stride,

 GLsizei count,

 const GLboolean *pointer)

Description

glEdgeFlagPointerEXT specifies the location and data format of an array of boolean edge flags to use

when rendering. stride gives the byte stride from one edge flag to the next allowing vertexes and attributes

to be packed into a single array or stored in separate arrays. (Single-array storage may be more efficient

on some implementations.) count indicates the number of array elements (counting from the first) that are

static. Static elements may be modified by the application, but once they are modified, the application

must explicitly respecify the array before using it for any rendering. When an edge flag array is specified,

stride, count and pointer are saved as client-side state, and static array elements may be cached by the

implementation.

The edge flag array is enabled and disabled using glEnable and glDisable with the argument

GL_EDGE_FLAG_ARRAY_EXT. If enabled, the edge flag array is used when glDrawArraysEXT or

glArrayElementEXT is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Edge Flag array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Chapter 1. OpenGL Subroutines 103

Parameters

 stride Specifies the byte offset between consecutive edge flags. If stride is zero the edge flags are

understood to be tightly packed in the array.

count Specifies the number of edge flags, counting from the first, that are static.

pointer Specifies a pointer to the first edge flag in the array.

Notes

Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the edge flag array is disabled and it won’t be accessed when glArrayElementEXT or

glDrawArraysEXT is called.

Although, it is not an error to call glEdgeFlagPointerEXT between the execution of glBegin and the

corresponding execution of glEnd, the results are undefined.

glEdgeFlagPointerEXT will typically be implemented on the client side with no protocol.

Since the edge flag array parameters are client side state, they are not saved or restored by glPushAttrib

and glPopAttrib.

glEdgeFlagPointerEXT commands are not entered into display lists.

glEdgeFlagPointerEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL

command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when

called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors

GL_INVALID_ENUM is generated if stride or count is negative.

Associated Gets

glIsEnabled with argument GL_EDGE_FLAG_ARRAY_EXT .

glGet with argument GL_EDGE_FLAG_ARRAY_STRIDE_EXT.

glGet with argument GL_EDGE_FLAG_ARRAY_COUNT_EXT.

glGetPointervEXT with argument GL_EDGE_FLAG_ARRAY_POINTER_EXT.

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElementEXT subroutine, glColorPointerEXT subroutine, glDrawArraysEXT subroutine,

glGetPointervEXT subroutine, glIndexPointerEXT subroutine, glNormalPointerEXT subroutine,

glTexCoordPointerEXT subroutine, glVertexPointerEXT subroutine.

104 OpenGL 1.2 Reference Manual

glEdgeFlagPointerListIBM Subroutine

Purpose

Defines a list of edge flag arrays.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glEdgeFlagPointerListIBM (GLint stride,

 const GLboolean ** pointer,

 GLint ptrstride)

Description

The glEdgeFlagPointerListIBM subroutine specifies the location and data format of a list of arrays of

edge flags to use when rendering. The stride parameter gives the byte stride from one edge flag to the

next allowing vertices and attributes to be packed into a single array or stored in separate arrays.

(Single-array storage may be more efficient on some implementations; see glInterleavedArrays). The

ptrstride parameter specifies the byte stride from one pointer to the next in the pointer array.

When an edge flag array is specified, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a ″tightly packed″ array as it does in glEdgeFlagPointer. Instead, it

causes the first array element of each array to be used for each vertex. Also, a negative value can be

used for stride, which allows the user to move through each array in reverse order.

To enable and disable the edge flag arrays, call glEnableClientState and glDisableClientState with the

argument GL_EDGE_FLAG_ARRAY. The edge flag array is initially disabled. When enabled, the edge

flag arrays are used when glMultiDrawArraysEXT, glMultiDrawElementsEXT,

glMultiModeDrawArraysIBM, glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or

glArrayElement is called. The last three calls in this list will only use the first array (the one pointed at by

pointer[0]). See the descriptions of these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Edge Flag array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 stride Specifies the byte offset between consecutive edge flags. The initial value is 0.

pointer Specifies a list of edge flag arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.

Notes

The glEdgeFlagPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is

supported.

Chapter 1. OpenGL Subroutines 105

Execution of glEdgeFlagPointerListIBM is not allowed between glBegin and the corresponding glEnd,

but an error may or may not be generated. If an error is not generated, the operation is undefined.

The glEdgeFlagPointerListIBM subroutine is typically implemented on the client side.

Since the edge flag array parameters are client side state, they are not saved or restored by glPushAttrib

and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glEdgeFlagPointerListIBM call is encountered while compiling a display list, the information it

contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glEdgeFlagPointer call and the glEdgeFlagPointerListIBM call share the same state variables. A

glEdgeFlagPointer call will reset the edge flag list state to indicate that there is only one edge flag list, so

that any and all lists specified by a previous glEdgeFlagPointerListIBM call will be lost, not just the first

list that it specified.

Error Codes

None.

Associated Gets

glIsEnabled with argument GL_EDGE_FLAG_ARRAY.

glGetPointerv with argument GL_EDGE_FLAG_ARRAY_LIST_IBM.

glGet with argument GL_EDGE_FLAG_ARRAY_LIST_STRIDE_IBM.

glGet with argument GL_EDGE_FLAG_ARRAY_STRIDE.

Related Information

The glArrayElement subroutine, glEdgeFlagPointer subroutine, glDrawArrays subroutine,

glDrawElements subroutine, glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv

subroutine, glIndexPointer subroutine, glInterleavedArrays subroutine, glMultiDrawArraysEXT

subroutine, glMultiDrawElementsEXT subroutine, glMultiModeDrawArraysIBM subroutine,

glMultiModeDrawElementsIBM subroutine, glNormalPointer subroutine, glPopClientAttrib subroutine,

glPushClientAttrib subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glEnable or glDisable Subroutine

Purpose

Enables or disables a GL capability.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glEnable(GLenum capability)

void glDisable(GLenum capability)

Description

glEnable and glDisable enable and disable various capabilities. Use glIsEnable or glGet to determine

the current setting of any capability. Both glEnable and glDisable take a single argument, capability,

which may assume one of the following values:

106 OpenGL 1.2 Reference Manual

GL_ALPHA_TEST If enabled, do alpha testing. (See glAlphaFunc.)

GL_AUTO_NORMAL If enabled, compute surface normal vectors analytically when

either GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4 is used

to generate vertices. (See glMap2.)

GL_BLEND If enabled, blend the incoming red, green, blue, alpha (RGBA)

color values with the values in the color buffers. (See

glBlendFunc.)

GL_CLIP_PLANEi If enabled, clip geometry against user-defined clipping plane i.

(See glClipPlane.)

GL_COLOR_ARRAY_EXT If enabled, colors are taken from the color array when

glArrayElementEXT or glDrawArraysEXT is called. (See

glColorPointerEXT, glArrayElementEXT and

glDrawArraysEXT.)

GL_COLOR_LOGIC_OP If enabled, apply the currently selected logical operation to the

incoming color and color buffer values. The initial value is

GL_FALSE. (See glLogicOp.)

GL_COLOR_MATERIAL If enabled, have one or more material parameters track the

current color. (See glColorMaterial.)

GL_COLOR_SUM_EXT If enabled, user may specify the RGB components of the

secondary color used in the Color Sum stage, instead of using the

default (0,0,0,0) color. This applies only in RGBA mode and when

LIGHTING is disabled. (See glSecondaryColorEXT.)

GL_CULL_FACE If enabled, cull polygons based on their winding in window

coordinates. (See glCullFace.)

GL_CULL_VERTEX_IBM If enabled, cull polygons based on their vertex normals. When

vertex culling is enabled, vertices are classified as front or back

facing according to the sign of the dot product between the

normal at the vertex and an eye direction vector from the vertex

toward the eye position. When (normal dot eye_direction) <= 0 the

vertex is classified as back facing. When (normal dot

eye_direction) > 0 the vertex is classified as front facing. Vertices

are culled when the face orientation determined by the dot

product is the same as the face specified by CullFace. When all

of the vertices of a polygon are culled, then the polygon may be

culled. Unlike GL_CULL_VERTEX_EXT, vertex culling using

GL_CULL_VERTEX_IBM does not necessarily result in polygons

being culled even if all of the vertices of the polygon are culled.

The eye direction is determined by transforming the column vector

(0, 0, 1) by the upper leftmost 3x3 matrix taken from the inverse

of the modelview matrix. The eye direction is undefined if the

modelview matrix is singular or nearly singular. This operation in

effect projects the z axis in eye coordinates back into object

space. If the projection matrix or DepthRange settings cause the z

axis in window coordinates to be misaligned with the z axis in eye

coordinates, this extension should not be used. Vertex culling is

performed independently of face culling. Polygons on the

silhouettes of objects may have both front and back facing

vertices. Since polygons are culled only if all of their vertices are

culled and are not necessarily culled by GL_CULL_VERTEX_IBM

even in that case, face culling may have to be used in addition to

vertex culling in order to correctly cull silhouette polygons.

GL_DEPTH_TEST If enabled, do depth comparisons and update the depth buffer.

(See glDepthFunc and glDepthRange.)

GL_DITHER If enabled, dither color components or indices before they are

written to the color buffer.

GL_EDGE_FLAG_ARRAY_EXT If enabled, edge flags are taken from the edge flags array when

glArrayElementEXT or glDrawArraysEXT is called. (See

glEdgeFlagPointerEXT, glArrayElementEXT and

glDrawArraysEXT.)

Chapter 1. OpenGL Subroutines 107

GL_FOG If enabled, blend a fog color into the post-texturing color. (See

glFog.)

GL_INDEX_ARRAY_EXT If enabled, color indexes are taken from the color index array

when glArrayElementEXT or glDrawArraysEXT is called. (See

glIndexPointerEXT, glArrayElementEXT and

glDrawArraysEXT.)

GL_LIGHTi If enabled, include light i in the evaluation of the lighting equation.

(See glLightModel and glLight.)

GL_LIGHTING If enabled, use the current lighting parameters to compute the

vertex color or index. Otherwise, simply associate the current

color or index with each vertex. (See glMaterial, glLightModel,

and glLight.)

GL_LINE_SMOOTH If enabled, draw lines with correct filtering. Otherwise, draw

aliased lines. (See glLineWidth.)

GL_LINE_STIPPLE If enabled, use the current line stipple pattern when drawing lines.

(See glLineStipple.)

GL_LOGIC_OP If enabled, apply the currently selected logical operation to the

incoming and color buffer indices. (See glLogicOp.)

GL_MAP1_COLOR_4 If enabled, calls to glEvalCoord1, glEvalMesh1, and

glEvalPoint1 will generate RGBA values. (See glMap1.)

GL_MAP1_INDEX If enabled, calls to glEvalCoord1, glEvalMesh1, and

glEvalPoint1 will generate color indices. (See glMap1.)

GL_MAP1_NORMAL If enabled, calls to glEvalCoord1, glEvalMesh1, and

glEvalPoint1 will generate normals. (See glMap1.)

GL_MAP1_TEXTURE_COORD_1 If enabled, calls to glEvalCoord1, glEvalMesh1, and

glEvalPoint1 will generate s texture coordinates. (See glMap1.)

GL_MAP1_TEXTURE_COORD_2 If enabled, calls to glEvalCoord1, glEvalMesh1, and

glEvalPoint1 will generate s and t texture coordinates. (See

glMap1.)

GL_MAP1_TEXTURE_COORD_3 If enabled, calls to glEvalCoord1, glEvalMesh1, and

glEvalPoint1 will generate s, t, and r texture coordinates. (See

glMap1.)

GL_MAP1_TEXTURE_COORD_4 If enabled, calls to glEvalCoord1, glEvalMesh1, and

glEvalPoint1 will generate s, t, r, and q texture coordinates. (See

glMap1.)

GL_MAP1_VERTEX_3 If enabled, calls to glEvalCoord1, glEvalMesh1, and

glEvalPoint1 will generate will generate x, y, and z vertex

coordinates. (See glMap1.)

GL_MAP1_VERTEX_4 If enabled, calls to glEvalCoord1, glEvalMesh1, and

glEvalPoint1 will generate homogeneous x, y, z, and w vertex

coordinates. (See glMap1.)

GL_MAP2_COLOR_4 If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate RGBA values. (See glMap2.)

GL_MAP2_INDEX If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate color indices. (See glMap2.)

GL_MAP2_NORMAL If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate normals. (See glMap2.)

GL_MAP2_TEXTURE_COORD_1 If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate s texture coordinates. (See glMap2.)

GL_MAP2_TEXTURE_COORD_2 If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate s and t texture coordinates. (See

glMap2.)

GL_MAP2_TEXTURE_COORD_3 If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate s, t, and r texture coordinates. (See

glMap2.)

GL_MAP2_TEXTURE_COORD_4 If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate s, t, r, and q texture coordinates. (See

glMap2.)

108 OpenGL 1.2 Reference Manual

GL_MAP2_VERTEX_3 If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate will generate x, y, and z vertex

coordinates. (See glMap2.)

GL_MAP2_VERTEX_4 If enabled, calls to glEvalCoord2, glEvalMesh2, and

glEvalPoint2 will generate homogeneous x, y, z, and w vertex

coordinates. (See glMap2.)

GL_NORMAL_ARRAY_EXT If enabled, normals are taken from the normal array when

glArrayElementEXT or glDrawArraysEXT is called. (See

glNormalPointerEXT, glArrayElementEXT and

glDrawArraysEXT.)

GL_NORMALIZE If enabled, normal vectors specified with glNormal are scaled to

unit length after transformation. (See glNormal.)

GL_OCCLUSION_CULLING_HP If enabled, the occlusion testing described within extension

HP_occlusion_test is performed. This extension allows an

application to render some geometry and, at the completion of the

rendering, to determine if any of the geometry could or did modify

the depth buffer (in other words, a depth buffer test succeeded).

(See glGet with parameter

GL_OCCLUSION_TEST_RESULT_HP). Occlusion culling

operates independently of the current rendering state (in other

words, when occlusion culling is enabled, fragments are

generated and the depth and/or color buffer may be updated). To

prevent updating the depth/color buffers, the application must

disable updates to these buffers. As a side effect of calling glGet

with parameter GL_OCCLUSION_TEST_RESULT_HP, the

internal result state is cleared, and it is reset for a new bounding

box test.

GL_POLYGON_OFFSET_EXT If enabled, an offset is added to z values of a polygon’s fragments

before the depth comparison is performed. (See

glPolygonOffsetEXT.)

GL_POLYGON_OFFSET_FILL If enabled, and if the polygon is rendered in GL_FILL mode, an

offset is added to z values of a polygon’s fragments before the

depth comparison is performed. The initial value is GL_FALSE.

(See glPolygonOffset.)

GL_POLYGON_OFFSET_LINE If enabled, and if the polygon is rendered in GL_LINE mode, an

offset is added to z values of a polygon’s fragments before the

depth comparison is performed. The initial value is GL_FALSE.

(See glPolygonOffset.)

GL_POLYGON_OFFSET_POINT If enabled, an offset is added to z values of a polygon’s fragments

before the depth comparison is performed, if the polygon is

rendered in GL_POINT mode. The initial value is GL_FALSE.

(See glPolygonOffset.)

GL_POINT_SMOOTH If enabled, draw points with proper filtering. Otherwise, draw

aliased points. (See glPointSize.)

GL_POLYGON_SMOOTH If enabled, draw polygons with proper filtering. Otherwise, draw

aliased polygons. (See glPolygonMode.)

GL_POLYGON_STIPPLE If enabled, use the current polygon stipple pattern when rendering

polygons. (See glPolygonStipple.)

GL_RESCALE_NORMAL If normal rescaling is enabled, a new operation is added to the

transformation of the normal vector into eye coordinates. The

normal vector is rescaled after it is multiplied by the inverse

modelview matrix and before it is normalized.

GL_RESCALE_NORMAL_EXT If normal rescaling is enabled, a new operation is added to the

transformation of the normal vector into eye coordinates. The

normal vector is rescaled after it is multiplied by the inverse

modelview matrix and before it is normalized.

GL_SCISSOR_TEST If enabled, discard fragments that are outside the scissor

rectangle. (See glScissor.)

Chapter 1. OpenGL Subroutines 109

GL_STENCIL_TEST If enabled, do stencil testing and update the stencil buffer. (See

glStencilFunc and glStencilOp.)

GL_TEXTURE_1D If enabled, one-dimensional texturing is performed (unless

two-dimensional texturing is also enabled). (See glTexImage1D.)

GL_TEXTURE_2D If enabled, two-dimensional texturing is performed. (See

glTexImage2D.)

GL_TEXTURE_3D If enabled, three-dimensional texturing is performed. (See

glTexImage3D.)

GL_TEXTURE_3D_EXT If enabled, three-dimensional texture mapping is performed. (See

glTexImage3DEXT.)

GL_TEXTURE_COLOR_TABLE_EXT If enabled, a color lookup table is added to the texture

mechanism. (See glColorTable.)

GL_TEXTURE_COORD_ARRAY_EXT If enabled, texture coordinates are taken from the texture

coordinates array when glArrayElementEXT or

glDrawArraysEXT is called. (See glTexCoordPointerEXT,

glArrayElementEXT and glDrawArraysEXT.)

GL_TEXTURE_GEN_Q If enabled, the q texture coordinate is computed using the texture

generation function defined with glTexGen. Otherwise the current

q texture coordinate is used. (See glTexGen.)

GL_TEXTURE_GEN_R If enabled, the r texture coordinate is computed using the texture

generation function defined with glTexGen. Otherwise the current

r texture coordinate is used. (See glTexGen.)

GL_TEXTURE_GEN_S If enabled, the s texture coordinate is computed using the texture

generation function defined with glTexGen. Otherwise the current

s texture coordinate is used. (See glTexGen.)

GL_TEXTURE_GEN_T If enabled, the t texture coordinate is computed using the texture

generation function defined with glTexGen. Otherwise, the current

t texture coordinate is used. (See glTexGen.)

GL_UPDATE_CLIP_VOLUME_HINT If enabled, calls to ClipBoundingBoxIBM,

ClipBoundingSphereIBM, and ClipBoundingVerticesIBM will

result in updates to the VOLUME_CLIPPING_HINT_EXT state. A

result of REJECT_IBM causes the hint to be set to DONT_CARE.

A result of CLIP_IBM causes the hint to be set to NICEST. A

result of ACCEPT_IBM causes the hint to be set to FASTEST. If

the EXT_clip_volume_hint extension is not supported, then the

UPDATE_CLIP_VOLUME_HINT enable state has no effect. (See

glClipBoundingBoxIBM, glClipBoundingSphereIBM, or

glClipBoundingVerticesIBM,)

GL_VERTEX_ARRAY_EXT If enabled, vertexes are taken from the vertex array when

glArrayElementEXT or glDrawArraysEXT is called. (See

glVertexPointerEXT, glArrayElementEXT and

glDrawArraysEXT.)

Parameters

 capability Specifies a symbolic constant indicating a GL capability. Initially, all are disabled except

GL_DITHER.

Errors

 GL_INVALID_ENUM capability is not an accepted value.

GL_INVALID_OPERATION The glEnable subroutine is called between a call to glBegin and the

corresponding call to glEnd.

110 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glAlphaFunc subroutine, glArrayElementEXT subroutine, glBegin or glEnd subroutine,

glBlendFunc subroutine, glClipPlane subroutine, glColorMaterial subroutine, glColorPointerEXT

subroutine, glCullFace subroutine, glDepthFunc subroutine, glDepthRange subroutine,

glDrawArraysEXT subroutine, glEdgeFlagPointerEXT subroutine, glFog subroutine, glIndexPointerEXT

subroutine, glIsEnabled subroutine, glLight subroutine, glLightModel subroutine, glLineStipple

subroutine, glLineWidth subroutine, and the glLogicOp subroutine.

The glMap1 subroutine, glMap2 subroutine, glMaterial subroutine, glNormal subroutine,

glNormalPointerEXT subroutine, glPointSize subroutine, glPolygonMode subroutine, glPolygonOffset

subroutine, glPolygonOffsetEXT subroutine, glPolygonStipple subroutine, glScissor subroutine,

glTexCoordPointerEXT subroutine, glTexGen subroutine, glTexImage1D subroutine, glTexImage2D

subroutine, and the glTexImage3DEXT subroutine.

glEnableClientState or glDisableClientState Subroutine

Purpose

Enables or disables an array.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glEnableClientState(GLenum array)

void glDisableClientState(GLenum array)

Description

The glEnableClientState subroutine lets you enable individual arrays, and glDisableClientState lets you

disable individual arrays.

Parameters

 array Specifies the array to enable or disable. Symbolic constraints GL_EDGE_FLAG_ARRAY,

GL_TEXTURE_COORD_ARRAY, GL_COLOR_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY,

GL_VERTEX_ARRAY, GL_FOG_COORDINATE_ARRAY_EXT, and

GL_SECONDARY_COLOR_ARRAY_EXT are accepted (for glEnableClientState).

Notes

The glEnableClientState and glDisableClientState subroutines are available only if the GL version is 1.1

or greater.

Errors

GL_INVALID_ENUM is generated if array is not an accepted value.

Chapter 1. OpenGL Subroutines 111

The glEnableClientState subroutine is not allowed between the execution of glBegin and the

corresponding glEnd, but an error may or may not be generated. If no error is generated then the

behavior is undefined.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glDrawArrays subroutine, glDrawElements

subroutine, glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv subroutine,

glFogCoordEXT subroutine, glIndexPointer subroutine, glInterleavedArrays subroutine,

glNormalPointer subroutine, glSecondaryColorEXT subroutine, glTexCoordPointer subroutine,

glVertexPointer subroutine.

glEvalCoord Subroutine

Purpose

Evaluates enabled one-dimensional (1D) and two-dimensional (2D) maps.

Library

OpenGL C bindings library: libGL.a

C Syntax

glEvalCoord1d

void glEvalCoord1d(GLdouble u)

void glEvalCoord1f(GLfloat u)

void glEvalCoord2d(GLdouble u,

 GLdouble v)

void glEvalCoord2f(GLfloat u,

 GLfloat v)

glEvalCoord1dv

void glEvalCoord1dv(const GLdouble * u)

void glEvalCoord1fv(const GLfloat * u)

void glEvalCoord2dv(const GLdouble * u)

void glEvalCoord2fv(const GLfloat * u)

Description

The glEvalCoord1 subroutine evaluates enabled 1D maps at argument u. The glEvalCoord2 subroutine

does the same for 2D maps using two domain values, u and v. Maps are defined with glMap1 and

glMap2, and enabled and disabled with glEnable and glDisable.

When one of the glEvalCoord subroutines is issued, all currently enabled maps of the indicated

dimension are evaluated. Then, for each enabled map, it is as if the corresponding GL subroutine was

issued with the computed value. That is, if GL_MAP1_INDEX or GL_MAP2_INDEX is enabled, a glIndex

subroutine is simulated. If GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4 is enabled, a glColor

subroutine is simulated. If GL_MAP1_NORMAL or GL_MAP2_NORMAL is enabled, a normal vector is

produced, and if any of GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,

GL_MAP1_TEXTURE_COORD_3, GL_MAP1_TEXTURE_COORD_4, GL_MAP2_TEXTURE_COORD_1,

112 OpenGL 1.2 Reference Manual

GL_MAP2_TEXTURE_COORD_2, GL_MAP2_TEXTURE_COORD_3, or

GL_MAP2_TEXTURE_COORD_4 is enabled, an appropriate glTexCoord subroutine is simulated.

The GL uses evaluated values instead of current values for those evaluations that are enabled, and

current values otherwise, for color, color index, normal, and texture coordinates. However, the evaluated

values do not update the current values. Thus if glVertex subroutines are interspersed with glEvalCoord

subroutines, the color, normal, and texture coordinates associated with the glVertex subroutines will not be

affected by the values generated by the glEvalCoord subroutines, but rather only by the most recent

glColor, glIndex, glNormal, and glTexCoord subroutines.

No subroutines are issued for maps that are not enabled. If more than one texture evaluation is enabled

for a particular dimension (for example, GL_MAP2_TEXTURE_COORD_1 and

GL_MAP2_TEXTURE_COORD_2), only the evaluation of the map that produces the larger number of

coordinates (in this case, GL_MAP2_TEXTURE_COORD_2) is carried out. GL_MAP1_VERTEX_4

overrides GL_MAP1_VERTEX_3, and GL_MAP2_VERTEX_4 overrides GL_MAP2_VERTEX_3 in the

same manner. If neither a three-component nor a four-component vertex map is enabled for the specified

dimension, the glEvalCoord subroutine is ignored.

If automatic normal generation is enabled by calling glEnable with argument GL_AUTO_NORMAL,

glEvalCoord2 generates surface normals analytically, regardless of the contents or enabling of the

GL_MAP2_NORMAL map. Let:

m = (delta p / delta u) (delta p / delta v)

Then the generated normal n is

n = m/||m||

If automatic normal generation is disabled, the corresponding normal map GL_MAP2_NORMAL, if

enabled, is used to produce a normal. If neither automatic normal generation nor a normal map is enabled,

no normal is generated for glEvalCoord2 subroutines.

Parameters

glEvalCoord1d

 u Specifies a value that is the domain coordinate u to the basis function defined in a previous glMap1 or glMap2

subroutine.

v Specifies a value that is the domain coordinate v to the basis function defined in a previous glMap2

subroutine. This argument is not present in an glEvalCoord1 subroutine.

glEvalCoord1dv

 u Specifies a pointer to an array containing either one or two domain coordinates. The first coordinate is u. The

second coordinate is v, and is present only in glEvalCoord2 versions.

Associated Gets

Associated gets for the glEvalCoord subroutine are as follows. (See the glGet subroutine for more

information.)

glIsEnabled with argument GL_MAP1_VERTEX_3.

glIsEnabled with argument GL_MAP1_VERTEX_4.

glIsEnabled with argument GL_MAP1_INDEX.

Chapter 1. OpenGL Subroutines 113

glIsEnabled with argument GL_MAP1_COLOR_4.

glIsEnabled with argument GL_MAP1_NORMAL.

glIsEnabled with argument GL_MAP1_TEXTURE_COORD_1.

glIsEnabled with argument GL_MAP1_TEXTURE_COORD_2.

glIsEnabled with argument GL_MAP1_TEXTURE_COORD_3.

glIsEnabled with argument GL_MAP1_TEXTURE_COORD_4.

glIsEnabled with argument GL_MAP2_VERTEX_3.

glIsEnabled with argument GL_MAP2_VERTEX_4.

glIsEnabled with argument GL_MAP2_INDEX.

glIsEnabled with argument GL_MAP2_COLOR_4.

glIsEnabled with argument GL_MAP2_NORMAL.

glIsEnabled with argument GL_MAP2_TEXTURE_COORD_1.

glIsEnabled with argument GL_MAP2_TEXTURE_COORD_2.

glIsEnabled with argument GL_MAP2_TEXTURE_COORD_3.

glIsEnabled with argument GL_MAP2_TEXTURE_COORD_4.

glIsEnabled with argument GL_AUTO_NORMAL.

glGetMap.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glColor subroutine, glEnable or Disable subroutine, glEvalMesh

subroutine, glEvalPoint subroutine, glIndex subroutine, glMap1 subroutine, glMap2 subroutine,

glMapGrid subroutine, glNormal subroutine, glTexCoord subroutine, glVertex subroutine.

glEvalMesh Subroutine

Purpose

Computes a one-dimensional (1D) or two-dimensional (2D) grid of points or lines.

Library

OpenGL C bindings library: libGL.a

114 OpenGL 1.2 Reference Manual

C Syntax

void glEvalMesh1(GLenum Mode,

 GLint i1,

 GLint i2)

void glEvalMesh2(GLenum Mode,

 GLint i1,

 GLint i2,

 GLint j1,

 GLint j2)

Description

The glMapGrid and glEvalMesh subroutines are used in tandem to efficiently generate and evaluate a

series of evenly spaced map domain values. The glEvalMesh subroutine steps through the integer

domain of a 1D or 2D grid whose range is the domain of the evaluation maps specified by glMap1 and

glMap2. The Mode parameter determines whether the resulting vertices are connected as points, lines, or

filled polygons.

In the 1D case, glEvalMesh1, the mesh is generated as if the following code fragment was executed:

glBegin(Type);

for (i = i1; i <= i2; i += 1)

 glEvalCoord1(i (DELTA u) + u1)

glEnd();

where DELTA u = (u2 - u1)/n and n, u1, and u2 are the arguments to the most recent glMapGrid1

subroutine. Type is GL_POINTS if Mode is GL_POINT, or GL_LINES if Mode is GL_LINE. The one

absolute numeric requirement is that if i = n, the value computed from i (DELTA u) + u1 is exactly u2.

In the 2D case, glEvalMesh2, DELTA u = (u2 - u1)/n and DELTA v = (v2 - v1)/m, where n, u1, u2, m, v1,

and v2 are the arguments to the most recent glMapGrid2 subroutine. Then, if Mode is GL_FILL, the

glEvalMesh2 subroutine is equivalent to:

for (j = j1; j < j2; j += 1) {

 glBegin(GL_QUAD_STRIP)

 for (i= i1; i <= i2; i += 1) {

 glEvalCoord2(i (DELTA u) + u1, j (DELTA v) + v1);

 glEvalCoord2(i (DELTA u) + u1, (j+1) (DELTA v) +

 v1);

 }

 glEnd();

}

If Mode is GL_LINE, a call to glEvalMesh2 is equivalent to:

for (j = j1; j <= j2; j += 1) {

 glBegin(GL_LINE_STRIP)

 for (i = i1; i <= i2; i += 1)

 glEvalCoord2(i DELTA u + u1, j (DELTA v) + v1);

 glEnd();

}

for (i = i1; i <= i2; i += 1) {

 glBegin(GL_LINE_STRIP);

 for (j = j1; j <= j1; j += 1)

 glEvalCoord2(i (DELTA u + u1, j (DELTA v) + v1);

 glEnd();

}

And finally, if Mode is GL_POINT, a call to glEvalMesh2 is equivalent to:

Chapter 1. OpenGL Subroutines 115

glBegin(GL_POINTS);

for (j = j1; j <= j2; j += 1) {

 for (i = i1; i <= i2; i += 1) {

 glEvalCoord2(i (DELTA u) + u1, j (DELTA v) + v1):

 }

}

glEnd();

In all three cases, the only absolute numeric requirements are that if i = n, the value computed from i

(DELTA u) + u1 is exactly u2, and if j = m, the value computed from j (DELTA v) + v1 is exactly v2.

Parameters

glEvalMesh1

 Mode Specifies whether to compute a 1D mesh of points or lines. Symbolic constants GL_POINT and GL_LINE

are accepted.

i1 Specifies the first integer values for grid domain variable i.

i2 Specifies the last integer values for grid domain variable i.

glEvalMesh2

 Mode Specifies whether to compute a 2D mesh of points, lines, or polygons. Symbolic constants GL_POINT,

GL_LINE, and GL_FILL are accepted.

i1 Specifies the first integer values for grid domain variable i.

i2 Specifies the last integer values for grid domain variable i.

j1 Specifies the first integer values for grid domain variable j.

j2 Specifies the last integer values for grid domain variable j.

Errors

 GL_INVALID_ENUM Indicates that Mode is not an accepted value.

GL_INVALID_OPERATION Indicates that glEvalMesh is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glEvalMesh subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MAP1_GRID_DOMAIN

glGet with argument GL_MAP2_GRID_DOMAIN

glGet with argument GL_MAP1_GRID_SEGMENTS

glGet with argument GL_MAP2_GRID_SEGMENTS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

116 OpenGL 1.2 Reference Manual

Related Information

The glBegin or glEnd subroutine, glEvalCoord subroutine, glEvalPoint subroutine, glMap1 subroutine,

glMap2 subroutine, glMapGrid subroutine.

glEvalPoint Subroutine

Purpose

Generates and evaluates a single point in a mesh.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glEvalPoint1(GLint i)

void glEvalPoint2(GLint i,

 GLint j)

Description

The glMapGrid and glEvalMesh subroutines are used in tandem to efficiently generate and evaluate a

series of evenly spaced map domain values. glEvalPoint can be used to evaluate a single grid point in

the same grid space that is traversed by glEvalMesh. Calling glEvalPoint1 is equivalent to calling

EvalCoord1(i (DELTA u) + u1);

where DELTA u = (u2 - u1)/n and n, u1, and u2 are the arguments to the most recent glMapGrid1

subroutine. The one absolute numeric requirement is that if i = n, the value computed from i (DELTA u) +

u1 is exactly u2.

In the two-dimensional case, glEvalPoint2, let

DELTA u = (u2 - u1)/n

DELTA v = (v2 - v1)/m

where n, u1, u2, m, v1, and v2 are the arguments to the most recent glMapGrid2 subroutine. Then the

glEvalPoint2 subroutine is equivalent to calling:

EvalCoord2(i (DELTA u) + u1,

j (DELTA v) + v1)

The only absolute numeric requirements are that if i = n, the value computed from i (DELTA u) + u1 is

exactly u2, and if j = m, the value computed from j (DELTA v) + v1 is exactly v2.

Parameters

 i Specifies the integer value for grid domain variable i.

j Specifies the integer value for grid domain variable j. (This parameter applies to glEvalPoint2 only.)

Associated Gets

Associated gets for the glEvalPoint subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MAP1_GRID_DOMAIN.

Chapter 1. OpenGL Subroutines 117

glGet with argument GL_MAP2_GRID_DOMAIN.

glGet with argument GL_MAP1_GRID_SEGMENTS.

glGet with argument GL_MAP2_GRID_SEGMENTS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glEvalCoord subroutine, glEvalMesh subroutine, glMap1 subroutine, glMap2 subroutine, glMapGrid

subroutine.

glFeedbackBuffer Subroutine

Purpose

Controls the feedback mode.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glFeedbackBuffer(GLsizei Size,

 GLenum Type,

 GLfloat * Buffer)

Description

The glFeedbackBuffer subroutine controls feedback. Feedback, like selection, is a GL mode. The mode is

selected by calling glRenderMode with GL_FEEDBACK. When the GL is in feedback mode, no pixels are

produced by rasterization. Instead, information about primitives that would have been rasterized is fed

back to the application using the GL.

The glFeedbackBuffer subroutine has three arguments:

v Buffer is a pointer to an array of floating point values into which feedback information is placed.

v Size indicates the size of the array.

v Type is a symbolic constant describing the information that is fed back for each vertex.

The glFeedbackBuffer subroutine must be issued before feedback mode is enabled (by calling

glRenderMode with argument GL_FEEDBACK). Setting GL_FEEDBACK without establishing the

feedback buffer, or calling glFeedbackBuffer while the GL is in feedback mode, results in an error.

The GL is taken out of feedback mode by calling glRenderMode with a parameter value other than

GL_FEEDBACK. When this is done while the GL is in feedback mode, glRenderMode returns the

number of entries placed in the feedback array. The returned value never exceeds Size. If the feedback

data requires more room than is available in Buffer, glRenderMode returns a negative value.

While in feedback mode, each primitive that would be rasterized generates a block of values that get

copied into the feedback array. If doing so would cause the number of entries to exceed the maximum, the

block is partially written so as to fill the array (if there is any room left at all), and an overflow flag is set.

118 OpenGL 1.2 Reference Manual

Each block begins with a code indicating the primitive type, followed by values that describe the primitive’s

vertices and associated data. Entries are also written for bitmaps and pixel rectangles. Feedback occurs

after polygon culling and glPolyMode interpretation of polygons has taken place, so polygons that are

culled are not returned in the feedback buffer. It can also occur after polygons with more than three edges

are broken up into triangles, if the GL implementation renders polygons by performing this decomposition.

The glPassThrough subroutine can be used to insert a marker into the feedback buffer. (See

glPassThrough.)

Following is the grammar for the blocks of values written into the feedback buffer. Each primitive is

indicated with a unique identifying value followed by some number of vertices. Polygon entries include an

integer value indicating how many vertices follow. A vertex is fed back as some number of floating-point

values, as determined by Type. Colors are fed back as four values in red, green, blue, alpha (RGBA)

mode and one value in color index mode.

 feedbackList -> feedbackItem feedbackList | feedbackItem

feedbackItem -> point | lineSegment | polygon | bitmap | pixelRectangle | passThru

point -> GL_POINT_TOKEN vertex

lineSegment -> GL_LINE_TOKEN vertex vertex | GL_LINE_RESET_TOKEN vertex vertex

polygon -> GL_POLYGON_TOKEN n polySpec

polySpec -> polySpec vertex | vertex vertex vertex

bitmap -> GL_BITMAP_TOKEN vertex

pixelRectangle -> GL_DRAW_PIXEL_TOKEN vertex | GL_COPY_PIXEL_TOKEN vertex

passThru -> GL_PASS_THROUGH_TOKEN value

vertex -> 2d | 3d | 3dColor | 3dColorTexture | 4dColorTexture

2d -> value value

3d -> value value value

3dColor -> value value value color

3dColorTexture -> value value value color tex

4dColorTexture -> value value value value color tex

color -> rgba | index

rgba -> value value value value

index -> value

tex -> value value value value

where value is a floating-point number, and n is a floating-point integer giving the number of vertices in the

polygon. GL_POINT_TOKEN, GL_LINE_TOKEN, GL_LINE_RESET_TOKEN, GL_POLYGON_TOKEN,

GL_BITMAP_TOKEN, GL_DRAW_PIXEL_TOKEN, GL_COPY_PIXEL_TOKEN and

GL_PASS_THROUGH_TOKEN are symbolic floating-point constants. GL_LINE_RESET_TOKEN is

returned whenever the line stipple pattern is reset. The data returned as a vertex depends on the feedback

Type.

The following table gives the correspondence between Type and the number of values per vertex. The

variable k is 1 in color index mode and 4 in RGBA mode.

 Type Coordinates Color Texture Total Number

of Values

GL_2D x, y 2

GL_3D x, y, z 3

GL_3D_COLOR x, y, z k 3+k

GL_3D_COLOR_TEXTURE x, y, z k 4 7+k

GL_4D_COLOR_TEXTURE x, y, z, w k 4 8+k

Chapter 1. OpenGL Subroutines 119

Feedback vertex coordinates are in window coordinates, except w, which is in clip coordinates. Feedback

colors are lighted, if lighting is enabled. Feedback texture coordinates are generated, if texture coordinate

generation is enabled. They are always transformed by the texture matrix.

Parameters

 Size Specifies the maximum number of values that can be written into Buffer.

Type Specifies a symbolic constant that describes the information that is returned for each vertex. GL_2D,

GL_3D, GL_3D_COLOR, GL_3D_COLOR_TEXTURE, and GL_4D_COLOR_TEXTURE are accepted.

Buffer Returns the feedback data.

Notes

The glFeedbackBuffer subroutine, when used in a display list, is not compiled into the display list but

rather is executed immediately.

Errors

 GL_INVALID_ENUM Type is not an accepted value.

GL_INVALID_VALUE Size is negative.

GL_INVALID_OPERATION The glFeedbackBuffer subroutine is called while the render mode is

GL_FEEDBACK, or glRenderMode is called with argument GL_FEEDBACK

before glFeedbackBuffer is called at least once.

GL_INVALID_OPERATION The glFeedbackBuffer subroutine is called between a call to glBegin and

the corresponding call to glEnd.

Associated Gets

Associated gets for the glFeedbackBuffer subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_RENDER_MODE.

glGetPointerv with argument GL_FEEDBACK_BUFFER_POINTER.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glGetPointerv subroutine, glLineStipple subroutine, glPassThrough

subroutine, glPolygonMode subroutine, glRenderMode subroutine, glSelectBuffer subroutine.

glFinish Subroutine

Purpose

Blocks until all GL execution is complete.

Library

OpenGL C bindings library: libGL.a

120 OpenGL 1.2 Reference Manual

C Syntax

void glFinish(void)

Description

The glFinish subroutine does not return until the effects of all previously called GL subroutines are

complete. Such effects include all changes to the GL state, all changes to the connection state, and all

changes to the frame buffer contents.

Notes

The glFinish subroutine requires a round-trip to the server.

Errors

 GL_INVALID_OPERATION The glFinish subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glFlush subroutine, glWaitGL subroutine, glWaitX subroutine.

glFlush Subroutine

Purpose

Forces the running of GL subroutines in finite time.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glFlush(void)

Description

Different GL implementations buffer subroutines in several different locations, including network buffers and

the graphics accelerator itself. The glFlush subroutine empties all of these buffers, causing all issued

subroutines to be executed as quickly as they are accepted by the actual rendering engine. Though this

execution cannot be completed in any particular time period, it does complete in finite time.

Because any GL program might be executed over a network, or on an accelerator that buffers subroutines,

all programs should call glFlush whenever they must have all of their previously issued subroutines

completed. For example, call glFlush before waiting for user input that depends on the generated image.

Notes

The glFlush subroutine can return at any time. It does not wait until the execution of all previously issued

OpenGL commands is complete.

Chapter 1. OpenGL Subroutines 121

Errors

 GL_INVALID_OPERATION The glFlush subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glFinish subroutine.

glFog Subroutine

Purpose

Specifies fog parameters.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glFogf(GLenum ParameterName,

 GLfloat ParameterValue)

void glFogi(GLenum ParameterName,

 GLint ParameterValue)

void glFogfv(GLenum ParameterName,

 const GLfloat * ParameterValues)

void glFogiv(GLenum ParameterName,

 const GLint * ParameterValues)

Description

The glFog subroutine is enabled and disabled with glEnable and glDisable using the argument GL_FOG.

While enabled, fog affects rasterized geometry, bitmaps, and pixel blocks, but not buffer clear operations.

The glFog subroutine assigns the value or values in ParameterValues to the fog parameter specified by

ParameterName. The accepted values for ParameterName are:

 GL_FOG_MODE ParameterValues is a single integer or floating-point value that

specifies the equation to be used to compute the fog blend

factor, f. Three symbolic constants are accepted:

GL_LINEAR, GL_EXP, and GL_EXP2. The equations

corresponding to these symbolic constants are defined in the

following sections. The default fog mode is GL_EXP.

GL_FOG_DENSITY ParameterValues is a single integer or floating-point value that

specifies Density, the fog density used in both exponential fog

equations. Only nonnegative densities are accepted. The

default fog density is 1.0.

122 OpenGL 1.2 Reference Manual

GL_FOG_START ParameterValues is a single integer or floating-point value that

specifies Start, the near distance used in the linear fog

equation. The default near distance is 0.0.

GL_FOG_END ParameterValues is a single integer or floating-point value that

specifies End, the far distance used in the linear fog equation.

The default far distance is 1.0.

GL_FOG_INDEX ParameterValues is a single integer or floating-point value that

specifies if, the fog color index. The default fog index is 0.0.

GL_FOG_COLOR ParameterValues contains four integer or floating-point values

that specify Cf, the fog color. Integer values are mapped

linearly such that the most positive representable value maps

to 1.0, and the most negative representable value maps to

-1.0. Floating-point values are mapped directly. After

conversion, all color components are clamped to the range

[0,1]. The default fog color is (0,0,0,0).

GL_FOG_COORDINATE_SOURCE_EXT ParameterValues is a single integer or floating point value that

specifies the source for the fog coordinates. Two symbolic

constants are accepted: GL_FOG_COORDINATE_EXT and

GL_FRAGMENT_DEPTH_EXT. Their use is described below.

The default fog coordinate source is

GL_FRAGMENT_DEPTH_EXT.

Fog blends a fog color with each rasterized pixel fragment’s post-texturing color using a blending factor f.

Factor f is computed in one of three ways, depending on the fog mode, using one of two values,

depending on the fog coordinate source. If the fog coordinate source is GL_FOG_COORDINATE_EXT

then z in the equations below comes from the current fog coordinate. Otherwise, it comes from the

fragment’s distance from the origin in eye coordinates.

The equation for GL_LINEAR fog is:

 The equation for GL_EXP fog is:

 The equation for GL_EXP2 fog is:

end – z
end – startf =

Figure 1. Equation for GL_LINEAR Fog. This figure shows that f is equal to end–z / end–start.

f = (–density. z)e

Figure 2. Equation for GL_EXP Fog. This figure shows that f is equal to e(-density*z).

Chapter 1. OpenGL Subroutines 123

Regardless of the fog mode, f is clamped to the range [0,1] after it is computed. Then, if the GL is in red,

green, blue, alpha (RGBA) color mode, the fragment’s color, Cr, is replaced by the following:

Cr prime = fCr + (1 - f) Cf

In color index mode, the fragment’s color index, ir, is replaced by the following:

ir prime = ir + (1 - f) if

Parameters

glFogf and glFogi

 ParameterName Specifies a single-valued fog parameter. GL_FOG_DENSITY, GL_FOG_END,

GL_FOG_INDEX, GL_FOG_MODE, GL_FOG_START, and

GL_FOG_COORDINATE_SOURCE_EXT are accepted.

ParameterValue Specifies the value to which ParameterName is set.

glFogfv and glFogiv

 ParameterName Specifies a fog parameter. GL_FOG_COLOR, GL_FOG_DENSITY, GL_FOG_END,

GL_FOG_INDEX, GL_FOG_MODE, GL_FOG_START, and

GL_FOG_COORDINATE_SOURCE_EXT are accepted.

ParameterValues Specifies the value or values to be assigned to ParameterName. GL_FOG_COLOR

requires an array of four values. All other parameters accept an array containing only a

single value.

Errors

 GL_INVALID_ENUM ParameterName is not an accepted value.

GL_INVALID_OPERATION The glFog subroutine is called between a call to glBegin and the

corresponding call to glEnd.

GL_INVALID_VALUE ParameterName is GL_FOG_DENSITY and ParameterValues is negative.

GL_INVALID_ENUM ParameterName is GL_FOG_COORDINATE_SOURCE_EXT and

ParameterValues is not one of the two permitted values.

Associated Gets

Associated gets for the glFog subroutine are as follows. (See the glGet subroutine for more information.)

glIsEnabled with argument GL_FOG.

glGet with argument GL_FOG_COLOR.

glGet with argument GL_FOG_INDEX.

glGet with argument GL_FOG_DENSITY.

f = (–density. z)2e

Figure 3. Equation for GL_EXP2 Fog. This figure shows that f is equal to e(-density*z) to the power of two.

124 OpenGL 1.2 Reference Manual

glGet with argument GL_FOG_START.

glGet with argument GL_FOG_END.

glGet with argument GL_FOG_MODE.

glGet with argument GL_CURRENT_FOG_COORDINATE_EXT.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glEnable or glDisable subroutine.

glFogCoordEXT Subroutine

Purpose

Specifies a Fog Coordinate.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glFogCoordfEXT(GLfloat coord)

void glFogCoorddEXT(GLdouble coord)

void glFogCoordfvEXT(GLfloat *Variable)

void glFogCoorddvEXT(GLdouble *Variable)

Description

This extension allows specifying an explicit per-vertex fog coord to be used in fog computations, rather

than using a fragment depth-based fog equation.

Parameters

 coord specifies the fog coordinate, which is used in computing

the fogging effect, as described in glFog. This coordinate

is used in place of the distance in eye coordinates from

the origin to the fragment being fogged.

Variable specifies a pointer to a one-element array containing a fog

coordinate.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 125

Related Information

The glBegin or glEnd subroutine, glFog subroutine, the glFogCoordPointerEXT subroutine, the

glFogCoordPointerListIBM subroutine.

glFogCoordPointerEXT Subroutine

Purpose

Specifies an array of fog coordinates.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glFogCoordPointerEXT(GLenum type,

 GLsizei stride,

 const GLvoid *pointer)

Description

The glFogCoordPointerEXT extension specifies the location and data format of an array of fog

coordinates to use when rendering. The type parameter specifies the data type of each fog coordinate,

and stride gives the byte stride from one coordinate to the next allowing vertices and attributes to be

packed into a single array or stored in separate arrays. (Single-array storage may be more efficient on

some implementations; see glInterleavedArrays).

When a fog coordinate array is specified, type, stride, and pointer are saved as client side state.

To enable and disable the fog coordinate array, call glEnableClientState and glDisableClientState with

the argument GL_FOG_COORDINATE_ARRAY_EXT. If enabled, the fog coordinate array is used when

glDrawArrays, glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Fog Coord array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 type specifies the data type of each fog coordinate in the array.

Symbolic constants GL_FLOAT, or GL_DOUBLE are

accepted. The initial value is GL_FLOAT.

stride specifies the byte offset between consecutive fog

coordinates. If stride is zero (the initial value), the

coordinates are understood to be tightly packed in the

array. The initial value is 0.

pointer specifies a pointer to the first component of the first fog

coordinate in the array. The initial value is 0 (NULL

pointer).

126 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElement subroutine, the glColorPointer subroutine, the glDrawArrays subroutine, the

glDrawElements subroutine, the glEdgeFlagPointer subroutine, the glEnable subroutine, the

glFogCoordPointerListIBM subroutine, the glGetPointerv subroutine, the glIndexPointer subroutine, the

glInterleavedArrays subroutine, the glNormalPointer subroutine, the glPushClientAttrib or

glPopClientAttrib subroutine, the glTexCoordPointer subroutine, the glVertexPointer subroutine.

glFogCoordPointerListIBM Subroutine

Purpose

Defines a list of arrays of fog coordinates.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glFogCoordPointerListIBM (GLenum type,

 GLint stride,

 const GLvoid **pointer,

 GLint ptrstride)

Description

The glFogCoordPointerListIBM subroutine specifies the location and data format of a list of arrays of fog

coordinates to use when rendering. The type parameter specifies the data type of each fog coordinate.

The stride parameter gives the byte stride from one coordinate to the next, allowing vertices and attributes

to be packed into a single array or stored in separate arrays. (Single-array storage may be more efficient

on some implementations; see glInterleavedArrays). The ptrstride parameter specifies the byte stride

from one pointer to the next in the pointer array.

When a fog coordinate array is specified, type, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a ″tightly packed″ array as it does in glFogCoordPointer. Instead, it

causes the first array element of each array to be used for each vertex. Also, a negative value can be

used for stride, which allows the user to move through each array in reverse order.

To enable and disable the fog coordinate arrays, call glEnableClientState and glDisableClientState with

the argument GL_COLOR_ARRAY. The fog coordinate array is initially disabled. When enabled, the fog

coordinate arrays are used when glMultiDrawArraysEXT, glMultiDrawElementsEXT,

glMultiModeDrawArraysIBM, glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or

glArrayElement is called. The last three calls in this list will only use the first array (the one pointed at by

pointer[0]). See the descriptions of these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

Chapter 1. OpenGL Subroutines 127

If enabled, the Fog Coord array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 type specifies the data type of each fog coordinate in the

arrays. Symbolic constants GL_FLOAT or GL_DOUBLE

are accepted. The initial value is GL_FLOAT.

stride specifies the byte offset between consecutive fog

coordinates. The initial value is 0.

pointer specifies a list of fog coordinate arrays. The initial value is

0 (NULL pointer).

ptrstride specifies the byte stride between successive pointers in

the pointer array. The initial value is 0.

Notes

The glFogCoordPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension

is supported.

Execution of glFogCoordPointerListIBM is not allowed between glBegin and the corresponding glEnd,

but an error may or may not be generated. If an error is not generated, the operation is undefined.

The glFogCoordPointerListIBM subroutine is typically implemented on the client side.

Since the fog coordinate array parameters are client side state, they are not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glFogCoordPointerListIBM call is encountered while compiling a display list, the information it

contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glFogCoordPointerEXT call and the glFogCoordPointerListIBM call share the same state variables.

A glFogCoordPointerEXT call will reset the fog coordinate list state to indicate that there is only one fog

coordinate list, so that any and all lists specified by a previous glFogCoordPointerListIBM call will be

lost, not just the first list that it specified.

Error Codes

 GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets

Associated gets for the glFogCoordPointerListIBM subroutine are as follows. (See the glGet subroutine

for more information.)

glIsEnabled with argument GL_FOG_COORDINATE_ARRAY_EXT.

glGetPointerv with argument GL_FOG_COORDINATE_ARRAY_POINTER_EXT.

glGet with arguement GL_CURRENT_FOG_COORDINATE.

glGet with arguement GL_FOG_COORDINATE_ARRAY_TYPE_EXT.

glGet with arguement GL_FOG_COORDINATE_ARRAY_STRIDE_EXT.

128 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElement subroutine, the glColorPointer subroutine, the glDrawArrays subroutine, the

glDrawElements subroutine, the glEdgeFlagPointer subroutine, the glEnable subroutine, the

glFogCoordPointerEXT subroutine, the glGetPointerv subroutine, the glIndexPointer subroutine, the

glInterleavedArrays subroutine, the glMultiDrawArraysEXT subroutine, the glMultiDrawElementsEXT

subroutine, the glMultiModeDrawArraysIBM subroutine, the glMultiModeDrawElementsIBM subroutine,

the glNormalPointer subroutine, the glPushClientAttrib or glPopClientAttrib subroutine, the

glTexCoordPointer subroutine, the glVertexPointer subroutine.

glFrontFace Subroutine

Purpose

Defines frontfacing and backfacing polygons.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glFrontFace(GLenum Mode)

Description

In a scene composed entirely of opaque closed surfaces, backfacing polygons are never visible.

Eliminating these invisible polygons speeds up the rendering of the image. Backface elimination is enabled

and disabled with glEnable and glDisable using argument GL_CULL_FACE.

The projection of a polygon to window coordinates is said to have clockwise winding if an imaginary object

following the path from its first vertex, its second vertex, and so on, to its last vertex, and finally back to its

first vertex, moves in a clockwise direction about the interior of the polygon. The polygon’s winding is said

to be counterclockwise if the imaginary object following the same path moves in a counterclockwise

direction about the interior of the polygon. The glFrontFace subroutine specifies whether polygons with

clockwise winding in window coordinates, or counterclockwise winding in window coordinates, are taken to

be frontfacing. Passing GL_CCW to the Mode parameter selects counterclockwise polygons as frontfacing;

GL_CW selects clockwise polygons as frontfacing. By default, counterclockwise polygons are taken to be

frontfacing.

Parameters

 Mode Specifies the orientation of frontfacing polygons. GL_CW and GL_CCW are accepted. The default value is

GL_CCW.

Errors

 GL_INVALID_ENUM Mode is not an accepted value.

GL_INVALID_OPERATION The glFrontFace subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Chapter 1. OpenGL Subroutines 129

Associated Gets

Associated gets for the glFrontFace subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_FRONT_FACE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glCullFace subroutine, glLightModel subroutine.

glFrustum Subroutine

Purpose

Multiplies the current matrix by a perspective matrix.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glFrustum(GLdouble Left,

 GLdouble Right,

 GLdouble Bottom,

 GLdouble Top,

 GLdouble Near,

 GLdouble Far)

Description

The glFrustum subroutine describes a perspective matrix that produces a perspective projection.

The parameters (Left, Bottom, -Near) and (Right, Top, -Near) specify the points on the near clipping plane

that are mapped to the lower left and upper right corners of the window, respectively, assuming that the

eye is located at (0, 0, 0). -Far specifies the location of the far clipping plane. Both Near and Far must be

positive.

The corresponding matrix is:

130 OpenGL 1.2 Reference Manual

where the following statements apply:

 The current matrix is multiplied by this matrix with the result replacing the current matrix. That is, if M is

the current matrix and F is the frustum perspective matrix, M is replaced with MF.

Use glPushMatrix and glPopMatrix to save and restore the current matrix stack.

Parameters

 Left Specifies a point on the left side of the clipping plane

Right Specifies a point on the right side of the clipping plane.

Bottom Specifies a point on the bottom of the clipping plane.

Top Specifies a point on the top of the clipping plane.

Near Specifies the location of the near clipping plane. This must be a positive value.

Far Specifies the location of the far clipping plane. This must be a positive value.

Notes

Depth buffer precision is affected by the values specified for Near and Far. The greater the ratio of Far to

Near is, the less effective the depth buffer will be at distinguishing between surfaces that are near each

other. If r = Far / Near, roughly log2r bits of depth buffer precision are lost. Because r approaches infinity

as Near approaches 0 (zero), Near must never be set to 0.

Errors

 GL_INVALID_VALUE Either Near or Far is not positive.

0

2 Near
Top–Bottom

0

0

A

B

C

–1

0

0

D

0

2 Near
Right–Left

0

0

0

Figure 4. Perspective Projection Perspective Matrix. This diagram shows a matrix enclosed in brackets. The matrix

consists of four lines containing four characters each. The first line contains the following (from left to right): 2Near /

Right-Left, zero, A, zero. The second line contains the following (from left to right): zero, 2Near / Top-Bottom, B, zero.

The third line contains the following (from left to right): zero, zero, C, D. The fourth line contains the following (from left

to right): zero, zero, -1, zero.

A =
Right+Left
Right–Left

B =

C = Far+Near
Far–Near

Top+Bottom
Top–Bottom

D = 2 Far Near
Far–Near

Figure 5. Statements. This figure shows the equations used to find the values of A, B, C, and D in the matrix above. In

the first equation, A equals Right+Left / Right-Left. In the second equation, B equals Top+Bottom / Top-Bottom. In the

third equation, C equals Far+Near / Far-Near. In the fourth equation, D equals 2FarNear / Far-Near.

Chapter 1. OpenGL Subroutines 131

GL_INVALID_OPERATION The glFrustum subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glFrustum subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MATRIX_MODE.

glGet with argument GL_MODELVIEW_MATRIX.

glGet with argument GL_PROJECTION_MATRIX.

glGet with argument GL_TEXTURE_MATRIX.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glMatrixMode subroutine, glMultMatrix subroutine, glOrtho

subroutine, glPushMatrix or glPopMatrix subroutine, glViewport subroutine.

glGenLists Subroutine

Purpose

Generates a contiguous set of empty display lists.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLuint glGenLists(GLsizei Range)

Description

The glGenLists subroutine has one argument, Range. It returns an integer n such that Range contiguous

empty display lists, named n, n+1, ..., n+Range-1, are created. If Range is 0 (zero), if there is no group of

Range contiguous names available, or if any error is generated, no display lists are generated, and 0 is

returned.

Parameters

 Range Specifies the number of contiguous empty display lists to be generated.

Errors

 GL_INVALID_VALUE Range is negative.

132 OpenGL 1.2 Reference Manual

GL_INVALID_OPERATION The glGenLists subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glGenLists subroutine are as follows. (See the glGet subroutine for more

information.)

glIsList.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCallList subroutine, glCallLists subroutine, glDeleteLists subroutine,

glNewList subroutine.

glGenTextures Subroutine

Purpose

Generate texture names.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGenTextures(GLsizei n,

 GLuint *textures)

Parameters

 n Specifies the number of texture names to be generated.

textures Specifies an array in which the generated texture names are stored.

Description

The glGenTextures subroutine returns n texture names in textures. There is no guarantee that the names

form a contiguous set of integers; however, it is guaranteed that none of the returned names was in use

immediately before the call to glGenTextures.

The generated textures have no dimensionality; they assume the dimensionality of the texture target to

which they are first bound (see glBindTexture).

Texture names returned by a call to glGenTextures are not returned by subsequent calls, unless they are

first deleted with glDeleteTextures.

The glGenTextures subroutine is not included in display lists.

Chapter 1. OpenGL Subroutines 133

Notes

The glGenTextures subroutine is available only if the GL version is 1.1 or greater.

Errors

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glGenTextures is executed between the execution of glBegin

and the corresponding execution of glEnd.

Associated Gets

glIsTexture

Related Information

The glBindTexture subroutine, glDeleteTextures subroutine, glGet subroutine, glGetTexParameter

subroutine, glIsTexture subroutine, glTexImage1D subroutine, glTexImage2D subroutine,

glTexImage3DEXT subroutine, glTexParameter subroutine.

glGenTexturesEXT Subroutine

Purpose

Generates texture names.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGenTexturesEXT(GLsizei n,

 GLuint * textures)

Description

glGenTexturesEXT returns n texture names in textures. There is no guarantee that the names form a

contiguous set of integers; however, it is guaranteed that none of the returned names was in use

immediately before the call to glGenTexturesEXT.

The generated textures have no dimensionality; they assume the dimensionality of the texture target to

which they are first bound (see glBindTextureEXT).

Texture names returned by a call to glGenTexturesEXT will not be returned by subsequent calls, unless

they are first deleted with glDeleteTexturesEXT.

glGenTexturesEXT is not included in display lists.

Parameters

 n The number of texture names to be generated.

textures An array in which the generated texture names are stored.

134 OpenGL 1.2 Reference Manual

Notes

glGenTexturesEXT is part of the EXT_texture_object extension, not part of the core GL command set. If

GL_EXT_texture_object is included in the string returned by glGetString, when called with argument

GL_EXTENSIONS, extension EXT_texture_object is supported by the connection.

Errors

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glGenTexturesEXT is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glIsTextureEXT.

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glBindTextureEXT subroutine, glDeleteTexturesEXT subroutine, glGet subroutine,

glGetTexParameter subroutine, glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3DEXT

subroutine, glTexParameter subroutine.

glGet Subroutine

Purpose

Returns the value or values of a selected parameter.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetBooleanv(GLenum ParameterName,

 GLBoolean * ParameterValues)

void glGetDoublev(GLenum ParameterName,

 GLdouble * ParameterValues)

void glGetFloatv(GLenum ParameterName,

 GLfloat * ParameterValues)

void glGetIntegerv(GLenum ParameterName,

 GLint ParameterValues)

Description

The four commands, glGetBooleanv, glGetDoublev, glGetFloatv, and glGetIntegerv, return values for

simple-state variables in GL. ParameterName is a symbolic constant indicating the state variable to be

returned, and ParameterValues is a pointer to an array of the indicated type in which to place the returned

data.

Chapter 1. OpenGL Subroutines 135

Type conversion is performed if ParameterValues has a different type than the state variable value being

requested. If glGetBooleanv is called, a floating-point or integer value is converted to GL_FALSE if and

only if it is 0 (zero). Otherwise, it is converted to GL_TRUE. If glGetIntegerv is called, Boolean values are

returned as GL_TRUE or GL_FALSE, and most floating-point values are rounded to the nearest integer

value. Floating-point colors and normals, however, are returned with a linear mapping that maps 1.0 to the

most positive representable integer value, and -1.0 to the most negative representable integer value. If

either glGetFloatv or glGetDoublev is called, Boolean values are returned as GL_TRUE or GL_FALSE,

and integer values are converted to floating-point values.

The following symbolic constants are accepted by ParameterName:

 GL_ACCUM_ALPHA_BITS ParameterValues returns one value, the

number of alpha bit planes in the accumulation

buffer.

GL_ACCUM_BLUE_BITS ParameterValues returns one value, the

number of blue bit planes in the accumulation

buffer.

GL_ACCUM_CLEAR_VALUE ParameterValues returns four values: the red,

green, blue, and alpha (RGBA) values used to

clear the accumulation buffer. Integer values, if

requested, are linearly mapped from the

internal floating-point representation such that

1.0 returns the most positive representable

integer value, and -1.0 returns the most

negative representable integer value. (See

glClearAccum.)

GL_ACCUM_GREEN_BITS ParameterValues returns one value, the

number of green bit planes in the

accumulation buffer.

GL_ACCUM_RED_BITS ParameterValues returns one value, the

number of red bit planes in the accumulation

buffer.

GL_ALIASED_LINE_WIDTH_RANGE ParameterValues returns two values: the

smallest and largest supported widths for

aliased lines. (See glLineWidth.)

GL_ALIASED_POINT_SIZE_RANGE ParameterValues returns two values: the

smallest and largest supported sizes for

aliased points. (See glPointSize.)

GL_ALPHA_BIAS ParameterValues returns one value, the alpha

bias factor used during pixel transfers. (See

glPixelTransfer.)

GL_ALPHA_BITS ParmeterValues returns one value, the number

of alpha bit planes in each color buffer.

GL_ALPHA_SCALE ParameterValues returns one value, the alpha

scale factor used during pixel transfers. (See

glPixelTransfer.)

GL_ALPHA_TEST ParameterValues returns a single Boolean

value indicating whether alpha testing of

fragments is enabled. (See glAlphaFunc.)

GL_ALPHA_TEST_FUNC ParameterValues returns one value, the

symbolic name of the alpha test function. (See

glAlphaFunc.)

136 OpenGL 1.2 Reference Manual

GL_ALPHA_TEST_REF ParameterValues returns one value, the

reference value for the alpha test. (See

glAlphaFunc.) An integer value, if requested,

is linearly mapped from the internal

floating-point representation such that 1.0

returns the most positive representable integer

value, and -1.0 returns the most negative

representable integer value.

GL_ARRAY_ELEMENT_LOCK_FIRST_EXT ParameterValues returns one value, the first

element in the locked range. (See

glLockArraysEXT.) Requires extension

EXT_compiled_vertex_array.

GL_ARRAY_ELEMENT_LOCK_COUNT_EXT ParameterValues returns one value, the count

of elements in the locked range. (See

glLockArraysEXT.) Requires extension

EXT_compiled_vertex_array.

GL_ATTRIB_STACK_DEPTH ParameterValues returns one value, the depth

of the attribute stack. If the stack is empty, 0 is

returned. (See glPushAttrib.)

GL_AUTO_NORMAL ParameterValues returns a single Boolean

value indicating whether two-dimensional (2D)

map evaluation automatically generates

surface normals. (See glMap2.)

GL_AUX_BUFFERS ParameterValues returns one value, the

number of auxiliary color buffers.

GL_BLEND ParameterValues returns a single Boolean

value indicating whether blending is enabled.

(See glBlendFunc.)

GL_BLEND_DST ParameterValues returns one value, the

symbolic constant identifying the destination

blend function. (See glBlendFunc.)

GL_BLEND_DST_ALPHA_EXT ParameterValues returns one value, the

symbolic constant identifying the destination

alpha separate blend function. (See

glBlendFuncSeparate.)

GL_BLEND_DST_RGB_EXT ParameterValues returns one value, the

symbolic constant identifying the destination

RGB separate blend function. (See

glBlendFuncSeparate.)

GL_BLEND_EQUATION_EXT ParameterValues returns one value, a

symbolic constant indicating the blend

equation. (See glBlendEquationEXT.)

Requires at least one of the following

extensions: EXT_blend_minmax,

EXT_blend_color, EXT_blend_subtract,

EXT_blend_logic_op.

GL_BLEND_SRC ParameterValues returns one value, the

symbolic constant identifying the source blend

function. (See glBlendFunc.)

GL_BLEND_SRC_ALPHA_EXT ParameterValues returns one value, the

symbolic constant identifying the source alpha

separate blend function. (See

glBlendFuncSeparate.)

GL_BLEND_SRC_RGB_EXT ParameterValues returns one value, the

symbolic constant identifying the source RGB

separate blend function. (See

glBlendFuncSeparate.)

Chapter 1. OpenGL Subroutines 137

GL_BLUE_BIAS ParameterValues returns one value, the blue

bias factor used during pixel transfers. (See

glPixelTransfer.)

GL_BLUE_BITS ParameterValues returns one value, the

number of blue bit planes in each color buffer.

GL_CLIENT_ATTRIB_STACK_DEPTH ParameterValues returns one value indicating

the depth of the attribute stack. The initial

value is 0. (See glPushClientAttrib.)

GL_BLUE_SCALE ParameterValues returns one value, the blue

scale factor used during pixel transfers. (See

glPixelTransfer.)

GL_CLIP_PLANE ParameterValues returns a single Boolean

value indicating whether the specified clipping

plane is enabled. (See glClipPlane.)

GL_COLOR_ARRAY ParameterValues returns a single Boolean

value indicating whether the color array is

enabled. The initial value is GL_FALSE. (See

glColorPointer.)

GL_COLOR_ARRAY_COUNT_EXT ParameterName returns one value, the

number of colors in the color array, counting

from the first, that are static. (See

glColorPointerEXT.) Requires extension

EXT_vertex_array.

GL_COLOR_ARRAY_EXT ParameterValues returns a single boolean

value, indicating whether the color array is

enabled. (See glColorPointerEXT.) Requires

extension EXT_vertex_array.

GL_COLOR_ARRAY_LIST_STRIDE_IBM ParameterValues returns one value, the byte

stride between successive pointers to color

lists. The initial value is 0. (See

glColorPointerListIBM.) Requires extension

IBM_vertex_array_lists.

GL_COLOR_ARRAY_SIZE ParameterValues returns one value, the

number of components per color in the color

array. The initial value is 4. (See

glColorPointer.)

GL_COLOR_ARRAY_SIZE_EXT ParameterValues returns one value, the

number of components per color in the color

array. (See glColorPointerEXT.) Requires

extension EXT_vertex_array.

GL_COLOR_ARRAY_STRIDE ParameterValues returns one value, the byte

offset between consecutive colors in the color

array. The initial value is 0. (See

glColorPointer.)

GL_COLOR_ARRAY_STRIDE_EXT ParameterName returns one value, the byte

offset between consecutive colors in the color

array. (See glColorPointerEXT.) Requires

extension EXT_vertex_array.

GL_COLOR_ARRAY_TYPE ParameterValues returns one value, the data

type of each component in the color array. The

initial value is GL_FLOAT. (See

glColorPointer.)

GL_COLOR_ARRAY_TYPE_EXT ParameterValues returns one value, the data

type of each component in the color array.

(See glColorPointerEXT.) Requires extension

EXT_vertex_array.

138 OpenGL 1.2 Reference Manual

GL_COLOR_CLEAR_VALUE ParameterValues returns four values: the

RGBA values used to clear the color buffers.

Integer values, if requested, are linearly

mapped from the internal floating-point

representation such that 1.0 returns the most

positive representable integer value, and -1.0

returns the most negative representable

integer value. (See glClearColor.)

GL_COLOR_LOGIC_OP ParameterValues returns a single Boolean

value indicating whether a fragment’s color

values are merged into the framebuffer using

a logical operation. The initial value is

GL_FALSE. (See glLogicOp.)

GL_COLOR_MATERIAL ParameterValues returns a single Boolean

value indicating whether one or more material

parameters are tracking the current color. (See

glColorMaterial.)

GL_COLOR_MATERIAL_FACE ParameterValues returns one value, a

symbolic constant indicating which materials

have a parameter that is tracking the current

color. (See glColorMaterial.)

GL_COLOR_MATERIAL_PARAMETER ParameterValues returns one value, a

symbolic constant indicating which material

parameters are tracking the current color. (See

glColorMaterial.)

GL_COLOR_MATRIX ParameterValues returns 16 values: the color

matrix. (See glLoadNamedMatrixIBM.)

GL_COLOR_SUM_EXT ParameterValues returns a single Boolean

value indicating whether the color sum stage

and secondary color handling is enabled. (See

glSecondaryColorEXT.)

GL_COLOR_WRITEMASK ParameterValues returns four Boolean values:

the RGBA write enables for the color buffers.

(See glColorMask.)

GL_CULL_FACE ParameterValues returns a single Boolean

value indicating whether polygon culling is

enabled. (See glCullFace.)

GL_CULL_FACE_MODE ParameterValues returns one value, a

symbolic constant indicating which polygon

faces are to be culled. (See glCullFace.)

GL_CURRENT_COLOR ParameterValues returns four values: the

RGBA values of the current color. Integer

values, if requested, are linearly mapped from

the internal floating-point representation such

that 1.0 returns the most positive

representable integer value, and -1.0 returns

the most negative representable integer value.

(See glColor.)

GL_CURRENT_FOG_COORDINATE_EXT ParameterValues returns one value, the

current fog coordinate. (See

glFogCoordEXT.)

GL_CURRENT_INDEX ParameterValues returns one value, the

current color index. (See glIndex.)

Chapter 1. OpenGL Subroutines 139

GL_CURRENT_NORMAL ParameterValues returns three values: the x,

y, and z values of the current normal. Integer

values, if requested, are linearly mapped from

the internal floating-point representation such

that 1.0 returns the most positive

representable integer value, and -1.0 returns

the most negative representable integer value.

(See glNormal.)

GL_CURRENT_RASTER_COLOR ParameterValues returns four values: the

RGBA values of the current raster position.

Integer values, if requested, are linearly

mapped from the internal floating-point

representation such that 1.0 returns the most

positive representable integer value, and -1.0

returns the most negative representable

integer value. (See glRasterPos.)

GL_CURRENT_RASTER_DISTANCE ParameterValues returns one value, the

distance from the eye to the current raster

position. The initial value is 0. (See

glRasterPos.)

GL_CURRENT_RASTER_INDEX ParameterValues returns one value, the color

index of the current raster position. (See

glRasterPos.)

GL_CURRENT_RASTER_POSITION ParameterValues returns four values: the x, y,

z, and w components of the current raster

position. x, y, and z are in window

coordinates, w is in clip coordinates. (See

glRasterPos.)

GL_CURRENT_RASTER_TEXTURE_COORDS ParameterValues returns four values: the s, t,

r, and q current raster texture coordinates.

(See glRasterPos and glTexCoord.)

GL_CURRENT_RASTER_POSITION_VALID ParameterValues returns a single Boolean

value indicating whether the current raster

position is valid. (See glRasterPos.)

GL_CURRENT_SECONDARY_COLOR ParameterValues returns a four values: the

RGBA values of the secondary color. (See

glSecondaryColorEXT.)

GL_CURRENT_TEXTURE_COORDS ParameterValues returns four values: the s, t,

r, and q current texture coordinates. (See

glTexCoord.)

GL_DEPTH_BIAS ParameterValues returns one value, the depth

bias factor used during pixel transfers. (See

glPixelTransfer.)

GL_DEPTH_BITS ParameterValues returns one value, the

number of bit planes in the depth buffer.

GL_DEPTH_CLEAR_VALUE ParameterValues returns one value, the value

that is used to clear the depth buffer. Integer

values, if requested, are linearly mapped from

the internal floating-point representation such

that 1.0 returns the most positive

representable integer value, and -1.0 returns

the most negative representable integer value.

(See glClearDepth.)

GL_DEPTH_FUNC ParameterValues returns one value, the

symbolic constant that indicates the depth

comparison function. (See glDepthFunc.)

140 OpenGL 1.2 Reference Manual

GL_DEPTH_RANGE ParameterValues returns two values: the near

and far mapping limits for the depth buffer.

Integer values, if requested, are linearly

mapped from the internal floating-point

representation such that 1.0 returns the most

positive representable integer value, and -1.0

returns the most negative representable

integer value. (See glDepthRange.)

GL_DEPTH_SCALE ParameterValues returns one value, the depth

scale factor used during pixel transfers. (See

glPixelTransfer.)

GL_DEPTH_TEST ParameterValues returns a single Boolean

value indicating whether depth testing of

fragments is enabled. (See glDepthFunc and

glDepthRange.)

GL_DEPTH_WRITEMASK ParameterValues returns a single Boolean

value indicating if the depth buffer is enabled

for writing. (See glDepthMask.)

GL_DITHER ParameterValues returns a single Boolean

value indicating whether dithering of fragment

colors and indices is enabled.

GL_DOUBLEBUFFER ParameterValues returns a single Boolean

value indicating whether double buffering is

supported.

GL_DRAW_BUFFER ParameterValues returns one value, a

symbolic constant indicating which buffers are

being drawn to. (See glDrawBuffer.)

GL_EDGE_FLAG ParameterValues returns a single Boolean

value indicating whether the current edge flag

is True or False. (See glEdgeFlag.)

GL_EDGE_FLAG_ARRAY ParameterValues returns a single Boolean

value indicating whether the edge flag array is

enabled. The initial value is GL_FALSE. (See

glEdgeFlagPointer.)

GL_EDGE_FLAG_ARRAY_COUNT_EXT ParameterValues returns one value, the

number of edge flags in the edge flag array,

counting from the first, that are static. (See

glEdgeFlagPointerEXT.) Requires extension

EXT_vertex_array.

GL_EDGE_FLAG_ARRAY_EXT ParameterValues returns a single boolean

value, indicating whether the edge flag array is

enabled. (See glEdgeFlagPointerEXT.)

Requires extension EXT_vertex_array.

GL_EDGE_FLAG_LIST_STRIDE_IBM ParameterValues returns one value, the byte

stride between successive pointers to edge

flag lists. The initial value is 0. (See

glEdgeFlagPointerListIBM.) Requires

extension IBM_XXX.

GL_EDGE_FLAG_ARRAY_STRIDE ParameterValues returns one value, the byte

offset between consecutive edge flags in the

edge flag array. The initial value is 0. (See

glEdgeFlagPointer.)

GL_EDGE_FLAG_ARRAY_STRIDE_EXT ParameterValues returns one value, the byte

offset between consecutive edge flags in the

edge flag array. (See

glEdgeFlagPointerEXT.) Requires extension

EXT_vertex_array.

Chapter 1. OpenGL Subroutines 141

GL_FOG ParameterValues returns a single Boolean

value indicating whether fogging is enabled.

(See glFog.)

GL_FOG_COLOR ParameterValues returns four values: the

RGBA components of the fog color. Integer

values, if requested, are linearly mapped from

the internal floating-point representation such

that 1.0 returns the most positive

representable integer value, and -1.0 returns

the most negative representable integer value.

(See glFog.)

GL_FOG_COORDINATE_ARRAY_TYPE_EXT ParameterValues returns one value, the fog

coordinate array type. (See

glFogCoordPointerEXT.)

GL_FOG_COORDINATE_ARRAY_STRIDE_EXT ParameterValues returns one value, the fog

coordinate array stride. (See

glFogCoordPointerEXT.)

GL_FOG_DENSITY ParameterValues returns one value, the fog

density parameter. (See glFog.)

GL_FOG_END ParameterValues returns one value, the end

factor for the linear fog equation. (See glFog.)

GL_FOG_HINT ParameterValues returns one value, a

symbolic constant indicating the mode of the

fog hint. (See glHint.)

GL_FOG_INDEX ParameterValues returns one value, the fog

color index. (See glFog.)

GL_FOG_MODE ParameterValues returns one value, a

symbolic constant indicating which fog

equation is selected. (See glFog.)

GL_FOG_START ParameterValues returns one value, the start

factor for the linear fog equation. (See glFog.)

GL_FRONT_FACE ParameterValues returns one value, a

symbolic constant indicating whether clockwise

or counterclockwise polygon winding is treated

as frontfacing. (See glFrontFace.)

GL_GREEN_BIAS ParameterValues returns one value, the green

bias factor used during pixel transfers.

GL_GREEN_BITS ParameterValues returns one value, the

number of green bit planes in each color

buffer.

GL_GREEN_SCALE ParameterValues returns one value, the green

scale factor used during pixel transfers. (See

glPixelTransfer.)

GL_INDEX_ARRAY ParameterValues returns a single Boolean

value indicating whether the color index array

is enabled. The initial value is GL_FALSE.

(See glIndexPointer.)

GL_INDEX_ARRAY_COUNT_EXT ParameterValues returns one value, the

number of color indexes in the color index

array, counting from the first, that are static.

(See glIndexPointerEXT.) Requires extension

EXT_vertex_array.

GL_INDEX_ARRAY_EXT ParameterValues returns a single boolean

value, indicating whether the color index array

is enabled. (See glIndexPointerEXT.)

Requires extension EXT_vertex_array.

142 OpenGL 1.2 Reference Manual

GL_INDEX_ARRAY_LIST_STRIDE_IBM ParameterValues returns one value, the byte

stride between successive pointers to index

lists. The initial value is 0. (See

glIndexPointerListIBM.) Requires extension

IBM_vertex_array_lists.

GL_INDEX_ARRAY_STRIDE ParameterValues returns one value, the byte

offset between consecutive color indexes in

the color index array. The initial value is 0.

(See glIndexPointer.)

GL_INDEX_ARRAY_STRIDE_EXT ParameterValues returns one value, the byte

offset between consecutive color indexes in

the color index array. (See

glIndexPointerEXT.) Requires extension

EXT_vertex_array.

GL_INDEX_ARRAY_TYPE ParameterValues returns one value, the data

type of indexes in the color index array. The

initial value is GL_FLOAT. (See

glIndexPointer.)

GL_INDEX_ARRAY_TYPE_EXT ParameterValues returns one value, the data

type of indexes in the color index array. (See

glIndexPointerEXT.) Requires extension

EXT_vertex_array.

GL_INDEX_BITS ParameterValues returns one value, the

number of bit planes in each color index

buffer.

GL_INDEX_CLEAR_VALUE ParameterValues returns one value, the color

index used to clear the color index buffers.

(See glClearIndex.)

GL_INDEX_MODE ParameterValues returns a single Boolean

value indicating whether the GL is in color

index mode (True) or RGBA mode (False).

GL_INDEX_OFFSET ParameterValues returns one value, the offset

added to color and stencil indices during pixel

transfers. (See glPixelTransfer.)

GL_INDEX_SHIFT ParameterValues returns one value, the

amount that color and stencil indices are

shifted during pixel transfers. (See

glPixelTransfer.)

GL_INDEX_WRITEMASK ParameterValues returns one value, a mask

indicating which bit planes of each color index

buffer can be written. (See glIndexMask.)

GL_LIGHT# (where ’#’ is 0...GL_MAXLIGHTS-1) ParameterValues returns a single Boolean

value indicating whether the specified light is

enabled. (See glLight and glLightModel.)

GL_LIGHTING ParameterValues returns a single Boolean

value indicating whether lighting is enabled.

(See glLightModel.)

GL_LIGHT_MODEL_AMBIENT ParameterValues returns four values: the

RGBA components of the ambient intensity of

the entire scene. Integer values, if requested,

are linearly mapped from the internal

floating-point representation such that 1.0

returns the most positive representable integer

value, and -1.0 returns the most negative

representable integer value. (See

glLightModel.)

Chapter 1. OpenGL Subroutines 143

GL_LIGHT_MODEL_COLOR_CONTROL ParameterValues can be

GL_SINGLE_COLOR or

GL_SPECULAR_COLOR.

GL_SINGLE_COLOR is the default value.

Depending upon the ParameterValues, the

lighting equations compute the two colors

differently. All computations are carried out in

eye coordinates. (See glLightModel.)

GL_LIGHT_MODEL_LOCAL_VIEWER ParameterValues returns a single Boolean

value indicating whether specular reflection

calculations treat the viewer as being local to

the scene. (See glLightModel.)

GL_LIGHT_MODEL_TWO_SIDE ParameterValues returns a single Boolean

value indicating whether separate materials

are used to compute lighting for frontfacing

and backfacing polygons. (See glLightModel.)

GL_LINE_SMOOTH ParameterValues returns a single Boolean

value indicating whether antialiasing of lines is

enabled. (See glLineWidth.)

GL_LINE_SMOOTH_HINT ParameterValues returns one value, a

symbolic constant indicating the mode of the

line antialiasing hint. (See glHint).

GL_LINE_STIPPLE ParameterValues returns a single Boolean

value indicating whether stippling of lines is

enabled. (See glLineStipple.)

GL_LINE_STIPPLE_PATTERN ParameterValues returns one value, the 16-bit

line stipple pattern. (See glLineStipple.)

GL_LINE_STIPPLE_REPEAT ParameterValues returns one value, the line

stipple repeat factor. (See glLineStipple.)

GL_LINE_WIDTH ParameterValues returns one value, the line

width as specified with glLineWidth.

GL_LINE_WIDTH_GRANULARITY ParameterValues returns one value, the width

difference between adjacent supported widths

for antialiased lines. (See glLineWidth.)

GL_LINE_WIDTH_RANGE ParameterValues returns two values: the

smallest and largest supported widths for

antialiased lines. (See glLineWidth.)

GL_LIST_BASE ParameterValues returns one value, the base

offset added to all names in arrays presented

to glCallLists. (See glListBase.)

GL_LIST_INDEX ParameterValues returns one value, the name

of the display list currently under construction.

If no display list is currently under

construction, 0 is returned. (See glNewList.)

GL_LIST_MODE ParameterValues returns one value, a

symbolic constant indicating the construction

mode of the display list currently being

constructed. (See glNewList.)

GL_LOGIC_OP ParameterValues returns a single Boolean

value indicating whether fragment indexes are

merged into the frame buffer using a logical

operation. (See glLogicOp.)

GL_LOGIC_OP_MODE ParameterValues returns one value, a

symbolic constant indicating the selected logic

operational mode. (See glLogicOp.)

GL_MAP1_COLOR_4 ParameterValues returns a single Boolean

value indicating whether 1D evaluation

generates colors. (See glMap1.)

144 OpenGL 1.2 Reference Manual

GL_MAP1_GRID_DOMAIN ParameterValues returns two values: the

endpoints of the one-dimensional (1D) map’s

grid domain. (See glMapGrid.)

GL_MAP1_GRID_SEGMENTS ParameterValues returns one value, the

number of partitions in the 1D map’s grid

domain. (See glMapGrid.)

GL_MAP1_INDEX ParameterValues returns a single Boolean

value indicating whether 1D evaluation

generates color indices. (See glMap1.)

GL_MAP1_NORMAL ParameterValues returns a single Boolean

value indicating whether 1D evaluation

generates normals. (See glMap1.)

GL_MAP1_TEXTURE_COORD_1 ParameterValues returns a single Boolean

value indicating whether 1D evaluation

generates 1D texture coordinates. (See

glMap1.)

GL_MAP1_TEXTURE_COORD_2 ParameterValues returns a single Boolean

value indicating whether 1D evaluation

generates 2D texture coordinates. (See

glMap1.)

GL_MAP1_TEXTURE_COORD_3 ParameterValues returns a single Boolean

value indicating whether 1D evaluation

generates 3D texture coordinates. (See

glMap1.)

GL_MAP1_TEXTURE_COORD_4 ParameterValues returns a single Boolean

value indicating whether 1D evaluation

generates 4D texture coordinates. (See

glMap1.)

GL_MAP1_VERTEX_3 ParameterValues returns a single Boolean

value indicating whether 1D evaluation

generates 3D vertex coordinates. (See

glMap1.)

GL_MAP1_VERTEX_4 ParameterValues returns a single Boolean

value indicating whether 1D evaluation

generates 4D vertex coordinates. (See

glMap1.)

GL_MAP2_COLOR_4 ParameterValues returns a single Boolean

value indicating whether 2D evaluation

generates colors. (See glMap2.)

GL_MAP2_GRID_DOMAIN ParameterValues returns four values: the

endpoints of the 2D map’s i and j grid

domains. (See glMapGrid.)

GL_MAP2_GRID_SEGMENTS ParameterValues returns two values: the

number of partitions in the 2D map’s i and j

grid domains. (See glMapGrid.)

GL_MAP2_INDEX ParameterValues returns a single Boolean

value indicating whether 2D evaluation

generates color indices. (See glMap2.)

GL_MAP2_NORMAL ParameterValues returns a single Boolean

value indicating whether 2D evaluation

generates normals. (See glMap2.)

GL_MAP2_TEXTURE_COORD_1 ParameterValues returns a single Boolean

value indicating whether 2D evaluation

generates 1D texture coordinates. (See

glMap2.)

GL_MAP2_TEXTURE_COORD_2 ParameterValues returns a single Boolean

value indicating whether 2D evaluation

generates 2D texture coordinates. (See

glMap2.)

Chapter 1. OpenGL Subroutines 145

GL_MAP2_TEXTURE_COORD_3 ParameterValues returns a single Boolean

value indicating whether 2D evaluation

generates 3D texture coordinates. (See

glMap2.)

GL_MAP2_TEXTURE_COORD_4 ParameterValues returns a single Boolean

value indicating whether 2D evaluation

generates 4D texture coordinates. (See

glMap2.)

GL_MAP2_VERTEX_3 ParameterValues returns a single Boolean

value indicating whether 2D evaluation

generates 3D vertex coordinates. (See

glMap2.)

GL_MAP2_VERTEX_4 ParameterValues returns a single Boolean

value indicating whether 2D evaluation

generates 4D vertex coordinates. (See

glMap2.)

GL_MAP_COLOR ParameterValues returns a single Boolean

value indicating if colors and color indices are

to be replaced by table lookup during pixel

transfers. (See glPixelTransfer.)

GL_MAP_STENCIL ParameterValues returns a single Boolean

value indicating if stencil indices are to be

replaced by table lookup during pixel transfers.

(See glPixelTransfer.)

GL_MATRIX_MODE ParameterValues returns one value, a

symbolic constant indicating which matrix

stack is currently the target of all matrix

operations. (See glMatrixMode.)

GL_MAX_3D_TEXTURE_SIZE ParameterValues returns one value, the

maximum width, height, or depth of any 3D

texture image (without borders). (See

glTexImage3DEXT.)

GL_MAX_3D_TEXTURE_SIZE_EXT ParameterValues returns one value, a rough

estimate of the largest 3D texture that the GL

can handle. If the GL version is 1.2 or greater,

use GL_PROXY_TEXTURE_3D″ to determine

if a texture is too large. (See

glTexImage3DEXT.) Requires extension

EXT_texture3D.

GL_MAX_ATTRIB_STACK_DEPTH ParameterValues returns one value, the

maximum supported depth of the attribute

stack. (See glPushAttrib.)

GL_MAX_CLIENT_ATTRIB_STACK_DEPTH ParameterValues returns one value indicating

the maximum supported depth of the client

attribute stack. (See glPushClientAttrib.)

GL_MAX_CLIP_PLANES ParameterValues returns one value, the

maximum number of application-defined

clipping planes. (See glClipPlane.)

GL_MAX_ELEMENTS_INDICES ParameterValues returns one value: the

maximum number of DrawRangeElements

vertices.

GL_MAX_ELEMENTS_VERTICES ParameterValues returns one value: the

maximum number of DrawRangeElements

vertices.

GL_MAX_EVAL_ORDER ParameterValues returns one value, the

maximum equation order supported by 1D and

2D evaluators. (See glMap1 and glMap2.)

GL_MAX_LIGHTS ParameterValues returns one value, the

maximum number of lights. (See glLight.)

146 OpenGL 1.2 Reference Manual

GL_MAX_LIST_NESTING ParameterValues returns one value, the

maximum recursion depth allowed during

display list traversal. (See glCallList.)

GL_MAX_MODELVIEW_STACK_DEPTH ParameterValues returns one value, the

maximum supported depth of the modelview

matrix stack. (See glPushMatrix.)

GL_MAX_NAME_STACK_DEPTH ParameterValues returns one value, the

maximum supported depth of the selection

name stack. (See glPushName.)

GL_MAX_PIXEL_MAP_TABLE ParameterValues returns one value, the

maximum supported size of a glPixelMap

lookup table. (See glPixelMap.)

GL_MAX_PROJECTION_STACK_DEPTH ParameterValues returns one value, the

maximum supported depth of the projection

matrix stack. (See glPushMatrix.)

GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT ParameterValues returns one value, the

maximum level of texture anisotropy supported

by this implementation. (See

glGetTexParameter.) Requires extension

EXT_texture_filter_anisotropic.

GL_MAX_TEXTURE_SIZE ParameterValues returns one value, the

maximum width or height of any texture image

(without borders). (See glTexImage1D and

glTexImage2D.)

GL_MAX_TEXTURE_STACK_DEPTH ParameterValues returns one value, the

maximum supported depth of the texture

matrix stack. (See glPushMatrix.)

GL_MAX_VIEWPORT_DIMS ParameterValues returns two values: the

maximum supported width and height of the

viewport. (See glViewport.)

GL_MAX_VISIBILITY_THRESHOLD_IBM ParameterValues returns one value: the

maximum permitted number of visible

fragments that will be discarded prior to

registering a visibility hit. (See

glVisibilityBufferIBM.) Requires extension

IBM_occlusion_cull.

GL_MODELVIEW_MATRIX ParameterValues returns 16 values: the

modelview matrix on the top of the modelview

matrix stack. (See glMatrixMode.)

GL_MODELVIEW_STACK_DEPTH ParameterValues returns one value, the

number of matrices on the modelview matrix

stack. (See glPushMatrix.)

GL_NAME_STACK_DEPTH ParameterValues returns one value, the

number of names on the selection name

stack. (See glPushMatrix.)

GL_NORMAL_ARRAY ParameterValues returns a single Boolean

value, indicating whether the normal array is

enabled. The initial value is GL_FALSE. (See

glNormalPointer.)

GL_NORMAL_ARRAY_COUNT_EXT ParameterValues returns one value, the

number of normals in the normal array,

counting from the first, that are static. (See

glNormalPointerEXT.) Requires extension

EXT_vertex_array.

GL_NORMAL_ARRAY_EXT ParameterValues returns a single boolean

value, indicating whether the normal array is

enabled. (See glNormalPointerEXT.)

Requires extension EXT_vertex_array.

Chapter 1. OpenGL Subroutines 147

GL_NORMAL_ARRAY_LIST_STRIDE_IBM ParameterValues returns one value, the byte

stride between successive pointers to normal

lists. The initial value is 0. (See

glNormalPointerListIBM.) Requires extension

IBM_vertex_array_lists.

GL_NORMAL_ARRAY_STRIDE ParameterValues returns one value, the byte

offset between consecutive normals in the

normal array. The initial value is 0. (See

glNormalPointer.)

GL_NORMAL_ARRAY_STRIDE_EXT ParameterValues returns one value, the byte

offset between consecutive normals in the

normal array. (See glNormalPointerEXT.)

Requires extension EXT_vertex_array.

GL_NORMAL_ARRAY_TYPE ParameterValues returns one value, the data

type of each coordinate in the normal array.

The initial value is GL_FLOAT. (See

glNormalPointer.)

GL_NORMAL_ARRAY_TYPE_EXT ParameterValues returns one value, the data

type of each coordinate in the normal array.

(See glNormalPointerEXT.) Requires

extension EXT_vertex_array.

GL_NORMALIZE ParameterValues returns a single Boolean

value indicating whether normals are

automatically scaled to unit length after they

have been transformed to eye coordinates.

(See glNormal.)

GL_OCCLUSION_TEST_HP ParameterValues returns a single Boolean

value indicating whether the occlusion test

HP_OCCLUSION_TEST is enabled. (See

glEnable.)

GL_OCCLUSION_TEST_RESULT_HP ParameterValues returns a single Boolean

value indicating whether the occlusion test

HP_OCCLUSION_TEST noted any fragments

successfully passing the depth test. (See

glEnable.)

GL_PACK_ALIGNMENT ParameterValues returns one value, the byte

alignment used for writing pixel data to

memory. (See glPixelStore.)

GL_PACK_IMAGE_HEIGHT ParameterValues returns one value, the

number of image rows used for writing 3D

pixel data to memory. (See glPixelStore.)

GL_PACK_IMAGE_HEIGHT_EXT ParameterValues returns one value, the

number of image rows used for writing 3D

pixel data to memory. (See glPixelStore.)

Requires extension EXT_texture3D.

GL_PACK_LSB_FIRST ParameterValues returns a single Boolean

value indicating whether single-bit pixels being

written to memory are written first to the least

significant bit of each unsigned byte. (See

glPixelStore.)

GL_PACK_ROW_LENGTH ParameterValues returns one value, the row

length used for writing pixel data to memory.

(See glPixelStore.)

GL_PACK_SKIP_IMAGES ParameterValues returns one value, the

number of 2D images skipped before the first

pixel of a 3D image is written into memory.

(See glPixelStore.)

148 OpenGL 1.2 Reference Manual

GL_PACK_SKIP_IMAGES_EXT ParameterValues returns one value, the

number of 2D images skipped before the first

pixel of a 3D image is written into memory.

(See glPixelStore.) Requires extension

EXT_texture3D.

GL_PACK_SKIP_PIXELS ParameterValues returns one value, the

number of pixel locations skipped before the

first pixel is written into memory. (See

glPixelStore.)

GL_PACK_SKIP_ROWS ParameterValues returns one value, the

number of rows of pixel locations skipped

before the first pixel is written into memory.

(See glPixelStore.)

GL_PACK_SWAP_BYTES ParameterValues returns a single Boolean

value indicating whether the bytes of 2-byte

and 4-byte pixel indices and components are

swapped before being written to memory. (See

glPixelStore.)

GL_PERSPECTIVE_CORRECTION_HINT ParameterValues returns one value, a

symbolic constant indicating the mode of the

perspective correction hint. (See glHint.)

GL_PIXEL_MAP_A_TO_A_SIZE ParameterValues returns one value, the size

of the alpha-to-alpha pixel translation table.

(See glPixelMap.)

GL_PIXEL_MAP_B_TO_B_SIZE ParameterValues returns one value, the size

of the blue-to-blue pixel translation table. (See

glPixelMap.)

GL_PIXEL_MAP_G_TO_G_SIZE ParameterValues returns one value, the size

of the green-to-green pixel translation table.

(See glPixelMap.)

GL_PIXEL_MAP_I_TO_A_SIZE ParameterValues returns one value, the size

of the index-to-alpha pixel translation table.

(See glPixelMap.)

GL_PIXEL_MAP_I_TO_B_SIZE ParameterValues returns one value, the size

of the index-to-blue pixel translation table.

(See glPixelMap.)

GL_PIXEL_MAP_I_TO_G_SIZE ParameterValues returns one value, the size

of the index-to-green pixel translation table.

(See glPixelMap.)

GL_PIXEL_MAP_I_TO_I_SIZE ParameterValues returns one value, the size

of the index-to-index pixel translation table.

(See glPixelMap.)

GL_PIXEL_MAP_I_TO_R_SIZE ParameterValues returns one value, the size

of the index-to-red pixel translation table. (See

glPixelMap.)

GL_PIXEL_MAP_R_TO_R_SIZE ParameterValues returns one value, the size

of the red-to-red pixel translation table. (See

glPixelMap.)

GL_PIXEL_MAP_S_TO_S_SIZE ParameterValues returns one value, the size

of the stencil-to-stencil pixel translation table.

(See glPixelMap.)

GL_POINT_SIZE ParameterValues returns one value, the point

size as specified by glPointSize.

GL_POINT_SIZE_GRANULARITY ParameterValues returns one value, the size

difference between adjacent supported sizes

for antialiased points. (See glPointSize.)

GL_POINT_SIZE_RANGE ParameterValues returns two values: the

smallest and largest supported sizes for

antialiased points. (See glPointSize.)

Chapter 1. OpenGL Subroutines 149

GL_POINT_SMOOTH ParameterValues returns a single Boolean

value indicating whether antialiasing of points

is enabled. (See glPointSize.)

GL_POINT_SMOOTH_HINT ParameterValues returns one value, a

symbolic constant indicating the mode of the

point antialiasing hint. (See glHint.)

GL_POLYGON_MODE ParameterValues returns two values: symbolic

constants indicating whether frontfacing and

backfacing polygons are rasterized as points,

lines, or filled polygons. (See

glPolygonMode.)

GL_POLYGON_OFFSET_BIAS_EXT ParameterValues returns one value, the

constant which is added to the z value of each

fragment generated when a polygon is

rasterized. (See glPolygonOffsetEXT.)

Requires extension EXT_polygon_offset.

GL_POLYGON_OFFSET_EXT ParameterValues returns a single Boolean

value indicating whether polygon offest is

enabled. (See glPolygonOffsetEXT.)

Requires extension EXT_polygon_offset.

GL_POLYGON_OFFSET_FACTOR ParameterValues returns one value, the

scaling factor used to determine the variable

offset which is added to the depth value of

each fragment generated when a polygon is

rasterized. The initial value is 0.0. (See

glPolygonOffset.)

GL_POLYGON_OFFSET_FACTOR_EXT ParameterValues returns one value, the

scaling factor used to determine the variable

offset which is added to the z value of each

fragment generated when a polygon is

rasterized. (See glPolygonOffsetEXT.)

Requires extension EXT_polygon_offset.

GL_POLYGON_OFFSET_FILL ParameterValues returns a single Boolean

value indicating whether polygon offset is

enabled for polygons in fill mode. The initial

value is GL_FALSE. (See glPolygonOffset.)

GL_POLYGON_OFFSET_LINE ParameterValues returns a single Boolean

value indicating whether polygon offset is

enabled for polygons in line mode. The initial

value is GL_FALSE. (See glPolygonOffset.)

GL_POLYGON_OFFSET_POINT ParameterValues returns a single Boolean

value indicating whether polygon offset is

enabled for polygons in point mode. The initial

value is GL_FALSE. (See glPolygonOffset.)

GL_POLYGON_OFFSET_UNITS ParameterValues returns one value, this value

is multiplied by an implementation-specific

value and then added to the z value of each

fragment generated when a polygon is

rasterized. The initial value is 0.0. (See

glPolygonOffset.)

GL_POLYGON_SMOOTH ParameterValues returns a single Boolean

value indicating whether antialiasing of

polygons is enabled. (See glPolygonMode.)

GL_POLYGON_SMOOTH_HINT ParameterValues returns one value, a

symbolic constant indicating the mode of the

polygon antialiasing hint. (See glHint.)

GL_POLYGON_STIPPLE ParameterValues returns a single Boolean

value indicating whether stippling of polygons

is enabled. (See glPolygonStipple.)

150 OpenGL 1.2 Reference Manual

GL_PROJECTION_MATRIX ParameterValues returns 16 values: the

projection matrix on the top of the projection

matrix stack. (See glMatrixMode.)

GL_PROJECTION_STACK_DEPTH ParameterValues returns one value, the

number of matrices on the projection matrix

stack. (See glPushMatrix.)

GL_READ_BUFFER ParameterValues returns one value, a

symbolic constant indicating which color buffer

is selected for reading. (See glReadPixels

and glAccum.)

GL_RED_BIAS ParameterValues returns one value, the red

bias factor used during pixel transfers.

GL_RED_BITS ParameterValues returns one value, the

number of red bit planes in each color buffer.

GL_RED_SCALE ParameterValues returns one value, the red

scale factor used during pixel transfers. (See

glPixelTransfer.)

GL_RENDER_MODE ParameterValues returns one value, a

symbolic constant indicating whether the GL is

in render, select, or feedback mode. (See

glRenderMode.)

GL_RGBA_MODE ParameterValues returns a single Boolean

value indicating whether the GL is in RGBA

mode (True) or color index mode (False). (See

glColor.)

GL_SCISSOR_BOX ParameterValues returns four values: the x

and y window coordinates of the scissor box,

followed by its width and height. (See

glScissor.)

GL_SCISSOR_TEST ParameterValues returns a single Boolean

value indicating whether scissoring is enabled.

(See glScissor.)

GL_SHADE_MODEL ParameterValues returns one value, a

symbolic constant indicating whether the

shading mode is flat or smooth. (See

glShadeModel.)

GL_SECONDARY_COLOR_ARRAY_SIZE_EXT ParameterValues returns one value, the

number of components in each entry of the

secondary color array, which will be either 3 or

4. (See glSecondaryColorPointerEXT.)

GL_SECONDARY_COLOR_ARRAY_STRIDE_EXT ParameterValues returns one value, the byte

offset between consecutive entries in the

secondary color array. (See

glSecondaryColorPointerEXT.)

GL_SECONDARY_COLOR_ARRAY_TYPE_EXT ParameterValues returns one value, the data

type of each component in the secondary

color array. (See

glSecondaryColorPointerEXT.)

GL_SMOOTH_LINE_WIDTH_GRANULARITY ParameterValues returns one value, the width

difference between adjacent supported widths

for antialiased lines. (See glLineWidth.)

GL_SMOOTH_LINE_WIDTH_RANGE ParameterValues returns two values: the

smallest and largest supported widths for

antialiased lines. (See glLineWidth.)

GL_SMOOTH_POINT_SIZE_GRANULARITY ParameterValues returns one value, the size

difference between adjacent supported sizes

for antialiased points. (See glPointSize.)

Chapter 1. OpenGL Subroutines 151

GL_SMOOTH_POINT_SIZE_RANGE ParameterValues returns two values: the

smallest and largest supported sizes for

antialiased points. (See glPointSize.)

GL_STENCIL_BITS ParameterValues returns one value, the

number of bit planes in the stencil buffer.

GL_STENCIL_CLEAR_VALUE ParameterValues returns one value, the index

to which the stencil bit planes are cleared.

(See glClearStencil.)

GL_STENCIL_FAIL ParameterValues returns one value, a

symbolic constant indicating what action is

taken when the stencil test fails. (See

glStencilOp.)

GL_STENCIL_FUNC ParameterValues returns one value, a

symbolic constant indicating what function is

used to compare the stencil reference value

with the stencil buffer value. (See

glStencilFunc.)

GL_STENCIL_PASS_DEPTH_FAIL ParameterValues returns one value, a

symbolic constant indicating what action is

taken when the stencil test passes but the

depth test fails. (See glStencilOp.)

GL_STENCIL_PASS_DEPTH_PASS ParameterValues returns one value, a

symbolic constant indicating what action is

taken when the stencil test passes and the

depth test passes. (See glStencilOp.)

GL_STENCIL_REF ParameterValues returns one value, the

reference value that is compared with the

contents of the stencil buffer. (See

glStencilFunc.)

GL_STENCIL_TEST ParameterValues returns a single Boolean

value indicating whether stencil testing of

fragments is enabled. (See glStencilFunc and

glStencilOp.)

GL_STENCIL_VALUE_MASK ParameterValues returns one value, the mask

that is used to mask both the stencil reference

value and the stencil buffer value before they

are compared. (See glStencilFunc.)

GL_STENCIL_WRITEMASK ParameterValues returns one value, the mask

that controls writing of the stencil bit planes.

(See glStencilMask.)

GL_STEREO ParameterValues returns a single Boolean

value indicating whether stereo buffers (left

and right) are supported.

GL_SUBPIXEL_BITS ParameterValues returns one value, an

estimate of the number of bits of subpixel

resolution that are used to position rasterized

geometry in window coordinates.

GL_TEXTURE_1D ParameterValues returns a single Boolean

value indicating whether 1D texture mapping is

enabled. (See glTexImage1D.)

GL_TEXTURE_2D ParameterValues returns a single Boolean

value indicating whether 2D texture mapping is

enabled. (See glTexImage2D.)

GL_TEXTURE_1D_BINDING ParameterValues returns a single value, the

name of the texture currently bound to the

target GL_TEXTURE_1D. The initial value is

0. (See glBindTexture.)

152 OpenGL 1.2 Reference Manual

GL_TEXTURE_1D_BINDING_EXT ParameterValues returns a single value, the

name of the texture currently bound to the

target GL_TEXTURE_1D. (See

glBindTextureEXT.) Requires extension

EXT_texture_object.

GL_TEXTURE_2D_BINDING ParameterValues returns a single value, the

name of the texture currently bound to the

target GL_TEXTURE_2D. The initial value is

0. (See glBindTexture.)

GL_TEXTURE_2D_BINDING_EXT ParameterValues returns a single value, the

name of the texture currently bound to the

target GL_TEXTURE_2D. (See

glBindTextureEXT.) Requires extension

EXT_texture_object.

GL_TEXTURE_3D_BINDING_EXT ParameterValues returns a single value, the

name of the texture currently bound to the

target GL_TEXTURE_3D_EXT. (See

glBindTexture.) Requires extension

EXT_texture_object.

GL_TEXTURE_3D_EXT ParameterValues returns a single Boolean

value indicating whether 3D texture mapping is

enabled. (See glTexImage3DEXT.) Requires

extension EXT_texture3D.

GL_TEXTURE_COLOR_TABLE_EXT ParameterValues returns a single Boolean

value indicating whether the texture color table

is enabled. The initial value is GL_FALSE.

(See glColorTable.)

GL_TEXTURE_COORD_ARRAY ParameterValues returns a single Boolean

value indicating whether the texture coordinate

array is enabled. The initial value is

GL_FALSE. (See glTexCoordPointer.)

GL_TEXTURE_COORD_ARRAY_COUNT_EXT ParameterValues returns one value, the

number of elements in the texture coordinate

array, counting from the first, that are static.

(See glTexCoordPointerEXT.) Requires

extension EXT_vertex_array.

GL_TEXTURE_COORD_ARRAY_EXT ParameterValues returns a single boolean

value, indicating whether the texture

coordinate array is enabled. (See

glTexCoordPointerEXT.) Requires extension

EXT_vertex_array.

GL_TEXTURE_COORD_ARRAY_LIST_STRIDE_IBM ParameterValues returns one value, the byte

stride between successive pointers to texture

coord lists. The initial value is 0. (See

glTexCoordPointerListIBM.) Requires

extension IBM_vertex_array_lists.

GL_TEXTURE_COORD_ARRAY_SIZE ParameterValues returns one value, the

number of coordinates per element in the

texture coordinate array. The initial value is 4.

(See glTexCoordPointer.)

GL_TEXTURE_COORD_ARRAY_SIZE_EXT ParameterValues returns one value, the

number of coordinates per element in the

texture coordinate array. (See

glTexCoordPointerEXT.) Requires extension

EXT_vertex_array.

GL_TEXTURE_COORD_ARRAY_STRIDE ParameterValues returns one value, the byte

offset between consecutive elements in the

texture coordinate array. The initial value is 0.

(See glTexCoordPointer.)

Chapter 1. OpenGL Subroutines 153

GL_TEXTURE_COORD_ARRAY_STRIDE_EXT ParameterValues returns one value, the byte

offset between consecutive elements in the

texture coordinate array. (See

glTexCoordPointerEXT.) Requires extension

EXT_vertex_array.

GL_TEXTURE_COORD_ARRAY_TYPE ParameterValues returns one value, the data

type of the coordinates in the texture

coordinate array. The initial value is

GL_FLOAT. (See glTexCoordPointer.)

GL_TEXTURE_COORD_ARRAY_TYPE_EXT ParameterValues returns one value, the data

type of the coordinates in the texture

coordinate array. (See

glTexCoordPointerEXT.) Requires extension

EXT_vertex_array.

GL_TEXTURE_ENV_COLOR ParameterValues returns four values: the

RGBA values of the texture environment color.

Integer values, if requested, are linearly

mapped from the internal floating-point

representation such that 1.0 returns the most

positive representable integer value, and -1.0

returns the most negative representable

integer value. (See glTexEnv.)

GL_TEXTURE_ENV_MODE ParameterValues returns one value, a

symbolic constant indicating what texture

environment function is currently selected.

(See glTexEnv.)

GL_TEXTURE_GEN_S ParameterValues returns a single Boolean

value indicating whether automatic generation

of the S texture coordinate is enabled. (See

glTexGen.)

GL_TEXTURE_GEN_T ParameterValues returns a single Boolean

value indicating whether automatic generation

of the T texture coordinate is enabled. (See

glTexGen.)

GL_TEXTURE_GEN_R ParameterValues returns a single Boolean

value indicating whether automatic generation

of the R texture coordinate is enabled. (See

glTexGen.)

GL_TEXTURE_GEN_Q ParameterValues returns a single Boolean

value indicating whether automatic generation

of the Q texture coordinate is enabled. (See

glTexGen.)

GL_TEXTURE_MATRIX ParameterValues returns 16 values: the

texture matrix on the top of the texture matrix

stack. (See glMatrixMode.)

GL_TEXTURE_STACK_DEPTH ParameterValues returns one value, the

number of matrices on the texture matrix stack

. (See glPushMatrix.)

GL_TRANSPOSE_COLOR_MATRIX_ARB ParameterValues returns 16 values: the

transpose of the color matrix. (See

glLoadNamedMatrixIBM.) Requires extension

ARB_transpose_matrix.

GL_TRANSPOSE_MODELVIEW_MATRIX_ARB ParameterValues returns 16 values: the

transpose of the modelview matrix on the top

of the modelview matrix stack. (See

glMatrixMode.) Requires extension

ARB_transpose_matrix.

154 OpenGL 1.2 Reference Manual

GL_TRANSPOSE_PROJECTION_MATRIX_ARB ParameterValues returns 16 values: the

transpose of the projection matrix on the top of

the projection matrix stack. (See

glMatrixMode.) Requires extension

ARB_transpose_matrix.

GL_TRANSPOSE_TEXTURE_MATRIX_ARB ParameterValues returns 16 values: the

transpose of the texture matrix on the top of

the texture matrix stack. (See glMatrixMode.)

Requires extension ARB_transpose_matrix.

GL_UNPACK_ALIGNMENT ParameterValues returns one value, the byte

alignment used for reading pixel data from

memory. (See glPixelStore.)

GL_UNPACK_IMAGE_HEIGHT ParameterValues returns one value, the

number of image rows used for reading 3D

pixel data from memory. (See glPixelStore.)

GL_UNPACK_IMAGE_HEIGHT_EXT ParameterValues returns one value, the

number of image rows used for reading 3D

pixel data from memory. (See glPixelStore.)

Requires extension EXT_texture3D.

GL_UNPACK_LSB_FIRST ParameterValues returns a single Boolean

value indicating whether single-bit pixels being

read from memory are read first from the least

significant bit of each unsigned byte. (See

glPixelStore.)

GL_UNPACK_ROW_LENGTH ParameterValues returns one value, the row

length used for reading pixel data from

memory. (See glPixelStore.)

GL_UNPACK_SKIP_IMAGES ParameterValues returns one value, the

number of 2D images skipped before the first

pixel of a 3D image is read from memory.

(See glPixelStore.)

GL_UNPACK_SKIP_IMAGES_EXT ParameterValues returns one value, the

number of 2D images skipped before the first

pixel of a 3D image is read from memory.

(See glPixelStore.) Requires extension

EXT_texture3D.

GL_UNPACK_SKIP_PIXELS ParameterValues returns one value, the

number of pixel locations skipped before the

first pixel is read from memory. (See

glPixelStore.)

GL_UNPACK_SKIP_ROWS ParameterValues returns one value, the

number of rows of pixel locations skipped

before the first pixel is read from memory.

(See glPixelStore.)

GL_UNPACK_SWAP_BYTES ParameterValues returns a single Boolean

value indicating whether the bytes of 2-byte

and 4-byte pixel indices and components are

swapped after being read from memory. (See

glPixelStore.)

GL_UPDATE_CLIP_VOLUME_HINT ParameterValues returns a single Boolean

value indicating whether the automatic

updating of the Clip Volume Hint (through calls

to glClipBoundingBoxIBM,

glClipBoundingSphereIBM or

glClipBoundingVerticesIBM) is enabled.

(See glHint.) Requires extension

IBM_clip_check.

Chapter 1. OpenGL Subroutines 155

GL_VERTEX_ARRAY ParameterValues returns a single Boolean

value indicating whether the vertex array is

enabled. The initial value is GL_FALSE. (See

glVertexPointer.)

GL_VERTEX_ARRAY_COUNT_EXT ParameterValues returns one value, the

number of vertices in the vertex array,

counting from the first, that are static. (See

glVertexPointerEXT.) Requires extension

EXT_vertex_array.

GL_VERTEX_ARRAY_EXT ParameterValues returns a single boolean

value, indicating whether the vertex array is

enabled. (See glVertexPointerEXT.)

GL_VERTEX_ARRAY_LIST_STRIDE_IBM ParameterValues returns one value, the byte

stride between successive pointers to vertex

lists. The initial value is 0. (See

glVertexPointerListIBM.) Requires extension

IBM_vertex_array_lists.

GL_VERTEX_ARRAY_SIZE_EXT ParameterValues returns one value, the

number of coordinates per vertex in the vertex

array. (See glVertexPointerEXT.) Requires

extension EXT_vertex_array.

GL_VERTEX_ARRAY_STRIDE ParameterValues returns one value, the byte

offset between consecutive vertices in the

vertex array. The initial value is 0. (See

glVertexPointer.)

GL_VERTEX_ARRAY_STRIDE_EXT ParameterValues returns one value, the byte

offset between consecutive vertices in the

vertex array. (See glVertexPointerEXT.)

Requires extension EXT_vertex_array.

GL_VERTEX_ARRAY_TYPE ParameterValues returns one value, the data

type of each coordinate in the vertex array.

The initial value is GL_FLOAT. (See

glVertexPointer.)

GL_VERTEX_ARRAY_TYPE_EXT ParameterValues returns one value, the data

type of each coordinate in the vertex array.

(See glVertexPointerEXT.) Requires

extension EXT_vertex_array.

GL_VIEWPORT ParameterValues returns four values: the x

and y window coordinates of the viewport,

followed by its width and height. (See

glViewPort.)

GL_VISIBILITY_BUFFER_SIZE_IBM ParameterValues returns one value: the

maximum number of values that can be stored

in the visibility array. (See

glVisibilityBufferIBM.) Requires extension

IBM_occlusion_cull.

GL_VISIBILITY_THRESHOLD_IBM ParameterValues returns one value: the

number of visible fragments that will be

discarded prior to registering a visibility hit.

(See glVisibilityThresholdIBM.) Requires

extension IBM_occlusion_cull.

GL_ZOOM_X ParameterValues returns one value, the x

pixel zoom factor. (See glPixelZoom.)

GL_ZOOM_Y ParameterValues returns one value, the y

pixel zoom factor. (See glPixelZoom.)

Many of the Boolean parameters can also be queried more easily using glIsEnabled.

156 OpenGL 1.2 Reference Manual

Parameters

 ParameterName Specifies the parameter value to be returned. The symbolic constants listed in the

Description section are accepted.

ParameterValues Returns the value or values of the specified parameter.

Error Codes

 GL_INVALID_ENUM ParameterName is not an accepted value.

GL_INVALID_OPERATION The glGet subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glGetClipPlane subroutine, glGetError subroutine, glGetLight subroutine, glGetMap subroutine,

glGetMaterial subroutine, glGetPixelMap subroutine, glGetPointerv subroutine, glGetPointervEXT

subroutine, glGetPolygonStipple subroutine, glGetString subroutine, glGetTexEnv subroutine,

glGetTexGen subroutine, glGetTexImage subroutine, glGetTexLevelParameter subroutine,

glGetTexParameter subroutine, glIsEnabled subroutine.

glGetClipPlane Subroutine

Purpose

Returns the coefficients of the clipping plane.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetClipPlane(GLenum Plane,

 GLdouble * Equation)

Description

The glGetClipPlane subroutine returns in Equation the four coefficients of the plane equation for Plane.

Parameters

 Plane Specifies a clipping plane. The number of clipping planes depends on the implementation; however,

at least six clipping planes are supported. They are identified by symbolic names of the form

GL_CLIP_PLANEi where 0 < i < GL_MAX_CLIP_PLANES.

Equation Returns four double-precision values that are the coefficients of the plane equation of Plane in eye

coordinates.

Chapter 1. OpenGL Subroutines 157

Notes

It is always the case that GL_CLIP_PLANEi = GL_CLIP_PLANE0 + i.

If an error is generated, no change is made to the contents of Equation.

Errors

 GL_INVALID_ENUM Plane is not an accepted value.

GL_INVALID_OPERATION The glGetClipPlane subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glClipPlane subroutine.

glGetColorTable Subroutine

Purpose

Return a color lookup table to the user.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glGetColorTable(GLenum target,

 GLenum format,

 GLenum type,

 const GLvoid *table)

void glGetColorTableSGI(GLenum target,

 GLenum format,

 GLenum type,

 const GLvoid *table)

Description

glGetColorTable returns in table the contents of the color table specified by target. No pixel transfer

operations are performed, but pixel storage modes that are applicable to glReadPixels are performed.

Color components that are requested to be in the specified format, but which are not included in the

internal format of the color lookup table, are returned as zero. The assignments of the internal color

components to the components requested by format are:

 Internal Component Resulting Component

 red red

 green green

 blue blue

 alpha alpha

 luminance red

 intensity red

158 OpenGL 1.2 Reference Manual

Parameters

 target Must be GL_TEXTURE_COLOR_TABLE_EXT.

format is the format of the pixel data in table. The allowable

values are GL_RED, GL_GREEN, GL_BLUE,

GL_ALPHA, GL_LUMINANCE,

GL_LUMINANCE_ALPHA, GL_RGB, GL_BGR,

GL_RGBA, GL_BGRA, GL_422_EXT,

GL_422_REV_EXT, GL_422_AVERAGE_EXT, and

GL_422_REV_AVERAGE_EXT.

type is the type of the pixel data in table. The allowable values

are GL_UNSIGNED_BYTE, GL_BYTE,

GL_UNSIGNED_SHORT, GL_SHORT,

GL_UNSIGNED_INT, GL_INT, GL_FLOAT,

GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5,

GL_UNSIGNED_SHORT_5_6_5_REV,

GL_UNSIGNED_SHORT_4_4_4_4,

GL_UNSIGNED_SHORT_4_4_4_4_REV,

GL_UNSIGNED_SHORT_5_5_5_1,

GL_UNSIGNED_SHORT_1_5_5_5_REV,

GL_UNSIGNED_INT_8_8_8_8,

GL_UNSIGNED_INT_8_8_8_8_REV,

GL_UNSIGNED_INT_10_10_10_2, and

GL_UNSIGNED_INT_2_10_10_10_REV.

table is a pointer to a one-dimensional array of pixel data that

will be loaded with the contents of the color table.

Notes

GL_TEXTURE_COLOR_TABLE_SGI is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these

tokens may be used interchangeably.

GL_PROXY_TEXTURE_COLOR_TABLE_SGI is an alias for

GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

 GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if format is not one of the allowable values.

GL_INVALID_ENUM is generated if type is not one of the allowable values.

GL_INVALID_OPERATION is generated if type is one of

GL_UNSIGNED_BYTE_3_3_2,

GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, or

GL_UNSIGNED_SHORT_5_6_5_REV, and format is not

GL_RGB.

GL_INVALID_OPERATION is generated if type is one of

GL_UNSIGNED_SHORT_4_4_4_4,

GL_UNSIGNED_SHORT_4_4_4_4_REV,

GL_UNSIGNED_SHORT_5_5_5_1,

GL_UNSIGNED_SHORT_1_5_5_5_REV,

GL_UNSIGNED_SHORT_8_8_8_8,

GL_UNSIGNED_SHORT_8_8_8_8_REV,

GL_UNSIGNED_SHORT_10_10_10_2, or

GL_UNSIGNED_SHORT_2_10_10_10_REV, and format

is neigher GL_RGBA nor GL_BGRA.

Chapter 1. OpenGL Subroutines 159

GL_INVALID_OPERATION is generated if glColorTable is executed between the

execution of glBegin and the corresponding execution of

glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glColorSubTable subroutine, the glColorTableParameter subroutine, the

glGetColorTableParameter subroutine.

glGetColorTableParameter Subroutine

Purpose

Returns attributes used when loading a color table.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glGetColorTableParameterfv(GLenum target,

 GLenum pname,

 const GLfloat *params)

void glGetColorTableParameteriv(GLenum target,

 GLenum pname,

 const GLint *params)

void glGetColorTableParameterfvSGI(GLenum target,

 GLenum pname,

 const GLfloat *params)

void glGetColorTableParameterivSGI(GLenum target,

 GLenum pname,

 const GLint *params)

Description

This subroutine returns parameters specific to color table target.

When pname is set to GL_COLOR_TABLE_SCALE or GL_COLOR_TABLE_BIAS,

glGetColorTableParameter returns the color table scale or bias parameters for the table specified by

target. For these queries, target must be set to GL_TEXTURE_COLOR_TABLE_EXT and params points

to an array of four elements, which receive the scale or bias factors for red, green, blue, and alpha, in that

order.

glGetColorTableParameter can also be used to retrieve the format and size parameters for a color table.

For thes queries, set target to any of the six targets listed above. The format and size parameters are set

by glColorTable.

The following table lists the format and size parameters that may be queried. For each symbolic constant

listed below for pname, params must point to an array of the given length, and will receive the values

indicated.

160 OpenGL 1.2 Reference Manual

Parameter N Meaning

 GL_COLOR_TABLE_FORMAT 1 Internal format (e.g. GL_RGBA)

 GL_COLOR_TABLE_WIDTH 1 Number of elements in the table

 GL_COLOR_TABLE_RED_SIZE 1 Size of red component, in bits

 GL_COLOR_TABLE_GREEN_SIZE 1 Size of green component, in bits

 GL_COLOR_TABLE_BLUE_SIZE 1 Size of blue component, in bits

 GL_COLOR_TABLE_ALPHA_SIZE 1 Size of alpha component, in bits

 GL_COLOR_TABLE_LUMINANCE_SIZE 1 Size of luminance component, in bits

 GL_COLOR_TABLE_INTENSITY_SIZE 1 Size of intensity component, in bits

Parameters

 target is the target color table. Must be

GL_TEXTURE_COLOR_TABLE_EXT, or

GL_PROXY_TEXTURE_COLOR_TABLE_EXT.

pname is the symbolic name of a texture color lookup table

parameter. Must be one of GL_COLOR_TABLE_SCALE,

GL_COLOR_TABLE_BIAS,

GL_COLOR_TABLE_FORMAT,

GL_COLOR_TABLE_WIDTH,

GL_COLOR_TABLE_RED_SIZE,

GL_COLOR_TABLE_GREEN_SIZE,

GL_COLOR_TABLE_BLUE_SIZE,

GL_COLOR_TABLE_ALPHA_SIZE,

GL_COLOR_TABLE_LUMINANCE_SIZE, or

GL_COLOR_TABLE_INTENSITY_SIZE.

params is a pointer to an array where the values of the

paramaters will be stored.

Notes

GL_TEXTURE_COLOR_TABLE_SGI is an alias for GL_TEXTURE_COLOR_TABLE_EXT, and these

tokens may be used interchangeably. GL_PROXY_TEXTURE_COLOR_TABLE_SGI is an alias for

GL_PROXY_TEXTURE_COLOR_TABLE_EXT, and these tokens may be used interchangeably.

Error Codes

 GL_INVALID_ENUM is generated if target is not one of the allowable values.

GL_INVALID_ENUM is generated if pname is not one of the allowable values.

GL_INVALID_OPERATION is generated if glColorTableParameter is executed

between the execution of a glBegin and the

corresponding execution of glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glColorSubTable subroutine, the glColorTableParameter subroutine.

Chapter 1. OpenGL Subroutines 161

glGetError Subroutine

Purpose

Returns error information.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLenum glGetError(void)

Description

The glGetError subroutine returns the value of the error flag. Each detectable error is assigned a numeric

code and symbolic name. When an error occurs, the error flag is set to the appropriate error code value.

No other errors are recorded until glGetError is called, the error code is returned, and the flag is reset to

GL_NO_ERROR. If a call to glGetError returns GL_NO_ERROR, there has been no detectable error

since the last call to glGetError, or since the GL was initialized.

To allow for distributed implementations, there may be several error flags. If any single error flag has

recorded an error, the value of that flag is returned, and that flag is reset to GL_NO_ERROR when

glGetError is called. If more than one flag has recorded an error, glGetError returns and clears an

arbitrary error flag value. Therefore, glGetError should always be called in a loop, until it returns

GL_NO_ERROR, if all error flags are to be reset.

Initially, all error flags are set to GL_NO_ERROR.

The currently defined errors are:

 GL_NO_ERROR No error has been recorded. The value of this symbolic constant is

guaranteed to be 0 (zero).

GL_INVALID_ENUM An unacceptable value is specified for an enumerated argument. The

offending command is ignored, having no side effect other than to set the

error flag.

GL_INVALID_VALUE A numeric argument is out of range. The offending command is ignored,

having no side effect other than to set the error flag.

GL_INVALID_OPERATION The specified operation is not allowed in the current state. The offending

command is ignored, having no side effect other than to set the error flag.

GL_STACK_OVERFLOW This command would cause a stack overflow. The offending command is

ignored, having no side effect other than to set the error flag.

GL_STACK_UNDERFLOW This command would cause a stack underflow. The offending command is

ignored, having no side effect other than to set the error flag.

GL_OUT_OF_MEMORY There is not enough memory left to execute the command. The state of the

GL is undefined, except for the state of the error flags, after this error is

recorded.

GL_TABLE_TOO_LARGE The specified table is too large.

When an error flag is set, results of a GL operation are undefined only if GL_OUT_OF_MEMORY has

occurred. In all other cases, the command generating the error is ignored and has no effect on the GL

state or frame buffer contents.

162 OpenGL 1.2 Reference Manual

Errors

 GL_INVALID_OPERATION The glGetError subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes fo OpenGL.

Related Information

The glBegin or glEnd subroutine.

glGetLight Subroutine

Purpose

Returns light source parameter values.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetLightfv(GLenum Light,

 GLenum ParameterName,

 GLfloat * ParameterValues)

void glGetLightiv(GLenum Light,

 GLenum ParameterName,

 GLint * ParameterValues)

Description

The glGetLight subroutine returns in ParameterValues the value or values of a light source parameter.

Light names the light and is a symbolic name of the form GL_LIGHTi for 0 < i < GL_MAX_LIGHTS, where

GL_MAX_LIGHTS is an implementation-dependent constant that is greater than or equal to 8.

ParameterName specifies one of 10 light source parameters, again by symbolic name.

The parameters are:

 GL_AMBIENT ParameterValues returns four integer or floating-point values

representing the ambient intensity of the light source. Integer values,

when requested, are linearly mapped from the internal floating-point

representation such that 1.0 maps to the most positive representable

integer value, and -1.0 maps to the most negative representable

integer value. If the internal value is outside the range [-1,1], the

corresponding integer return value is undefined.

GL_DIFFUSE ParameterValues returns four integer or floating-point values

representing the diffuse intensity of the light source. Integer values,

when requested, are linearly mapped from the internal floating-point

representation such that 1.0 maps to the most positive representable

integer value, and -1.0 maps to the most negative representable

integer value. If the internal value is outside the range [-1,1], the

corresponding integer return value is undefined.

Chapter 1. OpenGL Subroutines 163

GL_SPECULAR ParameterValues returns four integer or floating-point values

representing the specular intensity of the light source. Integer values,

when requested, are linearly mapped from the internal floating-point

representation such that 1.0 maps to the most positive representable

integer value, and -1.0 maps to the most negative representable

integer value. If the internal value is outside the range [-1,1], the

corresponding integer return value is undefined.

GL_POSITION ParameterValues returns four integer or floating-point values

representing the position of the light source. Integer values, when

requested, are computed by rounding the internal floating-point values

to the nearest integer value. The returned values are those

maintained in eye coordinates. They will not be equal to the values

specified using glLight, unless the modelview matrix was identified at

the time glLight was called.

GL_SPOT_DIRECTION ParameterValues returns three integer or floating-point values

representing the direction of the light source. Integer values, when

requested, are computed by rounding the internal floating-point values

to the nearest integer value. The returned values are those

maintained in eye coordinates. They will not be equal to the values

specified using glLight, unless the modelview matrix was identity at

the time glLight was called. Although spot direction is normalized

before being used in the lighting equation, the returned values are the

transformed versions of the specified values prior to normalization.

GL_SPOT_EXPONENT ParameterValues returns a single integer or floating-point value

representing the spot exponent of the light. An integer value, when

requested, is computed by rounding the internal floating-point

representation to the nearest integer.

GL_SPOT_CUTOFF ParameterValues returns a single integer or floating-point value

representing the spot cutoff angle of the light. An integer value, when

requested, is computed by rounding the internal floating-point

representation to the nearest integer.

GL_CONSTANT_ATTENUATION ParameterValues returns a single integer or floating-point value

representing the constant (not distance related) attenuation of the

light. An integer value, when requested, is computed by rounding the

internal floating point representation to the nearest integer.

GL_LINEAR_ATTENUATION ParameterValues returns a single integer or floating-point value

representing the linear attenuation of the light. An integer value, when

requested, is computed by rounding the internal floating-point

representation to the nearest integer.

GL_QUADRATIC_ATTENUATION ParameterValues returns a single integer or floating-point value

representing the quadratic attenuation of the light. An integer value,

when requested, is computed by rounding the internal floating-point

representation to the nearest integer.

Parameters

 Light Specifies a light source. The number of possible lights depends on the implementation;

however, at least eight lights are supported. They are identified by symbolic names of

the form GL_LIGHTi where 0 < i < GL_MAX_LIGHTS.

ParameterName Specifies a light source parameter for Light. Accepted symbolic names are

GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION,

GL_SPOT_DIRECTION, GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,

GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and

GL_QUADRATIC_ATTENUATION.

ParameterValues Returns the requested data.

164 OpenGL 1.2 Reference Manual

Notes

It is always the case that GL_LIGHTi = GL_LIGHT0 + i.

If an error is generated, no change is made to the contents of ParameterValues.

Errors

 GL_INVALID_ENUM Either Light or ParameterName is not an accepted value.

GL_INVALID_OPERATION The glGetLight subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glLight subroutine.

glGetMap Subroutine

Purpose

Returns evaluator parameters.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetMapdv(GLenum Target,

 GLenum Query,

 GLdouble * v)

void glGetMapfv(GLenum Target,

 GLenum Query,

 GLfloat * v)

void glGetMapiv(GLenum Target,

 GLenum Query,

 GLint * v)

Description

The glMap1 and glMap2 subroutines define evaluators. The glGetMap subroutine returns evaluator

parameters. Target chooses a map, Query selects a specific parameter, and v points to storage where the

values are returned. (See the glMap1 and glMap2 subroutines for a description of the acceptable values

for the Target parameter.)

Chapter 1. OpenGL Subroutines 165

Query can assume the following values:

 GL_COEFF v returns the control points for the evaluator function. One-dimensional (1D) evaluators return order

control points, and two-dimensional (2D) evaluators return uorder x vorder control points. Each

control point consists of 1, 2, 3, or 4 integer, single-precision floating-point, or double-precision

floating-point values, depending on the type of the evaluator. Two-dimensional control points are

returned in row major order, incrementing the uorder index quickly, and the vorder index after each

row. Integer values, when requested, are computed by rounding the internal floating-point values to

the nearest integer values.

GL_ORDER v returns the order of the evaluator function. One-dimensional evaluators return a single value,

order. Two-dimensional evaluators return two values, uorder and vorder.

GL_DOMAIN v returns the linear u and v mapping parameters. One-dimensional evaluators return two values, u1

and u2, as specified by glMap1. Two-dimensional evaluators return four values, u1, u2, v1, and v2,

as specified by glMap2. Integer values, when requested, are computed by rounding the internal

floating-point values to the nearest integer values.

Parameters

 Target Specifies the symbolic name of a map. Accepted values are GL_MAP1_COLOR_4, GL_MAP1_INDEX,

GL_MAP1_NORMAL, GL_MAP1_TEXTURE_COORD_1, GL_MAP1_TEXTURE_COORD_2,

GL_MAP1_TEXTURE_COORD_3, GL_MAP1_TEXTURE_COORD_4, GL_MAP1_VERTEX_3,

GL_MAP1_VERTEX_4, GL_MAP2_COLOR_4, GL_MAP2_INDEX, GL_MAP2_NORMAL,

GL_MAP2_TEXTURE_COORD_1, GL_MAP2_TEXTURE_COORD_2,

GL_MAP2_TEXTURE_COORD_3, GL_MAP2_TEXTURE_COORD_4, GL_MAP2_VERTEX_3, and

GL_MAP2_VERTEX_4.

Query Specifies which parameter to return. Symbolic names GL_COEFF, GL_ORDER, and GL_DOMAIN are

accepted.

v Returns the requested data.

Notes

If an error is generated, no change is made to the contents of v.

Errors

 GL_INVALID_ENUM Either Target or Query is not an accepted value.

GL_INVALID_OPERATION The glGetMap subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glEvalCoord subroutine, glMap1 subroutine, glMap2 subroutine.

glGetMaterial Subroutine

Purpose

Returns material parameters.

166 OpenGL 1.2 Reference Manual

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetMaterialfv(GLenum Face,

 GLenum ParameterName,

 GLfloat * ParameterValues)

void glGetMaterialiv(GLenum Face,

 GLenum ParameterName,

 GLint * ParameterValues)

Description

The glGetMaterial subroutine returns in ParameterValues the value or values of parameter

ParameterName of material Face. Six parameters are defined:

 GL_AMBIENT ParameterValues returns four integer or floating-point values representing the ambient

reflectance of the material. Integer values, when requested, are linearly mapped from

the internal floating-point representation such that 1.0 maps to the most positive

representable integer value, and -1.0 maps to the most negative representable

integer value. If the internal value is outside the range [-1,1], the corresponding

integer return value is undefined.

GL_DIFFUSE ParameterValues returns four integer or floating-point values representing the diffuse

reflectance of the material. Integer values, when requested, are linearly mapped from

the internal floating-point representation such that 1.0 maps to the most positive

representable integer value, and -1.0 maps to the most negative representable

integer value. If the internal value is outside the range [-1,1], the corresponding

integer return value is undefined.

GL_SPECULAR ParameterValues returns four integer or floating-point values representing the

specular reflectance of the material. Integer values, when requested, are linearly

mapped from the internal floating-point representation such that 1.0 maps to the most

positive representable integer value, and -1.0 maps to the most negative

representable integer value. If the internal value is outside the range [-1,1], the

corresponding integer return value is undefined.

GL_EMISSION ParameterValues returns four integer or floating-point values representing the emitted

light intensity of the material. Integer values, when requested, are linearly mapped

from the internal floating-point representation such that 1.0 maps to the most positive

representable integer value, and -1.0 maps to the most negative representable

integer value. If the internal value is outside the range [-1,1], the corresponding

integer return value is undefined.

GL_SHININESS ParameterValues returns one integer or floating-point value representing the specular

exponent of the material. Integer values, when requested, are computed by rounding

the internal floating-point value to the nearest integer value.

GL_COLOR_INDEXES ParameterValues returns three integer or floating-point values representing the

ambient, diffuse, and specular indices of the material. These indices are used only for

color index lighting. (The other parameters are all used only for red, green, blue, and

alpha lighting.) Integer values, when requested, are computed by rounding the

internal floating-point values to the nearest integer values.

Parameters

 Face Specifies which of the two materials is being queried. GL_FRONT or GL_BACK are

accepted, representing the front and back materials, respectively.

ParameterName Specifies the material parameter to return. GL_AMBIENT, GL_DIFFUSE,

GL_SPECULAR, GL_EMISSION, GL_SHININESS, and GL_COLOR_INDEXES are

accepted.

Chapter 1. OpenGL Subroutines 167

ParameterValues Returns the requested data.

Notes

If an error is generated, no change is made to the contents of ParameterValues.

Errors

 GL_INVALID_ENUM Either Face or ParameterName is not an accepted value.

GL_INVALID_OPERATION The glGetMaterial subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glMaterial subroutine.

glGetPixelMap Subroutine

Purpose

Returns the specified pixel map.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetPixelMapfv(GLenum Map,

 GLfloat *Values)

void glGetPixelMapuiv(GLenum Map,

 GLuint *Values)

void glGetPixelMapusv(GLenum Map,

 GLushort *Values)

Description

The glGetPixelMap subroutine returns in the Values parameter the contents of the pixel map specified by

the Map parameter. Pixel maps are used during the execution of glReadPixels, glDrawPixels,

glCopyPixels, glTexImage1D, and glTexImage2D to map color indices, stencil indices, color

components, and depth components to other values.

Unsigned integer values, if requested, are linearly mapped from the internal fixed- or floating-point

representation such that 1.0 maps to the largest representable integer value, and 0.0 maps to 0 (zero).

Returned unsigned integer values are undefined if the map value was not in the range [0,1].

To determine the required size of the Map parameter, call the glGet subroutine with the appropriate

symbolic constant.

168 OpenGL 1.2 Reference Manual

Parameters

 Map Specifies the name of the pixel map to return. Accepted values are GL_PIXEL_MAP_I_TO_I,

GL_PIXEL_MAP_S_TO_S, GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,

GL_PIXEL_MAP_I_TO_B, GL_PIXEL_MAP_I_TO_A, GL_PIXEL_MAP_R_TO_R,

GL_PIXEL_MAP_G_TO_G, GL_PIXEL_MAP_B_TO_B, and GL_PIXEL_MAP_A_TO_A.

Values Returns the pixel map contents.

Notes

If an error is generated, no change is made to the contents of the Values parameter.

Errors

 GL_INVALID_ENUM Map is not an accepted value.

GL_INVALID_OPERATION The glGetPixelMap subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glGetPixelMap subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_PIXEL_MAP_I_TO_I_SIZE.

glGet with argument GL_PIXEL_MAP_S_TO_S_SIZE.

glGet with argument GL_PIXEL_MAP_I_TO_R_SIZE.

glGet with argument GL_PIXEL_MAP_I_TO_G_SIZE.

glGet with argument GL_PIXEL_MAP_I_TO_B_SIZE.

glGet with argument GL_PIXEL_MAP_I_TO_A_SIZE.

glGet with argument GL_PIXEL_MAP_R_TO_R_SIZE.

glGet with argument GL_PIXEL_MAP_G_TO_G_SIZE.

glGet with argument GL_PIXEL_MAP_B_TO_B_SIZE.

glGet with argument GL_PIXEL_MAP_A_TO_A_SIZE.

glGet with argument GL_MAX_PIXEL_MAP_TABLE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCopyPixels subroutine, glDrawPixels subroutine, glPixelMap

subroutine, glPixelTransfer subroutine, glReadPixels subroutine, glTexImage1D subroutine,

glTexImage2D subroutine.

Chapter 1. OpenGL Subroutines 169

glGetPointerv Subroutine

Purpose

Returns the address of the specified pointer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetPointerv(GLenum pname,

 GLvoid* *params)

Description

The glGetPointerv subroutine returns pointer information. The pname parameter is a symbolic constant

indicating the pointer to be returned, and params is a pointer to a location in which to place the returned

data.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the various vertex arrays are used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 pname Specifies the array or buffer pointer to be returned. The following symbolic constants are accepted:

v GL_COLOR_ARRAY_LIST_IBM

v GL_COLOR_ARRAY_POINTER

v GL_EDGE_FLAG_ARRAY_LIST_IBM

v GL_EDGE_FLAG_ARRAY_POINTER

v GL_FEEDBACK_BUFFER_POINTER

v GL_FOG_COORDINATE_ARRAY_LIST_IBM

v GL_FOG_COORDINATE_ARRAY_POINTER_EXT

v GL_INDEX_ARRAY_LIST_IBM

v GL_INDEX_ARRAY_POINTER

v GL_NORMAL_ARRAY_LIST_IBM

v GL_NORMAL_ARRAY_POINTER

v GL_SECONDARY_COLOR_ARRAY_LIST_IBM

v GL_SECONDARY_COLOR_ARRAY_POINTER

v GL_SELECTION_BUFFER_POINTER

v GL_TEXTURE_COORD_ARRAY_LIST_IBM

v GL_TEXTURE_COORD_ARRAY_POINTER

v GL_VERTEX_ARRAY_LIST_IBM

v GL_VERTEX_ARRAY_POINTER

v GL_VISIBILITY_BUFFER_POINTER_IBM

params Returns the pointer value specified by pname.

170 OpenGL 1.2 Reference Manual

Notes

The glGetPointerv subroutine is available only if the GL version is 1.1 or greater.

The ″*_ARRAY_LIST_IBM″ symbolic constants are only accepted if the IBM_vertex_array_list extension

is defined.

The *_ARRAY_LIST_IBM symbolic constants are only accepted if the IBM_vertex_array_list extension is

defined.

The ″GL_FOG_COORDINATE_*″ symbolic constants are only accepted if the EXT_fog_coord extension

is defined.

The ″GL_SECONDARY_COLOR_*″ symbolic constants are only accepted if the EXT_secondary_color

extension is defined.

The GL_VISIBILITY_BUFFER_POINTER_IBM symbolic constant is only accepted if the

IBM_occlusion_cull extension is supported.

The pointers are all client side state.

The initial value for each pointer is 0.

Error Codes

GL_INVALID_ENUM is generated if pname is not an accepted value.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glColorPointerListIBM subroutine,

glDrawArrays subroutine, glEdgeFlagPointer subroutine, glEdgeFlagPointerListIBM subroutine,

glFeedbackBuffer subroutine, glIndexPointer subroutine, glIndexPointerListIBM subroutine,

glNormalPointer subroutine, glNormalPointerListIBM subroutine, glSelectBuffer subroutine,

glTexCoordPointer subroutine, glTexCoordPointerListIBM subroutine, glVertexPointer subroutine,

glVertexPointerListIBM subroutine, glVisibilityBufferIBM subroutine.

glGetPointervEXT Subroutine

Purpose

Returns the address of a vertex data array.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetPointervEXT(GLenum pname,

 GLvoid **params)

Description

glGetPointervEXT returns array pointer information. pname is a symbolic constant indicating the array

pointer to be returned, and params is a pointer to a location in which to place the returned data.

Chapter 1. OpenGL Subroutines 171

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the various vertex arrays are used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 pname Specifies the array pointer to be returned. Symbolic constants

GL_VERTEX_ARRAY_POINTER_EXT, GL_NORMAL_ARRAY_POINTER_EXT,

GL_COLOR_ARRAY_POINTER_EXT, GL_INDEX_ARRAY_POINTER_EXT,

GL_TEXTURE_COORD_ARRAY_POINTER_EXT, GL_EDGE_FLAG_ARRAY_POINTER_EXT, are

accepted.

**params returns the array pointer value specified by pname.

Notes

The array pointers are client side state.

glGetPointervEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL

command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when

called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors

GL_INVALID_ENUM is generated if pname is not an accepted value.

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElementEXT subroutine, glColorPointerEXT subroutine, glDrawArraysEXT subroutine,

glEdgeFlagPointerEXT subroutine, glIndexPointerEXT subroutine, glNormalPointerEXT subroutine,

glTexCoordPointerEXT subroutine, glVertexPointerEXT subroutine.

glGetPolygonStipple Subroutine

Purpose

Returns the polygon stipple pattern.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetPolygonStipple(GLubyte *Mask)

172 OpenGL 1.2 Reference Manual

Description

The glGetPolygonStipple subroutine returns to Mask a 32 x 32 polygon stipple pattern. The pattern is

packed into memory as if the following values were called:

v glReadPixels with both Height and Width equal to 32.

v Type is GL_BITMAP.

v Format is GL_COLOR_INDEX.

In addition, the pattern is packed into memory as if the stipple pattern was stored in an internal 32 x 32

color index buffer. Unlike glReadPixels, however, pixel transfer operations (shift, offset, pixel map) are not

applied to the returned stipple image.

Parameters

 Mask Returns the stipple pattern.

Notes

If an error is generated, no change is made to the contents of the Mask parameter.

Errors

 GL_INVALID_OPERATION The glGetPolygonStipple subroutine is called between a call to glBegin and

the corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glPixelStore subroutine, glPixelTransfer subroutine, glPolygonStipple

subroutine, glReadPixels subroutine.

glGetString Subroutine

Purpose

Returns a string describing the current GL connection.

Library

OpenGL C bindings library: libGL.a

C Syntax

const GLubyte * glGetString(GLenum Parameter1)

Description

The glGetString subroutine returns a pointer to a static string describing some aspect of the current GL

connection. The Parameter1 parameter can be one of the following values:

Chapter 1. OpenGL Subroutines 173

GL_VENDOR Returns the name of the company responsible for this GL implementation. This name does

not change from release to release.

GL_RENDERER Returns the name of the renderer. This name is typically specific to a particular

configuration of a hardware platform. It does not change from release to release.

GL_VERSION Returns a version or release number.

GL_EXTENSIONS Returns a space-separated list of supported extensions to GL.

Because GL does not include queries for the performance characteristics of an implementation, it is

expected that some applications will be written to recognize known platforms and will modify their GL

usage based on known performance characteristics of these platforms. Together, strings GL_VENDOR

and GL_RENDERER uniquely specify a platform, and do not change from release to release. These

strings should be used by such platform recognition algorithms.

The format and contents of the string that glGetString returns depend on the implementation, except that

extension names do not include space characters and are separated by space characters in the

GL_EXTENSIONS string, and all strings are null-terminated.

Parameters

 Parameter1 Specifies a symbolic constant, one of GL_VENDOR, GL_RENDERER, GL_VERSION, or

GL_EXTENSIONS.

Notes

If an error is generated, glGetString returns 0 (zero).

Errors

 GL_INVALID_ENUM Parameter1 is not an accepted value.

GL_INVALID_OPERATION The glGetString subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine.

glGetTexEnv Subroutine

Purpose

Returns texture environment parameters.

Library

OpenGL C bindings library: libGL.a

174 OpenGL 1.2 Reference Manual

C Syntax

void glGetTexEnvfv(GLenum Target,

 GLenum ParameterName,

 GLfloat *ParameterValues)

void glGetTexEnviv(GLenum Target,

 GLenum ParameterName,

 GLint *ParameterValues)

Description

The glGetTexEnv subroutine returns in the ParameterValues parameter selected values of a texture

environment that was specified with glTexEnv. The Target parameter specifies a texture environment.

Currently only the GL_TEXTURE_ENV texture environment is defined and supported.

ParameterName names a specific texture environment parameter. The parameters are:

 GL_TEXTURE_ENV_MODE ParameterValues returns the single-valued texture environment mode, a

symbolic constant.

GL_TEXTURE_ENV_COLOR ParameterValues returns four integer or floating-point values that are the

texture environment color. Integer values, when requested, are linearly

mapped from the internal floating-point representation such that 1.0 maps to

the most positive representable integer, and -1.0 maps to the most negative

representable integer.

GL_COMBINE_RGB_EXT ParameterValues returns the currently defined function to be used when

blending texture RGB values in ″combine″ mode.

GL_COMBINE_ALPHA_EXT ParameterValues returns the currently defined function to be used when

blending texture Alpha values in ″combine″ mode.

GL_SOURCE0_RGB_EXT ParameterValues returns the currently defined value used to determine the

source for RGB Operand 0.

GL_SOURCE1_RGB_EXT ParameterValues returns the currently defined value used to determine the

source for RGB Operand 1.

GL_SOURCE2_RGB_EXT ParameterValues returns the currently defined value used to determine the

source for RGB Operand 2.

GL_SOURCE0_ALPHA_EXT ParameterValues returns the currently defined value used to determine the

source for Alpha Operand 0.

GL_SOURCE1_ALPHA_EXT ParameterValues returns the currently defined value used to determine the

source for Alpha Operand 1.

GL_SOURCE2_ALPHA_EXT ParameterValues returns the currently defined value used to determine the

source for Alpha Operand 2.

GL_OPERAND0_RGB_EXT ParameterValues returns the currently defined RGB Operand 0.

GL_OPERAND1_RGB_EXT ParameterValues returns the currently defined RGB Operand 1.

GL_OPERAND2_RGB_EXT ParameterValues returns the currently defined RGB Operand 2.

GL_OPERAND0_ALPHA_EXT ParameterValues returns the currently defined RGB Alpha 0.

GL_OPERAND1_ALPHA_EXT ParameterValues returns the currently defined RGB Alpha 1.

GL_OPERAND2_ALPHA_EXT ParameterValues returns the currently defined RGB Alpha 2.

GL_RGB_SCALE_EXT ParameterValues returns the floating-point value which is used to do the

final scale on the RGB channels.

GL_ALPHA_SCALE ParameterValues returns the floating-point number which is used to do the

final scale on the alpha channel.

Parameters

 Target Specifies a texture environment. Must be GL_TEXTURE_ENV.

Chapter 1. OpenGL Subroutines 175

ParameterName Specifies the symbolic name of a texture environment parameter. Accepted values are:

v GL_TEXTURE_ENV_MODE

v GL_TEXTURE_ENV_COLOR

v GL_COMBINE_RGB_EXT

v GL_COMBINE_ALPHA_EXT

v GL_SOURCE0_RGB_EXT

v GL_SOURCE1_RGB_EXT

v GL_SOURCE2_RGB_EXT

v GL_SOURCE0_ALPHA_EXT

v GL_SOURCE1_ALPHA_EXT

v GL_SOURCE2_ALPHA_EXT

v GL_OPERAND0_RGB_EXT

v GL_OPERAND1_RGB_EXT

v GL_OPERAND2_RGB_EXT

v GL_OPERAND0_ALPHA_EXT

v GL_OPERAND1_ALPHA_EXT

v GL_OPERAND2_ALPHA_EXT

v GL_RGB_SCALE_EXT

v GL_ALPHA_SCALE

ParameterValues Returns the requested data.

Notes

If an error is generated, no change is made to the contents of ParameterValues.

Errors

 GL_INVALID_ENUM Either Target or ParameterName is not an accepted value.

GL_INVALID_OPERATION The glGetTexEnv subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glTexEnv subroutine.

glGetTexGen Subroutine

Purpose

Returns texture coordinate generation parameters.

Library

OpenGL C bindings library: libGL.a

176 OpenGL 1.2 Reference Manual

C Syntax

void glGetTexGendv(GLenum Coordinate,

 GLenum ParameterName,

 GLdouble *ParameterValues)

void glGetTexGenfv(GLenum Coordinate,

 GLenum ParameterName,

 GLfloat *ParameterValues)

void glGetTexGeniv(GLenum Coordinate,

 GLenum ParameterName,

 GLint *ParameterValues)

Description

The glGetTexGen subroutine returns in ParameterValues selected parameters of a texture coordinate

generation function specified with glTexGen. Coordinate names one of the (s, t, r, q) texture coordinates,

using the symbolic constant GL_S, GL_T, GL_R, or GL_Q.

ParameterName specifies one of three symbolic names:

 GL_TEXTURE_GEN_MODE ParameterValues returns the single-valued texture generation function, a

symbolic constant.

GL_OBJECT_PLANE ParameterValues returns the four plane equation coefficients that specify object

linear-coordinate generation. Integer values, when requested, are mapped

directly from the internal floating-point representation.

GL_EYE_PLANE ParameterValues returns the four plane equation coefficients that specify eye

linear-coordinate generation. Integer values, when requested, are mapped

directly from the internal floating-point representation. The returned values are

those maintained in eye coordinates. They are not equal to the values specified

using glTexGen, unless the modelview matrix was identified at the time

glTexGen was called.

Parameters

 Coordinate Specifies a texture coordinate. Must be GL_S, GL_T, GL_R, or GL_Q.

ParameterName Specifies the symbolic name of the values to be returned. Must be either

GL_TEXTURE_GEN_MODE or the name of one of the texture generation plane

equations, either GL_OBJECT_PLANE or GL_EYE_PLANE.

ParameterValues Returns the requested data.

Notes

If an error is generated, no change is made to the contents of ParameterValues.

Errors

 GL_INVALID_ENUM Either Coordinate or ParameterName is not an accepted value.

GL_INVALID_OPERATION The glGetTexGen subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 177

Related Information

The glBegin or glEnd subroutine, glTexGen subroutine.

glGetTexImage Subroutine

Purpose

Returns a texture image.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetTexImage(GLenum Target,

 GLint Level,

 GLenum Format,

 GLenum Type,

 GLvoid *Pixels)

Description

The glGetTexImage subroutine returns a texture image and places it in the Pixels parameter. Target

specifies whether the desired texture image is one specified by glTexImage1D (GL_TEXTURE_1D),

glTexImage2D (GL_TEXTURE_2D), glTexImage3D (GL_TEXTURE_3D), or by glTexImage3DEXT

(GL_TEXTURE_3D_EXT). Level specifies the level-of-detail number of the desired image. Format and

Type specify the format and type of the desired image array. (See the glTexImage1D and glDrawPixels

subroutines for a description of the acceptable values for the Format and Type parameters, respectively.)

Operation of glGetTexImage is best understood by considering the selected internal four-component

texture image to be a red, green, blue, alpha (RGBA) color buffer that is the size of the image. The

semantics of glGetTexImage are then identical to those of glReadPixels called with the same Format and

Type, with x and y set to 0 (zero), Width set to the width of the texture image (including the border if one

was specified), and Height set to 1 (one) for one-dimensional (1D) images, or to the height of the texture

image (including the border if one was specified) for two-dimensional (2D) images. Because the internal

texture image is an RGBA image, pixel formats GL_COLOR_INDEX, GL_STENCIL_INDEX, and

GL_DEPTH_COMPONENT are not accepted, and pixel type GL_BITMAP is not accepted.

If the selected texture image does not contain four components, the following mappings are applied:

v Single-component textures are treated as RGBA buffers with red set to the single-component value, and

green, blue, and alpha set to 0.

v Two-component textures are treated as RGBA buffers with red set to the value of component 0, alpha

set to the value of component 1, and green and blue set to 0.

v Three-component textures are treated as RGBA buffers with red set to component 0, green set to

component 1, blue set to component 2, and alpha set to 0.

To determine the required size of Pixels, use the glGetTexLevelParameter subroutine to ascertain the

dimensions of the internal texture image, then scale the required number of pixels by the storage required

for each pixel, based on Format and Type. Be sure to consider the pixel storage parameters, especially

GL_PACK_ALIGNMENT.

Notes

If an error is generated, no change is made to the contents of Pixels.

178 OpenGL 1.2 Reference Manual

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL

command set.

Target of GL_TEXTURE_3D_EXT is part of the _extname (EXT_texture3D) extension, not part of the core

GL command set.

Parameters

 Target Specifies which texture is to be obtained. GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D,

and GL_TEXTURE_3D_EXT are accepted.

Level Specifies the level-of-detail number of the desired image. Level 0 is the base image level. Level n is the

nth mipmap reduction image.

Format Specifies a pixel format for the returned data. The supported formats are GL_RED, GL_GREEN,

GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_ABGR_EXT, GL_LUMINANCE, and

GL_LUMINANCE_ALPHA.

Type Specifies a pixel type for the returned data. The supported types are GL_UNSIGNED_BYTE, GL_BYTE,

GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

Pixels Returns the texture image. Should be a pointer to an array of the type specified by the Type parameter.

Errors

 GL_INVALID_ENUM Either Target, Format, or Type is not an accepted value.

GL_INVALID_VALUE Level is less than 0 or greater than log2max, where max is the returned value

of GL_MAX_TEXTURE_SIZE.

GL_INVALID_OPERATION The glGetTexImage subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glGetTexImage subroutine are as follows. (See the glGet subroutine for more

information.)

glGetTexLevelParameter with argument GL_TEXTURE_WIDTH.

glGetTexLevelParameter with argument GL_TEXTURE_HEIGHT.

glGetTexLevelParameter with argument GL_TEXTURE_BORDER.

glGetTexLevelParameter with argument GL_TEXTURE_COMPONENTS.

glGet with arguments GL_PACK_ALIGNMENT and others.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glDrawPixels subroutine, glReadPixels subroutine, glTexImage1D

subroutine, glTexImage2D subroutine.

Chapter 1. OpenGL Subroutines 179

glGetTexLevelParameter Subroutine

Purpose

Returns texture parameter values for a specific level of detail.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetTexLevelParameterfv(GLenum target,

 GLint level,

 GLenum pname,

 GLfloat * params)

void glGetTexLevelParameteriv(GLenum target,

 GLint level,

 GLenum pname,

 GLint *params)

Description

The glGetTexLevelParameter subroutine returns in params texture parameter values for a specific

level-of-detail value, specified as level. The target parameter defines the target texture, either

GL_TEXTURE_1D, GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_3D_EXT,

GL_PROXY_TEXTURE_1D, GL_PROXY_TEXTURE_2D, GL_PROXY_TEXTURE_3D, or

GL_PROXY_TEXTURE_3D_EXT.

The GL_MAX_TEXTURE_SIZE parameter reports the largest square texture image which can be

accomodated with mipmaps and borders (but a long skinny texture, or a texture without mipmaps and

borders, may easily fit in texture memory). The proxy targets allow the user to more accurately query

whether the GL can accomodate a texture of a given configuration. If the texture cannot be accomodated,

the texture state variables (which may be queried with glGetTexLevelParameter) are set to 0. If the

texture can be accomodated the texture state values will be set as they would be set for a non-proxy

target.

The pname parameter specifies the texture parameter whose value or values will be returned.

The accepted parameter names are as follows:

 GL_TEXTURE_ALPHA_SIZE The internal storage resolution of an individual alpha component.

The resolution chosen by the GL will be a close match for the

resolution requested by the user with the component argument of

glTexImage1D, glTexImage2D, or glTexImage3DEXT. The initial

value is 0.

GL_TEXTURE_BLUE_SIZE The internal storage resolution of an individual blue component.

The resolution chosen by the GL will be a close match for the

resolution requested by the user with the component argument of

glTexImage1D, glTexImage2D, or glTexImage3DEXT. The initial

value is 0.

GL_TEXTURE_BORDER params returns a single value, the width in pixels of the border of

the texture image. The inital value is 0.

GL_TEXTURE_DEPTH params returns a single value, the depth of the texture image.

This value includes the border of the texture image. The initial

value is 0.

180 OpenGL 1.2 Reference Manual

GL_TEXTURE_DEPTH_EXT params returns a single value, the depth of the texture image.

This value includes the border of the texture image. The initial

value is 0.

GL_TEXTURE_GREEN_SIZE The internal storage resolution of an individual green component.

The resolution chosen by the GL will be a close match for the

resolution requested by the user with the component argument of

glTexImage1D, glTexImage2D, or glTexImage3DEXT. The initial

value is 0.

GL_TEXTURE_HEIGHT params returns a single value, the height of the texture image.

This value includes the border of the texture image. The initial

value is 0.

GL_TEXTURE_INTENSITY_SIZE The internal storage resolution of an individual component. The

resolution chosen by the GL will be a close match for the

resolution requested by the user with the component argument of

glTexImage1D or glTexImage2D. The initial value is 0.

GL_TEXTURE_INTERNAL_FORMAT params returns a single value, the requested internal format of the

texture image.

GL_TEXTURE_LUMINANCE_SIZE The internal storage resolution of an individual luminance

component. The resolution chosen by the GL will be a close

match for the resolution requested by the user with the

component argument of glTexImage1D, glTexImage2D, or

glTexImage3DEXT. The initial value is 0.

GL_TEXTURE_RED_SIZE The internal storage resolution of an individual red component.

The resolution chosen by the GL will be a close match for the

resolution requested by the user with the component argument of

glTexImage1D, glTexImage2D, or glTexImage3DEXT. The initial

value is 0.

GL_TEXTURE_WIDTH params returns a single value, the width of the texture image. This

value includes the border of the texture image. The initial value is

0.

Parameters

 target Specifies the symbolic name of the target texture, either GL_TEXTURE_1D, GL_TEXTURE_2D,

GL_TEXTURE_3D, GL_PROXY_TEXTURE_1D, or GL_PROXY_TEXTURE_2D,

GL_PROXY_TEXTURE_3D, GL_PROXY_TEXTURE_3D_EXT, GL_TEXTURE_3D_EXT.

level Specifies the level-of-detail number of the desired image. Level 0 is the base image level. Level n is the

nth mipmap reduction image.

pname Specifies the symbolic name of a texture parameter. GL_TEXTURE_DEPTH,

GL_TEXTURE_DEPTH_EXT, GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT,

GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE_BORDER, GL_TEXTURE_RED_SIZE,

GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE,

GL_TEXTURE_LUMINANCE_SIZE, and GL_TEXTURE_INTENSITY_SIZE are accepted.

params Returns the requested data.

Notes

If an error is generated, no change is made to the contents of params.

The GL_TEXTURE_INTERNAL_FORMAT parameter is only available if the GL version is 1.1 or greater.

In version 1.0, use GL_TEXTURE_COMPONENTS instead.

Errors

GL_INVALID_ENUM is generated if target or pname is not an accepted value.

GL_INVALID_VALUE is generated if level is less than zero.

Chapter 1. OpenGL Subroutines 181

GL_INVALID_VALUE may be generated if level is greater than log sub 2 max, where max is the returned

value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_OPERATION is generated if glGetTexLevelParameter is executed between the execution

of glBegin and the corresponding execution of glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glGetTexParameter subroutine, glTexImage1D subroutine, glTexImage2D subroutine,

glTexParameter subroutine.

glGetTexParameter Subroutine

Purpose

Returns texture parameter values.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glGetTexParameterfv(GLenum Target,

 GLenum ParameterName,

 GLfloat *ParameterValues)

void glGetTexParameteriv(GLenum Target,

 GLenum ParameterName,

 GLint *ParameterValues)

Description

The glGetTexParameter subroutine returns in ParameterValues the value or values of the texture

parameter specified as ParameterName. Target defines the target texture, either GL_TEXTURE_1D,

GL_TEXTURE_2D, GL_TEXTURE_3D, and GL_TEXTURE_3D_EXT (if the 3D texture extension is

supported). ParameterName accepts the same symbols as glTexParameter, with the same interpretations:

 GL_TEXTURE_BASE_LEVEL Specifies for the texture the base array level. Any non-negative integer

value is permissable. Supported in OpenGL 1.2 and later.

GL_TEXTURE_MAX_LEVEL Specifies for the texture the maximum array level. Any non-negative

integer value is permissable. Supported in OpenGL 1.2 and later.

GL_TEXTURE_BORDER_COLOR Returns four integer or floating-point numbers that comprise the red,

green, blue, alpha (RGBA) color of the texture border. Floating-point

values are returned in the range [0,1]. Integer values are returned as a

linear mapping of the internal floating-point representation such that 1.0

maps to the most positive representable integer and -1.0 maps to the

most negative representable integer.

GL_TEXTURE_MAG_FILTER Returns the single-valued texture magnification filter, a symbolic

constant.

GL_TEXTURE_MIN_FILTER Returns the single-valued texture minification filter, a symbolic constant.

182 OpenGL 1.2 Reference Manual

GL_TEXTURE_MAX_LOD Specifies for the texture the maximum level of detail of the image array.

Any floating-point value is permissable. Supported in OpenGL 1.2 and

later.

GL_TEXTURE_MIN_LOD Specifies for the texture the minimum level of detail of the image array.

Any floating-point value is permissable. Supported in OpenGL 1.2 and

later.

GL_TEXTURE_PRIORITY (1.1 only)

GL_TEXTURE_PRIORITY_EXT

(EXT_texture_object)

Returns the priority of the target texture (or the named texture bound to

it). The initial value is 1. See glPrioritizeTextures.

GL_TEXTURE_RESIDENT (1.1 only)

GL_TEXTURE_RESIDENT_EXT

(EXT_texture_object)

Returns the residence status of the target texture. If the value returned

in params is GL_TRUE, the texture is resident in texture memory. See

glAreTexturesResident.

GL_TEXTURE_WRAP_R Returns the single-valued wrapping function for texture coordinate r, a

symbolic constant.

GL_TEXTURE_WRAP_R (3D Texture

Extension)

Returns the single-valued wrapping function for texture coordinate r, a

symbolic constant.

GL_TEXTURE_WRAP_S Returns the single-valued wrapping function for texture coordinate s, a

symbolic constant.

GL_TEXTURE_WRAP_T Returns the single-valued wrapping function for texture coordinate t, a

symbolic constant.

Parameters

 Target Specifies the symbolic name of the target texture. GL_TEXTURE_1D,

GL_TEXTURE_2D, GL_TEXTURE_3D, and GL_TEXTURE_3D_EXT (EXT_texture_3D)

are accepted.

ParameterName Specifies the symbolic name of a texture parameter. GL_TEXTURE_BASE_LEVEL,

GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_MAG_FILTER,

GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAX_LOD, GL_TEXTURE_MIN_LOD,

GL_TEXTURE_PRIORITY, GL_TEXTURE_PRIORITY_EXT,

GL_TEXTURE_RESIDENT, GL_TEXTURE_RESIDENT_EXT,

GL_TEXTURE_WRAP_R, GL_TEXTURE_WRAP_R_EXT, GL_TEXTURE_WRAP_S,

GL_TEXTURE_WRAP_T, and GL_TEXTURE_BORDER_COLOR are accepted.

ParameterValues Returns the texture parameters.

Notes

If an error is generated, no change is made to the contents of ParameterValues.

Errors

 GL_INVALID_ENUM Either Target or ParameterName is not an accepted value.

GL_INVALID_OPERATION The glGetTexParameter subroutine is called between a call to glBegin and

the corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glTexParameter subroutine.

Chapter 1. OpenGL Subroutines 183

glHint Subroutine

Purpose

Specifies implementation-specific hints.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glHint(GLenum Target,

 GLenum Mode)

Description

Certain aspects of GL behavior, when there is room for interpretation, can be controlled with hints. A hint is

specified with two arguments. Target is a symbolic constant indicating the behavior to be controlled, and

Mode is another symbolic constant indicating the desired behavior. Mode can be one of the following

three:

 GL_FASTEST The most efficient option should be chosen.

GL_NICEST The most correct or highest quality option should be chosen.

GL_DONT_CARE The client does not have a preference. This is the initial setting for all hints.

Though the implementation aspects that can be hinted are well-defined, the interpretation of the hints

depends on the implementation. The hint aspects that can be specified with Target, along with suggested

semantics, are:

 GL_FOG_HINT Indicates the accuracy of fog calculation. If per-pixel

fog calculation is not efficiently supported by the GL

implementation, hinting GL_DONT_CARE or

GL_FASTEST can result in per-vertex calculation of

fog effects.

GL_LINE_SMOOTH_HINT Indicates the sampling quality of antialiased lines.

Hinting GL_NICEST can result in more pixel

fragments being generated during rasterization, if a

larger filter function is applied.

GL_PERSPECTIVE_CORRECTION_HINT Indicates the quality of color and texture coordinate

interpolation. If perspective-corrected parameter

interpolation is not efficiently supported by the GL

implementation, hinting GL_DONT_CARE or

GL_FASTEST can result in simple linear interpolation

of colors and texture coordinates.

GL_POINT_SMOOTH_HINT Indicates the sampling quality of antialiased points.

Hinting GL_NICEST can result in more pixel

fragments being generated during rasterization, if a

larger filter function is applied.

GL_POLYGON_SMOOTH_HINT Indicates the sampling quality of antialiased polygons.

Hinting GL_NICEST can result in more pixel

fragments being generated during rasterization, if a

larger filter function is applied.

GL_SUBPIXEL_HINT_IBM Indicates if primitives are rendered using subpixel

sampling techniques. Hinting GL_NICEST can result

in a greater accuracy of pixels turned on when a

primitive is rendered. GL_FASTEST and

GL_DONT_CARE may result in faster, non-subpixel

positioned, rendering of some primitives.

184 OpenGL 1.2 Reference Manual

GL_CLIP_VOLUME_CLIPPING_HINT_EXT Indicates whether clip volume clipping is desirable.

Hinting GL_NICEST can result in all clipping

calculations being performed, while GL_FASTEST can

suppress such clipping. GL_FASTEST should only be

used when the user is confident that no attempts to

render will occur outside the clip volume, for the

behavior of the GL library is undefined if any primitive

extends beyond the clip volume. If extension

IBM_clip_check is present and

GL_UPDATE_CLIP_VOLUME_HINT is enabled, this

hint can be automatically updated by calls to

glClipBoundingBoxIBM,

glClipBoundingVolumeIBM, or

glClipBoundingVerticesIBM. See these routines for

details. This hint is supported only if the

GL_EXT_clip_volume_hint extension is supported.

GL_PIXEL_FILTER_HINT_IBM Indicates desired quality of pixel filtering when

rendering pixel images specified by glBitmap,

glCopyPixel, and glDrawPixel. Hinting GL_NICEST

should perform pixel filtering that provides the best

image quality, regardless of performance.

GL_FASTEST should perform pixel filtering that

provides the fastest possible pixel zoom regardless of

the image quality. GL_DONT_CARE should perform

point-sampled blits in accordance with the OpenGL

specification.

Parameters

 Target Specifies a symbolic constant indicating the behavior to be controlled. GL_FOG_HINT,

GL_LINE_SMOOTH_HINT, GL_PERSPECTIVE_CORRECTION_HINT, GL_POINT_SMOOTH_HINT,

GL_POLYGON_SMOOTH_HINT, GL_SUBPIXEL_HINT_IBM,

GL_CLIP_VOLUME_CLIPPING_HINT_EXT and GL_PIXEL_FILTER_HINT_IBM are accepted.

Mode Specifies a symbolic constant indicating the desired behavior. GL_FASTEST, GL_NICEST, and

GL_DONT_CARE are accepted.

Notes

The interpretation of hints depends on the implementation. The glHint subroutine can be ignored.

GL_CLIP_VOLUME_CLIPPING_HINT_EXT is only valid if the GL_EXT_clip_volume_hint extension is

present.

Errors

 GL_INVALID_ENUM Either Target or Mode is not an accepted value.

GL_INVALID_OPERATION The glHint subroutine is called between a call to glBegin and the

corresponding call to glEnd.

GL_INVALID_ENUM The GL_PIXEL_FILTER_HINT_IBM parameter is used in an OpenGL

implementation that doesn’t support the GL_EXT_pixel_filter_hint extension.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 185

Related Information

The glBegin or glEnd subroutine.

glIndex Subroutine

Purpose

Sets the current color index.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glIndexd(GLdouble Current)

void glIndexf(GLfloat Current)

void glIndexi(GLint Current)

void glIndexs(GLshort Current)

void glIndexdv(const GLdouble *Current)

void glIndexfv(const GLfloat *Current)

void glIndexiv(const GLint *Current)

void glIndexsv(const GLshort *Current)

void glIndexub(GLubyte Current)

void glIndexubv(const GLubyte *Current)

Description

The glIndex subroutine updates the current (single-valued) color index. It takes one argument, the new

value for the current color index.

The current index is stored as a floating-point value. Integer values are converted directly to floating-point

values, with no special mapping.

Index values outside the representable range of the color index buffer are not clamped. However, before

an index is dithered (if enabled) and written to the frame buffer, it is converted to fixed-point format. Any

bits in the integer portion of the resulting fixed-point value that do not correspond to bits in the frame buffer

are masked out.

Parameters

 Current In the case of glIndexd, glIndexf, glIndexi, glIndexs, and glIndexub this parameter specifies the new

value for the current color index.

In the case of glIndexdv, glIndexfv, glIndexiv, glIndexsv, and glIndexubv this parameter specifies a

pointer to a one-element array that contains the new value for the current color index.

Notes

The current index can be updated at any time. In particular, glIndex can be called between a call to

glBegin and the corresponding call to glEnd.

186 OpenGL 1.2 Reference Manual

Associated Gets

Associated gets for the glIndex subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_CURRENT_INDEX.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin subroutine, glColor subroutine, glEnd subroutine, glIndexPointer subroutine,

glIndexPointerEXT subroutine.

glIndexMask Subroutine

Purpose

Controls the writing of individual bits in the color index buffers.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glIndexMask(GLuint Mask)

Description

The glIndexMask subroutine controls the writing of individual bits in the color index buffers. The least

significant n bits of the Mask parameter, where n is the number of bits in a color index buffer, specify a

mask. Wherever a 1 (one) appears in the mask, the corresponding bit in the color index buffer (or buffers)

is made writable. Where a 0 (zero) appears, the bit is write-protected.

This mask is used only in color index mode, and it affects only the buffers currently selected for writing

(see glDrawBuffer). Initially, all bits are enabled for writing.

Parameters

 Mask Specifies a bit mask to enable and disable the writing of individual bits in the color index buffers. Initially, the

mask is all 1’s.

Errors

 GL_INVALID_OPERATION The glIndexMask subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glIndexMask subroutine are as follows. (See the glGet subroutine for more

information.)

Chapter 1. OpenGL Subroutines 187

glGet with argument GL_INDEX_WRITEMASK.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glColorMask subroutine, glDepthMask subroutine, glDrawBuffer

subroutine, glIndex subroutine, glStencilMask subroutine.

glIndexPointer Subroutine

Purpose

Defines an array of color indexes.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glIndexPointer(GLenum type,

 GLsizei stride,

 const GLvoid * pointer)

Description

The glIndexPointer subroutine specifies the location and data format of an array of color indexes to use

when rendering. The type parameter specifies the data type of each color index and stride gives the byte

stride from one color index to the next allowing vertices and attributes to be packed into a single array or

stored in separate arrays. (Single array storage may be more efficient on some implementations; see

glInterleavedArrays.)

The parameters type, stride, and pointer are saved as client-side state.

The color index array is initially disabled. To enable and disable the array, call glEnableClientState and

glDisableClientState with the argument GL_INDEX_ARRAY. If enabled, the color index array is used

when glDrawArrays, glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Index array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 type Specifies the data type of each color index in the array. Symbolic constants GL_UNSIGNED_BYTE,

GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

188 OpenGL 1.2 Reference Manual

stride Specifies the byte offset between consecutive color indexes. If stride is zero (the initial value), the color

indexes are understood to be tightly packed in the array.

pointer Specifies a pointer to the first index in the array. The initial value is 0 (NULL pointer).

Notes

The glIndexPointer subroutine is available only if the GL version is 1.1 or greater.

The color index array is initially disabled, and it won’t be accessed when glArrayElement,

glDrawElements or glDrawArrays is called.

Execution of glIndexPointer is not allowed between glBegin and the corresponding glEnd, but an error

may or may not be generated. If an error is not generated, the operation is undefined.

The glIndexPointer subroutine is typically implemented on the client side with no protocol.

Since the color index array parameters are client side state, they are not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glIndexPointer subroutine is not included in display lists.

Errors

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

glIsEnabled with argument GL_INDEX_ARRAY

glGet with argument GL_INDEX_ARRAY_TYPE

glGet with argument GL_INDEX_ARRAY_STRIDE

glGetPointerv with argument GL_INDEX_ARRAY_POINTER

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glDrawArrays subroutine, glDrawElements

subroutine, glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv subroutine,

glIndexPointerListIBM subroutine, glNormalPointer subroutine, glPopClientAttrib subroutine,

glPushClientAttrib subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glIndexPointerEXT Subroutine

Purpose

Defines an array of color indexes.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 189

C Syntax

void glIndexPointerEXT(GLenum type,

 GLsizei stride,

 GLsizei count,

 const GLvoid *pointer)

Description

The glIndexPointerEXT subroutine specifies the location and data format of an array of color indexes to

use when rendering. type specifies the data type of each color index and stride gives the byte stride from

one color index to the next allowing vertexes and attributes to be packed into a single array or stored in

separate arrays. (Single-array storage may be more efficient on some implementations.) count indicates

the number of array elements (counting from the first) that are static. Static elements may be modified by

the application, but once they are modified, the application must explicitly respecify the array before using

it for any rendering. When a color index array is specified, type, stride, count and pointer are saved as

client-side state, and static array elements may be cached by the implementation.

The color index array is enabled and disabled using glEnable and glDisable with the argument

GL_INDEX_ARRAY_EXT. If enabled, the color index array is used when glDrawArraysEXT or

glArrayElementEXT is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Index array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 type Specifies the data type of each color index in the array. Symbolic constants GL_SHORT, GL_INT,

GL_FLOAT, or GL_DOUBLE_EXT, are accepted.

stride Specifies the byte offset between consecutive color indexes. If stride is zero the color indexes are

understood to be tightly packed in the array.

count Specifies the number of indexes, counting from the first, that are static.

pointer Specifies a pointer to the first index in the array.

Notes

Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the color index array is disabled and it won’t be accessed when glArrayElementEXT or

glDrawArraysEXT is called.

Although, it is not an error to call glIndexPointerEXT between the execution of glBegin and the

corresponding execution of glEnd, the results are undefined.

glIndexPointerEXT will typically be implemented on the client side with no protocol.

Since the color index array parameters are client side state, they are not saved or restored by

glPushAttrib and glPopAttrib.

glIndexPointerEXT commands are not entered into display lists.

190 OpenGL 1.2 Reference Manual

glIndexPointerEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL

command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when

called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride or count is negative.

Associated Gets

glIsEnabled with argument GL_INDEX_ARRAY_EXT.

glGet with argument GL_INDEX_ARRAY_SIZE_EXT.

glGet with argument GL_INDEX_ARRAY_TYPE_EXT.

glGet with argument GL_INDEX_ARRAY_STRIDE_EXT.

glGet with argument GL_INDEX_ARRAY_COUNT_EXT.

glGetPointervEXT with argument GL_INDEX_ARRAY_POINTER_EXT.

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElementEXT subroutine, glColorPointerEXT subroutine, glDrawArraysEXT subroutine,

glEdgeFlagPointerEXT subroutine, glGetPointervEXT subroutine, glNormalPointerEXT subroutine,

glTexCoordPointerEXT subroutine, glVertexPointerEXT subroutine.

glIndexPointerListIBM Subroutine

Purpose

Defines a list of color index arrays.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glIndexPointerListIBM(GLenum type,

 GLint stride,

 const GLvoid ** pointer,

 GLint ptrstride)

Description

The glIndexPointerListIBM subroutine specifies the location and data format of a list of arrays of color

indices to use when rendering. The type parameter specifies the data type of each color index. The stride

parameter gives the byte stride from one color index to the next allowing vertices and attributes to be

Chapter 1. OpenGL Subroutines 191

packed into a single array or stored in separate arrays. (Single-array storage may be more efficient on

some implementations; see glInterleavedArrays). The ptrstride parameter specifies the byte stride from

one pointer to the next in the pointer array.

When a color index array is specified, type, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a ″tightly packed″ array as it does in glIndexPointer. Instead, it

causes the first array element of each array to be used for each vertex. Also, a negative value can be

used for stride, which allows the user to move through each array in reverse order.

To enable and disable the color index arrays, call glEnableClientState and glDisableClientState with the

argument GL_INDEX_ARRAY. The color index array is initially disabled. When enabled, the color index

arrays are used when glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or glArrayElement is called. The last

three calls in this list will only use the first array (the one pointed at by pointer[0]). See the descriptions of

these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Index array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 type Specifies the data type of each color component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,

GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive color indices. The initial value is 0.

pointer Specifies a list of color index arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.

Notes

The glIndexPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is

supported.

Execution of glIndexPointerListIBM is not allowed between glBegin and the corresponding glEnd, but an

error may or may not be generated. If an error is not generated, the operation is undefined.

The glIndexPointerListIBM subroutine is typically implemented on the client side.

Since the color index array parameters are client side state, they are not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glIndexPointerListIBM call is encountered while compiling a display list, the information it

contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glIndexPointer call and the glIndexPointerListIBM call share the same state variables. A

glIndexPointer call will reset the color index list state to indicate that there is only one color index list, so

that any and all lists specified by a previous glIndexPointerListIBM call will be lost, not just the first list

that it specified.

192 OpenGL 1.2 Reference Manual

Error Codes

GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets

glIsEnabled with argument GL_INDEX_ARRAY.

glGetPointerv with argument GL_INDEX_ARRAY_LIST_IBM.

glGet with argument GL_INDEX_ARRAY_LIST_STRIDE_IBM.

glGet with argument GL_INDEX_ARRAY_STRIDE.

glGet with argument GL_INDEX_ARRAY_TYPE.

Related Information

The glArrayElement subroutine, glIndexPointer subroutine, glDrawArrays subroutine, glDrawElements

subroutine, glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv subroutine,

glIndexPointer subroutine, glInterleavedArrays subroutine, glMultiDrawArraysEXT subroutine,

glMultiDrawElementsEXT subroutine, glMultiModeDrawArraysIBM subroutine,

glMultiModeDrawElementsIBM subroutine, glNormalPointer subroutine, glPopClientAttrib subroutine,

glPushClientAttrib subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glInitNames Subroutine

Purpose

Initializes the name stack.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glInitNames(void)

Description

The name stack is used during selection mode to allow sets of rendering commands to be uniquely

identified. It consists of an ordered set of unsigned integers. The glInitNames subroutine causes the name

stack to be initialized to its default empty state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to the glInitNames

subroutine while the render mode is not GL_SELECT are ignored.

Errors

 GL_INVALID_OPERATION The glInitNames subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glInitNames subroutine are as follows. (See the glGet subroutine for more

information.)

Chapter 1. OpenGL Subroutines 193

glGet with argument GL_NAME_STACK_DEPTH

glGet with argument GL_MAX_NAME_STACK_DEPTH.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glLoadName subroutine, glPushName subroutine, glRenderMode

subroutine, glSelectBuffer subroutine.

glInterleavedArrays Subroutine

Purpose

Simultaneously specifies and enables several interleaved arrays.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glInterleavedArrays(GLenum format,

 GLsizei stride,

 const GLvoid *pointer)

Description

The glInterleavedArrays subroutine lets you specify and enable individual color, normal, texture and

vertex arrays whose elements are part of a larger aggregate array element. For some implementations,

this is more efficient than specifying the arrays seperately.

If stride is zero then the aggregate element are stored consecutively, otherwise stride bytes occur between

aggregate array elements.

The format enumerant serves as a ’key’ describing the extraction of individual arrays from the aggregate

array. If format contains a T, then texture coordinates are extracted from the interleaved array. If C is

present, color values are extracted. If N is present, normal coordinates are extracted; Vertex coordinates

are always extracted.

The digits 2, 3, and 4 denote how many values are extracted. F indicates that values are extracted as

floating point values. Colors may also be extracted as 4 unsigned bytes if 4UB follows the C. If a color is

extracted as 4 unsigned bytes, the vertex array element which follows is located at the first possible

floating point aligned address.

Parameters

 format Specifies the type of array to enable. Symbolic constants GL_V2F, GL_V3F, GL_C4UB_V2F,

GL_C4UB_V3F, GL_C3F_V3F, GL_N3F_V3F, GL_C4F_N3F_V3F, GL_T2F_V3F, GL_T4F_V4F,

GL_T2F_C4UB_V3F, GL_T2F_C3F_V3F, GL_T2F_N3F_V3F, GL_T2F_C4F_N3F_V3F, or

GL_T4F_C4F_N3F_V4F are accepted.

stride Specifies the offset in bytes between each aggregate array element.

194 OpenGL 1.2 Reference Manual

Notes

The glInterleavedArrays subroutine is available only if the GL version is 1.1 or greater.

If glInterleavedArrays is called while compiling a display list, it is not compiled into the list, and it is

executed immediately.

Execution of glInterleavedArrays is not allowed between glBegin and the corresponding glEnd, but an

error may or may not be generated. If an error is not generated, the operation is undefined.

The glInterleavedArrays subroutine is typically implemented on the client side with no protocol.

Since the vertex array parameters are client side state, they are not saved or restored by glPushAttrib

and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

Errors

GL_INVALID_ENUM is generated if format is not an accepted value.

GL_INVALID_VALUE is generated if stride is negative.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glDrawArrays subroutine, glDrawElements

subroutine, glEdgeFlagPointer subroutine, glEnableClientState subroutine, glGetPointerv subroutine,

glIndexPointer subroutine, glNormalPointer subroutine, PopClientAttrib subroutine, glPushClientAttrib

subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glIsEnabled Subroutine

Purpose

Tests whether a capability is enabled.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLboolean glIsEnabled (GLenum Capability)

Description

The glIsEnabled subroutine returns GL_TRUE if the Capability parameter is an enabled capability and

returns GL_FALSE otherwise. The following capabilities are accepted for Capability:

 GL_ALPHA_TEST See glAlphaFunc.

GL_AUTO_NORMAL See glEvalCoord.

GL_BLEND See glBlendFunc.

GL_CLIP_PLANEi See glClipPlane.

GL_COLOR_ARRAY See glColorPointer

GL_COLOR_ARRAY_EXT See glColorPointerEXT

GL_COLOR_LOGIC_OP See glLogicOp.

GL_COLOR_MATERIAL See glColorMaterial.

GL_COLOR_SUM_EXT See glSecondaryColorEXT.

GL_CULL_FACE See glCullFace.

GL_CULL_VERTEX_IBM See GL_CULL_VERTEX_IBM.

GL_DEPTH_TEST See glDepthFunc and glDepthRange.

Chapter 1. OpenGL Subroutines 195

GL_DITHER See glEnable.

GL_EDGE_FLAG_ARRAY See glEdgeFlagPointer.

GL_EDGE_FLAG_ARRAY_EXT See glEdgeFlagPointerEXT

GL_FOG See glFog.

GL_INDEX_ARRAY See glIndexPointer.

GL_INDEX_ARRAY_EXT See glIndexPointerEXT

GL_LIGHTi See glLightModel and glLight.

GL_LIGHTING See glMaterial, glLightModel, and glLight.

GL_LINE_SMOOTH See glLineWidth.

GL_LINE_STIPPLE See glLineStipple.

GL_LOGIC_OP See glLogicOp.

GL_MAP1_COLOR_4 See glMap1.

GL_MAP1_INDEX See glMap1.

GL_MAP1_NORMAL See glMap1.

GL_MAP1_TEXTURE_COORD_1 See glMap1.

GL_MAP1_TEXTURE_COORD_2 See glMap1.

GL_MAP1_TEXTURE_COORD_3 See glMap1.

GL_MAP1_TEXTURE_COORD_4 See glMap1.

GL_MAP1_VERTEX_3 See glMap1.

GL_MAP1_VERTEX_4 See glMap1.

GL_MAP2_COLOR_4 See glMap2.

GL_MAP2_INDEX See glMap2.

GL_MAP2_NORMAL See glMap2.

GL_MAP2_TEXTURE_COORD_1 See glMap2.

GL_MAP2_TEXTURE_COORD_2 See glMap2.

GL_MAP2_TEXTURE_COORD_3 See glMap2.

GL_MAP2_TEXTURE_COORD_4 See glMap2.

GL_MAP2_VERTEX_3 See glMap2.

GL_MAP2_VERTEX_4 See glMap2.

GL_NORMAL_ARRAY See glNormalPointer.

GL_NORMAL_ARRAY_EXT See glNormalPointerEXT

GL_NORMALIZE See glNormal.

GL_OCCLUSION_CULLING_HP See glEnable.

GL_POINT_SMOOTH See glPointSize.

GL_POLYGON_SMOOTH See glPolygonMode.

GL_POLYGON_STIPPLE See glPolygonStipple.

GL_POLYGON_OFFSET_EXT See glPolygonOffsetEXT

GL_POLYGON_OFFSET_FILL See glPolygonOffset.

GL_POLYGON_OFFSET_LINE See glPolygonOffset.

GL_POLYGON_OFFSET_POINT See glPolygonOffset.

GL_RESCALE_NORMAL_EXT See glEnable.

GL_SCISSOR_TEST See glScissor.

GL_STENCIL_TEST See glStencilFunc and glStencilOp.

GL_TEXTURE_1D See glTexImage1D.

GL_TEXTURE_2D See glTexImage2D.

GL_TEXTURE_3D_EXT See glTexImage3DEXT

GL_TEXTURE_COLOR_TABLE_EXT See glColorTable.

GL_TEXTURE_COORD_ARRAY See glTexCoordPointer.

GL_VERTEX_ARRAY See glVertexPointer.

GL_TEXTURE_COORD_ARRAY_EXT See glTexCoordPointerEXT

GL_TEXTURE_GEN_Q See glTexGen.

GL_TEXTURE_GEN_R See glTexGen.

GL_TEXTURE_GEN_S See glTexGen.

GL_TEXTURE_GEN_T See glTexGen.

GL_UPDATE_CLIP_VOLUME_HINT See glHint.

196 OpenGL 1.2 Reference Manual

GL_VERTEX_ARRAY_EXT See glVertexPointerEXT.

Parameters

 Capability Specifies a symbolic constant indicating a GL capability.

Notes

If an error is generated, glIsEnabled returns 0 (zero).

Errors

 GL_INVALID_ENUM Capability is not an accepted value.

GL_INVALID_OPERATION The glIsEnabled subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glEnable subroutine.

glIsList Subroutine

Purpose

Tests for display list existence.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLboolean glIsList(GLuint List)

Description

The glIsList subroutine returns GL_TRUE if the List parameter is the name of a display list and returns

GL_FALSE otherwise.

Parameters

 List Specifies a potential display-list name.

Errors

 GL_INVALID_OPERATION The glIsList subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Chapter 1. OpenGL Subroutines 197

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCallList subroutine, glCallLists subroutine, glDeleteLists subroutine,

glGenLists subroutine, glNewList subroutine.

glIsTexture Subroutine

Purpose

Determines if a name corresponds to a texture.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLboolean glIsTexture(GLuint texture)

Description

The glIsTexture subroutine returns GL_TRUE if texture is currently the name of a texture. If texture is

zero, or is a non-zero value that is not currently the name of a texture, or if an error occurs, glIsTexture

returns GL_FALSE.

The glIsTexture subroutine is not included in display lists.

Parameters

 texture Specifies a value which may be the name of a texture.

Notes

The glIsTexture subroutine is available only if the GL version is 1.1 or greater.

Errors

GL_INVALID_OPERATION is generated if glIsTexture is executed between the execution of glBegin and

the corresponding execution of glEnd.

Related Information

The glBindTexture subroutine, glDeleteTextures subroutine, glGenTextures subroutine, glGet

subroutine, glGetTexParameter subroutine, glTexImage1D subroutine, glTexImage2D subroutine,

glTexParameter subroutine.

glIsTextureEXT Subroutine

Purpose

Determines if a name corresponds to a texture.

198 OpenGL 1.2 Reference Manual

Library

OpenGL C bindings library: libGL.a

C Syntax

GLboolean glIsTextureEXT(GLuint texture)

Description

glIsTextureEXT returns GL_TRUE if texture is currently the name of a texture. If texture is zero, or is a

non-zero value that is not currently the name of a texture, or if an error occurs, glIsTextureEXT returns

GL_FALSE.

glIsTextureEXT is not included in display lists.

Parameters

 texture A value which might be the name of a texture.

Notes

glIsTextureEXT is part of the EXT_texture_object extension, not part of the core GL command set. If

GL_EXT_texture_object is included in the string returned by glGetString, when called with argument

GL_EXTENSIONS, extension EXT_texture_object is supported by the connection.

Errors

GL_INVALID_OPERATION is generated if glIsTextureEXT is executed between the execution of glBegin

and the corresponding execution of glEnd.

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glBindTextureEXT subroutine, glDeleteTexturesEXT subroutine, glGenTexturesEXT subroutine,

glGet subroutine, glGetTexParameter subroutine, glTexImage1D subroutine, glTexImage2D subroutine,

glTexParameter subroutine.

glLight Subroutine

Purpose

Sets light source parameters.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glLightf(GLenum Light,

 GLenum ParameterName,

 GLfloat Parameter)

Chapter 1. OpenGL Subroutines 199

void glLighti(GLenum Light,

 GLenum ParameterName,

 GLint Parameter)

void glLightfv(GLenum Light,

 GLenum ParameterName,

 const GLfloat * ParameterValues)

void glLightiv(GLenum Light,

 GLenum ParameterName,

 const GLint * ParameterValues)

Description

The glLight subroutine sets the values of individual light source parameters. Light names the light and is a

symbolic name of the form GL_LIGHTi, where 0 is less than or equal to i which is less than

GL_MAX_LIGHTS. ParameterName specifies one of 10 light source parameters, again by symbolic name.

ParameterValues is either a single value or a pointer to an array that contains the new values.

Lighting calculation is enabled and disabled using glEnable and glDisable with argument GL_LIGHTING.

When lighting is enabled, light sources that are enabled contribute to the lighting calculation. Light source i

is enabled and disabled using glEnable and glDisable with argument GL_LIGHTi.

The 10 light parameters are as follows:

 GL_AMBIENT ParameterValues contains four integer or floating-point values that

specify the ambient red, green, blue, alpha (RGBA) intensity of the

light. Integer values are mapped linearly such that the most positive

representable value maps to 1.0, and the most negative representable

value maps to -1.0. Floating-point values are mapped directly. Neither

integer nor floating-point values are clamped. The default ambient

light intensity is (0.0, 0.0, 0.0, 1.0).

GL_DIFFUSE ParameterValues contains four integer or floating-point values that

specify the diffuse RGBA intensity of the light. Integer values are

mapped linearly such that the most positive representable value maps

to 1.0, and the most negative representable value maps to -1.0.

Floating-point values are mapped directly. Neither integer nor

floating-point values are clamped. The default diffuse intensity is (0.0,

0.0, 0.0, 1.0) for all lights other than light zero. The default diffuse

intensity of light zero is (1.0, 1.0, 1.0, 1.0).

GL_SPECULAR ParameterValues contains four integer or floating-point values that

specify the specular RGBA intensity of the light. Integer values are

mapped linearly such that the most positive representable value maps

to 1.0, and the most negative representable value maps to -1.0.

Floating-point values are mapped directly. Neither integer nor

floating-point values are clamped. The default specular intensity is

(0.0, 0.0, 0.0, 1.0) for all lights other than light zero. The default

specular intensity of light zero is (1.0, 1.0, 1.0, 1.0).

200 OpenGL 1.2 Reference Manual

GL_POSITION ParameterValues contains four integer or floating-point values that

specify the position of the light in homogeneous object coordinates.

Both integer and floating-point values are mapped directly. Neither

integer nor floating-point values are clamped.

The position is transformed by the modelview matrix when glLight is

called (just as if it were a point), and it is stored in eye coordinates. If

the w component of the position is 0.0, the light is treated as a

directional source. Diffuse and specular lighting calculations consider

the light’s direction, but not its actual position, and attenuation is

disabled. Otherwise, diffuse and specular lighting calculations are

based on the actual location of the light in eye coordinates, and

attenuation is enabled. The default position is (0,0,1,0); thus, the

default light source is directional, as well as parallel to and in the

direction of the -z axis.

GL_SPOT_DIRECTION ParameterValues contains three integer or floating-point values that

specify the direction of the light in homogeneous object coordinates.

Both integer and floating-point values are mapped directly. Neither

integer nor floating-point values are clamped.

The spot direction is transformed by the inverse of the modelview

matrix when glLight is called (just as if it were a normal), and it is

stored in eye coordinates. It is significant only when

GL_SPOT_CUTOFF is not 180, which it is by default. The default

direction is (0,0,-1).

GL_SPOT_EXPONENT ParameterValues is a single integer or floating-point value that

specifies the intensity distribution of the light. Integer and

floating-point values are mapped directly. Only values in the range

[0,128] are accepted.

Effective light intensity is attenuated by the cosine of the angle

between the direction of the light and the direction from the light to

the vertex being lighted, raised to the power of the spot exponent.

Thus, higher spot exponents result in a more focused light source,

regardless of the spot cutoff angle. (See the GL_SPOT_CUTOFF

description.) The default spot exponent is 0, resulting in uniform light

distribution.

GL_SPOT_CUTOFF ParameterValues is a single integer or floating-point value that

specifies the maximum spread angle of a light source. Integer and

floating-point values are mapped directly. Only values in the range

[0,90] and the special value 180 are accepted. If the angle between

the direction of the light and the direction from the light to the vertex

being lighted is greater than the spot cutoff angle, the light is

completely masked. Otherwise, its intensity is controlled by the spot

exponent and the attenuation factors. The default spot cutoff is 180,

resulting in uniform light distribution.

GL_CONSTANT_ATTENUATION,

GL_LINEAR_ATTENUATION, or

GL_QUADRATIC_ATTENUATION

ParameterValues is a single integer or floating-point value that

specifies one of the three light attenuation factors. Integer and

floating-point values are mapped directly. Only nonnegative values are

accepted. If the light is positional, rather than directional, its intensity

is attenuated by the reciprocal of the sum of the constant factor, the

linear factor times the distance between the light and the vertex being

lighted, and the quadratic factor times the square of the same

distance. The default attenuation factors are (1,0,0), resulting in no

attenuation.

Chapter 1. OpenGL Subroutines 201

Parameters

 Light Specifies a light. The number of lights depends on the implementation, but at least

eight lights are supported. They are identified by symbolic names of the form

GL_LIGHTi where 0 is less than or equal to i which is less than GL_MAX_LIGHTS.

ParameterName For glLightf, glLighti, and glLightv, this parameter specifies a single-valued light

source parameter for Light. GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,

GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and

GL_QUADRATIC_ATTENUATION are accepted.

For glLightfv and glLightiv, this parameter specifies a light source parameter for Light.

GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION,

GL_SPOT_DIRECTION, GL_SPOT_EXPONENT, GL_SPOT_CUTOFF,

GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, and

GL_QUADRATIC_ATTENUATION are accepted.

Parameter Specifies the value to which the parameter ParameterName of light source Light is set.

ParameterValues Specifies a pointer to the value or values to which the parameter ParameterName of

light source Light is set. This parameter is used only with glLightfv and glLightiv.

Notes

It is always the case that GL_LIGHTi = GL_LIGHT0 + i.

Errors

 GL_INVALID_ENUM Either Light or ParameterName is not an accepted value.

GL_INVALID_VALUE A spot exponent value is specified outside the range [0,128], or spot cutoff is

specified outside the range [0,90] (except for the special value 180), or a

negative attenuation factor is specified.

GL_INVALID_OPERATION The glLight subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLight subroutine are as follows. (See the glGet subroutine for more information.)

glGetLight

glIsEnabled with argument GL_LIGHTING.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glColorMaterial subroutine, glEnable or glDisable subroutine,

glLightModel subroutine, glMaterial subroutine.

glLightModel Subroutine

Purpose

Sets the lighting model parameters.

202 OpenGL 1.2 Reference Manual

Library

OpenGL C bindings library: libGL.a

C Syntax

void glLightModelf(GLenum ParameterName,

 GLfloat Parameter)

void glLightModeli(GLenum ParameterName,

 GLint Parameter)

void glLightModelfv(GLenum ParameterName,

 const GLfloat * ParameterValues)

void glLightModeliv(GLenum ParameterName,

 const GLint * ParameterValues)

Description

The glLightModel subroutine sets the lighting model parameters. ParameterName names a parameter

and ParameterValues gives the new value. There are three lighting model parameters:

 GL_LIGHT_MODEL_COLOR_CONTROL Lighting produces two colors at the vertex: a primary color

and a secondary color. The values of the two colors depend

on the light model color control. ParameterValues can be

GL_SINGLE_COLOR or GL_SPECULAR_COLOR.

GL_SINGLE_COLOR is the default value. Depending upon

the ParameterValues, the lighting equations compute the two

colors differently. All computations are carried out in eye

coordinates

GL_LIGHT_MODEL_AMBIENT ParameterValues contains four integer or floating-point values

that specify the ambient red, green, blue, alpha (RGBA)

intensity of the entire scene. Integer values are mapped

linearly such that the most positive representable value maps

to 1.0, and the most negative representable value maps to

-1.0. Floating-point values are mapped directly. Neither integer

nor floating-point values are clamped. The default ambient

scene intensity is (0.2, 0.2, 0.2, 1.0).

GL_LIGHT_MODEL_LOCAL_VIEWER ParameterValues is a single integer or floating-point value that

specifies how specular reflection angles are computed. If

ParameterValues is 0 (or 0.0), specular reflections are

computed from the origin of the eye coordinate system.

Otherwise, reflection angles take the view direction to be

parallel to and in the direction of the -z axis, regardless of the

location of the vertex in eye coordinates. The default is False.

GL_LIGHT_MODEL_TWO_SIDE ParameterValues is a single integer or floating-point value that

specifies whether one-sided or two-sided lighting calculations

are done for polygons. It has no effect on the lighting

calculations for points, lines, or bitmaps. If ParameterValues is

0 (or 0.0), one-sided lighting is specified, and only the front

material parameters are used in the lighting equation.

Otherwise, two-sided lighting is specified. In this case, vertices

of backfacing polygons are lighted using the back material

parameters, and have their normals reversed before the

lighting equation is evaluated. Vertices of frontfacing polygons

are always lighted using the front material parameters, with no

change to their normals. The default is False.

Chapter 1. OpenGL Subroutines 203

In RGBA mode, the lighted color of a vertex is the sum of the material emission intensity, the product of

the material ambient reflectance and the lighting model full-scene ambient intensity, and the contribution of

each enabled light source. Each light source contributes the sum of three terms: ambient, diffuse, and

specular.

v The ambient light source contribution is the product of the material ambient reflectance and the light’s

ambient intensity.

v The diffuse light source contribution is the product of the material diffuse reflectance, the light’s diffuse

intensity, and the dot product of the vertex’s normal with the normalized vector from the vertex to the

light source.

v The specular light source contribution is the product of the material specular reflectance, the light’s

specular intensity, and the dot product of the normalized vertex-to-eye and vertex-to-light vectors, raised

to the power of the shininess of the material.

All three light source contributions are attenuated equally based on the distance from the vertex to the light

source and on light source direction, spread exponent, and spread cutoff angle. All dot products are

replaced with 0 (zero) if they are a negative value.

The alpha component of the resulting lighted color is set to the alpha value of the material diffuse

reflectance.

In color index mode, the value of the lighted index of a vertex ranges from the ambient to the specular

values passed to glMaterial using GL_COLOR_INDEXES. The extent to which the resulting index is

above ambient is determined by diffuse and specular coefficients, computed with a weighting of the lights’

colors (.30, .59, .11); the shininess of the material; and the same reflection and attenuation equations as in

the RGBA case.

Parameters

 ParameterName For glLightModelf and glLightModeli, this parameter specifies a single-valued lighting

model parameter. GL_LIGHT_MODEL_COLOR_CONTROL,

GL_LIGHT_MODEL_LOCAL_VIEWER, and GL_LIGHT_MODEL_TWO_SIDE are

accepted.

For glLightModelfv and glLightModeliv, this parameter specifies a lighting model

parameter. GL_LIGHT_MODEL_AMBIENT, GL_LIGHT_MODEL_COLOR_CONTROL,

GL_LIGHT_MODEL_LOCAL_VIEWER, and GL_LIGHT_MODEL_TWO_SIDE are

accepted.

Parameter Specifies the value to which ParameterName is set. This parameter applies only to

GL_LIGHT_MODEL_COLOR_CONTROL, glLightModelf, and glLightModeli.

ParameterValues Specifies a pointer to the value or values to which ParameterName is set. This

parameter applies only to glLightModelfv and glLightModeliv.

Errors

 GL_INVALID_ENUM ParameterName is not an accepted value.

GL_INVALID_OPERATION The glLightModel subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLightModel subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_LIGHT_MODEL_AMBIENT.

204 OpenGL 1.2 Reference Manual

glGet with argument GL_LIGHT_MODEL_LOCAL_VIEWER.

glGet with argument GL_LIGHT_MODEL_TWO_SIDE.

glIsEnabled with argument GL_LIGHTING.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glEnable or glDisable subroutine, glLight subroutine, glMaterial

subroutine.

glLineStipple Subroutine

Purpose

Specifies the line stipple pattern.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glLineStipple(GLint Factor,

 GLushort Pattern)

Description

Line stippling masks out certain fragments produced by rasterization; those fragments are not drawn. The

masking is achieved by using three parameters: the 16-bit line stipple pattern (the Pattern parameter), the

repeat count (the Factor parameter), and an integer stipple counter s.

Counter s is reset to 0 (zero) whenever the glBegin subroutine is called, and before each line segment of

a glBegin(GL_LINES)glEnd sequence is generated. It is incremented after each fragment of a unit width

aliased line segment is generated, or after each of the i fragments of an i width line segment are

generated. The i fragments associated with count s are masked out if

Pattern bit floor (s/Factor) mod 16

is 0, otherwise these fragments are sent to the frame buffer. Bit 0 of the Pattern parameter is the least

significant bit.

Antialiased lines are treated as a sequence of 1 times width rectangles for purposes of stippling.

Rectangle s is rasterized or not rasterized, based on the fragment rule described for aliased lines, counting

rectangles rather than groups of fragments.

Line stippling is enabled or disabled using the glEnable and glDisable subroutines with the

GL_LINE_STIPPLE argument. When enabled, the line stipple pattern is applied as described in the

preceding section. When disabled, it is as if the pattern were all 1s. Initially, line stippling is disabled.

Chapter 1. OpenGL Subroutines 205

Parameters

 Factor Specifies a multiplier for each bit in the line stipple pattern. If Factor is 3, for example, each bit in the

pattern is used three times before the next bit in the pattern is used. Factor is clamped to the range [1,

255] and defaults to 1.

Pattern Specifies a 16-bit integer whose bit pattern determines which fragments of a line is drawn when the

line is rasterized. Bit 0 is used first, and the default pattern is all 1s.

Errors

 GL_INVALID_OPERATION The glLineStipple subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLineStipple subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_LINE_STIPPLE_PATTERN

glGet with argument GL_LINE_STIPPLE_REPEAT

glIsEnabled with argument GL_LINE_STIPPLE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin subroutine, glEnable or Disable subroutine, glLineWidth subroutine, glPolygonStipple

subroutine.

glLineWidth Subroutine

Purpose

Specifies the width of rasterized lines.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glLineWidth(GLfloat Width)

Description

The glLineWidth subroutine specifies the rasterized width of both aliased and antialiased lines. Using a

line width other than 1.0 has different effects, depending on whether line antialiasing is enabled. Line

antialiasing is controlled by calling the glEnable and glDisable subroutines with the GL_LINE_SMOOTH

argument.

206 OpenGL 1.2 Reference Manual

If line antialiasing is disabled, the actual width is determined by rounding the supplied width to the nearest

integer. (If the rounding results in the value 0 (zero), it is as if the line width were 1 (one).) If | DELTAx |

> | DELTAy |, i pixels are filled in each column that is rasterized, where i is the rounded value of Width.

Otherwise, i pixels are filled in each row that is rasterized.

If antialiasing is enabled, line rasterization produces a fragment for each pixel square that intersects the

region lying within the rectangle. The fragment has a width equal to the current line width, a length equal

to the actual length of the line, and is centered on the mathematical line segment. The coverage value for

each fragment is the window coordinate area of the intersection of the rectangular region with the

corresponding pixel square. This value is saved and used in the final rasterization step.

Not all widths can be supported when line antialiasing is enabled. If an unsupported width is requested,

the nearest supported width is used. Only width 1.0 is guaranteed to be supported; others depend on the

implementation. The range of supported widths and the size difference between supported widths within

the range can be queried by calling the glGet subroutine with the GL_LINE_WIDTH_RANGE and

GL_LINE_WIDTH_GRANULARITY arguments.

Parameters

 Width Specifies the width of rasterized lines. The default is 1.0.

Notes

The line width specified by glLineWidth is always returned when GL_LINE_WIDTH is queried. Clamping

and rounding for aliased and antialiased lines have no effect on the specified value.

Non-antialiased line width may be clamped to an implementation-dependent maximum. Although this

maximum cannot be queried, it must be no less than the maximum value for antialiased lines, rounded to

the nearest integer value.

Errors

 GL_INVALID_VALUE Width is less than or equal to 0.

GL_INVALID_OPERATION The glLineWidth subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLineWidth subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_LINE_WIDTH

glGet with argument GL_LINE_WIDTH_RANGE

glGet with argument GL_LINE_WIDTH_GRANULARITY

glIsEnabled with argument GL_LINE_SMOOTH.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 207

Related Information

The glBegin or glEnd subroutine, glEnable or Disable subroutine.

glListBase Subroutine

Purpose

Sets the display-list base for the glCallLists subroutine.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glListBase(GLuint Base)

Description

The glCallLists subroutine specifies an array of offsets. Display-list names are generated by adding the

Base parameter to each offset. Names that reference valid display lists are executed; the others are

ignored.

Parameters

 Base Specifies an integer offset that is added to glCallLists offsets to generate display-list names. Initial value is 0

(zero).

Errors

 GL_INVALID_OPERATION The glListBase subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glListBase subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_LIST_BASE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCallLists subroutine.

glLoadIdentity Subroutine

Purpose

Replaces the current matrix with the identity matrix.

208 OpenGL 1.2 Reference Manual

Library

OpenGL C bindings library: libGL.a

C Syntax

void glLoadIdentity(void)

Description

The glLoadIdentity subroutine replaces the current matrix with the identity matrix. It is semantically

equivalent to calling the glLoadMatrix subroutine with the following identity matrix:

 Calling glLoadIdentity is in some cases more efficient.

Errors

 GL_INVALID_OPERATION The glLoadIdentity subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLoadIdentity subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX

glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glLoadMatrix subroutine, glMatrixMode subroutine, glMultMatrix

subroutine, glPushMatrix subroutine.

Figure 6. Identity Matrix. This diagram shows a matrix enclosed in brackets. The matrix consists of four lines

containing four characters each. The first line contains the following (from left to right): one, zero, zero, zero. The

second line contains the following (from left to right): zero, one, zero, zero. The third line contains the following (from

left to right): zero, zero, one, zero. The fourth line contains the following (from left to right): zero, zero, zero, one.

Chapter 1. OpenGL Subroutines 209

glLoadMatrix Subroutine

Purpose

Replaces the current matrix with an arbitrary matrix.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glLoadMatrixd(const GLdouble *Matrix)

void glLoadMatrixf(const GLfloat *Matrix)

Description

The glLoadMatrix subroutine replaces the current matrix with the one specified in the Matrix parameter.

The current matrix is the projection matrix, model view matrix, or texture matrix, determined by the current

matrix mode. (See the glMatrixMode subroutine for information on specifiying the current matrix.) The

Matrix parameter points to a 4 x 4 matrix of single- or double-precision floating-point values stored in

column-major order. That is, the matrix is stored as the following:

Parameters

 Matrix Specifies a pointer to 4 x 4 matrix stored in column-major order as 16 consecutive values.

Errors

 GL_INVALID_OPERATION The glLoadMatrix subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLoadMatrix subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

Figure 7. Stored Matrix. This diagram shows a matrix enclosed in brackets. The matrix consists of four lines containing

four characters each. The first line contains the following (from left to right): a subscript zero, a subscript four, a

subscript eight, a subscript twelve. The second line contains the following (from left to right): a subscript one, a

subscript five, a subscript nine, a subscript thirteen. The third line contains the following (from left to right): a subscript

two, a subscript six, a subscript ten, a subscript fourteen. The fourth line contains the following (from left to right): a

subscript three, a subscript seven, a subscript eleven, a subscript fifteen.

210 OpenGL 1.2 Reference Manual

glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glLoadIdentity subroutine, glMatrixMode subroutine, glMultMatrix

subroutine, glPushMatrix subroutine, glLoadTransposeMatrixARB subroutine.

glLoadName Subroutine

Purpose

Loads a name onto the name stack.

Library

OpenGL C bindings library: libGL.a

C Syntax

void LoadName(GLuint Name)

Description

The name stack is used during selection mode to allow sets of rendering commands to be uniquely

identified. It consists of an ordered set of unsigned integers. The glLoadName subroutine causes the

Name parameter to replace the value on the top of the name stack, which is initially empty.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glLoadName while

the render mode is not GL_SELECT are ignored.

Parameters

 Name Specifies a name that replaces the top value on the name stack.

Errors

 GL_INVALID_OPERATION The glLoadName subroutine is called while the name stack is empty.

GL_INVALID_OPERATION The glLoadName subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glLoadName subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_NAME_STACK_DEPTH.

glGet with argument GL_MAX_NAME_STACK_DEPTH.

Chapter 1. OpenGL Subroutines 211

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glInitNames subroutine, glPushName subroutine, glRenderMode

subroutine, glSelectBuffer subroutine.

glLoadNamedMatrixIBM Subroutine

Purpose

Loads a pre-defined matrix into the top of the named matrix stack.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glLoadNamedMatrixIBM(GLenum matrix,

 GLenum name)

Description

Using this subroutine, a predefined matrix can be loaded into any matrix stack, regardless of the current

matrix mode in use.

glLoadNamedMaxtrixIBM(matrix, GL_IDENTITY_MATRIX_IBM) is functionally equivalent to:

 PushAttrib(GL_TRANSFORM_BIT);

 MatrixMode(matrix);

 LoadIdentity();

 PopAttrib();

This subroutine does NOT change the current matrix mode.

Parameters

 matrix specifies which of the matrices to load. Acceptable values

are GL_COLOR, GL_TEXTURE, GL_MODELVIEW, and

GL_PROJECTION.

212 OpenGL 1.2 Reference Manual

name specifies the named matrix to load. Acceptable values and

their corresponding matrices are:

GL_IDENTITY_MATRIX_IBM 1.0 0.0 0.0 0.0

 0.0 1.0 0.0 0.0

 0.0 0.0 1.0 0.0

 0.0 0.0 0.0 1.0

GL_YCRCB_TO_RGB_MATRIX_IBM 1.164 0.000 1.596 -0.874

 1.164 -0.392 -0.813 0.532

 1.164 2.017 0.000 1.000

 0.000 0.000 0.000 1.000

GL_RGB_TO_YCRCB_MATRIX_IBM 0.257 0.504 0.098 0.063

 -0.148 -0.291 0.439 0.502

 0.439 -0.368 -0.071 0.502

 0.000 0.000 0.000 1.000

Note that the second and third parameters above are only

valid if the GL_IBM_YCbCr extension is present.

Notes

This subroutine is only available if the GL_IBM_load_matrix extension is present.

Error Codes

 GL_INVALID_ENUM is generated if matrix is not one of the acceptable values.

GL_INVALID_ENUM is generated if name is not one of the acceptable values.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

glLoadTransposeMatrixARB Subroutine

Purpose

Loads a matrix in row-major order, rather than column-major order.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glLoadTransposeMatrixfARB(const GLfloat *Matrix)

void glLoadTransposeMatrixdARB(const GLdouble *Matrix)

Description

The glLoadTransposeMatrixARB subroutine replaces the current matrix with the one specified in the

Matrix parameter. The current matrix is the projection matrix, model view matrix, or texture matrix,

determined by the current matrix mode. (See the glMatrixMode subroutine for information on specifiying

the current matrix.) The Matrix parameter points to a 4 x 4 matrix of single- or double-precision

floating-point values stored in row-major order. That is, the matrix is stored as the following:

Chapter 1. OpenGL Subroutines 213

/ a0 a1 a2 a3 \

| a4 a5 a6 a7 |

| a8 a9 a10 a11 |

\ a12 a13 a14 a15 /

Parameters

 Matrix is an array of 16 values, specified in row-major order.

Error Codes

 GL_INVALID_OPERATION is generated if glLoadTransposeMatrixARB is executed

between the execution of glBegin and the corresponding

execution of glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glLoadMatrix subroutine, the glMatrixMode subroutine.

glLockArraysEXT Subroutine

Purpose

Locks the currently enabled vertex arrays.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glLockArraysEXT (int first,

 sizei count)

Description

The currently enabled vertex arrays can be locked with the subroutine glLockArraysEXT. When the

vertex arrays are locked, the GL can compile the array data or the transformed results of array data

associated with the currently enabled vertex arrays. The vertex arrays are unlocked by the

glUnlockArraysEXT subroutine.

Between glLockArraysEXT and glUnlockArraysEXT the application should ensure that none of the array

data in the range of elements specified by first and count are changed. Changes to the array data

between the execution of glLockArraysEXT and glUnlockArraysEXT subroutines may affect calls to

DrawArrays, ArrayElement, or DrawElements subroutines in non-sequential ways.

While using a compiled vertex array, references to array elements by the subroutines DrawArrays,

ArrayElement, or DrawElements which are outside of the range specified by first and count are undefined.

This extension defines an interface which allows static vertex array data to be cached or pre-compiled for

more efficient rendering. This is useful for implementations which can cache the transformed results of

214 OpenGL 1.2 Reference Manual

array data for reuse by several DrawArrays, ArrayElement, or DrawElements subroutines. It is also useful

for implementations which can transfer array data to fast memory for more efficient processing.

For example, rendering an M by N mesh of quadrilaterals can be accomplished by setting up vertex arrays

containing all of the vertexes in the mesh and issuing M DrawElements subroutines each of which operate

on 2 * N vertexes. Each DrawElements subroutine after the first will share N vertexes with the preceding

DrawElements subroutine. If the vertex array data is locked while the DrawElements subroutines are

executed, then OpenGL may be able to transform each of these shared vertexes just once.

Parameters

 first The first element in the locked range.

count The number of elements to be contained in the locked range.

Errors

 INVALID_VALUE First is less than or equal to zero.

INVALID_OPERATION The glLockArraysEXT subroutine is called between execution of

glLockArraysEXT and the corresponding execution of glUnlockArraysEXT.

INVALID_OPERATION The glLockArraysEXT subroutine is called between execution of Begin and the

corresponding execution of End.

Related Information

The glUnlockArraysEXT subroutine.

glLogicOp Subroutine

Purpose

Specifies a logical pixel operation for color index rendering.

Library

OpenGL C bindings library: libGL.a

C Syntax

void LogicOp(GLenum OperatorCode)

Description

The glLogicOp subroutine specifies a logical operation that, when enabled, is applied between the

incoming color and the color at the corresponding location in the frame buffer. The logical operation is

enabled or disabled with the glEnable and glDisable subroutines using the GL_LOGIC_OP symbolic

constant for color index mode or the GL_COLOR_LOGIC_OP for RGB mode.

The OperatorCode parameter specifies a symbolic constant chosen from the following list. In the

explanation of the logical operations, s represents the incoming color index and d represents the index in

the frame buffer. Standard C-language operators are used. As these bit-wise operators suggest, the logical

operation is applied independently to each bit pair of the source and destination indexes.

 Operation Resulting Value

GL_CLEAR 0

GL_SET 1

GL_COPY s

Chapter 1. OpenGL Subroutines 215

Operation Resulting Value

GL_COPY_INVERTED !s

GL_NOOP d

GL_INVERT !d

GL_AND s & d

GL_NAND !(s & d)

GL_OR s | d

GL_NOR !(s | d)

GL_XOR s ^ d

GL_EQUIV !(s ^ d)

GL_AND_REVERSE s & !d

GL_AND_INVERTED !s & d

GL_OR_REVERSE s | !d

GL_OR_INVERTED !s | d

Parameters

 OperatorCode Specifies a symbolic constant that selects a logical operation. The following symbols are

accepted:

v GL_CLEAR

v GL_SET

v GL_COPY

v GL_COPY_INVERTED

v GL_NOOP

v GL_INVERT

v GL_AND

v GL_NAND

v GL_OR

v GL_NOR

v GL_XOR

v GL_EQUIV

v GL_AND_REVERSE

v GL_AND_INVERTED

v GL_OR_REVERSE

v GL_OR_INVERTED

Notes

When more than one color index buffer is enabled for drawing, logical operations are done separately for

each enabled buffer, using the contents of that buffer for the destination index. (See the glDrawBuffer

subroutine for information about specifying color buffers for drawing.)

The OperatorCode parameter must be one of the 16 accepted values. Other values result in an error.

Errors

 GL_INVALID_ENUM OperatorCode is not an accepted value.

GL_INVALID_OPERATION The glLogicOp subroutine is called between a call to glBegin and the

corresponding call to glEnd.

216 OpenGL 1.2 Reference Manual

Associated Gets

Associated gets for the glLogicOp subroutine are as follows. (See the glGet subroutine for more

information.)

glEnable or glDisable with argument GL_COLOR_LOGIC_OP for RGB mode or GL_INDEX_LOGIC_OP

for color index mode.

glGet with argument GL_LOGIC_OP_MODE.

glIsEnabled with argument GL_LOGIC_OP.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glAlphaFunc subroutine, glBegin or glEnd subroutine, glBlendEquationEXT subroutine,

glBlendFunc subroutine, glDrawBuffer subroutine, glEnable or Disable subroutine, glStencilOp

subroutine.

glMap1 Subroutine

Purpose

Defines a 1-dimensional (1D) evaluator.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMap1d(GLenum Target,

 GLdouble u1,

 GLdouble u2,

 GLint Stride,

 GLint Order,

 const GLdouble * Points)

void glMap1f(GLenum Target,

 GLfloat u1,

 GLfloat u2,

 GLint Stride,

 GLint Order,

 const GLfloat * Points)

Description

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices, normals,

texture coordinates, and colors. The values produced by an evaluator are sent to further stages of GL

processing just as if they had been presented using the glVertex, glNormal, glTexCoord, and glColor

subroutines, except that the generated values do not update the current normal, texture coordinates, or

color.

Chapter 1. OpenGL Subroutines 217

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported by the

GL implementation) can be described using evaluators. These include almost all splines used in computer

graphics, such as B-splines, Bezier curves, and Hermite splines.

Evaluators define curves based on Bernstein polynomials. Define p(t) as the following:

Let p(t) = Bn0(t)R0 + Bn1(t)R1 + . . . + Bnn(t)Rn

where Ri is a control point and Bni(t) is the ith Bernstein polynomial of degree:

n (Order = n+1)

See the figure:

 See the figure:

 The glMap1 subroutine is used to define the basis and to specify what kind of values are produced. Once

defined, a map can be enabled and disabled by calling the glEnable and glDisable subroutines with the

map name, one of the nine predefined values for the Target parameter. The glEvalCoord1 subroutine

evaluates the 1D maps that are enabled. When glEvalCoord1 presents a value u, the Bernstein functions

are evaluated using t, as in the following figure:

 The Target parameter specifies a symbolic constant that indicates what kind of control points are provided

in the Points parameter, and what output is generated when the map is evaluated. It can assume one of

the following nine predefined values:

is the binomial coefficient given by
n

k

n!

k! (n–k)!

n

k
=

Figure 8. Binomial Coefficient Equation. This figure shows that the binomial coefficient with original set of size n and

subset of size k is the binomial coefficient given by the following equation: the binomial coefficient with original set of

size n and subset of size k is equal to n! / k! (n-k)!.

n

k

00 1 and 1

Figure 9. Definition. This figure shows that zero to the power of zero is eqivalent to one and the binomial coefficient

with original set of size n and subset of size k is also eqivalent to one.

u – u1

u2 – u1
t =

Figure 10. Value of t. This figure shows that t is equal to u-u1 / u2–u1.

218 OpenGL 1.2 Reference Manual

GL_MAP1_VERTEX_3 Each control point is three floating-point values representing x, y, and z.

Internal glVertex3 subroutines are generated when the map is

evaluated.

GL_MAP1_VERTEX_4 Each control point is four floating-point values representing x, y, z, and

w. Internal glVertex4 subroutines are generated when the map is

evaluated.

GL_MAP1_INDEX Each control point is a single floating-point value representing a color

index. Internal glIndex subroutines are generated when the map is

evaluated. However, the current index is not updated with the value of

these glIndex subroutines.

GL_MAP1_COLOR_4 Each control point is four floating-point values representing red, green,

blue, and alpha (RGBA). Internal glColor4 subroutines are generated

when the map is evaluated. However, the current color is not updated

with the value of these glColor4 subroutines.

GL_MAP1_NORMAL Each control point is three floating-point values representing the x, y,

and z components of a normal vector. Internal glNormal subroutines

are generated when the map is evaluated. However, the current normal

is not updated with the value of these glNormal subroutines.

GL_MAP1_TEXTURE_COORD_1 Each control point is a single floating-point value representing the s

texture coordinate. Internal glTexCoord1 subroutines are generated

when the map is evaluated. However, the current texture coordinates

are not updated with the value of these glTexCoord subroutines.

GL_MAP1_TEXTURE_COORD_2 Each control point is two floating-point values representing the s and t

texture coordinates. Internal glTexCoord2 subroutines are generated

when the map is evaluated. However, the current texture coordinates

are not updated with the value of these glTexCoord subroutines.

GL_MAP1_TEXTURE_COORD_3 Each control point is three floating-point values representing the s, t,

and r texture coordinates. Internal glTexCoord3 subroutines are

generated when the map is evaluated. However, the current texture

coordinates are not updated with the value of these glTexCoord

subroutines.

GL_MAP1_TEXTURE_COORD_4 Each control point is four floating-point values representing the s, t, r

and q texture coordinates. Internal glTexCoord4 subroutines are

generated when the map is evaluated. However, the current texture

coordinates are not updated with the value of these glTexCoord

subroutines.

The Stride, Order, and Points parameters define the array addressing for accessing the control points.

Points is the location of the first control point, which occupies one, two, three, or four contiguous memory

locations, depending on which map is being defined. Order is the number of control points in the array.

Stride tells how many float or double locations to advance the internal memory pointer to reach the next

control point.

Parameters

 Target Specifies the values that are generated by the evaluator. The following symbolic constants are accepted:

v GL_MAP1_VERTEX_3

v GL_MAP1_VERTEX_4

v GL_MAP1_INDEX

v GL_MAP1_COLOR_4

v GL_MAP1_NORMAL

v GL_MAP1_TEXTURE_COORD_1

v GL_MAP1_TEXTURE_COORD_2

v GL_MAP1_TEXTURE_COORD_3

v GL_MAP1_TEXTURE_COORD_4

Chapter 1. OpenGL Subroutines 219

u1, u2 Specify a linear mapping of u, as presented to glEvalCoord1, to u1, the variable that is evaluated by the

equations specified by this subroutine.

Stride Specifies the number of floats or doubles between the beginning of one control point and the beginning

of the next one in the data structure referenced in Points. This allows control points to be embedded in

arbitrary data structures. The only constraint is that the values for a particular control point must occupy

contiguous memory locations.

Order Specifies the number of control points. Must be positive.

Points Specifies a pointer to the array of control points.

Notes

As is the case with all GL subroutines that accept pointers to data, it is as if the contents of Points were

copied by glMap1 before it returned. Changes to the contents of Points have no effect after glMap1 is

called.

Errors

 GL_INVALID_ENUM Target is not an accepted value.

GL_INVALID_VALUE u1 is equal to u2.

GL_INVALID_VALUE Stride is less than the number of values in a control point.

GL_INVALID_VALUE Order is less than one or greater than GL_MAX_EVAL_ORDER.

GL_INVALID_OPERATION The glMap1 subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glMap1 subroutine are as follows. (See the glGet subroutine for more information.)

glGetMap.

glGet with argument GL_MAX_EVAL_ORDER.

glIsEnabled with argument GL_MAP1_VERTEX_3.

glIsEnabled with argument GL_MAP1_VERTEX_4.

glIsEnabled with argument GL_MAP1_INDEX.

glIsEnabled with argument GL_MAP1_COLOR_4.

glIsEnabled with argument GL_MAP1_NORMAL.

glIsEnabled with argument GL_MAP1_TEXTURE_COORD_1.

glIsEnabled with argument GL_MAP1_TEXTURE_COORD_2

glIsEnabled with argument GL_MAP1_TEXTURE_COORD_3

glIsEnabled with argument GL_MAP1_TEXTURE_COORD_4.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

220 OpenGL 1.2 Reference Manual

Related Information

The glBegin or glEnd subroutine, glColor subroutine, glEnable or glDisable subroutine, glEvalCoord

subroutine, glEvalMesh subroutine, glEvalPoint subroutine, glGetMap subroutine, glIndex subroutine,

glMap2 subroutine, glMapGrid subroutine, glNormal subroutine, glTexCoord subroutine, glVertex

subroutine.

glMap2 Subroutine

Purpose

Defines a 2-dimensional (2D) evaluator.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMap2d(GLenum Target,

 GLdouble u1,

 GLdouble u2,

 GLint uStride,

 GLint uOrder,

 GLdouble v1,

 GLdouble v2,

 GLint vStride,

 GLint vOrder,

 const GLdouble * Points)

void glMap2f(GLenum Target,

 GLfloat u1,

 GLfloat u2,

 GLint uStride,

 GLint uOrder,

 GLfloat v1,

 GLfloat v2,

 GLint vStride,

 GLint vOrder,

 const GLfloat * Points)

Description

Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices, normals,

texture coordinates, and colors. The values produced by an evaluator are sent on to further stages of GL

processing just as if they had been presented using the glVertex, glNormal, glTexCoord, and glColor

subroutines, except that the generated values do not update the current normal, texture coordinates, or

color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported by the

GL implementation) can be described using evaluators. These include almost all surfaces used in

computer graphics, such as B-spline surfaces, non-uniform rational B-spline surfaces (NURBS), and Bezier

surfaces.

Evaluators define surfaces based on bivariate Bernstein polynomials. Define p(s, t) as follows:

Chapter 1. OpenGL Subroutines 221

Let p(s, t) = Bn0Bm0R00 + Bn1Bm0R01 + . . . + BnnBm0Rn0

 +Bn0Bm1R01 + . . . + BnnBm1Rn1

 .

 .

 .

 +Bn0BmmR0m + . . . + BnnBmmRnm

where Rij is a control point, Bni (s) is the ith Bernstein polynomial of degree:

n (uOrder = n +1)

See the following figure:

 and Bmj (t) is the jth Bernstein polynomial of degree:

m (vOrder = m + 1)

See the following figure:

 See the following figure:

 The glMap2 subroutine is used to define the basis and to specify what kind of values are produced. Once

defined, a map can be enabled and disabled by calling the glEnable and glDisable subroutines with the

map name, which is one of the nine predefined values for the Target parameter. When the glEvalCoord2

subroutine presents values u and v, the bivariate Bernstein polynomials are evaluated using s and t, as in

the following figure:

n

i
Bni (s) = si (1 – s)n – i

Figure 11. Value of Bni (s). This figure shows that Bni (s) is equal to [the binomial coefficient with original set of size n

and subset of size i] s to the power of i (1–s) to the power of n-i.

m

j
Bmj (t) = tj (1 – t)m – j

Figure 12. Value of Bmj (t). This figure shows that Bmj (t) is equal to [the binomial coefficient with original set of size

m and subset of size j] t to the power of j (1–t) to the power of m-j.

n

0

00 1 and 1

Figure 13. Definition. This figure shows that zero to the power of zero is eqivalent to one and the binomial coefficient

with original set of size n and subset of size zero is also eqivalent to one.

222 OpenGL 1.2 Reference Manual

The Target parameter specifies a symbolic constant that indicates what kind of control points are provided

in the Points parameter, and what output is generated when the map is evaluated. It can assume one of

the following nine predefined values:

 GL_MAP2_VERTEX_3 Each control point is three floating-point values representing x, y, and z.

Internal glVertex3 subroutines are generated when the map is

evaluated.

GL_MAP2_VERTEX_4 Each control point is four floating-point values representing x, y, z, and

w. Internal glVertex4 subroutines are generated when the map is

evaluated.

GL_MAP2_INDEX Each control point is a single floating-point value representing a color

index. Internal glIndex subroutines are generated when the map is

evaluated. However, the current index is not updated with the value of

these glIndex subroutines.

GL_MAP2_COLOR_4 Each control point is four floating-point values representing red, green,

blue, and alpha. Internal glColor4 subroutines are generated when the

map is evaluated. However, the current color is not updated with the

value of these glColor4 subroutines.

GL_MAP2_NORMAL Each control point is three floating-point values representing the x, y,

and z components of a normal vector. Internal glNormal subroutines

are generated when the map is evaluated. However, the current normal

is not updated with the value of these glNormal subroutines.

GL_MAP2_TEXTURE_COORD_1 Each control point is a single floating-point value representing the s

texture coordinate. Internal glTexCoord1 subroutines are generated

when the map is evaluated. However, the current texture coordinates

are not updated with the value of these glTexCoord subroutines.

GL_MAP2_TEXTURE_COORD_2 Each control point is two floating-point values representing the s and t

texture coordinates. Internal glTexCoord2 subroutines are generated

when the map is evaluated. However, the current texture coordinates

are not updated with the value of these glTexCoord subroutines.

GL_MAP2_TEXTURE_COORD_3 Each control point is three floating-point values representing the s, t,

and r texture coordinates. Internal glTexCoord3 subroutines are

generated when the map is evaluated. However, the current texture

coordinates are not updated with the value of these glTexCoord

subroutines.

GL_MAP2_TEXTURE_COORD_4 Each control point is four floating-point values representing the s, t, r,

and q texture coordinates. Internal glTexCoord4 subroutines are

generated when the map is evaluated. However, the current texture

coordinates are not updated with the value of these glTexCoord

subroutines.

The uStride, uOrder, vStride, vOrder, and Points parameters define the array addressing for accessing the

control points. The Points parameter is the location of the first control point, which occupies one, two,

three, or four contiguous memory locations, depending on which map is being defined. There are uOrder

times vOrder control points in the array. The uStride parameter tells how many float or double locations

u – u1

u2 – u1
s =

v – v1

v2 – v1
t =

Figure 14. Value of s and t. This figure shows two equations. The first equation shows that s is equal to u–u1 / u2–u1.

The second equation shows that t is equal to v–v1 / v2–v1.

Chapter 1. OpenGL Subroutines 223

are skipped to advance the internal memory pointer from control point Rij to control point R(i+1)j. The

vStride parameter tells how many float or double locations are skipped to advance the internal memory

pointer from control point Rij to control point Ri(j+1).

Parameters

 Target Specifies the kind of values that are generated by the evaluator. The following symbolic constants are

accepted:

v GL_MAP2_VERTEX_3

v GL_MAP2_VERTEX_4

v GL_MAP2_INDEX

v GL_MAP2_COLOR_4

v GL_MAP2_NORMAL

v GL_MAP2_TEXTURE_COORD_1

v GL_MAP2_TEXTURE_COORD_2

v GL_MAP2_TEXTURE_COORD_3

v GL_MAP2_TEXTURE_COORD_4

u1, u2 Specify a linear mapping of u, as presented to glEvalCoord2, to u1, one of the two variables that is

evaluated by the equations specified by this subroutine.

uStride Specifies the number of floats or doubles between the beginning of control point Rij and the beginning

of control point R(i+1)j, where i and j are the u and y control-point indexes, respectively. This allows

control points to be embedded in arbitrary data structures. The only constraint is that the values for a

particular control point must occupy contiguous memory locations.

uOrder Specifies the dimension of the control point array in the u axis. Must be positive.

v1, v2 Specify a linear mapping of v, as presented to glEvalCoord2, to v1, one of the two variables that is

evaluated by the equations specified by this subroutine.

vStride Specifies the number of floats or doubles between the beginning of control point Rij and the beginning

of control point Ri(j+1), where i and j are the u and v control point indexes, respectively. This allows

control points to be embedded in arbitrary data structures. The only constraint is that the values for a

particular control point must occupy contiguous memory locations.

vOrder Specifies the dimension of the control point array in the v axis. Must be positive.

Points Specifies a pointer to the array of control points.

Notes

For all GL subroutines that accept pointers to data, it is as if the contents of Points were copied by

glMap2 before it returned. Changes to the contents of Points have no effect after glMap2 is called.

Errors

 GL_INVALID_ENUM Target is not an accepted value.

GL_INVALID_VALUE u1 is equal to u2, or if v1 is equal to v2.

GL_INVALID_VALUE uStride or vStride is less than the number of values in a control point.

GL_INVALID_VALUE uOrder or vOrder is less than one or greater than GL_MAX_EVAL_ORDER.

GL_INVALID_OPERATION The glMap2 subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glMap2 subroutine are as follows. (See the glGet subroutine for more information.)

glGetMap

glGet with argument GL_MAX_EVAL_ORDER

224 OpenGL 1.2 Reference Manual

glIsEnabled with argument GL_MAP2_VERTEX_3

glIsEnabled with argument GL_MAP2_VERTEX_4

glIsEnabled with argument GL_MAP2_INDEX

glIsEnabled with argument GL_MAP2_COLOR_4

glIsEnabled with argument GL_MAP2_NORMAL

glIsEnabled with argument GL_MAP2_TEXTURE_COORD_1

glIsEnabled with argument GL_MAP2_TEXTURE_COORD_2

glIsEnabled with argument GL_MAP2_TEXTURE_COORD_3

glIsEnabled with argument GL_MAP2_TEXTURE_COORD_4.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glColor subroutine, glEnable or Disable subroutine, glEvalCoord

subroutine, glEvalMesh subroutine, glEvalPoint subroutine, glGetMap subroutine, glIndex subroutine,

glMap1 subroutine, glMapGrid subroutine, glNormal subroutine, glTexCoord subroutine, glVertex

subroutine.

glMapGrid Subroutine

Purpose

Defines a 1-dimensional (1D) or 2-dimensional (2D) mesh.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMapGrid1d(GLint un,

 GLdouble u1,

 GLdouble u2)

void glMapGrid1f(GLint un,

 GLfloat u1,

 GLfloat u2)

void glMapGrid2d(GLint un,

 GLdouble u1,

 GLdouble u2,

 GLint vn,

 GLdouble v1,

 GLdouble v2)

Chapter 1. OpenGL Subroutines 225

void glMapGrid2f(GLint un,

 GLfloat u1,

 GLfloat u2,

 GLint vn,

 GLfloat v1,

 GLfloat v2)

Description

The glMapGrid and glEvalMesh subroutines are used in tandem to efficiently generate and evaluate a

series of evenly spaced map domain values. The glEvalMesh subroutine steps through the integer

domain of a 1D or 2D grid, whose range is the domain of the evaluation maps specified by the glMap1

and glMap2 subroutines.

The glMapGrid1 and glMapGrid2 subroutines specify the linear grid mappings between the i (or i and j)

integer grid coordinates, to the u (or u and v) floating-point evaluation map coordinates. See the glMap1

subroutine and the glMap2 subroutine for details of how u and v coordinates are evaluated.

The glMapGrid1 subroutine specifies a single linear mapping such that integer grid coordinate 0 (zero)

maps exactly to u1, and integer grid coordinate un maps exactly to u2. All other integer grid coordinates i

are mapped such that

u = i(u2 - u1)/un + u1

The glMapGrid2 subroutine specifies two such linear mappings. One maps integer grid coordinate i=0

exactly to u1, and integer grid coordinate i=un exactly to u2. The other maps integer grid coordinate j=0

exactly to v1, and integer grid coordinate j=vn exactly to v2. Other integer grid coordinates i and j are

mapped such that

u = i(u2 - u1)/un + u1

v = j(v2 - v1)/vn + v1

The mappings specified by glMapGrid are identically used by glEvalMesh and glEvalPoint.

Parameters

 un Specifies the number of partitions in the grid range interval [u1, u2]. Must be positive.

u1, u2 Specify the mappings for integer grid domain values i=0 and i=un.

vn Specifies the number of partitions in the grid range interval [v1, v2] (glMapGrid2 only).

v1, v2 Specify the mappings for integer grid domain values j=0 and j=vn (glMapGrid2 only).

Errors

 GL_INVALID_VALUE un or vn is not positive.

GL_INVALID_OPERATION The glMapGrid subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glMapGrid subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MAP1_GRID_DOMAIN

glGet with argument GL_MAP2_GRID_DOMAIN

glGet with argument GL_MAP1_GRID_SEGMENTS

226 OpenGL 1.2 Reference Manual

glGet with argument GL_MAP2_GRID_SEGMENTS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glEvalCoord subroutine, glEvalMesh subroutine, glEvalPoint

subroutine, glMap1 subroutine, glMap2 subroutine.

glMaterial Subroutine

Purpose

Specifies material parameters for the lighting model.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMaterialf(GLenum Face,

 GLenum pName,

 GLfloat Parameter)

void glMateriali(GLenum Face,

 GLenum pName,

 GLint Parameter)

void glMaterialfv(GLenum Face,

 GLenum pName,

 const GLfloat * Parameters)

void glMaterialiv(GLenum Face,

 GLenum pName,

 const GLint * Parameters)

Description

The glMaterial subroutine assigns values to material parameters. There are two matched sets of material

parameters. One, the frontfacing set, is used to shade points, lines, bitmaps, and all polygons (when

two-sided lighting is disabled), or just frontfacing polygons (when two-sided lighting is enabled). The other

set, backfacing, is used to shade backfacing polygons only when two-sided lighting is enabled. See the

glLightModel subroutine for details concerning one- and two-sided lighting calculations.

The glMaterial subroutine takes three arguments:

v The Face parameter specifies whether the GL_FRONT materials, the GL_BACK materials, or both

GL_FRONT_AND_BACK materials are modified.

v The pName parameter specifies which of several parameters in one or both sets are modified.

v The Parameters parameter specifies what value or values are assigned to the specified parameter.

Material parameters are used in the lighting equation that is optionally applied to each vertex. See the

glLightModel subroutine for details about the lighting equation. The following parameters and their

Chapter 1. OpenGL Subroutines 227

interpretations by the lighting equation can be specified using glMaterial:

 GL_AMBIENT Parameters contains four integer or floating-point values that specify the

ambient red, green, blue, alpha (RGBA) reflectance of the material.

Integer values are mapped linearly such that the most positive

representable value maps to 1.0, and the most negative representable

value maps to -1.0. Floating-point values are mapped directly. Neither

integer nor floating-point values are clamped. The default ambient

reflectance for both front and backfacing materials is (0.2, 0.2, 0.2, 1.0).

GL_DIFFUSE Parameters contains four integer or floating-point values that specify the

diffuse RGBA reflectance of the material. Integer values are mapped

linearly such that the most positive representable value maps to 1.0, and

the most negative representable value maps to -1.0. Floating-point values

are mapped directly. Neither integer nor floating-point values are clamped.

The default diffuse reflectance for both front and backfacing materials is

(0.8, 0.8, 0.8, 1.0).

GL_SPECULAR Parameters contains four integer or floating-point values that specify the

specular RGBA reflectance of the material. Integer values are mapped

linearly such that the most positive representable value maps to 1.0, and

the most negative representable value maps to -1.0. Floating-point values

are mapped directly. Neither integer nor floating-point values are clamped.

The default specular reflectance for both front and backfacing materials is

(0.0, 0.0, 0.0, 1.0).

GL_EMISSION Parameters contains four integer or floating-point values that specify the

RGBA emitted light intensity of the material. Integer values are mapped

linearly such that the most positive representable value maps to 1.0, and

the most negative representable value maps to -1.0. Floating-point values

are mapped directly. Neither integer nor floating-point values are clamped.

The default emission intensity for both front and backfacing materials is

(0.0, 0.0, 0.0, 1.0).

GL_SHININESS Parameters is a single integer or floating-point value that specifies the

RGBA specular exponent of the material. Integer and floating-point values

are mapped directly. Only values in the range [0,128] are accepted. The

default specular exponent for both frontfacing and backfacing materials is

0.

GL_AMBIENT_AND_DIFFUSE Equivalent to calling glMaterial twice with the same parameter values,

once with GL_AMBIENT and once with GL_DIFFUSE.

GL_COLOR_INDEXES Parameters contains three integer or floating-point values specifying the

color indices for ambient, diffuse, and specular lighting. These three

values, and GL_SHININESS, are the only material values used by the

color index mode lighting equation. See the glLightModel subroutine for

a discussion of color index lighting.

Parameters

materialf and materiali

 Face Specifies which face or faces are being updated. The Face parameter must be one of GL_FRONT,

GL_BACK or GL_FRONT_AND_BACK.

pName Specifies the single-valued material parameter of the face or faces that is being updated. Must be

GL_SHININESS.

Parameter Specifies the value to which GL_SHININESS is set.

materialfv and materialiv

 Face Specifies which face or faces are being updated. Must be one of GL_FRONT, GL_BACK, or

GL_FRONT_AND_BACK.

228 OpenGL 1.2 Reference Manual

pName Specifies the material parameter of the face or faces that is being updated. Must be one of the

following:

v GL_AMBIENT

v GL_DIFFUSE

v GL_SPECULAR

v GL_EMISSION

v GL_SHININESS

v GL_AMBIENT_AND_DIFFUSE

v GL_COLOR_INDEXES

Parameters Specifies a pointer to the value or values to which the pName parameter is set.

Notes

The material parameters can be updated at any time. In particular, glMaterial can be called between a call

to the glBegin subroutine and the corresponding call to the glEnd subroutine. If only a single material

parameter is to be changed per vertex, however, glColorMaterial is preferred over glMaterial. (See the

glColorMaterial subroutine for information on tracking the current color with the material color.)

Errors

 GL_INVALID_ENUM Face or pName is not an accepted value.

GL_INVALID_VALUE A specular exponent outside the range [0,128] is specified.

Associated Gets

Associated get for the glMaterial subroutine is as follows. (See the glGet subroutine for more information.)

glGetMaterial.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glColorMaterial subroutine, glGetMaterial subroutine, glLight

subroutine, glLightModel subroutine.

glMatrixMode Subroutine

Purpose

Specifies the current matrix.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMatrixMode(GLenum Mode)

Chapter 1. OpenGL Subroutines 229

Description

The glMatrixMode subroutine sets the current matrix mode. The Mode parameter can assume one of the

following three values:

 GL_MODELVIEW Applies subsequent matrix operations to the model view matrix stack.

GL_PROJECTION Applies subsequent matrix operations to the projection matrix stack.

GL_TEXTURE Applies subsequent matrix operations to the texture matrix stack.

Parameters

 Mode Specifies which matrix stack is the target for subsequent matrix operations. The following three values are

accepted:

v GL_MODELVIEW

v GL_PROJECTION

v GL_TEXTURE

Associated Gets

Associated gets for the glMatrixMode subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MATRIX_MODE.

Errors

 GL_INVALID_ENUM Mode is not an accepted value.

GL_INVALID_OPERATION The glMatrixMode subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glLoadMatrix subroutine, glPushMatrix subroutine.

glMultiDrawArraysEXT Subroutine

Purpose

Renders multiple primitives from array data.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMultiDrawArraysEXT(GLenum mode,

 GLint *first,

 GLsizei *count,

 GLsizei primcount)

230 OpenGL 1.2 Reference Manual

Description

The glMultiDrawArraysEXT subroutine lets you specify multiple geometric primitives with very few

subroutine calls. Instead of calling a GL procedure to pass each individual vertex, normal, texture

coordinate, edge flag, or color, you can prespecify separate arrays of vertexes, normals, and colors and

use them to construct a sequence of primitives with a single call to glMultiDrawArraysEXT.

When glMultiDrawArraysEXT is called, it uses count sequential elements from each enabled array to

construct a sequence of geometric primitives, beginning with element first. The mode parameter specifies

what kind of primitives are constructed, and how the array elements construct these primitives. If

GL_VERTEX_ARRAY is not enabled, no geometric primitives are generated.

Vertex attributes that are modified by glMultiDrawArraysEXT have an unspecified value after

glMultiDrawArraysEXT returns. For example, if GL_COLOR_ARRAY is enabled, the value of the current

color is undefined after glMultiDrawArraysEXT executes. Attributes that are not modified remain well

defined.

Behaves identically to DrawArrays except that a list of arrays is specified instead. The number of lists is

specified in the primcount parameter. It has the same effect as:

 for(i=0; i<primcount; i++) {

 if (*(count+i)>0) DrawArrays(mode, *(first+i), *(count+i));

 }

Parameters

 mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,

GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,

GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

first Points to an array of the starting indeces in the enabled arrays.

count Points to an array of the number of indices to be rendered.

primcount Specifies the size of first and count.

Notes

The glMultiDrawArraysEXT subroutine is included in display lists. If glMultiDrawArraysEXT is entered

into a display list, the necessary array data (determined by the array pointers and enables) is also entered

into the display list. Because the array pointers and enables are client side state, their values affect display

lists when the lists are created, not when the lists are executed.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if glMultiDrawArraysEXT is executed between the execution of

glBegin and the corresponding glEnd.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glMultiDrawElementsEXT subroutine,

glEdgeFlagPointer subroutine, glGetPointerv subroutine, glIndexPointer subroutine, glNormalPointer

subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

Chapter 1. OpenGL Subroutines 231

glMultiDrawElementsEXT Subroutine

Purpose

Renders multiple primitives from array data.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMultiDrawElementsEXT(GLenum mode,

 GLsizei *count,

 GLenum type,

 const GLvoid **indices,

 GLsizei primcount)

Description

The glMultiDrawElementsEXT subroutine lets you specify multiple geometric primitives with very few

subroutine calls. Instead of calling a GL function to pass each individual vertex, normal, texture coordinate,

edge flag, or color, you can prespecify separate arrays of vertexes, normals, and so on and use them to

construct a sequence of primitives with a single call to glMultiDrawElementsEXT.

When glMultiDrawElementsEXT is called, it uses count sequential elements from indices to construct a

sequence of geometric primitives. GLenum mode specifies what kind of primitives are constructed and

how the array elements construct these primitives. If GL_VERTEX_ARRAY is not enabled, no geometric

primitives are generated.

Vertex attributes that are modified by glMultiDrawElementsEXT have an unspecified value after

glMultiDrawElementsEXT returns. For example, if GL_COLOR_ARRAY is enabled, the value of the

current color is undefined after glMultiDrawElementsEXT executes. Attributes that are not modified

remain well defined.

Parameters

 mode Specifies what kind of primitives to render. Symbolic constants GL_POINTS, GL_LINE_STRIP,

GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,

GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

count Points to an array of the element counts.

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,

GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the location where the indices are stored.

primcount Specifies the size of the count array.

Notes

The glMultiDrawElementsEXT subroutine is included in display lists. If glMultiDrawElementsEXT is

entered into a display list, the necessary array data (determined by the array pointers and enables) is also

entered into the display list. Because the array pointers and enables are client side state, their values

affect display lists when the lists are created, not when the lists are executed.

glMultiDrawElementsEXT is part of the _extname(EXT_multi_draw_arrays) extension, not part of the core

GL command set. If _extstring(EXT_multi_draw_arrays) is included in the string returned by glGetString,

when called with argument GL_EXTENSIONS, extension _extname(EXT_multi_draw_arrays) is supported.

232 OpenGL 1.2 Reference Manual

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_VALUE is generated if count is negative.

GL_INVALID_OPERATION is generated if glMultiDrawElementsEXT is executed between the execution

of glBegin and the corresponding glEnd.

Associated Gets

glGetTexImage, glIsEnabled with argument GL_TEXTURE_1D.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glMultiDrawArraysEXT subroutine,

glEdgeFlagPointer subroutine, glGetPointerv subroutine, glIndexPointer subroutine, glNormalPointer

subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glMultiModeDrawArraysIBM Subroutine

Purpose

Renders primitives of multiple primitive types from array data.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMultiModeDrawArraysIBM(GLenum * mode,

 GLint * first,

 GLsizei * count,

 GLsizei primcount,

 GLint modestride)

Description

The glMultiModeDrawArraysIBM subroutine behaves identically to glDrawArrays except that a list of

arrays and a list of primitive modes is specified instead. The number of lists is specified in the primcount

parameter. It has the same effect as:

 for(i=0; i < primcount; i++) {

 if (*(count+i) > 0)

 glDrawArrays(*((GLenum *)((char *)mode+i*modestride)),

 *(first+i),

 *(count+i));

 }

Parameters

 mode Points to an array of primitive modes. Symbolic constants GL_POINTS, GL_LINE_STRIP,

GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES,

GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON are accepted.

first Points to an array of the starting indices in the enabled arrays.

count Points to an array of the number of indices to be rendered for each primitive.

primcount Specifies the word size of the mode, first and count arrays.

modestride Specifies how to stride through the mode array. Typical values are 0 (single primitive mode for all

primitives) and sizeof(GLenum) (separate primitive mode for each primitive).

Chapter 1. OpenGL Subroutines 233

Notes

The glMultiModeDrawArraysIBM subroutine is available only if the IBM_multi_mode_draw_arrays

extension is supported.

The glMultiModeDrawArraysIBM subroutine is included in display lists. If glMultiModeDrawArraysIBM is

entered into a display list, the necessary array data (determined by the array pointers and enables) is also

entered into the display list. Because the array pointers and enables are client side state, their values

affect display lists when the lists are created, not when the lists are executed.

Error Codes

v GL_INVALID_ENUM is generated if any of the primitive modes in the mode array is not an accepted

value.

v GL_INVALID_OPERATION is generated if glMultiModeDrawArraysIBM is executed between the

execution of glBegin and the corresponding glEnd.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glColorPointerListIBM subroutine,

glDrawElements subroutine, glEdgeFlagPointer subroutine, glEdgeFlagPointerListIBM subroutine,

glGetPointerv subroutine, glIndexPointer subroutine, glIndexPointerListIBM subroutine,

glInterleavedArrays subroutine, glMultiModeDrawElementsIBM subroutine, glNormalPointer

subroutine, glNormalPointerListIBM subroutine, glTexCoordPointer subroutine,

glTexCoordPointerListIBM subroutine, glVertexPointer subroutine, glVertexPointerListIBM subroutine.

glMultiModeDrawElementsIBM Subroutine

Purpose

Renders primitives of multiple primitive types from array data.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMultiModeDrawElementsIBM(GLenum *mode,

 GLsizei *count,

 GLenum type,

 const GLvoid **indices,

 GLsizei primcount,

 GLint modestride)

Description

glMultiModeDrawElementsIBM behaves identically to glDrawElements except that a list of arrays and a

list of primitive modes is specified instead. The number of lists is specified in the primcount parameter. It

has the same effect as:

 for(i=0; i < primcount; i++) {

 if (*(count+i) > 0)

 glDrawElements(*((GLenum *)((char *)mode+i*modestride)),

 *(count+i),

 type,

 *(indices+i));

 }

234 OpenGL 1.2 Reference Manual

Parameters

 mode Points to an array of primitive modes, Specifying what kind of primitives to render. Symbolic

constants GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP,

GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON

are accepted.

count Points to an array of the element counts. Each count specifies the number of elements to be

rendered for that primitive.

type Specifies the type of the values in indices. Must be one of GL_UNSIGNED_BYTE,

GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.

indices Specifies a pointer to the list of index arrays.

primcount Specifies the number of elements to be read from the mode array and from the count array (and

how many arrays there are in the indices list). Each such (mode,count,indices[]) triple tells us

how many vertices of the indicated mode are to be rendered, and the location of their array of

indices.

modestride Specifies how to stride through the mode array. Typical values are 0 (single primitive mode for all

primitives)and sizeof(GLenum) (separate primitive mode for each primitive)

Notes

The glMultiModeDrawElementsIBM subroutine is available only if the IBM_multimode_draw_arrays

extension is supported.

The glMultiModeDrawElementsIBM subroutine is included in display lists. If

glMultiModeDrawElementsIBM is entered into a display list, the necessary array data (determined by the

array pointers and enables) is also entered into the display list. Because the array pointers and enables

are client side state, their values affect display lists when the lists are created, not when the lists are

executed.

Errors

GL_INVALID_ENUM is generated if mode is not an accepted value.

GL_INVALID_OPERATION is generated if glMultiModeDrawElementsIBM is executed between the

execution of glBegin and the corresponding glEnd.

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glColorPointerListIBM subroutine,

glDrawArrays subroutine, glEdgeFlagPointer subroutine, glEdgeFlagPointerListIBM subroutine,

glGetPointerv subroutine, glIndexPointer subroutine, glIndexPointerListIBM subroutine,

glMultiModeDrawArraysIBM subroutine, glNormalPointer subroutine, glNormalPointerListIBM

subroutine, glTexCoordPointer subroutine, glTexCoordPointerListIBM subroutine, glVertexPointer

subroutine, glVertexPointerListIBM subroutine.

glMultiTexCoordARB Subroutine

Purpose

Sets the current texture coordinates.

Library

OpenGL C bindings library: (libGL.a)

Chapter 1. OpenGL Subroutines 235

C Syntax

void glMultiTexCoord1dARB(GLenum target,

 GLdouble s)

void glMultiTexCoord1fARB(GLenum target,

 GLfloat s)

void glMultiTexCoord1iARB(GLenum target,

 GLint s)

void glMultiTexCoord1sARB(GLenum target,

 GLshort s)

void glMultiTexCoord2dARB(GLenum target,

 GLdouble s,

 GLdouble t)

void glMultiTexCoord2fARB(GLenum target,

 GLfloat s,

 GLfloat t)

void glMultiTexCoord2iARB(GLenum target,

 GLint s,

 GLint t)

void glMultiTexCoord2sARB(GLenum target,

 GLshort s,

 GLshort t)

void glMultiTexCoord3dARB(GLenum target,

 GLdouble s,

 GLdouble t,

 GLdouble r)

void glMultiTexCoord3fARB(GLenum target,

 GLfloat s,

 GLfloat t,

 GLfloat r)

void glMultiTexCoord3iARB(GLenum target,

 GLint s,

 GLint t,

 GLint r)

void glMultiTexCoord3sARB(GLenum target,

 GLshort s,

 GLshort t,

 GLshort r)

void glMultiTexCoord4dARB(GLenum target,

 GLdouble s,

 GLdouble t,

 GLdouble r,

 GLdouble q)

void glMultiTexCoord4fARB(GLenum target,

 GLfloat s,

 GLfloat t,

 GLfloat r,

 GLfloat q)

void glMultiTexCoord4iARB(GLenum target,

 GLint s,

 GLint t,

 GLint r,

 GLint q)

void glMultiTexCoord4sARB(GLenum target,

 GLshort s,

 GLshort t,

236 OpenGL 1.2 Reference Manual

GLshort r,

 GLshort q)

void glMultiTexCoord1dvARB(GLenum target,

 GLdouble *v)

void glMultiTexCoord1fvARB(GLenum target,

 GLfloat *v)

void glMultiTexCoord1ivARB(GLenum target,

 GLint *v)

void glMultiTexCoord1svARB(GLenum target,

 GLshort *v)

void glMultiTexCoord2dvARB(GLenum target,

 GLdouble *v)

void glMultiTexCoord2fvARB(GLenum target,

 GLfloat *v)

void glMultiTexCoord2ivARB(GLenum target,

 GLint *v)

void glMultiTexCoord2svARB(GLenum target,

 GLshort *v)

void glMultiTexCoord3dvARB(GLenum target,

 GLdouble *v)

void glMultiTexCoord3fvARB(GLenum target,

 GLfloat *v)

void glMultiTexCoord3ivARB(GLenum target,

 GLint *v)

void glMultiTexCoord3svARB(GLenum target,

 GLshort *v)

void glMultiTexCoord4dvARB(GLenum target,

 GLdouble *v)

void glMultiTexCoord4fvARB(GLenum target,

 GLfloat *v)

void glMultiTexCoord4ivARB(GLenum target,

 GLint *v)

void glMultiTexCoord4svARB(GLenum target,

 GLshort *v)

Description

glMultiTexCoordARB specifies texture coordinates in one, two, three or four dimensions. If t is not

specified it is taken to be 0. If r is not specified it is taken to be 0. If q is not specified, it is taken to be 1.

The current texture coordinates are part of the data that is associated with each vertex and with the

current raster position. Initially, the values for s, t, r and q are (0, 0, 0, 1).

Parameters

 target specifies texture unit whose coordinates should be

modified. The number of texture units is implementation

dependent, but must be at least two. Must be one of

GL_TEXTUREi_ARB, where 0 <= i < the

implementation-dependent value of

GL_MAX_TEXTURE_UNITS_ARB.

s, t, r, q specifies the s, t, r, and q texture coordinates for target

texture unit. Not all parameters are present in all forms of

the command.

v specifies a pointer to an array of one, two, three or four

elements, which in turn specify the s, t, r, and q texture

coordinates.

Chapter 1. OpenGL Subroutines 237

Notes

glMultiTexCoordARB is only supported if GL_ARB_multitexture is included in the string returned by

glGetString when called with the argument GL_EXTENSIONS.

The current texture coordinates can be updated at any time. In particular, glMultiTexCoordARB can be

called between a call to glBegin and the corresponding call to glEnd.

It is always the case that GL_TEXTUREi_ARB = GL_TEXTURE0_ARB + i.

Associated Gets

Associated gets for the glMultiTexCoordARB subroutine are as follows. (See the glGet subroutine for

more information.)

glGet GL_CURRENT_TEXTURE_COORDS with appropriate texture unit selected.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glActiveTextureARB subroutine, the glClientActiveTextureARB subroutine, the glTexCoord

subroutine, the glTexCoordPointer subroutine.

glMultMatrix Subroutine

Purpose

Multiplies the current matrix by an arbitrary matrix.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glMultMatrixd(const GLdouble *Matrix)

void glMultMatrixf(const GLfloat *Matrix)

Description

The glMultMatrix subroutine multiplies the current matrix with the one specified in the Matrix parameter.

For example, if M is the current matrix and T is the matrix passed to glMultMatrix, M is replaced with MT.

The current matrix is the projection matrix, model view matrix, or texture matrix, determined by the current

matrix mode. (See the glMatrixMode subroutine for information on specifying the current matrix.)

The Matrix parameter points to a 4 x 4 matrix of single- or double-precision floating-point values stored in

column-major order. That is, the matrix is stored as in the following figure:

238 OpenGL 1.2 Reference Manual

Parameters

 Matrix Specifies a pointer to 4 x 4 matrix stored in column-major order as 16 consecutive values.

Errors

 GL_INVALID_OPERATION The glMultMatrix subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glMultMatrix subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MATRIX_MODE.

glGet with argument GL_MODELVIEW_MATRIX.

glGet with argument GL_PROJECTION_MATRIX.

glGet with argument GL_TEXTURE_MATRIX.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glLoadIdentity subroutine, glLoadMatrix subroutine, glMatrixMode

subroutine, glPushMatrix subroutine, glMultTransposeMatrixARB subroutine.

glMultTransposeMatrixARB Subroutine

Purpose

Multiplies the current matrix by a matrix specified in row-major order, rather than column-major order.

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

Figure 15. Stored Matrix. This diagram shows a matrix enclosed in brackets. The matrix consists of four lines

containing four characters each. The first line contains the following (from left to right): a subscript zero, a subscript

four, a subscript eight, a subscript twelve. The second line contains the following (from left to right): a subscript one, a

subscript five, a subscript nine, a subscript thirteen. The third line contains the following (from left to right): a subscript

two, a subscript six, a subscript ten, a subscript fourteen. The fourth line contains the following (from left to right): a

subscript three, a subscript seven, a subscript eleven, a subscript fifteen.

Chapter 1. OpenGL Subroutines 239

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glMultTransposeMatrixfARB(const GLfloat *Matrix)

void glMultTransposeMatrixdARB(const GLdouble *Matrix)

Description

The glMultTransposeMatrixARB subroutine replaces the current matrix with the product of the current

matrix and the one specified in the Matrix parameter. The current matrix is the projection matrix, model

view matrix, or texture matrix, determined by the current matrix mode. (See the glMatrixMode subroutine

for information on specifiying the current matrix.) The Matrix parameter points to a 4 x 4 matrix of single-

or double-precision floating-point values stored in row-major order. That is, the matrix is stored as the

following:

/ a0 a1 a2 a3 \

| a4 a5 a6 a7 |

| a8 a9 a10 a11 |

\ a12 a13 a14 a15 /

The effect on an input vertex is as if it is first multiplied by the matrix specified in this call, and then

subsequently multiplied by the previous ″current″ matrix.

Parameters

 Matrix is an array of 16 values, specified in row-major order.

Error Codes

 GL_INVALID_OPERATION is generated if glMultTransposeMatrixARB is executed

between the execution of glBegin and the corresponding

execution of glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glMultMatrix subroutine, the glMatrixMode subroutine.

glNewList or glEndList Subroutine

Purpose

Creates or replaces a display list.

Library

OpenGL C bindings library: libGL.a

240 OpenGL 1.2 Reference Manual

C Syntax

void glNewList(GLuint List,

 GLenum Mode)

Description

Display lists are groups of GL commands that have been stored for subsequent execution. The display

lists are created with the glNewList subroutine. All subsequent commands are placed in the display list, in

the order issued, until the glEndList subroutine is called.

The glNewList subroutine has two arguments. The first argument, List, is a positive integer that becomes

the unique name for the display list. Names can be created and reserved with the glGenLists subroutine

and tested for uniqueness with the glIsList subroutine. The second argument, Mode, is a symbolic

constant that can assume one of two values:

 GL_COMPILE Commands are compiled only.

GL_COMPILE_AND_EXECUTE Commands are performed as they are compiled into the display list.

The following subroutines are not compiled into the display list, but are performed immediately, regardless

of the display-list mode:

v glIsList

v glGenLists

v glDeleteLists

v glFeedbackBuffer

v glSelectBuffer

v glRenderMode

v glReadPixels

v glPixelStore

v glFlush

v glFinish

v glIsEnabled

v All glGet subroutines

When glEndList is encountered, the display-list definition is completed by associating the list with the

unique name List (specified in glNewList). If a display list with the name List already exists, it is replaced

only when glEndList is called.

Parameters

 List Specifies the display list name.

Mode Specifies the compilation mode, which can be GL_COMPILE or GL_COMPILE_AND_EXECUTE.

Notes

The glCallList and glCallLists subroutines can be entered into display lists. The commands in the display

list or lists run by glCallList or glCallLists are not included in the display list being created, even if the list

creation mode is GL_COMPILE_AND_EXECUTE.

Error Codes

 GL_INVALID_VALUE List is 0 (zero).

GL_INVALID_ENUM Mode is not an accepted value.

Chapter 1. OpenGL Subroutines 241

GL_INVALID_OPERATION The glEndList subroutine is called without a preceding glNewList.

OR

The glNewList subroutine is called while a display list is being defined.

GL_INVALID_OPERATION The glNewList subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glNewList and glEndList subroutines are as follows. (See the glGet subroutine

for more information.)

glIsList.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCallList subroutine, glCallLists subroutine, glDeleteLists subroutine,

glGenLists subroutine.

glNormal Subroutine

Purpose

Set the current normal vector; for use in lighting calculations.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glNormal3b(

 GLbyte nx,

 GLbyte ny,

 GLbyte nz)

void glNormal3d(

 GLdouble nx,

 GLdouble ny,

 GLdouble nz)

void glNormal3f(

 GLfloat nx,

 GLfloat ny,

 GLfloat nz)

void glNormal3i(

 GLint nx,

 GLint ny,

 GLint nz)

void glNormal3s(

 GLshort nx,

 GLshort ny,

 GLshort nz)

242 OpenGL 1.2 Reference Manual

void glNormal3bv(

 const GLbyte *v)

void glNormal3dv(

 const GLdouble *v)

void glNormal3fv(

 const GLfloat *v)

void glNormal3iv(

 const GLint *v)

void glNormal3sv(

 const GLshort *v)

Description

The current normal is set to the given coordinates whenever glNormal is issued. Byte, short, or integer

arguments are converted to floating-point format with a linear mapping that maps the most positive

representable integer value to 1.0, and the most negative representable integer value to - 1.0.

Normals specified with glNormal need not have unit length. If normalization is enabled, then normals

specified with glNormal are normalized after transformation. To enable and disable normalization, call

glEnable and glDisable with the argument GL_NORMALIZE. Normalization is initially disabled.

Parameters

 nx, ny, nz Specify the x, y, and z coordinates of the new current

normal. The initial value of the current normal is the unit

vector, (0, 0, 1).

v Specifies a pointer to an array of three elements: the x, y,

and z coordinates of the new current normal.

Notes

The current normal can be updated at any time. In particular, glNormal can be called between a call to

glBegin and the corresponding call to glEnd.

Associated Gets

glGet with argument GL_CURRENT_NORMAL

glIsEnabled with argument GL_NORMALIZE

Related Information

The glBegin subroutine, glColor subroutine, glIndex subroutine, glNormalPointer subroutine,

glTexCoord subroutine, and the glVertex subroutine.

glNormalPointer Subroutine

Purpose

Defines an array of normals.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 243

C Syntax

void glNormalPointer(GLenum type,

 GLsizei stride,

 const GLvoid * pointer)

Description

The glNormalPointer subroutine specifies the location and data format of an array of normals to use

when rendering. The type parameter specifies the data type of the normal coordinates and stride gives the

byte stride from one normal to the next allowing vertices and attributes to be packed into a single array or

stored in separate arrays. (Single array storage may be more efficient on some implementations; see

glInterleavedArrays). When a normal array is specified, type, stride, and pointer are saved as client side

state.

To enable and disable the normal array, call glEnableClientState and glDisableClientState with the

argument GL_NORMAL_ARRAY. If enabled, the normal array is used when glDrawArrays,

glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Normal array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 type Specifies the the data type of each coordinate in the array. Symbolic constants GL_BYTE,

GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive normals. The initial value is 0.

pointer Specifies a pointer to the first coordinate of the first normal in the array. The initial value is 0 (NULL

pointer).

Notes

The glNormalPointer subroutine is available only if the GL version is 1.1 or greater.

The normal array is initially disabled and it won’t be accessed when glArrayElement, glDrawElements or

glDrawArrays is called.

Execution of glNormalPointer is not allowed between glBegin and the corresponding glEnd, but an error

may or may not be generated. If an error is not generated, the operation is undefined.

The glNormalPointer subroutine is typically implemented on the client side with no protocol.

Since the normal array parameters are client side state, they are not saved or restored by glPushAttrib

and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glNormalPointer subroutine is not included in display lists.

244 OpenGL 1.2 Reference Manual

Errors

v GL_INVALID_ENUM is generated if type is not an accepted value.

v GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

v glIsEnabled with argument GL_NORMAL_ARRAY

v glGet with argument GL_NORMAL_ARRAY_TYPE

v glGet with argument GL_NORMAL_ARRAY_STRIDE

v glGetPointerv with argument GL_NORMAL_ARRAY_POINTER

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glDrawArrays subroutine, glDrawElements

subroutine, glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv subroutine,

glIndexPointer subroutine, glNormalPointerListIBM subroutine, glPopClientAttrib subroutine,

glPushClientAttrib subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glNormalPointerEXT Subroutine

Purpose

Defines an array of normals.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glNormalPointerEXT(GLenum type,

 GLsizei stride,

 GLsizei count,

 const GLvoid *pointer)

Description

glNormalPointerEXT specifies the location and data format of an array of normals to use when rendering.

type specifies the data type of the normal coordinates and stride gives the byte stride from one normal to

the next allowing vertexes and attributes to be packed into a single array or stored in separate arrays.

(Single-array storage may be more efficient on some implementations.) count indicates the number of

array elements (counting from the first) that are static. Static elements may be modified by the application,

but once they are modified, the application must explicitly respecify the array before using it for any

rendering. When a normal array is specified, type, stride, count and pointer are saved as client-side state,

and static array elements may be cached by the implementation.

The normal array is enabled and disabled using glEnable and glDisable with the argument

GL_NORMAL_ARRAY_EXT. If enabled, the normal array is used when glDrawArraysEXT or

glArrayElementEXT is called.

Use glDrawArraysEXT to define a sequence of primitives (all of the same type) from pre-specified vertex

and vertex attribute arrays. Use glArrayElementEXT to specify primitives by indexing vertexes and vertex

attributes.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

Chapter 1. OpenGL Subroutines 245

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Normal array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 type Specifies the the data type of each coordinate in the array. Symbolic constants GL_BYTE,

GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE_EXT are accepted.

stride Specifies the byte offset between consecutive normals.

count Specifies the number of normals, counting from the first, that are static.

pointer Specifies a pointer to the first coordinate of the first normal in the array.

Notes

Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the normal array is disabled and it won’t be accessed when glArrayElementEXT or

glDrawArraysEXT is called.

Although, it is not an error to call glNormalPointerEXT between the execution of glBegin and the

corresponding execution of glEnd, the results are undefined.

glNormalPointerEXT will typically be implemented on the client side with no protocol.

Since the normal array parameters are client side state, they are not saved or restored by glPushAttrib

and glPopAttrib.

glNormalPointerEXT commands are not entered into display lists.

glNormalPointerEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL

command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when

called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Errors

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride or count is negative.

Associated Gets

glIsEnabled with argument GL_NORMAL_ARRAY_EXT .

glGet with argument GL_NORMAL_ARRAY_TYPE_EXT.

glGet with argument GL_NORMAL_ARRAY_STRIDE_EXT.

glGet with argument GL_NORMAL_ARRAY_COUNT_EXT.

glGetPointervEXT with argument GL_NORMAL_ARRAY_POINTER_EXT.

246 OpenGL 1.2 Reference Manual

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElementEXT subroutine, glColorPointerEXT subroutine, glDrawArraysEXT subroutine,

glEdgeFlagPointerEXT subroutine, glGetPointervEXT subroutine, glIndexPointerEXT subroutine,

glTexCoordPointerEXT subroutine, glVertexPointerEXT subroutine.

glNormalPointerListIBM Subroutine

Purpose

Defines a list of normal arrays.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glNormalPointerListIBM(GLenum type,

 GLint stride,

 const GLvoid ** pointer,

 GLint ptrstride)

Description

The glNormalPointerListIBM subroutine specifies the location and data format of a list of arrays of

normal components to use when rendering. The type parameter specifies the data type of each normal

component. The stride parameter gives the byte stride from one normal to the next allowing vertices and

attributes to be packed into a single array or stored in separate arrays. (Single-array storage may be more

efficient on some implementations; see glInterleavedArrays). The ptrstride parameter specifies the byte

stride from one pointer to the next in the pointer array.

When a normal array is specified, type, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a ″tightly packed″ array as it does in glNormalPointer. Instead, it

causes the first array element of each array to be used for each vertex. Also, a negative value can be

used for stride, which allows the user to move through each array in reverse order.

To enable and disable the normal arrays, call glEnableClientState and glDisableClientState with the

argument GL_NORMAL_ARRAY. The normal array is initially disabled. When enabled, the normal arrays

are used when glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or glArrayElement is called. The last

three calls in this list will only use the first array (the one pointed at by pointer[0]). See the descriptions of

these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

Chapter 1. OpenGL Subroutines 247

If enabled, the Normal array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 type Specifies the data type of each normal component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,

GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive normal. The initial value is 0.

pointer Specifies a list of normal arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.

Notes

The glNormalPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is

supported.

Execution of glNormalPointerListIBM is not allowed between glBegin and the corresponding glEnd, but

an error may or may not be generated. If an error is not generated, the operation is undefined.

The glNormalPointerListIBM subroutine is typically implemented on the client side.

Since the normal array parameters are client side state, they are not saved or restored by glPushAttrib

and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glNormalPointerListIBM call is encountered while compiling a display list, the information it

contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glNormalPointer call and the glNormalPointerListIBM call share the same state variables. A

glNormalPointer call will reset the normal list state to indicate that there is only one normal list, so that

any and all lists specified by a previous glNormalPointerListIBM call will be lost, not just the first list that

it specified.

Error Codes

GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets

glIsEnabled with argument GL_NORMAL_ARRAY

glGetPointerv with argument GL_NORMAL_ARRAY_LIST_IBM

glGet with argument GL_NORMAL_ARRAY_LIST_STRIDE_IBM

glGet with argument GL_NORMAL_ARRAY_STRIDE

glGet with argument GL_NORMAL_ARRAY_TYPE

Related Information

The glArrayElement subroutine, glDrawArrays subroutine, glDrawElements subroutine,

glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv subroutine, glIndexPointer

subroutine, glInterleavedArrays subroutine, glMultiDrawArraysEXT subroutine,

glMultiDrawElementsEXT subroutine, glMultiModeDrawArraysIBM subroutine,

248 OpenGL 1.2 Reference Manual

glMultiModeDrawElementsIBM subroutine, glNormalPointer subroutine, glPopClientAttrib subroutine,

glPushClientAttrib subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glNormalVertexSUN Subroutine

Purpose

Specifies a normal and a vertex in one call.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glNormal3fVertex3fSUN (GLfloat nx,

 GLfloat ny,

 GLfloat nz,

 GLfloat x,

 GLfloat y,

 GLfloat z)

void glNormal3fVertex3fvSUN (const GLfloat *n,

 const GLfloat *v)

Description

This subroutine can be used as a replacement for the following calls:

 glNormal();

 glVertex();

For example, glNormal3fVertex3fvSUN replaces the following calls:

 glNormal3f();

 glVertex3fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

 x, y, z Specifies the x, y, and z coordinates of a vertex. Not all

parameters are present in all forms of the command.

v Specifies a pointer to an array of the three elements x, y,

and z.

nx, ny, nz Specify x, y, and z coordinates of the normal vector for

this vertex.

n Specifies a pointer to an array of the three elements nx,

ny and nz.

Notes

Calling glNormalVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Chapter 1. OpenGL Subroutines 249

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, the glColor subroutine, the glNormal subroutine, the glTexCoord

subroutine, the glVertex subroutine.

glOrtho Subroutine

Purpose

Multiplies the current matrix by an orthographic matrix.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glOrtho(GLdouble Left,

 GLdouble Right,

 GLdouble Bottom,

 GLdouble Top,

 GLdouble Near,

 GLdouble Far)

Description

The glOrtho subroutine describes a perspective matrix that produces a parallel projection. (Left, Bottom,

-Near) and (Right, Top, -Near) specify the points on the near clipping plane that are mapped to the lower

left and upper right corners of the window, respectively, assuming that the eye is located at (0, 0, 0). -Far

specifies the location of the far clipping plane. Both Near and Far can be either positive or negative. The

corresponding matrix is as follows:

 where the following statements apply:

2

Right–Left

0

0

0

0

2

Top–Bottom

0

0

0

0

–2

Far–Near

0

tx

ty

tz

1

Figure 16. Parallel Projection Perspective Matrix. This diagram shows a matrix enclosed in brackets. The matrix

consists of four lines containing four characters each. The first line contains the following (from left to right): 2 /

Right-Left, zero, zero, t subscript x. The second line contains the following (from left to right): zero, 2 / Top-Bottom,

zero, t subscript y. The third line contains the following (from left to right): zero, zero, -2 / Far-Near, t subscript z. The

fourth line contains the following (from left to right): zero, zero, zero, one.

250 OpenGL 1.2 Reference Manual

The current matrix is multiplied by this matrix with the result replacing the current matrix. That is, if M is

the current matrix and O is the ortho matrix, M is replaced with MO.

Use the glPushMatrix and glPopMatrix subroutines to save and restore the current matrix stack.

Parameters

 Left, Right Specify the coordinates for the left and right vertical clipping planes.

Bottom, Top Specify the coordinates for the bottom and top horizontal clipping planes.

Near, Far Specify the distances to the nearer and farther depth clipping planes. These distances are

negative if the plane is to be behind the viewer.

Errors

 GL_INVALID_OPERATION The glOrtho subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glOrtho subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX

glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glFrustum subroutine, glMatrixMode subroutine, glMultMatrix

subroutine, glPushMatrix subroutine, glViewport subroutine.

Right+Left

Right–Left
tx = –

Top+Bottom

Top–Bottom
ty = –

Far+Near

Far–Near
tz = –

Figure 17. Statements. This figure shows three equations. The first equation shows that t subscript x (from the above

matrix) is equal to negative Right+Left / Right–Left. The second equation shows that t subscript y (from the above

matrix) is equal to negative Top+Bottom / Top–Bottom. The third equation shows that t subscript z (from the above

matrix) is equal to negative Far+Near / Far–Near.

Chapter 1. OpenGL Subroutines 251

glPassThrough Subroutine

Purpose

Places a marker in the feedback buffer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPassThrough(GLfloat Token)

Description

Feedback is a GL render mode. The mode is selected by calling the glRenderMode subroutine with

GL_FEEDBACK. When the GL is in feedback mode, no pixels are produced by rasterization. Instead,

information about primitives that would have been rasterized is fed back to the application using the GL.

See the glFeedbackBuffer subroutine for a description of the feedback buffer and the values in the

feedback buffer.

The glPassThrough subroutine inserts a user-defined marker in the feedback buffer when it is executed

in feedback mode. The Token parameter is returned as if it were a primitive; it is indicated with its own

unique identifying value: GL_PASS_THROUGH_TOKEN. The order of glPassThrough commands with

respect to the specification of graphics primitives is maintained.

Parameters

 Token Specifies a marker value to be placed in the feedback buffer following a GL_PASS_THROUGH_TOKEN

value.

Notes

The glPassThrough subroutine is ignored if the GL is not in feedback mode.

Errors

 GL_INVALID_OPERATION The glPassThrough subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPassThrough subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_RENDER_MODE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glFeedbackBuffer subroutine, glRenderMode subroutine.

252 OpenGL 1.2 Reference Manual

glPixelMap Subroutine

Purpose

Sets up pixel transfer maps.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPixelMapfv(GLenum Map,

 GLint MapSize,

 const GLfloat * Values)

void glPixelMapuiv(GLenum Map,

 GLint MapSize,

 const GLuint * Values)

void glPixelMapusv(GLenum Map,

 GLint MapSize,

 const GLushort * Values)

Description

The glPixelMap subroutine sets up translation tables, or maps, used by the glDrawPixels, glReadPixels,

glCopyPixels, glTexImage1D, and glTexImage2D subroutines. See the glPixelTransfer subroutine for a

complete description on using these maps. Use of these maps is also described in part in the pixel and

texture image subroutines. Only the specification of the maps is described here.

The Map parameter is a symbolic map name, indicating one of 10 maps to set. The MapSize parameter

specifies the number of entries in the map, and the Values parameter is a pointer to an array of MapSize

map values.

The 10 maps are:

 GL_PIXEL_MAP_I_TO_I Maps color indexes to color indexes.

GL_PIXEL_MAP_S_TO_S Maps stencil indexes to stencil indexes.

GL_PIXEL_MAP_I_TO_R Maps color indexes to red components.

GL_PIXEL_MAP_I_TO_G Maps color indexes to green components.

GL_PIXEL_MAP_I_TO_B Maps color indexes to blue components.

GL_PIXEL_MAP_I_TO_A Maps color indexes to alpha components.

GL_PIXEL_MAP_R_TO_R Maps red components to red components.

GL_PIXEL_MAP_G_TO_G Maps green components to green components.

GL_PIXEL_MAP_B_TO_B Maps blue components to blue components.

GL_PIXEL_MAP_A_TO_A Maps alpha components to alpha components.

The entries in a map can be specified as single precision floating-point numbers, unsigned short integers,

or unsigned long integers. Maps that store color component values (all but the GL_PIXEL_MAP_I_TO_I

and GL_PIXEL_MAP_S_TO_S maps) retain their values in floating-point format, with unspecified mantissa

and exponent sizes. Floating-point values specified by glPixelMapfv are converted directly to the internal

floating-point format of these maps, then clamped to the range [0,1]. Unsigned integer values specified by

glPixelMapusv and glPixelMapuiv are converted linearly such that the largest representable integer

maps to 1.0, and 0 (zero) maps to 0.0.

Chapter 1. OpenGL Subroutines 253

Maps that store indices, GL_PIXEL_MAP_I_TO_I and GL_PIXEL_MAP_S_TO_S, retain their values in

fixed-point format, with an unspecified number of bits to the right of the binary point. Floating-point values

specified by glPixelMapfv are converted directly to the internal fixed-point format of these maps. Unsigned

integer values specified by glPixelMapusv and glPixelMapuiv specify integer values, with all 0s to the

right of the binary point.

The following table shows the initial sizes and values for each of the maps. Maps that are indexed by

either color or stencil indexes must have MapSize = 2n for some n or results are undefined. The maximum

allowable size for each map depends on the implementation and can be determined by calling the glGet

subroutine with argument GL_MAX_PIXEL_MAP_TABLE. The single maximum applies to all maps, and it

is at least 32.

 Map Lookup Index Lookup Value Initial Size Initial Value

GL_PIXEL_MAP_I_TO_I color index color index 1 0.0

GL_PIXEL_MAP_S_TO_S stencil index stencil index 1 0

GL_PIXEL_MAP_I_TO_R color index R 1 0.0

GL_PIXEL_MAP_I_TO_G color index G 1 0.0

GL_PIXEL_MAP_I_TO_B color index B 1 0.0

GL_PIXEL_MAP_I_TO_A color index A 1 0.0

GL_PIXEL_MAP_R_TO_R R R 1 0.0

GL_PIXEL_MAP_G_TO_G G G 1 0.0

GL_PIXEL_MAP_B_TO_B B B 1 0.0

GL_PIXEL_MAP_A_TO_A A A 1 0.0

Parameters

 Map Specifies a symbolic map name. Map must be one of the following:

v GL_PIXEL_MAP_I_TO_I

v GL_PIXEL_MAP_S_TO_S

v GL_PIXEL_MAP_I_TO_R

v GL_PIXEL_MAP_I_TO_G

v GL_PIXEL_MAP_I_TO_B

v GL_PIXEL_MAP_I_TO_A

v GL_PIXEL_MAP_R_TO_R

v GL_PIXEL_MAP_G_TO_G

v GL_PIXEL_MAP_B_TO_B

v GL_PIXEL_MAP_A_TO_A

MapSize Specifies the size of the map being defined.

Values Specifies an array of MapSize values.

Errors

 GL_INVALID_ENUM Map is not an accepted value.

GL_INVALID_VALUE MapSize is negative or larger than GL_MAX_PIXEL_MAP_TABLE.

GL_INVALID_VALUE Map is GL_PIXEL_MAP_I_TO_I, GL_PIXEL_MAP_S_TO_S,

GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,

GL_PIXEL_MAP_I_TO_B, or GL_PIXEL_MAP_I_TO_A, and MapSize is not

a power of two.

254 OpenGL 1.2 Reference Manual

GL_INVALID_OPERATION The glPixelMap subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPixelMap subroutine are as follows. (See the glGet subroutine for more

information.)

glGetPixelMap

glGet with argument GL_PIXEL_MAP_I_TO_I_SIZE

glGet with argument GL_PIXEL_MAP_S_TO_S_SIZE

glGet with argument GL_PIXEL_MAP_I_TO_R_SIZE

glGet with argument GL_PIXEL_MAP_I_TO_G_SIZE

glGet with argument GL_PIXEL_MAP_I_TO_B_SIZE

glGet with argument GL_PIXEL_MAP_I_TO_A_SIZE

glGet with argument GL_PIXEL_MAP_R_TO_R_SIZE

glGet with argument GL_PIXEL_MAP_G_TO_G_SIZE

glGet with argument GL_PIXEL_MAP_B_TO_B_SIZE

glGet with argument GL_PIXEL_MAP_A_TO_A_SIZE

glGet with argument GL_MAX_PIXEL_MAP_TABLE.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCopyPixels subroutine, glDrawPixels subroutine, glGetPixelMap

subroutine, glPixelStore subroutine, glPixelTransfer subroutine, glReadPixels subroutine, glTexImage1D

subroutine, glTexImage2D subroutine.

glPixelStore Subroutine

Purpose

Sets pixel storage modes.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 255

C Syntax

void glPixelStoref(GLenum pName,

 GLfloat Parameter)

void glPixelStorei(GLenum pName,

 GLint Parameter)

Description

The glPixelStore subroutine sets pixel storage modes that affect the operation of subsequent

glDrawPixels and glReadPixels subroutines as well as the unpacking of polygon stipple patterns (see the

glPolygonStipple subroutine), bitmaps (see the glBitmap subroutine), and texture patterns (see the

glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3DEXT subroutine, glTexSubImage1D

subroutine, glTexSubImage2D subroutine, and the glTexSubImage3DEXT subroutine).

The pName parameter is a symbolic constant indicating the parameter to be set, and the Parameter

parameter is the new value. The following parameters affect how pixel data is returned to client memory,

and are therefore significant only for glReadPixels commands. They are as follows:

 GL_PACK_SWAP_BYTES If True, byte ordering for multibyte color components, depth components,

color indexes, or stencil indexes is reversed. That is, if a 4-byte component is

made up of bytes b0, b1, b2, b3, it is stored in memory as b3, b2, b1, b0 if

GL_PACK_SWAP_BYTES is True. GL_PACK_SWAP_BYTES has no effect

on the memory order of components within a pixel, only on the order of bytes

within components or indexes. For example, the three components of a

GL_RGB format pixel are always stored with red first, green second, and blue

third, regardless of the value of GL_PACK_SWAP_BYTES.

GL_PACK_LSB_FIRST If True, bits are ordered within a byte from least significant to most significant;

otherwise, the first bit in each byte is the most significant one. This parameter

is significant for bitmap data only.

GL_PACK_ROW_LENGTH If greater than 0 (zero), GL_PACK_ROW_LENGTH defines the number of

pixels in a row. If the first pixel of a row is placed at location p in memory, the

location of the first pixel of the next row is obtained by skipping the result of

the equation in Figure 18.

Where n is the number of components or indexes in a pixel, l is the number

of pixels in a row (GL_PACK_ROW_LENGTH if it is greater than 0;

otherwise, the width argument to the pixel routine), a is the value of

GL_PACK_ALIGNMENT, and s is the size, in bytes, of a single component (if

a < s, it is as if a = s). In the case of 1-bit values, the location of the next row

is obtained by skipping the result of the equation in Figure 19 on page 257.

The word component in this description refers the nonindex values red, green,

blue, alpha, and depth. Storage format GL_RGB, for example, has three

components per pixel; first red, then green, and finally blue.

k =

nl

a

s

s>a

s<asnl

a

components
or indexes

Figure 18. GL_PACK_ROW_LENGTH Equation. This figure shows an equation where k is equal to the following two

lines preceded by a single curly brace: nl s greater than or equal to a. Below the first line is the second line as follows:

a / s [snl / a] s less than a components or indexes.

256 OpenGL 1.2 Reference Manual

GL_PACK_IMAGE_HEIGHT If greater than 0 (zero), GL_PACK_IMAGE_HEIGHT defines the number of

rows in a 3D image, otherwise the number of rows is defined to be the height

of the 3D image.

GL_PACK_SKIP_PIXELS,

GL_PACK_SKIP_ROWS, and

GL_PACK_SKIP_IMAGES

These values are provided as a convenience to the programmer; they provide

no functionality that cannot be duplicated simply by incrementing the pointer

passed to the glReadPixels subroutine. Setting GL_PACK_SKIP_PIXELS to

i is equivalent to incrementing the pointer by in components or indexes, where

n is the number of components or indexes in each pixel. Setting

GL_PACK_SKIP_ROWS to j is equivalent to incrementing the pointer by jk

components or indexes, where k is the number of components or indexes per

row, as computed in the GL_PACK_ROW_LENGTH section. Setting the

GL_PACK_SKIP_IMAGES to l is equivalent to incrementing the pointer by

lmk components or indexes, where m is the number of rows per image as

specified by GL_PACK_IMAGE_HEIGHT.

GL_PACK_ALIGNMENT Specifies the alignment requirements for the start of each pixel row in

memory. The allowable values are 1 (one) (byte alignment), 2 (rows aligned

to even-numbered bytes), 4 (word alignment), and 8 (rows start on

double-word boundaries).

The remaining parameters affect how pixel data is read from client memory. These values are significant

for the glDrawPixels, glTexImage1D, glTexImage2D, glBitmap, and glPolygonStipple subroutines.

They are as follows:

 GL_UNPACK_SWAP_BYTES If True, byte ordering for a multibyte color components, depth

components, color indexes, or stencil indexes is reversed. That is, if a

4-byte component is made up of bytes b0, b1, b2, b3, it is taken from

memory as b3, b2, b1, b0 if GL_UNPACK_SWAP_BYTES is True.

GL_UNPACK_SWAP_BYTES has no effect on the memory order of

components within a pixel, only on the order of bytes within

components or indexes. For example, the three components of a

GL_RGB format pixel are always stored with red first, green second,

and blue third, regardless of the value of

GL_UNPACK_SWAP_BYTES.

GL_UNPACK_LSB_FIRST If True, bits are ordered within a byte from least significant to most

significant; otherwise, the first bit in each byte is the most significant

one. This is significant for bitmap data only.

k = 8a
nl

8a
components
or indexes

Figure 19. GL_PACK_ROW_LENGTH 1–bit Values Equation. This figure shows an equation where k is equal to 8a[nl /

8a] components or indexes.

Chapter 1. OpenGL Subroutines 257

GL_UNPACK_ROW_LENGTH If greater than 0, GL_UNPACK_ROW_LENGTH defines the number

of pixels in a row. If the first pixel of a row is placed at location p in

memory, then the location of the first pixel of the next row is obtained

by skipping the result of the equation in Figure 20.

Where n is the number of components or indexes in a pixel, i is the

number of pixels in a row (GL_UNPACK_ROW_LENGTH if it is

greater than 0; otherwise, the width argument to the pixel routine), a

is the value of GL_UNPACK_ALIGNMENT, and s is the size, in

bytes, of a single component (if a < s, it is as if a = s). In the case of

1-bit values, the location of the next row is obtained by skipping the

result of the equation in Figure 21.

The word component in this description refers the nonindex values

red, green, blue, alpha, and depth. Storage format GL_RGB, for

example, has three components per pixel, first red, then green, and

finally blue.

GL_UNPACK_IMAGE_HEIGHT If greater than 0 (zero), GL_UNPACK_IMAGE_HEIGHT defines the

number of rows in a 3D image, otherwise the number of rows is

defined to be the height of the 3D image.

GL_UNPACK_SKIP_PIXELS,

GL_UNPACK_SKIP_ROWS, and

GL_UNPACK_SKIP_IMAGES

These values are provided as a convenience to the programmer; they

provide no functionality that cannot be duplicated simply by

incrementing the pointer passed to glDrawPixels, glTexImage1D,

glTexImage2D, glTexImage3DEXT, glBitmap, or glPolygonStipple.

Setting GL_UNPACK_SKIP_PIXELS to i is equivalent to incrementing

the pointer by in components or indexes, where n is the number of

components or indexes in each pixel. Setting

GL_UNPACK_SKIP_ROWS to j is equivalent to incrementing the

pointer by jk components or indexes, where k is the number of

components or indexes per row, as computed in the

GL_UNPACK_ROW_LENGTH section. Setting the

GL_UNPACK_SKIP_IMAGES to l is equivalent to incrementing the

pointer by lmk components or indexes, where m is the number of

rows per image as specified by GL_UNPACK_IMAGE_HEIGHT.

k =

nl

a

s

s>a

s<asnl

a

components
or indexes

Figure 20. GL_UNPACK_ROW_LENGTH Equation. This figure shows an equation where k is equal to the following

two lines preceded by a single curly brace: nl s greater than or equal to a. Below the first line is the second line as

follows: a / s [snl / a] s less than a components or indexes.

k = 8a
nl

8a
components
or indexes

Figure 21. GL_UNPACK_ROW_LENGTH 1–bit Values Equation. This figure shows an equation where k is equal to

8a[nl / 8a] components or indexes.

258 OpenGL 1.2 Reference Manual

GL_UNPACK_ALIGNMENT Specifies the alignment requirements for the start of each pixel row in

memory. The allowable values are 1 (byte alignment), 2 (rows aligned

to even-numbered bytes), 4 (word alignment), and 8 (rows start on

double-word boundaries).

The following table gives the type, initial value, and range of valid values for each of the storage

parameters that can be set with glPixelStore.

 pName Type Initial Value Valid Range

GL_PACK_SWAP_BYTES Boolean False True or False

GL_PACK_LSB_FIRST Boolean False True or False

GL_PACK_ROW_LENGTH integer 0 [0,+infinity)

GL_PACK_SKIP_ROWS integer 0 [0,+infinity)

GL_PACK_SKIP_PIXELS integer 0 [0,+infinity)

GL_PACK_ALIGNMENT integer 4 1, 2, 4, or 8

GL_PACK_IMAGE_HEIGTH integer 0 [0,+infinity)

GL_PACK_SKIP_IMAGES integer 0 [0,+infinity)

GL_UNPACK_SWAP_BYTES Boolean False True or False

GL_UNPACK_LSB_FIRST Boolean False True or False

GL_UNPACK_ROW_LENGTH integer 0 [0,+infinity)

GL_UNPACK_SKIP_ROWS integer 0 [0,+infinity)

GL_UNPACK_SKIP_PIXELS integer 0 [0,+infinity)

GL_UNPACK_ALIGNMENT integer 4 1, 2, 4, or 8

GL_UNPACK_IMAGE_HEIGTH integer 0 [0,+infinity)

GL_UNPACK_SKIP_IMAGES integer 0 [0,+infinity)

The glPixelStoref subroutine can be used to set any pixel store parameter. If the parameter type is

Boolean, and if Parameter is 0.0, the parameter is False; otherwise it is set to True. If pName is an integer

type parameter, Parameter is rounded to the nearest integer.

Likewise, glPixelStorei can also be used to set any of the pixel store parameters. Boolean parameters are

set to False if Parameter is 0 and True otherwise. Parameter is converted to floating-point format before

being assigned to real-valued parameters.

Chapter 1. OpenGL Subroutines 259

Parameters

 pName Specifies the symbolic name of the parameter to be set. The following values affect the packing of pixel

data into memory:

v GL_PACK_SWAP_BYTES

v GL_PACK_LSB_FIRST

v GL_PACK_ROW_LENGTH

v GL_PACK_SKIP_PIXELS

v GL_PACK_SKIP_ROWS

v GL_PACK_ALIGNMENT

v GL_PACK_IMAGE_HEIGHT

v GL_PACK_SKIP_IMAGES

The following values affect the unpacking of pixel data from memory:

v GL_UNPACK_SWAP_BYTES

v GL_UNPACK_LSB_FIRST

v GL_UNPACK_ROW_LENGTH

v GL_UNPACK_SKIP_PIXELS

v GL_UNPACK_SKIP_ROWS

v GL_UNPACK_ALIGNMENT

v GL_UNPACK_IMAGE_HEIGHT

v GL_UNPACK_SKIP_IMAGES

Notes

The pixel storage modes in effect when glDrawPixels, glReadPixels, glTexImage, glBitmap, or

glPolygonStipple is placed in a display list control the interpretation of memory data. The pixel storage

modes in effect when a display list is executed are not significant.

Errors

 GL_INVALID_ENUM pName is not an accepted value.

GL_INVALID_VALUE A negative row length, pixel skip, or row skip value is specified, or alignment is

specified as other than 1, 2, 4, or 8.

Associated Gets

Associated gets for the glPixelStore subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_PACK_SWAP_BYTES

glGet with argument GL_PACK_LSB_FIRST

glGet with argument GL_PACK_ROW_LENGTH

glGet with argument GL_PACK_SKIP_ROWS

glGet with argument GL_PACK_SKIP_PIXELS

glGet with argument GL_PACK_ALIGNMENT

glGet with argument GL_PACK_IMAGE_HEIGTH

260 OpenGL 1.2 Reference Manual

glGet with argument GL_PACK_SKIP_IMAGES

glGet with argument GL_UNPACK_SWAP_BYTES

glGet with argument GL_UNPACK_LSB_FIRST

glGet with argument GL_UNPACK_ROW_LENGTH

glGet with argument GL_UNPACK_SKIP_ROWS

glGet with argument GL_UNPACK_SKIP_PIXELS

glGet with argument GL_UNPACK_ALIGNMENT.

glGet with argument GL_UNPACK_IMAGE_HEIGTH

glGet with argument GL_UNPACK_SKIP_IMAGES

 GL_INVALID_OPERATION The glPixelStore subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glBitmap subroutine, glDrawPixels subroutine, glPixelMap subroutine,

glPixelTransfer subroutine, glPixelZoom subroutine, glPolygonStipple subroutine, glReadPixels

subroutine, glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3DEXT subroutine,

glTexSubImage1D subroutine, glTexSubImage2D subroutine, glTexSubImage3DEXT subroutine.

glPixelTransfer Subroutine

Purpose

Sets pixel transfer modes.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPixelTransferf(GLenum pName,

 GLfloat Parameter)

void glPixelTransferi(GLenum pName,

 GLint Parameter)

Description

The glPixelTransfer subroutine sets pixel transfer modes that affect the operation of subsequent

glDrawPixels, glReadPixels, glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,

glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3DEXT, glTexImage1D,

Chapter 1. OpenGL Subroutines 261

glTexImage2D, glTexImage3DEXT, glTexSubImage1D, glTexSubImage2D, and glTexSubImage3DEXT

subroutines. The algorithms that are specified by pixel transfer modes operate on pixels after they are

read from the frame buffer (glReadPixels and glCopyPixels) or unpacked from client memory

(glDrawPixels, glReadPixels, glCopyPixels, glCopyTexImage1D, glCopyTexImage2D,

glCopyTexSubImage1D, glCopyTexSubImage2D, glCopyTexSubImage3DEXT, glTexImage1D,

glTexImage2D, glTexImage3DEXT, glTexSubImage1D, glTexSubImage2D, and glTexSubImage3DEXT

subroutines). Pixel transfer operations happen in the same order, and in the same manner, regardless of

the command that resulted in the pixel operation. Pixel storage modes control the unpacking of pixels

being read from client memory and the packing of pixels being written back into client memory. (See the

glPixelStore subroutine for information on setting pixel storage modes.)

Pixel transfer operations handle four fundamental pixel types: color, color index, depth, and stencil. Color

pixels are made up of four floating-point values with unspecified mantissa and exponent sizes, scaled such

that 0.0 represents 0 (zero) intensity and 1.0 represents full intensity. Color indexes comprise a single

fixed-point value, with unspecified precision to the right of the binary point. Depth pixels comprise a single

floating-point value, with unspecified mantissa and exponent sizes, scaled such that 0.0 represents the

minimum depth buffer value and 1.0 represents the maximum depth buffer value. Finally, stencil pixels

comprise a single fixed-point value, with unspecified precision to the right of the binary point.

The pixel transfer operations performed on the four basic pixel types are as follows:

 color Each of the four color components is multiplied by a scale factor, then added to a bias factor.

That is, the red component is multiplied by GL_RED_SCALE, then added to GL_RED_BIAS;

the green component is multiplied by GL_GREEN_SCALE, then added to GL_GREEN_BIAS;

the blue component is multiplied by GL_BLUE_SCALE, then added to GL_BLUE_BIAS; and

the alpha component is multiplied by GL_ALPHA_SCALE, then added to GL_ALPHA_BIAS.

After all four color components are scaled and biased, each is clamped to the range [0,1]. All

color scale and bias values are specified with glPixelTransfer.

If GL_MAP_COLOR is True, each color component is scaled by the size of the corresponding

color-to-color map, then replaced by the contents of that map indexed by the scaled

component. That is, the red component is scaled by GL_PIXEL_MAP_R_TO_R_SIZE, then

replaced by the contents of GL_PIXEL_MAP_R_TO_R indexed by itself. The green component

is scaled by GL_PIXEL_MAP_G_TO_G_SIZE, then replaced by the contents of

GL_PIXEL_MAP_G_TO_G indexed by itself. The blue component is scaled by

GL_PIXEL_MAP_B_TO_B_SIZE, then replaced by the contents of GL_PIXEL_MAP_B_TO_B

indexed by itself. The alpha component is scaled by GL_PIXEL_MAP_A_TO_A_SIZE, then

replaced by the contents of GL_PIXEL_MAP_A_TO_A indexed by itself. All components taken

from the maps are then clamped to the range [0,1]. GL_MAP_COLOR is specified with

glPixelTransfer. The contents of the various maps are specified with the glPixelMap

subroutine.

262 OpenGL 1.2 Reference Manual

color index Each color index is shifted left by GL_INDEX_SHIFT bits, and any bits beyond the number of

fraction bits carried by the fixed-point index are filled with 0s. If GL_INDEX_SHIFT is negative,

the shift is to the right, again 0 filled. Then GL_INDEX_OFFSET is added to the index.

GL_INDEX_SHIFT and GL_INDEX_OFFSET are specified with glPixelTransfer.

From this point, operation diverges depending on the required format of the resulting pixels. If

the resulting pixels are to be written to a color index buffer, or if they are being read back to

client memory in GL_COLOR_INDEX format, the pixels continue to be treated as indexes. If

GL_MAP_COLOR is True, each index is masked by 2n-1, where n is

GL_PIXEL_MAP_I_TO_I_SIZE, then replaced by the contents of GL_PIXEL_MAP_I_TO_I

indexed by the masked value. GL_MAP_COLOR is specified with glPixelTransfer. The

contents of the index map are specified with the glPixelMap subroutine.

If the resulting pixels are to be written to a red, green, blue, alpha (RGBA) color buffer, or if

they are being read back to client memory in a format other than GL_COLOR_INDEX, the

pixels are converted from indexes to colors by referencing the four maps

GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and

GL_PIXEL_MAP_I_TO_A. Before being dereferenced, the index is masked by 2n-1, where n is

GL_PIXEL_MAP_I_TO_R_SIZE for the red map, GL_PIXEL_MAP_I_TO_G_SIZE for the green

map, GL_PIXEL_MAP_I_TO_B_SIZE for the blue map, and GL_PIXEL_MAP_I_TO_A_SIZE

for the alpha map. All components taken from the maps are then clamped to the range [0,1].

The contents of the four maps are specified with the glPixelMap subroutine.

depth Each depth value is multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, then

clamped to the range [0,1].

stencil Each index is shifted GL_INDEX_SHIFT bits just as a color index is, then added to

GL_INDEX_OFFSET. If GL_MAP_STENCIL is True, each index is masked by 2n-1, where n is

GL_PIXEL_MAP_S_TO_S_SIZE, then replaced by the contents of GL_PIXEL_MAP_S_TO_S

indexed by the masked value.

The following table gives the type, initial value, and range of valid values for each of the pixel transfer

parameters that are set with glPixelTransfer.

 pName Type Initial Value Valid Range

GL_MAP_COLOR Boolean False True or False

GL_MAP_STENCIL Boolean False True or False

GL_INDEX_SHIFT integer 0 (-infinity,+infinity)

GL_INDEX_OFFSET integer 0 (-infinity,+infinity)

GL_RED_SCALE float 1.0 (-infinity,+infinity)

GL_GREEN_SCALE float 1.0 (-infinity,+infinity)

GL_BLUE_SCALE float 1.0 (-infinity,+infinity)

GL_ALPHA_SCALE float 1.0 (-infinity,+infinity)

GL_DEPTH_SCALE float 1.0 (-infinity,+infinity)

GL_RED_BIAS float 0.0 (-infinity,+infinity)

GL_GREEN_BIAS float 0.0 (-infinity,+infinity)

GL_BLUE_BIAS float 0.0 (-infinity,+infinity)

GL_ALPHA_BIAS float 0.0 (-infinity,+infinity)

GL_DEPTH_BIAS float 0.0 (-infinity,+infinity)

The glPixelTransferf subroutine can be used to set any pixel transfer parameter. If the parameter type is

Boolean, 0.0 implies False and any other value implies True. If pName is an integer parameter, Parameter

is rounded to the nearest integer.

Chapter 1. OpenGL Subroutines 263

Likewise, glPixelTransferi can be used to set any of the pixel transfer parameters. Boolean parameters

are set to False if Parameter is 0 and True otherwise. Parameter is converted to floating-point format

before being assigned to real-valued parameters.

Parameters

 pName Specifies the symbolic name of the pixel transfer parameter to be set. Must be one of the following:

v GL_MAP_COLOR

v GL_MAP_STENCIL

v GL_INDEX_SHIFT

v GL_INDEX_OFFSET

v GL_RED_SCALE

v GL_RED_BIAS

v GL_GREEN_SCALE

v GL_GREEN_BIAS

v GL_BLUE_SCALE

v GL_BLUE_BIAS

v GL_ALPHA_SCALE

v GL_ALPHA_BIAS

v GL_DEPTH_SCALE

v GL_DEPTH_BIAS

Parameter Specifies the value to which pName is set.

Notes

If a glDrawPixels, glReadPixels, glCopyPixels, glTexImage1D, or glTexImage2D subroutine is placed

in a display list (see the glNewList subroutine and the glCallList subroutine for information about display

lists), the pixel transfer mode settings in effect when the display list is executed are the ones that are

used. They may be different from the settings when the command was compiled into the display list.

Errors

 GL_INVALID_ENUM pName is not an accepted value.

GL_INVALID_OPERATION The glPixelTransfer subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPixelTransfer subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MAP_COLOR

glGet with argument GL_MAP_STENCIL

glGet with argument GL_INDEX_SHIFT

glGet with argument GL_INDEX_OFFSET

glGet with argument GL_RED_SCALE

glGet with argument GL_RED_BIAS

264 OpenGL 1.2 Reference Manual

glGet with argument GL_GREEN_SCALE

glGet with argument GL_GREEN_BIAS

glGet with argument GL_BLUE_SCALE

glGet with argument GL_BLUE_BIAS

glGet with argument GL_ALPHA_SCALE

glGet with argument GL_ALPHA_BIAS

glGet with argument GL_DEPTH_SCALE

glGet with argument GL_DEPTH_BIAS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCallList subroutine, glCopyPixels subroutine, glCopyTexImage1D

subroutine, glCopyTexImage2D subroutine, glCopyTexSubImage1D subroutine, glCopyTexSubImage2D

subroutine, glCopyTexSubImage3DEXT subroutine, glDrawPixels subroutine, glNewList subroutine,

glPixelMap subroutine, glPixelStore subroutine, glPixelZoom subroutine, glReadPixels subroutine,

glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3DEXT subroutine, glTexSubImage1D

subroutine, glTexSubImage2D subroutine, glTexSubImage3DEXT subroutine, .

glPixelZoom Subroutine

Purpose

Specifies the pixel zoom factors.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPixelZoom(GLfloat xFactor,

 GLfloat yFactor)

Parameters

 xFactor and yFactor Specify the x and y zoom factors for pixel write operations.

Description

The glPixelZoom subroutine specifies values for the x and y zoom factors. During the execution of the

glDrawPixels or glCopyPixels subroutines, if (xr, yr) is the current raster position, and a given element is

in the nth row and mth column of the pixel rectangle, then pixels whose centers are in the rectangle with

corners at

(xr + n x xFactor, yr + m x yFactor)

Chapter 1. OpenGL Subroutines 265

and

(xr + (n+1) x xFactor, yr + (m+1) x yFactor)

are candidates for replacement. Any pixel whose center lies on the bottom or left edge of this rectangular

region is also modified.

Pixel zoom factors are not limited to positive values. Negative zoom factors reflect the resulting image

about the current raster position.

Errors

 GL_INVALID_OPERATION The glPixelZoom subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPixelZoom subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_ZOOM_X.

glGet with argument GL_ZOOM_Y.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCopyPixels subroutine, glDrawPixels subroutine.

glPointSize Subroutine

Purpose

Specifies the diameter of rasterized points.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPointSize(GLfloat Size)

Description

The glPointSize subroutine specifies the rasterized diameter of both aliased and antialiased points. Using

a point size other than 1.0 has different effects, depending on whether point antialiasing is enabled. Point

antialiasing is controlled by calling the glEnable and glDisable subroutines with argument

GL_POINT_SMOOTH.

If point antialiasing is disabled, the actual size is determined by rounding the supplied size to the nearest

integer. (If the rounding results in the value 0 (zero), it is as if the point size were 1 (one).) If the rounded

size is odd, the center point (x, y) of the pixel fragment that represents the point is computed as

266 OpenGL 1.2 Reference Manual

(floor(xw) + 0.5, floor(yw) + 0.5)

where w subscripts indicate window coordinates. All pixels that lie within the square grid of the rounded

size centered at (x, y) make up the fragment. If the size is even, the center point is

(floor(xw + 0.5), floor(yw + 0.5))

and the rasterized fragment’s centers are the half-integer window coordinates within the square of the

rounded size centered at (x, y). All pixel fragments produced in rasterizing a nonantialiased point are

assigned the same associated data, that of the vertex corresponding to the point.

If antialiasing is enabled, point rasterization produces a fragment for each pixel square that intersects the

region lying within the circle having diameter equal to the current point size and centered at the point’s

(xw, yw). The coverage value for each fragment is the window coordinate area of the intersection of the

circular region with the corresponding pixel square. This value is saved and used in the final rasterization

step. The data associated with each fragment is the data associated with the point being rasterized.

Not all sizes are supported when point antialiasing is enabled. If an unsupported size is requested, the

nearest supported size is used. Only size 1.0 is guaranteed to be supported; others are dependent on the

implementation. The range of supported sizes and the size difference between supported sizes within the

range can be queried by calling the glGet subroutine with the GL_POINT_SIZE_RANGE and

GL_POINT_SIZE_GRANULARITY arguments.

Notes

The point size specified by glPointSize is always returned when GL_POINT_SIZE is queried. Clamping

and rounding for aliased and antialiased points have no effect on the specified value.

Nonantialiased point size may be clamped to a maximum that depends on the implementation. Although

this maximum cannot be queried, it must be no less than the maximum value for antialiased points,

rounded to the nearest integer value.

Parameters

 Size Specifies the diameter of rasterized points. The default is 1.0.

Errors

 GL_INVALID_VALUE Size is less than or equal to 0.

GL_INVALID_OPERATION The glPointSize subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPointSize subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_POINT_SIZE

glGet with argument GL_POINT_SIZE_RANGE

glGet with argument GL_POINT_SIZE_GRANULARITY

glIsEnabled with argument GL_POINT_SMOOTH.

Chapter 1. OpenGL Subroutines 267

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glEnable or Disable subroutine.

glPolygonMode Subroutine

Purpose

Selects a polygon rasterization mode.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPolygonMode(GLenum Face,

 GLenum Mode)

Description

The glPolygonMode subroutine controls the interpretation of polygons for rasterization. The Face

parameter describes which polygons the Mode parameters applies to: frontfacing polygons (GL_FRONT),

backfacing polygons (GL_BACK), or both (GL_FRONT_AND_BACK). The polygon mode affects only the

final rasterization of polygons. In particular, a polygon’s vertices are lit and the polygon is clipped and

possibly culled before these modes are applied.

Three modes are defined and can be specified in the Mode parameter:

 GL_POINT Polygon vertices that are marked as the start of a boundary edge are drawn as points. Point

attributes such as GL_POINT_SIZE and GL_POINT_SMOOTH control the rasterization of the points.

Polygon rasterization attributes other than GL_POLYGON_MODE have no effect.

GL_LINE Boundary edges of the polygon are drawn as line segments. They are treated as connected line

segments for line stippling; the line stipple counter and pattern are not reset between segments. (See

the glLineStipple subroutine for information on specifying the line stipple pattern.) Line attributes

such as GL_LINE_WIDTH and GL_LINE_SMOOTH control the rasterization of the lines. Polygon

rasterization attributes other than GL_POLYGON_MODE have no effect.

GL_FILL The interior of the polygon is filled. Polygon attributes such as GL_POLYGON_STIPPLE and

GL_POLYGON_SMOOTH control the rasterization of the polygon.

Parameters

 Face Specifies the polygons to which Mode applies. Must be GL_FRONT for frontfacing polygons, GL_BACK for

backfacing polygons, or GL_FRONT_AND_BACK for frontfacing and backfacing polygons.

Mode Specifies the way polygons are rasterized. Accepted values are GL_POINT, GL_LINE, and GL_FILL. The

default is GL_FILL for both frontfacing and backfacing polygons.

Notes

Vertices are marked as boundary or nonboundary with an edge flag. Edge flags are generated internally

by the GL when it decomposes polygons, and they can be set explicitly with the glEdgeFlag subroutine.

268 OpenGL 1.2 Reference Manual

Errors

 GL_INVALID_ENUM Face or Mode is not an accepted value.

GL_INVALID_OPERATION The glPolygonMode subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPolygonMode subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_POLYGON_MODE.

Examples

To draw a surface with filled backfacing polygons and outlined frontfacing polygons, enter the following:

glPolygonMode(GL_FRONT, GL_LINE);

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glEdgeFlag subroutine, glLineStipple subroutine, glLineWidth

subroutine, glPointSize subroutine, glPolygonStipple subroutine.

glPolygonOffset Subroutine

Purpose

Sets the scale and bias used to calculate depth values.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPolygonOffset(GLfloat factor,

 GLfloat units)

Description

When GL_POLYGON_OFFSET is enabled, each fragment’s depth value will be offset after it is

interpolated from the depth values of the appropriate vertices. The value of the offset is factor * DZ + r *

units, where DZ is a measurement of the change in depth relative to the screen area of the polygon, and r

is the smallest value which is guaranteed to produce a resolveable offset for a given implementation. The

offset is added before the depth test is performed and before the value is written into the depth buffer.

This is useful for rendering hidden line images, for applying decals to surfaces, and for rendering solids

with highlighted edges.

Chapter 1. OpenGL Subroutines 269

Parameters

 factor Specifies a scale factor which is used to create a variable depth offset for each polygon. The initial value

is 0.

units Is multiplied by an implementation specific value to create a constant depth offset. The initial value is 0.

Notes

The glPolygonOffset subroutine is available only if the GL version is 1.1 or greater.

Errors

GL_INVALID_OPERATION is generated if glPolygonOffset is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glIsEnabled with argument GL_POLYGON_OFFSET_FILL, GL_POLYGON_OFFSET_LINE, or

GL_POLYGON_OFFSET_POINT.

glGet with argument GL_POLYGON_OFFSET_FACTOR or GL_POLYGON_OFFSET_UNITS.

Related Information

The glDepthFunc subroutine, glDisable subroutine, glEnable subroutine, glGet subroutine, glIsEnabled

subroutine, glLineWidth subroutine, glStencilOp subroutine, glTexEnv subroutine.

glPolygonOffsetEXT Subroutine

Purpose

Sets the scale and bias used to calculate z values.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPolygonOffsetEXT(GLfloat factor,

 GLfloat bias)

Description

When GL_POLYGON_OFFSET_EXT is enabled, each fragment’s z value will be offset after it is

interpolated from the z values of the appropriate vertices. The value of the offset is factor * DZ + bias,

where DZ is a measurement of the change in z relative to the screen area of the polygon. The offset is

added before the Depth Test is performed and before the value is written into the Depth Buffer.

Initially GL_POLYGON_OFFSET_FACTOR_EXT and GL_POLYGON_OFFSET_BIAS_EXT are both set to

0.0.

This is useful for rendering hidden line images, for applying decals to surfaces, and for rendering solids

with highlighted edges.

Parameters

 factor specifies a scale factor which is used to create a offset for each polygon.

270 OpenGL 1.2 Reference Manual

bias specifies a constant which is added to each polygon’s z offset.

Notes

glPolygonOffsetEXT is part of the EXT_polygon_offset extension, not part of the core GL command set.

If GL_EXT_polygon_offset is included in the string returned by glGetString, when called with argument

GL_EXTENSIONS, extension EXT_polygon_offset is supported by the connection.

Errors

GL_INVALID_OPERATION is generated if glPolygonOffsetEXT is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glIsEnabled with argument GL_POLYGON_OFFSET_EXT.

glGet with argument GL_POLYGON_OFFSET_FACTOR_EXT or GL_POLYGON_OFFSET_BIAS_EXT .

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glDepthFunc subroutine, glEnable orglDisable subroutine, glGet subroutine, glIsEnabled

subroutine, glLineWidth subroutine, glStencilOp subroutine, glTexEnv subroutine.

glPolygonStipple Subroutine

Purpose

Sets the polygon stippling pattern.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPolygonStipple(const GLubyte * Mask)

Description

Polygon stippling, like line stippling, masks out certain fragments produced by rasterization, creating a

pattern. (See the glLineStipple subroutine .) Stippling is independent of polygon antialiasing.

The Mask parameter is a pointer to a 32 x 32 stipple pattern that is stored in memory just like the pixel

data supplied to a glDrawPixels subroutine with height and width both equal to 32, a pixel format of

GL_COLOR_INDEX, and data type of GL_BITMAP. That is, the stipple pattern is represented as a 32 x

32 array of 1-bit color indexes packed in unsigned bytes. The glPixelStore subroutine parameters such as

GL_UNPACK_SWAP_BYTES and GL_UNPACK_LSB_FIRST affect the assembling of the bits into a

stipple pattern. Pixel transfer operations (shift, offset, pixel map) are not applied to the stipple image,

however.

Chapter 1. OpenGL Subroutines 271

Polygon stippling is enabled and disabled with the glEnable/glDisable subroutine pair, using argument

GL_POLYGON_STIPPLE. If enabled, a rasterized polygon fragment with window coordinates xw and yw

is sent to the next stage of the GL if and only if the (xw mod 32)th bit in the (yw mod 32)th row of the

stipple pattern is 1 (one). When polygon stippling is disabled, it is as if the stipple pattern were all 1s.

Parameters

 Mask Specifies a pointer to a 32 x 32 stipple pattern that is unpacked from memory in the same way that the

glDrawPixels subroutine unpacks pixels.

Associated Gets

Associated gets for the glPolygonStipple subroutine are as follows. (See the glGet subroutine for more

information.)

glGetPolygonStipple

glIsEnabled with argument GL_POLYGON_STIPPLE.

Error Codes

 GL_INVALID_OPERATION The glPolygonStipple subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glDrawPixels subroutine, glEnable or glDisable subroutine,

glGetPolygonStipple subroutine, glLineStipple subroutine, glPixelStore subroutine, glPixelTransfer

subroutine.

glPrioritizeTextures Subroutine

Purpose

Sets texture residence priority.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPrioritizeTextures(GLsizei n,

 const GLuint *textures,

 const GLclampf *priorities)

Parameters

 n Specifies the number of textures to be prioritized.

textures Specifies an array containing the names of the textures to be prioritized.

272 OpenGL 1.2 Reference Manual

priorities Specifies an array containing the texture priorities. A priority given in an element of priorities

applies to the texture named by the corresponding element of textures.

Description

The glPrioritizeTextures subroutine assigns the n texture priorities given in priorities to the n textures

named in textures.

On machines with a limited amount of texture memory, GL establishes a ``working set’’ of textures that are

resident in texture memory. These textures may be bound to a texture target much more efficiently than

textures that are not resident. By specifying a priority for each texture, glPrioritizeTextures allows

applications to guide the GL implementation in determining which textures should be resident.

The priorities given in priorities are clamped to the range [0.0, 1.0] before being assigned. Zero indicates

the lowest priority; textures with priority zero are least likely to be resident. One indicates the highest

priority; textures with priority one are most likely to be resident. However, textures are not guaranteed to

be resident until they are bound.

The glPrioritizeTextures subroutine silently ignores attempts to prioritize texture zero, or any texture

name that does not correspond to an existing texture.

The glPrioritizeTextures subroutine does not require that any of the textures named by textures be bound

to a texture target. It can also be used to set the priority of a texture, but only if the texture is currently

bound. This is the only way to set the priority of a default texture.

The glPrioritizeTextures subroutine is included in display lists.

Notes

The glPrioritizeTextures subroutine is available only if the GL version is 1.1 or greater.

Errors

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glPrioritizeTextures is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter with parameter name GL_TEXTURE_PRIORITY retrieves the priority of a currently

bound texture.

Related Information

The glAreTexturesResident subroutine, glBindTexture subroutine, glTexImage1D subroutine,

glTexImage2D subroutine, glTexImage3DEXT subroutine, glTexParameter subroutine.

glPrioritizeTexturesEXT Subroutine

Purpose

Sets texture residence priority.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 273

C Syntax

void glPrioritizeTexturesEXT(GLsizei n,

 const GLuint *textures,

 const GLclampf *priorities)

Parameters

 n The number of textures to be prioritized.

textures An array containing the names of the textures to be prioritized.

priorities An array containing the texture priorities. A priority given in an element of priorities applies to the

texture named by the corresponding element of textures.

Description

glPrioritizeTexturesEXT assigns the n texture priorities given in priorities to the n textures named in

textures.

On machines with a limited amount of texture memory, OpenGL establishes a ``working set’’ of textures

that are resident in texture memory. These textures may be bound to a texture target much more efficiently

than textures that are not resident. By specifying a priority for each texture, glPrioritizeTexturesEXT

allows applications to guide the OpenGL implementation in determining which textures should be resident.

The priorities given in priorities are clamped to the range [0.0, 1.0] before being assigned. Zero indicates

the lowest priority, and hence textures with priority zero are least likely to be resident. One indicates the

highest priority, and hence textures with priority one are most likely to be resident. However, textures are

not guaranteed to be resident until they are bound.

glPrioritizeTexturesEXT silently ignores attempts to prioritize texture zero, or any texture name that does

not correspond to an existing texture.

glPrioritizeTexturesEXT does not require that any of the textures named by textures be bound to a

texture target. glTexParameter may also be used to set a texture’s priority, but only if the texture is

currently bound. This is the only way to set the priority of a default texture.

glPrioritizeTexturesEXT is included in display lists.

Notes

glPrioritizeTexturesEXT is part of the EXT_texture_object extension, not part of the core GL command

set. If GL_EXT_texture_object is included in the string returned by glGetString, when called with

argument GL_EXTENSIONS, extension EXT_texture_object is supported by the connection.

Errors

GL_INVALID_VALUE is generated if n is negative.

GL_INVALID_OPERATION is generated if glPrioritizeTexturesEXT is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter with parameter name GL_TEXTURE_PRIORITY_EXT retrieves the priority of a

currently-bound texture.

274 OpenGL 1.2 Reference Manual

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glAreTexturesResidentEXT subroutine, glBindTextureEXT subroutine, glTexImage1D subroutine,

glTexImage2D subroutine, glTexImage3DEXT subroutine, glTexParameter subroutine.

glPushAttrib or glPopAttrib Subroutine

Purpose

Pushes and pops the attribute stack.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPushAttrib(GLbitfield mask)

void glPopAttrib(void)

Parameters

 mask Specifies a mask that indicates which attributes to save. Values for Mask are provided in the preceding list.

Description

The glPushAttrib subroutine takes one argument, a mask that indicates which groups of state variables to

save on the attribute stack. Symbolic constants are used to set bits in the mask. The Mask parameter is

typically constructed by ORing several of these constants together. The GL_ALL_ATTRIB_BITS special

mask can be used to save all stackable states.

The symbolic mask constants and their associated GL states are in the following list.

 Mask Attributes saved

GL_ACCUM_BUFFER_BIT Accumulation buffer clear value

 GL_COLOR_BUFFER_BIT GL_ALPHA_TEST enable bit

 Alpha test function and reference value

 GL_BLEND enable bit

 Blending source and destination functions

 GL_COLOR_LOGIC_OP enable bit

 GL_DITHER enable bit

 GL_DRAW_BUFFER setting

 GL_LOGIC_OP enable bit

 Logic op function

 Color mode and index mode clear values

 Color mode and index mode write masks

 GL_BLEND_EQUATION_EXT setting

GL_CURRENT_BIT Current red, green, blue, alpha (RGBA) color

Chapter 1. OpenGL Subroutines 275

Current color index

 Current normal vector

 Current texture coordinates

 Current raster position

 GL_CURRENT_RASTER_POSITION_VALID flag

 RGBA color associated with current raster position

 Color index associated with current raster position

 Texture coordinates associated with current raster position

 GL_EDGE_FLAG flag

GL_DEPTH_BUFFER_BIT GL_DEPTH_TEST enable bit

 Depth buffer test function

 Depth buffer clear value

GL_DEPTH_WRITEMASK enable bit

GL_ENABLE_BIT GL_ALPHA_TEST flag

 GL_AUTO_NORMAL flag

 GL_BLEND flag

 Enable bits for the user-definable clipping planes

 GL_COLOR_LOGIC_OP flag

 GL_COLOR_MATERIAL

 GL_CULL_FACE flag

 GL_DEPTH_TEST flag

 GL_DITHER flag

 GL_FOG flag

 GL_LIGHTi, where 0 < i<GL_MAX_LIGHTS

 GL_LIGHTING flag

 GL_LINE_SMOOTH flag

 GL_LINE_STIPPLE flag

 GL_LOGIC_OP flag

 GL_MAP1_x, where x is a map type

 GL_MAP2_x, where x is a map type

 GL_NORMALIZE flag

 GL_POINT_SMOOTH flag

 GL_POLYGON_OFFSET_EXT flag

 GL_POLYGON_OFFSET_FILL flag

 GL_POLYGON_OFFSET_LINE flag

 GL_POLYGON_OFFSET_POINT flag

 GL_POLYGON_SMOOTH flag

GL_POLYGON_STIPPLE flag

 GL_SCISSOR_TEST flag

 GL_STENCIL_TEST flag

 GL_TEXTURE_1D flag

 GL_TEXTURE_2D flag

 GL_TEXTURE_3D_EXT flag

 Flags GL_TEXTURE_GEN_x, where x is S, T, R, or Q

GL_EVAL_BIT GL_MAP1_x enable bits, where x is a map type

 GL_MAP2_x enable bits, where x is a map type

 1-dimensional (1D) grid endpoints and divisions

 2-dimensional (2D) grid endpoints and divisions

 GL_AUTO_NORMAL enable bit

GL_FOG_BIT GL_FOG enable flag

 Fog color

 Fog density

 Linear fog start

 Linear fog end

 Fog index

276 OpenGL 1.2 Reference Manual

GL_FOG_MODE value

GL_HINT_BIT GL_PERSPECTIVE_CORRECTION_HINT setting

 GL_POINT_SMOOTH_HINT setting

 GL_LINE_SMOOTH_HINT setting

 GL_POLYGON_SMOOTH_HINT setting

 GL_FOG_HINT setting

 GL_SUBPIXEL_HINT_IBM setting

GL_LIGHTING_BIT GL_COLOR_MATERIAL enable bit

 GL_COLOR_MATERIAL_FACE value

 Color material parameters that are tracking the current color

 Ambient scene color

 GL_LIGHT_MODEL_LOCAL_VIEWER value

 GL_LIGHT_MODEL_TWO_SIDE setting

 GL_LIGHTING enable bit

 Enable bit for each light

 Ambient, diffuse, and specular intensity for each light

 Direction, position, exponent, and cutoff angle for each light Constant,

linear, and quadratic attenuation factors for each light

 Ambient, diffuse, specular, and emissive color for each material

 Ambient, diffuse, and specular color indices for each material

 Specular exponent for each material

 GL_SHADE_MODEL setting

GL_LINE_BIT GL_LINE_SMOOTH flag

 GL_LINE_STIPPLE enable bit

 Line stipple pattern and repeat counter

 Line width

GL_LIST_BIT GL_LIST_BASE setting

GL_PIXEL_MODE_BIT GL_RED_BIAS and GL_RED_SCALE settings

 GL_GREEN_BIAS and GL_GREEN_SCALE values

 GL_BLUE_BIAS and GL_BLUE_SCALE

 GL_ALPHA_BIAS and GL_ALPHA_SCALE

 GL_DEPTH_BIAS and GL_DEPTH_SCALE

 GL_INDEX_OFFSET and GL_INDEX_SHIFT values

 GL_MAP_COLOR and GL_MAP_STENCIL flags

 GL_ZOOM_X and GL_ZOOM_Y factors

 GL_READ_BUFFER setting

GL_POINT_BIT GL_POINT_SMOOTH flag

 Point size

GL_POLYGON_BIT GL_CULL_FACE enable bit

 GL_CULL_FACE_MODE value

 GL_FRONT_FACE indicator

 GL_POLYGON_OFFSET_BIAS_EXT setting

 GL_POLYGON_OFFSET_EXT flag

 GL_POLYGON_OFFSET_FACTOR setting

 GL_POLYGON_OFFSET_FACTOR_EXT setting

 GL_POLYGON_OFFSET_FILL flag

 GL_POLYGON_OFFSET_LINE flag

 GL_POLYGON_OFFSET_POINT flag

 GL_POLYGON_OFFSET_UNITS setting

 GL_POLYGON_MODE setting

 GL_POLYGON_SMOOTH flag

 GL_POLYGON_STIPPLE enable bit

GL_POLYGON_STIPPLE_BIT Polygon stipple image

GL_SCISSOR_BIT GL_SCISSOR_TEST flag

 Scissor box

Chapter 1. OpenGL Subroutines 277

GL_STENCIL_BUFFER_BIT GL_STENCIL_TEST enable bit

 Stencil function and reference value

 Stencil value mask

 Stencil fail, pass, and depth buffer pass actions

 Stencil buffer clear value

 Stencil buffer writemask

GL_TEXTURE_BIT Enable bits for the four texture coordinates

 Border color for each texture image

 Minification function for each texture image

 Magnification function for each texture image

 Texture coordinates and wrap mode for each texture image

 Color and mode for each texture environment

 Enable bits GL_TEXTURE_GEN_x, x is S, T, R, and Q

 GL_TEXTURE_GEN_MODE setting for S, T, R, and Q

 glTexGen plane equations for S, T, R, and Q

 Enables for 1D, 2D, and 3D_EXT testures

GL_TRANSFORM_BIT Coefficients of the six clipping planes

 Enable bits for the user-definable clipping planes

 GL_MATRIX_MODE value

 GL_NORMALIZE flag

GL_VIEWPORT_BIT Depth range (near and far)

 Viewport origin and extent

The glPopAttrib subroutine restores the values of the state variables saved with the last glPushAttrib

subroutine. Those not saved are left unchanged.

It is an error to push attributes onto a full stack, or to pop attributes off an empty stack. In either case, the

error flag is set, and no other change is made to GL state.

Initially, the attribute stack is empty.

Notes

Not all values for the GL state can be saved on the attribute stack. For example, pixel pack and unpack

state, render mode state, and select and feedback state cannot be saved.

The depth of the attribute stack is dependent on the implementation, but it must be at least 16.

Errors

 GL_STACK_OVERFLOW The glPushAttrib subroutine is called while the attribute stack is full.

GL_STACK_UNDERFLOW The glPopAttrib subroutine is called while the attribute stack is empty.

GL_INVALID_OPERATION The glPushAttrib subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

glGet with argument GL_ATTRIB_STACK_DEPTH

glGet with argument GL_MAX_ATTRIB_STACK_DEPTH.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

278 OpenGL 1.2 Reference Manual

Related Information

The glBegin subroutine, glEnd subroutine, glGet subroutine, glGetClipPlane subroutine, glGetError

subroutine, glGetLight subroutine, glGetMap subroutine, glGetMaterial subroutine, glGetPixelMap

subroutine, glGetPolygonStipple subroutine, glGetString subroutine, glGetTexEnv subroutine,

glGetTexGen subroutine, glGetTexImage subroutine, glGetTexLevelParameter subroutine,

glGetTexParameter subroutine, glIsEnabled subroutine, glPushClientAttrib or PopClientAttrib

subroutine.

glPushClientAttrib or glPopClientAttrib Subroutine

Purpose

Pushes and pops the attribute stack.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPushClientAttrib(GLbitfield mask)

void glPopClientAttrib(void)

Parameters

 mask Specifies a mask that indicates which attributes to save. Values for mask are listed below.

Description

The glPushClientAttrib subroutine takes one argument, a mask that indicates which groups of client state

variables to save on the client attribute stack. Symbolic constants are used to set bits in the mask. The

mask parameter is typically constructed by OR’ing several of these constants together. The special mask

GL_CLIENT_ALL_ATTRIB_BITS can be used to save all stackable client state.

The symbolic mask constants and their associated GL client state are as follows (the second column lists

which attributes are saved):

 GL_CLIENT_PIXEL_STORE_BIT Pixel storage modes

GL_CLIENT_VERTEX_ARRAY_BIT Vertex arrays (and enables)

The glPopClientAttrib subroutine restores the values of the client state variables saved with the last

glPushClientAttrib. Those not * saved are left unchanged.

It is an error to push attributes onto a full client attribute stack, or to pop attributes off an empty stack. In

either case, the error flag is set, and no other change is made to GL state.

Initially, the client attribute stack is empty.

Notes

The glPushClientAttrib subroutine is available only if the GL version is 1.1 or greater.

Not all values for GL client state can be saved on the attribute stack. For example, select and feedback

state cannot be saved.

Chapter 1. OpenGL Subroutines 279

The depth of the attribute stack depends on the implementation, but it must be at least 16.

The glPushClientAttrib and glPopClientAttrib subroutines are not compiled

into display lists, but are executed immediately.

Use glPushAttrib and glPopAttrib to push and restore state which is kept on the server. Only pixel

storage modes and vertex array state may be pushed and popped with glPushClientAttrib and

glPopClientAttrib.

Errors

GL_STACK_OVERFLOW is generated if glPushClientAttrib is called while the attribute stack is full.

GL_STACK_UNDERFLOW is generated if glPopClientAttrib is called while the attribute stack is empty.

Associated Gets

glGet with argument GL_ATTRIB_STACK_DEPTH

glGet with argument GL_MAX_CLIENT_ATTRIB_STACK_DEPTH

Related Information

The glColorPointer subroutine, glDisableClientState subroutine, glEdgeFlagPointer subroutine,

glEnableClientState subroutine, glGet subroutine, glGetError subroutine, glIndexPointer subroutine,

glNewList subroutine, glNormalPointer subroutine, glPixelStore subroutine, glPushAttrib subroutine,

glTexCoordPointer subroutine, glVertexPointer subroutine.

glPushMatrix or glPopMatrix Subroutine

Purpose

Pushes and pops the current matrix stack.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glPushMatrix(void)

void glPopMatrix(void)

Description

There is a stack of matrices for each of the matrix modes. In GL_MODELVIEW mode, the stack depth is

at least 32. In the other two modes, GL_PROJECTION and GL_TEXTURE, the depth is at least 2. The

current matrix in any mode is the matrix on the top of the stack for that mode.

The glPushMatrix subroutine pushes the current matrix stack down by one, duplicating the current matrix.

That is, after a glPushMatrix call, the matrix on the top of the stack is identical to the one below it.

The glPopMatrix subroutine pops the current matrix stack, replacing the current matrix with the one below

it on the stack.

Initially, each of the stacks contains one matrix, an identity matrix.

280 OpenGL 1.2 Reference Manual

It is an error to push a full matrix stack, or to pop a matrix stack that contains only a single matrix. In

either case, the error flag is set, and no other change is made to GL state.

Error Codes

 GL_STACK_OVERFLOW The glPushMatrix subroutine is called while the current matrix stack is full.

GL_STACK_UNDERFLOW The glPopMatrix subroutine is called while the current matrix stack contains

only a single matrix.

GL_INVALID_OPERATION The glPushMatrix subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glPushMatrix or glPopMatrix subroutine are as follows. (See the glGet

subroutine for more information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX

glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX

glGet with argument GL_MODELVIEW_STACK_DEPTH

glGet with argument GL_PROJECTION_STACK_DEPTH

glGet with argument GL_TEXTURE_STACK_DEPTH

glGet with argument GL_MAX_MODELVIEW_STACK_DEPTH

glGet with argument GL_MAX_PROJECTION_STACK_DEPTH

glGet with argument GL_MAX_TEXTURE_STACK_DEPTH.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glFrustum subroutine, glLoadIdentity subroutine, glLoadMatrix

subroutine, glMatrixMode subroutine, glMultMatrix subroutine, glOrtho subroutine, glRotate subroutine,

glScale subroutine, glTranslate subroutine, glViewport subroutine.

glPushName or glPopName Subroutine

Purpose

Pushes and pops the name stack.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 281

C Syntax

void glPushName(GLuint Name)

void glPopName(void)

Parameters

 Name Specifies a name that will be pushed onto the name stack.

Description

The name stack is used during selection mode to allow sets of rendering commands to be uniquely

identified. It consists of an ordered set of unsigned integers. The glPushName subroutine causes the

Name parameter to be pushed onto the name stack, which is initially empty. The glPopName subroutine

pops one name off the top of the stack.

It is an error to push a name onto a full stack, or to pop a name off an empty stack. It is also an error to

manipulate the name stack between a call to the glBegin subroutine and the corresponding call to the

glEnd subroutine. In any of these cases, the error flag is set and no other change is made to GL state.

The name stack is always empty while the render mode is not GL_SELECT. Calls to glPushName or

glPopName while the render mode is not GL_SELECT are ignored.

Associated Gets

Associated gets for the glPushName or glPopName subroutine are as follows. (See the glGet subroutine

for more information.)

glGet with argument GL_NAME_STACK_DEPTH

glGet with argument GL_MAX_NAME_STACK_DEPTH.

Error Codes

 GL_STACK_OVERFLOW The glPushName subroutine is called while the name stack is full.

GL_STACK_UNDERFLOW The glPopName subroutine is called while the name stack is empty.

GL_INVALID_OPERATION The glPushName or glPopName subroutine is called between a call to

glBegin and the corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glInitNames subroutine, glLoadName subroutine, glRenderMode

subroutine, glSelectBuffer subroutine.

glRasterPos Subroutine

Purpose

Specifies the raster position for pixel operations.

282 OpenGL 1.2 Reference Manual

Library

OpenGL C bindings library: libGL.a

C Syntax

void glRasterPos2d(GLdouble X,

 GLdouble Y)

void glRasterPos2f(GLfloat X,

 GLfloat Y)

void glRasterPos2i(GLint X,

 GLint Y)

void glRasterPos2s(GLshort X,

 GLshort Y)

void glRasterPos3d(GLdouble X,

 GLdouble Y,

 GLdouble Z)

void glRasterPos3f(GLfloat X,

 GLfloat Y,

 GLfloat Z)

void glRasterPos3i(GLint X,

 GLint Y,

 GLint Z)

void glRasterPos3s(GLshort X,

 GLshort Y,

 GLshort Z)

void glRasterPos4d(GLdouble X,

 GLdouble Y,

 GLdouble Z,

 GLdouble W)

void glRasterPos4f(GLfloat X,

 GLfloat Y,

 GLfloat Z,

 GLfloat W)

void glRasterPos4i(GLint X,

 GLint Y,

 GLint Z,

 GLint W)

void glRasterPos4s(GLshort X,

 GLshort Y,

 GLshort Z,

 GLshort W)

void glRasterPos2dv(const GLdouble * V)

void glRasterPos2fv(const GLfloat * V)

Chapter 1. OpenGL Subroutines 283

void glRasterPos2iv(const GLint * V)

void glRasterPos2sv(const GLshort * V)

void glRasterPos3dv(const GLdouble * V)

void glRasterPos3fv(const GLfloat * V)

void glRasterPos3iv(const GLint * V)

void glRasterPos3sv(const GLshort * V)

void glRasterPos4dv(const GLdouble * V)

void glRasterPos4fv(const GLfloat * V)

void glRasterPos4iv(const GLint * V)

void glRasterPos4sv(const GLshort * V)

Parameters

 X, Y, Z, W Specify the x, y, z, and w object coordinates (if present) for the raster position.

V Specifies a pointer to an array of two, three, or four elements, specifying x, y, z, and w

coordinates, respectively.

Description

The GL maintains a 3-dimensional (3D) position in window coordinates. This position, called the raster

position, is maintained with subpixel accuracy. It is used to position pixel and bitmap write operations. (See

the glBitmap subroutine for information on drawing bitmaps; the glCopyPixels subroutine for information

on copying pixels to the frame buffer; and the glDrawPixels subroutine for information on writing a block

of pixels to the frame buffer.)

The current raster position consists of four window coordinates (X, Y, Z, W), a valid bit, and associated

color data and texture coordinates. The W coordinate is actually a clip coordinate, because W is not

projected to window coordinates. The glRasterPos4 subroutine specifies object coordinates X, Y, Z, and

W explicitly. The glRasterPos3 subroutine specifies object coordinates X, Y, and Z explicitly, while W is

implicitly set to 1 (one). The glRasterPos2 subroutine uses the argument values for X and Y while

implicitly setting Z and W to 0 (zero) and 1.

The object coordinates presented by glRasterPos are treated just like those of a glVertex subroutine:

they are transformed by the current modelview and projection matrices and passed to the clipping stage. If

the vertex is not culled, it is projected and scaled to window coordinates, which become the new current

raster position, and the GL_CURRENT_RASTER_POSITION_VALID flag is set. If the vertex is culled, the

valid bit is cleared and the current raster position and associated color and texture coordinates are

undefined.

The current raster position also includes some associated color data and texture coordinates. If lighting is

enabled, GL_CURRENT_RASTER_COLOR in red, green, blue, alpha (RGBA) mode or the

GL_CURRENT_RASTER_INDEX in color index mode is set to the color produced by the lighting

calculation. (See the glLight subroutine for information on setting light source parameters; the

glLightModel subroutine for information on setting lighting model parameters; and the glShadeModel

subroutine for information on selecting flat or smooth shading.) If lighting is disabled, current color (in

RGBA mode, state variable GL_CURRENT_COLOR) or color index (in color index mode, state variable

GL_CURRENT_INDEX) is used to update the current raster color.

284 OpenGL 1.2 Reference Manual

Likewise, the GL_CURRENT_RASTER_TEXTURE_COORDS is updated as a function of the

GL_CURRENT_TEXTURE_COORDS, based on the texture matrix and the texture generation functions.

(See the glTexGen subroutine for information on generating texture coordinates.)

Initially, the current raster position is (0,0,0,1), the valid bit is set, the associated RGBA color is (1,1,1,1),

the associated color index is 1, and the associated texture coordinates are (0,0,0,1). In RGBA mode,

GL_CURRENT_RASTER_INDEX is always 1; in color index mode, the current raster RGBA color always

maintains its initial value.

Notes

The raster position is modified both by glRasterPos and by glBitmap.

When the raster position coordinates are not valid, drawing commands that are based on the raster

position are ignored (that is, they do not result in changes to GL state).

Errors

 GL_INVALID_OPERATION The glRasterPos subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glRasterPos subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_CURRENT_RASTER_POSITION

glGet with argument GL_CURRENT_RASTER_POSITION_VALID

glGet with argument GL_CURRENT_RASTER_COLOR

glGet with argument GL_CURRENT_RASTER_INDEX

glGet with argument GL_CURRENT_RASTER_TEXTURE_COORDS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glBitmap subroutine, glCopyPixels subroutine, glDrawPixels

subroutine, glLight subroutine, glLightModel subroutine, glShadeModel subroutine, glTexCoord

subroutine, glTexGen subroutine, glVertex subroutine.

glReadBuffer Subroutine

Purpose

Selects a color buffer source for pixels.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 285

C Syntax

void glReadBuffer(GLenum Mode)

Parameters

 Mode Specifies a color buffer. Accepted values are as follows:

v GL_FRONT_LEFT

v GL_FRONT_RIGHT

v GL_BACK_LEFT

v GL_BACK_RIGHT

v GL_FRONT, GL_BACK

v GL_LEFT

v GL_RIGHT

v GL_AUXi, where i is between 0 (zero) and GL_AUX_BUFFERS - 1

Description

The glReadBuffer subroutine specifies a color buffer as the source for subsequent glReadPixels and

glCopyPixels subroutines. The Mode parameter accepts one of twelve or more predefined values.

(GL_AUX0 through GL_AUX3 are always defined.) In a fully configured system, GL_FRONT, GL_LEFT,

and GL_FRONT_LEFT all name the front left buffer, GL_FRONT_RIGHT and GL_RIGHT name the front

right buffer, and GL_BACK_LEFT and GL_BACK name the back left buffer. Nonstereo configurations

have only a left buffer, or a front left and a back left buffer if double-buffered. Single-buffered

configurations have only a front buffer, or a front left and a front right buffer if stereo. It is an error to

specify a nonexistent buffer to glReadBuffer.

By default, the Mode parameter is GL_FRONT in single-buffered configurations and GL_BACK in

double-buffered configurations.

Error Codes

 GL_INVALID_ENUM Mode is not one of the twelve (or more) accepted values.

GL_INVALID_OPERATION Mode specifies a buffer that does not exist.

GL_INVALID_OPERATION The glReadBuffer subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glReadBuffer subroutine are as follows. (See the glGet subroutine.)

glGet with argument GL_READ_BUFFER.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCopyPixels subroutine, glDrawBuffer subroutine, glReadPixels

subroutine.

286 OpenGL 1.2 Reference Manual

glReadPixels Subroutine

Purpose

Reads a block of pixels from the frame buffer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glReadPixels(GLint X,

 GLint Y,

 GLsizei Width,

 GLsizei Height,

 GLenum Format,

 GLenum Type,

 GLvoid *Pixels)

Parameters

 X, Y Specify the window coordinates of the first pixel that is read from the frame buffer. This

location is the lower left corner of a rectangular block of pixels.

Width, Height Specify the dimensions of the pixel rectangle. Width and Height of 1 (one) correspond to a

single pixel.

Format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX,

GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,

GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA, GL_ABGR_EXT,

GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_422_EXT, GL_422_REV_EXT,

GL_422_AVERAGE_EXT and GL_422_REV_AVERAGE_EXT are accepted.

Type Specifies the data type for Pixels. Sybolic constants GL_UNSIGNED_BYTE, GL_BYTE,

GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,

GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,

GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,

GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,

GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,

GL_UNSIGNED_INT_10_10_10_2, GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

Pixels Returns the pixel data.

Description

The glReadPixels subroutine returns pixel data from the frame buffer, starting with the pixel whose lower

left corner is at location (X, Y), and puts it into client memory starting at the location specified by the Pixels

parameter. Several parameters control the processing of the pixel data before it is placed into client

memory. These parameters are set with three subroutines: glPixelStore, glPixelTransfer, and

glPixelMap. The effects on glReadPixels of most, but not all, of the parameters specified by these three

subroutines are described here.

The glReadPixels subroutine returns values from each pixel with the lower left-hand corner at (x + i, y + j)

for 0 < i < Width and 0 < j < Height. This pixel is said to be the ith pixel in the jth row. Pixels are returned

in row order from the lowest to the highest row, left to right in each row.

The Format parameter specifies the format for the returned pixel values. Accepted values for Format are

as follows:

Chapter 1. OpenGL Subroutines 287

GL_COLOR_INDEX Color indexes are read from the color buffer selected by the

glReadBuffer subroutine. Each index is converted to fixed-point format,

shifted left or right depending on the value and sign of

GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If

GL_MAP_COLOR is GL_TRUE, indexes are replaced by their mappings

in the table GL_PIXEL_MAP_I_TO_I.

GL_STENCIL_INDEX Stencil values are read from the stencil buffer. Each index is converted to

fixed-point format, shifted left or right depending on the value and sign of

GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If

GL_MAP_STENCIL is GL_TRUE, indexes are replaced by their

mappings in the table GL_PIXEL_MAP_S_TO_S.

GL_DEPTH_COMPONENT Depth values are read from the depth buffer. Each component is

converted to floating-point format such that the minimum depth value

maps to 0.0 and the maximum value maps to 1.0. Each component is

then multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, and

finally clamped to the range [0,1].

GL_ABGR_EXT Each pixel is a four-component group: for GL_RGBA, the red component

is first, followed by green, followed by blue, followed by alpha; for

GL_BGRA, the blue component is first, followed by green, followed by

red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,

green, and then red. Floating-point values are converted directly to an

internal floatingpoint format with unspecified precision. Signed integer

values are mapped linearly to the internal floating-point format such that

the most positive representable integer value maps to 1.0, and the most

negative representable value maps to -1.0. Unsigned integer data is

mapped similarly: the largest integer value maps to 1.0, and zero maps to

0.0. The resulting floating-point color values are then multiplied by

GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,

BLUE, and ALPHA for the respective color components. The results are

clamped to the range [0,1].

GL_RED Each pixel is a single red component. This component is converted to the

internal floating-point format in the same way as the red component of an

RGBA pixel is, then it is converted to an RGBA pixel with green and blue

set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated

just as if it had been read as an RGBA pixel.

GL_GREEN Each pixel is a single green component. This component is converted to

the internal floating-point format in the same way as the green component

of an RGBA pixel is, then it is converted to an RGBA pixel with red and

blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is

treated just as if it had been read as an RGBA pixel.

GL_BLUE Each pixel is a single blue component. This component is converted to

the internal floating-point format in the same way as the blue component

of an RGBA pixel is, then it is converted to an RGBA pixel with red and

green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is

treated just as if it had been read as an RGBA pixel.

GL_ALPHA Each pixel is a single alpha component. This component is converted to

the internal floating-point format in the same way as the alpha component

of an RGBA pixel is, then it is converted to an RGBA pixel with red,

green, and blue set to 0.0. After this conversion, the pixel is treated just

as if it had been read as an RGBA pixel.

GL_RGB Each pixel is a three-component group, red first, followed by green,

followed by blue. Each component is converted to the internal

floating-point format in the same way as the red, green, and blue

components of an RGBA pixel are. The color triple is converted to an

RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated

just as if it had been read as an RGBA pixel.

288 OpenGL 1.2 Reference Manual

GL_RGBA Each pixel is a four-component group, red first, followed by green,

followed by blue, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED,

GREEN, BLUE, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

GL_BGR Each pixel is a three-component group, blue first, followed by green,

followed by red. Each component is converted to the internal floating-point

format in the same way as the blue, green, and red components of an

BGRA pixel are. The color triple is converted to an BGRA pixel with alpha

set to 1.0. After this conversion, the pixel is treated just as if it had been

read as an BGRA pixel.

GL_BGRA Each pixel is a four-component group, blue first, followed by green,

followed by red, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,

GREEN, RED, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

GL_LUMINANCE Each pixel is a single luminance component. This component is converted

to the internal floating-point format in the same way as the red component

of an RGBA pixel is, then it is converted to an RGBA pixel with red,

green, and blue set to the converted luminance value, and alpha set to

1.0. After this conversion, the pixel is treated just as if it had been read as

an RGBA pixel.

Chapter 1. OpenGL Subroutines 289

GL_LUMINANCE_ALPHA Processing differs depending on whether color buffers store color indexes

or red, green, blue, alpha (RGBA) color components. If color indexes are

stored, they are read from the color buffer selected by glReadBuffer.

Each index is converted to fixed-point format, shifted left or right

depending on the value and sign of GL_INDEX_SHIFT, and added to

GL_INDEX_OFFSET. Indexes are then replaced by the RGBA values

obtained by indexing the GL_PIXEL_MAP_I_TO_R,

GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and

GL_PIXEL_MAP_I_TO_A tables.

If RGBA color components are stored in the color buffers, they are read

from the color buffer selected by glReadBuffer. Each color component is

converted to floating-point format such that zero intensity maps to 0.0 and

full intensity maps to 1.0. Each component is then multiplied by

GL_c_SCALE and added to GL_c_BIAS, where c is GL_RED,

GL_GREEN, GL_BLUE, and GL_ALPHA. Each component is clamped to

the range [0,1]. Finally, if GL_MAP_COLOR is GL_TRUE, each color

component c is replaced by its mapping in the table

GL_PIXEL_MAP_c_TO_c, where c again is GL_RED, GL_GREEN,

GL_BLUE, and GL_ALPHA. Each component is scaled to the size its

corresponding table before the lookup is performed.

Finally, unneeded data is discarded. For example, GL_RED discards the

green, blue, and alpha components, while GL_RGB discards only the

alpha component. GL_LUMINANCE computes a single component value

as the sum of the red, green, and blue components, and

GL_LUMINANCE_ALPHA does the same, while keeping alpha as a

second value.

GL_422_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_RGB_TO_YCBCR_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glReadPixels is called with this

parameter. The internal RGB values are sent through the RGB_to_YCbCr

matrix to create Y, Cb, and Cr values. Each returned pixel is a

two-component group. The first component is Y. The second component

is Cb in the even pixels and Cr in the odd pixels. The Cb for each even

pixel comes from the Cb value for that pixel. The Cr in each odd pixel

comes from the Cr value of its neighbor to the left. (If the width of the

image is odd, then the colors will be undefined in the rightmost column.).

GL_422_REV_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_RGB_TO_YCBCR_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glReadPixels is called with this

parameter. The internal RGB values are sent through the RGB_to_YCbCr

matrix to create Y, Cb, and Cr values. Each returned pixel is a

two-component group. The first component is Cb in the even pixels and

Cr in the odd pixels. The second component is Y. The Cb for each even

pixel comes from the Cb value for that pixel. The Cr in each odd pixel

comes from its neighbor to the left. (If the width of the image is odd, then

the colors will be undefined in the rightmost column.).

290 OpenGL 1.2 Reference Manual

GL_422_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_RGB_TO_YCBCR_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glReadPixels is called with this

parameter. The internal RGB values are sent through the RGB_to_YCbCr

matrix to create Y, Cb, and Cr values. Each returned pixel is a

two-component group. The first component is Y. The second component

is Cb in the even pixels and Cr in the odd pixels. Each even pixel gets its

Cb from itself, and its Cr from its neighbor to the right. Each odd pixel

gets its Cb from the average of its own Cb and that of its left neighbor,

and gets its Cr from the average of its own Cr and that of its left neighbor.

(If the width of the image is odd, then the colors will be undefined in the

rightmost column. If the neighbors to the right are not present for a given

fragment, we use GL_422_EXT to compute that fragment.).

GL_422_REV_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_RGB_TO_YCBCR_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glReadPixels is called with this

parameter. The internal RGB values are sent through the RGB_to_YCbCr

matrix to create Y, Cb, and Cr values. Each returned pixel is a

two-component group. The first component is Cb in the even pixels and

Cr in the odd pixels. The second component is Y. Each even pixel gets its

Cb from itself, and its Cr from its neighbor to the right. Each odd pixel

gets its Cb from the average of its own Cb and that of its left neighbor,

and gets its Cr from the average of its own Cr and that of its left neighbor.

(If the width of the image is odd, then the colors will be undefined in the

rightmost column. If the neighbors to the right are not present for a given

fragment, we use GL_422_EXT to compute that fragment.).

The shift, scale, bias, and lookup factors described in the preceding section are all specified by

glPixelTransfer. The lookup table contents themselves are specified by the glPixelMap subroutine.

The final step involves converting the indexes or components to the proper format, as specified by the

Type parameter. If the Format parameter is GL_COLOR_INDEX or GL_STENCIL_INDEX and Type is not

GL_FLOAT, each index is masked with the mask value given in the following table. If the Type parameter

is GL_FLOAT, each integer index is converted to single-precision floating-point format.

If the Format parameter is any legal value other than GL_COLOR_INDEX, GL_STENCIL_INDEX, or

GL_DEPTH_COMPONENT, and the Type parameter is not GL_FLOAT, each component is multiplied by

the multiplier shown in the following table. If Type is GL_FLOAT, each component is passed as is (or

converted to the client’s single-precision floating-point format if it is different from the one used by the GL).

 Type Index Mask Component Conversion

GL_UNSIGNED_BYTE 28 -1 (28 -1)c

GL_BYTE 27 -1 [(27 -1)c-1]/2

GL_BITMAP 1 1

GL_UNSIGNED_SHORT 216 -1 (216 -1)c

GL_SHORT 215 -1 [(215 -1)c-1]/2

GL_UNSIGNED_INT 232 -1 (232 -1)c

GL_INT 231 -1 [(231 -1)c-1]/2

GL_FLOAT none c

GL_UNSIGNED_BYTE_3_3_2 28 -1 (2N -1)c

GL_UNSIGNED_BYTE_2_3_3_REV 28 -1 (2N -1)c

Chapter 1. OpenGL Subroutines 291

Type Index Mask Component Conversion

GL_UNSIGNED_SHORT_5_6_5 216 -1 (2N -1)c

GL_UNSIGNED_SHORT_5_6_5_REV 216 -1 (2N -1)c

GL_UNSIGNED_SHORT_4_4_4_4 216 -1 (2N -1)c

GL_UNSIGNED_SHORT_4_4_4_4_REV 216 -1 (2N -1)c

GL_UNSIGNED_SHORT_5_5_5_1 216 -1 (2N -1)c

GL_UNSIGNED_SHORT_1_5_5_5_REV 216 -1 (2N -1)c

GL_UNSIGNED_INT_8_8_8_8 232 -1 (2N -1)c

GL_UNSIGNED_INT_8_8_8_8_REV 232 -1 (2N -1)c

GL_UNSIGNED_INT_10_10_10_2 232 -1 (2N -1)c

GL_UNSIGNED_INT_2_10_10_10_REV 232 -1 (2N -1)c

Equations with N as the exponent are performed for each bitfield of the packed data type, with N set to the

number of bits in the bitfield.

Return values are placed in memory as follows. If the Format parameter is GL_COLOR_INDEX,

GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, or

GL_LUMINANCE, a single value is returned and the data for the ith pixel in the jth row is placed in

location (j) Width + i. GL_RGB and GL_BGR return three values, GL_RGBA, GL_BGRA, and

GL_ABGR_EXT return four values, and GL_LUMINANCE_ALPHA, GL_422_EXT, GL_422_REV_EXT,

GL_422_AVERAGE_EXT and GL_422_REV_AVERAGE_EXT return two values for each pixel, with all

values corresponding to a single pixel occupying contiguous space in Pixels. Storage parameters set by

glPixelStore, such as GL_PACK_SWAP_BYTES and GL_PACK_LSB_FIRST, affect the way that data is

written into memory. See the glPixelStore subroutine for a description.

Notes

Values for pixels that lie outside the window connected to the current GL context are undefined. If an error

is generated, no change is made to the contents of Pixels.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL

command set.

Packed pixel types and BGR/BGRA formats are only supported in OpenGL 1.2 and later.

Error Codes

 GL_INVALID_ENUM Format or Type is not an accepted value.

GL_INVALID_VALUE Width or Height is negative.

GL_INVALID_OPERATION Format is GL_COLOR_INDEX and the color buffers store RGBA color

components.

GL_INVALID_OPERATION Format is GL_STENCIL_INDEX and there is no stencil buffer.

GL_INVALID_OPERATION Format is GL_DEPTH_COMPONENT and there is no depth buffer.

GL_INVALID_OPERATION The glReadPixels subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glReadPixels subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_INDEX_MODE.

292 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCopyPixels subroutine, glDrawPixels subroutine, glPixelMap

subroutine, glPixelStore subroutine, glPixelTransfer subroutine, glReadBuffer subroutine.

glRect Subroutine

Purpose

Draws a rectangle.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glRectd(GLdouble X1,

 GLdouble Y1,

 GLdouble X2,

 GLdouble Y2)

void glRectf(GLfloat X1,

 GLfloat Y1,

 GLfloat X2,

 GLfloat Y2)

void glRecti(GLint X1,

 GLint Y1,

 GLint X2,

 GLint Y2)

void glRects(GLshort X1,

 GLshort Y1,

 GLshort X2,

 GLshort Y2)

void glRectdv(const GLdouble * V1,

 const GLdouble * V2)

void glRectfv(const GLfloat * V1,

 const GLfloat * V2)

void glRectiv(const GLint * V1,

 const GLint * V2)

void glRectsv(const GLshort * V1,

 const GLshort * V2)

Chapter 1. OpenGL Subroutines 293

Parameters

 X1, Y1 Specify one vertex of a rectangle.

X2, Y2 Specify the opposite vertex of the rectangle.

V1 Specifies a pointer to one vertex of a rectangle.

V2 Specifies a pointer to the opposite vertex of the rectangle.

Description

The glRect subroutine supports efficient specification of rectangles as two corner points. Each rectangle

command takes four arguments, organized either as two consecutive pairs of (x,y) coordinates, or as two

pointers to arrays, each containing an (x,y) pair. The resulting rectangle is defined in the z=0 plane.

glRect(X1, Y1, X2, Y2) is equivalent to the following sequence:

glBegin(GL_POLYGON);

glVertex2(X1, Y1);

glVertex2(X2, Y1);

glVertex2(X2, Y2);

glVertex2(X1, Y2);

glEnd();

Note: If the second vertex is above and to the right of the first vertex, the rectangle is constructed

with a counterclockwise winding.

Errors

 GL_INVALID_OPERATION The glRect subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glVertex subroutine.

glRenderMode Subroutine

Purpose

Sets rasterization mode.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLint glRenderMode(GLenum Mode)

Parameters

 Mode Specifies the rasterization mode. Four values are accepted: GL_RENDER, GL_SELECT, GL_FEEDBACK,

and GL_VISIBILITY_IBM. The default value is GL_RENDER.

294 OpenGL 1.2 Reference Manual

Description

The glRenderMode subroutine sets the rasterization mode. It takes one argument, the Mode parameter,

which can assume one of four predefined values:

 GL_RENDER Render mode. Primitives are rasterized, producing pixel fragments, which are

written into the frame buffer. This is the normal mode, and also the default mode.

GL_SELECT Selection mode. No pixel fragments are produced, and no change to the frame

buffer contents is made. Instead, a record of the names of primitives that would

have been drawn if the render mode was GL_RENDER is returned in a select

buffer, which must be created before selection mode is entered. (See the

glSelectBuffer subroutine for information about establishing a buffer for selection

mode values.)

GL_FEEDBACK Feedback mode. No pixel fragments are produced, and no change to the frame

buffer contents is made. Instead, the coordinates and attributes of vertices that

would have been drawn had the render mode been GL_RENDER are returned in a

feedback buffer, which must be created before feedback mode is entered. (See the

glFeedbackBuffer subroutine for information about controlling the feedback mode.)

GL_VISIBILITY_IBM Visibility RenderMode is identical to render RenderMode, except whenever a

fragment passes all tests (in other words, depth, stencil, alpha, scissor and

window-ownership) then a visibility hit results. Whenever a name stack manipulation

command is executed or RenderMode is called, and there is a hit since the last

time the stack was manipulated or RenderMode was called, then a hit record is

written into the visibility array. The hit record consists of the number of names in the

name stack at the time of the event, followed by the name stack contents (bottom

name first). (See the glVisibilityBufferIBM subroutine for information about

controlling the visibility mode.)

The return value of glRenderMode is determined by the render mode at the time glRenderMode is

called, rather than by the Mode parameter.

Refer to glSelectBuffer, glFeedbackBuffer and glVisibilityBufferIBM for more details concerning

selection, feedback and visibility operation.

Notes

If an error is generated, glRenderMode returns 0 (zero) regardless of the current render mode.

Errors

 GL_INVALID_ENUM Mode is not one of the four accepted values.

GL_INVALID_OPERATION The glSelectBuffer subroutine is called while the render mode is

GL_SELECT, or glRenderMode is called with the GL_SELECT argument

before glSelectBuffer is called at least once.

GL_INVALID_OPERATION The glFeedbackBuffer subroutine is called while the render mode is

GL_FEEDBACK, or glRenderMode is called with the GL_FEEDBACK

argument before glFeedbackBuffer is called at least once.

GL_INVALID_OPERATION The glRenderMode subroutine is called between a call to glBegin and the

corresponding call to glEnd.

GL_INVALID_OPERATION The glVisibilityBufferIBM subroutine is called while the render mode is

GL_VISIBILITY_IBM, or glRenderMode is called with the

GL_VISIBILITY_IBM argument before glVisibilityBufferIBM is called at least

once.

Chapter 1. OpenGL Subroutines 295

Associated Gets

Associated gets for the glRenderMode subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_RENDER_MODE.

Return Values

 GL_RENDER 0.

GL_SELECT The number of hit records transferred to the select buffer.

GL_FEEDBACK The number of values (not vertices) transferred to the feedback buffer.

GL_VISIBILITY_IBM The number of hit records transferred to the visibility buffer.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glFeedbackBuffer subroutine, glVisibilityBufferIBM subroutine,

glInitNames subroutine, glLoadName subroutine, glPassThrough subroutine, glPushName subroutine,

glSelectBuffer subroutine.

glRotate Subroutine

Purpose

Multiplies the current matrix by a rotation matrix.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glRotated(GLdouble Angle,

 GLdouble X,

 GLdouble Y,

 GLdouble Z)

void glRotatef(GLfloat Angle,

 GLfloat X,

 GLfloat Y,

 GLfloat Z)

Parameters

 Angle Specifies the angle of rotation, in degrees.

X, Y, Z Specify the X, Y, and Z coordinates of a vector, respectively.

Description

The glRotate subroutine computes a matrix that performs a counterclockwise rotation of Angle degrees

about the vector from the origin through the point (X, Y, Z).

296 OpenGL 1.2 Reference Manual

The current matrix is multiplied by this rotation matrix, with the product replacing the current matrix. That

is, if M is the current matrix and R is the translation matrix, M is replaced with MR. (See the glMatrixMode

subroutine for information on specifying the current matrix.)

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glRotate is

called are rotated. Use the glPushMatrix and glPopMatrix subroutines to save and restore the unrotated

coordinate system.

Associated Gets

Associated gets for the glRotate subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX

glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX.

Errors

 GL_INVALID_OPERATION The glRotate subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glMatrixMode subroutine, glMultMatrix subroutine, glPushMatrix

subroutine, glScale subroutine, glTranslate subroutine.

glScale Subroutine

Purpose

Multiplies the current matrix by a general scaling matrix.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glScaled(GLdouble X,

 GLdouble Y,

 GLdouble Z)

void glScalef(GLfloat X,

 GLfloat Y,

 GLfloat Z)

Chapter 1. OpenGL Subroutines 297

Parameters

 X, Y, Z Specify scale factors along the X, Y, and Z axes, respectively.

Description

The glScale subroutine produces a general scaling along the X, Y, and Z axes. The three arguments

indicate the desired scale factors along each of the three axes. The resulting matrix is as follows:

 The current matrix is multiplied by this scale matrix, with the product replacing the current matrix. That is, if

M is the current matrix and S is the scale matrix, M is replaced with MS. (See the glMatrixMode

subroutine for information on specifying the current matrix.)

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glScale is

called are scaled. Use the glPushMatrix and glPopMatrix subroutines to save and restore the unscaled

coordinate system.

Notes

If scale factors other than 1.0 are applied to the modelview matrix and lighting is enabled, automatic

normalization of normals should probably also be enabled. (Use the glEnable and glDisable subroutines

with the GL_NORMALIZE argument.)

Errors

 GL_INVALID_OPERATION The glScale subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glScale subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX

glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX.

x

0

0

0

0

y

0

0

0

0

z

0

0

0

0

1

Figure 22. Resulting Matrix. This diagram shows a matrix enclosed in brackets. The matrix consists of four lines

containing four characters each. The first line contains the following (from left to right): x, zero, zero, zero. The second

line contains the following (from left to right): zero, y, zero, zero. The third line contains the following (from left to right):

zero, zero, z, zero. The fourth line contains the following (from left to right): zero, zero, zero, one.

298 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glEnable subroutine, glMatrixMode subroutine, glMultMatrix

subroutine, glPushMatrix subroutine, glRotate subroutine, glTranslate subroutine.

glScissor Subroutine

Purpose

Defines the scissor box.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glScissor(GLint X,

 GLint Y,

 GLsizei Width,

 GLsizei Height)

When the scissor test is disabled, it is as though the scissor box includes the entire window.

Parameters

 X, Y Specify the lower left corner of the scissor box. Initially (0,0).

Width, Height Specify the width and height of the scissor box. When a GL context is first attached to a

window, Width and Height are set to the dimensions of that window.

Description

The glScissor subroutine defines a rectangle, called the scissor box, in window coordinates. The first two

arguments, X and Y, specify the lower left corner of the box. The Width and Height parameters specify the

width and height of the box.

The scissor test is enabled and disabled with the glEnable and glDisable subroutines with the

GL_SCISSOR_TEST argument. While the scissor test is enabled, only pixels that lie within the scissor box

can be modified by drawing commands. Window coordinates have integer values at the shared corners of

frame buffer pixels, so glScissor(0,0,1,1) allows only the lower left pixel in the window to be modified,

and glScissor(0,0,0,0) disallows modification to all pixels in the window.

Errors

 GL_INVALID_VALUE Width or Height is negative.

GL_INVALID_OPERATION The glScissor subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Chapter 1. OpenGL Subroutines 299

Associated Gets

Associated gets for the glScissor subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_SCISSOR_BOX

glIsEnabled with argument GL_SCISSOR_TEST.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glEnable or glDisable subroutine, glViewport subroutine.

glSecondaryColorEXT Subroutine

Purpose

Specifies an RGB color used by the Color Sum stage.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glSecondaryColorbEXT(GLbyte Red,

 GLbyte Green,

 GLbyte Blue)

void glSecondaryColorsEXT(GLshort Red,

 GLshort Green,

 GLshort Blue)

void glSecondaryColoriEXT(GLint Red,

 GLint Green,

 GLint Blue)

void glSecondaryColorfEXT(GLfloat Red,

 GLfloat Green,

 GLfloat Blue)

void glSecondaryColordEXT(GLdouble Red,

 GLdouble Green,

 GLdouble Blue)

void glSecondaryColorubEXT(GLubyte Red,

 GLubyte Green,

 GLubyte Blue)

void glSecondaryColorusEXT(GLushort Red,

 GLushort Green,

 GLushort Blue)

void glSecondaryColoruiEXT(GLuint Red,

 GLuint Green,

 GLuint Blue)

void glSecondaryColorbvEXT(GLbyte *Variable)

void glSecondaryColorsvEXT(GLshort *Variable)

void glSecondaryColorivEXT(GLint *Variable)

300 OpenGL 1.2 Reference Manual

void glSecondaryColorfvEXT(GLfloat *Variable)

void glSecondaryColordvEXT(GLdouble *Variable)

void glSecondaryColorubvEXT(GLubyte *Variable)

void glSecondaryColorusvEXT(GLushort *Variable)

void glSecondaryColoruivEXT(GLuint *Variable)

Description

This extension allows specifying the RGB components of the secondary color used in the Color Sum

stage, instead of using the default (0,0,0,0) color. It applies only in RGBA mode and when LIGHTING is

disabled.

Secondary alpha is always implicitly set to 0.0.

After texturing, a fragment has two RGBA colors: a primary color c_pri (which texturing, if enabled, may

have modified) and a secondary color c_sec.

If color sum is enabled, the components of these two colors are summed to produce a single

post-texturing RGBA color c (the A component of the secondary color is always 0). The components of c

are then clamped to the range [0,1]. If color sum is disabled, then c_pri is assigned to the post texturing

color. Color sum is enabled or disabled using the generic Enable and Disable commands, respectively,

with the symbolic constant GL_COLOR_SUM_EXT.

Parameters

 Red,Green,Blue Specify the red, green and blue values of the Secondary

color.

Variable Specifies a pointer to an array of three values. These are

interpreted, respectively, as the red, green and blue

values of the Secondary color.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

glSecondaryColorPointerEXT Subroutine

Purpose

Specifies an array of secondary colors.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glSecondaryColorPointerEXT(GLint size,

 GLenum type,

 GLsizei stride,

 const GLvoid *pointer)

Chapter 1. OpenGL Subroutines 301

Description

The glSecondaryColorPointerEXT extension specifies the location and data format of an array of

secondary color components to use when rendering. The size parameter specifies the number of

components per color, and must be 3 or 4. The type parameter specifies the data type of each color

component and stride gives the byte stride from one color to the next allowing vertices and attributes to be

packed into a single array or stored in separate arrays. (Single-array storage may be more efficient on

some implementations; see glInterleavedArrays).

When a secondary color array is specified, size, type, stride, and pointer are saved as client side state.

To enable and disable the secondary color array, call glEnableClientState and glDisableClientState with

the argument GL_SECONDARY_COLOR_ARRAY. If enabled, the secondary color array is used when

glDrawArrays, glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Secondary Color array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 size specifies the number of components per color. It must be

3 or 4. The initial value is 4.

type specifies the data type of each color component in the

array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT,

GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,

GL_FLOAT, or GL_DOUBLE are accepted. The initial

value is GL_FLOAT.

stride specifies the byte offset between consecutive colors. If

stride is zero (the initial value), the colors are understood

to be tightly packed in the array. The initial value is 0.

pointer specifies a pointer to the first component of the first color

element in the array. The initial value is 0 (NULL pointer).

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElement subroutine, the glColorPointer subroutine, the glDrawArrays subroutine, the

glDrawElements subroutine, the glEdgeFlagPointer subroutine, the glEnable subroutine, the

glGetPointerv subroutine, the glIndexPointer subroutine, the glInterleavedArrays subroutine, the

glNormalPointer subroutine, the glPushClientAttrib or glPopClientAttrib subroutine, the

glSecondaryColorPointerListIBM subroutine, the glTexCoordPointer subroutine, the glVertexPointer

subroutine.

302 OpenGL 1.2 Reference Manual

glSecondaryColorPointerListIBM Subroutine

Purpose

Defines a list of arrays of secondary colors.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glColorPointerListIBM (GLint size,

 GLenum type,

 GLint stride,

 const GLvoid **pointer,

 GLint ptrstride)

Description

The glSecondaryColorPointerListIBM subroutine specifies the location and data format of a list of arrays

of color components to use when rendering. The size parameter specifies the number of components per

color, and must be 3 or 4. The type parameter specifies the data type of each color component. The stride

parameter gives the byte stride from one color to the next allowing vertices and attributes to be packed

into a single array or stored in separate arrays. (Single-array storage may be more efficient on some

implementations; see glInterleavedArrays). The ptrstride parameter specifies the byte stride from one

pointer to the next in the pointer array.

When a secondary color array is specified, size, type, stride, pointer and ptrstride are saved as client side

state.

A stride value of 0 does not specify a ″tightly packed″ array as it does in glSecondaryColorPointer.

Instead, it causes the first array element of each array to be used for each vertex. Also, a negative value

can be used for stride, which allows the user to move through each array in reverse order.

To enable and disable the secondary color arrays, call glEnableClientState and glDisableClientState

with the argument GL_COLOR_ARRAY. The secondary color array is initially disabled. When enabled, the

secondary color arrays are used when glMultiDrawArraysEXT, glMultiDrawElementsEXT,

glMultiModeDrawArraysIBM, glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or

glArrayElement is called. The last three calls in this list will only use the first array (the one pointed at by

pointer[0]). See the descriptions of these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Secondary Color array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 size specifies the number of components per secondary color.

This must be 3 or 4. The initial value is 4.

Chapter 1. OpenGL Subroutines 303

type specifies the data type of each secondary color

component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT,

GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,

GL_FLOAT, or GL_DOUBLE are accepted. The initial

value is GL_FLOAT.

stride specifies the byte offset between consecutive secondary

colors. The initial value is 0.

pointer specifies a list of secondary color arrays. The initial value

is 0 (NULL pointer).

ptrstride specifies the byte stride between successive pointers in

the pointer array. The initial value is 0.

Notes

The glSecondaryColorPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists

extension is supported.

Execution of glSecondaryColorPointerListIBM is not allowed between glBegin and the corresponding

glEnd, but an error may or may not be generated. If an error is not generated, the operation is undefined.

The glSecondaryColorPointerListIBM subroutine is typically implemented on the client side.

Since the secondary color array parameters are client side state, they are not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glSecondaryColorPointerListIBM call is encountered while compiling a display list, the

information it contains does NOT contribute to the display list, but is used to update the immediate context

instead.

The glSecondaryColorPointer call and the glSecondaryColorPointerListIBM call share the same state

variables. A glSecondaryColorPointer call will reset the secondary color list state to indicate that there is

only one secondary color list, so that any and all lists specified by a previous

glSecondaryColorPointerListIBM call will be lost, not just the first list that it specified.

Error Codes

 GL_INVALID_VALUE is generated if size is not 3 or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

Associated gets for the glSecondaryColorPointerListIBM subroutine are as follows. (See the glGet

subroutine for more information.)

glIsEnabled with argument GL_COLOR_ARRAY..

glGetPointerv with argument GL_COLOR_ARRAY_LIST_IBM.

glGet with argument GL_COLOR_ARRAY_LIST_STRIDE_IBM.

glGet with argument GL_COLOR_ARRAY_SIZE.

glGet with argument GL_COLOR_ARRAY_STRIDE.

glGet with argument GL_COLOR_ARRAY_TYPE.

304 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElement subroutine, the glColorPointer subroutine, the glDrawArrays subroutine, the

glDrawElements subroutine, the glEdgeFlagPointer subroutine, the glEnable subroutine, the

glGetPointerv subroutine, the glIndexPointer subroutine, the glInterleavedArrays subroutine, the

glMultiDrawArraysEXT subroutine, the glMultiDrawElementsEXT subroutine, the

glMultiModeDrawArraysIBM subroutine, the glMultiModeDrawElementsIBM subroutine, the

glNormalPointer subroutine, the glPushClientAttrib or glPopClientAttrib subroutine, the

glTexCoordPointer subroutine, the glVertexPointer subroutine.

glSelectBuffer Subroutine

Purpose

Establishes a buffer for selection mode values.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glSelectBuffer(GLsizei Size,

 GLuint *Buffer)

Parameters

 Size Specifies the size of Buffer.

Buffer Returns the selection data.

Description

The glSelectBuffer subroutine has two arguments: the Buffer parameter is a pointer to an array of

unsigned integers, and the Size parameter indicates the size of the array. Buffer returns values from the

name stack when the rendering mode is GL_SELECT. (See the glInitNames subroutine for information on

initializing the name stack; the glLoadName subroutine for information on loading names onto the name

stack; the glPushName subroutine for pushing and popping the name stack; and the glRenderMode

subroutine for information on setting the rasterization mode.) The glSelectBuffer subroutine must be

issued before selection mode is enabled, and it must not be issued while the rendering mode is

GL_SELECT.

Selection is used by a programmer to determine which primitives are drawn into some region of a window.

The region is defined by the current modelview and perspective matrices.

In selection mode, no pixel fragments are produced from rasterization. Instead, if a primitive intersects the

clipping volume defined by the viewing frustum and the user-defined clipping planes, this primitive causes

a selection hit. (With polygons, no hit occurs if the polygon is culled.) When a change is made to the name

stack, or when the glRenderMode subroutine is called, a hit record is copied to Buffer if any hits have

occurred since the last such event (name stack change or glRenderMode call). The hit record consists of

Chapter 1. OpenGL Subroutines 305

the number of names in the name stack at the time of the event, followed by the minimum and maximum

depth values of all vertices that hit since the previous event, followed by the name stack contents, bottom

name first.

Returned depth values are mapped such that the largest unsigned integer value corresponds to window

coordinate depth 1.0, and 0 (zero) corresponds to window coordinate depth 0.0.

An internal index into Buffer is reset to 0 whenever selection mode is entered. Each time a hit record is

copied into Buffer, the index is incremented to point to the cell just past the end of the block of names,

that is, to the next available cell. If the hit record is larger than the number of remaining locations in Buffer,

as much data as can fit is copied, and the overflow flag is set. If the name stack is empty when a hit

record is copied, that record consists of 0 followed by the minimum and maximum depth values.

Selection mode is exited by calling glRenderMode with an argument other than GL_SELECT. Whenever

glRenderMode is called while the render mode is GL_SELECT, it returns the number of hit records

copied to Buffer, resets the overflow flag and the selection buffer pointer, and initializes the name stack to

be empty. If the overflow bit was set when glRenderMode was called, a negative hit record count is

returned.

Notes

The contents of Buffer are undefined until glRenderMode is called with an argument other than

GL_SELECT.

The glBegin/glEnd subroutine primitives and calls to glRasterPos can result in hits.

Errors

 GL_INVALID_VALUE Size is negative.

GL_INVALID_OPERATION The glSelectBuffer subroutine is called while the render mode is

GL_SELECT, or glRenderMode is called with the GL_SELECT argument

before glSelectBuffer is called at least once.

GL_INVALID_OPERATION The glSelectBuffer subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glSelectBuffer subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_NAME_STACK_DEPTH.

glGetPointerv with argument GL_SELECTION_BUFFER_POINTER.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glFeedbackBuffer subroutine, glGetPointerv subroutine, glInitNames

subroutine, glLoadName subroutine, glPushName subroutine, glRenderMode subroutine.

306 OpenGL 1.2 Reference Manual

glShadeModel Subroutine

Purpose

Selects flat or smooth shading.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glShadeModel(GLenum Mode)

Parameters

 Mode Specifies a symbolic value representing a shading technique. Accepted values are GL_FLAT and

GL_SMOOTH. The default is GL_SMOOTH.

Description

GL primitives can have either flat or smooth shading. Smooth shading, the default, causes the computed

colors of vertices to be interpolated as the primitive is rasterized, typically assigning different colors to

each resulting pixel fragment. Flat shading selects the computed color of just one vertex and assigns it to

all the pixel fragments generated by rasterizing a single primitive. In either case, the computed color of a

vertex is the result of lighting, if lighting is enabled, or it is the current color at the time the vertex was

specified, if lighting is disabled.

Flat and smooth shading are indistinguishable for points. Counting vertices and primitives from 1 (one)

starting when the glBegin subroutine is issued, each flat-shaded line segment i is given the computed

color of vertex i + 1, its second vertex. Counting similarly from 1, each flat-shaded polygon is given the

computed color of the vertex in the following list. This is the last vertex to specify the polygon in all cases

except single polygons, where the first vertex specifies the flat-shaded color.

 Primitive type of polygon i Vertex

Single polygon (i == 1) 1

Triangle strip i + 2

Triangle fan i + 2

Independent triangle 3 i

Quad strip 2 i + 2

Independent quad 4 i

Flat and smooth shading are specified by glShadeModel with the Mode parameter set to GL_FLAT and

GL_SMOOTH, respectively.

Errors

 GL_INVALID_ENUM Mode is any value other than GL_FLAT or GL_SMOOTH.

GL_INVALID_OPERATION The glShadeModel subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glShadeModel subroutine are as follows. (See the glGet subroutine for more

information.)

Chapter 1. OpenGL Subroutines 307

glGet with argument GL_SHADE_MODEL.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glColor subroutine, glLight subroutine, glLightModel subroutine.

glStencilFunc Subroutine

Purpose

Sets function and reference values for stencil testing.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glStencilFunc(GLenum Function,

 GLint Reference,

 GLuint Mask)

Parameters

 Function Specifies the test function. Eight tokens are valid:

v GL_NEVER

v GL_LESS

v GL_LEQUAL

v GL_GREATER

v GL_GEQUAL

v GL_EQUAL

v GL_NOTEQUAL

v GL_ALWAYS

Reference Specifies the reference value for the stencil test. Reference is clamped to the range [0,2n-1], where

n is the number of bit planes in the stencil buffer.

Mask Specifies a mask that is ANDed with both the reference value and the stored stencil value when

the test is done.

Description

Stenciling, like z-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil

planes using GL drawing primitives, and then render geometry and images, using the stencil planes to

mask out portions of the screen. Stenciling is typically used in multipass rendering algorithms to achieve

special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the

reference value and the value in the stencil buffer. The test is enabled by the glEnable and glDisable

subroutines with the GL_STENCIL argument. Actions taken based on the outcome of the stencil test are

specified with the glStencilOp subroutine.

308 OpenGL 1.2 Reference Manual

The Function parameter is a symbolic constant that determines the stencil comparison function. It accepts

one of the eight following values. The Reference parameter is an integer reference value that is used in

the stencil comparison. It is clamped to the range [0,2n-1], where n is the number of bit planes in the

stencil buffer. The Mask parameter is bitwise ANDed with both the reference value and the stored stencil

value, with the ANDed values participating in the comparison.

If stencil represents the value stored in the corresponding stencil buffer location, the following list shows

the effect of each comparison function that can be specified by the Function parameter. Only if the

comparison succeeds is the pixel passed through to the next stage in the rasterization process. (See the

glStencilOp subroutine for information on setting stencil test actions.) All tests treat stencil values as

unsigned integers in the range [0,2n-1], where n is the number of bit planes in the stencil buffer.

The following values are accepted by the Function parameter:

 GL_NEVER Always fails.

GL_LESS Passes if (Reference & Mask) is less than (stencil & Mask).

GL_LEQUAL Passes if (Reference & Mask) is less than or equal to (stencil & Mask).

GL_GREATER Passes if (Reference & Mask) is greater than (stencil & Mask).

GL_GEQUAL Passes if (Reference & Mask) is greater than or equal to (stencil & Mask).

GL_EQUAL Passes if (Reference & Mask) is equal to (stencil & Mask).

GL_NOTEQUAL Passes if (Reference & Mask) is not equal to (stencil & Mask).

GL_ALWAYS Always passes.

Notes

Initially, the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur and it is

as if the stencil test always passes.

Errors

 GL_INVALID_ENUM Function is not one of the eight accepted values.

GL_INVALID_OPERATION The glStencilFunc subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glStencilFunc subroutine are as follows. (See the glGet subroutine.)

glGet with argument GL_STENCIL_FUNC

glGet with argument GL_STENCIL_VALUE_MASK

glGet with argument GL_STENCIL_REF

glGet with argument GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Chapter 1. OpenGL Subroutines 309

Related Information

The glAlphaFunc subroutine, glBegin or glEnd subroutine, glBlendFunc subroutine, glDepthFunc

subroutine, glEnable or glDisable subroutine, glLogicOp subroutine, glStencilOp subroutine.

glStencilMask Subroutine

Purpose

Controls the writing of individual bits in the stencil planes.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glStencilMask(GLuint Mask)

Parameters

 Mask Specifies a bit mask to enable and disable writing of individual bits in the stencil planes. Initially, the mask is

all 1s.

Description

The glStencilMask subroutine controls the writing of individual bits in the stencil planes. The least

significant n bits of the Mask parameter, where n is the number of bits in the stencil buffer, specify a mask.

Wherever a 1 (one) appears in the mask, the corresponding bit in the stencil buffer is made writable.

Where a 0 (zero) appears, the bit is write-protected. Initially, all bits are enabled for writing.

Errors

 GL_INVALID_OPERATION The glStencilMask subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glStencilMask subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_STENCIL_WRITEMASK

glGet with argument GL_STENCIL_BITS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glColorMask subroutine, glDepthMask subroutine, glIndexMask

subroutine, glStencilFunc subroutine, glStencilOp subroutine.

310 OpenGL 1.2 Reference Manual

glStencilOp Subroutine

Purpose

Sets stencil test actions.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glStencilOp(GLenum Fail,

 GLenum zFail,

 GLenum zPass)

Parameters

 Fail Specifies the action to take when the stencil test fails. Six symbolic constants are accepted:

v GL_KEEP

v GL_ZERO

v GL_REPLACE

v GL_INCR

v GL_DECR

v GL_INCR_WRAP_EXT

v GL_DECR_WRAP_EXT

v GL_INVERT

zFail Specifies stencil action when the stencil test passes but the depth test fails. zFail accepts the same

symbolic constants as Fail.

zPass Specifies stencil action when both the stencil test and the depth test pass, or when the stencil test passes

and either there is no depth buffer or depth testing is not enabled. zPass accepts the same symbolic

constants as Fail.

Description

Stenciling, like z-buffering, enables and disables drawing on a per-pixel basis. You draw into the stencil

planes using GL drawing primitives, and then render geometry and images, using the stencil planes to

mask out portions of the screen. Stenciling is typically used in multipass rendering algorithms to achieve

special effects, such as decals, outlining, and constructive solid geometry rendering.

The stencil test conditionally eliminates a pixel based on the outcome of a comparison between the value

in the stencil buffer and a reference value. The test is enabled with the glEnable and glDisable

subroutine calls with the GL_STENCIL argument, and controlled with the glStencilFunc subroutine.

The glStencilOp subroutine takes three arguments that indicate what happens to the stored stencil value

while stenciling is enabled. If the stencil test fails, no change is made to the pixel’s color or depth buffers,

and the Fail parameter specifies what happens to the stencil buffer contents. The eight possible actions

are as follows:

 GL_KEEP Keeps the current value.

GL_ZERO Sets the stencil buffer value to 0 (zero).

GL_REPLACE Sets the stencil buffer value to the Reference parameter, as specified by the

glStencilFunc subroutine.

GL_INCR Increments the current stencil buffer value. Clamps to the maximum representable

unsigned value.

GL_DECR Decrements the current stencil buffer value. Clamps to 0.

Chapter 1. OpenGL Subroutines 311

GL_INCR_WRAP_EXT Increments the current stencil buffer value. A GL_INCR_WRAP_EXT on the

maximum representable unsigned value yields a 0 value.

GL_DECR_WRAP_EXT Decrements the current stencil buffer value. A GL_DECR_WRAP_EXT on 0 yields

the maximum representable unsigned value.

GL_INVERT Bitwise inverts the current stencil buffer value.

Stencil buffer values are treated as unsigned integers. The maximum representable value is 2n-1, where n

is the value returned by querying GL_STENCIL_BITS.

The other two arguments to glStencilOp specify stencil buffer actions should subsequent depth buffer

tests succeed (the zPass parameter) or fail (the zFail parameter). (See the glDepthFunc for information

about specifying the function used for depth buffer comparisons.) They are specified using the same eight

symbolic constants as the Fail parameter. Note that the zFail parameter is ignored when there is no depth

buffer, or when the depth buffer is not enabled. In these cases, the Fail and zPass parameters specify

stencil action when the stencil test fails and passes, respectively.

Notes

Initially the stencil test is disabled. If there is no stencil buffer, no stencil modification can occur and it is as

if the stencil tests always pass, regardless of any call to the glStencilOp subroutine.

The GL_INCR_WRAP_EXT and GL_DECR_WRAP_EXT stencil actions are only supported if the

GL_EXT_stencil_wrap extension is supported.

Errors

 GL_INVALID_ENUM Fail, zFail, or zPass is any value other than the eight defined constant values.

GL_INVALID_OPERATION The glStencilOp subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glStencilOp subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_STENCIL_FAIL

glGet with argument GL_STENCIL_PASS_DEPTH_PASS

glGet with argument GL_STENCIL_PASS_DEPTH_FAIL

glGet with argument GL_STENCIL_BITS

glIsEnabled with argument GL_STENCIL_TEST.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glAlphaFunc subroutine, glBegin or glEnd subroutine, glBlendFunc subroutine, glDepthFunc

subroutine, glEnable or glDisable subroutine, glLogicOp subroutine, glStencilFunc subroutine.

312 OpenGL 1.2 Reference Manual

glTexCoord Subroutine

Purpose

Sets the current texture coordinates.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexCoord1d(GLdouble S)

void glTexCoord1f(GLfloat S)

void glTexCoord1i(GLint S)

void glTexCoord1s(GLshort S)

void glTexCoord2d(GLdouble S,

 GLdouble T)

void glTexCoord2f(GLfloat S,

 GLfloat T)

void glTexCoord2i(GLint S,

 GLint T)

void glTexCoord2s(GLshort S,

 GLshort T)

void glTexCoord3d(GLdouble S,

 GLdouble T,

 GLdouble R)

void glTexCoord3f(GLfloat S,

 GLfloat T,

 GLfloat R)

void glTexCoord3i(GLint S,

 GLint T,

 GLint R)

void glTexCoord3s(GLshort S,

 GLshort T,

 GLshort R)

void glTexCoord4d(GLdouble S,

 GLdouble T,

 GLdouble R,

 GLdouble Q)

void glTexCoord4f(GLfloat S,

 GLfloat T,

 GLfloat R,

 GLfloat Q)

Chapter 1. OpenGL Subroutines 313

void glTexCoord4i(GLint S,

 GLint T,

 GLint R,

 GLint Q)

void glTexCoord4s(GLshort S,

 GLshort T,

 GLshort R,

 GLshort Q)

void glTexCoord1dv(const GLdouble * V)

void glTexCoord1fv(const GLfloat * V)

void glTexCoord1iv(const GLint * V)

void glTexCoord1sv(const GLshort * V)

void glTexCoord2dv(const GLdouble * V)

void glTexCoord2fv(const GLfloat * V)

void glTexCoord2iv(const GLint * V)

void glTexCoord2sv(const GLshort * V)

void glTexCoord3dv(const GLdouble * V)

void glTexCoord3fv(const GLfloat * V)

void glTexCoord3iv(const GLint * V)

void glTexCoord3sv(const GLshort * V)

void glTexCoord4dv(const GLdouble * V)

void glTexCoord4fv(const GLfloat * V)

void glTexCoord4iv(const GLint * V)

void glTexCoord4sv(const GLshort * V)

Parameters

 S, T, R, Q Specify S, T, R, and A texture coordinates. Not all parameters are present in all forms of the

command.

V Specifies a pointer to an array of one, two, three, or four elements, which in turn specify the S, T,

R, and Q texture coordinates.

Description

The glTexCoord subroutine specifies texture coordinates in one, two, three, or four dimensions. The

glTexCoord1 subroutine sets the current texture coordinates to (S,0,0,1); a call to glTexCoord2 sets them

to (S,T,0,1). Similarly, glTexCoord3 specifies the texture coordinates as (S,T,R,1), and glTexCoord4

defines all four components explicitly as (S,T,R,Q).

314 OpenGL 1.2 Reference Manual

The current texture coordinates are part of the data that is associated with each vertex and with the

current raster position. Initially, the values for S, T, R, and Q are (0, 0, 0, 1).

Notes

The current texture coordinates can be updated at any time. In particular, the glTexCoord subroutine can

be called between a call to glBegin and the corresponding call to glEnd.

If the GL_ARB_multitexture extension is present, then there will be multiple texture units present. This

call will only affect the current textrue coordinate on Texture Unit 0. Use glMultiTexCoord*ARB to affect

texture coordinates on other Texture Units.

Associated Gets

Associated gets for the glTexCoord subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_CURRENT_TEXTURE_COORDS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glTexCoordPointer subroutine, glTexCoordPointerEXT subroutine,

glVertex subroutine.

glTexCoordColorNormalVertexSUN Subroutine

Purpose

Specifies a texture coordinate, a color, a normal and a vertex in one call.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glTexCoord2fColor4fNormal3fVertex3fSUN (GLfloat s,

 GLfloat t,

 GLfloat r,

 GLfloat g,

 GLfloat b,

 GLfloat a,

 GLfloat nx,

 GLfloat ny,

 GLfloat nz,

 GLfloat x,

 GLfloat y,

 GLfloat z)

void glTexCoord2fColor4fNormal3fVertex3fvSUN (const GLfloat *tc,

 const GLfloat *c,

 const GLfloat *n,

 const GLfloat *v)

Chapter 1. OpenGL Subroutines 315

void glTexCoord4fColor4fNormal3fVertex4fSUN (GLfloat s,

 GLfloat t,

 GLfloat p,

 GLfloat q,

 GLfloat r,

 GLfloat g,

 GLfloat b,

 GLfloat a,

 GLfloat nx,

 GLfloat ny,

 GLfloat nz,

 GLfloat x,

 GLfloat y,

 GLfloat z,

 GLfloat w)

void glTexCoord4fColor4fNormal3fVertex4fvSUN (const GLfloat *tc,

 const GLfloat *c,

 const GLfloat *n,

 const GLfloat *v)

Description

This subroutine can be used as a replacement for the following calls:

 glTexCoord();

 glColor();

 glNormal();

 glVertex();

For example:

glTexCoord4fColor4fNormal3fVertex4fvSUN replaces the following calls:

 glTexCoord4f();

 glColor4f();

 glNormal3f();

 glVertex4fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

 s, t, p, q Specifies the s, t, p, and q components of the texture

coordinate for this vertex. Not all parameters are present

in all forms of the command.

tc Specifies a pointer to an array of texture coordinate

values. The elements of a two-element array are s and t.

The elements of a four-element array are s, t, p, and q.

r, g, b, a Specifies the r, g, b, and a components of the color for

this vertex.

c Specifies a pointer to an array of the four components r,

g, b, and a.

nx, ny, nz Specifies the x, y, and z coordinates of the normal vector

for this vertex.

n Specifies a pointer to an array of the three elements nx,

ny and nz.

x, y, z, w Specifies the x, y, z, and w coordinates of a vertex. Not all

parameters are present in all forms of the command.

316 OpenGL 1.2 Reference Manual

v Specifies a pointer to an array of vertex coordinates. The

elements of a three-element array are x, y, and z. The

elements of a four-element array are x, y, z, and w.

Notes

Calling glTexCoordColorNormalVertexSUN outside of a glBegin/glEnd subroutine pair results in

undefined behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, the glColor subroutine, the glNormal subroutine, the glTexCoord

subroutine, the glVertex subroutine.

glTexCoordColorVertexSUN Subroutine

Purpose

Specifies a texture coordinate, a color, and a vertex in one call.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

extern void glTexCoord2fColor4ubVertex3fSUN (GLfloat s,

 GLfloat t,

 GLubyte r,

 GLubyte g,

 GLubyte b,

 GLubyte a,

 GLfloat x,

 GLfloat y,

 GLfloat z)

extern void glTexCoord2fColor4ubVertex3fvSUN (const GLfloat *tc,

 const GLubyte *c,

 const GLfloat *v)

extern void glTexCoord2fColor3fVertex3fSUN (GLfloat s,

 GLfloat t,

 GLfloat r,

 GLfloat g,

 GLfloat b,

 GLfloat x,

 GLfloat y,

 GLfloat z)

extern void glTexCoord2fColor3fVertex3fvSUN (const GLfloat *tc,

 const GLfloat *c,

 const GLfloat *v)

Chapter 1. OpenGL Subroutines 317

Description

This subroutine can be used as a replacement for the following calls:

 glTexCoord();

 glColor();

 glVertex();

For example, glTexCoord2fColor3fVertex3fvSUN replaces the following calls:

 glTexCoord2f();

 glColor3f();

 glVertex3fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

 s, t Specifies the s and t components of the texture coordinate

for this vertex.

tc Specifies a pointer to an array of texture coordinate

values. The elements of a two-element array are s and t.

The elements of a four-element array are s, t, p, and q.

r, g, b, a Specifies the red, green, blue, and alpha components of a

color. Not all parameters are present in all forms of the

command.

c Specifies a pointer to an array of three or four elements.

The elements of a three-element array are r, g, and b.

The elements of a four-element array are r, g, b, and a.

x, y, z Specifies the x, y, and z coordinates of a vertex.

v Specifies a pointer to an array of the three elements x, y,

and z.

Notes

Calling glTexCoordColorVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined

behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, the glColor subroutine, the glNormal subroutine, the glTexCoord

subroutine, the glVertex subroutine.

glTexCoordNormalVertexSUN Subroutine

Purpose

Specifies a texture coordinate, a normal and a vertex in one call.

Library

OpenGL C bindings library: (libGL.a)

318 OpenGL 1.2 Reference Manual

C Syntax

void glTexCoord2fNormal3fVertex3fSUN (GLfloat s,

 GLfloat t,

 GLfloat nx,

 GLfloat ny,

 GLfloat nz,

 GLfloat x,

 GLfloat y,

 GLfloat z)

void glTexCoord2fNormal3fVertex3fvSUN (const GLfloat *tc,

 const GLfloat *n,

 const GLfloat *v)

Description

This subroutine can be used as a replacement for the following calls:

 glTexCoord();

 glNormal();

 glVertex();

For example, glTexCoord2fNormal3fVertex3fvSUN replaces the following calls:

 glTexCoord2f();

 glNormal3f();

 glVertex3fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

 s, t Specifies the texture coordinate s and t values.

tc Specifies a pointer to an array of the two texture coordinate values s and t.

x, y, z Specifies the x, y, and z coordinates of a vertex.

v Specifies a pointer to an array of the three elements x, y, and z.

nx, ny, nz Specifies the x, y, and z coordinates of the normal vector for this vertex.

n Specifies a pointer to an array of the three elements nx, ny and nz.

Notes

Calling glTexCoordNormalVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined

behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, the glColor subroutine, the glNormal subroutine, the glTexCoord

subroutine, the glVertex subroutine.

Chapter 1. OpenGL Subroutines 319

glTexCoordPointer Subroutine

Purpose

Defines an array of texture coordinates.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexCoordPointer(GLint size,

 GLenum type,

 GLsizei stride,

 const GLvoid * pointer)

Description

The glTexCoordPointer subroutine specifies the location and data format of an array of texture

coordinates to use when rendering. The size parameter specifies the number of coordinates per element,

and must be 1, 2, 3, or 4. The type parameter specifies the data type of each texture coordinate and stride

gives the byte stride from one array element to the next allowing vertices and attributes to be packed into

a single array or stored in separate arrays. (Single array storage may be more efficient on some

implementations; see glInterleavedArrays). When a texture coordinate array is specified, size, type,

stride, and pointer are saved client side state.

To enable and disable the texture coordinate array, call glEnableClientState and glDisableClientState

with the argument GL_TEXTURE_COORD_ARRAY. If enabled, the texture coordinate array is used when

glDrawArrays, glDrawElements or glArrayElement is called.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Tex Coord array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 size Specifies the number of coordinates per array element. Must be 1, 2, 3 or 4. The initial value is 4.

type Specifies the data type of each texture coordinate. Symbolic constants GL_SHORT, GL_INT,

GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive array elements. If stride is 0, the array elements are

understood to be tightly packed. The initial value is 0.

pointer Specifies a pointer to the first coordinate of the first element in the array. The initial value is 0 (NULL

pointer).

Notes

The glTexCoordPointer subroutine is available only if the GL version is 1.1 or greater.

The texture coordinate array is initially disabled and it won’t be accessed when glArrayElement,

glDrawElements or glDrawArrays is called.

320 OpenGL 1.2 Reference Manual

Execution of glTexCoordPointer is not allowed between glBegin and the corresponding glEnd, but an

error may or may not be generated. If an error is not generated, the operation is undefined.

The glTexCoordPointer subroutine is typically implemented on the client side with no protocol.

Since the texture coordinate array parameters are client side state, they are not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glTexCoordPointer subroutine is not included in display lists.

Errors

v GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4.

v GL_INVALID_ENUM is generated if type is not an accepted value.

v GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

v glIsEnabled with argument GL_TEXTURE_COORD_ARRAY

v glGet with argument GL_TEXTURE_COORD_ARRAY_SIZE

v glGet with argument GL_TEXTURE_COORD_ARRAY_TYPE

v glGetPointerv with argument GL_TEXTURE_COORD_ARRAY_POINTER

Related Information

The glArrayElement subroutine, glClientActiveTextureARB subroutine, glColorPointer subroutine,

glDrawArrays subroutine, glDrawElements subroutine, glDrawRangeElements subroutine,

glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv subroutine, glIndexPointer

subroutine, glNormalPointer subroutine, glPopClientAttrib subroutine, glPushClientAttrib subroutine,

glTexCoord subroutine, glTexCoordPointerListIBM subroutine, glVertexPointer subroutine.

glTexCoordPointerEXT Subroutine

Purpose

Defines an array of texture coordinates.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexCoordPointerEXT(GLint size,

 GLenum type,

 GLsizei stride,

 GLsizei count,

 const GLvoid *pointer)

Parameters

 size Specifies the number of coordinates per array element. It must be 1, 2, 3 or 4.

type Specifies the data type of each texture coordinate. Symbolic constants GL_SHORT, GL_INT,

GL_FLOAT, or GL_DOUBLE_EXT, are accepted.

stride Specifies the byte offset between consecutive array elements. If stride is zero the array elements are

understood to be tightly packed.

count Specifies the number of array elements, counting from the first, that are static.

Chapter 1. OpenGL Subroutines 321

pointer Specifies a pointer to the first coordinate of the first element in the array.

Description

glTexCoordPointerEXT specifies the location and data format of an array of texture coordinates to use

when rendering. size specifies the number of coordinates per element, and must be 1, 2, 3, or 4. type

specifies the data type of each texture coordinate and stride gives the byte stride from one array element

to the next allowing vertexes and attributes to be packed into a single array or stored in separate arrays.

(Single-array storage may be more efficient on some implementations.) count indicates the number of

array elements (counting from the first) that are static. Static elements may be modified by the application,

but once they are modified, the application must explicitly respecify the array before using it for any

rendering. When a texture coordinate array is specified, size, type, stride, count, and pointer are saved as

client-side state, and static array elements may be cached by the implementation.

The texture coordinate array is enabled and disabled using glEnable and glDisable with the argument

GL_TEXTURE_COORD_ARRAY_EXT. If enabled, the texture coordinate array is used when

glDrawArraysEXT or glArrayElementEXT is called.

Notes

Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the texture coordinate array is disabled and it won’t be accessed when glArrayElementEXT or

glDrawArraysEXT is called.

Although, it is not an error to call glTexCoordPointerEXT between the execution of glBegin and the

corresponding execution of glEnd, the results are undefined.

glTexCoordPointerEXT will typically be implemented on the client side with no protocol.

Since the texture coordinate array parameters are client side state, they are not saved or restored by

glPushAttrib and glPopAttrib.

glTexCoordPointerEXT commands are not entered into display lists.

glTexCoordPointerEXT is part of the _extname(EXT_vertex_array) extension, not part of the core GL

command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString, when

called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Tex Coord array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Errors

GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4.

GL_INVALID_ENUM is generated if type is not an accepted value.

GL_INVALID_VALUE is generated if stride or count is negative

322 OpenGL 1.2 Reference Manual

Associated Gets

glIsEnabled with argument GL_TEXTURE_COORD_ARRAY_EXT

glGet with argument GL_TEXTURE_COORD_ARRAY_SIZE_EXT

glGet with argument GL_TEXTURE_COORD_ARRAY_TYPE_EXT

glGet with argument GL_TEXTURE_COORD_ARRAY_STRIDE_EXT

glGet with argument GL_TEXTURE_COORD_ARRAY_COUNT_EXT

glGetPointervEXT with argument GL_TEXTURE_COORD_ARRAY_POINTER_EXT

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElementEXT subroutine, glColorPointerEXT subroutine, glDrawArraysEXT subroutine,

glEdgeFlagPointerEXT subroutine, glGetPointervEXT subroutine, glIndexPointerEXT subroutine,

glNormalPointerEXT subroutine, glVertexPointerEXT subroutine.

glTexCoordPointerListIBM Subroutine

Purpose

Defines a list of texture coordinate arrays.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexCoordPointerListIBM(GLint size,

 GLenum type,

 GLint stride,

 const GLvoid ** pointer,

 GLint ptrstride)

Description

The glTexCoordPointerListIBM subroutine specifies the location and data format of a list of arrays of

texture coordinate components to use when rendering. The size parameter specifies the number of

components per texture coordinate, and must be 1, 2, 3 or 4. The type parameter specifies the data type

of each texture coordinate component. The stride parameter gives the byte stride from one texture

coordinate to the next allowing vertices and attributes to be packed into a single array or stored in

separate arrays. (Single-array storage may be more efficient on some implementations; see

glInterleavedArrays). The ptrstride parameter specifies the byte stride from one pointer to the next in the

pointer array.

When a texture coordinate array is specified, size, type, stride, pointer and ptrstride are saved as client

side state.

Chapter 1. OpenGL Subroutines 323

A stride value of 0 does not specify a “tightly packed” array as it does in glTexCoordPointer. Instead, it

causes the first array element of each array to be used for each vertex. Also, a negative value can be

used for stride, which allows the user to move through each array in reverse order.

To enable and disable the texture coordinate arrays, call glEnableClientState and glDisableClientState

with the argument GL_TEXTURE_COORD_ARRAY. The texture coordinate array is initially disabled.

When enabled, the texture coordinate arrays are used when glMultiDrawArraysEXT,

glMultiDrawElementsEXT, glMultiModeDrawArraysIBM, glMultiModeDrawElementsIBM,

glDrawArrays, glDrawElements or glArrayElement is called. The last three calls in this list will only use

the first array (the one pointed at by pointer[0]). See the descriptions of these routines for more information

on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Tex Coord array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 size Specifies the number of components per texture coordinate. It must be 1, 2, 3 or 4. The initial value

is 4.

type Specifies the data type of each texture coordinate component in the array. Symbolic constants

GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,

GL_UNSIGNED_INT, GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive texture coordinates. The initial value is 0.

pointer Specifies a list of texture coordinate arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.

Notes

The glTexCoordPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is

supported.

Execution of glTexCoordPointerListIBM is not allowed between glBegin and the corresponding glEnd,

but an error may or may not be generated. If an error is not generated, the operation is undefined.

The glTexCoordPointerListIBM subroutine is typically implemented on the client side.

Since the texture coordinate array parameters are client side state, they are not saved or restored by

glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glTexCoordPointerListIBM call is encountered while compiling a display list, the information it

contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glTexCoordPointer call and the glTexCoordPointerListIBM call share the same state variables. A

glTexCoordPointer call will reset the texture coordinate list state to indicate that there is only one texture

coordinate list, so that any and all lists specified by a previous glTexCoordPointerListIBM call will be lost,

not just the first list that it specified.

324 OpenGL 1.2 Reference Manual

Error Codes

v GL_INVALID_VALUE is generated if size is not 1, 2, 3 or 4.

v GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets

v glIsEnabled with argument GL_TEXTURE_COORD_ARRAY

v glGetPointerv with argument GL_TEXTURE_COORD_ARRAY_LIST_IBM

v glGet with argument GL_TEXTURE_COORD_ARRAY_LIST_STRIDE_IBM

v glGet with argument GL_TEXTURE_COORD_ARRAY_SIZE

v glGet with argument GL_TEXTURE_COORD_ARRAY_STRIDE

v glGet with argument GL_TEXTURE_COORD_ARRAY_TYPE

Related Information

The glArrayElement subroutine, glClientActiveTextureARB subroutine, glDrawArrays subroutine,

glDrawElements subroutine, glDrawRangeElements subroutine, glEdgeFlagPointer subroutine,

glEnable subroutine, glGetPointerv subroutine, glIndexPointer subroutine, glInterleavedArrays

subroutine, glMultiDrawArraysEXT subroutine, glMultiDrawElementsEXT subroutine,

glMultiModeDrawArraysIBM subroutine, glMultiModeDrawElementsIBM subroutine, glNormalPointer

subroutine, glPopClientAttrib subroutine, glPushClientAttrib subroutine, glTexCoordPointer subroutine,

glVertexPointer subroutine.

glTexCoordVertexSUN Subroutine

Purpose

Specifies a texture coordinate and a vertex in one call.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glTexCoord2fVertex3fSUN (GLfloat s,

 GLfloat t,

 GLfloat x,

 GLfloat y,

 GLfloat z)

void glTexCoord2fVertex3fvSUN (const GLfloat *tc,

 const GLfloat *v)

void glTexCoord4fVertex4fSUN (GLfloat s,

 GLfloat t,

 GLfloat p,

 GLfloat q,

 GLfloat x,

 GLfloat y,

 GLfloat z,

 GLfloat w)

void glTexCoord4fVertex4fvSUN (const GLfloat *tc,

 const GLfloat *v)

Description

This subroutine can be used as a replacement for the following calls:

Chapter 1. OpenGL Subroutines 325

glTexCoord();

 glVertex();

For example, glTexCoord4fVertex4fvSUN replaces the following calls:

 glTexCoord4f();

 glVertex4fv();

The only reason for using this call is that it reduces the use of bus bandwidth.

Parameters

 s, t, p, q Specifies the s, t, p, and q components of the texture

coordinate for this vertex. Not all parameters are present

in all forms of the command.

tc Specifies a pointer to an array of texture coordinate

values. The elements of a two-element array are s and t.

The elements of a four-element array are s, t, p, and q.

x, y, z, w Specifies the x, y, z, and w coordinates of a vertex. Not all

parameters are present in all forms of the command.

v Specifies a pointer to an array of vertex coordinates. The

elements of a three-element array are x, y, and z. The

elements of a four-element array are x, y, z, and w.

Notes

Calling glTexCoordVertexSUN outside of a glBegin/glEnd subroutine pair results in undefined behavior.

This subroutine is only valid if the GL_SUN_vertex extension is defined.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, the glColor subroutine, the glNormal subroutine, the glTexCoord

subroutine, the glVertex subroutine.

glTexEnv Subroutine

Purpose

Sets texture environment parameters.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexEnvf(GLenum Target,

 GLenum pName,

 GLfloat Parameter)

326 OpenGL 1.2 Reference Manual

void glTexEnvi(GLenum Target,

 GLenum pName,

 GLint Parameter)

void glTexEnvfv(GLenum Target,

 GLenum pName,

 const GLfloat * Parameters)

void glTexEnviv(GLenum Target,

 GLenum pName,

 const GLint * Parameters)

Parameters

glTexEnvf or glTexEnvi

 Target Specifies a texture environment. Must be

GL_TEXTURE_ENV.

pName Specifies the symbolic name of a single-valued texture

environment parameter. Accepted values are:

v GL_TEXTURE_ENV_MODE

v GL_COMBINE_RGB_EXT

v GL_COMBINE_ALPHA_EXT

v GL_SOURCE0_RGB_EXT

v GL_SOURCE1_RGB_EXT

v GL_SOURCE2_RGB_EXT

v GL_SOURCE0_ALPHA_EXT

v GL_SOURCE1_ALPHA_EXT

v GL_SOURCE2_ALPHA_EXT

v GL_OPERAND0_RGB_EXT

v GL_OPERAND1_RGB_EXT

v GL_OPERAND2_RGB_EXT

v GL_OPERAND0_ALPHA_EXT

v GL_OPERAND1_ALPHA_EXT

v GL_OPERAND2_ALPHA_EXT

v GL_RGB_SCALE_EXT, or

v GL_ALPHA_SCALE

Parameter Specifies a single symbolic constant, one of

GL_MODULATE, GL_DECAL, GL_BLEND,

GL_COMBINE_EXT, GL_ADD, GL_REPLACE,

GL_ADD_SIGNED_EXT or GL_INTERPOLATE_EXT.

glTexEnvfv or glTexEnviv

 Target Specifies a texture environment. Must be GL_TEXTURE_ENV.

Chapter 1. OpenGL Subroutines 327

pName Specifies the symbolic name of a texture environment parameter. Accepted values are:

v GL_TEXTURE_ENV_MODE

v GL_TEXTURE_ENV_COLOR

v GL_COMBINE_RGB_EXT

v GL_COMBINE_ALPHA_EXT

v GL_SOURCE0_RGB_EXT

v GL_SOURCE1_RGB_EXT

v GL_SOURCE2_RGB_EXT

v GL_SOURCE0_ALPHA_EXT

v GL_SOURCE1_ALPHA_EXT

v GL_SOURCE2_ALPHA_EXT

v GL_OPERAND0_RGB_EXT

v GL_OPERAND1_RGB_EXT

v GL_OPERAND2_RGB_EXT

v GL_OPERAND0_ALPHA_EXT

v GL_OPERAND1_ALPHA_EXT

v GL_OPERAND2_ALPHA_EXT

v GL_RGB_SCALE_EXT

v GL_ALPHA_SCALE

Parameters Specifies a pointer to an array of parameters: either a single symbolic constant or an RGBA

color.

Description

A texture environment specifies how texture values are interpreted when a fragment is textured.

If the pName parameter is GL_TEXTURE_ENV_MODE, the Parameter(s) parameter is (or points to) the

symbolic name of a texture function. Six texture functions are defined: GL_MODULATE, GL_DECAL,

GL_BLEND, GL_REPLACE, GL_ADD or GL_COMBINE. GL_TEXTURE_ENV_MODE defaults to

GL_MODULATE

If the pName parameter is GL_TEXTURE_ENV_COLOR, the Parameters parameter is a pointer to an

array that holds an RGBA color consisting of four values. Integer color components are interpreted linearly

such that the most positive integer maps to 1.0, and the most negative integer maps to -1.0. The values

are clamped to the range [0,1] when they are specified. Cc (see tables below) takes these four values.

GL_TEXTURE_ENV_COLOR defaults to (0,0,0,0).

If the pName parameter is GL_COMBINE_RGB_EXT or GL_COMBINE_ALPHA_EXT, the Parameter(s)

parameter is (or points to) the symbolic name of a texture function. Five texture functions are defined:

GL_MODULATE, GL_REPLACE, GL_ADD, GL_ADD_SIGNED_EXT or GL_INTERPOLATE_EXT. The

default value for these pNames is GL_MODULATE.

If the pName parameter is GL_SOURCE0_RGB_EXT, GL_SOURCE1_RGB_EXT,

GL_SOURCE2_RGB_EXT, GL_SOURCE0_ALPHA_EXT, GL_SOURCE1_ALPHA_EXT, or

GL_SOURCE2_ALPHA_EXT, the Parameter(s) parameter is (or points to) the symbolic name of a texture

operator. Four texture operators are defined: GL_TEXTURE, GL_CONSTANT_EXT,

GL_PRIMARY_COLOR_EXT, or GL_PREVIOUS_EXT. The default value for these pNames are shown in

the following table:

 Parameter Default value

GL_SOURCE0_RGB_EXT GL_TEXTURE

GL_SOURCE1_RGB_EXT GL_PREVIOUS_EXT

328 OpenGL 1.2 Reference Manual

Parameter Default value

GL_SOURCE2_RGB_EXT GL_CONSTANT_EXT

GL_SOURCE0_ALPHA_EXT GL_TEXTURE

GL_SOURCE1_ALPHA_EXT GL_PREVIOUS_EXT

GL_SOURCE2_ALPHA_EXT GL_CONSTANT_EXT

If the pName parameter is GL_OPERAND0_RGB_EXT, or GL_OPERAND1_RGB_EXT, the Parameter(s)

parameter is (or points to) the symbolic name of a texture operand. Four texture operands are defined:

GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA, or

GL_ONE_MINUS_SRC_ALPHA. The default value for these pNames is GL_SRC_COLOR.

If the pName parameter is GL_OPERAND0_ALPHA_EXT, or GL_OPERAND1_ALPHA_EXT, the

Parameter(s) parameter is (or points to) the symbolic name of a texture operand. Two texture operands

are defined: GL_SRC_ALPHA, or GL_ONE_MINUS_SRC_ALPHA. The default value for these pNames is

GL_SRC_ALPHA.

If the pName parameter is GL_OPERAND2_RGB_EXT, or GL_OPERAND2_ALPHA_EXT, the

Parameter(s) parameter is (or points to) the symbolic name of a texture operand. One texture operand is

defined: GL_SRC_ALPHA.

If the pName parameter is GL_RGB_SCALE_EXT, or GL_ALPHA_SCALE, the Parameter(s) parameter is

(or points to) a floating-point scale factor. Only three such scale factors are valid: 1.0, 2.0, and 4.0. The

default value is 1.0.

A texture function acts on the fragment to be textured using the texture image value that applies to the

fragment and produces a red, green, blue, alpha (RGBA) color for that fragment. (See the

glTexParameter subroutine for details on setting texture parameters.)

A texture image can have up to four components per texture element. (See the glTexImage1D subroutine,

the glTexImage2D subroutine, and the glTexImage3DEXT subroutine.) In a one-component image, Lt

indicates that single component. A two-component image uses Lt and At. A three-component image has

only a color value, Ct. A four-component image has both a color value, Ct, and an alpha value, At.

The following table shows how the RGBA color is produced when the GL_TEXTURE_ENV_MODE is NOT

GL_COMBINE_EXT. C is a triple of color values (RGB) and A is the associated alpha value. RGBA values

extracted from a texture image are in the range [0,1]. The subscript f refers to the incoming fragment, the

subscript t to the texture image, the subscript c to the texture environment color, and subscript v indicates

a value produced by the texture function.

Note: In the following table, ″It″ equals the texture intensity.

 Texture Functions

Internal Formats GL_ MODULATE GL_ DECAL GL_ BLEND GL_ REPLACE GL_ ADD

GL_ LUMINANCE

or 1

Cv=LtCf Av=Af undefined Cv=(1-
<I>Lt) Cf+LtCc

Av=Af

Cv=Lt Av=Af Cv=Cf+Lt Av=Af

GL_

LUMINANCE_

ALPHA or 2

Cv=LtCf Av=AtAf undefined Cv=(1-
Lt) Cf+LtCc

Av=AtAf

Cv=Lt Av=At Cv=Cf+Lt Av=AfAt

GL_ RGB or 3 Cv=CtCf Av=Af Cv=Ct Av=Af Cv=(1-
Ct) Cf+CtCc

Av=Af

Cv=Ct Av=Af Cv=Cf+Ct Av=Af

Chapter 1. OpenGL Subroutines 329

Texture Functions

Internal Formats GL_ MODULATE GL_ DECAL GL_ BLEND GL_ REPLACE GL_ ADD

GL_ RGBA or 4 Cv=CtCf Av=AtAf Cv=(1-
At) Cf+AtCt

Av=Af

Cv=(1-
Ct) Cf+CtCc

Av=AtAf

Cv=Ct Av=At Cv=Cf+Ct

Av=AfAt

GL_ INTENSITY Cv=ItCf Av=ItAf undefined Cv=(1-It) Cf+ItCc

Av=(1-It) Af+ItAc

Cv=It Av=It Cv=Cf+It Av=Af+It

GL_ ALPHA Cv=Cf Av=AtAf undefined Cv=Cf Av=AtAf Cv=Cf Av=At Cv=Cf Av=AfAt

If the value of GL_TEXTURE_ENV_MODE is GL_COMBINE_EXT, the form of the texture function

depends on the values of GL_COMBINE_RGB_EXT and GL_COMBINE_ALPHA_EXT, according to the

following table:

 Combine Function Texture Function

GL_REPLACE Arg0

GL_MODULATE Arg0 * Arg1

GL_ADD Arg0 + Arg1

GL_ADD_SIGNED_EXT Arg0 + Arg1 - 0.5

GL_INTERPOLATE_EXT Arg0 * (Arg2) + Arg1 * (1-Arg2)

The RGB and ALPHA results of the texture function are then multiplied by the values of

GL_RGB_SCALE_EXT and GL_ALPHA_SCALE, respectively. The results are clamped to [0,1].

The arguments Arg0, Arg1 and Arg2 are determined by the values of GL_SOURCE(n)_RGB_EXT,

GL_SOURCE(n)_ALPHA_EXT, GL_OPERAND(n)_RGB_EXT and GL_OPERAND(n)_ALPHA_EXT. In

the following two tables, Ct and At are the filtered texture RGB and alpha values; Cc and Ac are the

texture environment RGB and alpha values; Cf and Af are the RGB and alpha of the primary color of the

incoming fragment; and Cp and Ap are the RGB and alpha values resulting from the previous texture

environment. On texture unit 0, Cp and Ap are identical to Cf and Af, respectively. The relationship is

described in the following two tables:

 GL_ SOURCE(n)_

RGB_ EXT

GL_ SRC_ COLOR GL_ ONE_ MINUS_

SRC_ COLOR

GL_ SRC_ ALPHA GL_ ONE_ MINUS_

SRC_ ALPHA

GL_ TEXTURE Ct (1-Ct) At (1-At)

GL_ CONSTANT_

EXT

Cc (1-Cc) Ac (1-Ac)

GL_ PRIMARY_

COLOR_ EXT

Cf (1-Cf) Af (1-Af)

GL_ PREVIOUS_

EXT

Cp (1-Cp) Ap (1-Ap)

 GL_SOURCE(n)_ALPHA_EXT GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA

GL_TEXTURE At (1-At)

GL_CONSTANT_EXT Ac (1-Ac)

GL_PRIMARY_COLOR_EXT Af (1-Af)

GL_PREVIOUS_EXT Ap (1-Ap)

330 OpenGL 1.2 Reference Manual

The mapping of texture components to source components is summarized in the following table, where At,

Lt, It, Rt, Gt and Bt are the filtered texel values.

 Base Internal Format> RGB Values Alpha Value

GL_ALPHA 0, 0, 0 At

GL_LUMINANCE Lt, Lt, Lt 1

GL_LUMINANCE_ALPHA Lt, Lt, Lt At

GL_INTENSITY It, It, It It

GL_RGB Rt, Gt, Bt 1

GL_RGBA Rt, Gt, Bt At

Notes

GL_ADD is only valid if the GL_EXT_texture_env_add extension is present.

GL_COMBINE_EXT, GL_ADD_SIGNED_EXT, GL_INTERPOLATE_EXT, GL_COMBINE_RGB_EXT,

GL_COMBINE_ALPHA_EXT,GL_SOURCEn_RGB_EXT, GL_SOURCEn_ALPHA_EXT,

GL_OPERANDn_RGB_EXT, GL_OPERANDn_ALPHA_EXT, GL_RGB_SCALE_EXT, and

GL_ALPHA_SCALE are only valid if the GL_EXT_texture_env_combine extension is present.

Error Codes

 GL_INVALID_ENUM Target or pName is not one of the accepted defined values, or Parameters

should have a defined constant value (based on the value of pName) and

does not.

INVALID_ENUM The Parameter(s) value for GL_COMBINE_RGB_EXT or

GL_COMBINE_ALPHA_EXT is not one of GL_REPLACE, GL_MODULATE,

GL_ADD, GL_ADD_SIGNED_EXT, or GL_INTERPOLATE_EXT.

INVALID_ENUM The Parameter(s) value for GL_SOURCE0_RGB_EXT,

GL_SOURCE1_RGB_EXT, GL_SOURCE2_RGB_EXT,

GL_SOURCE0_ALPHA_EXT, GL_SOURCE1_ALPHA_EXT or

GL_SOURCE2_ALPHA_EXT is not one of GL_TEXTURE,

GL_CONSTANT_EXT, GL_PRIMARY_COLOR_EXT or

GL_PREVIOUS_EXT.

INVALID_ENUM The Parameter(s) value for GL_OPERAND0_RGB_EXT or

GL_OPERAND1_RGB_EXT is not one of GL_SRC_COLOR,

GL_ONE_MINUS_SRC_COLOR, GL_SRC_ALPHA or

GL_ONE_MINUS_SRC_ALPHA.

INVALID_ENUM The Parameter(s) value for GL_OPERAND0_ALPHA_EXT or

GL_OPERAND1_ALPHA_EXT is not one of GL_SRC_ALPHA or

GL_ONE_MINUS_SRC_ALPHA.

INVALID_ENUM The Parameter(s) value for GL_OPERAND2_RGB_EXT or

GL_OPERAND2_ALPHA_EXT is not GL_SRC_ALPHA.

INVALID_VALUE The Parameter(s) value for RGB_SCALE_EXT or ALPHA_SCALE is not one

of 1.0, 2.0, or 4.0.

GL_INVALID_OPERATION The glTexEnv subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glTexEnv subroutine are as follows. (See the glGet subroutine for more

information.)

glGetTexEnv.

Chapter 1. OpenGL Subroutines 331

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glGetTexEnv subroutine, glTexImage1D subroutine, glTexImage2D

subroutine, glTexParameter subroutine.

glTexGen Subroutine

Purpose

Controls the generation of texture coordinates.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexGend(GLenum Coordinate,

 GLenum pName,

 GLdouble Parameter)

void glTexGenf(GLenum Coordinate,

 GLenum pName,

 GLfloat Parameter)

void glTexGeni(GLenum Coordinate,

 GLenum pName,

 GLint Parameter)

void glTexGendv(GLenum Coordinate,

 GLenum pName,

 const GLdouble * Parameters)

void glTexGenfv(GLenum Coordinate,

 GLenum pName,

 const GLfloat * Parameters)

void glTexGeniv(GLenum Coordinate,

 GLenum pName,

 const GLint * Parameters)

Parameters

glTexGend, glTexGenf or glTexGeni

 Coordinate Specifies a texture coordinate. Must be one of the following:

v GL_S

v GL_T

v GL_R

v GL_Q

332 OpenGL 1.2 Reference Manual

pName Specifies the symbolic name of the texture-coordinate generation function. Must be

GL_TEXTURE_GEN_MODE.

Parameter Specifies a single-valued texture generation parameter, one of GL_OBJECT_LINEAR,

GL_EYE_LINEAR, or GL_SPHERE_MAP.

glTexGendv, glTexGenfv or glTexGeniv

 Coordinate Specifies a texture coordinate. Must be one of the following:

v GL_S

v GL_T

v GL_R

v GL_Q

pName Specifies the symbolic name of the texture-coordinate generation function or function parameters.

Must be GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE.

Parameters Specifies a pointer to an array of texture generation parameters. If pName is

GL_TEXTURE_GEN_MODE, the array must contain a single symbolic constant, one of

GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. Otherwise, Parameters holds

the coefficients for the texture-coordinate generation function specified by pName.

Description

The glTexGen subroutine selects a texture-coordinate generation function or supplies coefficients for one

of the functions. The Coordinate parameter names one of the (s, t, r, q) texture coordinates, and it must be

one of these symbols: GL_S, GL_T, GL_R, or GL_Q. The pName parameter must be one of three

symbolic constants: GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, or GL_EYE_PLANE. If pName

is GL_TEXTURE_GEN_MODE, the Parameters parameter chooses a mode, one of

GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. If pName is either

GL_OBJECT_PLANE or GL_EYE_PLANE, the Parameters parameter contains coefficients for the

corresponding texture generation function.

If the texture generation function is GL_OBJECT_LINEAR, the following function is used:

 where g is the value computed for the coordinate named in the Coordinate parameter, p1, p2, p3, and p4

are the four values supplied in the Parameters parameter, and x0, y0, z0, w0 are the object coordinates of

the vertex. This function can be used to texture-map terrain using sea level as a reference plane (defined

by p1, p2, p3, and p4). The altitude of a terrain vertex is computed by the GL_OBJECT_LINEAR

coordinate generation function as its distance from sea level; that altitude is used to index the texture

image to map white snow onto peaks and green grass onto foothills, for example.

If the texture generation function is GL_EYE_LINEAR, the following function is used:

g=p1x0+p2y0+p3z0+p4w0

Figure 23. GL_OBJECT_LINEAR Function. This figure shows that g is equal to p subscript one x subscript zero + p

subscript two y subscript zero + p subscript three z subscript zero + p subscript four w subscript zero.

Chapter 1. OpenGL Subroutines 333

where:

 and xe, ye, ze, and we are the eye coordinates of the vertex, p1, p2, p3, p4 are the values supplied in

Parameters, and M is the modelview matrix when glTexGen is invoked. If M is poorly conditioned or

singular, texture coordinates generated by the resulting function may be inaccurate or undefined.

Note that the values in the Parameters parameter define a reference plane in eye coordinates. The

modelview matrix that is applied to them may not be the same one in effect when the polygon vertices are

transformed. This function establishes a field of texture coordinates that can produce dynamic contour

lines on moving objects.

If the pName parameter is GL_SPHERE_MAP and the Coordinate parameter is either GL_R or GL_Q, s

and t texture coordinates are generated as follows. Let u be the unit vector pointing from the origin to the

polygon vertex (in eye coordinates). Let n’ be the current normal, after transformation to eye coordinates.

Let f=(fx fy fz)T be the reflection vector such that

f=u-2n’n’Tu

Finally, let m=2(square root (fx2+fy2+(fz+1)2)). Then the values assigned to the s and t texture

coordinates are the following:

 A texture-coordinate generation function is enabled or disabled using the glEnable or glDisable

subroutines with one of the symbolic texture-coordinate names (GL_TEXTURE_GEN_S,

GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q) as the argument. When

enabled, the specified texture coordinate is computed according to the generating function associated with

that coordinate. When disabled, subsequent vertices take the specified texture coordinate from the current

g=p1 ′xe+p2 ′ye+p3 ′ze+p4 ′we

Figure 24. GL_EYE_LINEAR Function. This figure shows that g is equal to p subscript one′ x subscript e + p subscript

two′ y subscript e + p subscript three′ z subscript e + p subscript four′ w subscript e.

(p1 ′ p2 ′ p3 ′ p4 ′)=(p1 p2 p3 p4)M–1

Figure 25. GL_EYE_LINEAR Function Definition. This figure shows that (p subscript one′ p subscript two′ p subscript

three′ p subscript four′) equals (p subscript one p subscript two p subscript three p subscript four)M to the power of -1.

fx

m
s= +1/2

fy

m
t= +1/2

Figure 26. s and t Values. This figure shows two equations, one for each texture coordinate. The first equation shows

that texture coordinate s is equal to f subscript x / m + 1/2. The second equation shows that texture coordinate t is

equal to f subscript y / m + 1/2.

334 OpenGL 1.2 Reference Manual

set of texture coordinates. Initially, all texture generation functions are set to GL_EYE_LINEAR and are

disabled. Both s plane equations are (1,0,0,0), both t plane equations are (0,1,0,0), and all r and q plane

equations are (0,0,0,0).

Error Codes

 GL_INVALID_ENUM Coordinate or pName is not an accepted defined value, or pName is

GL_TEXTURE_GEN_MODE and Parameters is not an accepted defined

value.

GL_INVALID_ENUM pName is GL_TEXTURE_GEN_MODE, Parameters is GL_SPHERE_MAP,

and Coordinate is either GL_R or GL_Q.

GL_INVALID_OPERATION The glTexGen subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glTexGen subroutine are as follows. (See the glGet subroutine for more

information.)

glGetTexGen

glIsEnabled with argument GL_TEXTURE_GEN_S

glIsEnabled with argument GL_TEXTURE_GEN_T

glIsEnabled with argument GL_TEXTURE_GEN_R

glIsEnabled with argument GL_TEXTURE_GEN_Q.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glEnable or glDisable subroutine, glGetTexGen subroutine, glTexEnv

subroutine, glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3DEXT subroutine,

glTexParameter subroutine.

glTexImage1D Subroutine

Purpose

Specifies a one-dimensional (1D) texture image.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexImage1D(GLenum target,

 GLint level,

 GLint internalformat,

 GLsizei width,

Chapter 1. OpenGL Subroutines 335

GLint border,

 GLenum format,

 GLenum type,

 const GLvoid * pixels)

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_1D of GL_PROXY_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.

internalformat Specifies the number of color components in the texture. Must be 1, 2, 3, or 4, or one of

the following symbolic constants: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4,

GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4,

GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,

GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,

GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,

GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,

GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,

GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,

GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1,GL_RGBA8,

GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

width Specifies the width of the texture image. Must be 2n + 2 x border for some integer n. All

implementations support texture images that are at least 64 texels wide. The height of the

1D texture image is 1.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED,

GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA,

GL_ABGR_EXT, GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT,

GL_422_AVERAGE_EXT, GL_422_REV_AVERAGE_EXT, and

GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,

GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,

GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,

GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,

GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,

GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,

GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV are

accepted.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is

enabled. To enable and disable one-dimensional texturing, call glEnable and glDisable with argument

GL_TEXTURE_1D.

Texture images are defined with glTexImage1D. The arguments describe the parameters of the texture

image, such as width, width of the border, level-of-detail number (See glTexParameter), and the internal

resolution and format used to store the image. The last three arguments describe how the image is

represented in memory; they are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_1D no data is read from pixels, but all of the texture image state is

recalculated, checked for consistency, and checked against the

implementation’s capabilities. If the implementation cannot handle a texture of the requested texture size, it

sets all of the image state to 0, but does not generate an error (See glGetError). To query for an entire

mipmap array, use an image array level greater than or equal to 1.

336 OpenGL 1.2 Reference Manual

If target is GL_TEXTURE_1D, data is read from pixels as a sequence of signed or unsigned bytes, shorts,

or longs, or single-precision floating-point values, depending on type. These values are grouped into sets

of one, two, three, or four values, depending on format, to form elements. If type is GL_BITMAP, the data

is considered as a string of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is

treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (See

glPixelStore).

The first element corresponds to the left end of the texture array. Subsequent elements progress

left-to-right through the remaining texels in the texture array. The final element corresponds to the right

end of the texture array.

The format parameter determines the composition of each element in pixels. It can assume one of 16

symbolic values:

 GL_COLOR_INDEX Each element is a single value, a color index. The GL converts it to fixed

point (with an unspecified number of zero bits to the right of the binary

point), shifted left or right depending on the value and sign of

GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (See

glPixelTransfer). The resulting index is converted to a set of color

components using the GL_PIXEL_MAP_I_TO_R,

GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and

GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for green

and blue, and 1.0 for alpha. Each component is then multiplied by the

signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS,

and clamped to the range [0,1] (See glPixelTransfer).

GL_GREEN Each element is a single green component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red and

blue, and 1.0 for alpha. Each component is then multiplied by the signed

scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and

clamped to the range [0,1] (See glPixelTransfer).

GL_BLUE Each element is a single blue component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red and

green, and 1.0 for alpha. Each component is then multiplied by the signed

scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and

clamped to the range [0,1] (See glPixelTransfer).

GL_ALPHA Each element is a single alpha component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red,

green, and blue. Each component is then multiplied by the signed scale

factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped

to the range [0,1] (See glPixelTransfer).

GL_RGB Each element is an RGB triple. The GL converts it to floating point and

assembles it into an RGBA element by attaching 1.0 for alpha.

Eachcomponent is then multiplied by the signed scale factor

GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the

range [0,1] (See glPixelTransfer).

GL_RGBA Each element contains all four components. Each *component is then

multiplied by the signed scale factor GL_c_SCALE, added to the signed

bias GL_c_BIAS, and clamped to the range [0,1] (See glPixelTransfer).

GL_BGR Each pixel is a three-component group, blue first, followed by green,

followed by red. Each component is converted to the internal floating-point

format in the same way as the blue, green, and red components of an

BGRA pixel are. The color triple is converted to an BGRA pixel with alpha

set to 1.0. After this conversion, the pixel is treated just as if it had been

read as an BGRA pixel.

Chapter 1. OpenGL Subroutines 337

GL_BGRA Each pixel is a four-component group, blue first, followed by green,

followed by red, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,

GREEN, RED, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

GL_ABGR_EXT Each pixel is a four-component group: for GL_RGBA, the red component

is first, followed by green, followed by blue, followed by alpha; for

GL_BGRA, the blue component is first, followed by green, followed by

red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,

green, and then red. Floating-point values are converted directly to an

internal floatingpoint format with unspecified precision. Signed integer

values are mapped linearly to the internal floating-point format such that

the most positive representable integer value maps to 1.0, and the most

negative representable value maps to -1.0. Unsigned integer data is

mapped similarly: the largest integer value maps to 1.0, and zero maps to

0.0. The resulting floating-point color values are then multiplied by

GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,

BLUE, and ALPHA for the respective color components. The results are

clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size

of lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value

that it references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that

xn = xr + n mod width

yn = yr + | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_LUMINANCE Each element is a single luminance value. The GL converts it to floating

point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue and attaching 1.0 for

alpha. Each component is then multiplied by the signed scale factor

GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the

range [0,1] (See glPixelTransfer).

338 OpenGL 1.2 Reference Manual

GL_LUMINANCE_ALPHA Each element is a luminance/alpha pair. The GL converts it to floating

point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue. Each component is

then multiplied by the signed scale factor GL_c_SCALE, added to the

signed bias GL_c_BIAS, and clamped to the range [0,1] (See

glPixelTransfer).

GL_422_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. The Cb for each even pixel is used as the Cb value for that pixel

and its neighbor to the right. The Cr in each odd pixel is used as the Cr

value for that pixel and its neighbor to the left. (If the width of the image is

odd, then the colors will be undefined in the rightmost column.) Through

the use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

GL_422_REV_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. The Cb for each even pixel is used as the Cb value for that pixel and

its neighbor to the right. The Cr in each odd pixel is used as the Cr value

for that pixel and its neighbor to the left. (If the width of the image is odd,

then the colors will be undefined in the rightmost column.) Through the

use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it ha d been sent in as an RGB pixel.

GL_422_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor

to the right. Each odd pixel gets its Cb from the average of its left and

right neighbor, and its Cr from the average of itself and its neighbor two to

the right. (If the width of the image is odd, then the colors will be

undefined in the rightmost column. If the neighbors to the right are not

present for a given fragment, we use GL_422_EXT to compute that

fragment.) Through the use of the color matrix, Y then assumes the role

of red, Cb becomes green and Cr becomes blue. After this conversion,

the pixel is treated just as if it had been sent in as an RGB pixel.

Chapter 1. OpenGL Subroutines 339

GL_422_REV_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to

the right. Each odd pixel gets its Cb from the average of its left and right

neighbor, and its Cr from the average of itself and its neighbor two to the

right. (If the width of the image is odd, then the colors will be undefined in

the rightmost column. If the neighbors to the right are not present for a

given fragment, we use GL_422_REV_EXT to compute that fragment.)

Through the use of the color matrix, Y then assumes the role of red, Cb

becomes green and Cr becomes blue. After this conversi on, the pixel is

treated just as if it had been sent in as an RGB pixel.

For applications that store the texture at a certain resolution or in a certain format, request the resolution

and format with internalformat. The GL will choose an internal representation that closely approximates

that requested by internalformat, but it may not match exactly. (The representations specified by

GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly. The numeric

values 1, 2, 3, and 4 may also be used to specify the above representations.)

Use the GL_PROXY_TEXTURE_1D target to try out a resolution and format. The implementation will

update and recompute its best match for the requested storage resolution and format. To query this state,

call glGetTexLevelParameter. If the texture cannot be accomodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A

two-component image uses the R and A values. A three-component image uses the R, G, and B values. A

four-component image uses all of the RGBA components.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels

command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.

GL_PROXY_TEXTURE_1D can only be used if the GL version is 1.1 or greater.

Internal formats other than 1, 2, 3, or 4 can only be used if the GL version is 1.1 or greater.

In GL version 1.1 or greater, pixels may be a null pointer. In this case texture memory is allocated to

accomodate a texture of width width. You can then download subtextures to initialize the texture memory.

The image is undefined if the user tries to apply an uninitialized portion of the texture image to a primitive.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL

command set.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_1D or GL_PROXY_TEXTURE_1D.

340 OpenGL 1.2 Reference Manual

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other

than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2max, where max is the returned value

of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution and

format symbolic constants.

GL_INVALID_VALUE is generated if width is less than zero or greater than 2 +

GL_MAX_TEXTURE_SIZE, or if it cannot be represented as 2n + 2 x border for some integer value of n.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if glTexImage1D is executed between the execution of glBegin

and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_1D.

Related Information

The glCopyTexImage1D subroutine, glDrawPixels subroutine, glFog subroutine, glPixelStore

subroutine, glPixelTransfer subroutine, glTexEnv subroutine, glTexGen subroutine, glTexImage2D

subroutine, glTexParameter subroutine, glTexSubImage1D subroutine.

glTexImage2D Subroutine

Purpose

Specifies a two-dimensional (2D) texture image.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexImage2D(GLenum target,

 GLint level,

 GLint internalformat,

 GLsizei width,

 GLsizei height,

 GLint border,

 GLenum format,

 GLenum type,

 const GLvoid * pixels)

Chapter 1. OpenGL Subroutines 341

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.

internalformat Specifies the number of color components in the texture. Must be 1, 2, 3, or 4, or one of

the following symbolic constants: GL_ABGR_EXT, GL_ALPHA,GL_ALPHA4,

GL_ALPHA8, GL_ALPHA12, GL_ALPHA16,GL_LUMINANCE, GL_LUMINANCE4,

GL_LUMINANCE8,GL_LUMINANCE12, GL_LUMINANCE16,

GL_LUMINANCE_ALPHA,GL_LUMINANCE4_ALPHA4,

GL_LUMINANCE6_ALPHA2,GL_LUMINANCE8_ALPHA8,

GL_LUMINANCE12_ALPHA4,GL_LUMINANCE12_ALPHA12,

GL_LUMINANCE16_ALPHA16,GL_INTENSITY, GL_INTENSITY4,

GL_INTENSITY8,GL_INTENSITY12, GL_INTENSITY16, GL_R3_G3_B2,

GL_RGB,GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10,GL_RGB12, GL_RGB16,

GL_RGBA, GL_RGBA2,GL_RGBA4, GL_RGB5_A1, GL_RGBA8,

GL_RGB10_A2,GL_RGBA12, or GL_RGBA16.

width Specifies the width of the texture image. Must be 2n + 2 x border for some integer n. All

implementations support texture images that are at least 64 texels wide.

height Specifies the height of the texture image. Must be 2m + 2 x border for some integer m.

All implementations support texture images that are at least 64 texels high.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED,

GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA,

GL_ABGR_EXT, GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT,

GL_422_AVERAGE_EXT, GL_422_REV_AVERAGE_EXT, and

GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,

GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,

GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,

GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,

GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,

GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,

GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV, are

accepted.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is

enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable with argument

GL_TEXTURE_2D.

To define texture images, call glTexImage2D. The arguments describe the parameters of the texture

image, such as height, width, width of the border, level-of-detail number (see glTexParameter), and

number of color components provided. The last three arguments describe how the image is represented in

memory. They are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_2D no data is read from pixels, but all of the texture image state is

recalculated, checked for consistency, and checked against the implementation’s capabilities. If the

implementation cannot handle a texture of the requested texture size, it sets all of the image state to 0, but

does not generate an error (see glGetError). To query for an entire mipmap array, use an image array

level greater than or equal to 1.

If target is GL_TEXTURE_2D, data is read from pixels as a sequence of signed or unsigned bytes, shorts,

or longs, or single-precision floating-point values, depending on type. These values are grouped into sets

of one, two, three, or four values, depending on format, to form elements. If type is GL_BITMAP, the data

342 OpenGL 1.2 Reference Manual

is considered as a string of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is

treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see

glPixelStore).

The first element corresponds to the lower-left corner of the texture image. Subsequent elements progress

left-to-right through the remaining texels in the lowest row of the texture image, and then in successively

higher rows of the texture image. The final element corresponds to the upper-right corner of the texture

image.

The format parameter determines the composition of each element in pixels. It can assume one of 16

symbolic values:

 GL_COLOR_INDEX Each element is a single value, a color index. The GL converts it to fixed

point (with an unspecified number of zero bits to the right of the binary

point), shifted left or right depending on the value and sign of

GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see

glPixelTransfer). The resulting index is converted to a set of color

components using the GL_PIXEL_MAP_I_TO_R,

GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and

GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for green

and blue, and 1.0 for alpha. Each component is then multiplied by the

signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS,

and clamped to the range [0,1] (see glPixelTransfer).

GL_GREEN Each element is a single green component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red and

blue, and 1.0 for alpha. Each component is then multiplied by the signed

scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and

clamped to the range [0,1] (see glPixelTransfer).

GL_BLUE Each element is a single blue component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red and

green, and 1.0 for alpha. Each component is then multiplied by the signed

scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and

clamped to the range [0,1] (see glPixelTransfer).

GL_ALPHA Each element is a single alpha component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red,

green, and blue. Each component is then multiplied by the signed scale

factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped

to the range [0,1] (see glPixelTransfer).

GL_RGB Each element is an RGB triple. The GL converts it to floating point and

assembles it into an RGBA element by attaching 1.0 for alpha. Each

component is then multiplied by the signed scale factor GL_c_SCALE,

added to the signed bias GL_c_BIAS, and clamped to the range [0,1]

(see glPixelTransfer).

GL_RGBA Each element contains all four components. Each *component is

multiplied by the signed scale factor GL_c_SCALE, added to the signed

bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

GL_BGR Each pixel is a three-component group, blue first, followed by green,

followed by red. Each component is converted to the internal floating-point

format in the same way as the blue, green, and red components of an

BGRA pixel are. The color triple is converted to an BGRA pixel with alpha

set to 1.0. After this conversion, the pixel is treated just as if it had been

read as an BGRA pixel.

Chapter 1. OpenGL Subroutines 343

GL_BGRA Each pixel is a four-component group, blue first, followed by green,

followed by red, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,

GREEN, RED, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

GL_ABGR_EXT Each pixel is a four-component group: for GL_RGBA, the red component

is first, followed by green, followed by blue, followed by alpha; for

GL_BGRA, the blue component is first, followed by green, followed by

red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,

green, and then red. Floating-point values are converted directly to an

internal floatingpoint format with unspecified precision. Signed integer

values are mapped linearly to the internal floating-point format such that

the most positive representable integer value maps to 1.0, and the most

negative representable value maps to -1.0. Unsigned integer data is

mapped similarly: the largest integer value maps to 1.0, and zero maps to

0.0. The resulting floating-point color values are then multiplied by

GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,

BLUE, and ALPHA for the respective color components. The results are

clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size

of lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value

that it references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that

xn = xr + n mod width

yn = yr + | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_LUMINANCE Each element is a single luminance value. The GL converts it to floating

point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue and attaching 1.0 for

alpha. Each component is then multiplied by the signed scale factor

GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the

range [0,1] (see glPixelTransfer).

344 OpenGL 1.2 Reference Manual

GL_LUMINANCE_ALPHA Each element is a luminance/alpha pair. The GL converts it to floating

point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue. Each component is

then multiplied by the signed scale factor GL_c_SCALE, added to the

signed bias GL_c_BIAS, and clamped to the range [0,1] (see

glPixelTransfer).

GL_422_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. The Cb for each even pixel is used as the Cb value for that pixel

and its neighbor to the right. The Cr in each odd pixel is used as the Cr

value for that pixel and its neighbor to the left. (If the width of the image is

odd, then the colors will be undefined in the rightmost column.) Through

the use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

GL_422_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor

to the right. Each odd pixel gets its Cb from the average of its left and

right neighbor, and its Cr from the average of itself and its neighbor two to

the right. (If the width of the image is odd, then the colors will be

undefined in the rightmost column. If the neighbors to the right are not

present for a given fragment, we use GL_422_EXT to compute that

fragment.) Through the use of the color matrix, Y then assumes the role

of red, Cb becomes green and Cr becomes blue. After this conversion,

the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422_REV_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to

the right. Each odd pixel gets its Cb from the average of its left and right

neighbor, and its Cr from the average of itself and its neighbor two to the

right. (If the width of the image is odd, then the colors will be undefined in

the rightmost column. If the neighbors to the right are not present for a

given fragment, we use GL_422_REV_EXT to compute that fragment.)

Through the use of the color matrix, Y then assumes the role of red, Cb

becomes green and Cr becomes blue. After this convers ion, the pixel is

treated just as if it had been sent in as an RGB pixel.

Refer to the glDrawPixels subroutine for a description of the acceptable values for the type parameter.

For applications that store the texture at a certain resolution or in a certain format, request the resolution

and format with internalformat. The GL will choose an internal representation that closely approximates

that requested by internalformat, but it may not match exactly. (The representations specified by

GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly. The numeric

values 1, 2, 3, and 4 may also be used to specify the above representations.)

Chapter 1. OpenGL Subroutines 345

Use the GL_PROXY_TEXTURE_2D target to try out a resolution and format. The implementation will

update and recompute its best match for the requested storage resolution and format. To then query this

state, call glGetTexLevelParameter. If the texture cannot be accomodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A

two-component image uses the R and A values. A three-component image uses the R, G, and B values. A

four-component image uses all of the RGBA components.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels

command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.

The GL_PROXY_TEXTURE_2D target are only available if the GL version is 1.1 or greater.

Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.1 or greater.

In GL version 1.1 or greater, pixels may be a null pointer. In this case texture memory is allocated to

accomodate a texture of width width and height height. You can then download subtextures to initialize this

texture memory. The image is undefined if the user tries to apply an uninitialized portion of the texture

image to a primitive.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL

command set.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other

than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned

value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution and

format symbolic constants.

GL_INVALID_VALUE is generated if width or height is less than zero or greater than 2 +

GL_MAX_TEXTURE_SIZE, or if either cannot be represented as 2k + 2 x border for some integer value of

k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

346 OpenGL 1.2 Reference Manual

GL_INVALID_OPERATION is generated if glTexImage2D is executed between the execution of glBegin

and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_2D.

Related Information

The glCopyTexImage2D subroutine, glDrawPixels subroutine, glFog subroutine, glPixelStore

subroutine, glPixelTransfer subroutine, glTexEnv subroutine, glTexGen subroutine, glTexImage1D

subroutine, glTexParameter subroutine, glTexSubImage2D subroutine.

glTexImage3D Subroutine

Purpose

Specifies a three-dimensional (3D) texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexImage3D (GLenum target,

 GLint level,

 GLint internalformat,

 GLsizei width,

 GLsizei height,

 GLsizei depth,

 GLint border,

 GLenum format,

 GLenum type,

 const GLvoid * pixels)

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_3D or GL_PROXY_TEXTURE_3D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.

internalformat Specifies the number of color components in the texture. Must be 1, 2, 3, or 4, or one of

the following symbolic constants: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4,

GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4,

GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,

GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,

GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,

GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,

GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,

GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,

GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,

GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

width Specifies the width of the texture image. Must be 2n + 2 x border for some integer n.

height Specifies the height of the texture image. Must be 2m + 2 x border for some integer m.

depth Specifies the depth of the texture image. Must be 2l + 2 x border for some integer l.

border Specifies the width of the border. Must be either 0 or 1.

Chapter 1. OpenGL Subroutines 347

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED,

GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA,

GL_ABGR_EXT, GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT,

GL_422_AVERAGE_EXT, GL_422_REV_AVERAGE_EXT, and accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,

GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT,

GL_FLOAT, GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV,

GL_UNSIGNED_SHORT_5_6_5, GL_UNSIGNED_SHORT_5_6_5_REV,

GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_4_4_4_4_REV,

GL_UNSIGNED_SHORT_5_5_5_1, GL_UNSIGNED_SHORT_1_5_5_5_REV,

GL_UNSIGNED_INT_8_8_8_8, GL_UNSIGNED_INT_8_8_8_8_REV,

GL_UNSIGNED_INT_10_10_10_2, and GL_UNSIGNED_INT_2_10_10_10_REV are

accepted.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is

enabled. To enable and disable three-dimensional texturing, call glEnable and glDisable with argument

GL_TEXTURE_3D.

To define 3D texture images, call glTexImage3D. The arguments describe the parameters of the texture

image, such as height, width, depth, width of the border, level-of-detail number (see glTexParameter), and

number of color components provided. The last three arguments describe how the image is represented in

memory; they are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_3D no data is read from pixels, but all of the texture image state is

recalculated, checked for consistency, and checked against the implementation’s capabilities. If the

implementation cannot handle a texture of the requested texture size, it sets all of the image state to 0, but

does not generate an error (see glGetError). To query for an entire mipmap array, use an image array

level greater than or equal to 1.

If target is GL_TEXTURE_3D, data is read from pixels as a sequence of signed or unsigned bytes, shorts,

or longs, or single-precision floating-point values, depending on type. These values are grouped into sets

of one, two, three, or four values, depending on format, to form elements. If type is GL_BITMAP, the data

is considered as a string of unsigned bytes (and format must be GL_COLOR_INDEX). Each data byte is

treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see

glPixelStore).

The first element corresponds to the lower-left corner of the texture image. Subsequent elements progress

left-to-right through the remaining texels in the lowest row of the texture image, and then in successively

higher rows of the texture image. The final element corresponds to the upper-right corner of the texture

image.

The format parameter determines the composition of each element in pixels. It can assume one of 16

symbolic values:

 GL_COLOR_INDEX Each element is a single value, a color index. The GL converts it to fixed

point (with an unspecified number of zero bits to the right of the binary

point), shifted left or right depending on the value and sign of

GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see

glPixelTransfer). The resulting index is converted to a set of color

components using the GL_PIXEL_MAP_I_TO_R,

GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and

GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

348 OpenGL 1.2 Reference Manual

GL_RED Each element is a single red component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for green

and blue, and 1.0 for alpha. Each component is then multiplied by the

signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS,

and clamped to the range [0,1] (see glPixelTransfer).

GL_GREEN Each element is a single green component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red and

blue, and 1.0 for alpha. Each component is then multiplied by the signed

scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and

clamped to the range [0,1] (see glPixelTransfer).

GL_BLUE Each element is a single blue component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red and

green, and 1.0 for alpha. Each component is then multiplied by the signed

scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and

clamped to the range [0,1] (see glPixelTransfer).

GL_ALPHA Each element is a single alpha component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red,

green, and blue. Each component is then multiplied by the signed scale

factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped

to the range [0,1] (see glPixelTransfer).

GL_RGB Each element is an RGB triple. The GL converts it to floating point and

assembles it into an RGBA element by attaching 1.0 for alpha. Each

component is then multiplied by the signed scale factor GL_c_SCALE,

added to the signed bias GL_c_BIAS, and clamped to the range [0,1]

(see glPixelTransfer).

GL_RGBA Each element contains all four components. Each *component is

multiplied by the signed scale factor GL_c_SCALE, added to the signed

bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

GL_BGR Each pixel is a three-component group, blue first, followed by green,

followed by red. Each component is converted to the internal floating-point

format in the same way as the blue, green, and red components of an

BGRA pixel are. The color triple is converted to an BGRA pixel with alpha

set to 1.0. After this conversion, the pixel is treated just as if it had been

read as an BGRA pixel.

GL_BGRA Each pixel is a four-component group, blue first, followed by green,

followed by red, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,

GREEN, RED, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

Chapter 1. OpenGL Subroutines 349

GL_ABGR_EXT Each pixel is a four-component group: for GL_RGBA, the red component

is first, followed by green, followed by blue, followed by alpha; for

GL_BGRA, the blue component is first, followed by green, followed by

red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,

green, and then red. Floating-point values are converted directly to an

internal floatingpoint format with unspecified precision. Signed integer

values are mapped linearly to the internal floating-point format such that

the most positive representable integer value maps to 1.0, and the most

negative representable value maps to -1.0. Unsigned integer data is

mapped similarly: the largest integer value maps to 1.0, and zero maps to

0.0. The resulting floating-point color values are then multiplied by

GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,

BLUE, and ALPHA for the respective color components. The results are

clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size

of lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value

that it references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that

xn = xr + n mod width

yn = yr + | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_LUMINANCE Each element is a single luminance value. The GL converts it to floating

point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue and attaching 1.0 for

alpha. Each component is then multiplied by the signed scale factor

GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the

range [0,1] (see glPixelTransfer).

GL_LUMINANCE_ALPHA Each element is a luminance/alpha pair. The GL converts it to floating

point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue. Each component is

then multiplied by the signed scale factor GL_c_SCALE, added to the

signed bias GL_c_BIAS, and clamped to the range [0,1] (see

glPixelTransfer).

GL_422_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. The Cb for each even pixel is used as the Cb value for that pixel

and its neighbor to the right. The Cr in each odd pixel is used as the Cr

value for that pixel and its neighbor to the left. (If the width of the image is

odd, then the colors will be undefined in the rightmost column.) Through

the use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

350 OpenGL 1.2 Reference Manual

GL_422_REV_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. The Cb for each even pixel is used as the Cb value for that pixel and

its neighbor to the right. The Cr in each odd pixel is used as the Cr value

for that pixel and its neighbor to the left. (If the width of the image is odd,

then the colors will be undefined in the rightmost column.) Through the

use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

GL_422_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor

to the right. Each odd pixel gets its Cb from the average of its left and

right neighbor, and its Cr from the average of itself and its neighbor two to

the right. (If the width of the image is odd, then the colors will be

undefined in the rightmost column. If the neighbors to the right are not

present for a given fragment, we use GL_422_EXT to compute that

fragment.) Through the use of the color matrix, Y then assumes the role

of red, Cb becomes green and Cr becomes blue. After this conversion,

the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422_REV_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to

the right. Each odd pixel gets its Cb from the average of its left and right

neighbor, and its Cr from the average of itself and its neighbor two to the

right. (If the width of the image is odd, then the colors will be undefined in

the rightmost column. If the neighbors to the right are not present for a

given fragment, we use GL_422_REV_EXT to compute that fragment.)

Through the use of the color matrix, Y then assumes the role of red, Cb

becomes green and Cr becomes blue. After this conversion, the pixel is

treated just as if it had been sent in as an RGB pixel.

Refer to the glDrawPixels reference page for a description of the acceptable values for the type

parameter. If an application must store the texture at a certain resolution or in a certain format, use

internalformat to request the resolution and format. The GL will choose an internal representation that

closely approximates that requested by internalformat, but it may not match exactly. (The representations

specified by GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly.

The numeric values 1, 2, 3, and 4 may also be used to specify the above representations.)

Use the GL_PROXY_TEXTURE_3D target to try out a resolution and format. The implementation will

update and recompute its best match for the requested storage resolution and format. To then query this

state, call glGetTexLevelParameter. If the texture cannot be accommodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A

two-component image uses the R and A values. A three-component image uses the R, G, and B values. A

four-component image uses all of the RGBA components.

Chapter 1. OpenGL Subroutines 351

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels

command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.

Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.2 or greater.

In GL version 1.2 or greater, pixels may be a null pointer. In this case texture memory is allocated to

accomodate a texture of width width and height height. You can then download subtextures to initialize this

texture memory. The image is undefined if the user tries to apply an uninitialized portion of the texture

image to a primitive.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D or GL_PROXY_TEXTURE_3D.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other

than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned

value of GL_MAX_3D_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution and

format symbolic constants.

GL_INVALID_VALUE is generated if width, height, or depth is less than zero or greater than 2 +

GL_MAX_3D_TEXTURE_SIZE, or if either cannot be represented as 2k + 2 x border for some integer

value of k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if glTexImage3D is executed between the execution of glBegin

and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_3D

Related Information

The glCopyTexSubImage3D subroutine, glDrawPixels subroutine, glFog subroutine, glPixelStore

subroutine, glPixelTransfer subroutine, glTexEnv subroutine, glTexGen subroutine, glTexImage1D

subroutine, glTexParameter subroutine, glTexImage2D subroutine.

352 OpenGL 1.2 Reference Manual

glTexImage3DEXT Subroutine

Purpose

Specifies a three-dimensional (3D) texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexImage3DEXT(GLenum target,

 GLint level,

 GLint internalformat,

 GLsizei width,

 GLsizei height,

 GLsizei depth,

 GLint border,

 GLenum format,

 GLenum type,

 const GLvoid * pixels)

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_3D_EXT or

GL_PROXY_TEXTURE_3D_EXT.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth

mipmap reduction image.

internalformat Specifies the number of color components in the texture. Must be 1, 2, 3, or 4, or one of

the following symbolic constants: GL_ABGR_EXT, GL_ALPHA, GL_ALPHA4,

GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4,

GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,

GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,

GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,

GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,

GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16,

GL_R3_G3_B2, GL_RGB, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12,

GL_RGB16, GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,

GL_RGB10_A2, GL_RGBA12, or GL_RGBA16.

width Specifies the width of the texture image. Must be 2n + 2 x border for some integer n.

height Specifies the height of the texture image. Must be 2m + 2 x border for some integer m.

depth Specifies the depth of the texture image. Must be 2l + 2 x border for some integer l.

border Specifies the width of the border. Must be either 0 or 1.

format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,

GL_RGBA, GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT,

GL_422_AVERAGE_EXT, GL_422_REV_AVERAGE_EXT, and

GL_LUMINANCE_ALPHA.

type Specifies the data type of the pixel data. The following symbolic values are accepted:

GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,

GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Chapter 1. OpenGL Subroutines 353

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is

enabled. To enable and disable three-dimensional texturing, call glEnable and glDisable with argument

GL_TEXTURE_3D_EXT.

To define 3D texture images, call glTexImage3DEXT. The arguments describe the parameters of the

texture image, such as height, width, depth, width of the border, level-of-detail number (see

glTexParameter), and number of color components provided. The last three arguments describe how the

image is represented in memory; they are identical to the pixel formats used for glDrawPixels.

If target is GL_PROXY_TEXTURE_3D_EXT no data is read from pixels, but all of the texture image state

is recalculated, checked for consistency, and checked against the implementation’s capabilities. If the

implementation cannot handle a texture of the requested texture size, it sets all of the image state to 0, but

does not generate an error (see glGetError). To query for an entire mipmap array, use an image array

level greater than or equal to 1.

If target is GL_TEXTURE_3D_EXT, data is read from pixels as a sequence of signed or unsigned bytes,

shorts, or longs, or single-precision floating-point values, depending on type. These values are grouped

into sets of one, two, three, or four values, depending on format, to form elements. If type is GL_BITMAP,

the data is considered as a string of unsigned bytes (and format must be GL_COLOR_INDEX). Each data

byte is treated as eight 1-bit elements, with bit ordering determined by GL_UNPACK_LSB_FIRST (see

glPixelStore).

The first element corresponds to the lower-left corner of the texture image. Subsequent elements progress

left-to-right through the remaining texels in the lowest row of the texture image, and then in successively

higher rows of the texture image. The final element corresponds to the upper-right corner of the texture

image.

The format parameter determines the composition of each element in pixels. It can assume one of 16

symbolic values:

 GL_COLOR_INDEX Each element is a single value, a color index. The GL converts it to fixed

point (with an unspecified number of zero bits to the right of the binary

point), shifted left or right depending on the value and sign of

GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET (see

glPixelTransfer). The resulting index is converted to a set of color

components using the GL_PIXEL_MAP_I_TO_R,

GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and

GL_PIXEL_MAP_I_TO_A tables, and clamped to the range [0,1].

GL_RED Each element is a single red component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for green

and blue, and 1.0 for alpha. Each component is then multiplied by the

signed scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS,

and clamped to the range [0,1] (see glPixelTransfer).

GL_GREEN Each element is a single green component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red and

blue, and 1.0 for alpha. Each component is then multiplied by the signed

scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and

clamped to the range [0,1] (see glPixelTransfer).

GL_BLUE Each element is a single blue component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red and

green, and 1.0 for alpha. Each component is then multiplied by the signed

scale factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and

clamped to the range [0,1] (see glPixelTransfer).

354 OpenGL 1.2 Reference Manual

GL_ALPHA Each element is a single alpha component. The GL converts it to floating

point and assembles it into an RGBA element by attaching 0.0 for red,

green, and blue. Each component is then multiplied by the signed scale

factor GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped

to the range [0,1] (see glPixelTransfer).

GL_RGB Each element is an RGB triple. The GL converts it to floating point and

assembles it into an RGBA element by attaching 1.0 for alpha. Each

component is then multiplied by the signed scale factor GL_c_SCALE,

added to the signed bias GL_c_BIAS, and clamped to the range [0,1]

(see glPixelTransfer).

GL_RGBA Each element contains all four components. Each *component is

multiplied by the signed scale factor GL_c_SCALE, added to the signed

bias GL_c_BIAS, and clamped to the range [0,1] (see glPixelTransfer).

GL_LUMINANCE Each element is a single luminance value. The GL converts it to floating

point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue and attaching 1.0 for

alpha. Each component is then multiplied by the signed scale factor

GL_c_SCALE, added to the signed bias GL_c_BIAS, and clamped to the

range [0,1] (see glPixelTransfer).

GL_LUMINANCE_ALPHA Each element is a luminance/alpha pair. The GL converts it to floating

point, then assembles it into an RGBA element by replicating the

luminance value three times for red, green, and blue. Each component is

then multiplied by the signed scale factor GL_c_SCALE, added to the

signed bias GL_c_BIAS, and clamped to the range [0,1] (see

glPixelTransfer).

GL_422_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. The Cb for each even pixel is used as the Cb value for that pixel

and its neighbor to the right. The Cr in each odd pixel is used as the Cr

value for that pixel and its neighbor to the left. (If the width of the image is

odd, then the colors will be undefined in the rightmost column.) Through

the use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

GL_422_REV_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. The Cb for each even pixel is used as the Cb value for that pixel and

its neighbor to the right. The Cr in each odd pixel is used as the Cr value

for that pixel and its neighbor to the left. (If the width of the image is odd,

then the colors will be undefined in the rightmost column.) Through the

use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

Chapter 1. OpenGL Subroutines 355

GL_422_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor

to the right. Each odd pixel gets its Cb from the average of its left and

right neighbor, and its Cr from the average of itself and its neighbor two to

the right. (If the width of the image is odd, then the colors will be

undefined in the rightmost column. If the neighbors to the right are not

present for a given fragment, we use GL_422_EXT to compute that

fragment.) Through the use of the color matrix, Y then assumes the role

of red, Cb becomes green and Cr becomes blue. After this conversion,

the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422_REV_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to

the right. Each odd pixel gets its Cb from the average of its left and right

neighbor, and its Cr from the average of itself and its neighbor two to the

right. (If the width of the image is odd, then the colors will be undefined in

the rightmost column. If the neighbors to the right are not present for a

given fragment, we use GL_422_REV_EXT to compute that fragment.)

Through the use of the color matrix, Y then assumes the role of red, Cb

becomes green and Cr becomes blue. After this convers ion, the pixel is

treated just as if it had been sent in as an RGB pixel.

Refer to the glDrawPixels reference page for a description of the acceptable values for the type

parameter. If an application must store the texture at a certain resolution or in a certain format, use

internalformat to request the resolution and format. The GL will choose an internal representation that

closely approximates that requested by internalformat, but it may not match exactly. (The representations

specified by GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA must match exactly.

The numeric values 1, 2, 3, and 4 may also be used to specify the above representations.)

Use the GL_PROXY_TEXTURE_3D_EXT target to try out a resolution and format. The implementation will

update and recompute its best match for the requested storage resolution and format. To then query this

state, call glGetTexLevelParameter. If the texture cannot be accomodated, texture state is set to 0.

A one-component texture image uses only the red component of the RGBA color extracted from pixels. A

two-component image uses the R and A values. A three-component image uses the R, G, and B values. A

four-component image uses all of the RGBA components.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Texturing has no effect in color index mode.

The texture image can be represented by the same data formats as the pixels in a glDrawPixels

command, except that GL_STENCIL_INDEX and GL_DEPTH_COMPONENT cannot be used. The

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.

356 OpenGL 1.2 Reference Manual

The glTexImage3DEXT subroutine and GL_PROXY_TEXTURE_3D_EXT are available only if the

EXT_texture3D extension is supported.

Internal formats other than 1, 2, 3, or 4 may only be used if the GL version is 1.1 or greater.

In GL version 1.1 or greater, pixels may be a null pointer. In this case texture memory is allocated to

accomodate a texture of width width and height height. You can then download subtextures to initialize this

texture memory. The image is undefined if the user tries to apply an uninitialized portion of the texture

image to a primitive.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL

command set.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D_EXT or

GL_PROXY_TEXTURE_3D_EXT.

GL_INVALID_ENUM is generated if format is not an accepted format constant. Format constants other

than GL_STENCIL_INDEX and GL_DEPTH_COMPONENT are accepted.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned

value of GL_MAX_3D_TEXTURE_SIZE_EXT.

GL_INVALID_VALUE is generated if internalformat is not 1, 2, 3, 4, or one of the accepted resolution and

format symbolic constants.

GL_INVALID_VALUE is generated if width, height, or depth is less than zero or greater than 2 +

GL_MAX_3D_TEXTURE_SIZE_EXT, or if either cannot be represented as 2k + 2 x border for some

integer value of k.

GL_INVALID_VALUE is generated if border is not 0 or 1.

GL_INVALID_OPERATION is generated if glTexImage3DEXT is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_3D_EXT

Related Information

The glCopyTexSubImage3DEXT subroutine, glDrawPixels subroutine, glFog subroutine, glPixelStore

subroutine, glPixelTransfer subroutine, glTexEnv subroutine, glTexGen subroutine, glTexImage1D

subroutine, glTexParameter subroutine, glTexImage2D subroutine.

Chapter 1. OpenGL Subroutines 357

glTexParameter Subroutine

Purpose

Sets texture parameters.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexParameterf(GLenum target,

 GLenum pname,

 GLfloat param)

void glTexParameteri(GLenum target,

 GLenum pname,

 GLint param)

void glTexParameterfv(GLenum target,

 GLenum pname,

 const GLfloat * params)

void glTexParameteriv(GLenum target,

 GLenum pname,

 const GLint * params)

Parameters

glTexParameterf or glTexParameteri

 target Specifies the target texture, which must be either GL_TEXTURE_1D, GL_TEXTURE_2D,

GL_TEXTURE_3D, or GL_TEXTURE_3D_EXT.

pname Specifies the symbolic name of a single-valued texture parameter. The pname parameter can be one of

the following: GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER, GL_TEXTURE_WRAP_S,

GL_TEXTURE_WRAP_T, GL_TEXTURE_WRAP_R, GL_TEXTURE_PRIORITY,

GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD, GL_TEXTURE_BASE_LEVEL,

GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_MAX_ANISOTROPY_EXT.

param Specifies the value of pname.

glTexParameterfv or glTexParameteriv

 target Specifies the target texture, which must be either GL_TEXTURE_1D, GL_TEXTURE_2D,

GL_TEXTURE_3D, or GL_TEXTURE_3D_EXT.

pname Specifies the symbolic name of a texture parameter. The pname parameter can be one of the following:

GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER, GL_TEXTURE_WRAP_S,

GL_TEXTURE_WRAP_T, GL_TEXTURE_WRAP_R, GL_TEXTURE_BORDER_COLOR,

GL_TEXTURE_PRIORITY, GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD,

GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_MAX_LEVEL, GL_TEXTURE_MAX_ANISOTROPY_EXT

.

params Specifies a pointer to an array where the value or values of pname are stored.

358 OpenGL 1.2 Reference Manual

Description

Texture mapping is a technique that applies an image onto an object’s surface as if the image were a

decal or cellophane shrink-wrap. The image is created in texture space, with an (s, t) coordinate system. A

texture is a one-dimensional (1D) or two-dimensional (2D) image and a set of parameters that determine

how samples are derived from the image.

The glTexParameter subroutine assigns the value or values in params to the texture parameter specified

as pname. The target parameter defines the target texture, either GL_TEXTURE_1D, GL_TEXTURE_2D,

GL_TEXTURE_3D, or GL_TEXTURE_3D_EXT. The following symbols are accepted in pname:

GL_TEXTURE_BORDER_COLOR

Sets a border color. The params parameter contains four values that comprise the red, green,

blue, alpha (RGBA) color of the texture border. Integer color components are interpreted linearly

such that the most positive integer maps to 1.0, and the most negative integer maps to -1.0. The

values are clamped to the range [0,1] when they are specified. Initially, the border color is (0, 0, 0,

0).

GL_TEXTURE_MIN_FILTER

The texture minifying function is used whenever the pixel being textured maps to an area greater

than one texture element. There are six defined minifying functions. Two of them use the nearest

one or nearest four texture elements to compute the texture value. The other four use mipmaps.

 A mipmap is an ordered set of arrays representing the same image at progressively lower

resolutions. If the texture has dimensions 2n x 2m there are max(n,m)+1 mipmaps. The first

mipmap is the original texture, with dimensions 2n x 2m. Each subsequent mipmap has

dimensions 2k-1 x 2l-1 where 2k x 2l are the dimensions of the previous mipmap, until either

k=0 or l=0. At that point, subsequent mipmaps have the dimension 1 x 2l-1 or 2k-1 x 1 until the

final mipmap, which has the dimension 1 x 1. Mipmaps are defined using the glTexImage1D,

glTexImage2D, or glTexImage3DEXT subroutines with the level-of-detail argument indicating the

order of the mipmaps. Level 0 is the original texture; level max(n,m) is the final 1 x 1 mipmap.

 The paramrs parameter supplies a function for minifying the texture as one of the following:

 GL_NEAREST returns the value of the texture element that is nearest (in Manhattan distance) to

the center of the pixel being textured.

 GL_LINEAR returns the weighted average of the four texture elements that are closest to the

center of the pixel being textured. These can include border texture elements, depending on the

values of GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact mapping.

 GL_NEAREST_MIPMAP_NEAREST chooses the mipmap that most closely matches the size of

the pixel being textured and uses the GL_NEAREST criterion (the texture element nearest to the

center of the pixel) to produce a texture value.

 GL_LINEAR_MIPMAP_NEAREST chooses the mipmap that most closely matches the size of the

pixel being textured and uses the GL_LINEAR criterion (a weighted average of the four texture

elements that are closest to the center of the pixel) to produce a texture value.

 GL_NEAREST_MIPMAP_LINEAR chooses the two mipmaps that most closely match the size of

the pixel being textured and uses the GL_NEAREST criterion (the texture element nearest to the

center of the pixel) to produce a texture value from each mipmap. The final texture value is a

weighted average of those two values.

 GL_LINEAR_MIPMAP_LINEAR chooses the two mipmaps that most closely match the size of the

pixel being textured and uses the GL_LINEAR criterion (a weighted average of the four texture

elements that are closest to the center of the pixel) to produce a texture value from each mipmap.

The final texture value is a weighted average of those two values.

 As more texture elements are sampled in the minification process, fewer aliasing artifacts will be

apparent. While the GL_NEAREST and GL_LINEAR minification functions can be faster than the

other four, they sample only one or four texture elements to determine the texture value of the

Chapter 1. OpenGL Subroutines 359

pixel being rendered and can produce moire patterns or ragged transitions. The default value of

GL_TEXTURE_MIN_FILTER is GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MAG_FILTER

The texture magnification function is used when the pixel being textured maps to an area less than

or equal to one texture element. It sets the texture magnification function to either GL_NEAREST

or GL_LINEAR. GL_NEAREST is generally faster than GL_LINEAR, but it can produce textured

images with sharper edges because the transition between texture elements is not as smooth. The

initial value of GL_TEXTURE_MAG_FILTER is GL_LINEAR.

 GL_NEAREST returns the value of the texture element that is nearest (in Manhattan distance) to

the center of the pixel being textured.

 GL_LINEAR returns the weighted average of the four texture elements that are closest to the

center of the pixel being textured. These can include border texture elements, depending on the

values of GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on the exact mapping.

 GL_NEAREST is generally faster than GL_LINEAR, but can produce textured images with

sharper edges because the transition between texture elements is not as smooth. The default

value of GL_TEXTURE_MAG_FILTER is GL_LINEAR.

GL_TEXTURE_PRIORITY

Specifies the texture residence priority of the currently bound texture. Permissible values are in the

range [0.0, 1.0]. See glPrioritizeTextures and glBindTexture for more information.

GL_TEXTURE_MAX_LOD

Specifies for the texture the maximum level of detail of the image array. Any floating-point value is

permissable. Supported in OpenGL 1.2 and later.

GL_TEXTURE_MIN_LOD

Specifies for the texture the minimum level of detail of the image array. Any floating-point value is

permissable. Supported in OpenGL 1.2 and later.

GL_TEXTURE_BASE_LEVEL

Specifies for the texture the base array level. Any non-negative integer value is permissable.

Supported in OpenGL 1.2 and later.

GL_TEXTURE_MAX_LEVEL

Specifies for the texture the maximum array level. Any non-negative integer value is permissable.

Supported in OpenGL 1.2 and later.

GL_TEXTURE_WRAP_R

Sets the wrap parameter for texture coordinate r to either GL_CLAMP,

GL_CLAMP_NODRAW_IBM, GL_CLAMP_TO_EDGE, or GL_REPEAT. See the discussion under

GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_R is set to GL_REPEAT.

GL_TEXTURE_WRAP_S

Sets the wrap parameter for texture coordinate s to either GL_CLAMP,

GL_CLAMP_NODRAW_IBM, GL_CLAMP_TO_EDGE, or GL_REPEAT. GL_CLAMP causes s, t,

or r coordinates to be clamped to the range [0,1] and is useful for preventing wrapping artifacts

when mapping a single image onto an object. GL_CLAMP_NODRAW_IBM clamps texture

coordinates at all mipmap levels such that any pixels whose corresponding texture coordinate falls

outside the specified texture map are not drawn at all. GL_CLAMP_TO_EDGE clamps texture

coordinates at all mipmap levels such that the texture filter never samples a border texel. The

color returned when clamping is derived only from texels at the edge of the texture image.

GL_REPEAT causes the integer part of the s, t, or r coordinates to be ignored; the GL uses only

the fractional part, thereby creating a repeating pattern. Border texture elements are accessed only

if wrapping is set to GL_CLAMP. Initially, GL_TEXTURE_WRAP_S is set to GL_REPEAT.

GL_TEXTURE_WRAP_T

Sets the wrap parameter for texture coordinate t to either GL_CLAMP,

360 OpenGL 1.2 Reference Manual

GL_CLAMP_NODRAW_IBM, GL_CLAMP_TO_EDGE, or GL_REPEAT. See the discussion under

GL_TEXTURE_WRAP_S. Initially, GL_TEXTURE_WRAP_T is set to GL_REPEAT.

GL_TEXTURE_MAX_ANISOTROPIC_EXT

Sets the maximum degree of anisotropy for this texture map. Initially,

GL_TEXTURE_MAX_ANISOTROPIC_EXT is set to 1.0.

Notes

Suppose that a program has enabled texturing (by calling glEnable with argument GL_TEXTURE_1D,

GL_TEXTURE_2D, or GL_TEXTURE_3D) and has set GL_TEXTURE_MIN_FILTER to one of the

functions that requires a mipmap. If either the dimensions of the texture images currently defined (with

previous calls to glTexImage1D, glTexImage2D, or glTexImage3D) do not follow the proper sequence for

mipmaps (described above) or there are fewer texture images defined than are needed or the set of

texture images have differing numbers of texture components, then it is as if texture mapping were

disabled.

Linear filtering accesses the four nearest texture elements only in 2D textures. In 1D textures, linear

filtering accesses the two nearest texture elements.

GL_TEXTURE_3D is supported in OpenGL 1.2 and later.

GL_TEXTURE_3D_EXT requires the 3D texture extension.

GL_TEXTURE_MAX_ANISOTROPY_EXT requires the EXT_texture_filter_anisotropic extension.

Errors

GL_INVALID_ENUM is generated if target or pname is not one of the accepted defined values.

GL_INVALID_ENUM is generated if params should have a defined constant value (based on the value of

pname) and does not.

GL_INVALID_OPERATION is generated if glTexParameter is executed between the execution of glBegin

and the corresponding execution of glEnd.

Associated Gets

glGetTexParameter

glGetTexLevelParameter

Related Information

The glBindTexture subroutine, glPrioritizeTextures subroutine, glTexEnv subroutine, glTexGen

subroutine, glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3D subroutine,

glTexImage3DEXT subroutine.

glTexSubImage1D Subroutine

Purpose

Specifies a one-dimensional (1D) texture subimage.

Library

OpenGL C bindings library: libGL.a

Chapter 1. OpenGL Subroutines 361

C Syntax

void glTexSubImage1D(GLenum target,

 GLint level,

 GLint xoffset,

 GLsizei width,

 GLenum format,

 GLenum type,

 const GLvoid * pixels)

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_1D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap

reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

width Specifies the width of the texture subimage.

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED, GL_GREEN,

GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA, GL_ABGR_EXT,

GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT, GL_422_AVERAGE_EXT,

GL_422_REV_AVERAGE_EXT, and GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,

GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,

GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,

GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,

GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,

GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,

GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and

GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is

enabled. To enable or disable one-dimensional texturing, call glEnable and glDisable with argument

GL_TEXTURE_1D.

The glTexSubImage1D subroutine redefines a contiguous subregion of an existing one-dimensional

texture image. The texels referenced by pixels replace the portion of the existing texture array with x

indices xoffset and xoffset + width - 1, inclusive. This region may not include any texels outside the range

of the texture array as it was originally specified. It is not an error to specify a subtexture with zero width,

but such a specification has no effect.

362 OpenGL 1.2 Reference Manual

GL_COLOR_INDEX Each pixel is a single value, a color index. It is converted to fixed point,

with an unspecified number of bits to the right of the binary point,

regardless of the memory data type. Floating-point values convert to true

fixed-point values. Signed and unsigned integer data is converted with all

fraction bits set to 0 (zero). Bitmap data converts to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and

added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift

is to the right. In either case, 0 bits fill otherwise unspecified bit locations

in the result.

If the GL is in red, green, blue, alpha (RGBA) mode, the resulting index is

converted to an RGBA pixel using the GL_PIXEL_MAP_I_TO_R,

GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and

GL_PIXEL_MAP_I_TO_A tables. If the GL is in color index mode and

GL_MAP_COLOR is True, the index is replaced with the value that it

references in the lookup table GL_PIXEL_MAP_I_TO_I. Whether the

lookup replacement of the index is done or not, the integer part of the

index is then ANDed with 2b -1, where b is the number of bits in a color

index buffer.

The resulting indices or RGBA colors are then converted to fragments by

attaching the current raster position z coordinate and texture coordinates

to each pixel, then assigning x and y window coordinates to the nth

fragment such that xn = xr + n mod Width and yn = yr + [n/Width], where

(xr, yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_RED Each pixel is a single red component. This component is converted to the

internal floating-point format in the same way as the red component of an

RGBA pixel is, then it is converted to an RGBA pixel with green and blue

set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated

just as if it had been read as an RGBA pixel.

GL_GREEN Each pixel is a single green component. This component is converted to

the internal floating-point format in the same way as the green component

of an RGBA pixel is, then it is converted to an RGBA pixel with red and

blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is

treated just as if it had been read as an RGBA pixel.

GL_BLUE Each pixel is a single blue component. This component is converted to

the internal floating-point format in the same way as the blue component

of an RGBA pixel is, then it is converted to an RGBA pixel with red and

green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is

treated just as if it had been read as an RGBA pixel.

GL_ALPHA Each pixel is a single alpha component. This component is converted to

the internal floating-point format in the same way as the alpha component

of an RGBA pixel is, then it is converted to an RGBA pixel with red,

green, and blue set to 0.0. After this conversion, the pixel is treated just

as if it had been read as an RGBA pixel.

GL_RGB Each pixel is a three-component group, red first, followed by green,

followed by blue. Each component is converted to the internal

floating-point format in the same way as the red, green, and blue

components of an RGBA pixel are. The color triple is converted to an

RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated

just as if it had been read as an RGBA pixel.

Chapter 1. OpenGL Subroutines 363

GL_RGBA Each pixel is a four-component group, red first, followed by green,

followed by blue, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED,

GREEN, BLUE, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

GL_BGR Each pixel is a three-component group, blue first, followed by green,

followed by red. Each component is converted to the internal floating-point

format in the same way as the blue, green, and red components of an

BGRA pixel are. The color triple is converted to an BGRA pixel with alpha

set to 1.0. After this conversion, the pixel is treated just as if it had been

read as an BGRA pixel.

GL_BGRA Each pixel is a four-component group, blue first, followed by green,

followed by red, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,

GREEN, RED, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

364 OpenGL 1.2 Reference Manual

GL_ABGR_EXT Each pixel is a four-component group: for GL_RGBA, the red component

is first, followed by green, followed by blue, followed by alpha; for

GL_BGRA, the blue component is first, followed by green, followed by

red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,

green, and then red. Floating-point values are converted directly to an

internal floatingpoint format with unspecified precision. Signed integer

values are mapped linearly to the internal floating-point format such that

the most positive representable integer value maps to 1.0, and the most

negative representable value maps to -1.0. Unsigned integer data is

mapped similarly: the largest integer value maps to 1.0, and zero maps to

0.0. The resulting floating-point color values are then multiplied by

GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,

BLUE, and ALPHA for the respective color components. The results are

clamped to the range [0,1].

If GL_MAP_COLOR is true, each color component is scaled by the size

of lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value

that it references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that

xn = xr + n mod width

yn = yr + | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_LUMINANCE Each pixel is a single luminance component. This component is converted

to the internal floating-point format in the same way as the red component

of an RGBA pixel is, then it is converted to an RGBA pixel with red,

green, and blue set to the converted luminance value, and alpha set to

1.0. After this conversion, the pixel is treated just as if it had been read as

an RGBA pixel.

GL_LUMINANCE_ALPHA Each pixel is a two-component group, luminance first, followed by alpha.

The two components are converted to the internal floating-point format in

the same way as the red component of an RGBA pixel is, then they are

converted to an RGBA pixel with red, green, and blue set to the converted

luminance value, and alpha set to the converted alpha value. After this

conversion, the pixel is treated just as if it had been read as an RGBA

pixel.

GL_422_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. The Cb for each even pixel is used as the Cb value for that pixel

and its neighbor to the right. The Cr in each odd pixel is used as the Cr

value for that pixel and its neighbor to the left. (If the width of the image is

odd, then the colors will be undefined in the rightmost column.) Through

the use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

Chapter 1. OpenGL Subroutines 365

GL_422_REV_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. The Cb for each even pixel is used as the Cb value for that pixel and

its neighbor to the right. The Cr in each odd pixel is used as the Cr value

for that pixel and its neighbor to the left. (If the width of the image is odd,

then the colors will be undefined in the rightmost column.) Through the

use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

GL_422_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor

to the right. Each odd pixel gets its Cb from the average of its left and

right neighbor, and its Cr from the average of itself and its neighbor two to

the right. (If the width of the image is odd, then the colors will be

undefined in the rightmost column. If the neighbors to the right are not

present for a given fragment, we use GL_422_EXT to compute that

fragment.) Through the use of the color matrix, Y then assumes the role

of red, Cb becomes green and Cr becomes blue. After this conversion,

the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422_REV_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to

the right. Each odd pixel gets its Cb from the average of its left and right

neighbor, and its Cr from the average of itself and its neighbor two to the

right. (If the width of the image is odd, then the colors will be undefined in

the rightmost column. If the neighbors to the right are not present for a

given fragment, we use GL_422_REV_EXT to compute that fragment.)

Through the use of the color matrix, Y then assumes the role of red, Cb

becomes green and Cr becomes blue. After this conversion, the pixel is

treated just as if it had been sent in as an RGB pixel.

Notes

Texturing has no effect in color index mode.

The glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL

command set.

Errors

GL_INVALID_ENUM is generated if target is not one of the allowable values.

366 OpenGL 1.2 Reference Manual

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage1D operation.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned

value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width < -b, where b is the border width of the texture array.

GL_INVALID_VALUE is generated if xoffset < -b, or if (xoffset + width) > (w - b). Where w is the

GL_TEXTURE_WIDTH, and b is the width of the GL_TEXTURE_BORDER of the texture image being

modified. Note that w includes twice the border width.

GL_INVALID_ENUM is generated if format is not an accepted format constant.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSubImage1D is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_1D

Related Information

The glDrawPixels subroutine, glFog subroutine, glPixelStore subroutine, glPixelTransfer subroutine,

glTexEnv subroutine, glTexGen subroutine, glTexImage1D subroutine, glTexParameter subroutine.

glTexSubImage1DEXT Subroutine

Purpose

Specifies a one-dimensional texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexSubImage1DEXT(GLenum target,

 GLint level,

 GLint xoffset,

 GLsizei width,

 GLenum format,

 GLenum type,

 const GLvoid *pixels)

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_1D

Chapter 1. OpenGL Subroutines 367

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap

reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

width Specifies the width of the texture subimage.

format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,

GL_ABGR_EXT, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_422_EXT, GL_422_REV_EXT,

GL_422_AVERAGE_EXT, and GL_422_REV_AVERAGE_EXT.

type Specifies the data type of the pixel data. The following symbolic values are accepted:

GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,

GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is

enabled. One-dimensional texturing is enabled and disabled using glEnable and glDisable with argument

GL_TEXTURE_1D.

glTexSubImage1DEXT redefines a contiguous subregion of an existing one-dimensional texture image.

The texels referenced by pixels replace the portion of the existing texture array with x indices xoffset and

xoffset+width-1, inclusive. This region may not include any texels outside the range of the texture array as

it was originally specified. It is not an error to specify a subtexture with zero width, but such a specification

has no effect.

Notes

Texturing has no effect in color index mode.

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL

command set.

Errors

GL_INVALID_ENUM is generated when target is not one of the allowable values.

GL_INVALID_OPERATION is generated when the texture array has not been defined by a previous

glTexImage1D operation.

GL_INVALID_VALUE is generated if level is less than zero or greater than log2(max), where max is the

returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width <-TEXTURE_BORDER, where TEXTURE_BORDER is the

border width of the texture array.

GL_INVALID_VALUE is generated if xoffset <-TEXTURE_BORDER, (xoffset+width) >

(TEXTURE_WIDTH- TEXTURE_BORDER). Where TEXTURE_WIDTH and TEXTURE_BORDER are the

state values of the texture image being modified. Note that TEXTURE_WIDTH includes twice the border

width.

GL_INVALID_ENUM is generated when format is not an accepted format constant.

GL_INVALID_ENUM is generated when type is not a type constant.

368 OpenGL 1.2 Reference Manual

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSubImage1DEXT is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_1D

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glDrawPixels subroutine, glFog subroutine, glPixelStore subroutine, glPixelTransfer subroutine,

glTexEnv subroutine, glTexGen subroutine, glTexImage1D subroutine, glTexParameter subroutine.

glTexSubImage2D Subroutine

Purpose

Specifies a two-dimensional (2D) texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexSubImage2D(GLenum target,

 GLint level,

 GLint xoffset,

 GLint yoffset,

 GLsizei width,

 GLsizei height,

 GLenum format,

 GLenum type,

 const GLvoid * pixels)

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_2D.

Chapter 1. OpenGL Subroutines 369

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap

reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED, GL_GREEN,

GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA, GL_ABGR_EXT,

GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT, GL_422_AVERAGE_EXT,

GL_422_REV_AVERAGE_EXT, and GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,

GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,

GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,

GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,

GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,

GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,

GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and

GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

pixels Specifies the data type of the pixel data. The following symbolic values are accepted:

GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,

GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is

enabled. To enable and disable two-dimensional texturing, call glEnable and glDisable with argument

GL_TEXTURE_2D.

The glTexSubImage2D subroutine redefines a contiguous subregion of an existing two-dimensional

texture image. The texels referenced by pixels replace the portion of the existing texture array with x

indices xoffset and xoffset + width - 1, inclusive, and y indices yoffset and yoffset + height - 1, inclusive.

This region may not include any texels outside the range of the texture array as it was originally specified.

It is not an error to specify a subtexture with zero width or height, but such a specification has no effect.

370 OpenGL 1.2 Reference Manual

GL_COLOR_INDEX Each pixel is a single value, a color index. It is converted to fixed point,

with an unspecified number of bits to the right of the binary point,

regardless of the memory data type. Floating-point values convert to true

fixed-point values. Signed and unsigned integer data is converted with all

fraction bits set to 0 (zero). Bitmap data converts to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and

added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift

is to the right. In either case, 0 bits fill otherwise unspecified bit locations

in the result.

If the GL is in red, green, blue, alpha (RGBA) mode, the resulting index is

converted to an RGBA pixel using the GL_PIXEL_MAP_I_TO_R,

GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and

GL_PIXEL_MAP_I_TO_A tables. If the GL is in color index mode and

GL_MAP_COLOR is True, the index is replaced with the value that it

references in the lookup table GL_PIXEL_MAP_I_TO_I. Whether the

lookup replacement of the index is done or not, the integer part of the

index is then ANDed with 2b -1, where b is the number of bits in a color

index buffer.

The resulting indices or RGBA colors are then converted to fragments by

attaching the current raster position z coordinate and texture coordinates

to each pixel, then assigning x and y window coordinates to the nth

fragment such that xn = xr + n mod Width and yn = yr + [n/Width], where

(xr, yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_RED Each pixel is a single red component. This component is converted to the

internal floating-point format in the same way as the red component of an

RGBA pixel is, then it is converted to an RGBA pixel with green and blue

set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated

just as if it had been read as an RGBA pixel.

GL_GREEN Each pixel is a single green component. This component is converted to

the internal floating-point format in the same way as the green component

of an RGBA pixel is, then it is converted to an RGBA pixel with red and

blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is

treated just as if it had been read as an RGBA pixel.

GL_BLUE Each pixel is a single blue component. This component is converted to

the internal floating-point format in the same way as the blue component

of an RGBA pixel is, then it is converted to an RGBA pixel with red and

green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is

treated just as if it had been read as an RGBA pixel.

GL_ALPHA Each pixel is a single alpha component. This component is converted to

the internal floating-point format in the same way as the alpha component

of an RGBA pixel is, then it is converted to an RGBA pixel with red,

green, and blue set to 0.0. After this conversion, the pixel is treated just

as if it had been read as an RGBA pixel.

GL_RGB Each pixel is a three-component group, red first, followed by green,

followed by blue. Each component is converted to the internal

floating-point format in the same way as the red, green, and blue

components of an RGBA pixel are. The color triple is converted to an

RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated

just as if it had been read as an RGBA pixel.

Chapter 1. OpenGL Subroutines 371

GL_RGBA Each pixel is a four-component group, red first, followed by green,

followed by blue, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED,

GREEN, BLUE, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

GL_BGR Each pixel is a three-component group, blue first, followed by green,

followed by red. Each component is converted to the internal floating-point

format in the same way as the blue, green, and red components of an

BGRA pixel are. The color triple is converted to an BGRA pixel with alpha

set to 1.0. After this conversion, the pixel is treated just as if it had been

read as an BGRA pixel.

GL_BGRA Each pixel is a four-component group, blue first, followed by green,

followed by red, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,

GREEN, RED, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

372 OpenGL 1.2 Reference Manual

GL_ABGR_EXT Each pixel is a four-component group: for GL_RGBA, the red component

is first, followed by green, followed by blue, followed by alpha; for

GL_BGRA, the blue component is first, followed by green, followed by

red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,

green, and then red. Floating-point values are converted directly to an

internal floatingpoint format with unspecified precision. Signed integer

values are mapped linearly to the internal floating-point format such that

the most positive representable integer value maps to 1.0, and the most

negative representable value maps to -1.0. Unsigned integer data is

mapped similarly: the largest integer value maps to 1.0, and zero maps to

0.0. The resulting floating-point color values are then multiplied by

GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,

BLUE, and ALPHA for the respective color components. The results are

clamped to the range [0,1].

If GL_MAP_COLORis true, each color component is scaled by the size of

lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value that it

references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that

xn = xr + n mod width

yn = yr + | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_LUMINANCE Each pixel is a single luminance component. This component is converted

to the internal floating-point format in the same way as the red component

of an RGBA pixel is, then it is converted to an RGBA pixel with red,

green, and blue set to the converted luminance value, and alpha set to

1.0. After this conversion, the pixel is treated just as if it had been read as

an RGBA pixel.

GL_LUMINANCE_ALPHA Each pixel is a two-component group, luminance first, followed by alpha.

The two components are converted to the internal floating-point format in

the same way as the red component of an RGBA pixel is, then they are

converted to an RGBA pixel with red, green, and blue set to the converted

luminance value, and alpha set to the converted alpha value. After this

conversion, the pixel is treated just as if it had been read as an RGBA

pixel.

GL_422_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. The Cb for each even pixel is used as the Cb value for that pixel

and its neighbor to the right. The Cr in each odd pixel is used as the Cr

value for that pixel and its neighbor to the left. (If the width of the image is

odd, then the colors will be undefined in the rightmost column.) Through

the use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it hadbeen sent in as an RGB pixel.

Chapter 1. OpenGL Subroutines 373

GL_422_REV_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. The Cb for each even pixel is used as the Cb value for that pixel and

its neighbor to the right. The Cr in each odd pixel is used as the Cr value

for that pixel and its neighbor to the left. (If the width of the image is odd,

then the colors will be undefined in the rightmost column.) Through the

use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

GL_422_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor

to the right. Each odd pixel gets its Cb from the average of its left and

right neighbor, and its Cr from the average of itself and its neighbor two to

the right. (If the width of the image is odd, then the colors will be

undefined in the rightmost column. If the neighbors to the right are not

present for a given fragment, we use GL_422_EXT to compute that

fragment.) Through the use of the color matrix, Y then assumes the role

of red, Cb becomes green and Cr becomes blue. After this conversion,

the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422_REV_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to

the right. Each odd pixel gets its Cb from the average of its left and right

neighbor, and its Cr from the average of itself and its neighbor two to the

right. (If the width of the image is odd, then the colors will be undefined in

the rightmost column. If the neighbors to the right are not present for a

given fragment, we use GL_422_REV_EXT to compute that fragment.)

Through the use of the color matrix, Y then assumes the role of red, Cb

becomes green and Cr becomes blue. After this convers ion, the pixel is

treated just as if it had been sent in as an RGB pixel.

Notes

Texturing has no effect in color index mode.

The glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.

Format of GL_ABGR_EXT is part of the _extname (EXT_abgr) extension, not part of the core GL

command set.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_2D.

374 OpenGL 1.2 Reference Manual

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage2D operation.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned

value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width < -b or if height < -b, where b is the border width of the texture

array.

GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, or (yoffset +

height) > (h - b). Where w is the GL_TEXTURE_WIDTH, h is the GL_TEXTURE_HEIGHT, and b is the

border width of the texture image being modified. Note that w and h include twice the border width.

GL_INVALID_ENUM is generated if format is not an accepted format constant.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSubImage2D is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_2D

Related Information

The glDrawPixels subroutine, glFog subroutine, glPixelStore subroutine, glPixelTransfer subroutine,

glTexEnv subroutine, glTexGen subroutine, glTexImage2D subroutine, glTexParameter subroutine.

glTexSubImage2DEXT Subroutine

Purpose

Specifies a two-dimensional texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexSubImage2DEXT(GLenum target,

 GLint level,

 GLint xoffset,

 GLint yoffset,

 GLsizei width,

 GLsizei height,

 GLenum format,

 GLenum type,

 const GLvoid *pixels)

Chapter 1. OpenGL Subroutines 375

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_2D

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap

reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,

GL_ABGR_EXT, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_422_EXT, GL_422_REV_EXT,

GL_422_AVERAGE_EXT, and GL_422_REV_AVERAGE_EXT.

type Specifies the data type of the pixel data. The following symbolic values are accepted:

GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,

GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is

enabled. Two-dimensional texturing is enabled and disabled using glEnable and glDisable with argument

GL_TEXTURE_2D.

glTexSubImage2DEXT redefines a contiguous subregion of an existing two-dimensional texture image.

The texels referenced by pixels replace the portion of the existing texture array with x indices xoffset and

xoffset+width-1, inclusive, and y indices yoffset and yoffset+height-1, inclusive. This region may not include

any texels outside the range of the texture array as it was originally specified. It is not an error to specify a

subtexture with zero width or height, but such a specification has no effect.

Notes

Texturing has no effect in color index mode.

glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is present.

Errors

GL_INVALID_ENUM is generated when target is not one of the allowable values.

GL_INVALID_OPERATION is generated when the texture array has not been defined by a previous

glTexImage2D operation.

GL_INVALID_VALUE is generated if level is less than zero or greater than log2(max), where max is the

returned value of GL_MAX_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width height

GL_INVALID_VALUE is generated if xoffset <-TEXTURE_BORDER, (xoffset+width) > (TEXTURE_WIDTH

- TEXTURE_BORDER), yoffset <-TEXTURE_BORDER, or (yoffset+height)> (TEXTURE_HEIGHT -

TEXTURE_BORDER), where TEXTURE_WIDTH, TEXTURE_HEIGHT, and TEXTURE_BORDER are the

state values of the texture image being modified. Note that TEXTURE_WIDTH and TEXTURE_HEIGHT

include twice the border width.

376 OpenGL 1.2 Reference Manual

GL_INVALID_ENUM is generated when format is not an accepted format constant.

GL_INVALID_ENUM is generated when type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSubImage2DEXT is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_2D

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glDrawPixels subroutine, glFog subroutine, glPixelStore subroutine, glPixelTransfer subroutine,

glTexEnv subroutine, glTexGen subroutine, glTexImage2D subroutine, glTexParameter subroutine.

glTexSubImage3D Subroutine

Purpose

Specifies a three-dimensional (3D) texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexSubImage3D(GLenum target,

 GLint level,

 GLint xoffset,

 GLint yoffset,

 GLint zoffset,

 GLsizei width,

 GLsizei height,

 GLsizei depth,

 GLenum format,

Chapter 1. OpenGL Subroutines 377

GLenum type,

 const GLvoid * pixels)

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_3D.

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap

reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

zoffset Specifies a texel offset in the z direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

depth Specifies the depth of the texture subimage.

format Specifies the format of the pixel data. Symbolic constants GL_COLOR_INDEX, GL_RED, GL_GREEN,

GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_BGR, GL_BGRA, GL_ABGR_EXT,

GL_LUMINANCE, GL_422_EXT, GL_422_REV_EXT, GL_422_AVERAGE_EXT,

GL_422_REV_AVERAGE_EXT, and GL_LUMINANCE_ALPHA are accepted.

type Specifies the data type for Pixels. Symbolic constants GL_UNSIGNED_BYTE, GL_BYTE,

GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_FLOAT,

GL_UNSIGNED_BYTE_3_3_2, GL_UNSIGNED_BYTE_2_3_3_REV, GL_UNSIGNED_SHORT_5_6_5,

GL_UNSIGNED_SHORT_5_6_5_REV, GL_UNSIGNED_SHORT_4_4_4_4,

GL_UNSIGNED_SHORT_4_4_4_4_REV, GL_UNSIGNED_SHORT_5_5_5_1,

GL_UNSIGNED_SHORT_1_5_5_5_REV, GL_UNSIGNED_INT_8_8_8_8,

GL_UNSIGNED_INT_8_8_8_8_REV, GL_UNSIGNED_INT_10_10_10_2, and

GL_UNSIGNED_INT_2_10_10_10_REV are accepted.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is

enabled. To enable and disable three-dimensional texturing, call glEnable and glDisable with argument

GL_TEXTURE_3D.

The glTexSubImage3D subroutine redefines a contiguous subregion of an existing three-dimensional

texture image. The texels referenced by pixels replace the portion of the existing texture array with x

indices xoffset and xoffset + width - 1, inclusive, y indices yoffset and yoffset + height - 1, inclusive, z

indices zoffset and zoffset + depth - 1, inclusize. This region may not include any texels outside the range

of the texture array as it was originally specified. It is not an error to specify a subtexture with zero width,

height or depth, but such a specification has no effect.

378 OpenGL 1.2 Reference Manual

GL_COLOR_INDEX Each pixel is a single value, a color index. It is converted to fixed point,

with an unspecified number of bits to the right of the binary point,

regardless of the memory data type. Floating-point values convert to true

fixed-point values. Signed and unsigned integer data is converted with all

fraction bits set to 0 (zero). Bitmap data converts to either 0.0 or 1.0.

Each fixed-point index is then shifted left by GL_INDEX_SHIFT bits and

added to GL_INDEX_OFFSET. If GL_INDEX_SHIFT is negative, the shift

is to the right. In either case, 0 bits fill otherwise unspecified bit locations

in the result.

If the GL is in red, green, blue, alpha (RGBA) mode, the resulting index is

converted to an RGBA pixel using the GL_PIXEL_MAP_I_TO_R,

GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B, and

GL_PIXEL_MAP_I_TO_A tables. If the GL is in color index mode and

GL_MAP_COLOR is True, the index is replaced with the value that it

references in the lookup table GL_PIXEL_MAP_I_TO_I. Whether the

lookup replacement of the index is done or not, the integer part of the

index is then ANDed with 2b -1, where b is the number of bits in a color

index buffer.

The resulting indices or RGBA colors are then converted to fragments by

attaching the current raster position z coordinate and texture coordinates

to each pixel, then assigning x and y window coordinates to the nth

fragment such that xn = xr + n mod Width and yn = yr + [n/Width], where

(xr, yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_RED Each pixel is a single red component. This component is converted to the

internal floating-point format in the same way as the red component of an

RGBA pixel is, then it is converted to an RGBA pixel with green and blue

set to 0.0, and alpha set to 1.0. After this conversion, the pixel is treated

just as if it had been read as an RGBA pixel.

GL_GREEN Each pixel is a single green component. This component is converted to

the internal floating-point format in the same way as the green component

of an RGBA pixel is, then it is converted to an RGBA pixel with red and

blue set to 0.0, and alpha set to 1.0. After this conversion, the pixel is

treated just as if it had been read as an RGBA pixel.

GL_BLUE Each pixel is a single blue component. This component is converted to

the internal floating-point format in the same way as the blue component

of an RGBA pixel is, then it is converted to an RGBA pixel with red and

green set to 0.0, and alpha set to 1.0. After this conversion, the pixel is

treated just as if it had been read as an RGBA pixel.

GL_ALPHA Each pixel is a single alpha component. This component is converted to

the internal floating-point format in the same way as the alpha component

of an RGBA pixel is, then it is converted to an RGBA pixel with red,

green, and blue set to 0.0. After this conversion, the pixel is treated just

as if it had been read as an RGBA pixel.

GL_RGB Each pixel is a three-component group, red first, followed by green,

followed by blue. Each component is converted to the internal

floating-point format in the same way as the red, green, and blue

components of an RGBA pixel are. The color triple is converted to an

RGBA pixel with alpha set to 1.0. After this conversion, the pixel is treated

just as if it had been read as an RGBA pixel.

Chapter 1. OpenGL Subroutines 379

GL_RGBA Each pixel is a four-component group, red first, followed by green,

followed by blue, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is RED,

GREEN, BLUE, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

GL_BGR Each pixel is a three-component group, blue first, followed by green,

followed by red. Each component is converted to the internal floating-point

format in the same way as the blue, green, and red components of an

BGRA pixel are. The color triple is converted to an BGRA pixel with alpha

set to 1.0. After this conversion, the pixel is treated just as if it had been

read as an BGRA pixel.

GL_BGRA Each pixel is a four-component group, blue first, followed by green,

followed by red, followed by alpha. Floating-point values are converted

directly to an internal floating-point format with unspecified precision.

Signed integer values are mapped linearly to the internal floating-point

format such that the most positive representable integer value maps to

1.0, and the most negative representable value maps to -1.0. Unsigned

integer data are mapped similarly: the largest integer value maps to 1.0,

and 0 maps to 0.0. The resulting floating-point color values are then

multiplied by GL_c_SCALE and added to GL_c_BIAS, where c is BLUE,

GREEN, RED, and ALPHA for the respective color components. The

results are clamped to the range [0,1].

If GL_MAP_COLOR is True, each color component is scaled by the size

of the lookup table GL_PIXEL_MAP_c_TO_c, then replaced by the value

that it references in that table. c is B, G, R, or A, respectively.

The resulting BGRA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that xn = xr + n mod Width and yn = yr + [n/Width], where (xr, yr) is the

current raster position. These pixel fragments are then treated just like the

fragments generated by rasterizing points, lines, or polygons. Texture

mapping, fog, and all the fragment operations are applied before the

fragments are written to the frame buffer.

380 OpenGL 1.2 Reference Manual

GL_ABGR_EXT Each pixel is a four-component group: for GL_RGBA, the red component

is first, followed by green, followed by blue, followed by alpha; for

GL_BGRA, the blue component is first, followed by green, followed by

red, followed by alpha; for GL_ABGR_EXT the order is alpha, blue,

green, and then red. Floating-point values are converted directly to an

internal floatingpoint format with unspecified precision. Signed integer

values are mapped linearly to the internal floating-point format such that

the most positive representable integer value maps to 1.0, and the most

negative representable value maps to -1.0. Unsigned integer data is

mapped similarly: the largest integer value maps to 1.0, and zero maps to

0.0. The resulting floating-point color values are then multiplied by

GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN,

BLUE, and ALPHA for the respective color components. The results are

clamped to the range [0,1].

If GL_MAP_COLORis true, each color component is scaled by the size of

lookup table GL_PIXEL_MAP_c_TO _c, then replaced by the value that it

references in that table. c is R, G, B, or A, respectively.

The resulting RGBA colors are then converted to fragments by attaching

the current raster position z coordinate and texture coordinates to each

pixel, then assigning x and y window coordinates to the nth fragment such

that

xn = xr + n mod

width

yn = yr + | n bwidthc

where (xr,yr) is the current raster position. These pixel fragments are then

treated just like the fragments generated by rasterizing points, lines, or

polygons. Texture mapping, fog, and all the fragment operations are

applied before the fragments are written to the frame buffer.

GL_LUMINANCE Each pixel is a single luminance component. This component is converted

to the internal floating-point format in the same way as the red component

of an RGBA pixel is, then it is converted to an RGBA pixel with red,

green, and blue set to the converted luminance value, and alpha set to

1.0. After this conversion, the pixel is treated just as if it had been read as

an RGBA pixel.

GL_LUMINANCE_ALPHA Each pixel is a two-component group, luminance first, followed by alpha.

The two components are converted to the internal floating-point format in

the same way as the red component of an RGBA pixel is, then they are

converted to an RGBA pixel with red, green, and blue set to the converted

luminance value, and alpha set to the converted alpha value. After this

conversion, the pixel is treated just as if it had been read as an RGBA

pixel.

GL_422_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. The Cb for each even pixel is used as the Cb value for that pixel

and its neighbor to the right. The Cr in each odd pixel is used as the Cr

value for that pixel and its neighbor to the left. (If the width of the image is

odd, then the colors will be undefined in the rightmost column.) Through

the use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

Chapter 1. OpenGL Subroutines 381

GL_422_REV_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. The Cb for each even pixel is used as the Cb value for that pixel and

its neighbor to the right. The Cr in each odd pixel is used as the Cr value

for that pixel and its neighbor to the left. (If the width of the image is odd,

then the colors will be undefined in the rightmost column.) Through the

use of the color matrix, Y then assumes the role of red, Cb becomes

green and Cr becomes blue. After this conversion, the pixel is treated just

as if it had been sent in as an RGB pixel.

GL_422_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Y. The second component is Cb in the even pixels and Cr in the odd

pixels. Each even pixel gets its Cb from itself, and its Cr from its neighbor

to the right. Each odd pixel gets its Cb from the average of its left and

right neighbor, and its Cr from the average of itself and its neighbor two to

the right. (If the width of the image is odd, then the colors will be

undefined in the rightmost column. If the neighbors to the right are not

present for a given fragment, we use GL_422_EXT to compute that

fragment.) Through the use of the color matrix, Y then assumes the role

of red, Cb becomes green and Cr becomes blue. After this conversion ,

the pixel is treated just as if it had been sent in as an RGB pixel.

GL_422_REV_AVERAGE_EXT This extension is for use with the ″YCbCr″ color space, and should only

be used in systems that have the IBM_YCbCr extension. The

GL_YCBCR_TO_RGB_MATRIX_IBM matrix should be loaded using

glLoadNamedMatrixIBM before glDrawPixels is called with this

parameter. Each pixel is a two-component group. The first component is

Cb in the even pixels and Cr in the odd pixels. The second component is

Y. Each even pixel gets its Cb from itself, and its Cr from its neighbor to

the right. Each odd pixel gets its Cb from the average of its left and right

neighbor, and its Cr from the average of itself and its neighbor two to the

right. (If the width of the image is odd, then the colors will be undefined in

the rightmost column. If the neighbors to the right are not present for a

given fragment, we use GL_422_REV_EXT to compute that fragment.)

Through the use of the color matrix, Y then assumes the role of red, Cb

becomes green and Cr becomes blue. After this convers ion, the pixel is

treated just as if it had been sent in as an RGB pixel.

Notes

Texturing has no effect in color index mode.

The glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage3D operation.

GL_INVALID_VALUE is generated if level is less than zero.

382 OpenGL 1.2 Reference Manual

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned

value of GL_MAX_3D_TEXTURE_SIZE.

GL_INVALID_VALUE is generated if width < -b or if height < -b, or if depth < -b where b is the border

width of the texture array.

GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, (yoffset + height)

> (h - b), zoffset < -b, (zoffset + depth) > (d -b). Where w is the GL_TEXTURE_WIDTH, h is the

GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH, and b is the border width of the texture image

being modified. Note that w, h, and d include twice the border width.

GL_INVALID_ENUM is generated if format is not an accepted format constant.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSubImage3D is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_3D

Related Information

The glDrawPixels subroutine, glFog subroutine, glPixelStore subroutine, glPixelTransfer subroutine,

glTexEnv subroutine, glTexGen subroutine, glTexImage3D subroutine, glTexParameter subroutine.

glTexSubImage3DEXT Subroutine

Purpose

Specifies a three-dimensional (3D) texture subimage.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTexSubImage3DEXT(GLenum target,

 GLint level,

 GLint xoffset,

 GLint yoffset,

 GLint zoffset,

 GLsizei width,

 GLsizei height,

 GLsizei depth,

 GLenum format,

 GLenum type,

 const GLvoid *pixels)

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_3D_EXT.

Chapter 1. OpenGL Subroutines 383

level Specifies the level-of-detail number. Level 0 is the base image level. Level n is the nth mipmap

reduction image.

xoffset Specifies a texel offset in the x direction within the texture array.

yoffset Specifies a texel offset in the y direction within the texture array.

zoffset Specifies a texel offset in the z direction within the texture array.

width Specifies the width of the texture subimage.

height Specifies the height of the texture subimage.

depth Specifies the depth of the texture subimage.

format Specifies the format of the pixel data. The following symbolic values are accepted:

GL_COLOR_INDEX, GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,

GL_ABGR_EXT, GL_LUMINANCE, GL_LUMINANCE_ALPHA, GL_422_EXT, GL_422_REV_EXT,

GL_422_AVERAGE_EXT, and GL_422_REV_AVERAGE_EXT.

type Specifies the data type of the pixel data. The following symbolic values are accepted:

GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,

GL_UNSIGNED_INT, GL_INT, and GL_FLOAT.

pixels Specifies a pointer to the image data in memory.

Description

Texturing maps a portion of a specified texture image onto each graphical primitive for which texturing is

enabled. To enable and disable three-dimensional texturing, call glEnable and glDisable with argument

GL_TEXTURE_3D_EXT.

The glTexSubImage3DEXT subroutine redefines a contiguous subregion of an existing three-dimensional

texture image. The texels referenced by pixels replace the portion of the existing texture array with x

indices xoffset and xoffset + width - 1, inclusive, y indices yoffset and yoffset + height - 1, inclusive, z

indices zoffset and zoffset + depth - 1, inclusize. This region may not include any texels outside the range

of the texture array as it was originally specified. It is not an error to specify a subtexture with zero width,

height or depth, but such a specification has no effect.

Notes

Texturing has no effect in color index mode.

The glPixelStore and glPixelTransfer modes affect texture images in exactly the way they affect

glDrawPixels.

Format of GL_ABGR_EXT is part of the _extstring(EXT_abgr) extension, not part of the core GL

command set.

Errors

GL_INVALID_ENUM is generated if target is not GL_TEXTURE_3D_EXT.

GL_INVALID_OPERATION is generated if the texture array has not been defined by a previous

glTexImage3D operation.

GL_INVALID_VALUE is generated if level is less than zero.

GL_INVALID_VALUE may be generated if level is greater than log2(max), where max is the returned

value of GL_MAX_3D_TEXTURE_SIZE_EXT.

GL_INVALID_VALUE is generated if width < -b or if height < -b, or if depth < -b where b is the border

width of the texture array.

GL_INVALID_VALUE is generated if xoffset < -b, (xoffset + width) > (w - b), yoffset < -b, (yoffset + height)

> (h - b), zoffset < -b, (zoffset + depth) > (d -b). Where w is the GL_TEXTURE_WIDTH, h is the

384 OpenGL 1.2 Reference Manual

GL_TEXTURE_HEIGHT, d is the GL_TEXTURE_DEPTH_EXT, and b is the border width of the texture

image being modified. Note that w, h, and d include twice the border width.

GL_INVALID_ENUM is generated if format is not an accepted format constant.

GL_INVALID_ENUM is generated if type is not a type constant.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX.

GL_INVALID_OPERATION is generated if glTexSubImage3DEXT is executed between the execution of

glBegin and the corresponding execution of glEnd.

Associated Gets

glGetTexImage

glIsEnabled with argument GL_TEXTURE_3D_EXT

Related Information

The glDrawPixels subroutine, glFog subroutine, glPixelStore subroutine, glPixelTransfer subroutine,

glTexEnv subroutine, glTexGen subroutine, glTexImage3DEXT subroutine, glTexParameter subroutine.

glTranslate Subroutine

Purpose

Multiplies the current matrix by a translation matrix.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glTranslated(GLdouble X,

 GLdouble Y,

 GLdouble Z)

void glTranslatef(GLfloat X,

 GLfloat Y,

 GLfloat Z)

Parameters

 X, Y, Z Specify the X, Y, and Z coordinates of a translation vector.

Description

The glTranslate subroutine moves the coordinate system origin to the point specified by (X,Y,Z). The

translation vector is used to compute a 4 x 4 translation matrix as follows:

Chapter 1. OpenGL Subroutines 385

The current matrix (see the glMatrixMode subroutine for information on specifying the current matrix) is

multiplied by this translation matrix, with the product replacing the current matrix. That is, if M is the

current matrix and T is the translation matrix, M is replaced with MT.

If the matrix mode is either GL_MODELVIEW or GL_PROJECTION, all objects drawn after glTranslate is

called are translated. Use the glPushMatrix and glPopMatrix subroutines to save and restore the

untranslated coordinate system.

Errors

 GL_INVALID_OPERATION The glTranslate subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glTranslate subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_MATRIX_MODE

glGet with argument GL_MODELVIEW_MATRIX

glGet with argument GL_PROJECTION_MATRIX

glGet with argument GL_TEXTURE_MATRIX.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glMatrixMode subroutine, glMultMatrix subroutine, glPushMatrix

subroutine, glRotate subroutine, glScale subroutine.

glUnLockArraysEXT Subroutine

Purpose

Unlocks the currently enabled vertex arrays.

1

0

0

0

0

1

0

0

0

0

1

0

x

y

z

1

Figure 27. Translation Matrix. This diagram shows a matrix in brackets. The matrix consists of four lines containing

four characters each. The first line contains the following (from left to right): one, zero, zero, x. The second line

contains the following (from left to right): zero, one, zero, y. The third line contains the following (from left to right):

zero, zero, one, z. The fourth line contains the following (from left to right): zero, zero, zero, one.

386 OpenGL 1.2 Reference Manual

Library

OpenGL C bindings library: libGL.a

C Syntax

void glUnlockArraysEXT (void)

Description

The glUnlockArraysEXT subroutine unlocks vertex arrays locked by the glLockArraysEXT subroutine.

Errors

 INVALID_OPERATION The glUnlockArraysEXT subroutine is called without a corresponding previous

execution of glLockArraysEXT.

INVALID_OPERATION The glUnlockArraysEXT subroutine is called between execution of Begin and the

corresponding execution of End.

Related Information

The glLockArraysEXT subroutine.

glVertex Subroutine

Purpose

Specifies a vertex.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glVertex2d(GLdouble X,

 GLdouble Y)

void glVertex2f(GLfloat X,

 GLfloat Y)

void glVertex2i(GLint X,

 GLint Y)

void glVertex2s(GLshort X,

 GLshort Y)

void glVertex3d(GLdouble X,

 GLdouble Y,

 GLdouble Z)

void glVertex3f(GLfloat X,

 GLfloat Y,

 GLfloat Z)

void glVertex3i(GLint X,

 GLint Y,

 GLint Z)

Chapter 1. OpenGL Subroutines 387

void glVertex3s(GLshort X,

 GLshort Y,

 GLshort Z)

void glVertex4d(GLdouble X,

 GLdouble Y,

 GLdouble Z,

 GLdouble W)

void glVertex4f(GLfloat X,

 GLfloat Y,

 GLfloat Z,

 GLfloat W)

void glVertex4i(GLint X,

 GLint Y,

 GLint Z,

 GLint W)

void glVertex4s(GLshort X,

 GLshort Y,

 GLshort Z,

 GLshort W)

void glVertex2dv(const GLdouble * V)

void glVertex2fv(const GLfloat * V)

void glVertex2iv(const GLint * V)

void glVertex2sv(const GLshort * V)

void glVertex3dv(const GLdouble * V)

void glVertex3fv(const GLfloat * V)

void glVertex3iv(const GLint * V)

void glVertex3sv(const GLshort * V)

void glVertex4dv(const GLdouble * V)

void glVertex4fv(const GLfloat * V)

void glVertex4iv(const GLint * V)

void glVertex4sv(const GLshort * V)

Parameters

 X, Y, Z, W Specify X, Y, Z, and W coordinates of a vertex. Not all parameters are present in all forms of the

command.

V Specifies a pointer to an array of two, three, or four elements. The elements of a two-element

array are X and Y. The elements of a three-element array are X, Y, and Z. The elements of a

four-element array are X, Y, Z, and W.

388 OpenGL 1.2 Reference Manual

Description

The glVertex subroutines are used within the glBegin and glEnd subroutine pairs to specify point, line,

and polygon vertices. The current color, normal, texture coordinate, edge flag, secondary color, fog

coordinate and color index are associated with the vertex when glVertex is called.

When only X and Y are specified, Z defaults to 0.0 and W defaults to 1.0. When X, Y, and Z are specified,

W defaults to 1.0.

Notes

Calling glVertex outside of a glBegin/glEnd subroutine pair results in undefined behavior.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glCallList subroutine, glColor subroutine, glEdgeFlag subroutine,

glEvalCoord subroutine, glIndex subroutine, glMaterial subroutine, glNormal subroutine, glRect

subroutine, glTexCoord subroutine.

glVertexPointer Subroutine

Purpose

Defines an array of vertex data.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glVertexPointer(GLint size,

 GLenum type,

 GLsizei stride,

 const GLvoid * pointer)

Description

The glVertexPointer subroutine specifies the location and data format of an array of vertex coordinates to

use when rendering. The size parameter specifies the number of coordinates per vertex and type the data

type of the coordinates. The stride parameter specifies the byte stride from one vertex to the next allowing

vertices and attributes to be packed into a single array or stored in separate arrays. (Single array storage

may be more efficient on some implementations; see glInterleavedArrays). When a vertex array is

specified, size, type, stride, and pointer are saved as client side state.

To enable and disable the vertex array, call glEnableClientState and glDisableClientState with the

argument GL_VERTEX_ARRAY. If enabled, the vertex array is used when glDrawArrays,

glDrawElements, or glArrayElement is called.

Use glDrawArrays to construct a sequence of primitives (all of the same type) from prespecified vertex

and vertex attribute arrays. Use glArrayElement to specify primitives by indexing vertices and vertex

attributes and glDrawElements to construct a sequence of primitives by indexing vertices and vertex

attributes.

Chapter 1. OpenGL Subroutines 389

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Vertex array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 size Specifies the number of coordinates per vertex; must be 2, 3, or 4. The initial value is 4.

type Specifies the data type of each coordinate in the array. Symbolic constants GL_SHORT, GL_INT,

GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

stride Specifies the byte offset between consecutive vertices. If stride is 0, the vertices are understood to be

tightly packed in the array. The initial value is 0.

pointer Specifies a pointer to the first coordinate of the first vertex in the array. The initial value is 0 (NULL

pointer).

Notes

The glVertexPointer subroutine is available only if the GL version is 1.1 or greater.

The vertex array is initially disabled and it won’t be accessed when glArrayElement, glDrawElements or

glDrawArrays is called.

Execution of glVertexPointer is not allowed between glBegin and the corresponding glEnd, but an error

may or may not be generated. If an error is not generated, the operation is undefined.

The glVertexPointer subroutine is typically implemented on the client side with no protocol.

Since the vertex array parameters are client side state, they are not saved or restored by glPushAttrib

and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

The glVertexPointer subroutine is not included in display lists.

Errors

v GL_INVALID_VALUE is generated if size is not 2, 3, or 4.

v GL_INVALID_ENUM is generated if type is is not an accepted value.

v GL_INVALID_VALUE is generated if stride is negative.

Associated Gets

v glIsEnabled with argument GL_VERTEX_ARRAY

v glGet with argument GL_VERTEX_ARRAY_SIZE

v glGet with argument GL_VERTEX_ARRAY_TYPE

v glGet with argument GL_VERTEX_ARRAY_STRIDE

v glGetPointerv with argument GL_VERTEX_ARRAY_POINTER

Related Information

The glArrayElement subroutine, glColorPointer subroutine, glDrawArrays subroutine, glDrawElements

subroutine, glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv subroutine,

390 OpenGL 1.2 Reference Manual

glIndexPointer subroutine, glNormalPointer subroutine, glPopClientAttrib subroutine,

glPushClientAttrib subroutine, glTexCoordPointer subroutine. glVertexPointerListIBM subroutine.

glVertexPointerEXT Subroutine

Purpose

Defines an array of vertex data.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glVertexPointerEXT(GLint size,

 GLenum type,

 GLsizei stride,

 GLsizei count,

 const GLvoid *pointer)

Parameters

 size Specifies the number of coordinates per vertex, must be 2,3, or 4.

type Specifies the data type of each coordinate in the array. Symbolic constants GL_SHORT, GL_INT,

GL_FLOAT, or GL_DOUBLE_EXT are accepted.

stride Specifies the byte offset between consecutive vertexes. If stride is 0 the vertexes are understood to be

tightly packed in the array.

count Specifies the number of vertexes, counting from the first, that are static.

pointer Specifies a pointer to the first coordinate of the first vertex in the array.

Description

The glVertexPointerEXT subroutine specifies the location and data format of an array of vertex

coordinates to use when rendering. size specifies the number of coordinates per vertex and type the data

type of the coordinates. stride gives the byte stride from one vertex to the next allowing vertexes and

attributes to be packed into a single array or stored in separate arrays. (Single-array storage may be more

efficient on some implementations.) count indicates the number of array elements (counting from the first)

that are static. Static elements may be modified by the application, but once they are modified, the

application must explicitly respecify the array before using it for any rendering. When a vertex array is

specified, size, type, stride, count, and pointer are saved as client-side state, and static array elements

may be cached by the implementation.

The vertex array is enabled and disabled using glEnable and glDisable with the argument

GL_VERTEX_ARRAY_EXT. If enabled, the vertex array is used when glDrawArraysEXT or

glArrayElementEXT is called.

Notes

Non-static array elements are not accessed until glArrayElementEXT or glDrawArraysEXT is executed.

By default the vertex array is disabled and it won’t be accessed when glArrayElementEXT or

glDrawArraysEXT is called.

Although, it is not an error to call glVertexPointerEXT between the execution of glBegin and the

corresponding execution of glEnd, the results are undefined.

The glVertexPointerEXT subroutine will typically be implemented on the client side with no protocol.

Chapter 1. OpenGL Subroutines 391

Since the vertex array parameters are client side state, they are not saved or restored by glPushAttrib

and glPopAttrib.

The glVertexPointerEXT commands are not entered into display lists.

The glVertexPointerEXT subroutine is part of the _extname(EXT_vertex_array) extension, not part of the

core GL command set. If _extstring(EXT_vertex_array) is included in the string returned by glGetString,

when called with argument GL_EXTENSIONS, extension _extname(EXT_vertex_array) is supported.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Vertex array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Errors

GL_INVALID_VALUE is generated if size is not 2, 3, or 4.

GL_INVALID_ENUM is generated if type is is not an accepted value.

GL_INVALID_VALUE is generated if stride or count is negative.

Associated Gets

glIsEnabled with argument GL_VERTEX_ARRAY_EXT

glGet with argument GL_VERTEX_ARRAY_SIZE_EXT

glGet with argument GL_VERTEX_ARRAY_TYPE_EXT

glGet with argument GL_VERTEX_ARRAY_STRIDE_EXT

glGet with argument GL_VERTEX_ARRAY_COUNT_EXT

glGetPointervEXT with argument GL_VERTEX_ARRAY_POINTER_EXT

File

 /usr/include/GL/glext.h Contains extensions to C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glArrayElementEXT subroutine, glColorPointerEXT subroutine, glDrawArraysEXT subroutine,

glEdgeFlagPointerEXT subroutine, glGetPointervEXT subroutine, glIndexPointerEXTsubroutine,

glNormalPointerEXT subroutine, glTexCoordPointerEXT subroutine.

392 OpenGL 1.2 Reference Manual

glVertexPointerListIBM Subroutine

Purpose

Defines a list of vertex arrays.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glVertexPointerListIBM(GLint size,

 GLenum type,

 GLint stride,

 const GLvoid ** pointer,

 GLint ptrstride)

Description

The glVertexPointerListIBM subroutine specifies the location and data format of a list of arrays of vertex

components to use when rendering. The size parameter specifies the number of components per vertex,

and must be 2, 3 or 4. The type parameter specifies the data type of each vertex component. The stride

parameter gives the byte stride from one vertex to the next allowing vertices and attributes to be packed

into a single array or stored in separate arrays. (Single-array storage may be more efficient on some

implementations; see glInterleavedArrays). The ptrstride parameter specifies the byte stride from one

pointer to the next in the pointer array.

When a vertex array is specified, size, type, stride, pointer and ptrstride are saved as client side state.

A stride value of 0 does not specify a “tightly packed” array as it does in glVertexPointer. Instead, it

causes the first array element of each array to be used for each vertex. Also, a negative value can be

used for stride, which allows the user to move through each array in reverse order.

To enable and disable the vertex arrays, call glEnableClientState and glDisableClientState with the

argument GL_VERTEX_ARRAY. The vertex array is initially disabled. When enabled, the vertex arrays are

used when glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, glDrawArrays, glDrawElements or glArrayElement is called. The last

three calls in this list will only use the first array (the one pointed at by pointer[0]). See the descriptions of

these routines for more information on their use.

Use glDrawArrays, glMultiDrawArraysEXT, or glMultiModeDrawArraysIBM to construct a sequence of

primitives from prespecified vertex and vertex attribute arrays. Use glArrayElement to specify primitives

by indexing vertices and vertex attributes. Use glDrawElements, glMultiDrawElementsEXT,

glMultiModeDrawElementsIBM, or glDrawRangeElements to construct a sequence of primitives by

indexing vertices and vertex attributes.

If enabled, the Vertex array is used when glDrawArrays, glDrawElements, glArrayElements,

glMultiDrawArraysEXT, glMultiDrawElementsEXT, glMultiModeDrawArraysIBM,

glMultiModeDrawElementsIBM, or glDrawRangeElements is called.

Parameters

 size Specifies the number of components per vertex. It must be 2, 3 or 4. The initial value is 4.

type Specifies the data type of each vertex component in the array. Symbolic constants GL_BYTE,

GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,

GL_FLOAT, or GL_DOUBLE are accepted. The initial value is GL_FLOAT.

Chapter 1. OpenGL Subroutines 393

stride Specifies the byte offset between consecutive vertices. The initial value is 0.

pointer Specifies a list of vertex arrays. The initial value is 0 (NULL pointer).

ptrstride Specifies the byte stride between successive pointers in the pointer array. The initial value is 0.

Notes

The glVertexPointerListIBM subroutine is available only if the GL_IBM_vertex_array_lists extension is

supported.

Execution of glVertexPointerListIBM is not allowed between glBegin and the corresponding glEnd, but

an error may or may not be generated. If an error is not generated, the operation is undefined.

The glVertexPointerListIBM subroutine is typically implemented on the client side.

Since the vertex array parameters are client side state, they are not saved or restored by glPushAttrib

and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead.

When a glVertexPointerListIBM call is encountered while compiling a display list, the information it

contains does NOT contribute to the display list, but is used to update the immediate context instead.

The glVertexPointer call and the glVertexPointerListIBM call share the same state variables. A

glVertexPointer call will reset the vertex list state to indicate that there is only one vertex list, so that any

and all lists specified by a previous glVertexPointerListIBM call will be lost, not just the first list that it

specified.

Error Codes

v GL_INVALID_VALUE is generated if size is not 2, 3 or 4.

v GL_INVALID_ENUM is generated if type is not an accepted value.

Associated Gets

v glIsEnabled with argument GL_VERTEX_ARRAY

v glGetPointerv with argument GL_VERTEX_ARRAY_LIST_IBM

v glGet with argument GL_VERTEX_ARRAY_LIST_STRIDE_IBM

v glGet with argument GL_VERTEX_ARRAY_SIZE

v glGet with argument GL_VERTEX_ARRAY_STRIDE

v glGet with argument GL_VERTEX_ARRAY_TYPE

Related Information

The glArrayElement subroutine, glVertexPointer subroutine, glDrawArrays subroutine, glDrawElements

subroutine, glEdgeFlagPointer subroutine, glEnable subroutine, glGetPointerv subroutine,

glIndexPointer subroutine, glInterleavedArrays subroutine, glMultiDrawArraysEXT subroutine,

glMultiDrawElementsEXT subroutine, glMultiModeDrawArraysIBM subroutine,

glMultiModeDrawElementsIBM subroutine, glNormalPointer subroutine, glPopClientAttrib subroutine,

glPushClientAttrib subroutine, glTexCoordPointer subroutine, glVertexPointer subroutine.

glViewport Subroutine

Purpose

Sets the viewport.

394 OpenGL 1.2 Reference Manual

Library

OpenGL C bindings library: libGL.a

C Syntax

void glViewport(GLint X,

 GLint Y,

 GLsizei Width,

 GLsizei Height)

Parameters

 X, Y Specify the lower left corner of the viewport rectangle in pixels. The default is (0,0).

Width, Height Specify the width and height, respectively, of the viewport. When a GL context is first

attached to a window, Width and Height are set to the dimensions of that window.

Description

The glViewport subroutine specifies the affine transformation of X and Y from normalized device

coordinates to window coordinates. Let (Xnd, Ynd) be normalized device coordinates. Then the window

coordinates (Xw, Yw) are computed as follows:

Viewport width and height are silently clamped to a range that depends on the implementation. This range

is queried by calling the glGet subroutine with the GL_MAX_VIEWPORT_DIMS argument.

Errors

 GL_INVALID_VALUE Width or Height is negative.

GL_INVALID_OPERATION The glViewport subroutine is called between a call to glBegin and the

corresponding call to glEnd.

Associated Gets

Associated gets for the glViewport subroutine are as follows. (See the glGet subroutine for more

information.)

glGet with argument GL_VIEWPORT

glGet with argument GL_MAX_VIEWPORT_DIMS.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin or glEnd subroutine, glDepthRange subroutine.

glVisibilityBufferIBM Subroutine

Purpose

Specifies the array in which visibility calculation results are stored.

Chapter 1. OpenGL Subroutines 395

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glVisibilityBufferIBM(GLsizei size,

 GLuint *buffer)

Description

This call helps implement an extension providing a mechanism similar to selection and feedback that can

be used to perform occlusion culling. The basic algorithm is as follows:

1. Render the occluders (objects most likely to occlude other objects) into the frame buffer.

2. Specify the visibility buffer (the buffer in which non-occluded names are returned,

glVisibiltyBufferIBM(len, ptr)).

3. Disable z-buffer, stencil-buffer, and color-buffer updates.

4. Select GL_VISIBILITY_IBM rendering mode (glRenderMode(GL_VISIBILITY_IBM)).

5. For each possible occludee: a) identify its name using the glLoadName command. b) render a

simplified representation of the occludee

6. Restore the render mode to GL_RENDER (glRenderMode(GL_RENDER)). The return value from

glRenderMode in this case is the number of visible (picked) objects.

7. Restore z-buffer, stencil-buffer, and color-buffer updates.

8. Render all objects that are found to be non-occluded (those appearing in the visibility buffer).

GL_VISIBILITY render mode is identical to GL_RENDER render mode except whenever a fragment

passes all tests (ie, depth, stencil, alpha, scissor and window-ownership) then a visibility hit results.

Whenever a name stack manipulation command is executed or glRenderMode is called and there is a hit

since the last time the stack was manipulated or glRenderMode was called, then a hit record is written

into the visibility array. The hit record consists of the number of names in the name stack at the time of the

event followed by the name stack contents (bottom name first).

Besides occlusion culling, this extension can also be used to refine selection (picking) to include visiblity.

The basic algorithm is a follows:

 1. Application renders a scene in which the user wishes to pick a object in the scene.

 2. Application uses the base OpenGL select feature to obtain a list of pick candidates.

 3. Disable z-buffer, stencil-buffer, and color-buffer updates.

 4. Change depth test to GL_EQUAL

 5. Set the Scissor region to match the Pick aperture.

 6. Select GL_VISIBILITY_IBM rendering mode (glRenderMode(GL_VISIBILITY_IBM)).

 7. Render each pick candidate with name identifiers.

 8. Restore the render mode to RENDER (glRenderMode(GL_RENDER)). The return value from

glRenderMode in this case is the number of visible (picked) objects.

 9. Restore the depth test.

10. Restore z-buffer, stencil-buffer, and color-buffer updates.

Parameters

 size is an integer indicating the maximum number of values

that can be stored in the visibility array.

buffer is a pointer to an array of unsigned integers (called the

visibility array) to be filled with names.

396 OpenGL 1.2 Reference Manual

Notes

This subroutine is only valid if the GL_IBM_occlusion_cull extension is defined.

Error Codes

 GL_INVALID_VALUE is generated if size is negative.

GL_INVALID_OPERATION is generated if glVisibilityBufferIBM is executed between

the execution of glBegin and the corresponding execution

of glEnd.

GL_INVALID_OPERATION is generated if glVisibilityBufferIBM is executed while the

glRenderMode is GL_VISIBILITY_IBM.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glRenderMode subroutine, the glVisibilityThresholdIBM subroutine.

glVisibilityThresholdIBM Subroutine

Purpose

Specifies the number of visible fragments rendered before a visibility hit is registered.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void glVisibilityThresholdIBM(GLsizei threshold)

Description

glVisibilityThresholdIBM specifies the number of visible fragments rendered before a visibility hit is

registered. A value of 0 results in a visibility hit on the first visible fragment; a value of 1 results in a

visilibility hit on the second visible fragment. The threshold parameter is silently clamped to an

implementation dependent range 0 - GL_MAX_VISIBILITY_THRESHOLD_IBM.

Parameters

 threshold is an integer indicating the number visible fragments prior

to registering a visibility hit.

Error Codes

 GL_INVALID_OPERATION is generated if one of the following conditions exists:

v glVisibilityThresholdIBM is executed between the execution of glBegin

and the corresponding execution of glEnd.

v glVisibilityThresholdIBM is executed while RenderMode is

GL_VISIBILITY_IBM.

Chapter 1. OpenGL Subroutines 397

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

Related Information

The glRenderMode subroutine, the glVisibilityBufferIBM subroutine.

398 OpenGL 1.2 Reference Manual

Chapter 2. OpenGL Utility (GLU) Library

Following is a list of the subroutines available in the OpenGL utility library and the purpose of each

subroutine.

Select the subroutine about which you want to read.

 B

gluBeginCurve Delimits the beginning or end of a non-uniform rational B-spline

(NURBS) curve definition.

gluBeginPolygon Delimits the beginning or end of a polygon description.

gluBeginSurface Delimits the beginning or end of a non-uniform rational B-spline

(NURBS) surface definition.

gluBeginTrim Delimits the beginning or end of a non-uniform rational B-spline

(NURBS) trimming loop definition.

gluBuild1DMipmapLevels Builds a subset of 1D mipmap levels.

gluBuild1DMipmaps Creates 1-dimensional (1D) mipmaps.

gluBuild2DMipmapLevels Builds a subset of 2D mipmap levels.

gluBuild2DMipmaps Creates 2-dimensional (2D) mipmaps.

gluBuild3DMipmapLevels Builds a subset of 3D mipmap levels.

gluBuild3DMipmaps Builds a 3-dimensional (3D) mipmap.

C

gluCheckExtension Determines if an extension name is supported.

gluCylinder Draws a cylinder.

D

gluDeleteNurbsRenderer Destroys a non-uniform rational B-spline (NURBS) object.

gluDeleteQuadric Destroys a quadrics object.

gluDeleteTess Destroys a tessellation object.

gluDisk Draws a disk.

E

gluErrorString Produces an error string from an OpenGL or GLU error code.

G

gluGetNurbsProperty Gets a non-uniform rational B-spline (NURBS) property.

gluGetString Returns a pointer to a static string describing the GLU version or the

GLU extensions that are supported.

gluGetTessProperty Gets a tessellation object property.

L

gluLoadSamplingMatrices Loads non-uniform rational B-spline (NURBS) sampling and culling

matrices.

gluLookAt Defines a viewing transformation.

N

gluNewNurbsRenderer Creates a non-uniform rational B-spline (NURBS) object.

gluNewQuadric Creates a quadrics object.

gluNewTess Creates a tessellation object.

gluNextContour Marks the beginning of another contour.

gluNurbsCallback Defines a callback for a non-uniform rational B-spline (NURBS) object.

gluNurbsCallbackData Sets a user data pointer.

gluNurbsCallbackDataEXT Sets a user data pointer.

gluNurbsCurve Defines the shape of a non-uniform rational B-spline (NURBS) curve.

© Copyright IBM Corp. 1994, 2002 399

gluNurbsProperty Sets a non-uniform rational B-spline (NURBS) property.

gluNurbsSurface Defines the shape of a non-uniform rational B-spline (NURBS) surface.

O

gluOrtho2D Defines a 2-dimensional (2D) orthographic projection matrix.

P

gluPartialDisk Draws an arc of a disk.

gluPerspective Sets up a perspective projection matrix.

gluPickMatrix Defines a picking region.

gluProject Maps object coordinates to window coordinates.

gluPwlCurve Defines a piecewise linear non-uniform rational B-spline (NURBS)

trimming curve.

Q

gluQuadricCallback Defines a callback for a quadrics object.

gluQuadricDrawStyle Specifies the desired quadric drawing style.

gluQuadricNormals Specifies the desired normals for quadrics.

gluQuadricOrientation Specifies the desired inside/outside orientation for quadrics.

gluQuadricTexture Specifies if texturing is desired for quadrics.

S

gluScaleImage Scales an image to an arbitrary size.

gluSphere Draws a sphere.

T

gluTessBeginContour Delimits a contour description.

gluTessBeginPolygon Delimits a polygon description.

gluTessCallback Defines a callback for a tessellation object.

gluTessEndPolygon Delimits a polygon description.

gluTessNormal Specifies a normal for a polygon.

gluTessProperty Sets a tessellation object property.

gluTessVertex Specifies a vertex on a polygon.

U

gluUnProject Projects world space coordinates to object space.

gluUnProject4 Maps window and clip coordinates to object coordinates.

gluBeginCurve or gluEndCurve Subroutine

Purpose

Delimits the beginning or end of a non-uniform rational B-spline (NURBS) curve definition.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluBeginCurve(GLUnurbs* nurb)

void gluEndCurve(GLUnurbs* nurb)

400 OpenGL 1.2 Reference Manual

Description

Use the gluBeginCurve subroutine to mark the beginning of a NURBS curve definition. After calling the

gluBeginCurve subroutine, make one or more calls to the gluNurbsCurve subroutine to define the

attributes of the curve. One (and only one) of these calls must have a curve type of

GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4.

Use the gluEndCurve subroutine to mark the end of the NURBS curve definition.

OpenGL evaluators render the NURBS curve as a series of line segments. Evaluator state is preserved

during rendering with the glPushAttrib(GL_EVAL_BIT) and glPopAttrib attributes. (See the glPushAttrib

subroutine for details on what state these calls preserve.)

Parameters

 nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

Examples

The following commands render a textured NURBS curve with normals. Texture coordinates and normals

are also specified as NURBS curves.

gluBeginCurve(nobj);

 gluNurbsCurve(nobj, ..., GL_MAP1_TEXTURE_COORD_2);

 gluNurbsCurve(nobj, ..., GL_MAP1_NORMAL);

 gluNurbsCurve(nobj, ..., GL_MAP1_VERTEX_4);

gluEndCurve(nobj);

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glPushAttrib or glPopAttrib subroutine, gluBeginSurface subroutine, gluBeginTrim subroutine,

gluNewNurbsRenderer subroutine, gluNurbsCurve subroutine.

gluBeginPolygon or gluEndPolygon Subroutine

Purpose

Delimits the beginning or end of a polygon description.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluBeginPolygon(GLUtesselator* tess)

void gluEndPolygon(GLUtesselator* tess)

Description

The gluBeginPolygon and gluEndPolygon subroutines delimit the definition of a nonconvex polygon. To

define a nonconvex polygon, first call the gluBeginPolygon subroutine. Then, call the gluTessVertex

subroutine to define the contours of the polygon for each vertex and the gluNextContour subroutine to

Chapter 2. OpenGL Utility (GLU) Library 401

start each new contour. (See the gluTessVertex subroutine for details about defining a polygon vertex;

and the gluNextContour subroutine for details about describing polygons with multiple contours.) Finally,

call the gluEndPolygon subroutine to signal the end of the definition.

Once the gluEndPolygon subroutine is called, the polygon is tessellated and the resulting triangles are

described through the callbacks. (See the gluTessCallback subroutine for a list of definitions for the

callback routines.)

Parameters

 tess Specifies the tessellation object created with the gluNewTess subroutine.

Notes

This command is obsolete and is provided for backward compatibility only. Calls to gluBeginPolygon are

mapped to gluTessBeginPolygon followed by gluTessBeginContour. Calls to gluEndPolygon are

mapped to gluTessEndContour followed by gluTessEndPolygon.

Examples

A quadrilateral with a triangular hole can be described as follows:

gluBeginPolygon(tobj);

 gluTessVertex(tobj, v1, v1);

 gluTessVertex(tobj, v2, v2);

 gluTessVertex(tobj, v3, v3);

 gluTessVertex(tobj, v4, v4);

gluNextContour(tobj, GLU_INTERIOR);

 gluTessVertex(tobj, v5, v5);

 gluTessVertex(tobj, v6, v6);

 gluTessVertex(tobj, v7, v7);

gluEndPolygon(tobj);

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluNewTess subroutine, gluNextContour subroutine, gluTessBeginContour subroutine,

gluTessBeginPolygon subroutine, gluTessCallback subroutine, gluTessVertex subroutine.

gluBeginSurface or gluEndSurface Subroutine

Purpose

Delimits the beginning or end of a non-uniform rational B-spline (NURBS) surface definition.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluBeginSurface(GLUnurbs* nurb)

void gluEndSurface(GLUnurbs* nurb)

402 OpenGL 1.2 Reference Manual

Description

Use the gluBeginSurface subroutine to mark the beginning of a NURBS surface definition. After calling

the gluBeginSurface subroutine, make one or more calls to the gluNurbsSurface subroutine to define

the attributes of the surface. One (and only one) of these calls must have a surface type of

GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4.

Use the gluEndSurface subroutine to mark the end of the NURBS surface definition.

Trimming of NURBS surfaces is supported with the gluBeginTrim, gluPwlCurve, gluNurbsCurve, and

gluEndTrim subroutines. (See the gluBeginTrim subroutine for details about delimiting a NURBS

trimming loop.)

OpenGL evaluators render the NURBS surface as a series of polygons. Evaluator state is preserved

during rendering with the glPushAttrib (GL_EVAL_BIT) and glPopAttrib() attributes. (See the

glPushAttrib for details on what state these calls preserve.)

Parameters

 nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

Examples

The following commands render a textured NURBS surface with normals. Texture coordinates and normals

are also specified as NURBS surfaces.

gluBeginSurface(nobj);

 gluNurbsSurface(nobj, ..., GL_MAP2_TEXTURE_COORD_2);

 gluNurbsSurface(nobj, ..., GL_MAP2_NORMAL);

 gluNurbsSurface(nobj, ..., GL_MAP2_VERTEX_4);

gluEndSurface(nobj);

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glPushAttrib subroutine, gluBeginCurve subroutine, gluBeginTrim subroutine,

gluNewNurbsRenderer subroutine, gluNurbsCurve subroutine, gluNurbsSurface subroutine,

gluPwlCurve subroutine.

gluBeginTrim or gluEndTrim Subroutine

Purpose

Delimits the beginning or end of a non-uniform rational B-spline (NURBS) trimming loop definition.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluBeginTrim(GLUnurbs* nurb)

void gluEndTrim(GLUnurbs* nurb)

Chapter 2. OpenGL Utility (GLU) Library 403

Description

Use the gluBeginTrim subroutine to mark the beginning of a NURBS trimming loop. A trimming loop is a

set of oriented curve segments (forming a closed curve) that define boundaries of a NURBS surface.

Trimming loops are included in a NURBS surface definition between calls to the gluBeginSurface and

gluEndSurface subroutine pair.

Use the gluEndTrim subroutine to mark the end of a trimming loop.

The definition for a NURBS surface can contain multiple trimming loops. For example, if a NURBS surface

definition resembles a rectangle with a hole through it, the definition contains two trimming loops. One

trimming loop defines the outer edge of the rectangle and the other defines the hole in the rectangle.

Definitions for each of these trimming loops are bracketed by a gluBeginTrim and gluEndTrim subroutine

pair.

The definition of a single closed trimming loop can consist of multiple curve segments, each described as

a piecewise linear curve or as a single NURBS curve, or a combination of both in any order. (See the

gluPwlCurve subroutine for details on defining a piecewise linear NURBS trimming curve; and the

gluNurbsCurve subroutine for details on defining a NURBS curve.) The only library calls that can appear

in a trimming loop definition (between the calls to the gluBeginTrim and gluEndTrim subroutine) are

gluPwlCurve and gluNurbsCurve.

The region of the NURBS surface displayed is in the domain to the left of the trimming curve as the curve

parameter increases. Therefore, the retained region of the NURBS surface is inside a counterclockwise

trimming loop and outside a clockwise trimming loop. Using the rectangle with the hole mentioned in the

preceding example, the trimming loop for the outer edge of the rectangle runs counterclockwise; the

trimming loop for the hole runs clockwise.

If you use more than one curve to define a single trimming loop, the curve segments must form a closed

loop. That is, the endpoint of each curve must be the starting point of the next curve and the endpoint of

the final curve must be the starting point of the first curve. If the endpoints of these curves are sufficiently

close together but not precisely coincident, they are forced to meet. If the endpoints are not sufficiently

close, an error is generated. (See gluNurbsCallback for details on defining a NURBS object callback.)

If a trimming loop definition contains multiple curves, the direction of the curves must be consistent. (The

inside must be to the left of the curves.) Nested trimming loops are acceptable as long as curve

orientations alternate correctly. Trimming curves cannot be self-intersecting; nor can they intersect each

other.

If no trimming information is given for a NURBS surface, the entire surface is drawn.

Parameters

 nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

Examples

This code fragment defines a trimming loop that consists of one piecewise linear curve and two NURBS

curves:

gluBeginTrim(nobj);

 gluPwlCurve(..., GL_MAP1_TRIM_2);

 gluNurbsCurve(..., GL_MAP1_TRIM_2);

 gluNurbsCurve(..., GL_MAP1_TRIM_3);

gluEndTrim(nobj);

404 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluBeginSurface subroutine, gluNewNurbsRenderer subroutine, gluNurbsCallback subroutine,

gluNurbsCurve subroutine, gluPwlCurve subroutine.

gluBuild1DMipmapLevels Subroutine

Purpose

Builds a subset of 1D mipmap levels.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLint gluBuild1DMipmapLevels(GLenum target,

 GLint internalFormat,

 GLsizei width,

 GLenum format,

 GLenum type,

 GLint level,

 GLint base,

 GLint max,

 const void * data)

Description

gluBuild1DMipmapLevels builds a subset of prefiltered 1D texture maps of decreasing resolutions called

a mipmap. This is used for the antialiasing of texture mapped primitives.

A return value of 0 indicates success, otherwise a GLU error code is returned (see gluErrorString).

A series of mipmap levels from base to max is built by decimating data in half until size 1x1 is reached. At

each level, each texel in the halved mipmap level is an average of the corresponding two texels in the

larger mipmap level. glTexImage1D is called to load these mipmap levels from base to max. If max is

larger than the highest mipmap level for the texture of the specified size, then a GLU error code is

returned (see gluErrorString) and nothing is loaded.

For example, if level is 2 and width is 16, the following levels are possible: 16x1, 8x1, 4x1, 2x1, 1x1.

These correspond to levels 2 through 6 respectively. If base is 3 and max is 5, then only mipmap levels

8x1, 4x1 and 2x1 are loaded. However, if max is 7 then an error is returned and nothing is loaded since

max is larger than the highest mipmap level which is, in this case, 6.

The highest mipmap level can be derived from the formula log2(width)*(2^level)). See the glTexImage1D

reference page for a description of the acceptable values for type parameter. See the glDrawPixels

reference page for a description of the acceptable values for level parameter.

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_1D.

Chapter 2. OpenGL Utility (GLU) Library 405

internalFormat Requests the internal storage format of the texture image.

Must be 1, 2, 3, or 4 or one of the following symbolic

constants:

v GL_ABGR_EXT

v GL_ALPHA

v GL_ALPHA4

v GL_ALPHA8

v GL_ALPHA12

v GL_ALPHA16

v GL_LUMINANCE

v GL_LUMINANCE4

v GL_LUMINANCE8

v GL_LUMINANCE12

v GL_LUMINANCE16

v GL_LUMINANCE_ALPHA

v GL_LUMINANCE4_ALPHA4

v GL_LUMINANCE6_ALPHA2

v GL_LUMINANCE8_ALPHA8

v GL_LUMINANCE12_ALPHA4

v GL_LUMINANCE12_ALPHA12

v GL_LUMINANCE16_ALPHA16

v GL_INTENSITY

v GL_INTENSITY4

v GL_INTENSITY8

v GL_INTENSITY12

v GL_INTENSITY16

v GL_RGB

v GL_R3_G3_B2

v GL_RGB4

v GL_RGB5

v GL_RGB8

v GL_RGB10

v GL_RGB12

v GL_RGB16

v GL_RGBA

v GL_RGBA2

v GL_RGBA4

v GL_RGB5_A1

v GL_RGBA8

v GL_RGB10_A2

v GL_RGBA12

v GL_RGBA16

width Specifies the width in pixels of the texture image. This

should be a power of 2.

406 OpenGL 1.2 Reference Manual

format Specifies the format of the pixel data. Must be one of:

v GL_COLOR_INDEX

v GL_DEPTH_COMPONENT

v GL_RED

v GL_GREEN

v GL_BLUE

v GL_ALPHA

v GL_RGB

v GL_RGBA

v GL_BGRA

v GL_LUMINANCE

v GL_LUMINANCE_ALPHA

type Specifies the data type for data. Must be one of:

v GL_UNSIGNED_BYTE

v GL_BYTE

v GL_BITMAP

v GL_UNSIGNED_SHORT

v GL_SHORT

v GL_UNSIGNED_INT

v GL_INT

v GL_FLOAT

v GL_UNSIGNED_BYTE_3_3_2

v GL_UNSIGNED_BYTE_2_3_3_REV

v GL_UNSIGNED_SHORT_5_6_5

v GL_UNSIGNED_SHORT_5_6_5_REV

v GL_UNSIGNED_SHORT_4_4_4_4

v GL_UNSIGNED_SHORT_4_4_4_4_REV

v GL_UNSIGNED_SHORT_5_5_5_1

v GL_UNSIGNED_SHORT_1_5_5_5_REV

v GL_UNSIGNED_INT_8_8_8_8

v GL_UNSIGNED_INT_8_8_8_8_REV

v GL_UNSIGNED_INT_10_10_10_2

v GL_UNSIGNED_INT_2_10_10_10_REV

level Specifies the mipmap level of the image data.

base Specifies the minimum mipmap level to pass to

glTexImage1D.

max Specifies the maximum mipmap level to pass to

glTexImage1D.

data Specifies a pointer to the image data in memory.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Error Codes

v GLU_INVALID_VALUE is returned if level > base, base < 0, max< base or max is > the highest

mipmap level for data.

v GLU_INVALID_VALUE is returned if width is < 1.

v GLU_INVALID_ENUM is returned if internalFormat, format or type are not legal.

Chapter 2. OpenGL Utility (GLU) Library 407

v GLU_INVALID_OPERATION is returned if level is GL_UNSIGNED_BYTE_3_3_2 or

GL_UNSIGNED_BYTE_2_3_3_REV and type is not GL_RGB.

v GLU_INVALID_OPERATION is returned if level is GL_UNSIGNED_SHORT_5_6_5 or

GL_UNSIGNED_SHORT_5_6_5_REV and type is not GL_RGB.

v GLU_INVALID_OPERATION is returned if level is GL_UNSIGNED_SHORT_4_4_4_4 or

GL_UNSIGNED_SHORT_4_4_4_4_REV and type is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if level is GL_UNSIGNED_SHORT_5_5_5_1 or

GL_UNSIGNED_SHORT_1_5_5_5_REV and type is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if level is GL_UNSIGNED_INT_8_8_8_8 or

GL_UNSIGNED_INT_8_8_8_8_REV and type is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if level is GL_UNSIGNED_INT_10_10_10_2 or

GL_UNSIGNED_INT_2_10_10_10_REV and type is neither GL_RGBA nor GL_BGRA.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glDrawPixels subroutine, glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3D

subroutine, gluBuild1DMipmaps subroutine, gluBuild2DMipmaps subroutine, gluBuild3DMipmaps

subroutine, gluErrorString subroutine, glGetTexImage subroutine, glGetTexLevelParameter subroutine,

gluBuild2DMipmapLevels subroutine and gluBuild3DMipmapLevels subroutine.

gluBuild1DMipmaps Subroutine

Purpose

Creates 1-dimensional (1D) mipmaps.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLint gluBuild1DMipmaps(GLenum target,

 GLint internalFormat,

 GLsizei width,

 GLenum format,

 GLenum type,

 const void * data)

Description

The gluBuild1DMipmaps subroutine builds a series of prefiltered 1D texture maps of decreasing

resolutions called a mipmap. This is used for the antialiasing of texture mapped primitives.

A return value of 0 indicates success, otherwise a GLU error code is returned (see gluErrorString).

Initially, the width of data is checked to see if it is a power of two. If not, a copy of data is scaled up or

down to the nearest power of two. This copy will be used for subsequent mipmapping operations

described below. (If width is exactly between powers of 2, then the copy of data will scale upwards.) For

example, if width is 57 then a copy of data will scale up to 64 before mipmapping takes place.

408 OpenGL 1.2 Reference Manual

Then, proxy textures (see glTexImage1D) are used to determine if the implementation can fit the

requested texture. If not, width is continually halved until it fits.

Next, a series of mipmap levels is built by decimating a copy of data in half until size 1x1 is reached. At

each level, each texel in the halved mipmap level is an average of the corresponding two texels in the

larger mipmap level.

glTexImage1D is called to load each of these mipmap levels. Level 0 is a copy of data. The highest level

is log2(width). For example, if width is 64 and the implementation can store a texture of this size, the

following mipmap levels are built: 64x1, 32x1, 16x1, 8x1, 4x1, 2x1 and 1x1. These correspond to levels 0

through 6, respectively.

See the glTexImage1D subroutine for a description of the acceptable values for the format parameter. See

the glDrawPixels subroutine for acceptable values for the type parameter.

Parameters

 target Specifies the target texture. This value must be GL_TEXTURE_1D.

Chapter 2. OpenGL Utility (GLU) Library 409

internalFormat Specifies the number of color components in the texture. Values must be 1, 2, 3, or 4 or

one of the following symbolic constants:

v GL_ABGR_EXT

v GL_ALPHA

v GL_ALPHA4

v GL_ALPHA8

v GL_ALPHA12

v GL_ALPHA16

v GL_LUMINANCE

v GL_LUMINANCE4

v GL_LUMINANCE8

v GL_LUMINANCE12

v GL_LUMINANCE16

v GL_LUMINANCE_ALPHA

v GL_LUMINANCE4_ALPHA4

v GL_LUMINANCE6_ALPHA2

v GL_LUMINANCE8_ALPHA8

v GL_LUMINANCE12_ALPHA4

v GL_LUMINANCE12_ALPHA12

v GL_LUMINANCE16_ALPHA16

v GL_INTENSITY

v GL_INTENSITY4

v GL_INTENSITY8

v GL_INTENSITY12

v GL_INTENSITY16

v GL_RGB

v GL_R3_G3_B2

v GL_RGB4

v GL_RGB5

v GL_RGB8

v GL_RGB10

v GL_RGB12

v GL_RGB16

v GL_RGBA

v GL_RGBA2

v GL_RGBA4

v GL_RGB5_A1

v GL_RGBA8

v GL_RGB10_A2

v GL_RGBA12

v GL_RGBA16

width Specifies the width, in pixels, of the texture image.

410 OpenGL 1.2 Reference Manual

format Specifies the format of the pixel data. The following symbolic values are valid:

v GL_COLOR_INDEX

v GL_DEPTH_COMPONENT

v GL_RED

v GL_GREEN

v GL_BLUE

v GL_ALPHA

v GL_RGB

v GL_RGBA

v GL_BGRA

v GL_LUMINANCE

v GL_LUMINANCE_ALPHA

 (See the glTexImage1D subroutine for a description of the acceptable values for the

format parameter.)

type Specifies the data type. The following data types for data are valid:

v GL_UNSIGNED_BYTE

v GL_BYTE

v GL_BITMAP

v GL_UNSIGNED_SHORT

v GL_SHORT

v GL_UNSIGNED_INT

v GL_INT

v GL_FLOAT

v GL_UNSIGNED_BYTE_3_3_2

v GL_UNSIGNED_BYTE_2_3_3_REV

v GL_UNSIGNED_SHORT_5_6_5

v GL_UNSIGNED_SHORT_5_6_5_REV

v GL_UNSIGNED_SHORT_4_4_4_4

v GL_UNSIGNED_SHORT_4_4_4_4_REV

v GL_UNSIGNED_SHORT_5_5_5_1

v GL_UNSIGNED_SHORT_1_5_5_5_REV

v GL_UNSIGNED_INT_8_8_8_8

v GL_UNSIGNED_INT_8_8_8_8_REV

v GL_UNSIGNED_INT_10_10_10_2

v GL_UNSIGNED_INT_2_10_10_10_REV

 (See the glDrawPixels subroutine for acceptable values for the type parameter.)

data Specifies a pointer to the image data in memory.

NOTES

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Note that there is no direct way of querying the maximum level. This can be derived indirectly via

glGetTexLevelParameter. First, query for the width actually used at level 0. (The width may not be equal

to width since proxy textures might have scaled it to fit the implementation.) Then the maximum level can

be derived from the formula log2(width).

Chapter 2. OpenGL Utility (GLU) Library 411

ERRORS

v GLU_INVALID_VALUE is returned if width is < 1.

v GLU_INVALID_ENUM is returned if format or type are not legal.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_BYTE_3_3_2 or

GL_UNSIGNED_BYTE_2_3_3_REV and format is not GL_RGB.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_6_5 or

GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_4_4_4_4 or

GL_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GL_RGBA, nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_5_5_1 or

GL_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_8_8_8_8 or

GL_UNSIGNED_INT_8_8_8_8_REV and format is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_10_10_10_2 or

GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluBuild1DMipmaps subroutine, gluBuild2DMipmaps subroutine, gluBuild3DMipmaps subroutine,

gluBuild1DMipmapLevels subroutine, gluBuild2DMipmapLevels subroutine, gluBuild3DMipmapLevels

subroutine, glDrawPixels subroutine, glGetTexLevelParameter subroutine, glGetTexImage subroutine,

glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3D subroutine .

gluBuild2DMipmapLevels Subroutine

Purpose

Builds a subset of 2D mipmap levels.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLint gluBuild2DMipmapLevels(GLenum target,

 GLint internalFormat,

 GLsizei width,

 GLsizei height,

 GLenum format,

 GLenum type,

 GLint level,

 GLint base,

 GLint max,

 const void * data)

Description

gluBuild2DMipmapLevels builds a subset of prefiltered 2D texture maps of decreasing resolutions called

a mipmap. This is used for the antialiasing of texture mapped primitives.

412 OpenGL 1.2 Reference Manual

A return value of 0 indicates success, otherwise a GLU error code is returned (see gluErrorString).

A series of mipmap levels from base to max is built by decimating data in half along both dimensions until

size 1x1 is reached. At each level, each texel in the halved mipmap level is an average of the

corresponding four texels in the larger mipmap level. (In the case of rectangular images, the decimation

will ultimately reach an N x 1 or 1 x N configuration. Here, two texels are averaged instead.)

glTexImage2D is called to load these mipmap levels from base to max. If max is larger than the highest

mipmap level for the texture of the specified size, then a GLU error code is returned (see gluErrorString)

and nothing is loaded.

For example, if level is 2 and width is 16 and height is 8, the following levels are possible: 16x8, 8x4, 4x2,

2x1, 1x1. These correspond to levels 2 through 6 respectively. If base is 3 and max is 5, then only

mipmap levels 8x4, 4x2 and 2x1 are loaded. However, if max is 7 then an error is returned and nothing is

loaded since max is larger than the highest mipmap level which is, in this case, 6.

The highest mipmap level can be derived from the formula log2(max(width,height)*(2^level)).

See the glTexImage1D subroutine for a description of the acceptable values for format parameter. See the

glDrawPixels subroutine for a description of the acceptable values for type parameter.

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_2D.

Chapter 2. OpenGL Utility (GLU) Library 413

internalFormat Requests the internal storage format of the texture image.

Must be 1, 2, 3, or 4 or one of the following symbolic

constants:

v GL_ABGR_EXT

v GL_ALPHA

v GL_ALPHA4

v GL_ALPHA8

v GL_ALPHA12

v GL_ALPHA16

v GL_LUMINANCE

v GL_LUMINANCE4

v GL_LUMINANCE8

v GL_LUMINANCE12

v GL_LUMINANCE16

v GL_LUMINANCE_ALPHA

v GL_LUMINANCE4_ALPHA4

v GL_LUMINANCE6_ALPHA2

v GL_LUMINANCE8_ALPHA8

v GL_LUMINANCE12_ALPHA4

v GL_LUMINANCE12_ALPHA12

v GL_LUMINANCE16_ALPHA16

v GL_INTENSITY

v GL_INTENSITY4

v GL_INTENSITY8

v GL_INTENSITY12

v GL_INTENSITY16

v GL_RGB

v GL_R3_G3_B2

v GL_RGB4

v GL_RGB5

v GL_RGB8

v GL_RGB10

v GL_RGB12

v GL_RGB16

v GL_RGBA

v GL_RGBA2

v GL_RGBA4

v GL_RGB5_A1

v GL_RGBA8

v GL_RGB10_A2

v GL_RGBA12

v GL_RGBA16

width, height Specifies the width and height, respectively, in pixels of

the texture image. These should be a power of 2.

414 OpenGL 1.2 Reference Manual

format Specifies the format of the pixel data. Must be one of:

v GL_COLOR_INDEX

v GL_DEPTH_COMPONENT

v GL_RED

v GL_GREEN

v GL_BLUE

v GL_ALPHA

v GL_RGB

v GL_RGBA

v GL_BGRA

v GL_LUMINANCE

v GL_LUMINANCE_ALPHA

type Specifies the data type for data. Must be one of:

v GL_UNSIGNED_BYTE

v GL_BYTE

v GL_BITMAP

v GL_UNSIGNED_SHORT

v GL_SHORT

v GL_UNSIGNED_INT

v GL_INT

v GL_FLOAT

v GL_UNSIGNED_BYTE_3_3_2

v GL_UNSIGNED_BYTE_2_3_3_REV

v GL_UNSIGNED_SHORT_5_6_5

v GL_UNSIGNED_SHORT_5_6_5_REV

v GL_UNSIGNED_SHORT_4_4_4_4

v GL_UNSIGNED_SHORT_4_4_4_4_REV

v GL_UNSIGNED_SHORT_5_5_5_1

v GL_UNSIGNED_SHORT_1_5_5_5_REV

v GL_UNSIGNED_INT_8_8_8_8

v GL_UNSIGNED_INT_8_8_8_8_REV

v GL_UNSIGNED_INT_10_10_10_2

v GL_UNSIGNED_INT_2_10_10_10_REV

level Specifies the mipmap level of the image data.

base Specifies the minimum mipmap level to pass to

glTexImage2D.

max Specifies the maximum mipmap level to pass to

glTexImage2D.

data Specifies a pointer to the image data in memory.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Error Codes

GLU_INVALID_VALUE is returned if level > base, base < 0, max < base or max is > the highest mipmap

level for data.

GLU_INVALID_VALUE is returned if width or height are < 1.

Chapter 2. OpenGL Utility (GLU) Library 415

GLU_INVALID_ENUM is returned if internalFormat, format or type are not legal.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_BYTE_3_3_2 or

GL_UNSIGNED_BYTE_2_3_3_REV and format is not GL_RGB.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_6_5 or

GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_4_4_4_4 or

GL_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GL_RGBA nor GL_BGRA.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_5_5_1 or

GL_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GL_RGBA nor GL_BGRA.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_8_8_8_8 or

GL_UNSIGNED_INT_8_8_8_8_REV and format is neither GL_RGBA nor GL_BGRA.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_10_10_10_2 or

GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glDrawPixels subroutine, glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3D

subroutine, gluBuild1DMipmaps subroutine, gluBuild2DMipmaps subroutine, gluBuild3DMipmaps

subroutine, gluErrorString subroutine, glGetTexImage subroutine, glGetTexLevelParameter subroutine,

gluBuild1DMipmapLevels subroutine, gluBuild3DMipmapLevels subroutine.

gluBuild2DMipmaps Subroutine

Purpose

Creates 2-dimensional (2D) mipmaps.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLint gluBuild2DMipmaps(GLenum target,

 GLint internalFormat,

 GLsizei width,

 GLsizei height,

 GLenum format,

 GLenum type,

 const void * data)

Description

The gluBuild2DMipmaps subroutine builds a series of prefiltered 2-D texture maps of decreasing

resolutions called a mipmap. This is used for the antialiasing of texture mapped primitives.

416 OpenGL 1.2 Reference Manual

A return value of 0 indicates success, otherwise a GLU error code is returned (see gluErrorString).

Initially, the width and height of data are checked to see if they are a power of two. If not, a copy of data

(not data), is scaled up or down to the nearest power of two. This copy will be used for subsequent

mipmapping operations described below. (If width or height is exactly between powers of 2, then the copy

of data will scale upwards.) For example, if width is 57 and height is 23 then a copy of data will scale up

to 64 in width and down to 16 in depth, before mipmapping takes place.

Then, proxy textures (see glTexImage2D) are used to determine if the implementation can fit the

requested texture. If not, both dimensions are continually halved until it fits. (If the OpenGL version is <=

1.0, both maximum texture dimensions are clamped to the value returned by glGetIntegerv with the

argument GL_MAX_TEXTURE_SIZE.)

Next, a series of mipmap levels is built by decimating a copy of data in half along both dimensions until

size 1x1 is reached. At each level, each texel in the halved mipmap level is an average of the

corresponding four texels in the larger mipmap level. (In the case of rectangular images, the decimation

will ultimately reach an N x 1 or 1 x N configuration. Here, two texels are averaged instead.)

glTexImage2D is called to load each of these mipmap levels. Level 0 is a copy of data. The highest level

is log2(max(width,height)). For example, if width is 64 and height is 16 and the implementation can store a

texture of this size, the following mipmap levels are built: 64x16, 32x8, 16x4, 8x2, 4x1, 2x1 and 1x1.

These correspond to levels 0 through 6, respectively.

See the glTexImage1D subroutine for a description of the acceptable values for format parameter. See the

glDrawPixels subroutine for a description of the acceptable values for type parameter.

Parameters

 target Specifies the target texture. This value must be GL_TEXTURE_2D.

Chapter 2. OpenGL Utility (GLU) Library 417

internalFormat Specifies the number of color components in the texture. Values must be 1, 2, 3, or 4 or

one of the following symbolic constants:

v GL_ABGR_EXT

v GL_ALPHA

v GL_ALPHA4

v GL_ALPHA8

v GL_ALPHA12

v GL_ALPHA16

v GL_LUMINANCE

v GL_LUMINANCE4

v GL_LUMINANCE8

v GL_LUMINANCE12

v GL_LUMINANCE16

v GL_LUMINANCE_ALPHA

v GL_LUMINANCE4_ALPHA4

v GL_LUMINANCE6_ALPHA2

v GL_LUMINANCE8_ALPHA8

v GL_LUMINANCE12_ALPHA4

v GL_LUMINANCE12_ALPHA12

v GL_LUMINANCE16_ALPHA16

v GL_INTENSITY

v GL_INTENSITY4

v GL_INTENSITY8

v GL_INTENSITY12

v GL_INTENSITY16

v GL_RGB

v GL_R3_G3_B2

v GL_RGB4

v GL_RGB5

v GL_RGB8

v GL_RGB10

v GL_RGB12

v GL_RGB16

v GL_RGBA

v GL_RGBA2

v GL_RGBA4

v GL_RGB5_A1

v GL_RGBA8

v GL_RGB10_A2

v GL_RGBA12

v GL_RGBA16

width Specifies the width, in pixels, of the texture image.

height Specifies the height, in pixels, of the texture image.

418 OpenGL 1.2 Reference Manual

format Specifies the format of the pixel data. The following symbolic values are valid:

v GL_COLOR_INDEX

v GL_DEPTH_COMPONENT

v GL_RED

v GL_GREEN

v GL_BLUE

v GL_ALPHA

v GL_RGB

v GL_RGBA

v GL_BGRA

v GL_LUMINANCE

v GL_LUMINANCE_ALPHA

 (See the glTexImage1D subroutine for acceptable values for the Format parameter.)

type Specifies the data type. The following data types are valid for data:

v GL_UNSIGNED_BYTE

v GL_BYTE

v GL_BITMAP

v GL_UNSIGNED_SHORT

v GL_SHORT

v GL_UNSIGNED_INT

v GL_INT

v GL_FLOAT

v GL_UNSIGNED_BYTE_3_3_2

v GL_UNSIGNED_BYTE_2_3_3_REV

v GL_UNSIGNED_SHORT_5_6_5

v GL_UNSIGNED_SHORT_5_6_5_REV

v GL_UNSIGNED_SHORT_4_4_4_4

v GL_UNSIGNED_SHORT_4_4_4_4_REV

v GL_UNSIGNED_SHORT_5_5_5_1

v GL_UNSIGNED_SHORT_1_5_5_5_REV

v GL_UNSIGNED_INT_8_8_8_8

v GL_UNSIGNED_INT_8_8_8_8_REV

v GL_UNSIGNED_INT_10_10_10_2

v GL_UNSIGNED_INT_2_10_10_10_REV

 (See the glDrawPixels subroutine for acceptable values for the Type parameter.)

data Specifies a pointer to the image data in memory.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

There is no direct way of querying the maximum level. This can be derived indirectly via

glGetTexLevelParameter. First, query for the width & height actually used at level 0. (The width & height

may not be equal to width & height respectively since proxy textures might have scaled them to fit the

implementation.) Then the maximum level can be derived from the formula log2(max(width,height)).

Error Codes

v GLU_INVALID_VALUE is returned if width or height are < 1.

v GLU_INVALID_ENUM is returned if internalFormat, format or type are not legal.

Chapter 2. OpenGL Utility (GLU) Library 419

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_BYTE_3_3_2 or

GL_UNSIGNED_BYTE_2_3_3_REV and format is not GL_RGB.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_6_5 or

GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_4_4_4_4 or

GL_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_5_5_1 or

GL_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_8_8_8_8 or

GL_UNSIGNED_INT_8_8_8_8_REV and format is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_10_10_10_2 or

GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glDrawPixels subroutine, glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3D

subroutine, gluBuild1DMipmaps subroutine, gluBuild3DMipmaps subroutine, gluErrorString subroutine,

glGetTexImage subroutine, glGetTexLevelParameter subroutine, gluBuild1DMipmapLevels subroutine,

gluBuild2DMipmapLevels subroutine, gluBuild3DMipmapLevels subroutine .

gluBuild3DMipmapLevels Subroutine

Purpose

Builds a subset of 3D mipmap levels.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLint gluBuild3DMipmapLevels(GLenum target,

 GLint internalFormat,

 GLsizei width,

 GLsizei height,

 GLsizei depth,

 GLenum format,

 GLenum type,

 GLint level,

 GLint base,

 GLint max,

 const void * data)

Description

gluBuild3DMipmapLevels builds a subset of prefiltered 3D texture maps of decreasing resolutions called

a mipmap. This is used for the antialiasing of texture mapped primitives.

A return value of 0 indicates success, otherwise a GLU error code is returned (see gluErrorString).

420 OpenGL 1.2 Reference Manual

A series of mipmap levels from base to max is built by decimating data in half along both dimensions until

size 1x1x1 is reached. At each level, each texel in the halved mipmap level is an average of the

corresponding eight texels in the larger mipmap level. (If exactly one of the dimensions is 1, four texels are

averaged. If exactly two of the dimensions are 1, two texels are averaged.) glTexImage3D is called to

load these mipmap levels from base to max. If max is larger than the highest mipmap level for the texture

of the specified size, then a GLU error code is returned (see gluErrorString) and nothing is loaded.

For example, if level is 2 and width is 16, height is 8 and depth is 4, the following levels are possible:

16x8x4, 8x4x2, 4x2x1, 2x1x1, 1x1x1. These correspond to levels 2 through 6 respectively. If base is 3 and

max is 5, then only mipmap levels 8x4x2, 4x2x1 and 2x1x1 are loaded. However, if max is 7 then an error

is returned and nothing is loaded since max is larger than the highest mipmap level which is, in this case,

6.

The highest mipmap level can be derived from the formula log2(max(width,height,depth)*(2^level)).

See the glTexImage1D subroutine for a description of the acceptable values for format parameter. See the

glDrawPixels subroutine for a description of the acceptable values for type parameter.

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_3D.

Chapter 2. OpenGL Utility (GLU) Library 421

internalFormat Requests the internal storage format of the texture image.

Must be 1, 2, 3, or 4 or one of the following symbolic

constants:

v GL_ABGR_EXT

v GL_ALPHA

v GL_ALPHA4

v GL_ALPHA8

v GL_ALPHA12

v GL_ALPHA16

v GL_LUMINANCE

v GL_LUMINANCE4

v GL_LUMINANCE8

v GL_LUMINANCE12

v GL_LUMINANCE16

v GL_LUMINANCE_ALPHA

v GL_LUMINANCE4_ALPHA4

v GL_LUMINANCE6_ALPHA2

v GL_LUMINANCE8_ALPHA8

v GL_LUMINANCE12_ALPHA4

v GL_LUMINANCE12_ALPHA12

v GL_LUMINANCE16_ALPHA16

v GL_INTENSITY

v GL_INTENSITY4

v GL_INTENSITY8

v GL_INTENSITY12

v GL_INTENSITY16

v GL_RGB

v GL_R3_G3_B2

v GL_RGB4

v GL_RGB5

v GL_RGB8

v GL_RGB10

v GL_RGB12

v GL_RGB16

v GL_RGBA

v GL_RGBA2

v GL_RGBA4

v GL_RGB5_A1

v GL_RGBA8

v GL_RGB10_A2

v GL_RGBA12

v GL_RGBA16

width Specifies the width, in pixels, of the texture image. These

should be a power of 2.

height Specifies the height, in pixels, of the texture image. These

should be a power of 2.

depth Specifies the depth, in pixels, of the texture image. These

should be a power of 2.

422 OpenGL 1.2 Reference Manual

format Specifies the format of the pixel data. Must be one of:

v GL_COLOR_INDEX

v GL_DEPTH_COMPONENT

v GL_RED

v GL_GREEN

v GL_BLUE

v GL_ALPHA

v GL_RGB

v GL_RGBA

v GL_BGRA

v GL_LUMINANCE

v GL_LUMINANCE_ALPHA

type Specifies the data type for data. Must be one of:

v GL_UNSIGNED_BYTE

v GL_BYTE

v GL_BITMAP

v GL_UNSIGNED_SHORT

v GL_SHORT

v GL_UNSIGNED_INT

v GL_INT

v GL_FLOAT

v GL_UNSIGNED_BYTE_3_3_2

v GL_UNSIGNED_BYTE_2_3_3_REV

v GL_UNSIGNED_SHORT_5_6_5

v GL_UNSIGNED_SHORT_5_6_5_REV

v GL_UNSIGNED_SHORT_4_4_4_4

v GL_UNSIGNED_SHORT_4_4_4_4_REV

v GL_UNSIGNED_SHORT_5_5_5_1

v GL_UNSIGNED_SHORT_1_5_5_5_REV

v GL_UNSIGNED_INT_8_8_8_8

v GL_UNSIGNED_INT_8_8_8_8_REV

v GL_UNSIGNED_INT_10_10_10_2

v GL_UNSIGNED_INT_2_10_10_10_REV

level Specifies the mipmap level of the image data.

base Specifies the minimum mipmap level to pass to

glTexImage3D.

max Specifies the maximum mipmap level to pass to

glTexImage3D.

data Specifies a pointer to the image data in memory.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

Error Codes

GLU_INVALID_VALUE is returned if level > base, base < 0, max < base or max is > the highest mipmap

level for data.

GLU_INVALID_VALUE is returned if width, height or depth are < 1.

Chapter 2. OpenGL Utility (GLU) Library 423

GLU_INVALID_ENUM is returned if internalFormat, format or type are not legal.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_BYTE_3_3_2 or

GL_UNSIGNED_BYTE_2_3_3_REV and format is not GL_RGB.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_6_5 or

GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_4_4_4_4 or

GL_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GL_RGBA nor GL_BGRA.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_5_5_1 or

GL_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GL_RGBA nor GL_BGRA.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_8_8_8_8 or

GL_UNSIGNED_INT_8_8_8_8_REV and format is neither GL_RGBA nor GL_BGRA.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_10_10_10_2 or

GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

glDrawPixels subroutine, glTexImage1D subroutine, glTexImage2D subroutine, glTexImage3D

subroutine, gluBuild1DMipmaps subroutine, gluBuild2DMipmaps subroutine, gluBuild3DMipmaps

subroutine, gluErrorString subroutine, glGetTexImage subroutine, glGetTexLevelParameter subroutine,

gluBuild1DMipmapLevels subroutine, gluBuild2DMipmapLevels subroutine.

gluBuild3DMipmaps Subroutine

Purpose

Builds a 3-D mipmap.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLint gluBuild3DMipmaps(GLenum target,

 GLint internalFormat,

 GLsizei width,

 GLsizei height,

 GLsizei depth,

 GLenum format,

 GLenum type,

 const void * data)

Description

gluBuild3DMipmaps builds a series of prefiltered 3D texture maps of decreasing resolutions called a

mipmap. This is used for the antialiasing of texture mapped primitives.

424 OpenGL 1.2 Reference Manual

A return value of 0 indicates success, otherwise a GLU error code is returned (see gluErrorString).

Initially, the width, height and depth of data are checked to see if they are a power of two. If not, a copy of

data (not data), is scaled up or down to the nearest power of two. This copy will be used for subsequent

mipmapping operations described below. (If width, height or depth is exactly between powers of 2, then

the copy of data will scale upwards.) For example, if width is 57, height is 23 and depth is 24 then a copy

of data will scale up to 64 in width, down to 16 in height and up to 32 in depth, before mipmapping takes

place.

Then, proxy textures (see glTexImage3D) are used to determine if the implementation can fit the

requested texture. If not, all three dimensions are continually halved until it fits.

Next, a series of mipmap levels is built by decimating a copy of data in half along all three dimensions

until size 1x1x1 is reached. At each level, each texel in the halved mipmap level is an average of the

corresponding eight texels in the larger mipmap level. (If exactly one of the dimensions is 1, four texels are

averaged. If exactly two of the dimensions are 1, two texels are averaged.)

glTexImage3D is called to load each of these mipmap levels. Level 0 is a copy of data. The highest level

is log2(max(width,height,depth)). For example, if width is 64, height is 16 and depth is 32, and the

implementation can store a texture of this size, the following mipmap levels are built: 64x16x32, 32x8x16,

16x4x8, 8x2x4, 4x1x2, 2x1x1 and 1x1x1. These correspond to levels 0 through 6, respectively.

See the glTexImage1D subroutine for a description of the acceptable values for format parameter. See the

glDrawPixels subroutine for a description of the acceptable values for type parameter.

Parameters

 target Specifies the target texture. Must be GL_TEXTURE_3D.

Chapter 2. OpenGL Utility (GLU) Library 425

internalFormat Requests the internal storage format of the texture image.

Must be 1, 2, 3, or 4 or one of the following symbolic

constants:

v GL_ABGR_EXT

v GL_ALPHA

v GL_ALPHA4

v GL_ALPHA8

v GL_ALPHA12

v GL_ALPHA16

v GL_LUMINANCE

v GL_LUMINANCE4

v GL_LUMINANCE8

v GL_LUMINANCE12

v GL_LUMINANCE16

v GL_LUMINANCE_ALPHA

v GL_LUMINANCE4_ALPHA4

v GL_LUMINANCE6_ALPHA2

v GL_LUMINANCE8_ALPHA8

v GL_LUMINANCE12_ALPHA4

v GL_LUMINANCE12_ALPHA12

v GL_LUMINANCE16_ALPHA16

v GL_INTENSITY

v GL_INTENSITY4

v GL_INTENSITY8

v GL_INTENSITY12

v GL_INTENSITY16

v GL_RGB

v GL_R3_G3_B2

v GL_RGB4

v GL_RGB5

v GL_RGB8

v GL_RGB10

v GL_RGB12

v GL_RGB16

v GL_RGBA

v GL_RGBA2

v GL_RGBA4

v GL_RGB5_A1

v GL_RGBA8

v GL_RGB10_A2

v GL_RGBA12

v GL_RGBA16

width Specifies the width, in pixels, of the texture image.

height Specifies the height, in pixels, of the texture image.

depth Specifies the depth, in pixels, of the texture image.

426 OpenGL 1.2 Reference Manual

format Specifies the format of the pixel data. Must be one of:

v GL_COLOR_INDEX

v GL_DEPTH_COMPONENT

v GL_RED

v GL_GREEN

v GL_BLUE

v GL_ALPHA

v GL_RGB

v GL_RGBA

v GL_BGRA

v GL_LUMINANCE

v GL_LUMINANCE_ALPHA

type Specifies the data type for data. Must be one of:

v GL_UNSIGNED_BYTE

v GL_BYTE

v GL_BITMAP

v GL_UNSIGNED_SHORT

v GL_SHORT

v GL_UNSIGNED_INT

v GL_INT

v GL_FLOAT

v GL_UNSIGNED_BYTE_3_3_2

v GL_UNSIGNED_BYTE_2_3_3_REV

v GL_UNSIGNED_SHORT_5_6_5

v GL_UNSIGNED_SHORT_5_6_5_REV

v GL_UNSIGNED_SHORT_4_4_4_4

v GL_UNSIGNED_SHORT_4_4_4_4_REV

v GL_UNSIGNED_SHORT_5_5_5_1

v GL_UNSIGNED_SHORT_1_5_5_5_REV

v GL_UNSIGNED_INT_8_8_8_8

v GL_UNSIGNED_INT_8_8_8_8_REV

v GL_UNSIGNED_INT_10_10_10_2

v GL_UNSIGNED_INT_2_10_10_10_REV

data Specifies a pointer to the image data in memory.

Notes

GL_ABGR_EXT is only valid if the GL_EXT_abgr extension is defined.

There is no direct way of querying the maximum level. This can be derived indirectly via

glGetTexLevelParameter. First, query for the width, height and depth actually used at level 0. (The width,

height and depth may not be equal to width, height and depth respectively since proxy textures might have

scaled them to fit the implementation.) Then the maximum level can be derived from the formula

log2(max(width,height,depth)).

Error Codes

GLU_INVALID_VALUE is returned if width, height or depth are < 1.

GLU_INVALID_ENUM is returned if internalFormat, format or type are not legal.

Chapter 2. OpenGL Utility (GLU) Library 427

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_BYTE_3_3_2 or

GL_UNSIGNED_BYTE_2_3_3_REV and format is not GL_RGB.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_6_5 or

GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_4_4_4_4 or

GL_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GL_RGBA nor GL_BGRA.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_SHORT_5_5_5_1 or

GL_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GL_RGBA nor GL_BGRA.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_8_8_8_8 or

GL_UNSIGNED_INT_8_8_8_8_REV and format is neither GL_RGBA nor GL_BGRA.

GLU_INVALID_OPERATION is returned if type is GL_UNSIGNED_INT_10_10_10_2 or

GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

v glDrawPixels

v glTexImage1D

v glTexImage2D

v glTexImage3D

v gluBuild1DMipmaps

v gluBuild3DMipmaps

v gluErrorString

v glGetTexImage

v glGetTexLevelParameter

v gluBuild1DMipmapLevels

v gluBuild2DMipmapLevels

v gluBuild3DMipmapLevels

gluCheckExtension Subroutine

Purpose

Determines if an extension name is supported.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLboolean gluCheckExtension(const GLubyte * extName,

 const GLubyte * extString)

428 OpenGL 1.2 Reference Manual

Description

gluCheckExtension returns GL_TRUE if extName is supported otherwise GL_FALSE is returned.

This is used to check for the presence for OpenGL, GLU or GLX extension names by passing the

extensions strings returned by glGetString, gluGetString, or glXGetClientString, respectively, as

extString.

Parameters

 extName Specifies an extension name.

extString Specifies a space-separated list of extension names supported.

Notes

Cases where one extension name is a substring of another are correctly handled.

There may or may not be leading or trailing blanks in extString.

Extension names should not contain embedded spaces.

All strings are null-terminated.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glGetString subroutine, gluGetString subroutine, glXGetClientString subroutine.

gluCylinder Subroutine

Purpose

Draws a cylinder.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluCylinder(GLUquadric* quad,

 GLdouble base,

 GLdouble top,

 GLdouble height,

 GLint slices,

 GLint stacks)

Description

The gluCylinder subroutine draws a cylinder that is oriented along the z axis. The base of the cylinder is

placed at z = 0; the top of the cylinder is placed at z=height. Like a sphere, the cylinder is subdivided

around the z axis into slices and along the z axis into stacks.

Chapter 2. OpenGL Utility (GLU) Library 429

Note: If the top parameter is set to zero, this subroutine will generate a cone.

If the orientation is set to GLU_OUTSIDE (with the gluQuadricOrientation subroutine), any generated

normals point away from the z axis. Otherwise, they point toward the z axis.

If texturing is turned on using the gluQuadricTexture subroutine, texture coordinates are generated so

that t ranges linearly from 0.0 at z=0 to 1.0 at z=height, and s ranges from 0.0 at the +y axis to 0.25 at the

+x axis, as well as up to 0.5 at the -y axis and 0.75 at the -x axis, then back to 1.0 at the +y axis.

Parameters

 quad Specifies the quadrics object created with the gluNewQuadric subroutine.

base Specifies the radius of the cylinder at z=0.

top Specifies the radius of the cylinder at z=Height. If top is set to 0, this subroutine generates a cone.

height Specifies the height of the cylinder.

slices Specifies the number of subdivisions around the z axis.

stacks Specifies the number of subdivisions along the z axis.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluDisk subroutine, gluNewQuadric subroutine, gluPartialDisk subroutine, gluQuadricOrientation

subroutine, gluQuadricTexture subroutine, gluSphere subroutine.

gluDeleteNurbsRenderer Subroutine

Purpose

Destroys a non-uniform rational B-spline (NURBS) object.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluDeleteNurbsRenderer(GLUnurbs* nurb)

Description

The gluDeleteNurbsRenderer subroutine destroys the NURBS object and frees any memory used by that

object. Once this gluDeleteNurbsRenderer subroutine is called, the previously defined value for the nobj

parameter cannot be used.

Parameters

 nurb Specifies the NURBS object (created with the gluNewNurbsRenderer subroutine) to be destroyed.

430 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluNewNurbsRenderer subroutine.

gluDeleteQuadric Subroutine

Purpose

Destroys a quadrics object.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluDeleteQuadric(GLUquadric* quad)

Description

The gluDeleteQuadric subroutine destroys the quadrics object and frees any memory used by that object.

Once the gluDeleteQuadric subroutine has been called, the quad parameter cannot be used again.

Parameters

 quad Specifies the quadrics object (created with the gluNewQuadric subroutine) to be destroyed.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluNewQuadric subroutine.

gluDeleteTess Subroutine

Purpose

Destroys a tessellation object.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluDeleteTess(GLUtesselator* tess)

Chapter 2. OpenGL Utility (GLU) Library 431

Description

The gluDeleteTess subroutine destroys the tessellation object and frees any memory used by that object.

Once this subroutine has been called, the value previously defined for the tess parameter cannot be used

again.

Parameters

 tess Specifies the tessellation object (created with the gluNewTess subroutine) to be destroyed.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluBeginPolygon subroutine, gluNewTess subroutine, gluTessCallback subroutine.

gluDisk Subroutine

Purpose

Draws a disk.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluDisk(GLquadric* quad,

 GLdouble inner,

 GLdouble outer,

 GLint slices,

 GLint loops)

Description

The gluDisk subroutine renders a disk on the z=0 plane. The disk has a radius defined by the outer

parameter and contains a concentric circular hole with a radius defined by the inner parameter. If the value

of inner is 0, no hole is generated. The disk is subdivided around the z axis into slices and rings (as

specified by the slices and loops parameters, respectively).

With regard to orientation, the +z side of the disk is considered to be outside. (See the

gluQuadricOrientation subroutine for details on specifying quadrics orientation.) If orientation is set to

GLU_OUTSIDE, any normals generated point along the +z axis. Otherwise, they point along the -z axis.

If texturing is turned on with the gluQuadricTexture subroutine, texture coordinates are generated linearly,

consistent with the following table:

 XYZ Coordinates (u, v) Texture Coordinates

(outer, 0.0, 0.0) (1.0, 0.5)

(0.0, outer, 0.0) (0.5, 1.0)

(-outer, 0.0, 0.0) (0.5, 0.0)

432 OpenGL 1.2 Reference Manual

The formulae are:

texture coordinate u = 0.5 + 0.5 * (x/outer)
texture coordinate v = 0.5 + 0.5 * (y/outer)

Parameters

 quad Specifies the quadrics object created with the gluNewQuadric subroutine.

inner Defines the inner radius of the disk (may be 0).

outer Defines the outer radius of the disk.

slices Specifies the number of desired subdivisions around the z axis.

loops Specifies the number of desired concentric rings about the origin into which the disk is subdivided.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluCylinder subroutine, gluNewQuadric subroutine, gluPartialDisk subroutine,

gluQuadricOrientation subroutine, gluQuadricTexture subroutine, gluSphere subroutine.

gluErrorString Subroutine

Purpose

Produces an error string from an OpenGL or GLU error code.

Library

OpenGL C bindings library: libGL.a

C Syntax

const Glubyte * gluErrorString(GLenum error)

Description

The gluErrorString subroutine produces an error string from an OpenGL or GLU error code. The format

of the string is ISO_Latin_1. For example, the code line

gluErrorString(GL_OUT_OF_MEMORY)

returns the out of memory string.

The standard GLU error codes are GLU_INVALID_ENUM, GLU_INVALID_VALID, and

GLU_OUT_OF_MEMORY. Certain other GLU functions can return specialized error codes through

callbacks. See the glGetError subroutine for a list of OpenGL error codes.

Parameters

 error Specifies an OpenGL or GLU error code.

Chapter 2. OpenGL Utility (GLU) Library 433

Error Codes

The standard GLU error codes are:

v GLU_INVALID_ENUM

v GLU_INVALID_VALUE

v GLU_OUT_OF_MEMORY

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glGetError subroutine, gluNurbsCallback subroutine, gluQuadricCallback subroutine,

gluTessCallback subroutine.

gluGetNurbsProperty Subroutine

Purpose

Retrieves a non-uniform rational B-spline (NURBS) property.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluGetNurbsProperty(GLUnurbs* nurb,

 GLenum property,

 GLfloat* data)

Description

The gluGetNurbsProperty subroutine retrieves properties stored in a NURBS object. These properties

affect the way that NURBS curves and surfaces are rendered. See the gluNurbsProperty subroutine for

more information on these properties.

Parameters

 nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

property Specifies the property whose value is to be fetched. Valid values for this parameter are:

v GLU_CULLING

v GLU_SAMPLING_TOLERANCE

v GLU_DISPLAY_MODE

v GLU_AUTO_LOAD_MATRIX

v GLU_PARAMETRIC_TOLERANCE

v GLU_SAMPLING_METHOD

v GLU_U_STEP

v GLU_V_STEP

v GLU_NURBS_MODE

data Specifies a pointer to the location into which the value of the named property is written.

434 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluNewNurbsRenderer subroutine, gluNurbsProperty subroutine.

gluGetString Subroutine

Purpose

Returns a string describing the GLU version or GLU extensions.

C Syntax

const GLubyte * gluGetString(GLenum name)

Description

The gluGetString subroutine returns a pointer to a static string describing the GLU version or the GLU

extensions that are supported.

The version number is one of the following forms:

major_number.minor_number

major_number.minor_number.release_number

The version string is of the following form:

version number<space>vendor-specific information

Vendor-specific information is optional. Its format and contents depend on the implementation.

The standard GLU contains a basic set of features and capabilities. If a company or group of companies

wish to support other features, these may be included as extensions to the GLU. If name is

GLU_EXTENSIONS, then gluGetString returns a space-separated list of names of supported GLU

extensions. (Extension names never contain spaces.)

All strings are null-terminated.

Parameters

 name Specifies a symbolic constant, one of GLU_VERSION, or

GLU_EXTENSIONS.

Notes

The gluGetString subroutine only returns information about GLU extensions. Call glGetString to get a list

of GL extensions.

The gluGetString subroutine is an initialization routine. Calling it after a glNewList results in undefined

behavior.

Chapter 2. OpenGL Utility (GLU) Library 435

Error Codes

NULL is returned if name is not GLU_VERSION or GLU_EXTENSIONS.

Related Information

The glGetString subroutine.

gluGetTessProperty

Purpose

Gets a tessellation object property.

Library

C bindings library: libGL.a

C Syntax

void gluGetTessProperty(GLUtesselator* tess,

 GLenum which,

 GLdouble* data)

Description

The gluGetTessProperty subroutine retrieves properties stored in a tessellation object. These properties

affect the way that tessellation objects are interpreted and rendered. See the gluTessProperty reference

page for information about the properties and what they do.

Parameters

 tess Specifies the tessellation object (created with

gluNewTess).

which Specifies the property whose value is to be fetched. Valid

values are:

v GLU_TESS_WINDING_RULE

v GLU_TESS_BOUNDARY_ONLY

v GLU_TESS_TOLERANCE

data Specifies a pointer to the location into which the value of

the named property is written.

Related Information

The gluNewTess subroutine, gluTessProperty subroutine.

gluLoadSamplingMatrices Subroutine

Purpose

Loads non-uniform rational B-spline (NURBS) sampling and culling matrices.

Library

OpenGL C bindings library: libGL.a

436 OpenGL 1.2 Reference Manual

C Syntax

void gluLoadSamplingMatrices(GLUnurbs* nurb,

 const GLfloat *model,

 const GLfloat *perspective,

 const GLint *view)

Description

The gluLoadSamplingMatrices subroutine uses the model, perspective, and view parameters to

recompute the sampling and culling matrices stored in the nurb parameter. The sampling matrix

determines how finely a NURBS surface or curve must be tessellated to satisfy the sampling tolerance (as

determined by the GLU_SAMPLING_TOLERANCE property). The culling matrix determines whether a

NURBS curve or surface should be culled before rendering (when the GLU_CULLING property is turned

on).

Use of the gluLoadSamplingMatrices subroutine is necessary only if the GLU_AUTO_LOAD_MATRIX

property is turned off. (See the gluNurbsProperty subroutine for information on adjusting properties in a

NURBS object.) Leaving the GLU_AUTO_LOAD_MATRIX property turned on causes performance

slowdown since it necessitates a round-trip to the OpenGL server to fetch the current values of the

modelview matrix, projection matrix, and viewport.

Parameters

 nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

model Specifies a modelview matrix, such as from a glGetFloatv call.

perspective Specifies a projection matrix, such as from a glGetFloatv call.

view Specifies a viewport, such as from a glGetIntegerv call.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluGetNurbsProperty subroutine, gluNewNurbsRenderer subroutine, gluNurbsProperty

subroutine.

gluLookAt Subroutine

Purpose

Defines a viewing transformation.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluLookAt(GLdouble eyeX,

 GLdouble eyeY,

 GLdouble eyeZ,

 GLdouble centerX,

 GLdouble centerY,

 GLdouble centerZ,

Chapter 2. OpenGL Utility (GLU) Library 437

GLdouble upX,

 GLdouble upY,

 GLdouble upZ)

Description

The gluLookAt subroutine multiplies the top matrix of the current matrix stack with a matrix M (computed

below), whose effect is to place the eye point at the origin, the center point along the negative z axis, and

the up vector somewhere in the YZ plane, above the z axis. This is done through pure rotation and

translation, preserving all distance metrics.

The matrix M generated by the OpenGL could be computed as follows:

Let E be the 3d column vector (eyeX, eyeY, eyeZ).

Let C be the 3d column vector (centerX, centerY, centerZ).

Let U be the 3d column vector (upX, upY, upZ).

Compute L = C - E.

Normalize L.

Compute S = L x U.

Normalize S.

Compute U’ = S x L.

M is the matrix whose columns are, in order:

(S, 0), (U’, 0), (-L, 0), (-E, 1) (all column vectors)

Note: This matrix is defined for use in systems where the the modelling coordinate vector is a

column vector and is multiplied on the left by the matrices. If you prefer a row vector which gets

multiplied by matrices to its right, then use the transpose of this matrix M.

Note: It is necessary that the UP vector NOT be parallel to the line connecting the center point with

the eye point.

Parameters

 eyeX, eyeY, eyeZ Specifies the position of the eye point.

centerX, centerY, centerZ Specifies the position of the reference point.

upX, upY, upZ Specifies the direction of the up vector.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glFrustum subroutine, gluPerspective subroutine.

gluNewNurbsRenderer Subroutine

Purpose

Creates a non-uniform rational B-spline (NURBS) object.

Library

OpenGL C bindings library: libGL.a

438 OpenGL 1.2 Reference Manual

C Syntax

GLUnurbs* gluNewNurbsRenderer(void)

Description

The gluNewNurbsRenderer subroutine creates and returns a pointer to a new NURBS object. This object

must be referred to when calling NURBS rendering and control functions. A return value of zero means

that there is not enough memory to allocate the object.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluBeginCurve subroutine, gluBeginSurface subroutine, gluBeginTrim subroutine,

gluDeleteNurbsRenderer subroutine, gluNurbsCallback subroutine, gluNurbsProperty subroutine.

gluNewQuadric Subroutine

Purpose

Creates a quadrics object.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLUquadric* gluNewQuadric(void)

Description

The gluNewQuadric subroutine creates and returns a pointer to a new quadrics object. This object must

be referred to when calling quadrics rendering and control functions. A return value of zero means that

there is not enough memory to allocate the object.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluCylinder subroutine, gluDeleteQuadric subroutine, gluDisk subroutine, gluPartialDisk

subroutine, gluQuadricCallback subroutine, gluQuadricDrawStyle subroutine, gluQuadricNormals

subroutine, gluQuadricOrientation subroutine, gluQuadricTexture subroutine, gluSphere subroutine.

gluNewTess Subroutine

Purpose

Creates a tessellation object.

Chapter 2. OpenGL Utility (GLU) Library 439

Library

OpenGL C bindings library: libGL.a

C Syntax

GLUtesselator* gluNewTess(void)

Description

The gluNewTess subroutine creates and returns a pointer to a new tessellation object. This object must

be referred to when calling tessellation functions. A return value of zero means that there is not enough

memory to allocate the object.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluBeginPolygon subroutine, gluDeleteTess subroutine, gluTessCallback subroutine.

gluNextContour Subroutine

Purpose

Marks the beginning of another contour.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluNextContour(GLUtesselator* tess,

 GLenum type)

Description

The gluNextContour subroutine is used in describing polygons with multiple contours. After describing the

first contour through a series of gluTessVertex calls, a gluNextContour call indicates that the previous

contour is complete and the next contour is about to begin. Then, another series of gluTessVertex calls is

used to describe the new contour. This process can be repeated until all contours are described.

The gluNextContour subroutine can be called before the first contour is described to define the type of

the first contour. If gluNextContour is not called before the first contour, the first contour is marked

GLU_EXTERIOR.

The type of contour that follows the gluNextContour subroutine is determined by the type parameter.

Acceptable contour types are as follows:

 GLU_EXTERIOR Defines an exterior boundary of the polygon.

GLU_INTERIOR Defines an interior boundary of the polygon (such as a hole).

GLU_UNKNOWN Defines an unknown contour that is analyzed by the library to determine if it is

interior or exterior.

440 OpenGL 1.2 Reference Manual

GLU_CCW or GLU_CW The first GLU_CCW or GLU_CW contour defined is considered to be exterior. All

other contours are considered to be exterior if they are oriented in the same

direction (clockwise or counterclockwise) as the first contour. If they are not, they

are considered interior.

 If one contour is of type GLU_CCW or GLU_CW, all contours must be of the same

type (if they are not, all GLU_CCW and GLU_CW contours are changed to

GLU_UNKNOWN).

 There is no real difference between the GLU_CCW and GLU_CW contour types.

This command is obsolete and is provided for backward compatibility only. Calls to gluNextContour are

mapped to gluTessEndContour followed by gluTessBeginContour.

Parameters

 tess Specifies the tessellation object created with the gluNewTess subroutine.

type Specifies the contour type. Valid values are:

v GLU_EXTERIOR

v GLU_INTERIOR

v GLU_UNKNOWN

v GLU_CCW

v GLU_CW

Examples

A quadrilateral with a triangular hole in it can be described as follows:

gluBeginPolygon(tobj);

 gluTessVertex(tobj, v1, v1);

 gluTessVertex(tobj, v2, v2);

 gluTessVertex(tobj, v3, v3);

 gluTessVertex(tobj, v4, v4);

gluNextContour(tobj, GLU_INTERIOR);

 gluTessVertex(tobj, v5, v5);

 gluTessVertex(tobj, v6, v6);

 gluTessVertex(tobj, v7, v7);

gluEndPolygon(tobj);

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluBeginPolygon subroutine, gluNewTess subroutine, gluTessBeginContour subroutine,

gluTessCallback subroutine, gluTessVertex subroutine.

gluNurbsCallback Subroutine

Purpose

Defines a callback for a non-uniform rational B-spline (NURBS) object.

Library

OpenGL C bindings library: libGL.a

Chapter 2. OpenGL Utility (GLU) Library 441

C Syntax

void gluNurbsCallback(GLUnurbs* nurb,

 GLenum which,

 GLvoid (* CallBackFunc)())

Description

The gluNurbsCallback subroutine is used to define a callback to be used by a NURBS object. If the

specified callback is already defined, the existing definition is replaced. If the CallBackFunc parameter is

null, then this callback will not get involked and the replaced data, if any, will be lost.

Except the error callback, these callbacks are used by NURBS tessellator (when GLU_NURBS_MODE is

set to be GLU_NURBS_TESSELLATOR) to return back the OpenGL polygon primitives resulted from the

tessellation. Note that there are two versions of each callback: one with a user data pointer and one

without. If both versions for a particular callback are specified then the callback with the user data pointer

will be used. Note that ″userData″ is a copy of the pointer that was specified at the last call to

gluNurbsCallbackData.

The error callback function is effective no matter which value that GLU_NURBS_MODE is set to. All other

callback functions are effective only when GLU_NURBS_MODE is set to GLU_NURBS_TESSELLATOR.

The legal callbacks are as follows:

 GLU_NURBS_BEGIN The begin callback indicates the start of a primitive. The

function takes a single argument of type Glenum which

can be one of GL_LINES, GL_LINE_STRIPS,

GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP,

GL_TRIANGLES, or GL_QUAD_STRIP. The default

begin callback function is null. The function prototype for

this callback looks like:

void begin (GLenum type);

GLU_NURBS_BEGIN_DATA The same as the GLU_NURBS_BEGIN callback except

that it takes an additional pointer argument. This pointer is

a copy of the pointer that was specified at the last call to

gluNurbsCallbackData. The default callback function is

null. The function prototype for this callback function looks

like:
void beginData (GLenum type, void *userData);

GLU_NURBS_VERTEX The vertex callback indicates a vertex of the primitive. The

coordinates of the vertex are stored in the parameter

″vertex″. All the generated vertices have dimension 3, that

is, Homogeneous coordinates have been transformed into

affine coordinates. The default vertex callback function is

null. The function prototype for this callback function looks

like:
void vertex (GLfloat *vertex);

GLU_NURBS_VERTEX_DATA The same as the GLU_NURBS_VERTEX callback except

that it takes an additional pointer argument. This pointer is

a copy of the pointer that was specified at the last call to

gluNurbsCallbackData. The default callback function is

null. The function prototype for this callback function looks

like:
void vertexData (GLfloat *vertex, void *userData);

442 OpenGL 1.2 Reference Manual

GLU_NURBS_NORMAL The normal callback is invoked as the vertex normal is

generated. The components of the normal are stored in

the parameter ″normal″. In the case of a NURBS curve,

the callback function is effective only when the user

provides a normal map (GL_MAP1_NORMAL). In the

case of a NURBS surface, if a normal map

(GL_MAP2_NORMAL) is provided, then the generated

normal is computed from the normal map. If a normal map

is not provided then a surface normal is computed in a

manner similar to that described for evaluators when

GL_AUTO_NORMAL is enabled. The default normal

callback function is null. The function prototype for this

callback function looks like:
void normal (GLfloat *normal);

GLU_NURBS_NORMAL_DATA The same as the GLU_NURBS_NORMAL callback except

that it takes an additional pointer argument. This pointer is

a copy of the pointer that was specified at the last call to

gluNurbsCallbackData. The default callback function is

null. The function prototype for this callback function looks

like:
void normalData (GLfloat *normal, void *userData);

GLU_NURBS_COLOR The color callback is invoked as the color of a vertex is

generated. The components of the color are stored in the

parameter ″color″. This callback is effective only when the

user provides a color map (GL_MAP1_COLOR_4 or

GL_MAP2_COLOR_4). ″color″ contains four components:

R,G,B,A. The default color callback function is null. The

prototype for this callback function looks like:
void color (GLfloat *color);

GLU_NURBS_COLOR_DATA The same as the GLU_NURBS_COLOR callback except

that it takes an additional pointer argument. This pointer is

a copy of the pointer that was specified at the last call to

gluNurbsCallbackData. The default callback function is

null. The function prototype for this callback function looks

like:
void colorData (GLfloat *color, void *userData);

GLU_NURBS_TEX_COORD The texture callback is invoked as the texture coordinates

of a vertex are generated. These coordinates are stored in

the parameter ″texCoord″. The number of texture

coordinates can be 1, 2, 3, or 4 depending on which type

of texture map is specified

(GL_MAP*_TEXTURE_COORD_1,

GL_MAP*_TEXTURE_COORD_2,

GL_MAP*_TEXTURE_COORD_3,

GL_MAP*_TEXTURE_COORD_4 where * can be either 1

or 2). If no texture map is specified, this callback function

will not be called. The default texture callback function is

null. The function prototype for this callback function looks

like:
void texCoord (GLfloat *texCoord);

GLU_NURBS_TEXTURE_COORD_DATA The same as the GLU_NURBS_TEX_COORD callback

except that it takes an additional pointer argument. This

pointer is a copy of the pointer that was specified at the

last call to gluNurbsCallbackData. The default callback

function is null. The function prototype for this callback

function looks like:
void texCoordData (GLfloat *texCoord, void *userData);

Chapter 2. OpenGL Utility (GLU) Library 443

GLU_NURBS_END The end callback is invoked at the end of a primitive. The

default end callback function is null. The function

prototype for this callback function looks like:
void end (void);

GLU_NURBS_END_DATA The same as the GLU_NURBS_TEX_COORD callback

except that it takes an additional pointer argument. This

pointer is a copy of the pointer that was specified at the

last call to gluNurbsCallbackData. The default callback

function is null. The function prototype for this callback

function looks like:
void endData (void *userData);

GLU_NURBS_ERROR The error function is called when an error is encountered.

Its single argument is of type GLenum, and it indicates the

specific error that occurred. There are 37 errors unique to

NURBS named GLU_NURBS_ERROR1 through

GLU_NURBS_ERROR37. Character strings describing

these errors can be retrieved with gluErrorString.

Parameters

 nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

which Specifies the callback being defined. Valid values are:

v GLU_NURBS_BEGIN

v GLU_NURBS_VERTEX

v GLU_NURBS_NORMAL

v GLU_NURBS_COLOR

v GLU_NURBS_TEX_COORD

v GLU_NURBS_END

v GLU_NURBS_BEGIN_DATA

v GLU_NURBS_VERTEX_DATA

v GLU_NURBS_NORMAL_DATA

v GLU_NURBS_COLOR_DATA

v GLU_NURBS_TEXTURE_COORD_DATA

v GLU_NURBS_END_DATA

v GLU_NURBS_ERROR

CallBackFunc Specifies the function that the callback calls.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluErrorString subroutine, gluNewNurbsRenderer subroutine gluNurbsCallbackData subroutine

gluNurbsProperty subroutine .

gluNurbsCallbackData Subroutine

Purpose

Sets a user data pointer.

444 OpenGL 1.2 Reference Manual

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluNurbsCallbackData(GLUnurbs* nurb,

 GLvoid* userData)

Description

The same as the GLU_NURBS_END callback, the gluNurbsCallbackData is used to pass a pointer to

the application’s data to NURBS tessellator. A copy of this pointer will be passed by the tessellator in the

NURBS callback functions (set by gluNurbsCallback).

Parameters

 nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

userData Specifies a pointer to the user’s data.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluNewNurbsRenderersubroutine and gluNurbsCallback subroutine.

gluNurbsCallbackDataEXT Subroutine

Purpose

Sets a user data pointer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluNurbsCallbackDataEXT(GLUnurbs* nurb,

 GLvoid* userData)

Description

gluNurbsCallbackDataEXT is used to pass a pointer to the application’s data to NURBS tessellator. A

copy of this pointer will be passed by the tessellator in the NURBS callback functions (set by

gluNurbsCallback).

Parameters

 nurb Specifies the NURBS object (created with gluNewNurbsRenderer).

userData Specifies a pointer to the user’s data.

Chapter 2. OpenGL Utility (GLU) Library 445

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluNurbsCallback subroutine.

gluNurbsCurve Subroutine

Purpose

Defines the shape of a non-uniform rational B-spline (NURBS) curve.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluNurbsCurve(GLUnurbs* nurb,

 GLint knotCount,

 GLfloat * knots,

 GLint stride,

 GLfloat * control,

 GLint order,

 GLenum type)

Description

Use the gluNurbsCurve subroutine to describe a NURBS curve. When this subroutine is displayed

between a gluBeginCurve and gluEndCurve pair, it describes a curve to be rendered. Positional, texture,

and color coordinates are established by presenting each as a separate gluNurbsCurve statement

between gluBeginCurve and gluEndCurve pairs. No more than one call to gluNurbsCurve for each

color, position, or texture data can be made within a single gluBeginCurve and gluEndCurve pair.

Exactly one call must be made to describe the position of the curve (a type of GL_MAP1_VERTEX_3 or

GL_MAP1_VERTEX_4 description).

When a gluNurbsCurve subroutine is displayed between a gluBeginTrim and gluEndTrim pair, it

describes a trimming curve on a NURBS surface. If the Type parameter is GLU_MAP1_TRIM_2, it

describes a curve in 2-dimensional (2D) (u and v) parameter space. If the type parameter is

GLU_MAP1_TRIM_3, it describes a curve in 2D homogeneous (u, v, and w) parameter space. (See the

gluBeginTrim subroutine for more information about trimming curves.)

Parameters

 nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

knotCount Specifies the number of knots defined in the knot parameter. knotCount should equal the number of

control points plus the order.

knots Specifies an array of nondecreasing knot values. The length of this array is contained in the

knotCount parameter.

stride Defines the offset (as a number of single-precision floating-point values) between successive curve

control points.

control Specifies a pointer to an array of control points. These coordinates must agree with the type

parameter specified below.

446 OpenGL 1.2 Reference Manual

order Specifies the order of the NURBS curve. The order parameter equals degree + 1, meaning that a

cubic curve has an order of 4.

type Indicates the type of the curve. If the curve is defined within a gluBeginCurve/gluEndCurve pair,

the type may be any of the valid 1-dimensional evaluator type (such as GL_MAP1_VERTEX_3 or

GL_MAP1_COLOR_4). If it is between a gluBeginTrim/gluEndTrim pair, the only valid types are

GLU_MAP1_TRIM_2 or GLU_MAP1_TRIM_3.

Examples

The following commands render a textured NURBS curve with normals:

gluBeginCurve(nobj);

 gluNurbsCurve(nobj, ..., GL_MAP1_TEXTURE_COORD_2);

 gluNurbsCurve(nobj, ..., GL_MAP1_NORMAL);

 gluNurbsCurve(nobj, ..., GL_MAP1_VERTEX_4);

gluEndCurve(nobj);

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Note: To define trim curves which stitch well, use gluPwlCurve.

Related Information

The gluBeginCurve subroutine, gluBeginTrim subroutine, gluNewNurbsRenderer subroutine,

gluPwlCurve subroutine.

gluNurbsProperty Subroutine

Purpose

Sets a non-uniform rational B-spline (NURBS) property.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluNurbsProperty(GLUnurbs* nurb,

 GLenum property,

 GLfloat value)

Description

The gluNurbsProperty subroutine is used to control properties stored in a NURBS object. These

properties affect the way that a NURBS curves is rendered. The following values are valid for the property

parameter:

Chapter 2. OpenGL Utility (GLU) Library 447

GLU_NURBS_MODE value should be set to be either

GLU_NURBS_RENDERER or

GLU_NURBS_TESSELLATOR. When set to

GLU_NURBS_RENDERER, NURBS objects are

tessellated into OpenGL primitives and sent to the pipeline

for rendering. When set to

GLU_NURBS_TESSELLATOR, NURBS objects are

tessellated into OpenGL primitives but the vertices,

normals, colors, and/or textures are retrieved back through

a callback interface (see gluNurbsCallback). This allows

the user to cache the tessellated results for further

processing.

GLU_SAMPLING_METHOD Value Specifies how a NURBS surface should be tessellated.

The value parameter may be one of

GLU_PATH_LENGTH, GLU_PARAMETRIC_ERROR, or

GLU_DOMAIN_DISTANCE,

GLU_OBJECT_PATH_LENGTH, or

GLU_OBJECT_PARAMETRIC_ERROR. When set to

GLU_PATH_LENGTH, the surface is rendered so that the

maximum length, in pixels, of the edges of the tessellation

polygons is no greater than what is specified by

GLU_SAMPLING_TOLERANCE.

GLU_PARAMETRIC_ERROR specifies that the surface is

rendered in such a way that the value specified by

GLU_PARAMETRIC_TOLERANCE describes the

maximum distance, in pixels, between the tessellation

polygons and the surfaces they approximate.

GLU_DOMAIN_DISTANCE allows users to specify, in

parametric coordinates, how many sample points per unit

length are taken in u, v direction.

GLU_OBJECT_PATH_LENGTH is similar to

GLU_PATH_LENGTH except that it is view independent,

that is, the surface is rendered so that the maximum

length, in object space, of edges of the tessellation

polygons is no greater than what is specified by

GLU_SAMPLING_TOLERANCE.

GLU_OBJECT_PARAMETRIC_ERROR is similar to

GLU_PARAMETRIC_ERROR except that it is view

independent, that is, the surface is rendered in such a

way that the value specified by

GLU_PARAMETRIC_TOLERANCE describes the

maximum distance, in object space, between the

tessellation polygons and the surfaces they approximate.

The initial value of GLU_SAMPLING_METHOD is

GLU_PATH_LENGTH.

GLU_SAMPLING_TOLERANCE Value Specifies the maximum length, in pixels or in object space

length unit, to use when the sampling methos is set to

GLU_PATH_LENGTH OR

GLU_OBJECT_PATH_LENGTH. The NURBS code is

conservative when rendering a curve or surface, so the

actual length can be somewhat shorter. The default value

is 50.0 pixels.

GLU_PARAMETRIC_TOLERANCE Value The Value parameter specifies the maximum distance, in

pixels, to use when the sampling method is

GLU_PARAMETRIC_ERROR. The initial value is 0.5.

448 OpenGL 1.2 Reference Manual

GLU_U_STEP Value The Value parameter specifies the number of sample

points per unit length taken along the u axis in parametric

coordinates. It is needed when

GLU_SAMPLING_METHOD is set to

GLU_DOMAIN_DISTANCE. The initial value is 100.

GLU_V_STEP Value The Value parameter specifies the number of sample

points per unit length taken along the v axis in parametric

coordinates. It is needed when

GLU_SAMPLING_METHOD is set to

GLU_DOMAIN_DISTANCE. The initial value is 100

GLU_DISPLAY_MODE Value The Value parameter defines how a NURBS surface

should be rendered. The Value parameter can be set to

the following:

v GLU_FILL

v GLU_OUTLINE_POLYGON

v GLU_OUTLINE_PATCH

Only one of these values can be used. GLU_FILL causes

the surface to be rendered as a set of polygons.

GLU_OUTLINE_POLYGON instructs the NURBS library

to draw only the outlines of the polygons created by

tessellation. GLU_OUTLINE_PATCH causes just the

outlines of patches and trim curves defined by the user to

be drawn.

When GLU_NURBS_MODE is set to be

GLU_NURBS_TESSELLATOR, value defines how a

NURBS surface should be tessellated. When

GLU_DISPLAY_MODE is set to GLU_FILL or

GLU_OUTLINE_POLY, the NURBS surface is tessellated

into OpenGL triangle primitives which can be retrieved

back through callback functions. If GLU_DISPLAY_MODE

is set to GLU_OUTLINE_PATCH, only the outlines of the

patches and trim curves are generated as a sequence of

line strips which can be retrieved back through callback

functions.

The default value is GLU_FILL.

GLU_CULLING Value The Value parameter is a boolean value that, when set to

GL_TRUE, indicates that a NURBS curve should be

discarded prior to tessellation if its control points lie

outside the current viewport. The default is GL_FALSE.

Chapter 2. OpenGL Utility (GLU) Library 449

GLU_AUTO_LOAD_MATRIX Value The Value parameter is a Boolean value that, when set to

GL_TRUE, causes the NURBS code to download the

projection matrix, the modelview matrix, and the viewport

from the OpenGL server to compute sampling and culling

matrices for each NURBS curve that is rendered.

Sampling and culling matrices are required to determine

the tessellation of a NURBS surface into line segments or

polygons and to cull a NURBS surface if it lies outside of

the viewport.

If this mode is set to GL_FALSE, the user must provide a

projection matrix, a modelview matrix, and a viewport for

the NURBS renderer to use to construct sampling and

culling matrices. This can be done with the

gluLoadSamplingMatrices subroutine. The default for

this mode is GL_TRUE. Changing this mode from

GL_TRUE to GL_FALSE does not affect the sampling

and culling matrices until gluLoadSamplingMatrices is

called.

Parameters

 nobj Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

Property Specifies the name of the property to be set. The following values are valid:

v GLU_SAMPLING_TOLERANCE

v GLU_DISPLAY_MODE

v GLU_CULLING

v GLU_AUTO_LOAD_MATRIX

v GLU_PARAMETRIC_TOLERANCE

v GLU_SAMPLING_METHOD

v GLU_U_STEP

v GLU_V_STEP

Value Specifies the value to which the indicated property is set. Value may be a numeric value or one of

the following:

v GLU_PATH_LENGTH

v GLU_PARAMETRIC_ERROR

v GLU_DOMAIN_DISTANCE

Notes

If GLU_AUTO_LOAD_MATRIX is true, sampling and culling may be executed incorrectly if NURBS

routines are compiled into a display list.

A property of GLU_PARAMETRIC_TOLERANCE, GLU_SAMPLING_METHOD, GLU_U_STEP, or

GLU_V_STEP, or a value of GLU_PATH_LENGTH, GLU_PARAMETRIC_ERROR,

GLU_DOMAIN_DISTANCE are only available if the GLU version is 1.1 or greater. They are not valid

parameters in GLU 1.0.

Use the gluGetString subroutine to determine the GLU version.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

450 OpenGL 1.2 Reference Manual

Related Information

The gluGetNurbsProperty subroutine, gluLoadSamplingMatrices subroutine, gluNewNurbsRenderer

subroutine, gluGetString subroutine, gluNurbsCallback subroutine .

gluNurbsSurface Subroutine

Purpose

Defines the shape of a non-uniform rational B-spline (NURBS) surface.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluNurbsSurface(GLUnurbs* nurb,

 GLint sKnotCount,

 GLfloat * sKnots,

 GLint tKnotCount,

 GLfloat * tKnots,

 GLint sStride,

 GLint tStride,

 GLfloat * control,

 GLint sOrder,

 GLint tOrder,

 GLenum type)

Description

The gluNurbsSurface subroutine is used within a NURBS surface definition to describe the shape of a

NURBS surface before trimming. To mark the beginning and end of a NURBS surface definition, use the

gluBeginSurface and gluEndSurface commands.

Note: Call the gluNurbsSurface subroutine within a NURBS surface definition only.

Positional, texture, and color coordinates are associated with a surface by presenting each as a separate

gluNurbsSurface statement between a gluBeginSurface and gluEndSurface pair. Each

gluBeginSurface and gluEndSurface pair can contain no more than one call to gluNurbsSurface for

each color, position, and texture data. One (and only one) call must be made to describe the position of

the surface. (The Type parameter must be either GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4.)

A NURBS surface can be trimmed using the gluNurbsCurve and gluPwlCurve subroutines within calls to

gluBeginTrim and gluEndTrim.

Note: A gluNurbsSurface with sKnotCount knots in the u direction and tKnotCount knots in the v

direction with the sOrder and tOrder orders must have control points equal to (sKnotCount - sOrder)

x (tKnotCount - tOrder).

Parameters

 nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

sKnotCount Specifies the number of knots in the parametric U direction.

sKnots Specifies an array of non-decreasing sKnotCount values in the parametric U direction

tKnotCount Specifies the number of knots in the parametric V direction.

tKnots Specifies an array of non-decreasing tKnotCount values in the parametric V direction.

Chapter 2. OpenGL Utility (GLU) Library 451

sStride Specifies the offset (as a number of single-precision floating-point values) between successive

control points in the parametric U direction in control.

tStride Specifies the offset (in single-precision floating-point values) between successive control points in

the parametric V direction in control.

control Specifies an array containing control points for the NURBS surface. The offsets between

successive control points in the parametric u and v directions are given by sStride and tStride.

sOrder Specifies the order of the NURBS surface in the parametric u direction. The order is one more

than the degree; therefore, a surface that is cubic in u has a u order of 4.

tOrder Specifies the order of the NURBS surface in the parametric v direction. The order is one more

than the degree; therefore, a surface that is cubic in v has a v order of 4.

type Specifies the surface type. This value must be one of the valid 2-dimensional evaluators (such as

GL_MAP2_VERTEX_3 or GL_MAP2_COLOR_4).

Examples

The following commands render a textured NURBS surface with normals. The texture coordinates and

normals are also NURBS surfaces.

gluBeginSurface(nobj);

 gluNurbsSurface(nobj, ..., GL_MAP2_TEXTURE_COORD_2);

 gluNurbsSurface(nobj, ..., GL_MAP2_NORMAL);

 gluNurbsSurface(nobj, ..., GL_MAP2_VERTEX_4);

gluEndSurface(nobj);

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluBeginSurface subroutine, gluBeginTrim subroutine, gluNewNurbsRenderer subroutine,

gluNurbsCurve subroutine, gluPwlCurve subroutine.

gluOrtho2D Subroutine

Purpose

Defines a 2-dimensional (2D) orthographic projection matrix.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluOrtho2D(GLdouble left,

 GLdouble right,

 GLdouble bottom,

 GLdouble top)

Description

The gluOrtho2D subroutine sets up a 2D orthographic viewing region. Use of this subroutine is equivalent

to calling glOrtho with values of Near = -1 and Far = 1.

452 OpenGL 1.2 Reference Manual

Parameters

 left Specifies the coordinates for the left vertical clipping planes.

right Specifies the coordinates for the right vertical clipping planes.

bottom Specifies the coordinates for the bottom horizontal clipping planes.

top Specifies the coordinates for the top horizontal clipping planes.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glOrtho subroutine, gluPerspective subroutine.

gluPartialDisk Subroutine

Purpose

Draws an arc of a disk.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluPartialDisk(GLUquadricObj * quad,

 GLdouble inner,

 GLdouble outer,

 GLint slices,

 GLint loops,

 GLdouble start,

 GLdouble sweep)

Description

The gluPartialDisk subroutine renders a partial disk on the z=0 (zero) plane. A partial disk is similar to a

full disk, except that only a subset of the disk consisting of start through start plus sweep is included. For

the purposes of this subroutine, 0 degrees is along the +y axis, 90 degrees is along the +x axis, 180

degrees is along the -y axis, and 270 degrees is along the -x axis.

The partial disk has a radius defined by the outer parameter and contains a concentric circular hole with a

radius defined by the inner parameter. If the value of InnerRadius is 0, no hole is generated. The partial

disk is subdivided around the z axis into slices and rings (as specified by the slices and loops parameters,

respectively).

With regard to orientation, the +z side of the partial disk is considered to be outside. (See the

gluQuadricOrientation subroutine for details on specifying quadrics orientation.) This means that if the

orientation is set to GLU_OUTSIDE, any normals generated point along the +z axis. Otherwise, they point

along the -z axis.

If texturing is turned on with the gluQuadricTexture subroutine, texture coordinates are generated linearly

such that the value at (r, 0, 0) (where r=outer) is (1, 0.5).

Chapter 2. OpenGL Utility (GLU) Library 453

Under the same definition, the following values also apply:

 Coordinates Value

(0, r, 0) (0.5, 1)

(-r, 0, 0) (0, 0.5)

(0, -r, 0) (0.5, 0)

Parameters

 quad Specifies a quadrics object created with the gluNewQuadric subroutine.

inner Specifies the inner radius of the partial disk. (This value can be 0.)

outer Specifies the outer radius of the partial disk.

slices Specifies the number of desired subdivisions around the z axis.

loops Specifies the number of concentric rings around the origin into which the partial disk is subdivided.

start Specifies the start angle (in degrees) of the disk portion.

sweep Specifies the sweep angle (in degrees) of the disk portion.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluCylinder subroutine, gluDisk subroutine, gluNewQuadric subroutine, gluQuadricOrientation

subroutine, gluQuadricTexture subroutine, gluSphere subroutine.

gluPerspective Subroutine

Purpose

Sets up a perspective projection matrix.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluPerspective(GLdouble fovy,

 GLdouble aspect,

 GLdouble zNear,

 GLdouble zFar)

Description

The gluPerspective subroutine specifies a viewing frustum into the world coordinate system. Generally,

the aspect used with this subroutine should match that of its associated viewport. For example, an aspect

ratio value of aspect=2.0 means the viewer’s angle of view is twice as wide in x as it is in y. If the viewport

is twice as wide as it is tall, it displays the image without distortion.

The matrix generated by the gluPerspective subroutine is multiplied by the current matrix just as if the

glMultMatrix subroutine were called with the generated matrix. To load the perspective matrix onto the

current matrix stack instead, precede the call to gluPerspective with a call to the glLoadIdentity

subroutine.

454 OpenGL 1.2 Reference Manual

Given f defined as follows:

f = cotangent(fovy/2)

The generated matrix is

 (f)

 | ------ 0 0 0 |

 | aspect |

 | |

 | |

 | 0 f 0 0 |

 | |

 | |

 | zFar+zNear 2*zFar*zNear |

 | 0 0 ---------- ------------ |

 | zNear-zFar zNear-zFar |

 | |

 | |

 | 0 0 -1 0 |

 ()

Parameters

 fovy Specifies the field of view angle (in degrees) in the y direction.

aspect Indicates the aspect ratio. This value determines the field of view in the x direction and is the ratio of x

(width) to y (height).

zNear Specifies the distance from the viewer to the closest clipping plane. This value must be positive.

zFar Specifies the distance from the viewer to the farthest clipping plane. This value must be positive.

Notes

Depth buffer precision is affected by the values specified for zNear and zFar. The greater the ratio of zFar

to zNear is, the less effective the depth buffer will be at distinguishing between surfaces that are near

each other. If

r = zFar/zNear

roughly log2(r) bits of depth buffer precision are lost. Because r approaches infinity as zNear approaches

0, zNear must never be set to 0.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glFrustum subroutine, glLoadIdentity subroutine, glMultMatrix subroutine, gluOrtho2D subroutine.

gluPickMatrix Subroutine

Purpose

Defines a picking region.

Library

OpenGL C bindings library: libGL.a

Chapter 2. OpenGL Utility (GLU) Library 455

C Syntax

void gluPickMatrix(GLdouble x,

 GLdouble y,

 GLdouble delX,

 GLdouble delY,

 GLint viewport[4])

Description

The gluPickMatrix subroutine creates a projection matrix that can be used to restrict drawing to a small

region of the viewport. This feature is useful to determine what objects are being drawn near the cursor.

Use gluPickMatrix to restrict drawing to a small region around the cursor. Then, enter the selection mode

(with the glRenderMode subroutine) and re-render the scene. All primitives that would have been drawn

near the cursor are identified and stored in the selection buffer.

The matrix created by the gluPickMatrix is multiplied by the current matrix just as if the glMultMatrix

subroutine is called with the generated matrix. To effectively use the generated pick matrix for picking, first

call the glLoadIdentity subroutine to load an identity matrix onto the perspective matrix stack. Then, call

gluPickMatrix, and finally, call a subroutine (such as the gluPerspective subroutine) to multiply the

perspective matrix by the pick matrix.

When using gluPickMatrix to pick non-uniform rational B-splines (NURBS), be careful to turn off the

NURBS GLU_AUTO_LOAD_MATRIX property. If GLU_AUTO_LOAD_MATRIX is not turned off, any

NURBS surface rendered is subdivided differently with the pick matrix than the way it was subdividied

without the pick matrix.

Parameters

 x, y Specify the center (in window coordinates) of a picking region.

delX, delY Specify the width and height (in window coordinates), respectively, of the picking region.

viewport Specifies the current viewport (as from a glGetIntegerv call).

Examples

When rendering a scene as in the following example:

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(...);

glMatrixMode(GL_MODELVIEW);

/* Draw the scene */

a portion of the viewport can be selected as a pick region as follows:

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPickMatrix(x, y, width, height, viewport);

gluPerspective(...);

glMatrixMode(GL_MODELVIEW);

/* Draw the scene */

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

456 OpenGL 1.2 Reference Manual

Related Information

The glGet subroutine, glLoadIdentity subroutine, glMultMatrix subroutine, glRenderMode subroutine,

gluPerspective subroutine.

gluProject Subroutine

Purpose

Maps object coordinates to window coordinates.

Library

OpenGL C bindings library: libGL.a

C Syntax

int gluProject(GLdouble objX,

 GLdouble objY,

 GLdouble objZ,

 const GLdouble model,

 const GLdouble proj,

 const GLint view,

 GLdouble * winX,

 GLdouble * winY,

 GLdouble * winZ)

Description

The gluProject transforms the specified object space coordinates into window coordinates using the

model, proj, and view values provided. The results are stored in winX, winY, and winZ. A return value of

GL_TRUE indicates success, and GL_FALSE indicates failure.

To compute the coordinates, let v=(objX,objY,objZ,1.0) represented as a matrix with 4 rows and 1 column.

Then gluProject computes v’ as follows:

v’ = P x M x v

where P is the current projection matrix proj, M is the current modelview matrix model (both represented

as 4x4 matrices in column-major order) and ’x’ represents matrix multiplication.

The window coordinates are then computed as follows:

winX = view(0) + view(2) * (v’(0) + 1) / 2

winY = view(1) + view(3) * (v’(1) + 1) / 2

winZ = (v’(2) + 1) / 2

Parameters

 objX, objY, objZ Specify the object coordinates.

model Specifies the current modelview matrix (as from a glGetDoublev call).

proj Specifies the current projection matrix (as from a glGetDoublev call).

view Specifies the current viewport (as from a glGetIntegerv call).

winX, winY, winZ Returns the computed window coordinates.

Chapter 2. OpenGL Utility (GLU) Library 457

Return Values

 GL_TRUE Indicates the conversion succeeded.

GL_FALSE Indicates the conversion failed.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glGet subroutine, gluUnProject subroutine.

gluPwlCurve Subroutine

Purpose

Defines a piecewise linear non-uniform rational B-spline (NURBS) trimming curve.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluPwlCurve(GLUnurbs * nurb,

 GLint count,

 GLfloat* data,

 GLint stride,

 GLenum type)

Description

The gluPwlCurve subroutine describes a piecewise linear trimming curve for a NURBS surface. A

piecewise linear curve consists of a list of coordinates of points in the parameter space for the NURBS

surface to be trimmed. These points are connected with line segments to form a curve. If the curve is an

approximation of a curve that is not piecewise linear, the points should be close enough in parameter

space that the resulting path appears curved at the resolution used in the application.

A value of GLU_MAP1_TRIM_2 assigned for the type parameter describes a curve in 2-dimensional (2D)

(u and v) parameter space; GLU_MAP1_TRIM_3 describes a curve in 2D homogeneous (u, v, and w)

parameter space. (See the gluBeginTrim subroutine for more information on trimming curves.)

Note: to describe a trim curve that closely follows the contours of a NURBS surface, call

gluNurbsCurb.

Parameters

 nurb Specifies the NURBS object created with the gluNewNurbsRenderer subroutine.

count Specifies the number of points on the curve.

data Specifies an array containing the curve points.

stride Specifies the offset (a number of single-precision floating-point values) between points on the curve.

type Specifies the curve type. The valid types are GLU_MAP1_TRIM_2 and GLU_MAP1_TRIM_3.

458 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluBeginCurve subroutine, gluBeginTrim subroutine, gluNewNurbsRenderer subroutine,

gluNurbsCurve subroutine.

gluQuadricCallback Subroutine

Purpose

Defines a callback for a quadrics object.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluQuadricCallback(GLUquadric* quad,

 GLenum which,

 void * CallBackFunc())

Description

The gluQuadricCallback subroutine defines a new callback for use by a quadrics object. If the specified

callback is already defined, the existing definition for that callback is replaced. If the CallBackFunc

parameter is set to null, any existing callback is erased.

GLU_ERROR is the only legal callback for this subroutine. The function is called when an error is

encountered. Its only argument is of type GLenum, which indicates the specific error. Character strings

describing these errors can be retrieved with the gluErrorString call.

Parameters

 quad Specifies the quadrics object created with the gluNewQuadric subroutine.

which Specifies the callback being defined. The only valid value for this parameter is GLU_ERROR.

CallBackFunc Specifies the function being called.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluErrorString subroutine, gluNewQuadric subroutine.

gluQuadricDrawStyle Subroutine

Purpose

Specifies the desired quadric drawing style.

Chapter 2. OpenGL Utility (GLU) Library 459

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluQuadricDrawStyle(GLUquadric* qobj,

 GLenum draw)

Description

The gluQuadricDrawStyle subroutine specifies the draw style for quadrics rendered with the quad

parameter. Legal values are as follows:

 GLU_FILL Quadrics are rendered with polygon primitives. The polygons are drawn counterclockwise

of their normals (as defined with the gluQuadricOrientation subroutine).

GLU_LINE Quadrics are rendered as a set of lines.

GLU_SILHOUETTE Quadrics are rendered as a set of lines; however, edges separating coplanar faces are

not drawn.

GLU_POINT Quadrics are rendered as a set of points.

Parameters

 quad Specifies the quadrics object created with the gluNewQuadric subroutine.

draw Specifies the desired draw style. Valid values are as follows:

v GLU_FILL

v GLU_LINE

v GLU_SILHOUETTE

v GLU_POINT

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluNewQuadric subroutine, gluQuadricNormals subroutine, gluQuadricOrientation subroutine,

gluQuadricTexture subroutine.

gluQuadricNormals Subroutine

Purpose

Specifies the desired normals for quadrics.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluQuadricNormals(GLUquadric* quad,

 GLenum normal)

460 OpenGL 1.2 Reference Manual

Description

The gluQuadricNormals subroutine specifies the desired normals for quadric objects rendered with the

quad parameter option. Legal parameter values are as follows:

 GLU_NONE No normals are generated.

GLU_FLAT One normal is generated for every facet of a quadric.

GLU_SMOOTH One normal is generated for every vertex of a quadric. This value is the default.

Parameters

 quad Specifies the quadrics object created with the gluNewQuadric subroutine.

normal Specifies the desired type of normals. Valid values are as follows:

v GLU_NONE

v GLU_FLAT

v GLU_SMOOTH

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluNewQuadric subroutine, gluQuadricDrawStyle subroutine, gluQuadricOrientation subroutine,

gluQuadricTexture subroutine.

gluQuadricOrientation Subroutine

Purpose

Specifies inside and outside orientation for quadrics.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluQuadricOrientation(GLUquadric* quad,

 GLenum orientation)

Description

The gluQuadricOrientation subroutine specifies the desired orientation for quadrics rendered with the

quad parameter option. Acceptable values for the orientation parameter are as follows:

 GLU_OUTSIDE Quadrics are drawn with normals pointing outward. This value is the default.

GLU_INSIDE Quadrics are drawn with normals pointing inward. The default value is GLU_OUTSIDE.

Note: Outward and inward orientations are defined relative to the quadric being drawn.

Chapter 2. OpenGL Utility (GLU) Library 461

Parameters

 quad Specifies the quadrics object created with the gluNewQuadric subroutine.

orientation Specifies the desired orientation. Valid values are GLU_OUTSIDE and GLU_INSIDE.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluNewQuadric subroutine, gluQuadricDrawStyle subroutine, gluQuadricNormals subroutine,

gluQuadricTexture subroutine.

gluQuadricTexture Subroutine

Purpose

Specifies if texturing is desired for quadrics.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluQuadricTexture(GLUquadric* quad,

 GLboolean texture)

Description

The gluQuadricTexture subroutine specifies if texture coordinates should be generated for quadrics

rendered with the quad parameter option. If the value of the texture parameter is GL_TRUE, texture

coordinates are generated, and if the value of the texture parameter is GL_FALSE, they are not

generated. The default is GL_FALSE.

Note: The manner in which texture coordinates are generated depends upon the specific quadric

rendered.

Parameters

 quad Specifies the quadrics object created with the gluNewQuadric subroutine.

texture Specifies a flag indicating if texture coordinates should be generated. Valid values are GL_TRUE and

GL_FALSE.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluNewQuadric subroutine, gluQuadricDrawStyle subroutine, gluQuadricNormals subroutine,

gluQuadricOrientation subroutine.

462 OpenGL 1.2 Reference Manual

gluScaleImage Subroutine

Purpose

Scales an image to an arbitrary size.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLint gluScaleImage(GLenum format,

 GLsizei wIn,

 GLsizei hIn,

 GLenum typeIn,

 const void * dataIn,

 GLsizei wOut,

 GLsizei hOut,

 GLenum typeOut,

 void* dataOut)

Description

The gluScaleImage subroutine scales a pixel image using the appropriate pixel store modes to unpack

data from the source image and pack data into the destination image.

When shrinking an image, the gluScaleImage subroutine uses a box filter to sample the source image

and create pixels for the destination image. When magnifying an image, the pixels from the source image

are interpolated linearly to create the destination image.

A return value of zero indicates success; otherwise, a GLU error code is returned. (See the

gluErrorString subroutine for standard GLU error codes.)

See the glReadPixels subroutine for a description of valid values for the format, typeIn, and typeOut

parameters.

Parameters

 format Specifies the format of the pixel data. The following symbolic values are valid:

v GL_COLOR_INDEX

v GL_STENCIL_INDEX

v GL_DEPTH_COMPONENT

v GL_RED

v GL_GREEN

v GL_BLUE

v GL_ALPHA

v GL_RGB

v GL_RGBA

v GL_BGRA

v GL_LUMINANCE

v GL_LUMINANCE_ALPHA

wIn, hIn Specify the width and height, respectively, of the source image that is scaled. Values are listed in

map pixels.

Chapter 2. OpenGL Utility (GLU) Library 463

typeIn Specifies the data type for the dataIn parameter. The following symbolic values are valid:

v GL_UNSIGNED_BYTE

v GL_BYTE

v GL_BITMAP

v GL_UNSIGNED_SHORT

v GL_SHORT

v GL_UNSIGNED_INT

v GL_INT

v GL_FLOAT

v GL_UNSIGNED_BYTE_3_3_2

v GL_UNSIGNED_BYTE_2_3_3_REV

v GL_UNSIGNED_SHORT_5_6_5

v GL_UNSIGNED_SHORT_5_6_5_REV

v GL_UNSIGNED_SHORT_4_4_4_4

v GL_UNSIGNED_SHORT_4_4_4_4_REV

v GL_UNSIGNED_SHORT_5_5_5_1

v GL_UNSIGNED_SHORT_1_5_5_5_REV

v GL_UNSIGNED_INT_8_8_8_8

v GL_UNSIGNED_INT_8_8_8_8_REV

v GL_UNSIGNED_INT_10_10_10_2

v GL_UNSIGNED_INT_2_10_10_10_REV

dataIn Specifies a pointer to the source image.

wOut, hOut Specify the width and height, respectively, in pixels, of the destination image.

typeOut Specifies the data type for the dataOut parameter. The following symbolic values are valid:

v GL_UNSIGNED_BYTE

v GL_BYTE

v GL_BITMAP

v GL_UNSIGNED_SHORT

v GL_SHORT

v GL_UNSIGNED_INT

v GL_INT

v GL_FLOAT

v GL_UNSIGNED_BYTE_3_3_2

v GL_UNSIGNED_BYTE_2_3_3_REV

v GL_UNSIGNED_SHORT_5_6_5

v GL_UNSIGNED_SHORT_5_6_5_REV

v GL_UNSIGNED_SHORT_4_4_4_4

v GL_UNSIGNED_SHORT_4_4_4_4_REV

v GL_UNSIGNED_SHORT_5_5_5_1

v GL_UNSIGNED_SHORT_1_5_5_5_REV

v GL_UNSIGNED_INT_8_8_8_8

v GL_UNSIGNED_INT_8_8_8_8_REV

v GL_UNSIGNED_INT_10_10_10_2

v GL_UNSIGNED_INT_2_10_10_10_REV

dataOut Specifies a pointer to the destination image.

See the glReadPixels subroutine for a description of valid values for the Format, TypeIn, and TypeOut

parameters.

464 OpenGL 1.2 Reference Manual

Return Values

 0 Indicates the scaling succeeded. If the subroutine fails, a GLU error code is returned. (See the gluErrorString

subroutine for standard GLU error codes.)

Error Codes

v GLU_INVALID_VALUE is returned if wIn, hIn, wOut or hOut is Negative.

v GLU_INVALID_ENUM is returned if format, typeIn or typeOut are not legal.

v GLU_INVALID_OPERATION is returned if typeIn or typeOut is GL_UNSIGNED_BYTE_3_3_2 or

GL_UNSIGNED_BYTE_2_3_3_REV and format is not GL_RGB.

v GLU_INVALID_OPERATION is returned if typeIn or typeOut is GL_UNSIGNED_SHORT_5_6_5 or

GL_UNSIGNED_SHORT_5_6_5_REV and format is not GL_RGB.

v GLU_INVALID_OPERATION is returned if typeIn or typeOut is GL_UNSIGNED_SHORT_4_4_4_4 or

GL_UNSIGNED_SHORT_4_4_4_4_REV and format is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if typeIn or typeOut is GL_UNSIGNED_SHORT_5_5_5_1 or

GL_UNSIGNED_SHORT_1_5_5_5_REV and format is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if typeIn or typeOut is GL_UNSIGNED_INT_8_8_8_8 or

GL_UNSIGNED_INT_8_8_8_8_REV and format is neither GL_RGBA nor GL_BGRA.

v GLU_INVALID_OPERATION is returned if typeIn or typeOut is GL_UNSIGNED_INT_10_10_10_2 or

GL_UNSIGNED_INT_2_10_10_10_REV and format is neither GL_RGBA nor GL_BGRA.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glDrawPixels subroutine, glReadPixels subroutine, gluBuild1DMipmaps subroutine,

gluBuild2DMipmaps subroutine, gluBuild3DMipmaps subroutine, gluErrorString subroutine.

gluSphere Subroutine

Purpose

Draws a sphere.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluSphere(GLUquadric* quad,

 GLdouble radius,

 GLint slices,

 GLint stacks)

Description

The gluSphere subroutine draws a sphere of the supplied radius around the centerpoint of the origin. The

sphere is subdivided around the z axis into slices (longitude) and along the z axis into stacks (latitude).

Chapter 2. OpenGL Utility (GLU) Library 465

If the orientation is set to GLU_OUTSIDE (with the gluQuadricOrientation subroutine), any normals

generated point away from the center of the sphere. Otherwise, they point toward the center of the sphere.

If texturing is turned on using the gluQuadricTexture subroutine, texture coordinates are generated so

that t ranges from 0.0 at z=-radius to 1.0 at z=radius (t increases linearly along longitudinal lines), and s

ranges from 0.0 at the +y axis to 0.25 at the +x axis, as well as up to 0.5 at the -y axis and 0.75 at the -x

axis, then back to 1.0 at the +y axis.

Parameters

 quad Specifies the quadrics object created with the gluNewQuadric subroutine.

radius Specifies the radius of the sphere.

slices Specifies the number of subdivisions around the z axis (similar to lines of longitude).

stacks Specifies the number of subdivisions along the z axis (similar to lines of latitude).

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The gluCylinder subroutine, gluDisk subroutine, gluNewQuadric subroutine, gluPartialDisk subroutine,

gluQuadricOrientation subroutine, gluQuadricTexture subroutine.

gluTessBeginContour, gluTessEndContour

Purpose

Delimits a contour description.

Library

C bindings library: libGL.a

C Syntax

void gluTessBeginContour(GLUtesselator* tess)

void gluTessEndContour(GLUtesselator* tess)

Description

The gluTessBeginContour subroutine and gluTessEndContour subroutine delimit the definition of a

polygon contour. Within each gluTessBeginContour/gluTessEndContour pair, there can be zero or more

calls to gluTessVertex. The vertices specify a closed contour (the last vertex of each contour is

automatically linked to the first). See the gluTessVertex reference page for more details.

gluTessBeginContour can only be called between gluTessBeginPolygon and gluTessEndPolygon.

Parameters

 tess Specifies the tessellation object (created with

gluNewTess).

466 OpenGL 1.2 Reference Manual

Related Information

The gluNewTess subroutine, gluTessBeginPolygon subroutine, gluTessVertex subroutine,

gluTessCallback subroutine, gluTessProperty subroutine, gluTessNormal subroutine,

gluTessEndPolygon subroutine.

gluTessBeginPolygon Subroutine

Purpose

Delimits a polygon description.

Library

C bindings library: libGL.a

C Syntax

void gluTessBeginPolygon(GLUtesselator* tess,

 GLvoid* data)

Description

The gluTessBeginPolygon and gluTessEndPolygon routines delimit the definition of a convex, concave

or self-intersecting polygon. Within each gluTessBeginPolygon/gluTessEndPolygon pair, there must be

one or more calls to gluTessBeginContour/ gluTessEndContour. Within each contour, there are zero or

more calls to gluTessVertex. The vertices specify a closed contour (the last vertex of each contour is

automatically linked to the first). See the gluTessVertex, gluTessBeginContour, and

gluTessEndContour reference pages for more details.

The parameter data is a pointer to a user-defined data structure. If the appropriate callback(s) are

specified (see gluTessCallback), then this pointer is returned to the callback function(s). Thus, it is a

convenient way to store per-polygon information.

Once gluTessEndPolygon is called, the polygon is tessellated, and the resulting triangles are described

through callbacks. See gluTessCallback for descriptions of the callback functions.

Parameters

 tess Specifies the tessellation object (created with

gluNewTess).

data Specifies a pointer to user polygon data.

Examples

A quadrilateral with a triangular hole in it can be described as follows:

gluTessBeginPolygon(tobj, NULL);

 gluTessBeginContour(tobj);

 gluTessVertex(tobj, v1, v1);

 gluTessVertex(tobj, v2, v2);

 gluTessVertex(tobj, v3, v3);

 gluTessVertex(tobj, v4, v4);

 gluTessEndContour(tobj);

 gluTessBeginContour(tobj);

 gluTessVertex(tobj, v5, v5);

 gluTessVertex(tobj, v6, v6);

 gluTessVertex(tobj, v7, v7);

 gluTessEndContour(tobj);

gluTessEndPolygon(tobj);

Chapter 2. OpenGL Utility (GLU) Library 467

Related Information

gluNewTess subroutine, gluTessBeginContour subroutine, gluTessVertex subroutine, gluTessCallback

subroutine, gluTessProperty subroutine, gluTessNormal subroutine, gluTessEndPolygon subroutine.

gluTessCallback Subroutine

Purpose

Defines a callback for a tessellation object.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluTessCallback(GLUtesselator* tess,

 GLenum which,

 void (* CallBackFunc)())

Description

The gluTessCallback subroutine defines a new callback for use by a tessellation object. If the specified

callback is already defined, it is replaced. If the CallBackFunc parameter is set to null, the existing callback

becomes undefined.

These callbacks are used by the tessellation object to describe how a polygon specified by the user is

broken into triangles.

Note: There are two versions of each callback: one with user-specified polygon data and one

without. If both versions of a particular callback are specified, then the callback with user-specified

polygon data will be used. The polygon_data parameter used by some of the functions is a copy of

the pointer that was specified when gluTessBeginPolygon was called.

The acceptable callbacks are as follows:

 GLU_TESS_BEGIN The begin callback is invoked like glBegin to indicate the start of a

(triangle) primitive. The function takes a single argument of type

GLenum. If the GLU_TESS_BOUNDARY_ONLY property is set to

GL_FALSE, then the argument is set to either GL_TRIANGLE_FAN,

GL_TRIANGLE_STRIP, or GL_TRIANGLES. If the

GLU_TESS_BOUNDARY_ONLY property is set to GL_TRUE, then the

argument will be set to GL_LINE_LOOP. The function prototype for this

callback is:

 void begin(GLenum type);

GLU_TESS_BEGIN_DATA The same as the GLU_TESS_BEGIN callback except that it takes an

additional pointer argument. This pointer is identical to the opaque

pointer provided when gluTessBeginPolygon was called. The function

prototype for this callback is:

 void beginData (GLenum type, void *polygon_data);

468 OpenGL 1.2 Reference Manual

GLU_TESS_EDGE_FLAG Similar to the glEdgeFlag subroutine. It takes a single Boolean flag that

indicates which edges lie on the polygon boundary. If the flag is

GL_TRUE, each vertex that follows begins an edge that lies on the

polygon boundary, that is, an edge that seperates an interior region

from an exterior one. If the flag is GL_FALSE, each vertex that follows

begins an edge that kies in the polygon interior. To avoid confusion with

the first few edges, the edge flag callback is started before the first

vertex callback is made.

Because triangle fans and strips do not support edge flags, the begin

callback cannot be called with GL_TRIANGLE_FAN or

GL_TRIANGLE_STRIP if the GLU_EDGE_FLAG If a non-null edge flag

callback is provided. (If the callback is initialized to null, there is no

impact on performance.) Instead, fans and strips are converted into

independent triangles. The function prototype for this callback is:

 void edgeFlag(GLboolean flag);

GLU_TESS_EDGE_FLAG_DATA The same as the GLU_TESS_EDGE_FLAG callback except that it

takes an additional pointer argument. This pointer is identical to the

opaque pointer provided when gluTessBeginPolygon was called. The

function prototype for this callback is:

 void edgeFlagData(GLboolean flag, void *polygon_data);

GLU_TESS_VERTEX Started between the begin and end callbacks. It is similar to the

glVertex subroutine and defines the vertices of the triangles created by

the tessellation process. The function takes a pointer as its only

argument. This pointer is identical to the opaque pointer provided by the

user when the vertex was described. (See the gluTessVertex

subroutine for details on specifying a polygon vertex.) The function

prototype for this callback is:

 void vertex (void *vertex_data);

GLU_TESS_VERTEX_DATA The same as the GLU_TESS_VERTEX callback except that it takes an

additional pointer argument. This pointer is identical to the opaque

pointer provided when gluTessBeginPolygon was called. The function

prototype for this callback is:

 void vertexData (void *vertex_data,

 void *polygon_data);

GLU_TESS_END Serves the same purpose as the glEnd subroutine and indicates the

end of a primitive. It takes no arguments. The function prototype for this

callback is:

 void end(void);

GLU_TESS_END_DATA The same as the GLU_TESS_END callback except that it takes an

additional pointer argument. This pointer is identical to the opaque

pointer provided when gluTessBeginPolygon was called. The function

prototype for this callback is:

 void endData (void *polygon_data);

Chapter 2. OpenGL Utility (GLU) Library 469

GLU_TESS_COMBINE The combine callback is called to create a new vertex when the

tessellation detects an intersection, or wishes to merge features. The

function takes four arguments: an array of three elements each of type

GLdouble, an array of four pointers, an array of four elements each of

type GLfloat, and a pointer to a pointer. The prototype Is:

 void combine(GLdouble coords[3],

 void *vertex_data[4],

 GLfloat weight[4],

 void **outData);

The vertex is defined as a linear combination of up to four existing

vertices, stored in vertex_data. The coefficients of the linear

combination are given by weight; these weights always add up to 1. All

vertex pointers are valid even when some of the weights are 0. coords

gives the location of the new vertex.

The user must allocate another vertex, interpolate parameters using

vertex_data and weight, and return the new vertex pointer in outData.

This handle is supplied during rendering callbacks. The user is

responsible for freeing the memory some time after

gluTessEndPolygon is called.

For example, if the polygon lies in an arbitrary plane in 3-space, and a

color is associated with each vertex, the GLU_TESS_COMBINE

callback might look like this:

 void myCombine(GLdouble coords[3], VERTEX *d[4],

 GLfloat w[4], VERTEX **dataOut)

 {VERTEX *new = new_vertex();

 new->x = coords[0];

 new->y = coords[1];

 new->z = coords[2];

 new->r = w[0]*d[0]->r + w[1]*d[1]->r +

 w[2]*d[2]->r + w[3]*d[3]->r;

 new->g = w[0]*d[0]->g + w[1]*d[1]->g +

 w[2]*d[2]->g + w[3]*d[3]->g;

 new->b = w[0]*d[0]->b + w[1]*d[1]->b +

 w[2]*d[2]->b + w[3]*d[3]->b;

 new->a = w[0]*d[0]->a + w[1]*d[1]->a +

 w[2]*d[2]->a + w[3]*d[3]->a;

 *dataOut = new; }

If the tessellation detects an intersection, then the

GLU_TESS_COMBINE or GLU_TESS_COMBINE_DATA callback (see

below) must be defined, and it must write a non-NULL pointer into

dataOut. Otherwise the GLU_TESS_NEED_COMBINE_CALLBACK

error occurs, and no output is generated.

GLU_TESS_COMBINE_DATA The same as the GLU_TESS_COMBINE callback except that it takes

an additional pointer argument. This pointer is identical to the opaque

pointer provided when gluTessBeginPolygon was called. The function

prototype for this callback is:

 void combineData (GLdouble coords[3],

 void *vertex_data[4],

 GLfloat weight[4],

 void **outData,

 void *polygon_data);

470 OpenGL 1.2 Reference Manual

GLU_TESS_ERROR Called when an error is encountered. Character strings describing these

errors can be retrieved with the gluErrorString subroutine. The

GLenum type is the only argument and indicates the specific error that

occurred. It will be set to one of the following:

v GLU_TESS_MISSING_BEGIN_POLYGON

v GLU_TESS_MISSING_END_POLYGON

v GLU_TESS_MISSING_BEGIN_CONTOUR

v GLU_TESS_MISSING_END_CONTOUR

v GLU_TESS_COORD_TOO_LARGE: Indicates that some vertex

coordinate exceeded the predefined constant

GLU_TESS_MAX_COORD in absolute value, and that the value has

been clamped. (Coordinate values must be small enough so that two

can be multiplied together without overflow.)

v GLU_TESS_NEED_COMBINE_CALLBACK: Indicates that the

tessellation detected an intersection between two edges in the input

data, and the GLU_TESS_COMBINE or

GLU_TESS_COMBINE_DATA callback was not provided. No output

is generated.

v GLU_OUT_OF_MEMORY: Indicates that there is not enough

memory so no output is generated.

Note: The GLU library will recover from the first four errors by

inserting the missing call(s).

The function prototype for this callback is:

 void error(GLenum errno);

GLU_TESS_ERROR_DATA The same as the GLU_TESS_ERROR callback except that it takes an

additional pointer argument. This pointer is identical to the opaque

pointer provided when gluTessBeginPolygon was called. The function

prototype for this callback is:

 void errorData (GLenum errno, void *polygon_data);

Parameters

 tess Specifies the tessellation object created with the gluNewTess subroutine.

which Specifies the callback being defined. The following values are valid:

v GLU_TESS_BEGIN

v GLU_TESS_BEGIN_DATA

v GLU_TESS_EDGE_FLAG

v GLU_TESS_EDGE_FLAG_DATA

v GLU_TESS_VERTEX

v GLU_TESS_VERTEX_DATA

v GLU_TESS_END

v GLU_TESS_END_DATA

v GLU_TESS_COMBINE

v GLU_TESS_COMBINE_DATA

v GLU_TESS_ERROR

v GLU_TESS_ERROR_DATA

CallBackFunc Specifies the new callback.

Examples

Tessellated polygons can be rendered directly as in the following example:

Chapter 2. OpenGL Utility (GLU) Library 471

gluTessCallback(tobj, GLU_TESS_BEGIN, glBegin);

gluTessCallback(tobj, GLU_TESS_VERTEX, glVertex3dv);

gluTessCallback(tobj, GLU_TESS_END, glEnd);

gluTessCallback(tobj, GLU_TESS_COMBINE, myCombine);

gluTessBeginPolygon(tobj, NULL);

 gluTessBeginContour(tobj);

 gluTessVertex(tobj, v, v);

 ...

 gluTessEndContour(tobj);

gluTessEndPolygon(tobj);

Typically, the tessellated polygon should be stored in a display list so that is does need to be retessellated

every time it is rendered.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glBegin subroutine, glEdgeFlag subroutine, glVertex subroutine, gluNewTess subroutine,

gluTessVertex subroutine, gluErrorString subroutine, gluTessBeginPolygon subroutine,

gluTessBeginContour subroutine, gluTessProperty subroutine, gluTessNormal subroutine.

gluTessEndPolygon Subroutine

Purpose

Delimit a polygon description.

Library

C bindings library: libGL.a

C Syntax

void gluTessEndPolygon(GLUtesselator* tess)

Description

The gluTessBeginPolygon and gluTessEndPolygon routines delimit the definition of a convex, concave

or self-intersecting polygon. Within each gluTessBeginPolygon/gluTessEndPolygon pair, there must be

one or more calls to gluTessBeginContour/ gluTessEndContour. Within each contour, there are zero or

more calls to gluTessVertex. The vertices specify a closed contour (the last vertex of each contour is

automatically linked to the first). See the gluTessVertex subroutine, gluTessBeginContour subroutine

and gluTessEndContour subroutine for more details.

Once gluTessEndPolygon is called, the polygon is tessellated, and the resulting triangles are described

through callbacks. See gluTessCallback for descriptions of the callback functions.

Parameters

tess Specifies the tessellation object (created with gluNewTess).

Examples

A quadrilateral with a triangular hole in it can be described like this:

472 OpenGL 1.2 Reference Manual

gluTessBeginPolygon(tobj, NULL);

 gluTessBeginContour(tobj);

 gluTessVertex(tobj, v1, v1);

 gluTessVertex(tobj, v2, v2);

 gluTessVertex(tobj, v3, v3);

 gluTessVertex(tobj, v4, v4);

 gluTessEndContour(tobj);

 gluTessBeginContour(tobj);

 gluTessVertex(tobj, v5, v5);

 gluTessVertex(tobj, v6, v6);

 gluTessVertex(tobj, v7, v7);

 gluTessEndContour(tobj);

 gluTessEndPolygon(tobj);

In the above example the pointers, v1 through v7, should point to different addresses, since the values

stored at these addresses will not be read by the tesselator until gluTessEndPolygon is called.

Related Information

The gluNewTess subroutine, gluTessBeginContour subroutine, gluTessVertex subroutine,

gluTessCallback subroutine, gluTessProperty subroutine, gluTessNormal subroutine, and

gluTessBeginPolygon subroutine.

gluTessNormal Subroutine

Purpose

Specifies a normal for a polygon.

Library

C bindings library: libGL.a

C Syntax

void gluTessNormal(GLUtesselator* tess,

 GLdouble valueX,

 GLdouble valueY,

 GLdouble valueZ)

Description

The gluTessNormal subroutine describes a normal for a polygon that the program is defining. All input

data will be projected onto a plane perpendicular to one of the three coordinate axes before tessellation

and all output triangles will be oriented CCW with respect to the normal (CW orientation can be obtained

by reversing the sign of the supplied normal). For example, if you know that all polygons lie in the XY

plane, call gluTessNormal(tess, 0.0, 0.0, 1.0) before rendering any polygons.

If the supplied normal is (0.0, 0.0, 0.0) (the initial value), the normal is determined as follows. The direction

of the normal, up to its sign, is found by fitting a plane to the vertices, without regard to how the vertices

are connected. It is expected that the input data lies approximately in the plane; otherwise, projection

perpendicular to one of the three coordinate axes may substantially change the geometry. The sign of the

normal is chosen so that the sum of the signed areas of all input contours is nonnegative (where a CCW

contour has positive area).

The supplied normal persists until it is changed by another call to gluTessNormal.

Chapter 2. OpenGL Utility (GLU) Library 473

Parameters

 tess Specifies the tessellation object (created with gluNewTess).

valueX Specifies the first component of the normal.

valueY Specifies the second component of the normal.

valueZ Specifies the third component of the normal.

Related Information

The gluTessBeginPolygon subroutine and the gluTessEndPolygon subroutine.

gluTessProperty Subroutine

Purpose

Sets a tessellation object property.

Library

C bindings library: libGL.a

C Syntax

void gluTessProperty(GLUtesselator* tess,

 GLenum which,

 GLdouble data)

Description

The gluTessProperty subroutine is used to control properties stored in a tessellation object. These

properties affect the way that the polygons are interpreted and rendered. The legal values for which are as

follows:

474 OpenGL 1.2 Reference Manual

GLU_TESS_WINDING_RULE Determines which parts of the polygon are on the

″interior″. data may be set to one of:

v GLU_TESS_WINDING_ODD

v GLU_TESS_WINDING_NONZERO

v GLU_TESS_WINDING_POSITIVE

v GLU_TESS_WINDING_NEGATIVE

v GLU_TESS_WINDING_ABS_GEQ_TWO

To understand how the winding rule works, consider that

the input contours partition the plane into regions. The

winding rule determines which of these regions are inside

the polygon.

For a single contour C, the winding number of a point x is

simply the signed number of revolutions we make around

x as we travel once around C (where CCW is positive).

When there are several contours, the individual winding

numbers are summed. This procedure associates a

signed integer value with each point x in the plane. Note

that the winding number is the same for all points in a

single region.

The winding rule classifies a region as ″inside″ if its

winding number belongs to the chosen category (odd,

nonzero, positive, negative, or absolute value of at least

two). The previous GLU tessellator (prior to GLU 1.2)

used the ″odd″ rule. The ″nonzero″ rule is another

common way to define the interior. The other three rules

are useful for polygon CSG Operations.

GLU_TESS_BOUNDARY_ONLY Is a boolean value (″value″ should be set to GL_TRUE or

GL_FALSE). When set to GL_TRUE, a set of closed

contours separating the polygon interior and exterior are

returned instead of a tessellation. Exterior contours are

oriented CCW with respect to the normal; interior contours

are oriented CW. The GLU_TESS_BEGIN and

GLU_TESS_BEGIN_DATA callbacks use the type

GL_LINE_LOOP for each contour.

GLU_TESS_TOLERANCE Specifies a tolerance for merging features to reduce the

size of the output. For example, two vertices that are very

close to each other might be replaced by a single vertex.

The tolerance is multiplied by the largest coordinate

magnitude of any input vertex; this specifies the maximum

distance that any feature can move as the result of a

single merge operation. If a single feature takes part in

several merge operations, the total distance moved could

be larger.

Feature merging is completely optional; the tolerance is

only a hint. The implementation is free to merge in some

cases and not in others, or to never merge features at all.

The initial tolerance is 0.

The current implementation merges vertices only if they

are exactly coincident, regardless of the current tolerance.

A vertex is spliced into an edge only if the implementation

is unable to distinguish which side of the edge the vertex

lies on. Two edges are merged only when both endpoints

are identical.

Chapter 2. OpenGL Utility (GLU) Library 475

Parameters

 tess Specifies the tessellation object (created with

gluNewTess).

which Specifies the property to be set. Valid values are:

v GLU_TESS_WINDING_RULE

v GLU_TESS_BOUNDARY_ONLY

v GLU_TESS_TOLERANCE

data Specifies the value of the indicated property.

Related Information

The gluGetTessProperty subroutine.

gluTessVertex Subroutine

Purpose

Specifies a vertex on a polygon.

Library

OpenGL C bindings library: libGL.a

C Syntax

void gluTessVertex(GLUtesselator* tess,

 GLdouble * location,

 GLvoid* data)

Description

The gluTessVertex subroutine describes a vertex on a polygon that the user is defining. Successive

gluTessVertex calls describe a closed contour. For example, to describe a quadrilateral, the

gluTessVertex subroutine must be called four times.

This subroutine can only be called between gluBeginContour and gluEndContour.

The data parameter normally points to a structure containing the vertex location, as well as other

vertex-specific attributes (such as color and normal). This pointer is passed back to the user through the

GLU_TESS_VERTEX or GLU_TESS_VERTEX_DATA callback after tessellation. (See the

gluTessCallback subroutine for details on defining callbacks for a tessellation object.)

Parameters

 tess Specifies the tessellation object created with the gluNewTess subroutine.

location Specifies the location of the vertex.

data Specifies an opaque pointer that is passed back to the user with the vertex callback (as specified by

the gluTessCallback subroutine).

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

476 OpenGL 1.2 Reference Manual

Examples

A quadrilateral with a triangle hole in it can be described as follows:

gluBeginPolygon(tobj, NULL);

 gluTessBeginContour(tobj);

 gluTessVertex(tobj, v1, v1);

 gluTessVertex(tobj, v2, v2);

 gluTessVertex(tobj, v3, v3);

 gluTessVertex(tobj, v4, v4);

 gluTessEndContour(tobj);

 gluTessBeginContour(tobj);

 gluTessVertex(tobj, v5, v5);

 gluTessVertex(tobj, v6, v6);

 gluTessVertex(tobj, v7, v7);

 gluTessEndContour(tobj);

gluTessEndPolygon(tobj);

Notes

It is a common error to use a local variable for location or data and store values into it as part of a loop.

For example: for (i = 0; i < NVERTICES; ++i) {

 GLdouble data[3];

 data[0] = vertex[i][0];

 data[1] = vertex[i][1];

 data[2] = vertex[i][2];

 gluTessVertex(tobj, data, data);

 }

This doesn’t work. Because the pointers specified by location and data might not be dereferenced until

gluTessEndPolygon is executed, all the vertex coordinates but the very last set could be overwritten

before tessellation begins.

Two common symptoms of this problem are consists of a single point (when a local variable is used for

data) and a GLU_TESS_NEED_COMBINE_CALLBACK error (when a local variable is used for location.

Related Information

The gluBeginPolygon subroutine, gluNewTess subroutine, gluTessBeginContour subroutine,

gluTessCallback subroutine, gluTessProperty subroutine, gluTessNormal subroutine,

gluTessEndPolygon subroutine.

gluUnProject Subroutine

Purpose

Maps window coordinates to object coordinates.

Library

OpenGL C bindings library: libGL.a

C Syntax

int gluUnProject(GLdouble winX,

 GLdouble winY,

 GLdouble winZ,

 const GLdouble * model,

 const GLdouble * proj,

 const GLint * view,

Chapter 2. OpenGL Utility (GLU) Library 477

GLdouble* objX,

 GLdouble* objY,

 GLdouble* objZ)

Description

The gluUnProject subroutine maps the specified window coordinates into object space coordinates using

the model, proj, and view parameter values provided. Results are stored in objX, objY, and objZ. A return

value of GL_TRUE indicates success, and GL_FALSE indicates failure.

To compute the coordinates (objX, objY, and objZ), gluUnProject multiplies the normalized device

coordinates by the inverse of model *proj as follows:

 (2(winX - view[0]))

 | ----------------- - 1 |

 | view[2] |

() | |

| objX | | 2(winY - view[1]) |

| objY | = INV(PM)| ----------------- - 1 |

| objZ | | view[3] |

(W) | |

 | 2(winZ) - 1 |

 | |

 (1)

INV() denotes matrix inversion. W is an unused variable, included for consistent matrix notation.

Parameters

 winX, winY, winZ Specify the window coordinates to be mapped.

model Specifies the modelview matrix (as from a glGetDoublev call).

proj Specifies the projection matrix (as from a glGetDoublev call).

view Specifies the viewport (as from a glGetIntegerv call).

objX, objY, objZ Returns the computed object coordinates.

Return Values

 GL_TRUE Indicates the projection succeeded.

GL_FALSE Indicates the projection failed.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glGet subroutine, gluProject subroutine.

gluUnProject4 Subroutine

Purpose

Maps window and clip coordinates to object coordinates.

478 OpenGL 1.2 Reference Manual

Library

OpenGL C bindings library: libGL.a

C Syntax

GLint gluUnProject4(GLdouble winX,

 GLdouble winY,

 GLdouble winZ,

 GLdouble clipW,

 const GLdouble * model,

 const GLdouble * proj,

 const GLint * view,

 GLdouble near,

 GLdouble far,

 GLdouble* objX,

 GLdouble* objY,

 GLdouble* objZ,

 GLdouble* objW)

Description

gluUnProject4 maps the specified window coordinates winX, winY and winZ and its clip w coordinate

clipW into object coordinates (objX, objY, objZ, objW) using model, proj and view. clipW can be other than

1 as for vertices in glFeedbackBuffer when data type GL_4D_COLOR_TEXTURE is returned. This also

handles the case where the near and far planes are different from the default, 0 and 1 respectively. A

return value of GL_TRUE indicates success; a return value of GL_FALSE indicates failure. To compute

the coordinates (objX, objY, objZ and objW), gluUnProject4 multiplies the normalized device coordinates

by the inverse of model*proj as follows:

 (2(winX - view[0])

 | ---------------- - 1 |

 | view[2] |

 | |

 | 2(winY - view[1] |

 (objX) | ---------------- - 1 |

 | objY | = INV(PM) * | view[3] |

 | objZ | | |

 (objW) | 2(winZ - near) |

 | -------------- - 1 |

 | far - near |

 | |

 (clipW)

INV() denotes matrix inversion.

gluUnProject4 is equivalent to gluUnProject when clipW is 1, near is 0 and far is 1.

Parameters

 winX, winY, winZ Specify the window coordinates to be mapped.

clipW Specify the clip w coordinate to be mapped.

model Specifies the modelview matrix (as from a glGetDoublev call).

proj Specifies the projection matrix (as from a glGetDoublev call).

view Specifies the viewport (as from a glGetIntegerv call).

near, far Specifies the near and far planes (as from a glGetDoublev call).

objX, objY, objZ, objW Returns the computed object coordinates.

Chapter 2. OpenGL Utility (GLU) Library 479

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glGet subroutine, glFeedbackBuffer subroutine, gluProject subroutine, gluUnProject subroutine.

480 OpenGL 1.2 Reference Manual

Chapter 3. OpenGL in the AIXwindows (GLX) Environment

OpenGL is a high-performance, 3D-oriented renderer available in the AIXwindows system through the GLX

extension. Use the glXQueryExtension and glXQueryVersion subroutines to determine whether the GLX

extension is supported by an X server. If the GLX extension is supported, the glXQueryVersion

subroutine will return the GLX version supported by the X server and client and the

glXQueryServerString subroutine will return the GLX version supported by a particular screen (because

different screens might support different GLX versions).

GLX-extended servers make a subset of their visuals available for OpenGL rendering. Drawables created

with these visuals can also be rendered using the core X renderer, or any other X extension compatible

with all core X visuals. In GLX 1.3, these visuals are represented via frame buffer configuration structures

(FBConfigs).

GLX extends drawables with several buffers other than the standard color buffer. These buffers include

back and auxiliary color buffers, a depth buffer, a stencil buffer, and a color accumulation buffer. Some or

all are included in each FBConfig or X visual that supports OpenGL.

Both core X and OpenGL commands can be used to operate on the current read and write drawables, if

the drawables are windows or pixmaps. However, the X and OpenGL command streams are not

synchronized (except at explicitly created boundaries generated by calling the glXWaitGL, glXWaitX,

XSync, or glFlush subroutines).

Related Information

OpenGL AIXwindows (GLX) Subroutines lists the GLX subroutines.

How to Render into an X Drawable gives steps on how to create an OpenGL-compatible X window.

XCreateColormap subroutine, XCreateWindow subroutine, glFinish subroutine, glFlush subroutine.

How to Render into an X Drawable

Procedure

To render into an X drawable:

Notes:

1. Decide which version of GLX can be used.

The glXQueryVersion and glXQueryServerString subroutines can be used to see if the GLX

1.3 subroutines are available to be used or not.

2. If GLX 1.3 subroutines can be used:

v Choose a FBConfig that defines the required OpenGL buffers.

The glXChooseFBConfig subroutine can be used to simplify selection of a compatible

FBConfig. If more control of the selection process is required, use the glXGetFBConfigs and

glXGetFBConfigAttrib subroutines to select among the available FBConfigs.

v Use the selected FBConfig to create a GLX context, a GLX drawable and an X drawable.

GLX contexts are created with the glXCreateNewContext subroutine. GLX drawables are

created using either the glXCreateWindow, glXCreatePixmap or glXCreatePbuffer

subroutines. The glXCreateWindow subroutines requires an X window to be associated with

the GLX window drawable. Therefore, the glXGetVisualFromFBConfig subroutine can be

used to get the XVisualInfo structure for the X visual that is associated with the selected

FBConfig and the XCreateWindow subroutine can be used to create the X window.

© Copyright IBM Corp. 1994, 2002 481

v Bind the context and the drawable together using the glXMakeContextCurrent subroutine.

This context/drawable pair becomes the current context and current read and write drawable,

and it is used by all OpenGL commands until the glXMakeContextCurrent or

glXMakeCurrent subroutine is called with different arguments.

3. If GLX 1.3 subroutines can not be used:

v Choose a visual that defines the required OpenGL buffers.

The glXChooseVisual subroutine can be used to simplify selection of a compatible visual. If

more control of the selection process is required, use the XGetVisualInfo and glXGetConfig

subroutines to select among the available visuals.

v Use the selected visual to create both a GLX context and an X drawable.

GLX contexts are created with the glXCreateContext subroutine; drawables are created with

either the XCreateWindow or glXCreateGLXPixmap subroutines.

v Bind the context and the drawable together using the glXMakeCurrent subroutine.

This context/drawable pair becomes the current context and current drawable, and it is used

by all OpenGL commands until the glXMakeCurrent subroutine is called with different

arguments.

Example

Following is an example of the minimum code required to create a red, green, blue, alpha (RGBA) format,

OpenGL-compatible X window. In this example, the X window is cleared to yellow. Note that although the

code is valid, no error checking is included. Under normal conditions, all return values should be tested.

#include <GL/glx.h>

#include <GL/gl.h>

#include <string.h>

static int AttributeList[] = { GLX_RGBA, None };

static Bool WaitForNotify(Display *d, XEvent *e, char *arg) {

 return (e->type == MapNotify) && (e->xmap.window == (Window)arg);

}

void setup_glx12(Display *dpy) {

 XVisualInfo *vi;

 Colormap cmap;

 XSetWindowAttributes swa;

 Window win;

 GLXContext cx;

 XEvent event;

 /* Get an appropriate visual */

 vi = glXChooseVisual(dpy, DefaultScreen(dpy), AttributeList);

 /* Create a GLX context */

 cx = glXCreateContext(dpy, vi, 0, GL_FALSE);

 /* Create a colormap */

 cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),vi->visual, AllocNone);

 /* Create a window */

 swa.colormap = cmap;

 swa.border_pixel = 0;

 swa.event_mask = StructureNotifyMask;

 win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0, 100, 100, 0, vi->depth, InputOutput,

 vi->visual, CWBorderPixel|CWColormap|CWEventMask, &swa);

 XMapWindow(dpy, win);

 XIfEvent(dpy, &event, WaitForNotify, (Char*)win);

482 OpenGL 1.2 Reference Manual

/* Connect the context to the window */

 glXMakeCurrent(dpy, win, cx);

}

void setup_glx13(Display *dpy) {

 GLXFBConfig *fbc;

 XVisualInfo *vi;

 Colormap cmap;

 XSetWindowAttributes swa;

 Window win;

 GLXContext cx;

 GLXWindow gwin;

 XEvent event;

 int nelements;

 /* Find a FBConfig that uses RGBA. Note that no attribute list is */

 /* needed since GLX_RGBA_BIT is a default attribute. */

 fbc = glXChooseFBConfig(dpy, DefaultScreen(dpy), 0, &nelements);

 vi = glXGetVisualFromFBConfig(dpy, fbc[0]);

 /* Create a GLX context using the first FBConfig in the list. */

 cx = glXCreateNewContext(dpy, fbc[0], GLX_RGBA_TYPE, 0, GL_FALSE);

 /* Create a colormap */

 cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),vi->visual, AllocNone);

 /* Create a window */

 swa.colormap = cmap;

 swa.border_pixel = 0;

 swa.event_mask = StructureNotifyMask;

 win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0, 100, 100, 0, vi->depth, InputOutput,

 vi->visual, CWBorderPixel|CWColormap|CWEventMask, &swa);

 XMapWindow(dpy, win);

 XIfEvent(dpy, &event, WaitForNotify, (Char*)win);

 /* Create a GLX window using the same FBConfig that we used for the */

 /* the GLX context. */

 gwin = glXCreateWindow(dpy, fbc[0], win, 0);

 /* Connect the context to the window for read and write */

 glXMakeContextCurrent(dpy, gwin, gwin, cx);

}

int main(int argc, char **argv) {

 Display *dpy;

 GLXContext cx;

 XEvent event;

 int major, minor;

 char *string_data;

 /* get a connection */

 dpy = XOpenDisplay(0);

 /* */

 if (glXQueryVersion(dpy, &major, &minor)) {

 if (major == 1) {

 if (minor < 3) setup_glx12(dpy);

 else {

 string_data = glXGetServerString(dpy, DefaultScreen(dpy), GLX_VERSION);

 if (strchr(string_data,"1.3")) setup_glx13(dpy);

 else setup_glx12(dpy);

 }

 /* clear the buffer */

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 483

glClearColor(1,1,0,1);

 glClear(GL_COLOR_BUFFER_BIT);

 glFlush();

 /* wait a while */

 sleep(10);

 }

 }

}

Special Considerations

When creating an X window, keep the following in mind:

Notes:

1. A color map must be created and passed to the XCreateWindow subroutine.

2. A GLX context must be created and attached to one or more X drawable or GLX drawable before

OpenGL commands are processed. OpenGL commands issued while no context/drawable pair is

current are ignored.

3. Exposure events indicate that all buffers associated with the specified window may be damaged

and should be repainted. Although some visual buffers on certain systems may never require

repainting (the depth buffer, for example), this is not the rule. Do not create code based on the

assumption that these buffers cannot be damaged.

4. GLX subroutines (at the GLX 1.2 level and earlier) manipulate XVisualInfo structures, not pointers

to visuals or visual IDs. XVisualInfo structures contain visual, visual ID, screen, and depth

parameters, as well as other X-specific information. GLX 1.3 subroutines use GLXFBConfig

structures instead of the XVisualInfo structures.

5. The search methods used by the glXChooseFBConfig and glXChooseVisual subroutines are

different and can return dissimilar results. Using the two subroutines in the same program to

create GLX contexts and drawables can lead to BadMatch X protocol errors being generated in

subsequent calls to GLX subroutines.

Related Information

OpenGL in the AIXwindows (GLX) Environment.

OpenGL in the AIXwindows environment (GLX) Subroutines

Following is a list of the GLX subroutines and the purpose of each.

Select the subroutine about which you want to read:

 Subroutine Description

glXChooseFBConfig Returns a list of FBConfigs matching the attributes specified. (GLX

1.3 only)

glXChooseVisual Returns a visual matching the attributes specified.

glXCopyContext Copies state variables from one rendering context to another.

glXCreateContext Creates a new GLX rendering context using a visual.

glXCreateGLXPixmap Creates an off-screen GLX rendering area, using a visual.

glXCreateNewContext Creates a new GLX rendering context using a FBConfig. (GLX 1.3

only)

glXCreatePbuffer Creates an off-screen, hardware GLX rendering area, using a

FBConfig. (GLX 1.3 only)

glXCreatePixmap Creates an off-screen GLX rendering area, using a FBConfig. (GLX

1.3 only)

484 OpenGL 1.2 Reference Manual

Subroutine Description

glXCreateWindow Creates a GLX window drawable, using a FBConfig. (GLX 1.3 only)

glXDestroyContext Destroys a GLX context.

glXDestroyGLXPixmap Destroys a GLX pixmap.

glXDestroyPbuffer Destroys a GLX pbuffer. (GLX 1.3 only)

glXDestroyPixmap Destroys a GLX pixmap. (GLX 1.3 only)

glXDestroyWindow Destroys a GLX window. (GLX 1.3 only)

glXFreeContextEXT Frees client-side memory for imported context.

glXGetClientString Returns a string describing the client.

glXGetConfig Returns information about GLX visuals.

glXGetContextIDEXT Gets the XID for a context.

glXGetCurrentContext Returns the current context.

glXGetCurrentDisplay Gets display for current context.

glXGetCurrentDrawable Returns the current rendering drawable.

glXGetCurrentReadDrawable Returns the current read drawable. (GLX 1.3 only)

glXGetFBConfigAttrib Returns information about a specified FBConfig. (GLX 1.3 only)

glXGetFBConfigs Returns a list of all FBConfigs for a specified screen. (GLX 1.3

only)

glXGetSelectedEvent Returns the GLX Events that were selected for a specified GLX

window or pbuffer. (GLX 1.3 only)

glXGetVisualFromFBConfig Returns the XVisualInfo information for the visual that corresponds

to a specified FBConfig. (GLX 1.3 only)

glXImportContextEXT Imports another process’s indirect rendering context.

glXIsDirect Indicates whether direct rendering is enabled.

glXMakeContextCurrent Attaches a GLX context to one or two GLX windows, GLX pbuffers

or GLX pixmaps. (GLX 1.3 only)

glXMakeCurrent Attaches a GLX context to a window or GLX pixmap.

glXQueryContext Queries context information. (GLX 1.3 only)

glXQueryContextInfoEXT Queries context information.

glXQueryDrawable Queries GLX drawable information. (GLX 1.3 only)

glXQueryExtension Indicates whether the GLX extension is supported.

glXQueryExtensionsString Returns list of supported extensions.

glXQueryServerString Returns string describing the server.

glXQueryVersion Returns the version numbers of the GLX extension.

glXSelectEvent Turns on GLX events for a specified GLX drawable. (GLX 1.3 only)

glXSwapBuffers Exchanges front and back buffers.

glXUseXFont Creates bitmap display lists from an X font.

glXWaitGL Completes GL processing prior to subsequent X calls.

glXWaitX Completes X processing prior to subsequent OpenGL calls.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 485

glXChooseFBConfig Subroutine

Purpose

Returns a list of GLX FBConfigs that match the attributes specified.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXFBConfig *glXChooseFBConfig(Display * dpy,

 int screen,

 int * AttributeList,

 int * nelements)

Description

The glXChooseFBConfig subroutine returns a pointer to a list of GLX FBConfig structures that match a

specified list of attributes. The GLX attributes of the returned GLX FBConfigs match or exceed the the

specified values, based on the table, below. To free the data returned by this function, use the XFree

subroutine.

If an attribute is not specified in AttributeList then the default value will be used instead. If the default value

is GLX_DONT_CARE and the attribute is not in AttributeList then the attribute will not be checked.

GLX_DONT_CARE may be specified for all attributes except GLX_LEVEL. If GLX_DONT_CARE is

specified for an attribute then the attribute will not be checked. If AttributeList is NULL or empty (that is,

the first attribute is None (or 0)), then the selection and sorting of the GLXFBConfigs is done according to

the default values.

To retrieve a GLX FBConfig given its XID, use the GLX_FBCONFIG_ID attribute. When

GLX_FBCONFIG_ID is specified, all other attributes are ignored and only the GLX FBConfig with the

given XID is returned (NULL (or 0) is returned if it does not exist).

The following attributes can be specified in AttributeList but they will be ignored:

v GLX_MAX_PBUFFER_WIDTH

v GLX_MAX_PBUFFER_HEIGHT

v GLX_MAX_PBUFFER_PIXELS

v GLX_VISUAL_ID

If GLX_TRANSPARENT_TYPE is set to GLX_NONE in AttributeList, then the following attributes can be

included in AttributeList but they will be ignored:

v GLX_TRANSPARENT_INDEX_VALUE

v GLX_TRANSPARENT_RED_VALUE

v GLX_TRANSPARENT_GREEN_VALUE

v GLX_TRANSPARENT_BLUE_VALUE

v GLX_TRANSPARENT_ALPHA_VALUE

Attribute1 Default Value

Selection

Criteria2

Sorting

Criteria3

Sort

Priority3

GLX_ FBCONFIG_ ID GLX_ DONT_ CARE Exact

GLX_ BUFFER_ SIZE 0 Larger Smaller 3

GLX_ LEVEL 0 Exact

486 OpenGL 1.2 Reference Manual

Attribute1 Default Value

Selection

Criteria2

Sorting

Criteria3

Sort

Priority3

GLX_ DOUBLEBUFFER GLX_ DONT_ CARE Exact Exact 4

GLX_ STEREO False Exact

GLX_ AUX_ BUFFERS 0 Larger Smaller 5

GLX_ RED_ SIZE 0 Larger Larger 2

GLX_ GREEN_ SIZE 0 Larger Larger 2

GLX_ BLUE_ SIZE 0 Larger Larger 2

GLX_ ALPHA_ SIZE 0 Larger Larger 2

GLX_ DEPTH_ SIZE 0 Larger Larger 6

GLX_ STENCIL_ SIZE 0 Larger Larger 7

GLX_ ACCUM_ RED_ SIZE 0 Larger Larger 8

GLX_ ACCUM_ GREEN_ SIZE 0 Larger Larger 8

GLX_ ACCUM_ BLUE_ SIZE 0 Larger Larger 8

GLX_ ACCUM_ ALPHA_ SIZE 0 Larger Larger 8

GLX_ RENDER_ TYPE GLX_ RGBA_ BIT Mask

GLX_ DRAWABLE_ TYPE GLX_ WINDOW_ BIT Mask

GLX_ X_ RENDERABLE GLX_ DONT_ CARE Exact

GLX_ X_ VISUAL_ TYPE GLX_ DONT_ CARE Exact Exact 9

GLX_ CONFIG_ CAVEAT GLX_ DONT_ CARE Exact Exact 1

GLX_ TRANSPARENT_ TYPE GLX_ NONE Exact

GLX_ TRANSPARENT_ INDEX_ VALUE GLX_ DONT_ CARE Exact

GLX_ TRANSPARENT_ RED_ VALUE GLX_ DONT_ CARE Exact

GLX_ TRANSPARENT_ GREEN_ VALUE GLX_ DONT_ CARE Exact

GLX_ TRANSPARENT_ BLUE_ VALUE GLX_ DONT_ CARE Exact

GLX_ TRANSPARENT_ ALPHA_ VALUE GLX_ DONT_ CARE Exact

Table Notes:

1. See the glXGetFBConfigAttrib subroutine for the definition of each of the GLX FBConfig

attributes.

2. The values in the Selection criteria column have the following meaning:

 Larger GLX FBConfigs with an attribute value that meets or exceeds the specified value are

returned

Exact Only GLX FBConfigs whose attribute value exactly matches the requested value are

considered.

Mask Only GLX FBConfigs for which the set bits of attribute include all the bits that are set

in the requested value are considered (additional bits might be set in the attribute).

3. If more than one matching GLX FBConfig is found, then a list of GLX FBConfigs, sorted

according to the best match criteria, is returned. The list is sorted according to the following

precedence rules that are applied in ascending order:

a. By GLX_CONFIG_CAVEAT where the precedence is:

v GLX_NONE

v GLX_SLOW_CONFIG

v GLX_NON_CONFORMANT_CONFIG

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 487

b. Larger total number of RGBA color bits (GLX_RED_SIZE, GLX_GREEN_SIZE,

GLX_BLUE_SIZE, plus GLX_ALPHA_SIZE). If the requested number of bits in AttributeList

for a particular color component is 0 or GLX_DONT_CARE, then the number of bits for that

component is not considered.

c. Smaller GLX_BUFFER_SIZE.

d. Single-buffered configuration (GLX_DOUBLE_BUFFER is False) precedes a double-buffered

configuration.

e. Smaller GLX_AUX_BUFFERS.

f. Larger GLX_DEPTH_SIZE.

g. Smaller GLX_STENCIL_BITS.

h. Larger total number of accumulation buffer color bits (GLX_ACCUM_RED_SIZE,

GLX_ACCUM_GREEN_SIZE, GLX_ACCUM_BLUE_SIZE, plus

GLX_ACCUM_ALPHA_SIZE). If the requested number of bits in AttributeList for a particular

color component is 0 or GLX_DONT_CARE, then the number of bits for that color component

is not considered.

i. By GLX_X_VISUAL_TYPE where the precedence is:

v GLX_TRUE_COLOR

v GLX_DIRECT_COLOR

v GLX_PSEUDO_COLOR

v GLX_STATIC_COLOR

v GLX_GRAY_SCALE

v GLX_STATIC_GRAY

Parameters

 dpy Specifies the connection to the X server.

screen Specifies the screen number.

AttributeList Specifies a list of attribute/value pairs. The last attribute must be None (or 0).

Note: The format of this list is not the same as found in glXChooseVisual. All

attributes (including the boolean attributes) must be paired with a corresponding value

in this list.

nelements Returns the number of FBConfigs that are in the returned list.

Notes

This subroutine requires GLX 1.3 support on both the GLX system on the client and on the specified

screen on the X server.

The search methods used by the glXChooseFBConfig and glXChooseVisual subroutines are different

and can return dissimilar results. Using the two subroutines in the same program to create GLX contexts

and drawables can lead to BadMatch X protocol errors being generated in subsequent calls to GLX

subroutines.

Return Values

 Null Indicates that either an undefined GLX attribute is encountered in the specified AttributeList, that no

FBConfig matches the specified values for the GLX attributes or that screen is invalid.

488 OpenGL 1.2 Reference Manual

Examples

The following example specifies a single-buffered RGB FBConfig in the normal frame buffer (not an

overlay or underlay). The returned visual supports at least 4 bits each of red, green, and blue and possibly

no alpha bits. It does not support color-index mode, double-buffering, stereo display or transparency. The

code shown in the example may or may not have one or more auxiliary color buffers, a depth buffer, a

stencil buffer, or an accumulation buffer.

AttributeList = { GLX_DOUBLE_BUFFER, False, GLX_RED_SIZE, 4, GLX_GREEN_SIZE, 4, GLX_BLUE_SIZE,

4, None};

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI

function prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constraints, variable type definitions, and ANSI

function prototypes for GLX.

Related Information

The glXCreateNewContext subroutine, glXGetFBConfigAttrib subroutine, glXGetFBConfigs subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXChooseVisual Subroutine

Purpose

Returns a visual matching the attributes specified.

Library

OpenGL C bindings library: libGL.a

C Syntax

XVisualInfo* glXChooseVisual(Display * dpy,

 int screen,

 int * AttributeList)

Description

The glXChooseVisual subroutine returns a pointer to an XVisualInfo structure that describes the visual

best meeting a minimum specification. The Boolean GLX attributes of the returned visual match the

specified values; the integer GLX attributes meet or exceed the specified minimum values. If all other

attributes are equivalent, then TrueColor and PseudoColor visuals have priority over DirectColor and

StaticColor visuals, respectively. If no conforming visual exists, Null is returned. To free the data returned

by this function, use the XFree subroutine.

All Boolean GLX attributes default to False, except for GLX_USE_GL. The GLX_USE_GL attribute

defaults to True. All integer GLX attributes default to 0 (zero). Default specifications are superseded by

attributes included in AttributeList specified. Boolean attributes included in the specified AttributeList are

understood to be True. Integer attributes are followed immediately by the corresponding specified (or

minimum) value. The AttributeList must be terminated with the None attribute.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 489

The GLX visual attributes are defined as follows:

 Attribute Definition

GLX_USE_GL This attribute is ignored. Only visuals that can be

rendered with GLX are considered.

GLX_BUFFER_SIZE This attribute must be followed by a nonnegative integer

indicating the desired color index buffer size. The

smallest index buffer of at least the specified size is

preferred. This attribute is ignored if the GLX_RGBA

attribute is asserted.

GLX_LEVEL This attribute must be followed by an integer buffer-level

specification. This specification is honored exactly.

Buffer level 0 (zero) corresponds to the default frame

buffer of the display. Buffer level 1 (one) is the first

overlay frame buffer, level 2 the second overlay frame

buffer, and so on. Negative buffer levels correspond to

underlay frame buffers.

GLX_RGBA This attribute specifies that if present, only TrueColor

and DirectColor visuals are considered. Otherwise, only

PseudoColor and StaticColor visuals are considered.

GLX_DOUBLEBUFFER This attribute specifies that only double-buffered visuals

are considered. Otherwise, only single-buffered visuals

are considered.

GLX_STEREO This attribute specifies that only stereo visuals are to be

considered. Otherwise, only monoscopic visuals are

considered.

GLX_AUX_BUFFERS This attribute must be followed by a nonnegative integer

indicating the desired number of auxiliary buffers

(preferably visuals with the smallest number of auxiliary

buffers that meets or exceeds the specified number).

GLX_RED_SIZE This attribute must be followed by a nonnegative

minimum size specification. If 0, the smallest available

red buffer is preferred. Otherwise, the largest available

red buffer of at least the minimum size is preferred.

GLX_GREEN_SIZE This attribute must be followed by a nonnegative

minimum size specification. If 0, the smallest available

green buffer is preferred. Otherwise, the largest

available green buffer of at least the minimum size is

preferred.

GLX_BLUE_SIZE This attribute must be followed by a nonnegative

minimum size specification. If 0, the smallest available

blue buffer is preferred. Otherwise, the largest available

blue buffer of at least the minimum size is preferred.

GLX_ALPHA_SIZE This attribute must be followed by a nonnegative

minimum size specification. If 0, the smallest available

alpha buffer is preferred. Otherwise, the largest

available alpha buffer of at least the minimum size is

preferred.

GLX_DEPTH_SIZE This attribute must be followed by a nonnegative

minimum size specification. If 0, visuals with no depth

buffer are preferred. Otherwise, the largest available

depth buffer of at least the minimum size is preferred.

GLX_STENCIL_SIZE This attribute must be followed by a nonnegative integer

indicating the desired number of stencil bitplanes. The

smallest stencil buffer of at least the specified size is

preferred. If the desired value is 0, visuals with no

stencil buffer are preferred.

490 OpenGL 1.2 Reference Manual

Attribute Definition

GLX_ACCUM_RED_SIZE This attribute must be followed by a nonnegative

minimum size specification. If 0, visuals with no red

accumulation buffer are preferred. Otherwise, the largest

possible red accumulation buffer of at least the minimum

size is preferred.

GLX_ACCUM_GREEN_SIZE This attribute must be followed by a nonnegative

minimum size specification. If 0, visuals with no green

accumulation buffer are preferred. Otherwise, the largest

possible green accumulation buffer of at least the

minimum size is preferred.

GLX_ACCUM_BLUE_SIZE This attribute must be followed by a nonnegative

minimum size specification. If 0, visuals with no blue

accumulation buffer are preferred. Otherwise, the largest

possible blue accumulation buffer of at least the

minimum size is preferred.

GLX_ACCUM_ALPHA_SIZE This attribute must be followed by a nonnegative

minimum size specification. If 0, visuals with no alpha

accumulation buffer are preferred. Otherwise, the largest

possible alpha accumulation buffer of at least the

minimum size is preferred.

GLX_TRANSPARENT_TYPE_EXT This attribute defines the type of transparency (if any) in

the visual. It must be one of the following:

GLX_NONE_EXT

no transparency

GLX_TRANSPARENT_INDEX_EXT

PseudoColor transparency

GLX_TRANSPARENT_RGB_EXT

RGB Transparency

GLX_TRANSPARENT_RED_VALUE_EXT This attribute must be followed by the red value of the

RGB transparent pixel.

GLX_TRANSPARENT_BLUE_VALUE_EXT This attribute must be followed by the blue value of the

RGB transparent pixel.

GLX_TRANSPARENT_GREEN_VALUE_EXT This attribute must be followed by the green value of the

RGB transparent pixel.

GLX_TRANSPARENT_ALPHA_VALUE_EXT This attribute must be followed by the alpha value of the

RGB transparent pixel.

GLX_TRANSPARENT_INDEX_VALUE_EXT This attribute must be followed by the INDEX

transparent pixel.

GLX_X_VISUAL_TYPE_EXT This attribute must be followed by the visual type:

GLX_TRUE_COLOR_EXT

TrueColor colormap

GLX_DIRECT_COLOR_EXT

DirectColor colormap

GLX_PSEUDO_COLOR_EXT

PseudoColor colormap

GLX_STATIC_COLOR_EXT

StaticColor colormap

GLX_GRAY_SCALE_EXT

Grayscale colormap

GLX_STATIC_GRAY_EXT

StaticGray colormap

GLX_VISUAL_CAVEAT_EXT This attribute must be followed by:

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 491

Attribute Definition

0 or GLX_NONE_EXT

no rating

GLX_SLOW_VISUAL_EXT

not an optimal visual

Parameters

 dpy Specifies the connection to the X server.

screen Specifies the screen number.

AttributeList Specifies a list of Boolean attributes and integer attribute/value pairs. The last attribute

must be None.

Notes

XVisualInfo is defined in the Xutil.h file. It is a structure that includes Visual, VisualID, Screen, and Depth

elements.

glXChooseVisual is implemented as a client-side utility using only XGetVisualInfo and glXGetConfig.

Calls to these two routines can be used to implement selection algorithms other than the generic one

implemented by glXChooseVisual.

GLX implementers are strongly discouraged, but not proscribed, from changing the selection algorithm

used by glXChooseVisual. Therefore, selections may change from release to release of the client-side

library.

The search methods used by the glXChooseFBConfig and glXChooseVisual subroutines are different

and can return dissimilar results. Using the two subroutines in the same program to create GLX contexts

and drawables can lead to BadMatch X protocol errors being generated in subsequent calls to GLX

subroutines.

There is no direct filter for picking only visuals that support GLX pixmaps. GLX pixmaps are supported for

visuals whose GLX_BUFFER_SIZE is one of the pixmap depths supported by the X server.

Return Values

 Null Indicates that an undefined GLX attribute is encountered in the specified AttributeList.

Examples

The following example specifies a single-buffered RGB visual in the normal frame buffer (not an overlay or

underlay). The returned visual supports at least 4 bits each of red, green, and blue and possibly no alpha

bits. It does not support color-index mode, double-buffering, or stereo display. The code shown in the

example may or may not have one or more auxiliary color buffers, a depth buffer, a stencil buffer, or an

accumulation buffer.

AttributeList = {GLX_RGBA, GLX_RED_SIZE, 4, GLX_GREEN_SIZE, 4, GLX_BLUE_SIZE, 4, None};

GLX implementers are strongly discouraged from changing the selection algorithm used by the

glXChooseVisual subroutine. Selections may change from between releases of the client-side library.

492 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI

function prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateContext subroutine, glXGetConfig subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXCopyContext Subroutine

Purpose

Copies state variables from one rendering context to another.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glXCopyContext(Display * dpy,

 GLXContext Source,

 GLXContext Destination,

 GLuint Mask)

Description

The glXCopyContext subroutine copies selected groups of state variables from the specified Source to

the specified Destination. The Mask parameter identifies the state variable groups to be copied. The Mask

parameter contains the bitwise OR of the same symbolic names that are passed to the glPushAttrib

subroutine. The GL_ALL_ATTRIB_BITS single symbolic constant can be used to copy the maximum

possible portion of the rendering state.

This subroutine is successful only if the renderers named by the Source and Destination parameters share

an address space.

If both rendering contexts are nondirect, it is not necessary for the calling threads to share an address

space; however, their related rendering contexts must share an address space.

If Source is not the current context for the thread issuing the request, the state of the Source is undefined.

Not all values for OpenGL state can be copied. For example, pixel pack and unpack state, render mode

state, and select and feedback state cannot be copied using this subroutine. The state that is manipulated

by the glPushAttrib subroutine is the only one that can be copied.

Parameters

 dpy Specifies the connection to the X server.

Source Specifies the source context.

Destination Specifies the destination context.

Mask Specifies which portions of the Source state are to be copied to the Destination.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 493

Notes

Two rendering contexts share an address space if both are nondirect and use the same server, or if both

are direct but owned by a single process.

A process is a single execution environment, implemented in a single address space, consisting of one or

more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain separate

program counters, stack spaces, and other related global data. A thread is the only member of its

subprocess group that is equivalent to a process.

Error Codes

 BadMatch Is generated if Source and Destination either do not share an address space or

were not created with respect to the same screen.

BadAccess Is generated if Destination is current to any thread (including the calling thread)

at the time the glXCopyContext subroutine is called, or Source is current to

any thread other than the calling thread.

BadValue Is generated if undefined Mask bits are specified.

GLXBadContext Is generated if either Source or Destination is not a valid GLX context.

GLXBadCurrentWindow Is generated if Source is the current context and the current drawable is a

window that is no longer valid.

Files

 /usr/include/GL/gl.h Contains C language constraints, variable type definitions, and ANSI

function prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glPushAttrib or glPopAttrib subroutine, glXCreateContext subroutine, glXCreateNewContext

subroutine, glXIsDirect subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXCreateContext Subroutine

Purpose

Creates a new GLX rendering context.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXContext glXCreateContext(Display * dpy

 XVisualInfo * Visual

 GLXContext ShareList

 Bool Direct)

494 OpenGL 1.2 Reference Manual

Description

The glXCreateContext subroutine creates a GLX rendering context and returns its handle. This context

can be used to render into both windows and GLX pixmaps. If the glXCreateContext subroutine fails to

create a rendering context, Null is returned.

If Direct is set to True, a direct rendering context is created if the implementation supports direct rendering

and the connection is to a local X server. If Direct is set to False, a rendering context that renders through

the X server is created. Direct rendering provides a performance advantage in some implementations.

However, direct rendering contexts cannot be shared outside a single process or used to render to GLX

pixmaps.

If ShareList is not Null, all display-list indexes and definitions are shared by both the ShareList context and

the newly created context. An arbitrary number of contexts can share a single display-list space. However,

all rendering contexts that share a single display-list space must exist in the same address space. Two

rendering contexts share an address space if both are nondirect and use the same server, or if both are

direct and owned by a single process.

If both rendering contexts are nondirect, it is not necessary for the calling threads to share an address

space; however, their related rendering contexts must share the address space.

Parameters

 dpy Specifies the connection to the X server.

Visual Specifies the visual that defines the frame buffer resources available to the rendering context. It is

a pointer to an XVisualInfo structure, not a visual ID or a pointer to a Visual structure.

ShareList Specifies the context with which to share display lists. Null indicates no sharing.

Direct A value of True specifies that rendering be done through a direct connection to the graphics system

if possible; a value of False specifies rendering through the X server.

Notes

XVisualInfo is defined in the Xutil.h file. It is a structure that includes Visual, VisualID, Screen, and Depth

elements.

A process is a single execution environment, implemented in a single address space, consisting of one or

more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain separate

program counters, stack spaces, and other related global data. A thread is the only member of its

subprocess group that is equivalent to a process.

Error Codes

 Null Is returned if the glXCreateContext subroutine fails to create a rendering context on the

client side.

BadAlloc Is generated if the server does not have enough resources to allocate the new context.

BadMatch Is generated if the context to be created cannot share the address space or the screen of

the context specified by ShareList, or the specified visual is not available.

GLXBadContext Is generated if ShareList is not a GLX context and is not Null.

BadValue Is generated if the Visual parameter specifies an invalid visual (for example, if the GLX

implementation does not support it).

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 495

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateNewContext subroutine, glXDestroyContext subroutine, glXGetConfig subroutine,

glXIsDirect subroutine, glXMakeContextCurrent subroutine, glXMakeCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXCreateGLXPixmap Subroutine

Purpose

Creates an off-screen GLX rendering area.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXPixmap glXCreateGLXPixmap(Display * dpy,

 XVisualInfo * Visual,

 Pixmap Pixmap)

Description

The glXCreateGLXPixmap subroutine creates an off-screen rendering area and returns its XID. Any GLX

rendering context that was created with respect to the Visual parameter can be used to render into this

off-screen area. Use the glXMakeCurrent subroutine to associate the rendering area with a GLX

rendering context.

The X pixmap identified by the Pixmap parameter is used as the front left buffer of the resulting off-screen

rendering area. All other buffers specified by the Visual parameter, including color buffers (other than the

front left buffer), are created without externally visible names. GLX pixmaps with double-buffering are

supported. However, the glXSwapBuffers subroutine is ignored by these pixmaps.

Direct rendering contexts cannot be used to render into GLX pixmaps.

Parameters

 dpy Specifies the connection to the X server.

Visual Specifies the visual that defines the structure of the rendering area. It is a pointer to an XVisualInfo

structure, not a visual ID or a pointer to a Visual structure.

Pixmap Specifies the X pixmap that is used as the front left color buffer of the off-screen rendering area.

Notes

XVisualInfo is defined in the Xutil.h file. It is a structure that includes Visual, VisualID, Screen, and Depth

elements.

496 OpenGL 1.2 Reference Manual

Error Codes

 BadAlloc Is generated if the server cannot allocate the GLX pixmap.

BadMatch Is generated if one or more of the following is detected: the depth of Pixmap does not match the

GLX_BUFFER_SIZE value of Visual, Pixmap was not created with respect to the same screen as

Visual.

BadPixmap Is generated if Pixmap is not a valid pixmap.

BadValue Is generated if Visual is not a valid XVisualInfo pointer (for example, if the GLX implementation

does not support this visual).

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

Related Information

The glXCreateContext subroutine, glXIsDirect subroutine, glXMakeCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXCreateNewContext Subroutine

Purpose

Creates a new GLX rendering context.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXContext glXCreateNewContext(Display * dpy

 GLXFBConfig config

 int renderType

 GLXContext ShareList

 Bool Direct)

Description

The glXCreateNewContext subroutine creates a GLX rendering context and returns its handle. This

context can be used to render into GLX windows, GLX pixmaps and GLX pbuffers. If the

glXCreateNewContext subroutine fails to create a rendering context, Null is returned.

If Direct is set to True, a direct rendering context is created if the implementation supports direct rendering

and the connection is to a local X server. If Direct is set to False, a rendering context that renders through

the X server is created. Direct rendering provides a performance advantage in some implementations.

However, direct rendering contexts cannot be shared outside a single process or used to render to GLX

pixmaps. If a direct rendering context cannot be created, then an attempt to create an indirect context

instead.

If ShareList is not Null, all display-list indexes and definitions are shared by both the ShareList context and

the newly created context. An arbitrary number of contexts can share a single display-list space. However,

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 497

all rendering contexts that share a single display-list space must exist in the same address space. Two

rendering contexts share an address space if both are nondirect and use the same server, or if both are

direct and owned by a single process.

If both rendering contexts are nondirect, it is not necessary for the calling threads to share an address

space; however, their related rendering contexts must share the address space.

Parameters

 dpy Specifies the connection to the X server.

config Specifies the GLX FBConfig that defines the frame buffer resources available to the rendering

context.

renderType Specifies the type of rendering that the context will support. One of the following values can be

used:

GLX_RGBA_TYPE

This is used if the context is to support RGBA rendering.

GLX_COLOR_INDEX_TYPE

This is used if the context is to support color index rendering.

ShareList Specifies the context with which to share display lists. Null indicates no sharing.

Direct A value of True specifies that rendering be done through a direct connection to the graphics

system if possible; a value of False specifies rendering through the X server.

Notes

A process is a single execution environment, implemented in a single address space, consisting of one or

more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain separate

program counters, stack spaces, and other related global data. A thread is the only member of its

subprocess group that is equivalent to a process.

Error Codes

 Null Is returned if the glXCreateNewContext subroutine fails to create a rendering context on

the client side.

BadAlloc Is generated if the server does not have enough resources to allocate the new context.

BadMatch Is generated if the context to be created cannot share the address space or the screen of

the context specified by ShareList is not available.

BadValue Is generated if the renderType parameter specifies an invalid rendering type.

GLXBadContext Is generated if ShareList is not a GLX context and is not Null.

GLXBadFBConfig Is generated if config is not a valid GLX FBConfig.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

glXDestroyContext subroutine, glXGetFBConfigAttrib subroutine, glXIsDirect subroutine,

glXMakeContextCurrent subroutine.

498 OpenGL 1.2 Reference Manual

OpenGL in the AIXwindows (GLX) Environment.

glXCreatePbuffer Subroutine

Purpose

Creates an off-screen GLX rendering area in a non-visible framebuffer area.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXPbuffer glXCreatePbuffer(Display * dpy,

 GLXFBConfig config,

 const int * AttributeList)

Description

The glXCreatePbuffer subroutine creates an off-screen rendering area in a non-visible area of the

framebuffer and returns its XID. Any GLX rendering context that was created with respect to the config

parameter can be used to render into this off-screen area. Use the glXMakeContextCurrent subroutine to

associate the rendering area with a GLX rendering context.

The resulting pbuffer will contain color buffers and ancillary buffers as specified by the config parameter,

GLX pbuffers with double-buffering are supported. The glXSwapBuffers subroutine can be called to swap

the front and back buffers.

Parameters

 dpy Specifies the connection to the X server.

config Specifies the GLX FBConfig that defines the structure of the rendering area.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 499

AttributeList Specifies a list of GLX attribute/value pairs that help define the GLX Pbuffer. The list has

the same structure as described for the glXChooseFBConfig subroutine. The following

attributes can be used in the attribute list:

Attributes

Description

GLX_PBUFFER_WIDTH

Specifies the pixel width of the rectangular pbuffer. This defaults to 0.

GLX_PBUFFER_HEIGHT

Specifies the pixel height of the rectangular pbuffer. This defaults to 0.

GLX_LARGEST_PBUFFER

A boolean value that specifies that the largest available pbuffer should be gotten if

the allocation of the pbuffer would otherwise fail. The width and height of the

allocated pbuffer will never exceed the values of GLX_PBUFFER_WIDTH and

GLX_PBUFFER_HEIGHT, respectively. Use glXQueryDrawable to retrieve the

dimensions of the allocated pbuffer. By default, GLX_LARGEST_PBUFFER is set

to False.

GLX_PRESERVED_CONTENTS

A boolean value. If it is specified as False, then an unpreserved pbuffer is created

and the contents of the pbuffer may be lost at any time. Once the contents of an

unpreserved pbuffer have been lost, it is considered to be in a damaged state. It is

not an error to render to a pbuffer that is in this state but the effect of rendering to

it is the same as if the pbuffer were destroyed: the context state will be updated

but the frame buffer state becomes undefined. It is also not an error to query the

pixel contents of such a pbuffer, but the values of the returned pixels are

undefined.

 If it is specified as True (the default value), then when a resource conflict occurs

the contents of the pbuffer will be preserved. In either case, the application can

register to receive a pbuffer clobber event, which is generated when the pbuffer

contents have been preserved or have been damaged. (See glXSelectEvent for

more information).

 Since the contents of an unpreserved pbuffer can be lost at any time with only

asynchronous notification (via the pbuffer clobber event), the only way an

application can guarantee that valid pixels are read back with glReadPixels is by

grabbing the X server. Applications that don’t wish to do this can check if the data

returned by glReadPixels is valid by calling XSync and then checking the event

queue for pbuffer clobber events (assuming that these events had been pulled off

of the queue prior to the call to glReadPixels.

Error Codes

 BadAlloc Is generated if the server cannot allocate the GLX pbuffer.

BadFBConfig Is generated if config is not a valid GLX FBConfig.

BadMatch Is generated if config does not support pbuffer rendering.

BadValue Is generated if the value for GLX_PBUFFER_WIDTH or GLX_PBUFFER_HEIGHT is zero or

less (IBM X server only). Note that, by default, the values of these attributes are zero.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

500 OpenGL 1.2 Reference Manual

Related Information

The glXCreateNewContext subroutine, glXMakeContextCurrent subroutine, glXChooseFBConfig

subroutine, glXSelectEvent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXCreatePixmap Subroutine

Purpose

Creates an off-screen GLX rendering area.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXPixmap glXCreatePixmap(Display * dpy,

 GLXFBConfig config,

 Pixmap Pixmap,

 const int * AttributeList)

Description

The glXCreatePixmap subroutine creates an off-screen rendering area and returns its XID. Any GLX

rendering context that was created with respect to the config parameter can be used to render into this

off-screen area. Use the glXMakeContextCurrent subroutine to associate the rendering area with a GLX

rendering context.

The X pixmap identified by the Pixmap parameter is used as the front left buffer of the resulting off-screen

rendering area. All other buffers specified by the config parameter, including color buffers (other than the

front left buffer), are created without externally visible names. GLX pixmaps with double-buffering are

supported. However, the glXSwapBuffers subroutine is ignored by these pixmaps.

Direct rendering contexts cannot be used to render into GLX pixmaps.

Parameters

 dpy Specifies the connection to the X server.

config Specifies the GLX FBConfig that defines the structure of the rendering area.

Pixmap Specifies the X pixmap that is used as the front left color buffer of the off-screen rendering

area.

AttributeList Specifies a list of GLX attribute/value pairs that help define the GLX pixmap. Currently,

there are no attributes that affect GLX pixmaps so list parameter must either be NULL or an

empty list (first attribute of 0).

Error Codes

 BadAlloc Is generated if the server cannot allocate the GLX pixmap.

BadMatch Is generated if one or more of the following is detected: the depth of Pixmap does not match

the GLX_BUFFER_SIZE value of config or Pixmap was not created with respect to the same

screen as config.

BadPixmap Is generated if Pixmap is not a valid pixmap.

BadFBConfig Is generated if configis not a valid GLX FBConfig or if the GLX FBConfig does not support

pixmap rendering.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 501

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateNewContext subroutine, glXIsDirect subroutine, glXMakeContextCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXCreateWindow Subroutine

Purpose

Creates an on-screen GLX rendering area.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXWindow glXCreateWindow(Display * dpy,

 GLXFBConfig config,

 Window window,

 const int * AttributeList)

Description

The glXCreateWindow subroutine creates an on-screen rendering area and returns its XID. Any GLX

rendering context that was created with respect to the config parameter can be used to render into this

on-screen area. Use the glXMakeContextCurrent subroutine to associate the rendering area with a GLX

rendering context.

Direct rendering contexts cannot be used to render into GLX pixmaps.

Parameters

 dpy Specifies the connection to the X server.

config Specifies the GLX FBConfig that defines the structure of the rendering area.

window Specifies the X window that is used as the on-screen rendering area.

AttributeList Specifies a list of GLX attribute/value pairs that help define the GLX window. Currently,

there are no attributes that affect GLX windows so list parameter must either be NULL or

an empty list (first attribute of 0).

Error Codes

 BadAlloc Is generated if the server cannot allocate the GLX window or if window is already

associated with another GLX FBConfig (as a result of a previous invocation of

glXCreateWindow).

502 OpenGL 1.2 Reference Manual

BadMatch Is generated if one or more of the following is detected: window was not created with the

visual that corresponds to config, if config does not support rendering to GLX windows.

BadWindow Is generated if window is not a valid window.

GLXBadFBConfig Is generated if config is not a valid GLX FBConfig.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateNewContext subroutine, glXMakeContextCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXDestroyContext Subroutine

Purpose

Destroys a GLX context.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glXDestroyContext(Display * dpy,

 GLXContext Context)

Description

If the Context parameter is not current to any thread, the glXDestroyContext subroutine destroys it

immediately. If Context is current, the glXDestroyContext subroutine destroys it when it becomes not

current to any thread. In either case, the resource ID referenced by Context is freed immediately.

Parameters

 dpy Specifies the connection to the X server.

Context Specifies the GLX context to be destroyed.

Error Codes

 GLXBadContext Is generated if Context is not a valid GLX context.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 503

Related Information

The glXCreateContext subroutine, glXCreateNewContext subroutine, glXMakeContextCurrent

subroutine, glXMakeCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXDestroyGLXPixmap Subroutine

Purpose

Destroys a GLX pixmap.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glXDestroyGLXPixmap(Display * dpy,

 GLXPixmap Pixmap)

Description

If GLX pixmap Pixmap is not current to any client, the glXDestroyGLXPixmap subroutine destroys it

immediately. Otherwise, Pixmap is destroyed when it is no longer current to any client. In either case, the

resource ID is freed immediately.

Parameters

 dpy Specifies the connection to the X server.

Pixmap Specifies the GLX pixmap to be destroyed.

Error Codes

 GLXBadPixmap Is generated if Pixmap is not a valid GLX pixmap.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateGLXPixmap subroutine, glXMakeContextCurrent subroutine, glXMakeCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

504 OpenGL 1.2 Reference Manual

glXDestroyPbuffer Subroutine

Purpose

Destroys a GLX pbuffer.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glXDestroyPbuffer(Display * dpy,

 GLXPbuffer Pbuffer)

Description

If GLX pbuffer Pbuffer is not current to any client, the glXDestroyPbuffer subroutine destroys it

immediately. Otherwise, Pbuffer is destroyed when it is no longer current to any client. In either case, the

resource ID is freed immediately.

Parameters

 dpy Specifies the connection to the X server.

Pbuffer Specifies the GLX pbuffer to be destroyed.

Error Codes

 GLXBadPbuffer Is generated if Pbuffer is not a valid GLX pbuffer.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreatePbuffer subroutine, glXMakeContextCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXDestroyPixmap Subroutine

Purpose

Destroys a GLX pixmap.

Library

OpenGL C bindings library: libGL.a

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 505

C Syntax

void glXDestroyPixmap(Display * dpy,

 GLXPixmap Pixmap)

Description

If GLX pixmap Pixmap is not current to any client, the glXDestroyPixmap subroutine destroys it

immediately. Otherwise, Pixmap is destroyed when it is no longer current to any client. In either case, the

resource ID is freed immediately.

Parameters

 dpy Specifies the connection to the X server.

Pixmap Specifies the GLX pixmap to be destroyed.

Error Codes

 GLXBadPixmap Is generated if Pixmap is not a valid GLX pixmap.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreatePixmap subroutine, glXMakeContextCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXDestroyWindow Subroutine

Purpose

Destroys a GLX window.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glXDestroyWindow(Display * dpy,

 GLXWindow Window)

Description

If GLX window Window is not current to any client, the glXDestroyWindow subroutine destroys it

immediately. Otherwise, Window is destroyed when it is no longer current to any client. In either case, the

resource ID is freed immediately.

506 OpenGL 1.2 Reference Manual

Parameters

 dpy Specifies the connection to the X server.

Window Specifies the GLX window to be destroyed.

Error Codes

 GLXBadWindow Is generated if Window is not a valid GLX window.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateWindow subroutine, glXMakeContextCurrent subroutine.

glXFreeContextEXT Subroutine

Purpose

Frees client-side memory for imported context.

Library

C bindings library: libGL.a

C Syntax

void glXFreeContextEXT(Display *dpy,

 GLXContext ctx)

Description

The glXFreeContextEXT subroutine frees the client-side part of a GLXContext that was created with

glXImportContextEXT. The glXFreeContextEXT subroutine does not free the server-side context

information or the XID associated with the server-side context.

The glXFreeContextEXT subroutine is part of the EXT_import_context extension, not part of the core

GLX command set. If GLX_EXT_import_context is included in the string returned by

glXQueryExtensionsString, when called with argument GLX_EXTENSIONS, extension

EXT_vertex_array is supported.

Parameters

 dpy Specifies the connection to the X server.

ctx Specifies a GLX rendering context.

Errors

GLXBadContext is generated if ctx does not refer to a valid context.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 507

Related Information

The glXCreateContext subroutine, glXCreateNewContext subroutine, glXQueryVersion subroutine,

glXQueryExtensionsString subroutine, glXImportContextEXT subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXGetClientString Subroutine

Purpose

Returns a string describing the client

Library

C bindings library: libGL.a

C Syntax

const char *glXGetClientString(Display *dpy,

 int name)

Description

The glXGetClientString subroutine returns a string describing some aspect of the client library. The

possible values for name are GLX_VENDOR, GLX_VERSION, and GLX_EXTENSIONS. If name is not

set to one of these values, glXGetClientString returns NULL. The format and contents of the vendor

string is implementation dependent.

The extensions string is null-terminated and contains a space-separated list of extension names. (The

extension names never contain spaces.) If there are no extensions to GLX, then the empty string is

returned.

The version string is laid out as follows:

<major_version . minor_version> <space> <vendor-specific_info>

Both the major and minor portions of the version number are of arbitrary length. The vendor-specific

information is optional. However, if it is present, the format and contents are implementation specific.

Parameters

 dpy Specifies the connection to the X server.

name Specifies which string is returned. One of GLX_VENDOR,

GLX_VERSION, or GLX_EXTENSIONS.

Notes

The glXGetClientString subroutine is available only if the GLX version is 1.1 or greater.

If the GLX version is 1.1 or 1.0, the GL version must be 1.0. If the GLX version is 1.2, then the GL version

must be 1.1.

The glXGetClientString subroutine only returns information about GLX extensions supported by the client.

Call glGetString to get a list of GL extensions supported by the server.

508 OpenGL 1.2 Reference Manual

Related Information

The glXQueryVersion subroutine, glXQueryExtensionsString subroutine, glXQueryServerString

subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXGetConfig Subroutine

Purpose

Returns information about GLX visuals.

Library

OpenGL C bindings library: libGL.a

C Syntax

int glXGetConfig(Display * dpy

 XVisualInfo * Visual

 int Attribute

 int * Value)

Description

The glXGetConfig subroutine sets the Value provided to the Attribute value of the windows or GLX

pixmaps created with respect to the Visual parameter. The glXGetConfig subroutine returns an error code

if for any reason it is unsuccessful. If it is successful, 0 (zero) is returned.

The Attribute parameter can be one of the following:

 Attribute Definition

GLX_USE_GL This attribute is True if OpenGL rendering is supported

by this visual. Otherwise, it is False.

GLX_BUFFER_SIZE This attribute defines the number of bits per color buffer.

For red, green, blue, and alpha (RGBA) visuals, it is the

sum of GLX_RED_SIZE, GLX_GREEN_SIZE,

GLX_BLUE_SIZE, and GLX_ALPHA_SIZE. For color

index visuals, this attribute is the size of the color

indexes.

GLX_LEVEL This attribute defines the frame buffer level of the visual.

Level 0 is the default frame buffer. Positive levels

correspond to frame buffers that overlay the default

buffer; negative levels correspond to frame buffers that

underlay the default buffer.

GLX_RGBA This attribute is True if color buffers store RGBA values.

It is False if they store color indexes.

GLX_DOUBLEBUFFER This attribute is True if color buffers exist in front/back

pairs that can be swapped. Otherwise, it is False.

GLX_STEREO This attribute is True if color buffers exist in left/right

pairs. Otherwise, it is False.

GLX_AUX_BUFFERS This attribute defines the number of auxiliary color

buffers available. Zero indicates that no auxiliary color

buffers exist.

GLX_RED_SIZE This attribute defines the number of red bits stored in

each color buffer. If GLX_RGBA is False, the

GLX_RED_SIZE attribute is undefined.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 509

Attribute Definition

GLX_GREEN_SIZE This attribute defines the number of green bits stored in

each color buffer. If GLX_RGBA is False, the

GLX_GREEN_SIZE attribute is undefined.

GLX_BLUE_SIZE This attribute defines the number of blue bits stored in

each color buffer. If GLX_RGBA is False, the

GLX_BLUE_SIZE attribute is undefined.

GLX_ALPHA_SIZE This attribute defines the number of alpha bits stored in

each color buffer. If GLX_RGBA is False, the

GLX_ALPHA_SIZE attribute is undefined.

GLX_DEPTH_SIZE This attribute defines the number of bits in the depth

buffer.

GLX_STENCIL_SIZE This attribute defines the number of bits in the stencil

buffer.

GLX_ACCUM_RED_SIZE This attribute defines the number of red bits stored in

the accumulation buffer.

GLX_ACCUM_GREEN_SIZE This attribute defines the number of green bits stored in

the accumulation buffer.

GLX_ACCUM_BLUE_SIZE This attribute defines the number of blue bits stored in

the accumulation buffer.

GLX_ACCUM_ALPHA_SIZE This attribute defines the number of alpha bits stored in

the accumulation buffer.

GLX_TRANSPARENT_TYPE_EXT This attribute defines the type of transparency (if any) in

the visual. Return values are:

GLX_NONE_EXT

no transparency

GLX_TRANSPARENT_INDEX_EXT

PseudoColor transparency

GLX_TRANSPARENT_RGB_EXT

RGB Transparency

GLX_TRANSPARENT_RED_VALUE_EXT This attribute returns the red value of the transparent

pixel when the transparency type is

GLX_TRANSPARENT_RGB_EXT.

GLX_TRANSPARENT_GREEN_VALUE_EXT This attribute returns the green value of the transparent

pixel when the transparency type is

GLX_TRANSPARENT_RGB_EXT

GLX_TRANSPARENT_BLUE_VALUE_EXT This attribute returns the blue value of the transparent

pixel when the transparency type is

GLX_TRANSPARENT_RGB_EXT.

GLX_TRANSPARENT_ALPHA_VALUE_EXT This attribute returns the alpha value of the transparent

pixel when the transparency type is

GLX_TRANSPARENT_RGB_EXT.

GLX_TRANSPARENT_INDEX_VALUE_EXT This attribute returns the index value of the transparent

pixel when the transparency type is

GLX_TRANSPARENT_INDEX_EXT.

GLX_X_VISUAL_TYPE_EXT This attribute returns the visual type:

510 OpenGL 1.2 Reference Manual

Attribute Definition

GLX_TRUE_COLOR_EXT

TrueColor colormap

GLX_DIRECT_COLOR_EXT

DirectColor colormap

GLX_PSEUDO_COLOR_EXT

PseudoColor colormap

GLX_STATIC_COLOR_EXT

StaticColor colormap

GLX_GRAY_SCALE_EXT

Grayscale colormap

GLX_STATIC_GRAY_EXT

StaticGray colormap

GLX_VISUAL_CAVEAT_EXT This attribute returns the visual rating:

0 or GLX_NONE_EXT

no rating

GLX_SLOW_VISUAL_EXT

not an optimal visual

The X protocol allows a single visual ID to be instantiated with different numbers of bits per pixel.

However, windows or GLX pixmaps that will be rendered with OpenGL must be instantiated with a color

buffer depth of GLX_BUFFER_SIZE.

Although a GLX implementation can export many visuals that support OpenGL rendering, it must support

at least two. The first required visual must be an RGBA visual with at least one color buffer, a stencil buffer

of at least 1 bit, a depth buffer of at least 12 bits, and an accumulation buffer. Alpha bitplanes are optional

in this required visual. However, the color buffer size of this visual must be as great as the deepest

TrueColor, DirectColor, PseudoColor, or StaticColor visual supported on level 0. The visual itself must

also be available on level 0.

The other required visual is a color index one with at least one color buffer, a stencil buffer of at least 1 bit,

and a depth buffer of at least 12 bits. This visual must have as many color bitplanes as the deepest

PseudoColor or StaticColor visual supported on level 0. The visual itself must also be available on level

0.

An application is most effective when written to select the visual most closely meeting its requirements.

Creating windows or GLX pixmaps with unnecessary buffers can result in reduced rendering performance

and poor resource allocation.

Parameters

 dpy Specifies the connection to the X server.

Visual Specifies the visual to be queried. Visual is a pointer to an XVisualInfo structure, not a visual ID or

a pointer to a Visual structure.

Attribute Specifies the visual attribute to be returned.

Value Returns the requested value.

Notes

XVisualInfo is defined in the Xutil.h file. It is a structure that includes Visual, VisualID, Screen, and Depth

elements.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 511

Return Values

 GLXNoExtension dpy does not support the GLX extension.

GLXBadScreen The Visual screen does not correspond to a valid screen.

GLXBadAttrib Attribute is not a valid GLX attribute.

GLXBadVisual Visual does not support GLX and an attribute other than GLX_USE_GL is requested.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXChooseVisual subroutine, glXCreateContext subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXGetContextIDEXT Subroutine

Purpose

Gets the XID for a context

Library

C bindings library: libGL.a

C Syntax

GLXContextID glXGetContextIDEXT(const GLXContext ctx)

Description

The glXGetContextIDEXT subroutine returns the XID associated with a GLXContext. No round trip is

forced to the server; unlike most X calls that return a value, glXGetContextIDEXT does not flush any

pending events.

The glXGetContextIDEXT subroutine is part of the EXT_import_context extension, not part of the core

GLX command set. If GLX_EXT_import_context is included in the string returned by

glXQueryExtensionsString, when called with argument GLX_EXTENSIONS, extension

EXT_import_context is supported.

Parameters

 ctx Specifies a GLX rendering context.

Errors

GLXBadContext is generated if ctx does not refer to a valid context.

512 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateContext subroutine, glXCreateNewContext subroutine, glXQueryVersion subroutine,

glXQueryExtensionsString subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXGetCurrentContext Subroutine

Purpose

Returns the current context.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXContext glXGetCurrentContext(void)

Description

The glXGetCurrentContext subroutine returns the current context, as specified by the glXMakeCurrent

subroutine. If there is no current context, Null is returned.

This subroutine returns client-side information only. It does not make a round-trip to the server.

Return Values

 Null Returned if there is no current context.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateContext subroutine, glXCreateNewContext subroutine, glXMakeContextCurrent

subroutine, glXMakeCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 513

glXGetCurrentDisplay Subroutine

Purpose

Gets display for current context

Library

C bindings library: libGL.a

C Syntax

Display *glXGetCurrentDisplay(void)

Description

The glXGetCurrentDisplay subroutine returns the display for the current context. If no context is current,

NULL is returned.

The glXGetCurrentDisplay subroutine returns client-side information. It does not make a round trip to the

server, and therefore does not flush any pending events.

Notes

The glXGetCurrentDisplay subroutine is only supported if the GLX version is 1.2 or greater.

Related Information

The glXQueryVersion subroutine, glXQueryExtensionsString subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXGetCurrentDrawable Subroutine

Purpose

Returns the current drawable.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXDrawable glXGetCurrentDrawable(void)

Description

The glXGetCurrentDrawable subroutine returns the current drawable, as specified by the

glXMakeCurrent subroutine. If there is no current drawable, None is returned.

This subroutine returns client-side information only. It does not make a round-trip to the server.

Return Values

 None Returned if there is no current drawable.

514 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateGLXPixmap subroutine, glXMakeContextCurrent subroutine, glXMakeCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXGetCurrentReadDrawable Subroutine

Purpose

Returns the current read drawable.

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXDrawable glXGetCurrentReadDrawable(void)

Description

The glXGetCurrentReadDrawable subroutine returns the current read drawable, as specified by the

glXMakeContextCurrent subroutine. If the glXMakeCurrent subroutine is used, then the specified

drawable is both the read and write drawable. If there is no current read drawable, None is returned.

This subroutine returns client-side information only. It does not make a round-trip to the server.

Return Values

 None Returned if there is no current read drawable.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXGetCurrentDrawable subroutine, glXMakeContextCurrent subroutine, glXMakeCurrent

subroutine.

OpenGL in the AIXwindows (GLX) Environment.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 515

glXGetFBConfigAttrib Subroutine

Purpose

Returns information about GLX FBConfigs.

Library

OpenGL C bindings library: libGL.a

C Syntax

int glXGetFBConfigAttrib(Display * dpy,

 GLXFBConfig config,

 int Attribute,

 int * Value)

Description

The glXGetFBConfigAttrib subroutine sets the Value provided to the Attribute value of the specified GLX

FBConfig. The glXGetFBConfigAttrib subroutine returns an error code if for any reason it is unsuccessful.

If it is successful, 0 (zero) is returned.

The Attribute parameter can be one of the following:

 Attribute Definition

GLX_FBCONFIG_ID This attribute is the XID of the GLX FBConfig.

GLX_VISUAL_ID This attribute is the XID of the X Visual associated with the GLX

FBConfig.

GLX_BUFFER_SIZE This attribute defines the number of bits per color buffer. For

GLX FBConfigs that correspond to a PseudoColor or

StaticColor visual, this is equal to the depth value reported in

the X11 visual. For GLX FBConfigs that correspond to

TrueColor or DirectColor visual, this is the sum of

GLX_RED_SIZE, GLX_GREEN_SIZE, GLX_BLUE_SIZE, and

GLX_ALPHA_SIZE.

GLX_LEVEL This attribute defines the frame buffer level of the visual. Level 0

is the default frame buffer. Positive levels correspond to frame

buffers that overlay the default buffer; negative levels

correspond to frame buffers that underlay the default buffer.

GLX_DOUBLEBUFFER This attribute is True if color buffers exist in front/back pairs that

can be swapped. Otherwise, it is False.

GLX_STEREO This attribute is True if color buffers exist in left/right pairs.

Otherwise, it is False.

GLX_AUX_BUFFERS This attribute defines the number of auxiliary color buffers

available. Zero indicates that no auxiliary color buffers exist.

GLX_RENDER_TYPE This attribute indicates what type of GLX Context a drawable

created with the corresponding GLX FBConfig can be bound to.

The following bit settings can exist:

GLX_RGBA_BIT

RGBA rendering supported.

GLX_COLOR_INDEX_BIT

Color index rendering supported.

GLX_RED_SIZE This attribute defines the number of red bits stored in each color

buffer. If the GLX_RGBA_BIT is not set in the

GLX_RENDER_TYPE attribute, the GLX_RED_SIZE attribute is

undefined.

516 OpenGL 1.2 Reference Manual

Attribute Definition

GLX_GREEN_SIZE This attribute defines the number of green bits stored in each

color buffer. If the GLX_RGBA_BIT is not set in the

GLX_RENDER_TYPE attribute, the GLX_GREEN_SIZE

attribute is undefined.

GLX_BLUE_SIZE This attribute defines the number of blue bits stored in each

color buffer. If the GLX_RGBA_BIT is not set in the

GLX_RENDER_TYPE attribute, the GLX_BLUE_SIZE attribute

is undefined.

GLX_ALPHA_SIZE This attribute defines the number of alpha bits stored in each

color buffer. If the GLX_RGBA_BIT is not set in the

GLX_RENDER_TYPE attribute, the GLX_ALPHA_SIZE

attribute is undefined.

GLX_DEPTH_SIZE This attribute defines the number of bits in the depth buffer.

GLX_STENCIL_SIZE This attribute defines the number of bits in the stencil buffer.

GLX_ACCUM_RED_SIZE This attribute defines the number of red bits stored in the

accumulation buffer.

GLX_ACCUM_GREEN_SIZE This attribute defines the number of green bits stored in the

accumulation buffer.

GLX_ACCUM_BLUE_SIZE This attribute defines the number of blue bits stored in the

accumulation buffer.

GLX_ACCUM_ALPHA_SIZE This attribute defines the number of alpha bits stored in the

accumulation buffer.

GLX_DRAWABLE_TYPE This attribute defines which GLX drawables are supported by

the GLX FBConfig. The following bit settings can exist:

GLX_WINDOW_BIT

GLX Windows are supported.

GLX_PIXMAP_BIT

GLX Pixmaps are supported.

GLX_PBUFFER_BIT

GLX Pbuffers are supported.

GLX_X_RENDERABLE This attribute indicates whether X can be used to render into a

drawable created with the GLX FBConfig. This attribute is True

is the GLX FBConfig supports GLX windows and/or pixmaps,

otherwise it is False.

GLX_X_VISUAL_TYPE This attribute defines the X visual type of the X visual

associated with the GLX FBConfig. It can have one of the

following values:

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 517

Attribute Definition

Attribute Value

Equivalent X Visual Type

GLX_TRUE_COLOR

TrueColor

GLX_DIRECT_COLOR

DirectColor

GLX_PSEUDO_COLOR

PseudoColor

GLX_STATIC_COLOR

StaticColor

GLX_GRAY_SCALE

GrayScale

GLX_STATIC_GRAY

StaticGray

GLX_X_VISUAL_TYPE

No Associated Visual

GLX_CONFIG_CAVEAT This attribute defines any problems that the GLX FBConfig may

have:

GLX_NONE

No caveats

GLX_SLOW_CONFIG

A drawable with this configuration may run at reduced

performance.

GLX_NON_CONFORMANT_CONFIG

A drawable with this configuration will not pass the

required OpenGL conformance tests.

GLX_TRANSPARENT_TYPE This attribute defines the type of transparency (if any) supported

by the FBConfig. It can have the following values:

GLX_NONE

No transparency supported

GLX_TRANSPARENT_INDEX

Index Color transparency is supported

GLX_TRANSPARENT_RGB

RGB Transparency is supported

GLX_TRANSPARENT_INDEX_VALUE This attribute defines the index value of the transparent pixel

when the transparency type is GLX_TRANSPARENT_INDEX.

GLX_TRANSPARENT_RED_VALUE This attribute defines the red value of the transparent pixel

when the transparency type is GLX_TRANSPARENT_RGB.

GLX_TRANSPARENT_GREEN_VALUE This attribute defines the green value of the transparent pixel

when the transparency type is GLX_TRANSPARENT_RGB

GLX_TRANSPARENT_BLUE_VALUE This attribute defines the blue value of the transparent pixel

when the transparency type is GLX_TRANSPARENT_RGB.

GLX_TRANSPARENT_ALPHA_VALUE This attribute defines the alpha value of the transparent pixel

when the transparency type is GLX_TRANSPARENT_RGB.

GLX_MAX_PBUFFER_WIDTH This attribute defines the maximum width value that can be

passed into glXCreatePbuffer.

GLX_MAX_PBUFFER_HEIGHT This attribute defines the maximum height value that can be

passed into glXCreatePbuffer.

518 OpenGL 1.2 Reference Manual

Attribute Definition

GLX_MAX_PBUFFER_PIXELS This attribute defines the maximum number of pixels (width

times height) for a GLX Pbuffer. It can have a value that is less

than the maximum width times the maximum height. Also, the

value is static and assumes that no other pbuffers or X

resources are contending for the framebuffer memory.

Therefore, it may not be possible to allocate a pbuffer of the

size given by this attribute.

Although a GLX implementation can export many FBConfigs that support OpenGL rendering, it must

export at least one FBConfig where the GLX_RENDER_TYPE attribute has the GLX_RGBA_BIT set and

the GLX_CONFIG_CAVEAT must not be set to GLX_NON_CONFORMANT_CONFIG, Also, this FBConfig

just have at least one color buffer, a stencil buffer of at least 1 bit, a depth buffer of at least 12 bits and an

accumulation buffer. Auxillary buffers are optional and the alpha buffer may have 0 bits. The color buffer

size of this FBConfig must be as large as that of the deepest TrueColor, DirectColor, PseudoColor, or

StaticColor visual supported on framebuffer level 0.

An application is most effective when written to select the GLX FBConfig that most closely meeting its

requirements. Creating GLX drawables with unnecessary buffers can result in reduced rendering

performance and poor resource allocation.

Parameters

 dpy Specifies the connection to the X server.

config Specifies the GLX FBConfig to be queried.

Attribute Specifies the GLX FBConfig attribute to be returned.

Value Returns the requested value.

Return Values

 GLX_NO_EXTENSION dpy does not support the GLX extension.

GLX_BAD_ATTRIBUTE Attribute is not a valid GLX attribute.

GLX_BAD_VALUE config is not a valid GLX FBConfig.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXChooseFBConfig subroutine, glXCreateNewContext subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXGetFBConfigs Subroutine

Purpose

Returns a list of all GLX FBConfigs for a specified screen.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 519

Library

OpenGL C bindings library: libGL.a

C Syntax

GLXFBConfig *glXGetFBConfigs(Display * dpy

 int screen

 int * nelements)

Description

The glXGetFBConfigs subroutine returns a list of all GLX FBConfigs that are available for a specified

screen. The items in the list can be used in any GLX subroutine that requires a GLX FBConfig. If an error

occurs, then a NULL value will be returned.

Parameters

 dpy Specifies the connection to the X server.

screen Specifies the screen to use to get the list of GLX FBConfigs.

nelements Returns the number of GLX FBConfigs in the list. If there is an error then it has an undefined

value.

Return Values

 GLXNoExtension dpy does not support the GLX extension.

GLXBadScreen The screen parameter does not correspond to a valid screen.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXChooseFBConfig subroutine and the glXGetFBConfigAttrib subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXGetProcAddressARB Subroutine

Purpose

Returns the address of a GLX or OpenGL subroutine, given the subroutine name.

Library

OpenGL C bindings library: (libGL.a)

C Syntax

void *glXGetProcAddressARB(const GLubyte *procName)

520 OpenGL 1.2 Reference Manual

Description

The glXGetProcAddressARB subroutine returns the address of a GLX or OpenGL subroutine, given the

subroutine name. This is useful in heterogenous implementations where hardware drivers may implement

subroutines not known to the link library.

The pointer returned must be cast exactly as the given subroutine is defined in the gl.h or glx.h files or

the OpenGL specification. Failure to do so can lead to unintended results, if and when the returned value

is ever used to try to call the given subroutine.

A return value of NULL indicates that the specified subroutine does not exist for the implementation.

A non-NULL return value for glXGetProcAddressARB does not guarantee that a subroutine is actually

supported at runtime. The client must also query glGetString(GL_EXTENSIONS) or

glXQueryExtensionsString to determine if a subroutine is supported by a particular context.

OpenGL and GLX subroutine pointers returned by glXGetProcAddressARB are independent of the

currently bound context and may be used by any context which supports that subroutine.

glXGetProcAddressARB may be queried for all of the following subroutines:

 - All OpenGL and GLX extension subroutines supported by the

 implementation (whether those extension subroutines are supported by the

 current context or not).

 - All core (non-extension) subroutines in OpenGL and GLX from version

 1.0 up to and including the versions of those specifications

 supported by the implementation, as determined by

 glGetString(GL_VERSION) and glXQueryVersion queries.

Parameters

 procName is the name of a GLX or OpenGL subroutine.

Return Values

 <address> the address of the named subroutine.

NULL notification that the subroutine does not exist in this implementation.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions,

and ANSI function prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions,

and ANSI function prototypes for GLX.

Related Information

The glXCreateContext subroutine, the glXCreateNewContext subroutine, the glGetString subroutine, the

glXQueryVersion subroutine, the glXQueryExtensionsString subroutine.

OpenGL in the AIX windows (GLX) Environment.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 521

glXGetSelectedEvent Subroutine

Purpose

Returns the GLX events that have been selected for GLX drawables.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glXGetSelectedEvent(display * dpy

 GLXDrawable draw

 unsigned long * eventmask)

Description

The glXGetSelectedEvent subroutine sets the eventmask provided to the GLX events that has been

selected for drawable. See glXSelectEvent for a list of event masks.

Parameters

 dpy Specifies the connection to the X server.

drawable Specifies a GLX window id or a GLX pbuffer id.

eventmask Returns which GLX events have been selected for drawable.

Errors

GLXBadDrawable is generated draw is not a GLX window or a GLX pixmap drawable.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXSelectEvent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXGetVisualFromFBConfig Subroutine

Purpose

Returns XVisualInfo structure for the X visual associated with a specified GLX FBConfig.

Library

OpenGL C bindings library: libGL.a

522 OpenGL 1.2 Reference Manual

C Syntax

XVisualInfo *glXGetVisualFromFBConfig(Display * dpy

 GLXFBConfig config)

Description

The glXGetVisualFromFBConfig subroutine returns an XVisualInfo structure for the X visual associated

with a specified GLX FBConfig, if one exists. If the GLX FBConfig does not have an associated X visual or

if an error occurs (due to an invalid GLX FBConfig) then NULL is returned.

The data in the returned XVisualInfo structure can be used to create X drawables that will be be needed to

create GLX drawables. Use XFree to free the returned data.

Parameters

 dpy Specifies the connection to the X server.

config Specifies the GLX FBConfig to be used.

Notes

XVisualInfo is defined in the Xutil.h file. It is a structure that includes Visual, VisualID, Screen, and Depth

elements.

Return Values

 NULL is returned if config does not have an associated X visual or if config is not a valid GLX FBConfig.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXChooseFBConfig subroutine, the glXGetFBConfigs subroutine and the glXGetFBConfigAttrib

subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXImportContextEXT Subroutine

Purpose

Imports another process’s indirect rendering context.

Library

C bindings library: libGL.a

C Syntax

GLXContext glXImportContextEXT(Display *dpy,

 GLXContextID contextID)

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 523

Description

The glXImportContextEXT subroutine creates a GLXContext given the XID of an existing GLXContext. It

may be used in place of glXCreateContext, to share another process’s indirect rendering context.

Only the server-side context information can be shared between X clients; client-side state, such as pixel

storage modes, cannot be shared. Thus, glXImportContextEXT must allocate memory to store client-side

information. This memory is freed by calling glXFreeContextEXT.

This call does not create a new XID. It merely makes an existing object available to the importing client

(Display *). Like any XID, it goes away when the creating client drops its connection or the ID is explicitly

deleted. Note that this is when the XID goes away. The object goes away when the XID goes away AND

the context is not current to any thread.

If contextID refers to a direct rendering context then no error is generated but glXImportContextEXT

returns NULL.

The glXImportContextEXT subroutine is part of the EXT_import_context extension, not part of the core

GLX command set. If GLX_EXT_import_context is included in the string returned by

glXQueryExtensionsString, when called with argument GLX_EXTENSIONS, extension EXT_import_context is

supported.

Parameters

 dpy Specifies the connection to the X server.

contextID Specifies a GLX rendering context.

Errors

GLXBadContext is generated if contextID does not refer to a valid context.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateContext subroutine, glXCreateNewContext subroutine, glXQueryVersion subroutine,

glXQueryExtensionsString subroutine, glXGetContextIDEXT subroutine, glXFreeContextEXT

subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXIsDirect Subroutine

Purpose

Indicates whether direct rendering is enabled.

Library

OpenGL C bindings library: libGL.a

524 OpenGL 1.2 Reference Manual

C Syntax

Bool glXIsDirect(Display * dpy

 GLXContext Context)

Description

The glXIsDirect subroutine returns a value of True if the Context parameter supplied is a direct rendering

context. Otherwise, False is returned. Direct rendering contexts bypass the X server and pass rendering

commands directly from the address space of the calling process to the rendering system. Nondirect

rendering contexts pass all rendering commands to the X server.

Parameters

 dpy Specifies the connection to the X server.

Context Specifies the GLX context being queried.

Return Values

 True Returned if Context is a direct rendering context.

False Returned if Context is not a direct rendering context.

Error Codes

 GLXBadContext Context is not a valid GLX context.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateContext subroutine, glXCreateNewContext subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXMakeContextCurrent Subroutine

Purpose

Attaches a GLX context to one or more GLX drawables.

Library

OpenGL C bindings library: libGL.a

C Syntax

Bool glXMakeContextCurrent(Display * dpy,

 GLXDrawable draw,

 GLXDrawable read,

 GLXContext context)

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 525

Description

The glXMakeContextCurrent subroutine does two things: (1) it makes the specified context parameter the

current GLX rendering context of the calling thread, replacing the previously current context if one exists,

and (2) it attaches context to the GLX drawables draw and read. As a result of these two actions,

subsequent OpenGL rendering calls use context as a rendering context to modify the draw and read GLX

drawables. Since the glXMakeContextCurrent subroutine always replaces the current rendering context

with the specified context, there can be only one current context per thread.

draw is used for all OpenGL operations except:

v Any pixel data that is read based on the value of GL_READ_BUFFER. Note that accumulation

operations use the value GL_READ_BUFFER but are not allowed unless draw is identical to read.

v Any depth values that are retrieved by glReadPixels or glCopyPixels.

v Any stencil values that are retrieved by glReadPixels or glCopyPixels.

These frame buffer values are taken from read. Note that the same GLX Drawable may be specified for

both draw and read.

Pending commands to the previous context, if any, are flushed before it is released.

The first time context is made current to any thread, its viewport is set to the full size of draw. Subsequent

calls by any thread to the glXMakeContextCurrent subroutine using context have no effect on its

viewport.

To release the current context without assigning a new one, call the glXMakeContextCurrent subroutine

with the draw, read and context parameters set to None, None and Null, respectively.

The glXMakeContextCurrent subroutine returns True if it is successful, False otherwise. If False is

returned, the previously current rendering context and drawables (if any) remain unchanged.

Parameters

 dpy Specifies the connection to the X server.

draw Specifies a GLX drawable to be used for draw operations. This value must reflect either a GLX window

ID, a GLX pixmap ID or a GLX pbuffer ID.

read Specifies a GLX drawable to be used for read operations. This value must reflect either a GLX window

ID, a GLX pixmap ID or a GLX pbuffer ID.

context Specifies a GLX rendering context to be attached to the specified draw and read GLX drawables.

Return Values

 True Returned if the glXMakeContextCurrent subroutine is successful.

False Returned if the glXMakeContextCurrent subroutine is not successful. The previously current rendering

context and drawable (if any) remain unchanged.

Notes

A process is a single execution environment, implemented in a single address space, consisting of one or

more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain separate

program counters, stack spaces, and other related global data. A thread is the only member of its

subprocess group that is equivalent to a process.

526 OpenGL 1.2 Reference Manual

Error Codes

 BadAccess context is current to another thread at the time that the

glXMakeContextCurrent subroutine is called.

BadAlloc The server has delayed allocation of ancillary buffers until

glXMakeContextCurrent is called, only to find that it has insufficient

resources to complete the allocation.

BadMatch It is generated by a number of conditions:

v draw or read is not compatible with context.

v draw or read is a GLX Pixmap. and context is a direct rendering context.

v draw and read are None and context is not None.

v This may be generated for implementation-specific reasons.

GLXBadContext The specified context is not a valid GLX context.

GLXBadContextState The rendering context current to the calling thread has an OpenGL renderer

state of GL_FEEDBACK or GL_SELECT.

GLXBadCurrentDrawable Pending OpenGL commands exist for the previous context, and the

previous draw or read is no longer valid.

GLXBadDrawable draw or read is not a valid GLX drawable.

GLXBadWindow The X window underlying either draw or read is no longer valid.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glCopyPixels subroutine, glReadPixels subroutine, glXCreateNewContext subroutine,

glXCreatePbuffer subroutine, glXCreatePixmap subroutine, glXCreateWindow subroutine, and

glXMakeCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXMakeCurrent Subroutine

Purpose

Attaches a GLX context to a window or GLX pixmap.

Library

OpenGL C bindings library: libGL.a

C Syntax

Bool glXMakeCurrent(Display * dpy,

 GLXDrawable Drawable,

 GLXContext Context)

Description

The glXMakeCurrent subroutine does two things: (1) it makes the specified Context parameter the current

GLX rendering context of the calling thread, replacing the previously current context if one exists, and (2) it

attaches Context to a GLX drawable (either a window or GLX pixmap). As a result of these two actions,

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 527

subsequent OpenGL rendering calls use Context as a rendering context to modify the Drawable GLX

drawable. Since the glXMakeCurrent subroutine always replaces the current rendering context with the

specified Context, there can be only one current context per thread.

Pending commands to the previous context, if any, are flushed before it is released.

The first time Context is made current to any thread, its viewport is set to the full size of Drawable.

Subsequent calls by any thread to the glXMakeCurrent subroutine using Context have no effect on its

viewport.

To release the current context without assigning a new one, call the glXMakeCurrent subroutine with the

Drawable and Context parameters set to None and Null, respectively.

The glXMakeCurrent subroutine returns True if it is successful, False otherwise. If False is returned, the

previously current rendering context and drawable (if any) remain unchanged.

Parameters

 dpy Specifies the connection to the X server.

Drawable Specifies a GLX drawable. This value must reflect either an X window ID or a GLX pixmap ID.

Context Specifies a GLX rendering context to be attached to the specified Drawable.

Return Values

 True Returned if the glXMakeCurrent subroutine is successful.

False Returned if the glXMakeCurrent subroutine is not successful. The previously current rendering context and

drawable (if any) remain unchanged.

Notes

A process is a single execution environment, implemented in a single address space, consisting of one or

more threads.

A thread is one of a set of subprocesses that share a single address space, but maintain separate

program counters, stack spaces, and other related global data. A thread is the only member of its

subprocess group that is equivalent to a process.

Error Codes

 BadMatch The specified Drawable was not created with the same X screen and visual as

Context. It is also generated if Drawable is None and Context is not None.

BadAccess Context is current to another thread at the time that the glXMakeCurrent

subroutine is called.

GLXBadDrawable The specified Drawable is not a valid GLX drawable.

GLXBadContext The specified Context is not a valid GLX context.

GLXBadContextState The rendering context current to the calling thread has an OpenGL renderer

state of GL_FEEDBACK or GL_SELECT.

GLXBadCurrentWindow Pending OpenGL commands exist for the previous context, and the current

drawable is a window that is no longer valid.

BadAlloc The server has delayed allocation of ancillary buffers until glXMakeCurrent is

called, only to find that it has insufficient resources to complete the allocation.

528 OpenGL 1.2 Reference Manual

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreateContext subroutine, glXCreateNewContext subroutine, glXCreateGLXPixmap subroutine,

glXMakeContextCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXQueryContext Subroutine

Purpose

Queries context information

Library

C bindings library: libGL.a

C Syntax

int glXQueryContext(Display * dpy,

 GLXContext ctx,

 int attribute,

 int * value)

Description

The glXQueryContext subroutine sets the value provided to the attribute value of the specified GLX

Context. The glXQueryContext returns an error code if for any reason it is unsuccessful. If it is

successful, 0 (zero) is returned.

The attribute parameter can be one of the following:

 Attribute Description

GLX_FBCONFIG_ID This attribute is the XID of the GLX FBConfig

associated with the GLX Context.

GLX_RENDER_TYPE This attribute is the type of rendering supported by

the GLX Context.

GLX_SCREEN This attribute is the number of the screen

associated with the GLX Context.

Parameters

 dpy Specifies the connection to the X server.

ctx Specifies a GLX rendering context.

attribute Specifies the GLX Context attribute to be returned.

value Returns the requested value.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 529

Errors

 GLX_BAD_ATTRIBUTE Is generated if attribute is not a valid GLX Context attribute.

GLXBadContext Is generated if ctx does not refer to a valid context and a round trip to the X server

is involved.

Related Information

The glXCreateContext subroutine, glXCreateNewContext subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXQueryContextInfoEXT Subroutine

Purpose

Queries context information

Library

C bindings library: libGL.a

C Syntax

int glXQueryContextInfoEXT(Display *dpy,

 GLXContext ctx,

 int attribute,

 int *value)

Description

The glXQueryContextInfoEXT subroutine returns the the visual id, screen number, and share list of ctx.

This call may cause a round trip to the server.

The glXQueryContextInfoEXT subroutine is part of the EXT_import_context extension, not part of the

core GLX command set. If GLX_EXT_import_context is included in the string returned by

glXQueryExtensionsString, when called with argument GLX_EXTENSIONS, extension

EXT_import_context is supported.

Parameters

 dpy Specifies the connection to the X server.

ctx Specifies a GLX rendering context.

attribute The visual ID that the context was created with.

value The X screen the the context was created for.

Errors

GLXBadContext is generated if ctx does not refer to a valid context.

Related Information

The glXCreateContext subroutine, glXCreateNewContext subroutine, glXQueryVersion subroutine,

glXQueryExtensionsString subroutine.

OpenGL in the AIXwindows (GLX) Environment.

530 OpenGL 1.2 Reference Manual

glXQueryDrawable Subroutine

Purpose

Returns an attribute associated with a GLX drawable.

Library

C bindings library: libGL.a

C Syntax

int glXQueryDrawable(Display * dpy,

 GLXDrawable drawable,

 int attribute,

 unsigned int * value)

Description

The glXQueryDrawable subroutine sets the value provided to the attribute value of the specified GLX

drawable.

The attribute parameter can be one of the following:

 Attribute Description

GLX_WIDTH This attribute is the width of the GLX

drawable.

GLX_HEIGHT This attribute is the height of the GLX

drawable.

GLX_PRESERVED_CONTENTS This attribute is a boolean value that

shows whether the contents of the GLX

pbuffer is to be preserved when a

resource conflict occurs.

GLX_LARGEST_PBUFFER This attribute is a boolean value that

shows whether the largest pbuffer

allocation was obtained when the

allocation of the pbuffer would have

failed.

GLX_FBCONFIG_ID This attribute is the XID of the GLX

FBConfig used when drawable was

created.

The contents of value will be undefined if drawable is not a GLX pbuffer and attribute is set to

GLX_PRESERVED_CONTENTS or GLX_LARGEST_PBUFFER. The contents of value will be 0 (zero) if

attribute is not one of the attributes listed above.

Parameters

 dpy Specifies the connection to the X server.

drawable Specifies a GLX drawable ID.

attribute Specifies the GLX drawable attribute to be returned.

value Returns the requested value.

Errors

 GLXBadDrawable Is generated if drawable does not refer to a valid GLX drawable.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 531

Related Information

The glXCreatePbuffer subroutine, glXCreatePixmap subroutine, or glXCreateWindow subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXQueryExtension Subroutine

Purpose

Indicates whether the GLX extension is supported.

Library

OpenGL C bindings library: libGL.a

C Syntax

Bool glXQueryExtension(Display * dpy

 int * ErrorBase

 int * EventBase)

Description

The glXQueryExtension subroutine returns True if the X server of connection dpy supports the GLX

extension. Otherwise, the subroutine returns False. If True is returned, the ErrorBase and EventBase

parameters also return the error base and event base of the GLX extension, respectively. If the

glXQueryExtension subroutine returns False, ErrorBase and EventBase are unchanged.

ErrorBase and EventBase do not return values if they are specified as Null.

Notes

EventBase is included for future extensions. GLX does not currently define any events.

Parameters

 dpy Specifies the connection to the X server.

ErrorBase Returns the base error code of the GLX server extension.

EventBase Returns the base event code of the GLX server extension.

Return Values

 True Returned if the X server of connection dpy supports the GLX extension.

False Returned if the X server of connection dpy does not support the GLX extension.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

532 OpenGL 1.2 Reference Manual

Related Information

The glXQueryVersion subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXQueryExtensionsString Subroutine

Purpose

Returns a list of supported extensions.

Library

C bindings library: libGL.a

C Syntax

const char *glXQueryExtensionsString(Display *dpy,

 int screen)

Description

The glXQueryExtensionsString subroutine returns a pointer to a string describing which GLX extensions

are supported on the connection. The string is null-terminated and contains a space-separated list of

extension names. (The extension names themselves never contain spaces.) If there are no extensions to

GLX, then the empty string is returned.

Parameters

 dpy Specifies the connection to the X server.

screen Specifies the screen.

Notes

The glXQueryExtensionsString subroutine is available only if the GLX version is 1.1 or greater.

The glXQueryExtensionsString subroutines only returns information about GLX extensions. Call

glGetString to get a list of GL extensions.

Related Information

The glGetString subroutine, glXQueryVersion subroutine, glXQueryServerString subroutine,

glXGetClientString subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXQueryServerString Subroutine

Purpose

Returns string describing the server

Library

C bindings library: libGL.a

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 533

C Syntax

const char *glXQueryServerString(Display *dpy,

 int screen,

 int name)

Description

The glXQueryServerString subroutine returns a pointer to a static, null-terminated string describing some

aspect of the server’s GLX extension. The possible values for name and the format of the strings is the

same as for glXGetClientString. If name is not set to a recognized value, NULL is returned.

Parameters

 dpy Specifies the connection to the X server.

screen Specifies the screen number.

name Specifies which string is returned. One of GLX_VENDOR,

GLX_VERSION, or GLX_EXTENSIONS.

Notes

The glXQueryServerString subroutine is available only if the GLX version is 1.1 or greater.

If the GLX version is 1.1 or 1.0, the GL version must be 1.0. If the GLX version is 1.2, the GL version must

be 1.1.

The glXQueryServerString subroutine only returns information about GLX extensions supported by the

server. Call glGetString to get a list of GL extensions. Call glXGetClientString to get a list of GLX

extensions supported by the client.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXQueryVersion subroutine, glXGetClientString subroutine, glXQueryExtensionsString

subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXQueryVersion Subroutine

Purpose

Returns the version numbers of the GLX extension.

Library

OpenGL C bindings library: libGL.a

534 OpenGL 1.2 Reference Manual

C Syntax

Bool glXQueryVersion(Display * dpy

 int * Major

 int * Minor)

Description

The glXQueryVersion subroutine returns the major and minor version numbers of the GLX extension that

is implemented by the server associated with the dpy connection. Implementations with the same major

version number are upwardly compatible, meaning that the implementation with the higher minor version

number is a superset of the version with the lower minor version number.

The Major and Minor parameters do not return values if they are specified as Null.

Parameters

 dpy Specifies the connection to the X server.

Major Returns the major version number of the GLX server extension.

Minor Returns the minor version number of the GLX server extension.

Return Values

 True Returned if the subroutine is successful.

False Returned if the subroutine fails. If False is returned, Major and Minor parameter values are not updated.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXQueryExtension subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXSelectEvent Subroutine

Purpose

Requests that a GLX drawable receive GLX events.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glXSelectEvent(Display * dpy,

 GLXDrawable drawable,

 unsigned long eventmask)

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 535

Description

The glXSelectEvent subroutine is used to allow the application to receive GLX events for a specified GLX

drawable (drawable). Calling glXSelectEvent overrides any previous event mask that was set by the

application for drawable.

GLX events are returned in the X11 event stream. The GLX event mask is private to GLX (it is separate

from the X11 event mask) and a separate GLX event mask is maintained in the server for each client for

each drawable.

Currently, only one GLX event can be selected, by setting eventmask to

GLX_PBUFFER_CLOBBER_MASK. The data structure describing a GLX pbuffer clobber event is:

 typedef struct {

 int event_type; /* This will have a value of

GLX_DAMAGED or

GLX_SAVE */

 int draw_type; /* This will have a value of

GLX_WINDOW or

GLX_PBUFFER */

 unsigned long serial; /* Number of last request

processed by X server */

 Bool send_event; /* Whether the event was

generated by a SendEvent

request */

 Display * display; /* The display that the event

was read from */

 GLXDrawable drawable; /* XID of the GLX drawable

*/

 unsigned int buffer_mask; /* Mask indicating which

buffers are affected. */

 unsigned int aux_buffer; /* Mask indicating which aux

buffer was affected */

 int x, y; /* Location of the area

clobbered in the GLX

drawable */

 int width, height; /* Size of the area

clobbered in the GLX

drawable */

 int count; /* If non-zero, at least this

many more events exist */

} GLX_PbufferClobberEvent;

The masks that represent the clobbered buffers are defined as:

 Bitmask Corresponding Buffer

GLX_FRONT_LEFT_BUFFER_BIT Front left color buffer

GLX_FRONT_RIGHT_BUFFER_BIT Front right color buffer

GLX_BACK_LEFT_BUFFER_BIT Back left color buffer

GLX_BACK_RIGHT_BUFFER_BIT Back right color buffer

GLX_AUX_BUFFERS_BIT Auxiliary buffer

GLX_DEPTH_BUFFER_BIT Depth buffer

GLX_STENCIL_BUFFER_BIT Stencil buffer

GLX_ACCUM_BUFFER_BIT Accumulation buffer

A single X server operation can cause several pbuffer clobber events to be sent. Each event specifies one

region of the GLX drawable that was affected by the operation. buffer_mask indicates which color or

536 OpenGL 1.2 Reference Manual

ancillary buffers were affected. When the GLX_AUX_BUFFERS_BIT is set in buffer_mask, then

aux_buffer is set to indicate which buffer was affected. If more than one aux buffer was affected then

additional events are generated. For non-stereo drawables, GLX_FRONT_LEFT_BUFFER_BIT and

GLX_BACK_LEFT_BUFFER_BIT are used to specify the front and back color buffers.

For preserved pbuffers, a pbuffer clobber event, that has event_type set to GLX_SAVED, is generated

whenever the contents of a pbuffer has to be moved to avoid being damaged. The event (or events)

describes which portions of the pbuffer were affected. Application who receive many pbuffer clobber

events, which refer to different save actions, should consider freeing the pbuffer resource to prevent the

system from thrashing due to insufficient resources.

For an unpreserved pbuffer, a pbuffer clobber event, that has event_type set to GLX_DAMAGED, is

generated whenever a portion of the pbuffer becomes invalid.

Parameters

 dpy Specifies the connection to the X server.

drawable Specifies a GLX window or GLX pbuffer.

eventmask Specifies the GLX events that drawable will receive.

Error Codes

 GLXBadDrawable Is generated if drawable is not a valid GLX window or GLX pbuffer.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXCreatePbuffer subroutine, glXCreateWindow subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXSwapBuffers Subroutine

Purpose

Makes the back buffer visible.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glXSwapBuffers(Display * dpy

 GLXDrawable Drawable)

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 537

Description

The glXSwapBuffers subroutine promotes the contents of the back buffer of Drawable to become the

contents of the front buffer of Drawable. The contents of the back buffer then become undefined. The

update typically takes place during the vertical retrace of the monitor, rather than immediately after

glXSwapBuffers is called. All GLX rendering contexts share the same notion of which are front buffers

and which are back buffers.

An implicit glFlush subroutine is performed by the glXSwapBuffers subroutine before it returns.

Subsequent OpenGL commands can be issued immediately after calling glXSwapBuffers, but these

commands are not executed until the buffer exchange is complete.

If Drawable was not created with respect to a double-buffered visual or GLX FBConfig, or if Drawable is a

GLX pixmap, the glXSwapBuffers subroutine has no effect and no error is generated.

Parameters

 dpy Specifies the connection to the X server.

Drawable Specifies the window whose buffers are to be swapped.

Notes

Synchronization between multiple GLX contexts that render to the same double-buffered window is the

responsibility of the client. The X Synchronization Extension can be used to facilitate this cooperation.

Error Codes

 GLXBadCurrentDrawable Is generated if dpy and Drawable are respectively the display and drawable

associated with the current context of the calling thread, and Drawable

identifies a window that is no longer valid.

GLXBadDrawable Is generated if Drawable is not a valid GLX drawable.

GLXBadWindow Is generated if the X window underlying Drawable is no longer valid.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glFlush subroutine.

OpenGL in the AIXwindows (GLX) Environment.

glXUseXFont Subroutine

Purpose

Creates bitmap display lists from an X font.

Library

OpenGL C bindings library: libGL.a

538 OpenGL 1.2 Reference Manual

C Syntax

void glXUseXFont(Font font

 int First

 int Count

 int ListBase)

Description

The glXUseXFont subroutine generates Count display lists, with each containing a single glBitmap

command. These lists are named ListBase through ListBase+Count-1. The parameters of the glBitmap

command of display list ListBase+i are derived from glyph first+i. Bitmap parameters Xorig, Yorig, Width,

and Height are computed from font metrics as descent-1, -lbearing, rbearing-lbearing, and ascent+descent,

respectively. Xmove is taken from the glyph’s Width metric, and Ymove is set to 0 (zero). Finally, the

glyph’s image is converted to the appropriate format for the glBitmap command.

Using the glXUseXFont subroutine may be more efficient than accessing the X font and generating the

display lists explicitly, since display lists are created on the server without requiring the glyph data to make

a round-trip. Also, the server may choose to delay the creation of each bitmap until it is accessed.

Empty display lists are created for all glyphs that are requested but not defined in the Font parameter.

The glXUseXFont subroutine is ignored if there is no current GLX context.

Parameters

 font Specifies the font from which character glyphs are taken.

First Specifies the index of the first glyph to be taken.

Count Specifies the number of glyphs to be taken.

ListBase Specifies the index of the first display list to be generated.

Error Codes

 BadFont Is generated if font is not a valid font.

GLXBadContextState Is generated if the current GLX context is in display-list construction mode.

GLXBadCurrentWindow Is generated if the drawable associated with the current context of the calling

thread is a window, and that window is no longer valid.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glXMakeContextCurrent subroutine, glXMakeCurrent subroutine.

OpenGL in the AIXwindows (GLX) Environment.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 539

glXWaitGL Subroutine

Purpose

Completes OpenGL processing prior to subsequent X calls.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glXWaitGL(void)

Description

The glXWaitGL subroutine ensures that OpenGL processing is complete before any subsequent X calls

are processed. Any OpenGL rendering calls made prior to the glXWaitGL subroutine are completed before

any X rendering calls made after glXWaitGL. Although this same result can be achieved using glFinish,

the glXWaitGL subroutine does not require a round-trip to the server. Therefore, glXWaitGL is more

efficient in cases where the client and server are on separate machines.

The glXWaitGL subroutine is ignored if there is no current GLX context.

Notes

Using the glXWaitGL subroutine may or may not flush the X stream.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glFinish subroutine, glFlush subroutine, glXWaitX subroutine.

The XSync function.

OpenGL in the AIXwindows (GLX) Environment.

glXWaitX Subroutine

Purpose

Completes X processing prior to subsequent OpenGL calls.

Library

OpenGL C bindings library: libGL.a

C Syntax

void glXWaitX(void)

540 OpenGL 1.2 Reference Manual

Description

The glXWaitX subroutine ensures that X processing is complete before any subsequent OpenGL

rendering calls are processed. Any X rendering calls made prior to the glXWaitX subroutine are completed

before any OpenGL rendering calls made after glXWaitX. Although this same result can be achieved using

XSync, the glXWaitX subroutine does not require a round-trip to the server. Therefore, glXWaitX is more

efficient in cases where the client and server are on separate machines.

The glXWaitX subroutine is ignored if there is no current GLX context.

Notes

Using the glXWaitX subroutine may or may not flush the OpenGL stream.

Error Codes

 GLXBadCurrentWindow Is generated if the drawable associated with the current context of the calling

thread is a window, and that window is no longer valid.

Files

 /usr/include/GL/gl.h Contains C language constants, variable type definitions, and ANSI function

prototypes for OpenGL.

/usr/include/GL/glx.h Contains C language constants, variable type definitions, and ANSI function

prototypes for GLX.

Related Information

The glFinish subroutine, glFlush subroutine, glXWaitGL subroutine.

The XSync subroutine.

OpenGL in the AIXwindows (GLX) Environment.

Chapter 3. OpenGL in the AIXwindows (GLX) Environment 541

542 OpenGL 1.2 Reference Manual

Chapter 4. OpenGL Drawing Widgets and Related Functions

Following is a list of the OpenGL widgets and widget-related functions, and the purpose of each. Select

the item to receive more information.

 GLwCreateMDrawingArea function Creates an instance of a GLwMDrawingArea

widget and returns the associated widget ID.

GLwDrawingArea widget Provides a window with the appropriate visuals

and color maps needed for OpenGL drawing. (Xt)

GLwMDrawingArea widget Provides a window with the appropriate visuals

and color maps needed for OpenGL drawing.

(Motif)

GLwDrawingAreaMakeCurrent function Provides a front end to the glXMakeCurrent

subroutine.

GLwDrawingAreaSwapBuffers function Provides a front end to the glXSwapBuffers

subroutine.

GLwCreateMDrawingArea Function

Purpose

Creates an instance of a GLwMDrawingArea widget and returns the associated widget ID.

Library

OpenGL C bindings library: libXGLW.a

C Syntax

#include <X11/GLW/GLwMDraw.h>

Widget GLwCreateMDrawingArea(Parent, Name,

 ArgumentList, ArgumentCount)

 Widget Parent;

 String Name;

 ArgList ArgumentList;

 Cardinal ArgumentCount;

Description

The GLwCreateMDrawingArea function creates an instance of a GLwMDrawingArea widget and returns

the associated widget ID. For a complete definition of GLwMDrawingArea and its associated resources,

see the GLwMDrawingArea widget.

Parameters

 Parent Specifies the parent widget ID name.

Name Specifies the name of the created widget.

ArgumentList Specifies the argument list.

ArgumentCount Specifies the number of attribute/value pairs in the ArgumentList parameter.

Files

 /usr/include/GL/GLwDrawA.h Contains the GLwDrawingArea widget definitions derived

from the Xt.

© Copyright IBM Corp. 1994, 2002 543

/usr/include/GL/GLwDrawAP.h Contains GLwDrawingArea widget private definitions.

/usr/include/GL/GLwMDrawA.h Contains the GLwMDrawingArea widget definitions derived

from Motif.

/usr/include/GL/GLwMDrawAP.h Contains GLwMDrawingArea widget private definitions.

Related Information

The GLwDrawingArea or GLwMDrawingArea widget.

GLwDrawingArea or GLwMDrawingArea Widget

Purpose

OpenGL Draw Widget Class

Library

OpenGLC bindings library: libXGLW.a

C Syntax

#include </usr/include/GL/GLwDrawA.h>

Widget = XtCreateWidget(Widget, glwDrawingAreaWidgetClass, ...);

ld ... -lXGLW -l<anywidgetlibrary> -lXt -lGL -lX11 ...

#include </usr/include/GL/GLwMDrawA.h>

Widget = XtCreateWidget(Widget, glwMDrawingAreaWidgetClass, ...);

ld ... -lXGLW -lXm -IXt -IGL -IX11 ...

Description

GLwDrawingArea and GLwMDrawingArea are widgets suitable for OpenGL drawing. Based on supplied

parameters, these widgets provide a window with the appropriate visual and color maps needed for

OpenGL. The GLwDrawingArea and GLwMDrawingArea widgets also provide callbacks for redraw,

resize, input, and initialization.

The GLwDrawingArea widget is not a part of any widget set, but depends only on the Intrinsics Library

(Xt). GLwDrawingArea can be used with any widget set. The GLwMDrawingArea widget is identical to

the GLwDrawingArea widget except that it is a subclass of the Motif XmPrimitive widget class and has

resources and defaults suitable for use with Motif. For example, GLwMDrawingArea provides the default

Motif background and foreground colors for resources, and handles keyboard traversal more efficiently.

Although the GLwDrawingArea widget can be used in a Motif program, it is recommended that

GLwMDrawingArea be used instead.

Because both GLwDrawingArea and GLwMDrawingArea widgets behave almost identically, the

remainder of this article refers only to GLwDrawingArea, except when the behaviors differ. Unless

explicitly stated, all statements about GLwDrawingArea also apply to GLwMDrawingArea.

Among the information the programmer must provide to create a GLwDrawingArea widget is information

necessary to determine the visual. The programmer can provide this information through resources by

using one of the following methods:

v Supply a specific visualInfo structure. This visualInfo must have been obtained elsewhere; it is the

application designer’s responsibility to ensure that it is compatible with the OpenGL rendering done by

the application.

v Provide an attribute list, which is formatted identically to that used for direct OpenGL programming.

v Specify each attribute as an individual resource. The method is the simplest, and is the only method

that works from resource files.

544 OpenGL 1.2 Reference Manual

In addition to allocating the visual, the GLwDrawingArea widget also allocates the color map unless one

is provided by the application.

Note: If the color map is provided by the application, the application writer is responsible for

guaranteeing compatibility between the color map and the visual.

If an application creates multiple GLwDrawingArea widgets in the same visual, the same color map will

be used. However, the color map will not be shared among separate applications.

Creating the widget does not actually create the window until it is realized, and consequently, the

application should not perform any OpenGL operations to the window immediately after creation. Instead,

the application must wait until after it has realized the window. Alternatively, the ginit callback may be

used to indicate when the window has been created. Upon receiving this callback, the application can

perform all OpenGL initialization for the window, and can subsequently perform other operations on it. The

initialization is discussed in more detail in the following sections.

Applications select which GLwDrawingArea they are accessing using either the glXMakeCurrent

subroutine or the convenience function GLwDrawingAreaMakeCurrent, which uses a widget instead of a

display and window. If there is only one GLwDrawingArea, this need only be called once; however, if

there is more than one GLwDrawingArea, the widget should be called at the start of each callback.

Callbacks in this case include not only callbacks provided by the widget itself, but any other callback that

leads to Graphics Library (GL) activity, such as a timeout or a workproc.

If an application is using double buffering, it may call GLwDrawingAreaSwapBuffers instead of

glXSwapBuffers. This allows the use of the widget instead of the display and window.

The GLwDrawingArea widget class is subclassed from the Core class, and inherits behavior and

resources from the Core class. The GLwDrawingArea widget has the following class information:

 Class Pointer: GLwDrawingAreaClass

Class Name: GLwDrawingArea

The GLwMDrawingArea widget class is subclassed from the XmPrimitive class, and inherits behavior

and resources from the XmPrimitive and Core classes.

 Class Pointer: GLwMDrawingAreaClass

Class Name: GLwMDrawingArea

New Resources

The following table defines a set of widget resources used by the programmer to specify data. The

programmer can also set the resource values for the inherited classes to set attributes for this widget. To

reference a resource by name or by class in an .Xdefaults file, remove the GLwN or GLwC prefix and use

the remaining letters. There are two tables included. The following table includes resources that

correspond directly to the attributes used by the glXChooseVisual subroutine. As with glXChooseVisual,

all Boolean resources default to False and all integer resources default to 0. These resources can all be

set only at creation time, and are used to determine the visual. If either the GLwNattribList or

GLwNvisualInfo resource is set, these resources are ignored. The specific meaning of these resources is

discussed in the glXChooseVisual subroutine and will not be discussed here.

 Name Class Type OpenGL Attribute

GLwNbufferSize GLwCBufferSize Integer GLX_BUFFER_SIZE

GLwNlevel GLwCLevel Integer GLX_LEVEL

GLwNrgba GLwCRgba Integer GLX_RGBA

Chapter 4. OpenGL Drawing Widgets and Related Functions 545

Name Class Type OpenGL Attribute

GLwNdoublebuffer GLwCDoublebuffer Boolean GLX_DOUBLE- BUFFER

GLwNstereo GLwCStereo Boolean GLX_STEREO

GLwNauxBuffers GLwCAuxBuffers Boolean GLX_AUX _BUFFERS

GLwNredSize GLwCColorSize Integer GLX_RED_SIZE

GLwNgreenSize GLwCColorSize Integer GLX_GREEN_SIZE

GLwNblueSize GLwCColorSize Integer GLX_BLUE_SIZE

GLwNalphaSize GLwCAlphaSize Integer GLX_ALPHA_SIZE

GLwNdepthSize GLwCDepthSize Integer GLX_DEPTH_SIZE

GLwNstencilSize GLwCStencilSize Integer GLX_ STENCIL_SIZE

GLwNaccum- RedSize GLwCAccum- ColorSize Integer GLX_ACCUM _RED_SIZE

GLwNaccum- GreenSize GLwCAccum- ColorSize Integer GLX_ACCUM _GREEN_SIZE

GLwNaccum- BlueSize GLwCAccum- ColorSize Integer GLX_ACCUM _BLUE_SIZE

GLwNaccum- AlphaSize GLwCAccum- AlphaSize Integer GLX_ACCUM _ALPHA_SIZE

The following table lists other resources of the GLwDrawingArea widget. Following the table is a

description of each resource. The codes in the access column indicate if the given resource can be set at

creation time (C), set by using XtSetValues (S), retrieved by using XtGetValues (G), or is not applicable

(N/A).

 Name Class Type Default Access

GLwNallocate- Background GLwCAllocate- Colors Boolean False CG

GLwNallocate- OtherColors GLwCAllocate- Colors Boolean False CG

GLwNattribList GLwCAttribList Integer * NULL CG

GLwNexpose- Callback GLwCCallback XtCallbackList NULL C

GLwNginit- Callback GLwCCallback XtCallbackList NULL C

GLwNinput- Callback GLwCCallback XtCallbackList NULL C

GLwNinstall- Background GLwCInstall- Background Boolean True CG

GLwNinstall- Colormap GLwCInstall- Colormap Boolean True CG

GLwNresize- Callback GLwCCallback XtCallbackList NULL C

GLwNvisual- Info GLwCVisual- Info XVisualInfo* NULL CG

546 OpenGL 1.2 Reference Manual

GLwNallocateBackground If True, the background pixel and pixmap are allocated (if appropriate)

using the newly calculated color map and visual. If False, they retain

values calculated using the parent’s color map and visual. Applications

that wish to have X clear their background for them will usually set this

to True. Applications clearing their own background will often set this to

False, although they may set this to True if they query the background

for their own use. One reason to leave this resource False is that if

color index mode is in use, this will avoid using up a pixel from the

newly allocated color map. Also, on hardware that supports only one

color map, the application may need to do more careful color allocation

to avoid flashing between the OpenGL color map and the default X

color map.

Note: Because of the way the Intrinsics Library (Xt) works, the

background colors are originally calculated using the default color

map; if this resource is set they can be recalculated correctly. If a

color map was explicitly supplied to the widget rather than being

dynamically calculated, these resources are always calculated

using that color map.)

GLwNallocateOtherColors This is similar to GLwNallocateBackground, but allocates other colors

normally allocated by widgets. Although the GLwDrawingArea and

GLwMDrawingArea widget do not make use of these colors the

application may choose to query them. For the non-Motif

GLwDrawingArea widget there are no other colors allocated, so this

resource is a no-op. For the Motif GLwMDrawingArea are widget, the

XmPrimitive resources XmNforeground, XmNhighlightColor, and

XmNhighlightPixmap are calculated.

GLwNattribList Contains the list of attributes suitable for a call to glXChooseVisual. If

this resource is NULL, it is calculated based on the attribute resources.

If it is not NULL, the attribute resources are ignored.

GLwNexposeCallback Specifies the list of callbacks that is called when the widget receives an

exposure event. The callback reason is GLwCR_EXPOSE. The callback

structure also includes the exposure event. The application will

generally want to redraw the scene.

GLwNginitCallback Specifies the list of callbacks that is called when the widget is first

realized. Since no OpenGL operations can be done before the widget is

realized, this callback can be used to perform any appropriate OpenGL

initialization such as creating a context. The callback reason is

GLwCR_GINIT.

GLwNinputCallback Specifies the list of callbacks that is called when the widget receives a

keyboard or mouse event. By default, the input callback is called on

each key press and key release, on each mouse button press and

release, and whenever the mouse is moved while a button is pressed.

However this can be changed by providing a different translation table.

The callback structure also includes the input event. The callback

reason is GLwCR_INPUT.

The input callback is provided as a programming convenience, since it

provides a convenient way to catch all input events. However, a more

modular program can often be obtained by providing specific actions

and translations in the application rather than by using a single catch-all

callback. Use of explicit translations can also provide greater

customizing ability.

GLwNinstallBackground If set to True, the background is installed on the window. If set to False,

the window has no background. This resource has no effect unless

GLwNallocateBackground is also True.

Chapter 4. OpenGL Drawing Widgets and Related Functions 547

GLwNinstallColormap If set to True, the widget will call XSetWMColormapWindows to tell the

window manager to install the color map when the window’s shell has

focus. If set to False, this will not be called. For applications with

multiple GLwDrawingArea widgets sharing a single color map, it is

most efficient to set this resource to True for exactly one

GLwDrawingArea with each color map. If an application needs

additional control over the order of color maps, this resource can be set

to False, with the application calling XSetWMColormapWindows

explicitly.

GLwNresizeCallback Specifies the list of callbacks that is called when the GLwDrawingArea

is resized. The callback reason is GLwCR_RESIZE.

GLwNvisualInfo Contains a pointer to the window’s visual info structure. If Null, the

visualInfo is calculated at widget creation time based on the

GLwNattributeList resource (which is itself calculated from the various

resources). If GLwNvisualInfo is not Null the GLwNattributList and

the attribute resources are ignored.

Inherited Resources

Both GLwDrawingArea and GLwMDrawingArea inherit behavior and resources from the Core

superclass. Other than the behavior of the color map and background resources described previously, all

defaults are the same as for Core.

In addition, the Motif version GLwMDrawingArea also inherits from XmPrimitive. The behavior of the

color resources has been described previously. The TraversalOn resource is disabled for this widget, but

if keyboard input is required it should be enabled. (Also, the application should call

XmProcessTraversal(widget, XmTRAVERSE_CURRENT) whenever mouse button 1 is clicked in the

widget. This is similar to the requirements of the Motif Drawing area.) Because Motif gets confused by

having multiple visuals in one top level shell, XmNhighlightOnEnter has been disabled, and

XmNhighlightThickness has been set to 0.

Callback Information

A pointer to the following structure is passed to each callback:

typedef struct

{

 Integer reason;

 XEvent * event;

 Dimension width, height;

} GLwDrawingAreaCallbackStruct;

 Reason Indicates why the callback was invoked. Appropriate values are stated in the previous resource

descriptions. For Motif programmers, the values GLwCR_EXPOSE, GLwCR_RESIZE, and

GLwCR_INPUT are equal to XmCR_EXPOSE, XmCR_RESIZE, and XmCR_INPUT respectively.

GLwCR_GINIT does not have a Motif equivalent.

Event Points to the XEvent that triggered the callback. This is Null for GLwNginitCallback and

GLwNresizeCallback.

Width Sets the width of the window.

Height Sets the height of the window.

1 Adds space before the SS.

Translations

The GLwDrawingArea widget has the following translations:

 <KeyDown>: glwInput()

<KeyUp>: glwInput()

<BtnDown>: glwInput()

548 OpenGL 1.2 Reference Manual

<BtnUp>: glwInput()

<BtnMotion>: glwInput()

The GLwMDrawingArea widget has the following additional translation:

 <Key>osfHelp: PrimitiveHelp()

An application wishing to catch other events than these defaults can do so by installing a different

translation table.

 1 Adds space before the SS.

Action Routines

The GLwDrawingArea widget has the following action routine:

 glwInput(): Called whenever one of the previous translations specifies that input has occurred. Its sole

purpose is to call the input callback.

Initialization

When the widget is initially created (for example, through XtCreateWidget) the associated window is not

actually created. Instead, window creation is delayed until the widget is realized. However,

glXchooseVisual is called immediately, so information based on its results is available.

Between the time the widget is created and it is realized, the following apply:

v No OpenGL operations can be done to the window.

v No resize callbacks are generated.

v The normal window is available (XtWindow returns Null).

v The GLwDrawingAreaMakeCurrent function (and glXMakeCurrent subroutine) should not be called.

When the widget is realized, the following actions take place:

v The window is created.

v The ginit callback is called. The user may use this callback to perform any needed OpenGL initialization

to the window.

Notes

When using the input callback to receive keyboard input, the keycode in the event must be converted to a

keysym. Use XLookupKeysym or XLookupString to do the conversion. Keyboard input can also be dealt

using translations, in which case no such conversion is required.

Motif programmers should keep in mind that OSF uses virtual bindings and replaces some of the key

bindings. As a common example, if the Esc key is to be used to exit the program (as it often is in GL

programs), the translation should specify <key>osfCancel instead of <key>Escape.

Motif programmers may also create a GLwMDrawingArea widget with the Motif style

GLwCreateMDrawingArea.

Examples

The following are some code fragments that create a GLwDrawingArea widget and manage the

appropriate callbacks:

Chapter 4. OpenGL Drawing Widgets and Related Functions 549

#include </usr/include/GL/GLwDrawA.h>

 static GLXContext glx_context; /* assume only one context */

 . . .

 main()

 {

 Arg args[10];

 int n;

 Widget parent; /* The parent of the gl widget */

 Widget glw; /* The GLwDrawingArea widget */

 . . .

 /* Create the widget using RGB mode. This can also be set

 * in an X Defaults file

 */

 n = 0;

 XtSetArg(args[n], GLwNrgba, TRUE); n++;

 glw = XtCreateManagedWidget("glw",

 GLwDrawingAreaWidgetClass,

 parent, args, n);

 XtAddCallback(glw, GLwNexposeCallback, exposeCB, 0);

 XtAddCallback(glw, GLwNresizeCallback, resizeCB, 0);

 XtAddCallback(glw, GLwNginitCallback, ginitCB, 0);

 /* Also add input callback if needed */

 . . .

 }

 static void

 exposeCB(Widget w, XtPointer client_data,

 GLwDrawingAreaCallbackStruct call_data)

 {

 GLwDrawingAreaMakeCurrent (w, glx_context);

 /* redraw the display */

 }

 static void

 resizeCB(Widget w, XtPointer client_data,

 GLwDrawingAreaCallbackStruct call_data)

 {

 GLwDrawingAreaMakeCurrent (w, glx_context);

 /* perform any resize actions */

 glViewport (0, 0, call_data->width -1,

 call_data->height -1);

 /* redraw the display */

 }

 static void

 ginitCB(Widget w, XtPointer client_data,

 GLwDrawingAreaCallbackStruct call_data)

 {

 Arg args[1];

 XVisualInfo *vi;

 XtSetArg(args[0], GLwNvisualInfo, &vi);

 XtGetValues(w, args, 1);

 /* create a visual context */

 glx_context = glXCreateContext(XtDisplay(w), vi, 0, GL_FALSE);

 GLwDrawingAreaMakeCurrent (w, glx_context);

 /* Perform any necessary graphics initialization.*

The Motif program need only differ by including GLwMDrawA.h instead of GLwDrawA.h and by creating

a widget of type GLwMDrawingAreaWidgetClass instead of GLwDrawingAreaWidgetClass. As an

alternative, the Motif program could use GLwCreateMDraw instead.

Notes:

1. If a GLwDrawingArea widget is created as a child of an already realized widget, the

GLwDrawingArea widget will be created immediately, without giving the user an opportunity to

add the ginit callback. In such a case, initialization should be done immediately after creating the

widget rather than by using the callback.

550 OpenGL 1.2 Reference Manual

2. If the non-Motif GLwDrawingArea widget is used in a Motif program and keyboard traversal is

attempted, the behavior is undefined if the user traverses into the GLwDrawingArea widget.

Files

 /usr/include/GL/GLwDrawA.h Contains the GLwDrawingArea widget definitions derived

from the Xt.

/usr/include/GL/GLwDrawAP.h Contains GLwDrawingArea widget private definitions.

/usr/include/GL/GLwMDrawA.h Contains the GLwMDrawingArea widget definitions derived

from Motif.

/usr/include/GL/GLwMDrawAP.h Contains GLwMDrawingArea widget private definitions.

Related Information

The GLwCreateMDrawingArea function, GLwDrawingAreaMakeCurrent function,

GLwDrawingAreaSwapBuffers function.

The glXChooseVisual subroutine, glXMakeCurrent subroutine.

GLwDrawingAreaMakeCurrent Function

Purpose

Provides a front end to the glXMakeCurrent subroutine.

Library

OpenGL C bindings library: libXGLW.a

C Syntax

#include <X11/GLW/GLwDraw.h>

void GLwDrawingAreaMakeCurrent(Widget, Context)

Widget Widget;

GLXContext Context;

Description

The GLwDrawingAreaMakeCurrent function provides a front end to the glXMakeCurrent subroutine by

means of a widget (rather than a display or a window).

Parameters

 Widget Specifies the widget created with the GLwCreateMDrawingArea function.

Context Specifies a GLX rendering context created with the glXCreateContext subroutine.

Files

 /usr/include/GL/GLwDrawA.h Contains the GLwDrawingArea widget definitions derived

from the Xt.

/usr/include/GL/GLwDrawAP.h Contains GLwDrawingArea widget private definitions.

/usr/include/GL/GLwMDrawA.h Contains the GLwMDrawingArea widget definitions derived

from Motif.

/usr/include/GL/GLwMDrawAP.h Contains GLwMDrawingArea widget private definitions.

Chapter 4. OpenGL Drawing Widgets and Related Functions 551

Related Information

The GLwDrawingArea or GLwMDrawingArea widget.

The glXCreateContext subroutine, glXMakeCurrent subroutine.

GLwDrawingAreaSwapBuffers Function

Purpose

Provides a front end to the glXSwapBuffers subroutine.

Library

OpenGL C bindings library: libXGLW.a

C Syntax

#include <X11/GLW/GLwDraw.h>

void GLwDrawingAreaSwapBuffers(Widget)

Widget Widget;

Description

The GLwDrawingAreaSwapBuffers function provides a front end to the glXSwapBuffers subroutine by

means of a widget (rather than a display or a window).

Parameters

 Widget Specifies the widget created with the GLwCreateMDrawingArea function.

Files

 /usr/include/GL/GLwDrawA.h Contains the GLwDrawingArea widget definitions derived

from the Xt.

/usr/include/GL/GLwDrawAP.h Contains GLwDrawingArea widget private definitions.

/usr/include/GL/GLwMDrawA.h Contains the GLwMDrawingArea widget definitions derived

from Motif.

/usr/include/GL/GLwMDrawAP.h Contains GLwMDrawingArea widget private definitions.

Related Information

The GLwCreateMDrawingArea function.

The GLwDrawingArea or GLwMDrawingArea widget.

The glXSwapBuffers subroutine.

552 OpenGL 1.2 Reference Manual

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Dept. LRAS/Bldg. 003

11400 Burnet Road

Austin, TX 78758-3498

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1994, 2002 553

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (c)

Copyright IBM Corp. _enter the year or years_. All rights reserved.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AIX

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

554 OpenGL 1.2 Reference Manual

Index

A
attribute stacks

pushing, popping 275

B
buffer

feedback
placing marker in 252

D
display list

creating 240

replacing 240

display-list base 208

E
evaluator

defining
one-dimensional 217

two-dimensional 221

F
feedback buffer

placing marker in 252

I
identity matrix

replacing current matrix with 208

L
lighting model

material parameters for 227

line stipple pattern 205

lines
rasterized

width 206

logical pixel operation
for color index rendering 215

M
material parameters

for lighting model 227

matrix
current

multiplying by general scaling 297

multiplying by rotation 296

multiplying
current by orthographic 250

replacing current with identity 208

matrix (continued)
specifying current 229

matrix stack
current

pushing, popping 280

mesh
specifiying 1D or 2D 225

N
name stack

loading names onto 211

pushing, popping 281

P
pixel

operations
raster position 282

storage modes
setting 255

transfer maps
setting up 253

transfer modes
setting 261

zoom factors
specifying 265

pixels
selecting color buffer source 285

points
rasterized

specifying diameter 266

polygon
rasterization mode

selecting 268

setting stippling pattern 271

R
raster position

specifying for pixel operations 282

rasterization mode
polygon

selecting 268

rasterized lines
width 206

rasterized points
diameter

specifiying 266

rectangle
drawing 293

rendering
color index 215

© Copyright IBM Corp. 1994, 2002 555

S
scissor box

defining 299

selection mode
establishing buffer 305

shading
flat or smooth

selecting 307

stack
name

pushing, popping 281

stacks
attribute

pushing, popping 275

stencil planes
writing individual bits 310

stencil testing
setting function and reference values 308

stippling pattern
polygon

setting 271

T
translation tables 253

Z
zoom factors

pixel
specifying 265

556 OpenGL 1.2 Reference Manual

Readers’ Comments — We’d Like to Hear from You

OpenGL 1.2 Reference Manual

 Publication No. SR28-5125-01

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: aix6koub@austin.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SR28-5125-01

SR28-5125-01

���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department 04XA-905-6C006

11501 Burnet Road

Austin, TX 78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U. S. A.

SR28-5125-01

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	ISO 9000
	Related Publications

	Chapter 1. OpenGL Subroutines
	glAccum Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glActiveTextureARB Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glAlphaFunc Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glAreTexturesResident Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glAreTexturesResidentEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glArrayElement Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Related Information

	glArrayElementEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	File
	Related Information

	glBegin or glEnd Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Files
	Related Information

	glBindTexture Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Related Information

	glBindTextureEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glBitmap Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glBlendColor Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glBlendColorEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glBlendEquation Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glBlendEquationEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glBlendFunc Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Examples
	Files
	Related Information

	glBlendFuncSeparateEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glCallList Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Associated Gets
	Files
	Related Information

	glCallLists Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Associated Gets
	Files
	Related Information

	glClear Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glClearAccum Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glClearColor Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glClearDepth Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glClearIndex Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glClearStencil Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glClientActiveTextureARB Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glClipBoundingBoxIBM or glClipBoundingSphereIBM or glClipBoundingVerticesIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files

	glClipPlane Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glColor Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Associated Gets
	Files
	Related Information

	glColorMask Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glColorMaterial Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glColorNormalVertexSUN Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	glColorPointer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Related Information

	glColorPointerEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glColorPointerListIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Related Information

	glColorSubTable Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Files
	Related Information

	glColorTable Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Files
	Related Information

	glColorTableParameter Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Files
	Related Information

	glColorVertexSUN Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	glCopyColorSubTable Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Files
	Related Information

	glCopyColorTable Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Files
	Related Information

	glCopyPixels Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Examples
	Files
	Related Information

	glCopyTexImage1D Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glCopyTexImage2D Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glCopyTexSubImage1D Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glCopyTexSubImage2D Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glCopyTexSubImage3D Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glCopyTexSubImage3DEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glCullFace Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glDeleteLists Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Files
	Related Information

	glDeleteTextures Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glDeleteTexturesEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glDepthFunc Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glDepthMask Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glDepthRange Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glDrawArrays Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Related Information

	glDrawArraysEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	File
	Related Information

	glDrawBuffer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glDrawElements Subroutine
	Purpose
	Library
	C Syntax
	Description
	Notes
	Parameters
	Errors
	Related Information

	glDrawPixels Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glDrawRangeElements Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Related Information

	glEdgeFlag Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Associated Gets
	Files
	Related Information

	glEdgeFlagPointer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Related Information

	glEdgeFlagPointerEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glEdgeFlagPointerListIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Related Information

	glEnable or glDisable Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Files
	Related Information

	glEnableClientState or glDisableClientState Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Related Information

	glEvalCoord Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Associated Gets
	Files
	Related Information

	glEvalMesh Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glEvalPoint Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Associated Gets
	Files
	Related Information

	glFeedbackBuffer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glFinish Subroutine
	Purpose
	Library
	C Syntax
	Description
	Notes
	Errors
	Files
	Related Information

	glFlush Subroutine
	Purpose
	Library
	C Syntax
	Description
	Notes
	Errors
	Files
	Related Information

	glFog Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glFogCoordEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	glFogCoordPointerEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	glFogCoordPointerListIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Files
	Related Information

	glFrontFace Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glFrustum Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glGenLists Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glGenTextures Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glGenTexturesEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glGet Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glGetClipPlane Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glGetColorTable Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glGetColorTableParameter Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glGetError Subroutine
	Purpose
	Library
	C Syntax
	Description
	Errors
	Files
	Related Information

	glGetLight Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glGetMap Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glGetMaterial Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glGetPixelMap Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glGetPointerv Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Related Information

	glGetPointervEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	File
	Related Information

	glGetPolygonStipple Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glGetString Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glGetTexEnv Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glGetTexGen Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glGetTexImage Subroutine
	Purpose
	Library
	C Syntax
	Description
	Notes
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glGetTexLevelParameter Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glGetTexParameter Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glHint Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glIndex Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Associated Gets
	Files
	Related Information

	glIndexMask Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glIndexPointer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glIndexPointerEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glIndexPointerListIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Related Information

	glInitNames Subroutine
	Purpose
	Library
	C Syntax
	Description
	Errors
	Associated Gets
	Files
	Related Information

	glInterleavedArrays Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Related Information

	glIsEnabled Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Files
	Related Information

	glIsList Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Files
	Related Information

	glIsTexture Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Related Information

	glIsTextureEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	File
	Related Information

	glLight Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glLightModel Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glLineStipple Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glLineWidth Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glListBase Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glLoadIdentity Subroutine
	Purpose
	Library
	C Syntax
	Description
	Errors
	Associated Gets
	Files
	Related Information

	glLoadMatrix Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glLoadName Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glLoadNamedMatrixIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files

	glLoadTransposeMatrixARB Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glLockArraysEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Related Information

	glLogicOp Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glMap1 Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glMap2 Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glMapGrid Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glMaterial Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glMatrixMode Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Associated Gets
	Errors
	Files
	Related Information

	glMultiDrawArraysEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Related Information

	glMultiDrawElementsEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glMultiModeDrawArraysIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Related Information

	glMultiModeDrawElementsIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Related Information

	glMultiTexCoordARB Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Associated Gets
	Files
	Related Information

	glMultMatrix Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glMultTransposeMatrixARB Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glNewList or glEndList Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Files
	Related Information

	glNormal Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Associated Gets
	Related Information

	glNormalPointer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glNormalPointerEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glNormalPointerListIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Related Information

	glNormalVertexSUN Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	glOrtho Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glPassThrough Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glPixelMap Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glPixelStore Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glPixelTransfer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glPixelZoom Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Errors
	Associated Gets
	Files
	Related Information

	glPointSize Subroutine
	Purpose
	Library
	C Syntax
	Description
	Notes
	Parameters
	Errors
	Associated Gets
	Files
	Related Information

	glPolygonMode Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Examples
	Files
	Related Information

	glPolygonOffset Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glPolygonOffsetEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glPolygonStipple Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Associated Gets
	Error Codes
	Files
	Related Information

	glPrioritizeTextures Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glPrioritizeTexturesEXT Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glPushAttrib or glPopAttrib Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glPushClientAttrib or glPopClientAttrib Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glPushMatrix or glPopMatrix Subroutine
	Purpose
	Library
	C Syntax
	Description
	Error Codes
	Associated Gets
	Files
	Related Information

	glPushName or glPopName Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Associated Gets
	Error Codes
	Files
	Related Information

	glRasterPos Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glReadBuffer Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Error Codes
	Associated Gets
	Files
	Related Information

	glReadPixels Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Error Codes
	Associated Gets
	Files
	Related Information

	glRect Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Errors
	Files
	Related Information

	glRenderMode Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Return Values
	Files
	Related Information

	glRotate Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Associated Gets
	Errors
	Files
	Related Information

	glScale Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glScissor Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Errors
	Associated Gets
	Files
	Related Information

	glSecondaryColorEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files

	glSecondaryColorPointerEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	glSecondaryColorPointerListIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glSelectBuffer Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glShadeModel Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Errors
	Associated Gets
	Files
	Related Information

	glStencilFunc Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glStencilMask Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Errors
	Associated Gets
	Files
	Related Information

	glStencilOp Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Files
	Related Information

	glTexCoord Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Associated Gets
	Files
	Related Information

	glTexCoordColorNormalVertexSUN Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	glTexCoordColorVertexSUN Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	glTexCoordNormalVertexSUN Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	glTexCoordPointer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glTexCoordPointerEXT Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glTexCoordPointerListIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Related Information

	glTexCoordVertexSUN Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	glTexEnv Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Error Codes
	Associated Gets
	Files
	Related Information

	glTexGen Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Error Codes
	Associated Gets
	Files
	Related Information

	glTexImage1D Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glTexImage2D Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glTexImage3D Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glTexImage3DEXT Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glTexParameter Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glTexSubImage1D Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glTexSubImage1DEXT Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glTexSubImage2D Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glTexSubImage2DEXT Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glTexSubImage3D Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glTexSubImage3DEXT Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	Related Information

	glTranslate Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Errors
	Associated Gets
	Files
	Related Information

	glUnLockArraysEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Errors
	Related Information

	glVertex Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Files
	Related Information

	glVertexPointer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Errors
	Associated Gets
	Related Information

	glVertexPointerEXT Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Notes
	Errors
	Associated Gets
	File
	Related Information

	glVertexPointerListIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Associated Gets
	Related Information

	glViewport Subroutine
	Purpose
	Library
	C Syntax
	Parameters
	Description
	Errors
	Associated Gets
	Files
	Related Information

	glVisibilityBufferIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glVisibilityThresholdIBM Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	Chapter 2. OpenGL Utility (GLU) Library
	gluBeginCurve or gluEndCurve Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	gluBeginPolygon or gluEndPolygon Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Examples
	Files
	Related Information

	gluBeginSurface or gluEndSurface Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	gluBeginTrim or gluEndTrim Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	gluBuild1DMipmapLevels Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	gluBuild1DMipmaps Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	NOTES
	ERRORS
	Files
	Related Information

	gluBuild2DMipmapLevels Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	gluBuild2DMipmaps Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	gluBuild3DMipmapLevels Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	gluBuild3DMipmaps Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	gluCheckExtension Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	gluCylinder Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluDeleteNurbsRenderer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluDeleteQuadric Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluDeleteTess Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluDisk Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluErrorString Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	gluGetNurbsProperty Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluGetString Subroutine
	Purpose
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Related Information

	gluGetTessProperty
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Related Information

	gluLoadSamplingMatrices Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluLookAt Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluNewNurbsRenderer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Files
	Related Information

	gluNewQuadric Subroutine
	Purpose
	Library
	C Syntax
	Description
	Files
	Related Information

	gluNewTess Subroutine
	Purpose
	Library
	C Syntax
	Description
	Files
	Related Information

	gluNextContour Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	gluNurbsCallback Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluNurbsCallbackData Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluNurbsCallbackDataEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluNurbsCurve Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	gluNurbsProperty Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	gluNurbsSurface Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	gluOrtho2D Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluPartialDisk Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluPerspective Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	gluPickMatrix Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	gluProject Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	gluPwlCurve Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluQuadricCallback Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluQuadricDrawStyle Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluQuadricNormals Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluQuadricOrientation Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluQuadricTexture Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluScaleImage Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	gluSphere Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	gluTessBeginContour, gluTessEndContour
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Related Information

	gluTessBeginPolygon Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Examples
	Related Information

	gluTessCallback Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Examples
	Files
	Related Information

	gluTessEndPolygon Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Examples
	Related Information

	gluTessNormal Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Related Information

	gluTessProperty Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Related Information

	gluTessVertex Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Examples
	Notes
	Related Information

	gluUnProject Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	gluUnProject4 Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	Chapter 3. OpenGL in the AIXwindows (GLX) Environment
	Related Information
	How to Render into an X Drawable
	Procedure
	Example
	Related Information

	OpenGL in the AIXwindows environment (GLX) Subroutines
	glXChooseFBConfig Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Return Values
	Examples
	Files
	Related Information

	glXChooseVisual Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Return Values
	Examples
	Files
	Related Information

	glXCopyContext Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glXCreateContext Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glXCreateGLXPixmap Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glXCreateNewContext Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glXCreatePbuffer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glXCreatePixmap Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glXCreateWindow Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glXDestroyContext Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glXDestroyGLXPixmap Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glXDestroyPbuffer Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glXDestroyPixmap Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glXDestroyWindow Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glXFreeContextEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Related Information

	glXGetClientString Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Related Information

	glXGetConfig Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Return Values
	Files
	Related Information

	glXGetContextIDEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Files
	Related Information

	glXGetCurrentContext Subroutine
	Purpose
	Library
	C Syntax
	Description
	Return Values
	Files
	Related Information

	glXGetCurrentDisplay Subroutine
	Purpose
	Library
	C Syntax
	Description
	Notes
	Related Information

	glXGetCurrentDrawable Subroutine
	Purpose
	Library
	C Syntax
	Description
	Return Values
	Files
	Related Information

	glXGetCurrentReadDrawable Subroutine
	Purpose
	Library
	C Syntax
	Description
	Return Values
	Files
	Related Information

	glXGetFBConfigAttrib Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	glXGetFBConfigs Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	glXGetProcAddressARB Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	glXGetSelectedEvent Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Files
	Related Information

	glXGetVisualFromFBConfig Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Return Values
	Files
	Related Information

	glXImportContextEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Files
	Related Information

	glXIsDirect Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	glXMakeContextCurrent Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Notes
	Error Codes
	Files
	Related Information

	glXMakeCurrent Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Notes
	Error Codes
	Files
	Related Information

	glXQueryContext Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Related Information

	glXQueryContextInfoEXT Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Related Information

	glXQueryDrawable Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Errors
	Related Information

	glXQueryExtension Subroutine
	Purpose
	Library
	C Syntax
	Description
	Notes
	Parameters
	Return Values
	Files
	Related Information

	glXQueryExtensionsString Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Related Information

	glXQueryServerString Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Files
	Related Information

	glXQueryVersion Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	glXSelectEvent Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glXSwapBuffers Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Notes
	Error Codes
	Files
	Related Information

	glXUseXFont Subroutine
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	glXWaitGL Subroutine
	Purpose
	Library
	C Syntax
	Description
	Notes
	Files
	Related Information

	glXWaitX Subroutine
	Purpose
	Library
	C Syntax
	Description
	Notes
	Error Codes
	Files
	Related Information

	Chapter 4. OpenGL Drawing Widgets and Related Functions
	GLwCreateMDrawingArea Function
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	GLwDrawingArea or GLwMDrawingArea Widget
	Purpose
	Library
	C Syntax
	Description
	New Resources
	Inherited Resources
	Callback Information
	Translations
	Action Routines
	Initialization
	Notes
	Examples
	Files
	Related Information

	GLwDrawingAreaMakeCurrent Function
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	GLwDrawingAreaSwapBuffers Function
	Purpose
	Library
	C Syntax
	Description
	Parameters
	Files
	Related Information

	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

