
AIX Version 6.1

Technical Reference: Kernel and

Subsystems, Volume 2

SC23-6613-00

���

AIX Version 6.1

Technical Reference: Kernel and

Subsystems, Volume 2

SC23-6613-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 415.

First Edition (November 2007)

This edition applies to AIX Version 6.1 and to all subsequent releases of this product until otherwise indicated in new

editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address

comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas

78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any

information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . ix

Highlighting . ix

Case-Sensitivity in AIX . ix

ISO 9000 . ix

32-Bit and 64-Bit Support for the Single UNIX Specification x

Related Publications . x

Chapter 1. Configuration Subsystem . 1

attrval Device Configuration Subroutine . 1

busresolve Device Configuration Subroutine . 2

genmajor Device Configuration Subroutine . 4

genminor Device Configuration Subroutine . 5

genseq Device Configuration Subroutine . 6

getattr Device Configuration Subroutine . 7

getminor Device Configuration Subroutine . 9

loadext Device Configuration Subroutine . 10

putattr Device Configuration Subroutine . 11

reldevno Device Configuration Subroutine . 12

relmajor Device Configuration Subroutine . 13

Writing Optional Start and Stop Methods . 14

Writing a Change Method . 15

Writing a Configure Method . 17

Writing a Define Method . 21

Writing an Unconfigure Method . 24

Writing an Undefine Method . 27

Device Methods for Adapter Cards: Guidelines . 28

Machine Device Driver . 29

Loading a Device Driver . 36

How Device Methods Return Errors . 36

ODM Device Configuration Object Classes . 37

Configuration Rules (Config_Rules) Object Class . 37

Customized Attribute (CuAt) Object Class . 39

Customized Dependency (CuDep) Object Class . 41

Customized Device Driver (CuDvDr) Object Class . 41

Customized Devices (CuDv) Object Class . 42

Customized VPD (CuVPD) Object Class . 46

Predefined Attribute (PdAt) Object Class . 46

Predefined Attribute Extended (PdAtXtd) Object Class 51

Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class 54

Predefined Connection (PdCn) Object Class . 57

Predefined Devices (PdDv) Object Class . 58

Adapter-Specific Considerations for the Predefined Devices (PdDv) Object Class 63

Chapter 2. Communications Subsystem . 65

ddclose Communications PDH Entry Point . 65

dd_fastwrt Communications PDH Entry Point . 65

CIO_GET_FASTWRT ddioctl Communications PDH Operation 66

CIO_GET_STAT ddioctl Communications PDH Operation 67

CIO_HALT ddioctl Communications PDH Operation . 68

CIO_QUERY ddioctl Communications PDH Operation 70

CIO_START ddioctl Communications PDH Operation 71

ddopen (Kernel Mode) Communications PDH Entry Point 73

ddopen (User Mode) Communications PDH Entry Point 76

© Copyright IBM Corp. 1997, 2007 iii

ddread Communications PDH Entry Point . 77

ddselect Communications PDH Entry Point . 78

ddwrite Communications PDH Entry Point . 80

ent_fastwrt Ethernet Device Handler Entry Point . 81

entclose Ethernet Device Handler Entry Point . 83

entconfig Ethernet Device Handler Entry Point . 84

entioctl Ethernet Device Handler Entry Point . 85

CCC_GET_VPD (Query Vital Product Data) entioctl Ethernet Device Handler Operation 87

CIO_GET_FASTWRT (Get Fast Write) entioctl Ethernet Device Handler Operation 88

CIO_GET_STAT (Get Status) entioctl Ethernet Device Handler Operation 89

CIO_HALT (Halt Device) entioctl Ethernet Device Handler Operation 90

CIO_QUERY (Query Statistics) entioctl Ethernet Device Handler Operation 91

CIO_START (Start Device) entioctl Ethernet Device Handler Operation 92

ENT_SET_MULTI (Set Multicast Address) entioctl Ethernet Device Handler Operation 94

IOCINFO (Describe Device) entioctl Ethernet Device Handler Operation 95

entmpx Ethernet Device Handler Entry Point . 96

entopen Ethernet Device Handler Entry Point . 97

entread Ethernet Device Handler Entry Point . 98

entselect Ethernet Device Handler Entry Point . 99

entwrite Ethernet Device Handler Entry Point . 101

mpclose Multiprotocol (MPQP) Device Handler Entry Point 102

mpconfig Multiprotocol (MPQP) Device Handler Entry Point 104

mpioctl Multiprotocol (MPQP) Device Handler Entry Point 105

CIO_GET_STAT (Get Status) mpioctl MPQP Device Handler Operation 106

CIO_HALT (Halt Device) mpioctl MPQP Device Handler Operation 110

CIO_QUERY (Query Statistics) mpioctl MPQP Device Handler Operation 111

CIO_START (Start Device) mpioctl MPQP Device Handler Operation 113

MP_CHG_PARMS (Change Parameters) mpioctl MPQP Device Handler Operation 120

MP_START_AR (Start Autoresponse) and MP_STOP_AR (Stop Autoresponse) mpioctl MPQP Device

Handler Operations . 120

mpmpx Multiprotocol (MPQP) Device Handler Entry Point 122

mpopen Multiprotocol (MPQP) Device Handler Entry Point 123

mpread Multiprotocol (MPQP) Device Handler Entry Point 125

mpselect Multiprotocol (MPQP) Device Handler Entry Point 127

mpwrite Multiprotocol (MPQP) Device Handler Entry Point 128

tsclose Multiprotocol (PCI MPQP) Device Handler Entry Point 130

tsconfig Multiprotocol (PCI MPQP) Device Handler Entry Point 132

tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point 133

CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler Operation 134

CIO_HALT (Halt Device) tsioctl PCI MPQP Device Handler Operation 137

CIO_QUERY (Query Statistics) tsioctl PCI MPQP Device Handler Operation 138

CIO_START (Start Device) tsioctl PCI MPQP Device Handler Operation 140

MP_CHG_PARMS (Change Parameters) tsioctl PCI MPQP Device Handler Operation 144

tsmpx Multiprotocol (PCI MPQP) Device Handler Entry Point 144

tsopen Multiprotocol (PCI MPQP) Device Handler Entry Point 145

tsread Multiprotocol (PCI MPQP) Device Handler Entry Point 147

tsselect Multiprotocol (PCI MPQP) Device Handler Entry Point 149

tswrite Multiprotocol (PCI MPQP) Device Handler Entry Point 150

Sense Data for the Serial Optical Link Device Driver 152

sol_close Serial Optical Link Device Handler Entry Point 154

sol_config Serial Optical Link Device Handler Entry Point 155

sol_fastwrt Serial Optical Link Device Handler Entry Point 156

sol_ioctl Serial Optical Link Device Handler Entry Point 158

CIO_GET_FASTWRT (Get Fast Write) sol_ioctl Serial Optical Link Device Handler Operation 159

CIO_GET_STAT (Get Status) sol_ioctl Serial Optical Link Device Handler Operation 160

CIO_HALT (Halt Device) sol_ioctl Serial Optical Link Device Handler Operation 164

iv AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

CIO_QUERY (Query Statistics) sol_ioctl Serial Optical Link Device Handler Operation 165

CIO_START (Start Device) sol_ioctl Serial Optical Link Device Handler Operation 166

IOCINFO (Describe Device) sol_ioctl Serial Optical Link Device Handler Operation 167

SOL_CHECK_PRID (Check Processor ID) sol_ioctl Serial Optical Link Device Handler Operation 168

SOL_GET_PRIDS (Get Processor IDs) sol_ioctl Serial Optical Link Device Handler Operation 169

sol_mpx Serial Optical Link Device Handler Entry Point 169

sol_open Serial Optical Link Device Handler Entry Point 171

sol_read Serial Optical Link Device Handler Entry Point 172

sol_select Serial Optical Link Device Handler Entry Point 174

sol_write Serial Optical Link Device Handler Entry Point 175

tokclose Token-Ring Device Handler Entry Point . 177

tokconfig Token-Ring Device Handler Entry Point . 178

tokdump Token-Ring Device Handler Entry Point . 179

tokdumpwrt Token-Ring Device Handler Entry Point 180

tokfastwrt Token-Ring Device Handler Entry Point . 181

tokioctl Token-Ring Device Handler Entry Point . 182

CIO_GET_FASTWRT (Get Fast Write) tokioctl Token-Ring Device Handler Operation 183

CIO_GET_STAT (Get Status) tokioctl Token-Ring Device Handler Operation 184

CIO_HALT (Halt Device) tokioctl Token-Ring Device Handler Operation 189

CIO_QUERY (Query Statistics) tokioctl Token-Ring Device Handler Operation 190

CIO_START (Start Device) tokioctl Token-Ring Device Handler Operation 191

IOCINFO (Describe Device) tokioctl Token-Ring Device Handler Operation 192

TOK_FUNC_ADDR (Set Functional Address) tokioctl Token-Ring Device Handler Operation 193

TOK_GRP_ADDR (Set Group Address) tokioctl Token-Ring Device Handler Operation 194

TOK_QVPD (Query Vital Product Data) tokioctl Token-Ring Device Handler Operation 195

TOK_RING_INFO (Query Token-Ring) tokioctl Token-Ring Device Handler Operation 196

tokmpx Token-Ring Device Handler Entry Point . 197

tokopen Token-Ring Device Handler Entry Point . 198

tokread Token-Ring Device Handler Entry Point . 199

tokselect Token-Ring Device Handler Entry Point . 200

tokwrite Token-Ring Device Handler Entry Point . 202

Chapter 3. LFT Subsystem . 205

lft_t Structure . 205

lft_dds_t Structure . 205

phys_displays Structure . 207

vtmstruct Structure . 211

Virtual Display Driver (VDD) Interface (lftvi) . 212

Input Device Driver ioctl Operations . 214

IOCINFO (Return devinfo Structure) ioctl Input Device Driver 215

KSQUERYID (Query Keyboard Device Identifier) . 216

KSQUERYSV (Query Keyboard Service Vector) . 216

KSREGRING (Register Input Ring) . 217

KSRFLUSH (Flush Input Ring) . 218

KSLED (Illuminate/Darken Keyboard LEDs) . 219

KSCFGCLICK (Enable/Disable Keyboard Clicker) . 219

KSVOLUME (Set Alarm Volume) ioctl . 220

KSALARM (Sound Alarm) . 220

KSTRATE (Set Typematic Rate) . 221

KSTDELAY (Set Typematic Delay) . 222

KSKAP (Enable/Disable Keep Alive Poll) . 222

KSKAPACK (Acknowledge Keep Alive Poll) . 223

KSDIAGMODE (Enable/Disable Diagnostics Mode) 223

MQUERYID (Query Mouse Device Identifier) . 224

MREGRING (Register Input Ring) . 225

MRFLUSH (Flush Input Ring) . 225

Contents v

MTHRESHOLD (Set Mouse Reporting Threshold) . 226

MRESOLUTION (Set Mouse Resolution) . 226

MSCALE (Set Mouse Scale Factor) . 227

MSAMPLERATE (Set Mouse Sample Rate) . 227

TABQUERYID (Query Tablet Device Identifier) ioctl Tablet Device Driver Operation 228

TABREGRING (Register Input Ring) . 229

TABRFLUSH (Flush Input Ring . 229

TABCONVERSION (Set Tablet Conversion Mode) . 229

TABRESOLUTION (Set Tablet Resolution) . 230

TABORIGIN (Set Tablet Origin) . 231

TABSAMPLERATE (Set Tablet Sample Rate) ioctl Tablet Device Driver Operation 231

TABDEADZONE (Set Tablet Dead Zone) . 231

GIOQUERYID (Query Attached Devices) . 232

DIALREGRING (Register Input Ring) . 232

DIALRFLUSH (Flush Input Ring) . 233

DIALSETGRAND (Set Dial Granularity) . 233

LPFKREGRING (Register Input Ring) . 234

LPFKRFLUSH (Flush Input Ring) . 234

LPFKLIGHT (Set/Reset Key Lights) . 235

dd_open LFT Device Driver Interface . 235

dd_close LFT Device Driver Interface . 236

dd_ioctl LFT Device Driver Interface . 236

Chapter 4. Printer Subsystems . 239

Subroutines for Print Formatters . 239

piocmdout Subroutine . 239

pioexit Subroutine . 240

piogetattrs Subroutine . 241

piogetopt Subroutine . 242

piogetstatus Subroutine . 243

piogetstr Subroutine . 244

piogetvals Subroutine . 245

piomsgout Subroutine . 247

pioputattrs Subroutine . 248

pioputstatus Subroutine . 249

Subroutines for Writing a Print Formatter . 250

passthru Subroutine . 250

restore Subroutine . 251

setup Subroutine . 252

Chapter 5. SCSI Subsystem . 255

scdisk SCSI Device Driver . 255

scsidisk SAM Device Driver . 274

tape SCSI Device Driver . 291

sctape FC Device Driver . 297

scsesdd SCSI Device Driver . 304

scsisesdd SAM Device Driver . 306

Parallel SCSI Adapter Device Driver . 309

SCIOCMD SCSI Adapter Device Driver ioctl Operation 317

SCIODIAG (Diagnostic) SCSI Adapter Device Driver ioctl Operation 318

SCIODNLD (Download) SCSI Adapter Device Driver ioctl Operation 320

SCIOEVENT (Event) SCSI Adapter Device Driver ioctl Operation 321

SCIOGTHW (Gathered Write) SCSI Adapter Device Driver ioctl Operation 322

SCIOHALT (Halt) SCSI Adapter Device Driver ioctl Operation 323

SCIOINQU (Inquiry) SCSI Adapter Device Driver ioctl Operation 324

SCIOREAD (Read) SCSI Adapter Device Driver ioctl Operation 325

vi AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

SCIORESET (Reset) SCSI Adapter Device Driver ioctl Operation 326

SCIOSTART (Start SCSI) Adapter Device Driver ioctl Operation 328

SCIOSTARTTGT (Start Target) SCSI Adapter Device Driver ioctl Operation 329

SCIOSTOP (Stop) Device SCSI Adapter Device Driver ioctl Operation 330

SCIOSTOPTGT (Stop Target) SCSI Adapter Device Driver ioctl Operation 331

SCIOSTUNIT (Start Unit) SCSI Adapter Device Driver ioctl Operation 332

SCIOTRAM (Diagnostic) SCSI Adapter Device Driver ioctl Operation 333

SCIOTUR (Test Unit Ready) SCSI Adapter Device Driver ioctl Operation 334

tmscsi SCSI Device Driver . 336

IOCINFO (Device Information) tmscsi Device Driver ioctl Operation 342

TMCHGIMPARM (Change Parameters) tmscsi Device Driver ioctl Operation 343

TMGETSENS (Request Sense) tmscsi Device Driver ioctl Operation 344

TMIOASYNC (Async) tmscsi Device Driver ioctl Operation 345

TMIOCMD (Direct) tmscsi Device Driver ioctl Operation 345

TMIOEVNT (Event) tmscsi Device Driver ioctl Operation 346

TMIORESET (Reset Device) tmscsi Device Driver ioctl Operation 348

TMIOSTAT (Status) tmscsi Device Driver ioctl Operation 348

Chapter 6. Integrated Device Electronics (IDE) . 351

IDE Adapter Device Driver . 351

idecdrom IDE Device Driver . 355

idedisk IDE Device Driver . 364

IDEIOIDENT (Identify Device) IDE Adapter Device Driver ioctl Operation 370

IDEIOINQU (Inquiry) IDE Adapter Device Driver ioctl Operation 371

IDEIOREAD (Read) IDE Adapter Device Driver ioctl Operation 372

IDEIOSTART (Start IDE) IDE Adapter Device Driver ioctl Operation 373

IDEIOSTOP (Stop) IDE Adapter Device Driver ioctl Operation 374

IDEIOSTUNIT (Start Unit) IDE Adapter Device Driver ioctl Operation 374

IDEIOTUR (Test Unit Ready) IDE Adapter Device Driver ioctl Operation 375

Chapter 7. SSA Subsystem . 377

SSA Subsystem Overview . 377

SSA Adapter Device Driver . 378

SSA Adapter Device Driver Direct Call Entry Point . 381

IOCINFO (Device Information) SSA Adapter Device Driver ioctl Operation 381

SSA_GET_ENTRY_POINT SSA Adapter Device Driver ioctl Operation 382

SSA_TRANSACTION SSA Adapter Device Driver ioctl Operation 382

ssadisk SSA Disk Device Driver . 384

IOCINFO (Device Information) SSA Disk Device Driver ioctl Operation 392

SSADISK_ISALMgr_CMD (ISAL Manager Command) SSA Disk Device Driver ioctl Operation 393

SSADISK_ISAL_CMD (ISAL Command) SSA Disk Device Driver ioctl Operation 394

SSADISK_SCSI_CMD (SCSI Command) SSA Disk Device Driver ioctl Operation 396

SSADISK_LIST_PDISKS SSA Disk Device Driver ioctl Operation 397

SSA Disk Concurrent Mode of Operation Interface . 398

SSA Disk Fencing . 400

SSA Target Mode . 401

SSA tmssa Device Driver . 404

tmssa Special File . 410

IOCINFO (Device Information) tmssa Device Driver ioctl Operation 411

TMIOSTAT (Status) tmssa Device Driver ioctl Operation 411

TMCHGIMPARM (Change Parameters) tmssa Device Driver ioctl Operation 412

Appendix. Notices . 415

Trademarks . 416

Index . 417

Contents vii

viii AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

About This Book

This book provides system programmers with complete detailed information about the configuration

subsystem, the communications subsystem, the LFT subsystem, printer subsystems, the SCSI subsystem,

Integrated Device Electronics, the SSA subsystem, and the serial DASD subsystem for the AIX operating

system. This book is intended for system programmers wishing to extend the kernel, and to use the book

effectively, you should be familiar with operating system concepts and kernel programming. This book is

also available on the documentation CD that is shipped with the operating system.

This book is part of the six-volume technical reference set, AIX Version 6.1 Technical Reference, that

provides information on system calls, kernel extension calls, and subroutines in the following volumes:

v AIX Version 6.1 Technical Reference: Base Operating System and Extensions Volume 1 and AIX

Version 6.1 Technical Reference: Base Operating System and Extensions Volume 2 provide information

on system calls, subroutines, functions, macros, and statements associated with base operating system

runtime services.

v AIX Version 6.1 Technical Reference: Communications Volume 1 and AIX Version 6.1 Technical

Reference: Communications Volume 2 provide information on entry points, functions, system calls,

subroutines, and operations related to communications services.

v AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 1 and AIX Version 6.1 Technical

Reference: Kernel and Subsystems Volume 2 provide information about kernel services, device driver

operations, file system operations, subroutines, the configuration subsystem, the communications

subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem, the M-audio

capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and the serial

DASD subsystem.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files,

structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects

such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to

be supplied by the user.

Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of

portions of program code similar to what you might write

as a programmer, messages from the system, or

information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between

uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,

always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 1997, 2007 ix

32-Bit and 64-Bit Support for the Single UNIX Specification

Beginning with Version 5.2, the operating system is designed to support The Open Group’s Single UNIX

Specification Version 3 (UNIX 03) for portability of UNIX-based operating systems. Many new interfaces,

and some current ones, have been added or enhanced to meet this specification, making Version 5.2 even

more open and portable for applications, while remaining compatible with previous releases of AIX.

To determine the proper way to develop a UNIX 03-portable application, you may need to refer to The

Open Group’s UNIX 03 specification, which can be accessed online or downloaded from

http://www.unix.org/ .

Related Publications

The following books contain information about or related to application programming interfaces:

v AIX Version 6.1 General Programming Concepts: Writing and Debugging Programs

v AIX Version 6.1 Communications Programming Concepts

v AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts

v Operating system and device management

v AIX Version 6.1 Files Reference

x AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 1. Configuration Subsystem

attrval Device Configuration Subroutine

Purpose

Verifies that attribute values are within range.

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

int attrval (uniquetype, pattr, errattr)

char * uniquetype;

char * pattr;

char ** errattr;

Parameters

 uniquetype Identifies the predefined device object, which is a pointer to a character string of the form

class/subclass/type.

pattr Points to a character string containing the attribute-value pairs to be validated, in the form

attr1=val1 attr2=val2.

errattr Points a pointer to a null-terminated character string. On return from the attrval

subroutine, this string will contain the names of invalid attributes, if any are found. Each

attribute name is separated by spaces.

Description

The attrval subroutine is used to validate each of a list of input attribute values against the legal range. If

no illegal values are found, this subroutine returns a value of 0. Otherwise, it returns the number of

incorrect attributes.

If any attribute values are invalid, a pointer to a string containing a list of invalid attribute names is

returned in the errattr parameter. These attributes are separated by spaces.

Allocation of the error buffer is done in the attrval subroutine. However, a character pointer (for example,

char *errorb;) must be declared in the calling routine. Thereafter, the address of that pointer is passed to

the attrval subroutine (for example, attrval(...,&errorb);) as one of the parameters.

Return Values

 0 Indicates that all values are valid.

Nonzero Indicates the number of erroneous attributes.

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

Related Information

List of Device Configuration Subroutines.

© Copyright IBM Corp. 1997, 2007 1

Predefined Attribute (PdAt) object class, Customized Attribute (CuAt) object class, Predefined Devices

(PdDv) object class.

busresolve Device Configuration Subroutine

Purpose

Allocates bus resources for adapters on an I/O bus (including PCI, ISA, and Micro Channel adapters).

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

int busresolve

(logname, flag, conf_list,

not_res_list, busname)

char * logname;

int flags;

char * conf_list;

char * not_res_list;

char * busname;

Parameters

 logname Specifies the device logical name.

flags Specifies either the boot phase or 0.

conf_list Points to an array of at least 512 characters.

not_res_list Points to an array of at least 512 characters.

busname Specifies the logical name of the bus.

Description

Note: Micro Channel and plug-in ISA adapters are only supported by AIX 5.1 or earlier.

The busresolve device configuration subroutine is invoked by a device’s configuration method to allocate

bus resources for all devices that have predefined bus resource attributes. It also is invoked by the bus

Configuration method to resolve attributes of all devices in the Defined state.

This subroutine first queries the Customized Attribute and Predefined Attribute object classes to retrieve a

list of current bus resource attribute settings and a list of possible settings for each attribute. To resolve

conflicts between the values assigned to an already available device and the current device, the

subroutine adjusts the values for attributes of devices in the Defined state. For example, the busresolve

subroutine makes sure that the current device is not assigned the same interrupt level as an already

available device when invoked at run time. These values are updated in the customized Attribute object

class.

The busresolve subroutine never modifies attributes of devices that are already in the Available state. It

ignores devices in the Defined state if their chgstatus field in the Customized Devices object class

indicates that they are missing.

When the logname parameter is set to the logical name of a device, the busresolve subroutine adjusts

the specified device’s bus resource attributes if necessary to resolve any conflicts with devices that are

already in the Available state. A device’s Configuration method should invoke the busresolve subroutine to

2 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

ensure that its bus resources are allocated properly when configuring the device at run time. The

Configuration method does not need to do this when run as part of system boot because the bus device’s

Configuration method would have already performed it.

If the logname parameter is set to a null string, the busresolve subroutine allocates bus resources for all

devices that are not already in the Available state. The bus device’s Configuration method invokes the

busresolve subroutine in this way during system boot.

The flags parameter is set to 1 for system boot phase 1; 2 for system boot phase 2; and 0 when the

busresolve subroutine is invoked during run time. The busresolve subroutine can be invoked only to

resolve a specific device’s bus resources at run time. That is, the flags parameter must be 0 when the

logname parameter specifies a device logical name.

The E_BUSRESOURCE value indicates that the busresolve subroutine was not able to resolve all

conflicts. In this case, the conf_list parameter will contain a list of the logical names of the devices for

which it successfully resolved attributes. The not_res_list parameter will also contain a list of the logical

names of the devices for which it could not successfully resolve all attributes. Devices whose names

appear in the not_res_list parameter must not be configured into the Available state.

When writing a Configure method for a device having bus resources, make sure that it fails and returns a

value of E_BUSRESOURCE if the busresolve subroutine does not return an E_OK value.

Note: If the conf_list and not_res_list strings are not at least 512 characters, there may be insufficient

space to hold the device names.

Return Values

 E_OK Indicates that all bus resources were resolved and allocated successfully.

E_ARGS Indicates that the parameters to the busresolve subroutine were not valid. For example, the

logname parameter specifies a device logical name, but the flags parameter is not set to 0 for

run time.

E_MALLOC Indicates that the malloc operation if necessary memory storage failed.

E_NOCuDv Indicates that there is no customized device data for the bus device whose logical name is

specified by the busname parameter.

E_ODMGET Indicates that an ODM error occurred while retrieving data from the Configuration data base.

E_PARENTSTATE Indicates that the bus device whose name is specified by the busname parameter is not in

the Available state.

E_BUSRESOLVE Indicates that a bus resource for a device did not resolve. The logname parameter can

identify the particular device. However, if this parameter is null, then an E_BUSRESOLVE

value indicates that the bus resource for some unspecified device in the system did not

resolve.

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

ODM Device Configuration Object Classes.

List of Device Configuration Subroutines.

Related Information

Understanding ODM Object Classes and Objects in AIX Version 6.1 General Programming Concepts:

Writing and Debugging Programs.

Chapter 1. Configuration Subsystem 3

genmajor Device Configuration Subroutine

Purpose

Generates the next available major number for a device driver instance.

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

long genmajor (device_driver_instance_name)

char *device_driver_instance_name;

Parameters

 device_driver_instance_name Points to a character string containing the device driver instance

name.

Description

The genmajor device configuration subroutine is one of the routines designated for accessing the

Customized Device Driver (CuDvDr) object class. If a major number already exists for the given device

driver instance, it is returned. Otherwise, a new major number is generated.

The genmajor subroutine creates an entry (object) in the CuDvDr object class for the major number

information. The lowest available major number or the major number that has already been allocated is

returned. The CuDvDr object class is locked exclusively by this routine until its completion.

Return Values

If the genmajor subroutine executes successfully, a major number is returned. This major number is either

the lowest available major number or the major number that has already been allocated to the device

instance.

A value of -1 is returned if the genmajor subroutine fails.

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

Related Information

The reldevno device configuration subroutine, relmajor device configuration subroutine.

List of ODM Commands and Subroutines in AIX Version 6.1 General Programming Concepts: Writing and

Debugging Programs.

Customized Device Driver (CuDvDr) object class.

List of Device Configuration Subroutines.

4 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

genminor Device Configuration Subroutine

Purpose

Generates either the smallest unused minor number available for a device, a preferred minor number if it

is available, or a set of unused minor numbers for a device.

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

int *genminor (device_instance, major_no, preferred_minor,

 minors_in_grp, inc_within_grp, inc_btwn_grp)

char * device_instance;

int major_no;

int preferred_minor;

int minors_in_grp;

int inc_within_grp;

int inc_btwn_grp;

Parameters

 device_instance Points to a character string containing the device instance name.

major_no Contains the major number of the device instance.

preferred_minor Contains a single preferred minor number or a starting minor number for

generating a set of numbers. In the latter case, the genminor subroutine can be

used to get a set of minor numbers in a single call.

minors_in_grp Indicates how many minor numbers are to be allocated.

inc_within_grp Indicates the interval between minor numbers.

inc_btwn_grp Indicates the interval between groups of minor numbers.

Description

The genminor device configuration subroutine is one of the designated routines for accessing the

Customized Device Driver (CuDv) object class. To ensure that unique numbers are generated, the object

class is locked by this routine until its completion.

If a single preferred minor number needs to be allocated, it should be given in the preferred_minor

parameter. In this case, the other parameters should contain an integer value of 1. If the desired number is

available, it is returned. Otherwise, a null pointer is returned, indicating that the requested number is in

use.

If the caller has no preference and only requires one minor number, this should be indicated by passing a

value of -1 in the preferred_minor parameter. The other parameters should all contain the integer value of

1. In this case, the genminor subroutine returns the lowest available minor number.

If a set of numbers is desired, then every number in the designated set must be available. An unavailable

number is one that has already been assigned. To get a specific set of minor numbers allocated, the

preferred_minor parameter contains the starting minor number. If this set has a minor number that is

unavailable, then the genminor subroutine returns a null pointer indicating failure.

If the set of minor numbers needs to be allocated with the first number beginning on a particular boundary

(that is, a set beginning on a multiple of 8), then a value of -1 should be passed in the preferred_minor

Chapter 1. Configuration Subsystem 5

parameter. The inc_btwn_grp parameter should be set to the multiple desired. The genminor subroutine

uses the inc_btwn_grp parameter to find the first complete set of available minor numbers.

If a list of minor numbers is to be returned, the return value points to the first in a list of preferred minor

numbers. This pointer can then be incremented to move through the list to access each minor number.

The minor numbers are returned in ascending sorted order.

Return Values

In the case of failure, a null pointer is returned. If the genminor subroutine succeeds, a pointer is returned

to the lowest available minor number or to a list of minor numbers.

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

Related Information

The genmajor device configuration subroutine, getminor device configuration subroutine, reldevno device

configuration subroutine.

List of ODM Commands and Subroutines in AIX Version 6.1 General Programming Concepts: Writing and

Debugging Programs.

Customized Device Driver (CuDvDr) object class.

List of Device Configuration Subroutines.

genseq Device Configuration Subroutine

Purpose

Generates a unique sequence number for creating a device’s logical name.

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

int genseq (prefix)

char *prefix;

Parameters

 prefix Points to the character string containing the prefix name of the device.

Description

The genseq device configuration subroutine generates a unique sequence number to be concatenated

with the device’s prefix name. The device name in the Customized Devices (CuDv) object class is the

concatenation of the prefix name and the sequence number. The rules for generating sequence numbers

are as follows:

v A sequence number is a nonnegative integer. The smallest sequence number is 0.

6 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

v When deriving a device instance logical name, the next available sequence number (relative to a given

prefix name) is allocated. This next available sequence number is defined to be the smallest sequence

number not yet allocated to device instances using the same prefix name.

v Whether a sequence number is allocated or not is determined by the device instances in the CuDv

object class. If an entry using the desired prefix exists in this class, then the sequence number for that

entry has already been allocated.

It is up to the application to convert this sequence number to character format so that it can be

concatenated to the prefix to form the device name.

Return Values

If the genseq subroutine succeeds, it returns the generated sequence number in integer format. If the

subroutine fails, it returns a value of -1.

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

Related Information

Customized Devices (CuDv) object class.

List of ODM Commands and Subroutines in AIX Version 6.1 General Programming Concepts: Writing and

Debugging Programs.

getattr Device Configuration Subroutine

Purpose

Returns current values of an attribute object.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

struct CuAt *getattr (devname, attrname, getall, how_many)

char * devname;

char * attrname;

int getall;

int * how_many;

Parameters

 devname Specifies the device logical name.

attrname Specifies the attribute name.

getall Specifies a Boolean flag that, when set to True, indicates that a list of attributes is to be

returned to the calling routine.

how_many Points to how many attributes the getattr subroutine has found.

Chapter 1. Configuration Subsystem 7

Description

The getattr device configuration subroutine returns the current value of an attribute object or a list of

current values of attribute objects from either the Customized Attribute (CuAt) object class or the

Predefined Attribute (PdAt) object class. The getattr device configuration subroutine queries the CuAt

object class for the attribute object matching the device logical name and the attribute name. It is the

application’s responsibility to lock the Device Configuration object classes.

The getattr subroutine allocates memory for CuAt object class structures that are returned. This memory

is automatically freed when the application exits. However, the application must free this memory if it

invokes getattr several times and runs for a long time.

To get a single attribute, the getall parameter should be set to False. If the object exists in the CuAt object

class, a pointer to this structure is returned to the calling routine.

However, if the object is not found, the getattr subroutine assumes that the attribute takes the default

value found in the PdAt object class. In this case, the PdAt object class is queried for the attribute

information. If this information is found, the relevant attribute values (that is, default value, flag information,

and the NLS index) are copied into a CuAt structure. This structure is then returned to the calling routine.

Otherwise, a null pointer is returned indicating an error.

To get all the customized attributes for the device name, the getall parameter should be set to True. In this

case, the attrname parameter is ignored. The PdAt and CuAt object classes are queried and a list of CuAt

structures is returned. The PdAt objects are copied to CuAt structures so that one list may be returned.

Note: The getattr device configuration subroutine will fail unless you first call the odm_initialize

subroutine.

Return Values

Upon successful completion, the getattr subroutine returns a pointer to a list of CuAt structures. If the

operation is unsuccessful, a null pointer is returned.

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

Related Information

The odm_initialize subroutine, the putattr device configuration subroutine.

Predefined Attribute (PdAt) object class, Customized Attribute (CuAt) object class.

Device Configuration Subsystem Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Understanding ODM Object Classes and Objects in AIX Version 6.1 General Programming Concepts:

Writing and Debugging Programs.

ODM Device Configuration Object Classes in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

8 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

getminor Device Configuration Subroutine

Purpose

Gets the minor numbers associated with a major number from the Customized Device Driver (CuDvDr)

object class.

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

int *getminor (major_no, how_many, device_instance)

int major_no;

int * how_many;

char * device_instance;

Parameters

 major_no Specifies the major number for which the corresponding minor number or numbers is

desired.

how_many Points to the number of minor numbers found corresponding to the major_no

parameter.

device_instance Specifies a device instance name to use when searching for minor numbers. This

parameter is used in conjunction with the major_no parameter.

Description

The getminor device configuration subroutine is one of the designated routines for accessing the CuDvDr

object class. This subroutine queries the CuDvDr object class for the minor numbers associated with the

given major number or device instance or both.

If the device_instance parameter is null, then only the major_no parameter is used to obtain the minor

numbers. Otherwise, both the major_no and device_instance parameters should be used. The number of

minor numbers found in the query is returned in the how_many parameter.

The CuDvDr object class is locked exclusively by the getminor subroutine for the duration of the routine.

The return value pointer points to a list that contains the minor numbers associated with the major number.

This pointer is then used to move through the list to access each minor number. The minor numbers are

returned in ascending sorted order.

The getminor subroutine also returns the number of minor numbers in the list to the calling routine in the

how_many parameter.

Return Values

If the getminor routine fails, a null pointer is returned.

If the getminor subroutine succeeds, one of two possible values is returned. If no minor numbers are

found, null is returned. In this case, the how_many parameter points to an integer value of 0. However, if

minor numbers are found, then a pointer to a list of minor numbers is returned. The minor numbers are

returned in ascending sorted order. In the latter case, the how_many parameter points to the number of

minor numbers found.

Chapter 1. Configuration Subsystem 9

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

Related Information

The genminor device configuration subroutine, genmajor device configuration subroutine, reldevno

device configuration subroutine.

Customized Device Driver (CuDvDr) object class.

List of Device Configuration Subroutines.

loadext Device Configuration Subroutine

Purpose

Loads or unloads kernel extensions, or queries for kernel extensions in the kernel.

Syntax

#include <sys/types.h>

mid_t loadext (dd_name, load, query)

char *dd_name;

int load, query;

Parameters

 dd_name Specifies the name of the kernel extension to be loaded, unloaded, or queried.

load Specifies whether the loadext subroutine should load the kernel extension.

query Specifies whether a query of the kernel extension should be performed.

Description

The loadext device configuration subroutine provides the capability to load or unload kernel extensions. It

can also be used to obtain the kernel module identifier (kmid) of a previously loaded object file. The kernel

extension name passed in the dd_name parameter is either the base name of the object file or contains

directory path information. If the kernel extension path name supplied in the dd_name parameter has no

leading ./ (dot, slash), ../ double-dot, slash), or / (slash) characters, then the loadext subroutine

concatenates the /usr/lib/drivers file and the base name passed in the dd_name parameter to arrive at an

absolute path name. Otherwise, the path name provided in the dd_name parameter is used unmodified.

If the load parameter has a value of True, the specified kernel extension and its kmid are loaded. If the

specified object file has already been loaded into the kernel, its load count is incremented and a new copy

is not loaded.

If the load parameter has a value of False, the action taken depends on the value of the query parameter.

If query is False, the loadext routine requests an unload of the specified kernel extension. This causes the

kernel to decrement the load count associated with the object file. If the load count and use count of the

object file become 0, the kernel unloads the object file. If the query parameter is True, then the loadext

subroutine queries the kernel for the kmid of the specified object file. This kmid is then returned to the

caller.

If both the load and query parameters have a value of True, the load function is performed.

10 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Attention: Repeated loading and unloading of kernel extensions may cause a memory leak.

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

Return Values

Upon successful completion, the loadext subroutine returns the kmid. If an error occurs or if the queried

object file is not loaded, the routine returns a null value.

Related Information

The sysconfig subroutine.

Understanding Kernel Extension Binding in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

putattr Device Configuration Subroutine

Purpose

Updates, deletes, or creates an attribute object in the Customized Attribute (CuAt) object class.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

int putattr (cuobj)

struct CuAt *cuobj;

Parameters

 cuobj Specifies the attribute object.

Description

The putattr device configuration subroutine either updates an old attribute object, creates a new object for

the attribute information, or deletes an existing object in the CuAt object class. The putattr subroutine

queries the CuAt object class to determine whether an object already exists with the device name and

attribute name specified by the cuobj parameter.

If the attribute is found in the CuAt object class and its value (as given in the cuobj parameter) is to be

changed back to the default value for this attribute, the customized object is deleted. Otherwise, the

customized object is simply updated.

If the attribute object does not already exist and its attribute value is being changed to a non-default value,

a new object is added to the CuAt object class with the information given in the cuobj parameter.

Chapter 1. Configuration Subsystem 11

Note: The putattr device configuration subroutine will fail unless you first call the odm_initialize

subroutine.

Return Values

 0 Indicates a successful operation.

-1 Indicates a failed operation.

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

Related Information

The odm_initialize subroutine, the getattr device configuration subroutine.

Customized Attribute (CuAt) object class.

Device Configuration Subsystem Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Object Data Manager (ODM) Overview for Programmers in AIX Version 6.1 General Programming

Concepts: Writing and Debugging Programs.

reldevno Device Configuration Subroutine

Purpose

Releases the minor or major number, or both, for a device instance.

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

int reldevno (device_instance_name, release)

char *device_instance_name;

int release;

Parameters

 device_instance_name Points to the character string containing the device instance name.

release Specifies whether the major number should be released. A value of True

releases the major number; a value of False does not.

Description

The reldevno device configuration subroutine is one of the designated access routines to the Customized

Device Driver (CuDvDr) object class. This object class is locked exclusively by this routine until its

completion. All minor numbers associated with the device instance name are deleted from the CuDvDr

object class. That is, each object is deleted from the class. This releases the minor numbers for reuse.

The major number is released for reuse if the following two conditions exist:

v The object to be deleted contains the last minor number for a major number.

12 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

v The release parameter is set to True.

If you prefer to release the major number yourself, then the relmajor device configuration subroutine can

be called. In this case, you should also set the release parameter to False. All special files, including

symbolically linked special files, corresponding to the deleted objects are deleted from the file system.

Return Values

 0 Indicates successful completion.

-1 Indicates a failure to release the minor number or major number, or both.

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

Related Information

The genmajor device configuration subroutine, genminor device configuration subroutine, relmajor

device configuration subroutine.

Customized Device Driver (CuDvDr) object class.

relmajor Device Configuration Subroutine

Purpose

Releases the major number associated with the specified device driver instance name.

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

int relmajor (device_driver_instance_name)

char *device_driver_instance_name;

Parameter

 device_driver_instance_name Points to a character string containing the device driver instance

name.

Description

The relmajor device configuration subroutine is one of the designated access routines to the Customized

Device Driver (CuDvDr) object class. To ensure that unique major numbers are generated, the CuDvDr

object class is locked exclusively by this routine until the major number has been released.

The relmajor routine deletes the object containing the major number of the device driver instance name.

Return Values

 0 Indicates successful completion.

-1 Indicates a failure to release the major number.

Chapter 1. Configuration Subsystem 13

Files

 /usr/lib/libcfg.a Archive of device configuration subroutines.

Related Information

The genmajor device configuration subroutine, reldevno device configuration subroutine.

Customized Device Driver (CuDvDr) object class.

Writing Optional Start and Stop Methods

This article describes how optional Start and Stop device methods work. It also suggests guidelines for

programmers writing their own optional Start and Stop device configuration methods.

Syntax

sttDev -l Name

stpDev -l Name

Description

The Start and Stop methods are optional. They allow a device to support the additional device state of

Stopped. The Start method takes the device from the Stopped state to the Available state. The Stop

method takes the device from the Available state to the Stopped state. Most devices do not have Start and

Stop methods.

The Stopped state keeps a configured device in the system, but renders it unusable by applications. In this

state, the device’s driver is loaded and the device is defined to the driver. This might be implemented by

having the Stop method issue a command telling the device driver not to accept any normal I/O requests.

If an application subsequently issues a normal I/O request to the device, it will fail. The Start method can

then issue a command to the driver telling it to start accepting I/O requests once again.

If Start and Stop methods are written, the other device methods must be written to account for the

Stopped state. For example, if a method checks for a device state of Available, it might now need to check

for Available and Stopped states.

Additionally, write the Configure method so that it takes the device from the Defined state to the Stopped

state. Also, the Configure method may invoke the Start method, taking the device to the Available state.

The Unconfigure method must change the device to the Defined state from either the Available or Stopped

states.

When used, Start and Stop methods are usually device-specific.

By convention, the first three characters of the name of the Start method are stt. The first three characters

of the name of the Stop method are stp. The remainder of the names (Dev) can be any characters,

subject to operating system file-name restrictions, that identify the device or group of devices that use the

methods.

Flags

 -l name Identifies the logical name of the device to be started or stopped.

14 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

Writing an Unconfigure Method , Writing a Configure Method .

Writing a Change Method

This article describes how a Change device method works. It also suggests guidelines for programmers

writing their own Change device configuration methods.

Syntax

chgDev -l Name [-p Parent] [-w Connection] [-P | -T] [-a Attr=Value [-a Attr=Value ...

] ...]

Description

The Change method applies configuration changes to a device. If the device is in the Defined state, the

changes are simply recorded in the Customized database. If the device is in the Available state, the

Change method must also apply the changes to the actual device by reconfiguring it.

A Change method does not need to support all the flags described for Change methods. For example, if

your device is a pseudo-device with no parent, it need not support parent and connection changes. For

devices that have parents, it may be desirable to disallow parent and connection changes. For printers,

such changes are logical because they are easily moved from one port to another. By contrast, an adapter

card is not usually moved without first shutting off the system. It is then automatically configured at its new

location when the system is rebooted. Consequently, there may not be a need for a Change method to

support parent and connection changes.

Note: In deciding whether to support the -T and -P flags, remember that these options allow a device’s

configuration to get out of sync with the Configuration database. The -P flag is useful for devices

that are typically kept open by the system. The Change methods for most supported devices do not

support the -T flag.

In applying changes to a device in the Available state, the Change method could terminate the device from

the driver, rebuild the device-dependent structure (DDS) using the new information, and redefine the

device to the driver using the new DDS. The method may also need to reload adapter software or perform

other device-specific operations. An alternative is to invoke the device’s Unconfigure method, update the

Customized database, and invoke the device’s Configure method.

By convention, the first three characters of the name of the Change method should be chg. The remainder

of the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify

the device or group of devices that use the method.

Flags

 -l Name Identifies the logical name of the device to be changed.

-p Parent Identifies the logical name of a new parent for the device. This flag is used to move

a device from one parent to another.

-w Connection Identifies a new connection location for the device. This flag either identifies a new

connection location on the device’s existing parent, or if the -p flag is also used, it

identifies the connection location on the new parent device.

-P Indicates that the changes are to be recorded in the Customized database without

those changes being applied to the actual device. This is a useful option for a

device which is usually kept open by the system such that it cannot be changed.

Changes made to the database with this flag are later applied to the device when it

is configured at system reboot.

Chapter 1. Configuration Subsystem 15

-T Indicates that the changes are to be applied only to the actual device and not

recorded in the database. This is a useful option for allowing temporary

configuration changes that will not apply once the system is rebooted.

-a Attr=Value Specifies the device attribute value pairs used for changing specific attribute

values. The Attr=Value parameter contains one or more attribute value pairs for the

-a flag. If you use a -a flag with multiple attribute value pairs, the list of pairs must

be enclosed in quotes with spaces between the pairs. For example, entering -a

Attr=Value lists one attribute value pair, while entering -a ’Attr1=Value1

Attr2=Value2’ lists more than one attribute value pair.

Guidelines for Writing a Change Method

This list of tasks is intended as a guideline for writing a Change method. When writing for a specific

device, some tasks may be omitted. For example, if a device does not support the changing of a parent or

connection, there is no need to include those tasks. A device may have special needs that are not

included in these tasks.

If the Change method is written to invoke the Unconfigure and Configure methods, it must:

 1. Validate the input parameters. The -l flag must be supplied to identify the device that is to be

changed. If your method does not support the specified flag, exit with an error.

 2. Initialize the Object Data Manager (ODM). Use the odm_initialize subroutine and lock the

Configuration database using the odm_lock subroutine. See ″Writing a Define Method″ for an

example.

 3. Retrieve the Customized Device (CuDv) object for the device to be changed by getting the CuDv

object whose Device Name descriptor matches the name supplied with the -l flag. If no object is

found with the specified name, exit with an error.

 4. Validate all attributes being changed. Make certain that the attributes apply to the specified device,

that they can be set by the user, and that they are being set to valid values. The attrval subroutine

can be used for this purpose. If some attributes have values that are dependent on each other, write

the code to cross check them. If invalid attributes are found, the method needs to write information to

standard error describing them. See ″Handling Invalid Attributes″ .

 5. Determine if a new parent device exists. If a new parent device has been specified, find out whether

it exists by querying the CuDv object class for an object whose Device Name descriptor matches the

new parent name. If no match is found, the method exits with an error.

 6. If a new connection has been specified, validate that this device can be connected there. Do this by

querying the Predefined Connection (PdCn) object class for an object whose Unique Type descriptor

matches the link to the Predefined Devices (PdDv) object class descriptor of the parent’s CuDv

object. The Connection Key descriptor of the CuDv object must match the subclass name of the

device being changed, and the Connection Location descriptor of the CuDv object must match the

new connection value. If no match is found, the method exits with an error.

 7. If a match is found, the new connection is valid. If the device is in the Available state, then it should

still be available after being moved to the new connection. Since only one device can be available at

a particular connection, the Change method must check for other available devices at that

connection. If one is found, the method exits with an error.

 8. If the device state is Available and the -P flag was not specified, invoke the device’s Unconfigure

method using the odm_run_method command. This fails if the device has Available child devices,

which is why the Change method does not need to check explicitly for child devices.

 9. If any attribute settings were changed, update the database to reflect the new settings. If a parent or

connection changed, update the Parent Device Logical Name, Location Where Connected on Parent

Device, and Location Code descriptors of the device’s CuDv object.

10. If the device state was in the Available state before being unconfigured, invoke the device’s Configure

method using the odm_run_method command. If this returns an error, leaving the device

unconfigured, the Change method should restore the Customized database to its pre-change state.

16 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

11. Close all object classes and terminate the ODM. Exit with an exit code of 0 if there were no errors.

Handling Invalid Attributes

If the Change method detects attributes that are in error, it must write information to the stderr file to

identify them. This consists of writing the attribute name followed by the attribute description. Only one

attribute and its description is to be written per line. If an attribute name was mistyped so that it does not

match any of the device’s attributes, write the attribute name supplied on a line by itself.

The mkdev and chdev configuration commands intercept the information written to the standard error file

by the Change method. These commands write out the information following an error message describing

that there were invalid attributes. Both the attribute name and attribute description are needed to identify

the attribute. By invoking the mkdev or chdev command directly, the attributes can be identified by name.

When using SMIT, these attributes can be identified by description.

The attribute description is obtained from the appropriate message catalog. A message is identified by

catalog name, set number, and message number. The catalog name and set number are obtained from

the device’s PdDv object. The message number is obtained from the NLS Index descriptor in either the

Predefined Attribute (PdAt) or Customized Attribute (CuAt) object corresponding to the attribute.

Related Information

Writing an Unconfigure Method , Writing a Configure Method

The chdev command, mkdev command, rmdev command.

The attrval subroutine, odm_run_method subroutine.

Customized Devices (CuDv) object class, Predefined Devices (PdDv) object class, Predefined Connection

(PdCn) object class, Predefined Attribute (PdAt) object class, Customized Attribute (CuAt) object class.

Device Dependent Structure (DDS) Overview, Understanding Device Dependencies and Child Devices in

AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Object Data Manager (ODM) Overview for Programmers in AIX Version 6.1 General Programming

Concepts: Writing and Debugging Programs.

Writing a Configure Method

This article describes how a Configure device method works. It also suggests guidelines for programmers

writing their own Configure device configuration methods.

Syntax

cfgDev -l Name [-1 | -2]

Description

The Configure method moves a device from Defined (not available for use in the system) to Available

(available for use in the system). If the device has a driver, the Configure method loads the device driver

into the kernel and describes the device characteristics to the driver. For an intermediate device (such as a

SCSI bus adapter), this method determines which attached child devices are to be configured and writes

their logical names to standard output.

The Configure method is invoked by either the mkdev configuration command or by the Configuration

Manager. Because the Configuration Manager runs a second time in phase 2 system boot and can also be

Chapter 1. Configuration Subsystem 17

invoked repeatedly at run time, a device’s Configure method can be invoked to configure an Available

device. This is not an error condition. In the case of an intermediate device, the Configure method checks

for the presence of child devices. If the device is not an intermediate device, the method simply returns.

In general, the Configure method obtains all the information it needs about the device from the

Configuration database. The options specifying the phase of system boot are used to limit certain functions

to specific phases.

If the device has a parent device, the parent must be configured first. The Configure method for a device

fails if the parent is not in the Available state.

By convention, the first three characters of the name of the Configure method are cfg. The remainder of

the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify the

device or group of devices that use the method.

Flags

 -l Name Identifies the logical name of the device to be configured.

-1 Specifies that the device is being configured in phase 1 of the System boot processing. This

option cannot be specified with the -2 flag. If neither the -1 nor the -2 flags are specified, the

Configure method is invoked at runtime.

-2 Specifies that the device is being configured in phase 2 of the system boot. This option cannot

be specified with the -1 flag. If neither the -1 nor the -2 flags are specified, the Configure

method is invoked at runtime.

Handling Device Vital Product Data (VPD)

Devices that provide vital product data (VPD) are identified in the Predefined Device (PdDv) object class

by setting the VPD flag descriptor to TRUE in each of the device’s PdDv objects. The Configure method

must obtain the VPD from the device and store it in the Customized VPD (CuVPD) object class. Consult

the appropriate hardware documentation to determine how to retrieve the device’s VPD. In many cases,

VPD is obtained from the device driver using the sysconfig subroutine.

Once the VPD is obtained from the device, the Configure method queries the CuVPD object class to see if

the device has hardware VPD stored there. If so, the method compares the VPD obtained from the device

with that from the CuVPD object class. If the VPD is the same in both cases, no further processing is

needed. If they are different, update the VPD in the CuVPD object class for the device. If there is no VPD

in the CuVPD object class for the device, add the device’s VPD.

By first comparing the device’s VPD with that in the CuVPD object class, modifications to the CuVPD

object class are reduced. This is because the VPD from a device typically does not change. Reducing the

number of database writes increases performance and minimizes possible data loss.

Understanding Configure Method Errors

For many of the errors detected, the Configure method exits with the appropriate exit code. In other cases,

the Configure method may need to undo some of the operations it has performed. For instance, after

loading the device driver and defining the device to the driver, the Configure method may encounter an

error while downloading microcode. If this happens, the method will terminate the device from the driver

using the sysconfig subroutine and unload the driver using the loadext subroutine.

The Configure method does not delete the special files or unassign the major and minor numbers if they

were successfully allocated and the special file created before the error was encountered. This is because

the operating system’s configuration scheme allows both major and minor numbers and special files to be

maintained for a device even though the device is unconfigured.

18 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

If the device is configured again, the Configure method will recognize that the major and minor numbers

are allocated and that the special files exist.

By the time the Configure method checks for child devices, it has successfully configured the device.

Errors that occur while checking for child devices are indicated with the E_FINDCHILD exit code. The

mkdev command detects whether the Configure method completed successfully. If needed, it will display a

message indicating that an error occurred while looking for child devices.

Guidelines for Writing a Configure Method

The following tasks are guidelines for writing a Configure method. When writing for a specific device, some

tasks may be omitted. For example, if the device is not an intermediate device or does not have a driver,

the method is written accordingly. A device may also have special requirements not listed in these tasks.

The Configure method must:

 1. Validate the input parameters. The -l logical name flag must be supplied to identify the device that is

to be configured. The -1 and -2 flags cannot be supplied at the same time.

 2. Initialize the Object Data Manager (ODM). Use the odm_initialize subroutine and lock the

Configuration database using the odm_lock subroutine. See ″Writing a Define Method″ for an

example.

 3. Retrieve the Customized Device (CuDv) object for the device to be configured. The CuDv object’s

Device Name descriptor must match the name supplied with the -l logical name flag. If no object is

found with the specified name, the method exits with an error.

 4. Retrieve the Predefined Device (PdDv) object for the device to be configured. The PdDv object’s

Unique Type descriptor must match the link to PdDv object class descriptor of the device’s CuDv

object.

 5. Obtain the LED value descriptor of the device’s PdDv object. Retrieve the LED Value descriptor of the

device’s PdDv object and display this value on the system LEDs using the setleds subroutine if either

the -1 or -2 flag is specified. This specifies when the Configure method will execute at boot time. If

the system hangs during configuration at boot time, the displayed LED value indicates which

Configure method created the problem.

If the device is already configured (that is, the Device State descriptor of the device’s CuDv object

indicates the Available state) and is an intermediate device, skip to the task of detecting child devices.

If the device is configured but is not an intermediate device, the Configure method will exit with no

error.

If the device is in the Defined state, the Configure Method must check the parent device, check for

the presence of a device, obtain the device VPD, and update the device’s CuDv object.

 6. If the device has a parent, the Configure method validates the parent’s existence and verifies that the

parent is in the Available state. The method looks at the Parent Device Logical Name descriptor of

the device’s CuDv object to obtain the parent name. If the device does not have a parent, the

descriptor will be a null string.

When the device has a parent, the Configure method will obtain the parent device’s CuDv object and

check the Device State descriptor. If the object does not exist or is not in the Available state, the

method exits with an error.

Another check must be made if a parent device exists. The Configure method must verify that no

other device connected to the same parent (at the same connection location) has been configured.

For example, two printers can be connected to the same port using a switch box. While each printer

has the same parent and connection, only one can be configured at a time.

The Configure method performs this check by querying the CuDv object class. It queries for objects

whose Device State descriptor is set to the Available state and whose Parent Device Logical Name

and Location Where Connected on Parent Device descriptors match those for the device being

configured. If a match is found, the method exits with an error.

Chapter 1. Configuration Subsystem 19

7. Check the presence of the device. If the device is an adapter card and the Configure method has

been invoked at run time (indicated by the absence of both the -1 and -2 flags), the Configure method

must verify the adapter card’s presence. This is accomplished by reading POS registers from the

card. (The POS registers are obtained by opening and accessing the /dev/bus0 or /dev/bus1 special

file.) This is essential, because if the card is present, the Configure method must invoke the

busresolve library routine to assign bus resources to avoid conflict with other adapter cards in the

system. If the card is not present or the busresolve routine fails to resolve bus resources, the

method exits with an error.

 8. Determine if the device has a device driver. The Configure method obtains the name of the device

driver from the Device Driver Name descriptor of the device’s PdDv object. If this descriptor is a null

string, the device does not have a device driver.

If the device has a device driver, the Configure method must:

a. Load the device driver using the loadext subroutine. See ″Loading a Device Driver″ for more

information.

b. Determine the device’s major number using the genmajor subroutine.

c. Determine the device’s minor number using the getminor or genminor subroutine or by your own

device-dependent routine.

d. Create special files in the /dev directory if they do not already exist. Special files are created with

the mknod subroutine.

e. Build the device-dependent structure (DDS). This structure contains information describing the

characteristics of the device to the device driver. The information is usually, but not necessarily,

obtained from the device’s attributes in the Configuration database. Refer to the appropriate

device driver information to determine what the device driver expects the DDS to look like. The

″Device Dependent Structure (DDS) Overview″ in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts describes the DDS structure.

f. Use the sysconfig subroutine to pass the DDS to the device driver.

g. If code needs to be downloaded to the device, read in the required file and pass the code to the

device through the interface provided by the device driver. The file to be downloaded might be

identified by a Predefined Attribute (PdAt) or Customized Attribute (CuAt) object. By convention,

microcode files are in the /etc/microcode directory (which is a symbolic link to the

/usr/lib/microcode directory). Downloaded adapter software is in the /usr/lib/asw directory.

 9. Obtain the device VPD. After the tasks relating to the device driver are complete, or if the device did

not have a device driver, the Configure method will determine if it needs to obtain vital product data

(VPD) from the device. The VPD Flag descriptor of the device’s PdDv object specifies whether or not

it has VPD. See ″Handling Device Vital Product Data (VPD)″ for more details.

10. Update the CuDv object. At this point, if no errors have been encountered, the device is configured.

The Configure method will update the Device Status descriptor of the device’s CuDv object to indicate

that it is in the Available state. Also, set the Change Status descriptor to SAME if it is currently set to

MISSING. This can occur if the device was not detected at system boot and is being configured at

run time.

11. Define detected child devices not currently represented in the CuDv object class. To accomplish this,

invoke the Define method for each new child device. For each detected child device already defined

in the CuDv object class, the Configure method looks at the child device’s CuDv Change Status Flag

descriptor to see if it needs to be updated. If the descriptor’s value is DONT_CARE, nothing needs to

be done. If it has any other value, it must be set to SAME and the child device’s CuDv object must be

updated. The Change Status Flag descriptor is used by the system to indicate configuration changes.

If the device is an intermediate device but cannot detect attached child devices, query the CuDv

object class about this information. The value of the Change Status Flag descriptor for these child

devices should be DONT_CARE because the parent device cannot detect them. Sometimes a child

device has an attribute specifying to the Configure method whether the child device is to be

configured. The autoconfig attribute of TTY devices is an example of this type of attribute.

20 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Regardless of whether the child devices are detectable, the Configure method will write the device

logical names of the child devices to be configured to standard output, separated by space

characters. If the method was invoked by the Configuration Manager, the Manager invokes the

Configure method for each of the child device names written to standard output.

12. Close all object classes and terminate the ODM. Close all object classes and terminate the ODM. If

there are no errors, use a 0 (zero) code to exit.

Files

 /dev/bus0 Contains POS registers.

/dev/bus1 Contains POS registers.

/etc/microcode directory Contains microcode files. A symbolic link to the /usr/lib/microcode

directory.

/usr/lib/asw directory Contains downloaded adapter software.

Related Information

The mkdev command.

The busresolve subroutine, genmajor subroutine, genminor subroutine, getminor subroutine, loadext

subroutine, mknod subroutine, odm_initialize subroutine, odm_lock subroutine, reldevno subroutine,

relmajor subroutine, sysconfig subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX Version 6.1 General Programming

Concepts: Writing and Debugging Programs.

Customized Devices (CuDv) object class, Predefined Devices (PdDv) object class, Customized Attributes

(CuAt) object class, Predefined Attribute (PdAt) object class, Customized Vital Product Data (CuVPD)

object class.

Understanding Device States, Understanding Device Dependencies and Child Devices, Loading a Device

Driver Configuration Manager Overview, System boot processing, Device Dependent Structure (DDS)

Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Device Configuration Subsystem Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Special Files Overview in AIX Version 6.1 Files Reference.

Writing a Device Method in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts.

Writing an Unconfigure Method , Writing a Define Method .

Writing a Define Method

This article describes how a Define device method works. It also suggests guidelines for programmers

writing their own Define device configuration methods.

Syntax

defDev -c Class -s SubClass -t Type [-p Parent -w Connection] [-l Name]

Chapter 1. Configuration Subsystem 21

Description

The Define method is responsible for creating a customized device in the Customized database. It does

this by adding an object for the device into the Customized Devices (CuDv) object class. The Define

method is invoked either by the mkdev configuration command, by a node configuration program, or by

the Configure method of a device that is detecting and defining child devices.

The Define method uses information supplied as input, as well as information in the Predefined database,

for filling in the CuDv object. If the method is written to support a single device, it can ignore the class,

subclass, and type options. In contrast, if the method supports multiple devices, it may need to use these

options to obtain the PdDv device object for the type of device being customized.

By convention, the first three characters of the name of the Define method should be def. The remainder

of the name (Dev) can be any characters that identify the device or group of devices that use the method,

subject to operating system file-name restrictions.

Flags

 -c Class Specifies the class of the device being defined. Class, subclass, and type are

required to identify the Predefined Device object in the Predefined Device (PdDv)

object class for which a customized device instance is to be created.

-s SubClass Specifies the subclass of the device being defined. Class, subclass, and type are

required to identify the Predefined Device object in the PdDv object class for

which a customized device instance is to be created.

-t Type Specifies the type of the device being defined. Class, subclass, and type are

required to identify the predefined device object in the PdDv object class for which

a customized device instance is to be created.

-p Parent Specifies the logical name of the parent device. This logical name is required for

devices that connect to a parent device. This option does not apply to devices

that do not have parents; for example, most pseudo-devices.

-w Connection Specifies where the device connects to the parent. This option applies only to

devices that connect to a parent device.

-l Name Passed by the mkdev command, specifies the name for the device if the user

invoking the command is defining a new device and wants to select the name for

the device. The Define method assigns this name as the logical name of the

device in the Customized Devices (CuDv) object, if the name is not already in

use. If this option is not specified, the Define method generates a name for the

device. Not all devices support or need to support this option.

Guidelines for Writing a Define Method

This list of tasks is meant to serve as a guideline for writing a Define method. In writing a method for a

specific device, some tasks may be omitted. For instance, if a device does not have a parent, there is no

need to include all of the parent and connection validation tasks. Additionally, a device may have special

needs that are not listed in these tasks.

The Define method must:

 1. Validate the input parameters. Generally, a Configure method that invokes the child-device Define

method is coded to pass the options expected by the child-device Define method. However, the

mkdev command always passes the class, subclass, and type options, while only passing the other

options based on user input to the mkdev command. Thus, the Define method may need to ensure

that all of the options it requires have been supplied. For example, if the Define method expects

parent and connection options for the device being defined, it must ensure that the options are

supplied. Also, a Define method that does not support the -l name specification option will exit with an

error if the option is supplied.

22 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

2. Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock the

configuration database using the odm_lock subroutine. The following code fragment illustrates this

process:

#include <cf.h>

if (odm_initialize() < 0)

 exit(E_ODMINIT); /* initialization failed */

if (odm_lock("/etc/objrepos/config_lock",0) == -1) {

 odm_terminate();

 exit(E_ODMLOCK); /* database lock failed */

}

 3. Retrieve the predefined PdDv object for the type of device being defined. This is done by obtaining

the object from the PdDv object class whose class, subclass, and type descriptors match the class,

subclass, and type options supplied to the Define method. If no match is found, the Define method

will exit with an error. Information will be taken from the PdDv device object in order to create the

CuDv device object.

 4. Ensure that the parent device exists. If the device being defined connects to a parent device and the

name of the parent has been supplied, the Define method must ensure that the specified device

actually exists. It does this by retrieving the CuDv object whose Device Name descriptor matches the

name of the parent device supplied using the -p flag. If no match is found, the Define method will exit

with an error.

 5. If the device has a parent and that parent device exists in the CuDv object class, validate that the

device being defined can be connected to the specified parent device. To do this, retrieve the

predefined connection object from the Predefined Connection (PdCn) object class whose Unique

Type, Connection Key, and Connection Location descriptors match the Link to Predefined Devices

Object Class descriptor of the parent’s CuDv object obtained in the previous step and the subclass

and connection options input into the Define method, respectively. If no match is found, an invalid

connection is specified. This may occur because the specified parent is not an intermediate device,

does not accept the type of device being defined (as described by subclass), or does not have the

connection location identified by the connection option.

 6. Assign a logical name to the device. Each newly assigned logical name must be unique to the

system. If a name has been supplied using the -l flag, make certain it is unique before assigning it to

the device. This is done by checking the CuDv object class for any object whose Device Name

descriptor matches the desired name. If a match is found, the name is already used and the Define

method must exit with an error.

If the Define method is to generate a name, it can do so by obtaining the prefix name from the Prefix

Name descriptor of the device’s PdDv device object and invoking the genseq subroutine to obtain a

unique sequence number for this prefix. Appending the sequence number to the prefix name results

in a unique name. The genseq routine looks in the CuDv object class to ensure that it assigns a

sequence number that has not been used with the specified prefix to form a device name.

In some cases, a Define method may need to ensure that only one device of a particular type has

been defined. For example, there can only be one pty device customized in the CuDv object class.

The pty Define method does this by querying the CuDv object class to see if a device by the name

pty0 exists. If it does, the pty device has already been defined. Otherwise, the Define method

proceeds to define the pty device using the name pty0.

 7. Determine the device’s location code. If the device being defined is a physical device, it has a

location code. ″Device location codes″ in Operating system and device management has more

information about location codes.

 8. Create the new CuDv object.

Set the CuDv object descriptors as follows:

 Descriptor Setting

Device name Use the name as determined in step 6.

Device status flag Set to the Defined state.

Chapter 1. Configuration Subsystem 23

Descriptor Setting

Change status flag Set to the same value as that found in the Change Status Flag descriptor in

the device’s PdDv object.

Device driver instance Set to the same value as the Device Driver Name descriptor in the device’s

PdDv object. This value may be used later by the Configure method.

Device location code Set to a null string if the device does not have a location code. Otherwise, set

it to the value computed.

Parent device logical name Set to a null string if the device does not have a parent. Otherwise, set this

descriptor to the parent name as specified by the parent option.

Location where connected on

parent device

Set to a null string if the device does not have a parent. Otherwise, set this

descriptor to the value specified by the connection option.

Link to predefined devices object

class

Set to the value obtained from the Unique Type descriptor of the device’s

PdDv object.

 9. Write the name of the device to standard output. A blank should be appended to the device name to

serve as a separator in case other methods write device names to standard output. Either the mkdev

command or the Configure method that invoked the Define method will intercept standard output to

obtain the device name assigned to the device.

10. Close all object classes and terminate the ODM. Exit with an exit code of 0 if there were no errors.

Related Information

The mkdev command.

The genseq device configuration subroutine, odm_initialize subroutine, odm_lock subroutine.

Writing an Undefine Method , Writing a Configure Method .

Customized Devices (CuDv) object class, Predefined Devices object class, Predefined Connection object

class, Predefined Attribute (PdAt) object class, Customized Attribute (CuAt) object class.

Understanding Device States, Understanding Device Classes, Subclasses, and Types, Understanding

Device Dependencies and Child Devices, Loading A Device Driver Configuration Manager Overview,

System boot processing, Writing a Device Method in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

Object Data Manager (ODM) Overview for Programmers in AIX Version 6.1 General Programming

Concepts: Writing and Debugging Programs.

Device location codes in Operating system and device management.

Writing an Unconfigure Method

This article describes how an Unconfigure device method works. It also suggests guidelines for

programmers writing their own Unconfigure device configuration method.

Syntax

ucfgDev -l Name

Description

The Unconfigure method takes an Available device (available for use in the system) to a Defined state (not

available for use in the system). All the customized information about the device is retained in the

database so that the device can be configured again exactly as it was before.

24 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The actual operations required to make a device defined depend on how the Configure method made the

device available in the first place. For example, if the device has a device driver, the Configure method

must have loaded a device driver in the kernel and described the device to the driver through a device

dependent structure (DDS). Then, the Unconfigure method must tell the driver to delete the device

instance and request an unload of the driver.

If the device is an intermediate device, the Unconfigure method must check the states of the child devices.

If any child device is in the Available state, the Unconfigure method fails and leaves the device configured.

To ensure proper system operation, all child devices must be unconfigured before the parent can be

unconfigured.

Although the Unconfigure method checks child devices, it does not check the device dependencies

recorded in the Customized Dependency (CuDep) object class. See ″Understanding Device Dependencies

and Child Devices″ in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

The Unconfigure method also fails if the device is currently open. In this case, the device driver returns a

value for the errno global variable of EBUSY to the Unconfigure method when the method requests the

driver to delete the device. The device driver is the only component at that instant that knows the device is

open. As in the case of configured child devices, the Unconfigure method fails and leaves the device

configured.

When requesting the device driver to terminate the device, the errno global variable values other than

EBUSY can be returned. The driver should return ENODEV if it does not know about the device. Under

the best circumstances, however, this case should not occur. If ENODEV is returned, the Unconfigure

method should unconfigure the device so that the database and device driver are in agreement. If the

device driver returns any other errno global value, it deletes any stored characteristics for the specified

device instance. The Unconfigure method indicates that the device is unconfigured by setting the state to

Defined.

The Unconfigure method does not generally release the major and minor number assignments for a

device, or delete the device’s special files in the /dev directory.

By convention, the first four characters of the name of the Unconfigure method should be ucfg. The

remainder of the name (Dev) can be any characters, subject to operating system file-name restrictions,

that identify the device or group of devices that use the method.

Flags

 -l Name Identifies the logical name of the device to be unconfigured.

Guidelines for Writing an Unconfigure Method

This list of tasks is intended as a guideline for writing an Unconfigure method. When you write a method

for a specific device, some tasks may be omitted. For example, if a device is not an intermediate device or

does not have a driver, the method can be written accordingly. The device may have special needs that

are not listed in these tasks.

The Unconfigure method must:

1. Validate the input parameters. The -l flag must be supplied to identify the device that is to be

unconfigured.

2. Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock the

Configuration database using the odm_lock subroutine. See ″Writing a Define Method″ for an

example.

Chapter 1. Configuration Subsystem 25

3. Retrieve the customized device (CuDv) object for the device to be unconfigured. Use the CuDv object

whose Device Name descriptor matches the name supplied with the -l flag. If no object is found with

the specified name, the method exits with an error.

4. Check the state of the device. If the Device Status descriptor indicates that the device is in the Defined

state, then it is already unconfigured. In this case, exit.

5. Check for child devices in the available state. This can be done by querying the CuDv object class for

objects whose Parent Device Logical Name descriptor matches this device’s name and whose Device

Status descriptor is not Defined. If a match is found, this method must exit with an error.

6. Retrieve the Predefined Device (PdDv) object for the device to be unconfigured by getting the PdDv

object whose Unique Type descriptor matches the Link to Predefined Devices Object Class descriptor

of the device’s CuDv object. This object will be used to get the device driver name.

7. Delete device instance from driver and unload driver. Determine if the device has a driver. The

Unconfigure method obtains the name of the device from the Device Driver Name descriptor of the

PdDv object. If this descriptor is a null string, the device does not have a driver. In this situation, skip

to the task of updating the device’s state.

If the device has a device driver, the Unconfigure method needs to include the following tasks:

a. Determine the device’s major and minor numbers using the genmajor and getminor subroutines.

These are used to compute the device’s devno, using the makedev macro defined in the

/usr/include/sysmacros.h file, in preparation for the next task.

b. Use the sysconfig subroutine to tell the device driver to terminate the device. If a value of EBUSY

for the errno global variable is returned, this method exits with an error.

c. Use the loadext routine to unload the device driver from the kernel. The loadext subroutine will not

actually unload the driver if there is another device still configured for the driver. See ″Loading a

Device Driver″ for more details.

8. Set defined status. The device is now unconfigured. The Unconfigure method will update the Device

Status descriptor of the device’s CuDv object to the Defined state.

9. Close all object classes and terminate the ODM. If there are no errors, exit with an exit code of 0

(zero).

Files

 /usr/include/sysmacros.h Contains macro definitions.

Related Information

The mkdev command.

The genmajor subroutine, getminor subroutine, loadext subroutine, odm_initialize subroutine,

odm_lock subroutine, sysconfig subroutine.

Writing a Configure Method , Loading A Device Driver , Writing a Define Method .

Customized Devices (CuDv) object class, Predefined Devices (PdDv) object class.

Object Data Manager (ODM) Overview for Programmers in AIX Version 6.1 General Programming

Concepts: Writing and Debugging Programs.

The Device Dependent Structure (DDS) Overview in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

Understanding Device States, Understanding Device Dependencies and Child Devices, Loading a Device

Driver in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

26 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Writing an Undefine Method

This article describes how an Undefine device method works. It also suggests guidelines for programmers

writing their own Undefine device configuration methods.

Syntax

undDev -l Name

Description

The Undefine method deletes a Defined device from the Customized database. Once a device is deleted,

it cannot be configured until it is once again defined by the Define method.

The Undefine method is also responsible for releasing the major and minor number assignments for the

device instance and deleting the device’s special files from the /dev directory. If minor number

assignments are registered with the genminor subroutine, the Undefine method can release the major and

minor number assignments and delete the special files by using the reldevno subroutine.

By convention, the first three characters of the name of the Undefine method are und. The remainder of

the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify the

device or group of devices that use the method.

Flags

 -l Name Identifies the logical name of the device to be undefined.

Guidelines for Writing an Undefine Method

This list of tasks is intended as a guideline for writing an Undefine method. Some devices may have

specials needs that are not addressed in these tasks.

The Undefine method must:

 1. Validate the input parameters. The -l flag must be supplied to identify the device to be undefined.

 2. Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock the

configuration database using the odm_lock subroutine. See ″Writing a Device Method″ in AIX

Version 6.1 Kernel Extensions and Device Support Programming Concepts for an example.

 3. Retrieve the Customized Device (CuDv) object for the device to be undefined. This is done by getting

the CuDv object whose Device Name descriptor matches the name supplied with the -l flag. If no

object is found with the specified name, this method exits with an error.

 4. Check the device’s current state. If the Device Status descriptor indicates that the device is not in the

Defined state, then it is not ready to be undefined. If this is the case, this method exits with an error.

 5. Check for any child devices. This check is accomplished by querying the CuDv object class for any

objects whose Parent Device Logical Name descriptor matches this device’s name. If the device has

child devices, regardless of the states they are in, the Undefine method will fail. All child devices must

be undefined before the parent can be undefined.

 6. Check to see if this device is listed as a dependency of another device. This is done by querying the

Customized Dependency (CuDep) object class for objects whose Dependency descriptor matches

this device’s logical name. If a match is found, the method exits with an error. A device may not be

undefined if it has been listed as a dependent of another device. ″Understanding Device

Dependencies and Child Devices″ in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts discusses dependencies.

Chapter 1. Configuration Subsystem 27

7. Delete Special Files and major and minor numbers. If no errors have been encountered, the method

can delete customized information. First, delete the special files from the /dev directory. Next, delete

all minor number assignments. If the last minor number has been deleted for a particular major

number, release the major number as well, using the relmajor subroutine. The Undefine method

should never delete objects from the Customized Device Driver (CuDvDr) object class directly, but

should always use the routines provided. If the minor number assignments are registered with the

genminor subroutine, all of the above can be accomplished using the reldevno subroutine.

 8. Delete all attributes for the device from the Customized Attribute (CuAt) object class. Simply delete all

CuAt objects whose Device Name descriptor matches this device’s logical name. It is not an error if

the ODM routines used to delete the attributes indicate that no objects were deleted. This indicates

that the device has no attributes that have been changed from the default values.

 9. Delete the Customized VPD (CuVPD) object for the device, if it has one.

10. Delete the Customized Dependency (CuDep) objects that indicate other devices that are dependents

of this device.

11. Delete the Customized Device (CuDv) object for the device.

12. Close all object classes and terminate the ODM. Exit with an exit code of 0 (zero) if there are no

errors.

Files

 /dev directory Contains the device special files.

Related Information

The genminor subroutine, odm_initialize subroutine, odm_lock subroutine, reldevno subroutine,

relmajor subroutine.

Writing a Define Method .

Customized Devices (CuDv) object class, Predefined Devices (PdDv) object class, Customized Attributes

(CuAt) object class, Predefined Attribute (PdAt) object class, Customized Vital Product Data (CuVPD)

object class.

Understanding Device Dependencies and Child Devices in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

Object Data Manager (ODM) Overview for Programmers in AIX Version 6.1 General Programming

Concepts: Writing and Debugging Programs.

Special Files Overview in AIX Version 6.1 Files Reference.

Device Methods for Adapter Cards: Guidelines

The device methods for an adapter card are essentially the same as for any other device. They need to

perform roughly the same tasks as those described in ″Writing a Device Method″ in AIX Version 6.1

Kernel Extensions and Device Support Programming Concepts. However, there is one additional important

consideration. The Bus Configure method, or Bus Configurator, is responsible for discovering the adapter

cards present in the system and for assigning bus resources to each of the adapters. These resources

include interrupt levels, DMA arbitration levels, bus memory, and bus I/O space.

Adapters are typically defined and configured at boot time. However, if an adapter is not configured due to

unresolvable bus resource conflicts, or if an adapter is unconfigured at run time with the rmdev command,

an attempt to configure an adapter at run time may occur.

28 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

If an attempt is made, the Configure method for the adapter must take these steps to ensure system

integrity:

1. Ensure the card is present in the system by reading the POS(0) and POS(1) registers from the slot

that is supposed to contain the card and comparing these values with what they are supposed to be

for the card.

2. Invoke the busresolve subroutine to ensure that the adapter’s bus resource attributes, as represented

in the database, do not conflict with any of the configured adapters.

Additional guidelines must be followed when adding support for a new adapter card. They are discussed

in:

v Adapter-Specific Considerations for the Predefined Attributes (PdAt) object class

v Writing a Configure Method

v Adapter-Specific Considerations for the Predefined Devices (PdDv) object class

Related Information

ODM Device Configuration Object Classes.

The rmdev command.

Understanding Direct Memory Access (DMA), Understanding Interrupts in AIX Version 6.1 Kernel

Extensions and Device Support Programming Concepts.

Machine Device Driver

The machine device driver provides an interface to platform-specific hardware for the system configuration

and reliability, availability, and serviceability (RAS) subsystems. The machine device driver supports these

special files for accessing this hardware from user mode: /dev/nvram and /dev/bus0 ... /dev/busN where

N is the bus number. The /dev/nvram special file provides access to special nonvolatile random access

memory (RAM) for the purposes of storing or retrieving error information and system boot information. The

/dev/busN special files provide access to the I/O buses for system configuration and diagnostic purposes.

The presence and use of this device driver and its associated special files are platform-specific and should

not be used by general applications.

A program must have the appropriate privilege to open special files /dev/nvram or /dev/busN. For AIX

4.2.1 and later, it must also have the appropriate privilege to open Common Hardware Reference Platform

(CHRP) bus special files /dev/pciN, or /dev/isaN.

Driver Initialization and Termination

Special initialization and termination requirements do not exist for the machine device driver. This driver is

statically bound to the operating system kernel and is initialized during kernel initialization. This device

driver does not support termination and cannot be unloaded.

/dev/nvram Special File Support

open and close Subroutines

The machine device driver supports the /dev/nvram special file as a multiplexed character special file.

This special file and the support for NVRAM is provided exclusively on this hardware platform to support

the system configuration and RAS subsystems. These subsystems open the /dev/nvram/n special file with

a channel name, n, specifying the data area to be accessed. An exception is the /dev/nvram file with no

channel specified, which provides access to general NVRAM control functions and the LED display on the

front panel.

Chapter 1. Configuration Subsystem 29

A special channel name of base can be used to read the base customize information stored as part of the

boot record. This information was originally copied to the disk by the savebase command and is only

copied by the driver at boot time. The base customize information can be read only once. When the

/dev/nvram/base file is closed for the first time, the buffer containing the base customize information is

freed. Subsequent opens will return an ENOENT error code.

read and write Subroutines

The write subroutine is not supported and will return an ENODEV error code. The read subroutine is

supported after a successful open of the base channel only. The read subroutine transfers data from the

data area associated with the specified channel. The transfer starts at the offset (within the channel’s data

area) specified by the offset field associated with the file pointer used on the subroutine call.

On a read subroutine, if the end of the data area is reached before the transfer count is reached, the

number of bytes read before the end of the data area was reached is returned. If the read subroutine

starts at the end of the data area, zero bytes are read. If the read subroutine starts after the end of the

data area, an ENXIO error code is returned by the driver.

The lseek subroutine can be used to change the starting data-area offset to be used on a subsequent

read call.

ioctl Operations

The following ioctl operations can be issued to the machine device driver after a successful open of the

/dev/nvram/ special file:

 Operation Description

IOCINFO Returns machine device driver information in the caller’s devinfo structure (pointed

to by the arg parameter). This structure is defined in the /usr/include/sys/devinfo.h

file. The device type for this device driver is DD_PSEU.

MIOGETKEY Returns the status of the keylock. The arg parameter should point to a mach_dd_io

structure. The md_data field should point to an integer; this contains the status of the

keylock on return.

Note: Not all platforms have a physical keylock that software can read. For these

platforms, status is established at boot time.

MIOGETPS Returns the power status. The arg parameter should point to a mach_dd_io

structure. The md_data field should point to an integer; this contains the power status

on return.

Note: Not all platforms provide power status.

MIOIPLCB Returns the contents of the boot control block. The arg parameter is set to point to a

mach_dd_io structure, which describes the data area where the boot control block is

to be placed. The format of this control block is specified in the /usr/include/sys/
iplcb.h file and the mach_dd_io structure is defined in the /usr/include/sys/mdio.h

file. This ioctl operation uses the following fields in the mach_dd_io structure:

md_data

Points to a buffer at least the size of the value in the md_size field.

md_size

Specifies the size (in bytes) of the buffer pointed to by the md_data field and

is the number of bytes to be returned from the boot control block.

md_addr

Specifies an offset into the boot control block where data is to be obtained.

Note: Regions within this control block are platform dependent.

30 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

MIONVGET Reads data from an NVRAM address and returns data in the buffer provided by the

caller. This is useful for reading the ROS area of NVRAM. A structure defining this

area is in the /usr/include/sys/mdio.h file.

Use of this ioctl operation is not supported for systems that are compliant with the

PowerPC Reference Platform® or the Common Hardware Reference Platform and, in

AIX 4.2.1 and later, cause the operation to fail with an EINVAL error code.

MIONVLED Writes the value found in the arg parameter to the system front panel LED display.

On this panel, three digits are available and the arg parameter value can range from

0 to hex FFF. An explanation of the LED codes can be found in the

/usr/include/sys/mdio.h file.

Note: Not all platforms have an LED.

MIONVPUT Writes data to an NVRAM address from the buffer provided by the caller. This

operation is used only to update the ROS area of NVRAM and only by system

commands. Use of this operation in other areas of NVRAM can cause unpredictable

results to occur. If the NVRAM address provided is within the ROS area, a new cyclic

redundancy code (CRC) for the ROS area is generated.

Use of this ioctl operation is not supported on systems that are compliant with the

PowerPC Reference Platform or the Common Hardware Reference Platform and, in

AIX 4.2.1 and later, cause the operation to fail with an EINVAL error code.

ioctl Operations for POWER-based Systems

The following four ioctl operations can be used only with the POWER-based architecture. If used with

other systems, or if an illegal offset address, size, or slot number is supplied, these operations return an

EINVAL error code.

These ioctls can be called from user space or kernel space (using the fp_ioctl kernel service), but they

are available only in the process environment.

The ioctl argument must be a pointer to a mach_dd_io structure.

The lock will be obtained to serialize access to the bus slot configuration register.

MIOVPDGET: This ioctl allows read access to VPD/ROM address space.

The following structure members must be supplied:

 Structure Member Description

ulong md_addr Specifies the offset into the feature/VPD address space to begin reading.

ulong md_size Specifies the number of bytes to be transferred.

char md_data Specifies a pointer to user buffer for data.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte access (MV_BYTE).

The read begins at base address 0xFFA00000. The offset will be added to the base address to obtain the

starting address for reading.

The buc_info structure for the selected bus slot will be used to obtain the word increment value. This

value performs correct addressing while reading the data.

MIOCFGGET: This ioctl allows read access to the architected configuration registers.

Chapter 1. Configuration Subsystem 31

The following structure members must be supplied:

 Structure Member Description

ulong md_addr Specifies the offset into the configuration register address space.

ulong md_size Specifies a value of 1.

char md_data Specifies a pointer to user buffer for data.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte or word access (MV_BYTE/MV_SHORT/MV_WORD).

The base address 0xFF200000 will be added to the offset to obtain the address for the read.

MIOCFGPUT: This ioctl allows write access to the architected configuration registers.

The following structure members must be supplied:

 Structure Member Description

ulong md_addr Specifies the offset into the configuration register address space.

ulong md_size Specifies a value of 1.

char md_data Specifies a pointer to user buffer of data to write.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte or word access (MV_BYTE/MV_SHORT/MV_WORD).

The base address 0xFF200000 will be added to the offset to obtain the address for the read.

MIORESET: This ioctl allows access to the architected bus slot reset register.

The following structure members must be supplied:

 Structure Member Description

ulong md_addr Specifies reset hold time (in nanoseconds).

ulong md_size Not used.

char md_data Not used.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Not used.

The bus slot reset register bit corresponding to the specified bus slot is set to 0. After the specified delay,

the bit is set back to 1 and control returns to the calling program.

If a reset hold time of 0 is passed, the bus slot remains reset on return to the calling process.

ioctl Operations for the PowerPC Reference Platform Specification and the

Common Hardware Reference Platform

The following four ioctl operations can be used only with the PowerPC Reference Platform and, in AIX

4.2.1 and later, the Common Hardware Reference Platform.

MIOGEARD: Scans for the variable name in the Global Environment Area, and, if found, the null

terminated string will be returned to the caller. A global variable is of the form ″variablename=″. The

returned string is of the form ″variablename=string″. If the supplied global variable is ″*=″, all of the

variable strings in the Global Environment Area will be returned.

The following structure members must be supplied:

 Structure Member Description

ulong md_addr Pointer to global variable string which is null terminated with an equal sign as

the last non-null character.

32 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Structure Member Description

ulong md_size Number of bytes in data buffer.

int md_incr Not used.

char md_data Pointer to the data buffer.

int md_sla Not used.

ulong md_length This is a pointer to the length of the returned global variable string(s) including

the null terminator(s) if md_length is non-zero.

MIOGEAUPD: The specified global variable will be added to the Global Environment Area if it does not

exist. If the specified variable does exist in the Global Environment Area, the new contents will replace the

old after making adjustments for any size deltas. Further, any information moved toward a lower address

will have the original area zeroed. If there is no string following the variable name and equal sign, the

specified variable will be deleted. If the variable to be deleted is not found, a successful return will occur.

The new information will be written to NVRAM. Further, the header in NVRAM will be updated to include

the update time of the Global Environment Area and the Crc1 value will be recomputed.

The following structure members must be supplied:

 Structure Member Description

ulong md_addr Pointer to global variable string which is null terminated.

ulong md_size Not used.

int md_incr Not used.

char md_data Not used.

int md_sla Not used.

ulong md_length This is a pointer to the amount of space left in the Global Environment Area after

the update. This is computed as the size of the area minus the length of all

global variable strings minus the threshold value.

MIOGEAST: The specified threshold will be set so that any updates done will not exceed the Global

Environment Area size minus the threshold. In place of the the mdio structure an integer value is used to

specify the threshold. The threshold does not persist across IPLs.

MIOGEARDA: The attributes of the Global Environment Area will be returned to the data area specified

by the caller. The gea_attrib structure has been added to mdio.h. It contains the following information:

 Structure Member Description

long gea_length number of bytes in the Global Environment Area of NVRAM.

long gea_used number of bytes used in the Global Environment Area.

long gea_thresh Global Environment Area threshold value.

ulong md_addr Not used.

ulong md_size Size of the data buffer. It must be greater than or equal to the size of

(gea_attrib).

int md_incr Not used.

char md_data Address of the buffer to copy the gea_attrib structure.

int md_sla Not used.

ulong md_length Not used.

MIONVPARTLEN: The length of the CHRP NVRAM partition will be returned to the data area specified

by the caller. The following structure members must be supplied:

 Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_length Specifies a pointer to the name of the partition.

int md_incr Not used.

Chapter 1. Configuration Subsystem 33

Structure Member Description

ulong md_size Specifies the data area for the returned partition length.

char *md_data Not used.

int md_sla Not used.

MIONVPARTRD: MIONVPARTRD performs read actions on CHRP NVRAM partitions. The following

structure members must be supplied:

 Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_length Specifies a pointer to the name of the partition.

int md_incr Specifies the start offset into the partition.

ulong md_size Specifies the number of bytes to be read.

char *md_data Specifies a pointer to the user buffer where data will be copied.

int md_sla Not used.

MIONVPARTUPD: MIONVPARTUPD performs write actions to CHRP NVRAM partitions. The following

structure members must be supplied:

 Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_length Specifies a pointer to the name of the partition.

int md_incr Specifies the start offset into the partition.

ulong md_size Specifies the number of bytes to be read.

char *md_data Specifies a pointer to the user buffer for data to write.

int md_sla Not used.

Error Codes

The following error conditions may be returned when accessing the machine device driver with the

/dev/nvram/n special file:

 Error Condition Description

EACCES A write was requested to a file opened for read access only.

ENOENT An open of /dev/nvram/base was attempted after the first close.

EFAULT A buffer specified by the caller was invalid on a read, write, or ioctl subroutine call.

EINVAL An invalid ioctl operation was issued.

ENXIO A read was attempted past the end of the data area specified by the channel.

ENODEV A write was attempted.

ENOMEM A request was made with a user-supplied buffer that is too small for the requested data or

not enough memory could be allocated to complete the request.

Bus Special File Support

All models have at least one bus. For non-CHRP systems, the names are of the form /dev/busN. CHRP

systems will have the form /dev/pciN and /dev/isaN.

open and close Subroutines

The machine device driver supports the bus special files as character special files. These special files, and

support for access to the I/O buses and controllers, are provided on this hardware platform to support the

system configuration and diagnostic subsystems, exclusively. The configuration subsystem accesses the

I/O buses and controllers through the machine device driver to determine the I/O configuration of the

system. This driver can also be used to configure the I/O controllers and devices as required for proper

34 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

system operation. If the system diagnostics are unable to access a device through the diagnostic functions

provided by the device’s own device driver, they may use the machine device driver to attempt further

failure isolation.

read and write Subroutines

The read and write subroutines are not supported by the machine device driver through the bus special

files and, if called, return an ENOENT return code in the errno global variable.

ioctl Operations

The bus ioctl operations allow transfers of data between the system I/O controller or the system I/O bus

and a caller-supplied data area. Because these ioctl operations use the mach_dd_io structure, the arg

parameter on the ioctl subroutine must point to such a structure. The bus address, the pointer to the

caller’s buffer, and the number and length of the transfer are all specified in the mach_dd_io structure.

The mach_dd_io structure is defined in the /usr/include/sys/mdio.h file and provides the following

information:

v The md_addr field contains an I/O controller or I/O bus address.

v The md_data field points to a buffer at least the size of the value in the md_size field.

v The md_size field contains the number of items to be transferred.

v The md_incr field specifies the length of the transferred item. It must be set to MV_BYTE, MV_SHORT,

or MV_WORD.

The following commands can be issued to the machine device driver after a successful open of the bus

special file:

 Command Description

IOCINFO Returns machine device driver information in the caller’s devinfo structure, as

specified by the arg parameter. This structure is defined in the /usr/include/sys/
devinfo.h file. The device type for this device driver is DD_PSEU.

MIOBUSGET Reads data from the bus I/O space and returns it in a caller-provided buffer.

MIOBUSPUT Writes data supplied in the caller’s buffer to the bus I/O space.

MIOMEMGET Reads data from the bus memory space and returns it to the caller-provided buffer.

MIOMEMPUT Writes data supplied in the caller-provided buffer to the bus memory space.

MIOPCFGET Reads data from the PCI bus configuration space and returns it in a caller-provided

buffer. The mach_dd_io structure field md_sla must contain the Device Number

and Function Number for the device to be accessed.

MIOPCFPUT Writes data supplied in the caller’s buffer to the PCI bus configuration space. The

mach_dd_io structure field md_sla must contain the Device Number and Function

Number for the device to be accessed.

Error Codes

 EFAULT A buffer specified by the caller was invalid on an ioctl call.

EIO An unrecoverable I/O error occurred on the requested data transfer.

ENOMEM No memory could be allocated by the machine device driver for use in the data transfer.

Files

 /dev/pciN Provides access to the I/O bus (CHRP only, AIX 4.2.1 and later).

/dev/isaN Provides access to the I/O bus (CHRP only, AIX 4.2.1 and later).

/dev/nvram Provides access to platform-specific nonvolatile RAM.

/dev/nvram/base Allows read access to the base customize information stored as part of the boot record.

Chapter 1. Configuration Subsystem 35

Related Information

The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine, write

subroutine.

The savebase device configuration command.

The bus special file, nvram special file.

Loading a Device Driver

The loadext subroutine is used to load and unload device drivers. The name of the device driver is

passed as a parameter to the loadext routine. If the device driver is located in the /usr/lib/drivers

directory, just the device driver name without path information can be specified to the loadext subroutine.

If the device driver is located in another directory, the fully qualified path name of the device driver must

be specified.

The Device Driver Name descriptor of Predefined Devices (PdDv) object class objects is intended to

contain only the device driver name and not the fully qualified path name. For device drivers located in the

/usr/lib/drivers directory, a Configure method can obtain the name of the driver from the Device Driver

Name descriptor to pass to the loadext routine. This is convenient since most drivers are located in the

/usr/lib/drivers directory.

If a device driver is located in a directory other than the /usr/lib/drivers directory, the path name must be

handled differently. The Configure method could be coded to assume a particular path name, or for more

flexibility the path name could be stored as an attribute in the Predefined Attribute (PdAt) object class. The

Configure method is responsible for knowing how to obtain the fully qualified path name to pass to the

loadext subroutine.

Files

 /usr/lib/drivers directory Contains device drivers.

Related Information

The loadext subroutine.

Predefined Devices (PdDv) object class, Predefined Attribute (PdAt) object class.

Writing a Configure Method .

How Device Methods Return Errors

Device methods indicate errors to the Configuration Manager and run-time configuration commands by

exiting with a nonzero exit code. The Configuration Manager and configuration commands can understand

only the exit codes defined in the cf.h file.

More than one error code can describe a given error. This is because many exit codes correspond to

highly specific errors, while others are more general. Whenever possible, use the most specific error code

possible.

For example, if your Configure method obtains an attribute from the Customized Attributes (CuAt) object

class for filling in the device-dependent structure (DDS), but the value is invalid (possibly due to a

corrupted database), you might exit with an E_BADATTR error. Otherwise, you might choose the E_DDS

exit code, due to another error condition that occurred while building the DDS.

36 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

ODM Device Configuration Object Classes.

The Customized Attributes (CuAt) object class.

The Device Dependent Structure (DDS) Overview in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

ODM Device Configuration Object Classes

A list of the ODM Device Configuration Object Classes follows:

 PdDv Predefined Devices

PdCn Predefined Connection

PdAt Predefined Attribute

Config_Rules Configuration Rules

CuDv Customized Devices

CuDep Customized Dependency

CuAt Customized Attribute

CuDvDr Customized Device Driver

CuVPD Customized Vital Product Data

Related Information

Device Configuration Subsystem Programming Introduction, Writing a Device Method in AIX Version 6.1

Kernel Extensions and Device Support Programming Concepts.

Configuration Rules (Config_Rules) Object Class

Description

The Configuration Rules (Config_Rules) object class contains the configuration rules used by the

Configuration Manager. The Configuration Manager runs in two phases during system boot. The first

phase is responsible for configuring the base devices so that the real root device can be configured and

made ready for operation. The second phase configures the rest of the devices in the system after the root

file system is up and running. The Configuration Manager can also be invoked at run time. The

Configuration Manager routine is driven by the rules in the Config_Rules object class.

The Config_Rules object class is preloaded with predefined configuration rules when the system is

delivered. There are three types of rules: phase 1, phase 2, and phase 2 service. You can use the ODM

commands to add, remove, change, and show new or existing configuration rules in this object class to

customize the behavior of the Configuration Manager. However, any changes to a phase 1 rule must be

written to the boot file system to be effective. This is done with the bosboot command.

All logical and physical devices in the system are organized in clusters of tree structures called nodes. For

information on nodes or tree structures, see the ″Device Configuration Manager Overview″ in AIX Version

6.1 Kernel Extensions and Device Support Programming Concepts. The rules in the Config_Rules object

class specify program names that the Configuration Manager executes. Usually, these programs are the

configuration programs for the top of the nodes. When these programs are invoked, the names of the next

lower-level devices that need to be configured are returned in standard output.

The Configuration Manager configures the next lower-level devices by invoking the Configure method for

those devices. In turn, those devices return a list of device names to be configured. This process is

repeated until no more device names are returned. All devices in the same node are configured in a

transverse order.

Chapter 1. Configuration Subsystem 37

The second phase of system boot requires two sets of rules: phase 2 and service. The position of the key

on the front panel determines which set of rules is used. The service rules are used when the key is in the

service position. If the key is in any other position, the phase 2 rules are used. Different types of rules are

indicated in the Configuration Manager Phase descriptor of this object class.

Each configuration rule has an associated boot mask. If this mask has a nonzero value, it represents the

type of boot to which the rule applies. For example, if the mask has a DISK_BOOT value, the rule applies

to system boots where disks are base devices. The type of boot masks are defined in the

/usr/include/sys/cfgdb.h file.

Descriptors

The Config_Rules object class contains the following descriptors:

 ODM Type Descriptor Name Description Descriptor Status

ODM_SHORT phase Configuration

Manager Phase

Required

ODM_SHORT seq Sequence Value Required

ODM_LONG boot_mask Type of boot Required

ODM_VCHAR rule_value[RULESIZE] Rule Value Required

These descriptors are described as follows:

 Descriptor Description

Configuration Manager Phase This descriptor indicates which phase a rule should be

executed under phase 1, phase 2, or phase 2 service.

1 Indicates that the rule should be executed in phase

1.

2 Indicates that the rule should be executed in phase

2.

3 Indicates that the rule should be executed in phase 2

service mode.

Sequence Value In relation to the other rules of this phase, the seq number

indicates the order in which to execute this program. In

general, the lower the seq number, the higher the priority. For

example, a rule with a seq number of 2 is executed before a

rule with a seq number of 5. There is one exception to this: a

value of 0 indicates a DONT_CARE condition, and any rule

with a seq number of 0 is executed last.

Type of boot If the boot_mask field has a nonzero value, it represents the

type of boot to which the rule applies. If the -m flag is used

when invoking the cfgmgr command, the cfgmgr command

applies the specified mask to this field to determine whether

to execute the rule. By default, the cfgmgr command always

executes a rule for which the boot_mask field has a 0 value.

38 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor Description

Rule Value This is the full path name of the program to be invoked. The

rule value descriptor may also contain any options that should

be passed to that program. However, options must follow the

program name, as the whole string will be executed as if it

has been typed in on the command line.

Note: There is one rule for each program to execute. If

multiple programs are needed, then multiple rules must be

added.

Rule Values

Phase Sequence Type of boot Rule Value

1 1 0 /usr/lib/methods/defsys

1 10 0x0001 /usr/lib/methods/deflvm

2 1 0 /usr/lib/methods/defsys

2 5 0 /usr/lib/methods/ptynode

2 10 0 /usr/lib/methods/starthft

2 15 0 /usr/lib/methods/starttty

2 20 0x0010 /usr/lib/methods/rc.net

3 1 0 /usr/lib/methods/defsys

3 5 0 /usr/lib/methods/ptynode

3 10 0 /usr/lib/methods/starthft

3 15 0 /usr/lib/methods/starttty

Related Information

The bosboot command.

Writing a Configure Method .

Writing a Device Method, Device Configuration Manager Overview in AIX Version 6.1 Kernel Extensions

and Device Support Programming Concepts.

Device Configuration Subsystem Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Object Data Management (ODM) Overview for Programmers, Understanding ODM Object Classes and

Objects in AIX Version 6.1 General Programming Concepts: Writing and Debugging Programs.

System boot processing in Operating system and device management.

Customized Attribute (CuAt) Object Class

Description

The Customized Attribute (CuAt) object class contains customized device-specific attribute information.

Device instances represented in the Customized Devices (CuDv) object class have attributes found in

either the Predefined Attribute (PdAt) object class or the CuAt object class. There is an entry in the CuAt

object class for attributes that take nondefault values. Attributes taking the default value are found in the

PdAt object class. Each entry describes the current value of the attribute.

When changing the value of an attribute, the Predefined Attribute object class must be referenced to

determine other possible attribute values.

Both attribute object classes must be queried to get a complete set of current values for a particular

device’s attributes. Use the getattr and putattr subroutines to retrieve and modify, respectively,

customized attributes.

Chapter 1. Configuration Subsystem 39

Descriptors

The Customized Attribute object class contains the following descriptors:

 ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device Name Required

ODM_CHAR attribute[ATTRNAMESIZE] Attribute Name Required

ODM_VCHAR value[ATTRVALSIZE] Attribute Value Required

ODM_CHAR type[FLAGSIZE] Attribute Type Required

ODM_CHAR generic[FLAGSIZE] Generic Attribute

Flags

Optional

ODM_CHAR rep[FLAGSIZE] Attribute

Representation Flags

Required

ODM_SHORT nls_index NLS Index Optional

These descriptors are described as follows:

 Descriptor Description

Device Name Identifies the logical name of the device instance to which

this attribute is associated.

Attribute Name Identifies the name of a customized device attribute.

Attribute Value Identifies a customized value associated with the

corresponding Attribute Name. This value is a nondefault

value.

Attribute Type Identifies the attribute type associated with the Attribute

Name. This descriptor is copied from the Attribute Type

descriptor in the corresponding PdAt object when the

CuAt object is created.

Generic Attribute Flags Identifies the Generic Attribute flag or flags associated

with the Attribute Name. This descriptor is copied from the

Generic Attribute Flags descriptor in the corresponding

PdAt object when the CuAt object is created.

Attribute Representation Flags Identifies the Attribute Value’s representation. This

descriptor is copied from the Attribute Representation flags

descriptor in the corresponding Predefined Attribute object

when the Customized Attribute object is created.

NLS Index Identifies the message number in the NLS message

catalog that contains a textual description of the attribute.

This descriptor is copied from the NLS Index descriptor in

the corresponding Predefined Attribute object when the

Customized Attribute object is created.

Related Information

ODM Device Configuration Object Classes.

Customized Devices (CuDv) object class, Predefined Attribute (PdAt) object class.

The getattr device configuration subroutine, putattr device configuration subroutine.

List of Device Configuration Subroutines in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

40 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Customized Dependency (CuDep) Object Class

Description

The Customized Dependency (CuDep) object class describes device instances that depend on other

device instances. Dependency does not imply a physical connection. This object class describes the

dependence links between logical devices and physical devices as well as dependence links between

logical devices, exclusively. Physical dependencies of one device on another device are recorded in the

Customized Device (CuDev) object class.

Descriptors

The Customized Dependency object class contains the following descriptors:

 ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device Name Required

ODM_CHAR dependency[NAMESIZE] Dependency (device

logical name)

Required

These descriptors are described as follows:

 Descriptor Description

Device Name Identifies the logical name of the device having a dependency.

 Dependency Identifies the logical name of the device instance on which there is a dependency. For example, a

mouse, keyboard, and display might all be dependencies of a device instance of lft0.

Related Information

ODM Device Configuration Object Classes.

Customized Device (CuDv) object class.

Customized Device Driver (CuDvDr) Object Class

Description

The Customized Device Driver (CuDvDr) object class stores information about critical resources that need

concurrence management through the use of the Device Configuration Library subroutines. You should

only access this object class through these five Device Configuration Library subroutines: the genmajor,

genminor, relmajor, reldevno, and getminor subroutines.

These subroutines exclusively lock this class so that accesses to it are serialized. The genmajor and

genminor routines return the major and minor number, respectively, to the calling method. Similarly, the

reldevno and relmajor routines release the major or minor number, respectively, from this object class.

Descriptors

The Customized Device Driver object class contains the following descriptors:

 ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR resource[RESOURCESIZE] Resource Name Required

Chapter 1. Configuration Subsystem 41

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR value1[VALUESIZE] Value1 Required

ODM_CHAR value2[VALUESIZE] Value2 Required

ODM_CHAR value3[VALUESIZE] Value3 Required

The Resource descriptor determines the nature of the values in the Value1, Value2, and Value3

descriptors. Possible values for the Resource Name descriptor are the strings devno and ddins.

The following table specifies the contents of the Value1, Value2, and Value3 descriptors, depending on the

contents of the Resource Name descriptor.

 Resource Value1 Value2 Value3

devno Major number Minor number Device instance name

ddins Dd instance name Major number Null string

When the Resource Name descriptor contains the devno string, the Value1 field contains the device major

number, Value2 the device minor number, and Value3 the device instance name. These value descriptors

are filled in by the genminor subroutine, which takes a major number and device instance name as input

and generates the minor number and resulting devno Customized Device Driver object.

When the Resource Name descriptor contains the ddins string, the Value1 field contains the device driver

instance name. This is typically the device driver name obtained from the Device Driver Name descriptor

of the Predefined Device object. However, this name can be any unique string and is used by device

methods to obtain the device driver major number. The Value2 field contains the device major number and

the Value3 field is not used. These value descriptors are set by the genmajor subroutine, which takes a

device instance name as input and generates the corresponding major number and resulting ddins

Customized Device Driver object.

Related Information

ODM Device Configuration Object Classes.

Predefined Devices (PdDv) object class.

The genmajor device configuration subroutine, genminor device configuration subroutine, getminor

device configuration subroutine, reldevno device configuration subroutine, relmajor device configuration

subroutine.

List of Device Configuration Subroutines in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Customized Devices (CuDv) Object Class

Description

The Customized Devices (CuDv) object class contains entries for all device instances defined in the

system. As the name implies, a defined device object is an object that a Define method has created in the

CuDv object class. A defined device instance may or may not have a corresponding actual device attached

to the system.

A CuDv object contains attributes and connections specific to the device instance. Each device instance,

distinguished by a unique logical name, is represented by an object in the CuDv object class. The

42 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Customized database is updated twice, during system boot and at run time, to define new devices, remove

undefined devices, or update the information for a device whose attributes have been changed.

Descriptors

The Customized Devices object class contains the following descriptors:

 ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device Name Required

ODM_SHORT status Device Status Flag Required

ODM_SHORT chgstatus Change Status Flag Required

ODM_CHAR ddins[TYPESIZE] Device Driver

Instance

Optional

ODM_CHAR location[LOCSIZE] Location Code Optional

ODM_CHAR parent[NAMESIZE] Parent Device Logical

Name

Optional

ODM_CHAR connwhere[LOCSIZE] Location Where

Device Is Connected

Optional

ODM_LINK PdDvLn Link to Predefined

Devices Object Class

Required

These descriptors are described as follows:

 Descriptor Description

Device Name A Customized Device object for a device instance is assigned a unique logical

name to distinguish the instance from other device instances. The device logical

name of a device instance is derived during Define method processing. The rules

for deriving a device logical name are:

v The name should start with a prefix name pre-assigned to the device

instance’s associated device type. The prefix name can be retrieved from the

Prefix Name descriptor in the Predefined Device object associated with the

device type.

v To complete the logical device name, a sequence number is usually appended

to the prefix name. This sequence number is unique among all defined device

instances using the same prefix name. Use the following subrules when

generating sequence numbers:

– A sequence number is a non-negative integer represented in character

format. Therefore, the smallest available sequence number is 0.

– The next available sequence number relative to a given prefix name should

be allocated when deriving a device instance logical name.

– The next available sequence number relative to a given prefix name is

defined to be the smallest sequence number not yet allocated to defined

device instances using the same prefix name.

For example, if tty0, tty1, tty3, tty5, and tty6 are currently assigned to

defined device instances, then the next available sequence number for a

device instance with the tty prefix name is 2. This results in a logical device

name of tty2.

The genseq subroutine can be used by a Define method to obtain the next

available sequence number.

Chapter 1. Configuration Subsystem 43

Descriptor Description

Device Status Flag Identifies the current status of the device instance. The device methods are

responsible for setting Device Status flags for device instances. When the Define

method defines a device instance, the device’s status is set to defined. When the

Configure method configures a device instance, the device’s status is typically set

to available. The Configure method takes a device to the Stopped state only if

the device supports the Stopped state.

When the Start method starts a device instance, its device status is changed from

the Stopped state to the Available state. Applying a Stop method on a started

device instance changes the device status from the Available state to the Stopped

state. Applying an Unconfigure method on a configured device instance changes

the device status from the Available state to the Defined state. If the device

supports the Stopped state, the Unconfigure method takes the device from the

Stopped state to the Defined state.

″Understanding Device States″ in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts provides more information about the Available,

Defined, and Stopped states.

The possible status values are:

DEFINED

Identifies a device instance in the Defined state.

AVAILABLE

Identifies a device instance in the Available state.

STOPPED

Identifies a device instance in the Stopped state.

Change Status Flag This flag tells whether the device instance has been altered since the last system

boot. The diagnostics facility uses this flag to validate system configuration. The

flag can take these values:

NEW Specifies whether the device instance is new to the current system boot.

DONT_CARE

Identifies the device as one whose presence or uniqueness cannot be

determined. For these devices, the new, same, and missing states have

no meaning.

SAME Specifies whether the device instance was known to the system prior to

the current system boot.

MISSING

Specifies whether the device instance is missing. This is true if the

device is in the CuDv object class, but is not physically present.

Device Driver Instance This descriptor typically contains the same value as the Device Driver Name

descriptor in the Predefined Devices (PdDv) object class if the device driver

supports only one major number. For a driver that uses multiple major numbers

(for example, the logical volume device driver), unique instance names must be

generated for each major number. Since the logical volume uses a different major

number for each volume group, the volume group logical names would serve this

purpose. This field is filled in with a null string if the device instance does not

have a corresponding device driver.

44 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor Description

Location Code Identifies the location code of the device. This field provides a means of

identifying physical devices. The location code format is defined as

AB-CD-EF-GH, where:

AB Identifies the CPU and Async drawers with a drawer ID.

CD Identifies the location of an adapter, memory card, or Serial Link Adapter

(SLA) with a slot ID.

EF Identifies the adapter connector that something is attached to with a

connector ID.

GH Identifies a port, device, or field replaceable unit (FRU), with a port or

device or FRU ID, respectively.

For more information on the location code format, see ″Device location codes″ in

Operating system and device management.

Parent Device Logical Name Identifies the logical name of the parent device instance. In the case of a real

device, this indicates the logical name of the parent device to which this device is

connected. More generally, the specified parent device is the device whose

Configure method is responsible for returning the logical name of this device to

the Configuration Manager for configuring this device. This field is filled in with a

null string for a node device.

Location Where Device Is

Connected

Identifies the specific location on the parent device instance where this device is

connected. The term location is used in a generic sense. For some device

instances such as the operating system bus, location indicates a slot on the bus.

For device instances such as the SCSI adapter, the term indicates a logical port

(that is, a SCSI ID and Logical Unit Number combination).

For example, for a bus device the location can refer to a specific slot on the bus,

with values 1, 2, 3 For a multiport serial adapter device, the location can refer

to a specific port on the adapter, with values 0, 1,

Link to Predefined Devices

Object Class

Provides a link to the device instance’s predefined information through the Unique

Type descriptor in the PdDv object class.

Related Information

ODM Device Configuration Object Classes.

Predefined Devices (PdDv) object class.

The genseq subroutine.

Writing a Define Method , Writing a Configure Method , Writing a Change Method , Writing an Undefine

Method , Writing an Unconfigure Method , Writing Optional Start and Stop Methods .

The SCSI Adapter Device Driver in AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume

1.

Understanding Physical Volumes and the Logical Volume Device Driver in AIX Version 6.1 Kernel

Extensions and Device Support Programming Concepts.

Understanding Device States, Device Configuration Manager Overview in AIX Version 6.1 Kernel

Extensions and Device Support Programming Concepts.

Device location codes in Operating system and device management.

Chapter 1. Configuration Subsystem 45

Customized VPD (CuVPD) Object Class

Description

The Customized Vital Product Data (CuVPD) object class contains the Vital Product Data (VPD) for

customized devices. VPD can be either machine-readable VPD or manually entered user VPD information.

Descriptors

The Customized VPD object class contains the following descriptors:

 ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device Name Required

ODM_SHORT vpd_type VPD Type Required

ODM_LONGCHAR vpd[VPDSIZE] VPD Required

These fields are described as follows:

 Descriptor Description

Device Name Identifies the device logical name to which this VPD information belongs.

VPD Type Identifies the VPD as either machine-readable or manually-entered. The possible values:

HW_VPD

Identifies machine-readable VPD.

USER_VPD

Identifies manually entered VPD.

VPD Identifies the VPD for the device. For machine-readable VPD, an entry in this field might

include such information as serial numbers, engineering change levels, and part numbers.

Related Information

ODM Device Configuration Object Class.

The Hardware Technical Reference provides more details on the VPD.

Predefined Attribute (PdAt) Object Class

Description

The Predefined Attribute (PdAt) object class contains an entry for each existing attribute for each device

represented in the Predefined Devices (PdDv) object class. An attribute, in this sense, is any

device-dependent information not represented in the PdDv object class. This includes information such as

interrupt levels, bus I/O address ranges, baud rates, parity settings, block sizes, and microcode file names.

Each object in this object class represents a particular attribute belonging to a particular device

class-subclass-type. Each object contains the attribute name, default value, list or range of all possible

values, width, flags, and an NLS description. The flags provide further information to describe an attribute.

Note: For a device being defined or configured, only the attributes that take a nondefault value are copied

into the Customized Attribute (CuAt) object class. In other words, for a device being customized, if

its attribute value is the default value in the PdDv object class, then there will not be an entry for

the attribute in the CuAt object class.

46 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Types of Attributes

There are three types of attributes. Most are regular attributes, which typically describe a specific attribute

of a device. The group attribute type provides a grouping of regular attributes. The shared attribute type

identifies devices that must all share a given attribute.

A shared attribute identifies another regular attribute as one that must be shared. This attribute is always a

bus resource. Other regular attributes (for example, bus interrupt levels) can be shared by devices but are

not themselves shared attributes. Shared attributes require that relevant devices have the same values for

this attribute. The Attribute Value descriptor for the shared attribute gives the name of the regular attribute

that must be shared.

A group attribute specifies a set of other attributes whose values are chosen as the group, as well as the

group attribute number used to choose default values. Each attribute listed within a group has an

associated list of possible values it can take. These values must be represented as a list, not as a range.

For each attribute within the group, the list of possible values must also have the same number of choices.

For example, if the possible number of values is n, the group attribute number itself can range from 0 to

n-1. The particular value chosen for the group indicates the value to pick for each of the attributes in the

group. For example, if the group attribute number is 0, then the value for each of the attributes in the

group is the first value from their respective lists.

Predefined Attribute Object Class Descriptors

The Predefined Attribute object class contains the following descriptors:

 ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required

ODM_CHAR attribute[ATTRNAMESIZE] Attribute Name Required

ODM_VCHAR deflt[DEFAULTSIZE] Default Value Required

ODM_VCHAR values[ATTRVALSIZE] Attribute Values Required

ODM_CHAR width[WIDTHSIZE] Width Optional

ODM_CHAR type[FLAGSIZE] Attribute Type Flags Required

ODM_CHAR generic[FLAGSIZE] Generic Attribute

Flags

Optional

ODM_CHAR rep[FLAGSIZE] Attribute

Representation Flags

Required

ODM_SHORT nls_index NLS index Optional

These descriptors are described as follows:

 Descriptor Description

Unique Type Identifies the class-subclass-type name of the device to which this attribute is

associated. This descriptor is the same as the Unique Type descriptor in the

PdDv object class.

Attribute Name Identifies the name of the device attribute. This is the name that can be passed to

the mkdev and chdev configuration commands and device methods in the

attribute-name and attribute-value pairs.

Chapter 1. Configuration Subsystem 47

Descriptor Description

Default Value If there are several choices or even if there is only one choice for the attribute

value, the default is the value to which the attribute is normally set. For groups,

the default value is the group attribute number. For example, if the possible

number of choices in a group is n, the group attribute number is a number

between 0 and n-1. For shared attributes, the default value is set to a null string.

When a device is defined in the system, attributes that take nondefault values are

found in the CuAt object class. Attributes that take the default value are found in

this object class; these attributes are not copied over to the CuAt object class.

Therefore, both attribute object classes must be queried to get a complete set of

customized attributes for a particular device.

Attribute Values Identifies the possible values that can be associated with the attribute name. The

format of the value is determined by the attribute representation flags. For regular

attributes, the possible values can be represented as a string, hexadecimal, octal,

or decimal. In addition, they can be represented as either a range or an

enumerated list. If there is only one possible value, then the value can be

represented either as a single value or as an enumerated list with one entry. The

latter is recommended, since the use of enumerated lists allows the attrval

subroutine to check that a given value is in fact a possible choice.

If the value is hexadecimal, it is prefixed with the 0x notation. If the value is octal,

the value is prefixed with a leading zero. If the value is decimal, its value is

represented by its significant digits. If the value is a string, the string itself should

not have embedded commas, since commas are used to separate items in an

enumerated list.

A range is represented as a triplet of values: lowerlimit, upperlimit, and increment

value. The lowerlimit variable indicates the value of the first possible choice. The

upperlimit variable indicates the value of the last possible choice. The lowerlimit

and upperlimit values are separated by a - (hyphen). Values between the

lowerlimit and upperlimit values are obtained by adding multiples of the increment

value variable to the lowerlimit variable. The upperlimit and increment value

variables are separated by a comma.

Only numeric values are used for ranges. Also, discontinuous ranges (for

example, 1-3, 6-8) are disallowed. A combination of list and ranges is not allowed.

An enumerated list contains values that are comma-separated.

If the attribute is a group, the Possible Values descriptor contains a list of

attributes composing the group, separated by commas.

If the attribute is shared, the Possible Values descriptor contains the name of the

bus resource regular attribute that must be shared with another device.

For type T attributes, the Possible Values descriptor contains the message

numbers in a comma-separated list.

48 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor Description

Width If the attribute is a regular attribute of type M for a bus memory address or of

type O for a bus I/O address, the Width descriptor can be used to identify the

amount in bytes of the bus memory or bus I/O space that must be allocated.

Alternatively, the Width field can be set to a null string, which indicates that the

amount of bus memory or bus I/O space is specified by a width attribute, that is,

an attribute of type W.

If the attribute is a regular attribute of type W, the Width descriptor contains the

name of the bus memory address or bus I/O address attribute to which this

attribute corresponds. The use of a type W attribute allows the amount of bus

memory or bus I/O space to be configurable, whereas if the amount is specified

in the bus memory address or bus I/O address attribute’s Width descriptor, it is

fixed at that value and cannot be customized.

For all other attributes, a null string is used to fill in this field.

Attribute Type Identifies the attribute type. Only one attribute type must be specified. The

characters A, B, M, I, N, O, P, and W represent bus resources that are regular

attributes.

For regular attributes that are not bus resources, the following attribute types are

defined:

L Indicates the microcode file base name and the text from the label on

the diskette containing the microcode file. Only device’s with

downloadable microcode have attributes of this type. The L attribute type

is used by the chkmcode program to determine whether a device which

is present has any version of its microcode installed. If none is installed,

the user is prompted to insert the microcode diskette with the label

identified by this attribute. The base name is stored in the Default Value

field and is the portion of the microcode file name not consisting of the

level and version numbers. The label text is stored in the Possible

Values field.

T Indicates message numbers corresponding to possible text descriptions

of the device. These message numbers are within the catalog and set

identified in the device’s PdDv object.

 A single PdDv object can represent many device types. Normally, the

message number in a device’s PdDv object also identifies its text

description. However, there are cases where a single PdDv object

represents different device types. This happens when the parent device

which detects them cannot distinguish between the types. For example,

a single PdDv object is used for both the 120MB and 160MB Direct

Attached Disk drives. For these devices, unique device descriptions can

be assigned by setting the message number in the device’s PdDv object

to 0 and having a T attribute type, indicating the set of possible message

numbers. The device’s configure method determines the actual device

type and creates a corresponding CuAt object indicating the message

number of the correct text description.

R Indicates any other regular attribute that is not a bus resource.

Chapter 1. Configuration Subsystem 49

Descriptor Description

Z If the attribute name is led, than this indicates the LED number for the

device. Normally, the LED number for a device is specified in the

device’s PdDv object. However, in cases where the PdDv object may be

used to respresent multiple device types, unique LED numbers can be

assigned to each device type by having a type Z attribute with an

attribute name of led. In this case, the LED number in the PdDv object

is set to 0. The device’s configure method determines the actual LED

number for the device, possibly by obtaining the value from the device,

and creates a corresponding CuAt object indicating the LED number.

The default value specified in the type Z PdAt object with the attribute

name of led is the LED number to be used until the device’s configure

method has determined the LED number for the device.

 The following are the bus resources types for regular attributes:

A Indicates DMA arbitration level.

B Indicates a bus memory address which is not associated with DMA

transfers.

M Indicates a bus memory address to be used for DMA transfers.

I Indicates bus interrupt level that can be shared with another device.

N Indicates a bus interrupt level that cannot be shared with another device.

O Indicates bus I/O address.

P Indicates priority class.

W Indicates an amount in bytes of bus memory or bus I/O space.

 For non-regular attributes, the following attribute types are defined:

G Indicates a group.

S Indicates a shared attribute.

Generic Attribute Flags Identifies the flags that can apply to any regular attribute. Any combination (one,

both, or none) of these flags is valid. This descriptor should be a null string for

group and shared attributes. This descriptor is always set to a null string for type

T attributes.

These are the defined generic attribute flags:

D Indicates a displayable attribute. The lsattr command displays only

attributes with this flag.

U Indicates an attribute whose value can be set by the user.

50 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor Description

Attribute Representation Flags Indicates the representation of the regular attribute values. For group and shared

attributes, which have no associated attribute representation, this descriptor is set

to a null string. Either the n or s flag, both of which indicate value representation,

must be specified.

The r, l, and m flags indicate, respectively, a range, an enumerated list, and a

multi-select value list, and are optional. If neither the r flag nor the l flag is

specified, the attrval subroutine will not verify that the value falls within the range

or the list.

These are the defined attribute representation flags:

n Indicates that the attribute value is numeric: either decimal, hex, or octal.

s Indicates that the attribute value is a character string.

r Indicates that the attribute value is a range of the form:

lowerlimit-upperlimit,increment value.

l Indicates that the attribute value is an enumerated list of values.

m Indicates that multiple values can be assigned to this attribute. Multiple

values for an attribute are represented as a comma separated list.

b Indicates that value is a boolean type, and can only have 2 values.

Typical values are yes,no, true,false, on,off, disable,enable or 0,1.

The attribute representation flags are always set to nl (numeric list) for type T

attributes.

NLS Index Identifies the message number in the NLS message catalog of the message

containing a textual description of the attribute. Only displayable attributes, as

identified by the Generic Attribute Flags descriptor, need an NLS message. If the

attribute is not displayable, the NLS index can be set to a value of 0. The catalog

file name and the set number associated with the message number are stored in

the PdDv object class.

Related Information

Predefined Devices (PdDv) object class, Customized Attribute object class.

The attrval subroutine.

The chdev command, lsattr command, mkdev command.

Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class .

Predefined Attribute Extended (PdAtXtd) Object Class

Description

The Predefined Attribute Extended (PdAtXtd) object class is used to supplement existing device’s

attributes represented in the Predefined Attribute (PdAt) object class with information that can be used by

Device Management User Interface. The Web-based System Manager Device application is the first user

interface application to take advantage of this object class.

Types of Attributes to represent in PdAtXtd

Not all existing device’s attributes in PdAt need to be represented in the PdAtXtd object class.

Non-displayable attributes (i.e with a null string in the ’generic’ field of the PdAt object class) should not

have a corresponding PdAtXtd entry, otherwise, it will become displayable.

Chapter 1. Configuration Subsystem 51

The PdAtXtd object class can also be used to override the current value or possible values of an attribute.

Predefined Attribute Extended Object Class Descriptors

The Predefined Attribute Extended object class contains the following descriptors:

 ODM Type Descriptor Name Description Required

ODM_CHAR uniquetype Unique Type Yes

ODM_CHAR attribute Attribute Name No

ODM_CHAR classification AttributeClassification No

ODM_CHAR sequence Sequence number No

ODM_VCHAR operation Operation Name No

ODM_VCHAR operation_value Operation Value No

ODM_VCHAR description Attribute Description No

ODM_VCHAR list_cmd Command to list Attribute value No

ODM_VCHAR list_values_cmd Command to list Attribute values No

ODM_VCHAR change_cmd Command to change Attribute

value

No

ODM_VCHAR help Help text NO

ODM_VCHAR nls_values Translated Attribute values No

These descriptors are described as follows:

 Descriptor Description

Unique Type Identifies the class-subclass-type name of the device to which this attribute is

associated. This descriptor is the same as the Unique Type descriptor in the PdAt

object class.

Attribute Name Identifies the device attribute. This is the name that can be passed to mkdev and chdev

configuration commands and device methods in the attribute-name and attribute-value

pairs.

Classification Identifies the device attribute’s classification. The followings characters are valid values:

B Indicates a basic attribute.

A Indicates an advanced attribute.

R Indicates a required attribute.

Sequence Identifies the number used to position the attribute in relation to others on a

panel/menu. This field is identical to the ’id_seq_num’ currently in the sm_cmd_opt

(SMIT Dialog/Selector Command Option) object class.

52 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor Description

Operation Identifies the type of operation associated with the unique device type. Operation and

attribute name fields are mutually exclusive. The following operation names are used by

Web-based System Manager Device application:

assign_icon

Indicates that an icon is to be assigned to the unique device type.

add_device type

Indicates that the unique device type can be manually added to the system via

the Web-based System Manager Device Application’s ’New’ Device action.

device type is a user chosen name that will identify the type or class of device

that can be added via the Web-based System Manager Device Application.

This name will be sorted in alphabetical order, therefore, to have all similar

type or class of devices be grouped together in the Web-based System

Manager device selection panel, choose the name accordingly. Example:

 add_isa_tokenring

add_isa_ethernet

add_tty

will allow the selections for adding ISA adapters (token ring and ethernet) be

together, but

 add_tokenring_isa

add_ethernet_isa

add_tty

will cause the selection for adding tty to be inserted in between the two ISA

adapters selections.

move_device type

Indicates that the unique device type can be moved to another location via the

Web-based System Manager Device Application’s Move action

list_parent

Indicates that the unique device type has a special method to obtain the list of

parent devices that it can be connected to. The method must be listed in the

list_cmd field.

show_apply_option

Indicates that a selection will appear on the device properties panel, to allow

the user to apply change(s) to devices’ properties immediately, or defer the

change(s) until the next System Restart.

Operation Value Identifies the value associated with the Operation field. For Web-based System

Manager Device Application, when the operation is ’assign_icon’, the value in

operation_value will be the name of the icon associated with the unique device type.

The icon name is the first extension of the icon file name under /usr/websm/codebase/
images directory.

When the operation is ’add_<device>’, the operation_value field may contain the

command used to make the device, if the ’mkdev’ command cannot be used. However,

Web-based System Manager Device Application will invoke the command stored in this

field with the same arguments normally passed to the ’mkdev’ command.

Description Identifies the attribute’s description. Web-based System Manager Device Application

expects this field to be of the following format: message file,set id,msg id,default text

Chapter 1. Configuration Subsystem 53

Descriptor Description

List Cmd Identifies the command to issue to override the attribute’s current value, except when

operation field is set, then it will be the command to issue to return information

associated with the operation. For example:

In the case of ’add_tty’ operation, the list_cmd field contains the following value:

lsdev -P -c tty -s rs232 -Fdescription

The string returned from executing this command will be put on the Web-based System

Manager device selection panel.

List Values Cmd Identifies the command to issue in order to obtain the possible values of an attribute.

The values returned will override the values field in the Predefined Attribute object

class.

Change Cmd Commands used to change the attribute value if ’chdev’ cannot be used.

Note: When commands (stored in <field>_cmd) are executed to obtain information for

an attribute, Web-based System Manager Device Application will always pass the

device name as an argument to the command. Therefore, it is essential that the

command stored in these <field>_cmd, handle this fact. Otherwise, a script can be

stored in these fields in the following manner:

list_cmd = "x()\n\

{\n\

<run some command>\n\

}\n\

x "

In the case of the change_cmd field, Web-based System Manager Device Application

will also pass in the attribute=value pair after the first argument.

Help Help text associated with the attribute. This could be of the form:

message file,set id,msg id,default text

OR

a numeric string equal to a SMIT identifier tag.

Nls Values Identifies the text associated with the attribute’s values. These values will be displayed

in place of the values stored in the Predefined Attribute object class. This field should

be of the form:

message file,set id,msg id,default text

The ordering of values should match the ordering in the Predefined Attribute values

field.

Adapter-Specific Considerations for the Predefined Attribute (PdAt)

Object Class

Description

The various bus resources required by an adapter card are represented as attributes in the Predefined

Attribute (PdAt) object class. If the currently assigned values differ from the default values, they are

represented with other device attributes in the Customized Attribute (CuAt) object class. To assign bus

resources, the Bus Configurator obtains the bus resource attributes for an adapter from both the PdAt and

CuAt object classes. It also updates the CuAt object class, as necessary, to resolve any bus resource

conflicts.

The following additional guidelines apply to bus resource attributes.

54 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The Attribute Type descriptor must indicate the type of bus resource. The values are as follows:

 Value Description

A Indicates a DMA arbitration level.

B Indicates a bus memory address which is not associated with DMA transfers.

M Indicates a bus memory address to be used for DMA transfers.

I Indicates a bus interrupt level that can be shared with another device.

N Indicates a bus interrupt level that cannot be shared with another device.

O Indicates a bus I/O address.

P Indicates an interrupt-priority class.

W Indicates an amount in bytes of bus memory or bus I/O space.

G Indicates a group.

S Indicates an attribute that must be shared with another adapter.

For bus memory and bus I/O addresses, the amount of address space to be assigned must also be

specified. This value can be specified by either the attribute’s Width descriptor or by a separate type W

attribute.

If the value is specified in the attribute’s Width descriptor, it is fixed at that value and cannot be

customized. If a separate type W attribute is used, the bus memory or bus I/O attribute’s Width descriptor

must be set to a null string. The type W attribute’s Width descriptor must indicate the name of the bus

memory or bus I/O attribute to which it applies.

Attribute types G and S are special-purpose types that the Bus Configurator recognizes. If an adapter has

resources whose values cannot be assigned independently of each other, a Group attribute will identify

them to the Bus Configurator. For example, an adapter card might have an interrupt level that depends on

the bus memory address assigned. Suppose that interrupt level 3 must be used with bus memory address

0x1000000, while interrupt level 4 must be used with bus memory address 0x2000000. This relationship

can be described using the Group attribute as discussed in ″Predefined Attribute (PdAt) Object Class″ .

Occasionally, all cards of a particular type or types must use the same bus resource when present in the

system. This is especially true of interrupt levels. Although most adapter’s resources can be assigned

independently of other adapters, even those of the same type, it is not uncommon to find adapters that

must share an attribute value. An adapter card having a bus resource that must be shared with another

adapter needs a type S attribute to describe the relationship.

PdAt Descriptors for Type S Attributes

The PdAt descriptors for a type S attribute should be set as follows:

 PdAt Descriptor Setting Description

Unique Type Indicates the unique type of the adapter.

Attribute Name Specifies the name assigned to this attribute.

Default Value Set to a null string.

Possible Values Contains the name of the attribute that must be shared

with another adapter or adapters.

Width Set to a null string.

Attribute Type Set to S.

Generic Attribute Flags Set to a null string. This attribute must neither be

displayed nor set by the user.

Attribute Representation Flags Set to sl, indicating an enumerated list of strings, even

though the list consists of only one item.

NLS Index Set to 0 since the attribute is not displayable.

Chapter 1. Configuration Subsystem 55

The type S attribute identifies a bus resource attribute that must be shared. The other adapters are

identifiable by attributes of type S with the same attribute name. The attribute name for the type S attribute

serves as a key to identify all the adapters.

For example, suppose an adapter with unique type adapter/mca/X must share its interrupt level with an

adapter of unique type adapter/mca/Y. The following attributes describe such a relationship:

The Predefined Attribute object for X’s interrupt level:

v Attribute Name = int_level

v Default Value = 3

v Possible Values = 2 - 9, 1

v Width = null string

v Unique Type = adapter/mca/X

v Attribute Type = I

v Generic Attribute Flags = D (displayable, but cannot be set by user)

v Attribute Representation Flags = nr

v NLS Index = 12 (message number for text description)

The predefined attribute object describing X’s shared interrupt level:

v Unique Type = adapter/mca/X

v Attribute Name = shared_intr

v Default Value = null string

v Possible Values = ″int_level″

v Width = null string

v Attribute Type = S

v Generic Attribute Flags = null string

v Attribute Representation Flags = sl

v NLS Index = 0

The Predefined Attribute object for Y’s interrupt level:

v Unique Type = adapter/mca/Y

v Attribute Name = interrupt

v Default Value = 7

v Possible Values = 2, 3, 4, 5, 7, 9

v Width = null string

v Attribute Type = I

v Generic Attribute Flags = D (displayed, but cannot be set by user)

v Attribute Representation Flags = nl

v NLS Index = 6 (message number for text description).

The Predefined Attribute object describing Y’s shared interrupt level:

v Unique Type = adapter/mca/Y

v Attribute Name = shared_intr

v Default Value = null string

v Possible Values = ″interrupt″

v Width = null string

v Attribute Type = S

56 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

v Generic Attribute Flags = null string

v Attribute Representation Flags = sl

v NLS Index = 0

Note that the two adapters require different attributes to describe their interrupt levels. The attribute name

is also different. However, their attributes describing what must be shared have the same name:

shared_intr.

Adapter bus resource attributes except those of type W can be displayed but not set by the user. That is,

the Generic Attribute Flags descriptor can either be a null string or the character D, but cannot be U or DU.

The Bus Configurator has total control over the assignment of bus resources. These resources cannot be

changed to user-supplied values by the Change method.

The Bus Configurator uses type W attributes to allocate bus memory address and bus I/O address

attributes but never changes the value of a type W attribute. Attributes of type W can be set by users by

setting the Generic Attribute flags descriptor to DU. This allows the Change method to change the type W

attribute values to a user-supplied value.

The Bus Configurator does not use or modify any other attribute the adapter may have with attribute type

R.

Related Information

Customized Attributes (CuAt) object class,Predefined Attribute (PdAt) object class.

Device Methods for Adapter Cards: Guidelines .

Writing a Change Method .

Understanding Interrupts, Understanding Direct Memory Access (DMA), Writing a Device Method in AIX

Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Object Data Manager (ODM) Overview for Programmers in AIX Version 6.1 General Programming

Concepts: Writing and Debugging Programs.

Device Configuration Subsystem Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Predefined Connection (PdCn) Object Class

Description

The Predefined Connection (PdCn) object class contains connection information for intermediate devices.

This object class also includes predefined dependency information. For each connection location, there are

one or more objects describing the subclasses of devices that can be connected. This information is

useful, for example, in verifying whether a device instance to be defined and configured can be connected

to a given device.

Descriptors

The Predefined Connection object class contains the following descriptors:

 ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required

ODM_CHAR connkey[KEYSIZE] Connection Key Required

Chapter 1. Configuration Subsystem 57

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR connwhere[LOCSIZE] Connection Location Required

These fields are described as follows:

 Field Description

Unique Type Identifies the intermediate device’s class-subclass-type name. For a device with

dependency information, this descriptor identifies the unique type of the device

on which there is a dependency. This descriptor contains the same information

as the Unique Type descriptor in the Predefined Devices (PdDv) object class.

Connection Key Identifies a subclass of devices that can connect to the intermediate device at

the specified location. For a device with dependency information, this descriptor

serves to identify the device indicated by the Unique Type field to the devices

that depend on it.

Connection Location Identifies a specific location on the intermediate device where a child device

can be connected. For a device with dependency information, this descriptor is

not always required and consequently may be filled with a null string.

The term location is used in a generic sense. For example, for a bus device the

location can refer to a specific slot on the bus, with values 1, 2, 3,.... For a

multiport serial adapter device, the location can refer to a specific port on the

adapter with values 0, 1,....

Related Information

Predefined Devices (PdDv) object class.

Predefined Devices (PdDv) Object Class

Description

The Predefined Devices (PdDv) object class contains entries for all device types currently on the system. It

can also contain additional device types if the user has specifically installed certain packages that contain

device support for devices that are not on the system. The term devices is used generally to mean both

intermediate devices (for example, adapters) and terminal devices (for example, disks, printers, display

terminals, and keyboards). Pseudo-devices (for example, pseudo terminals, logical volumes, and TCP/IP)

are also included there. Pseudo-devices can either be intermediate or terminal devices.

Each device type, as determined by class-subclass-type information, is represented by an object in the

PdDv object class. These objects contain basic information about the devices, such as device method

names and instructions for accessing information contained in other object classes. The PdDv object class

is referenced by the Customized Devices (CuDv) object class using a link that keys into the Unique Type

descriptor. This descriptor is uniquely identified by the class-subclass-type information.

Typically, the Predefined database is consulted but never modified during system boot or run time, except

when a new device is added to the Predefined database. In this case, the predefined information for the

new device must be added into the Predefined database. However, any new predefined information for a

new base device must be written to the boot file system to be effective. This is done with the bosboot

command.

You build a Predefined Device object by defining the objects in a file in stanza format and then processing

the file with the odmadd command or the odm_add_obj subroutine. See the odmadd command or the

odm_add_obj subroutine for information on creating the input file and compiling the object definitions into

objects.

58 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Note: When coding an object in this object class, set unused empty strings to ″″ (two double-quotation

marks with no separating space) and unused integer fields to 0 (zero).

Descriptors

Each Predefined Devices object corresponds to an instance of the PdDv object class. The descriptors for

the Predefined Devices object class are as follows:

 Predefined Devices

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR type[TYPESIZE] Device Type Required

ODM_CHAR class[CLASSIZE] Device Class Required

ODM_CHAR subclass[CLASSIZE] Device Subclass Required

ODM_CHAR prefix[PREFIXSIZE] Prefix Name Required

ODM_CHAR devid[DEVIDSIZE] Device ID Optional

ODM_SHORT base Base Device Flag Required

ODM_SHORT has_vpd VPD Flag Required

ODM_SHORT detectable Detectable/Non-

detectable Flag

Required

ODM_SHORT chgstatus Change Status Flag Required

ODM_SHORT bus_ext Bus Extender Flag Required

ODM_SHORT inventory_only Inventory Only Flag Required

ODM_SHORT fru FRU Flag Required

ODM_SHORT led LED Value Required

ODM_SHORT setno Set Number Required

ODM_SHORT msgno Message Number Required

ODM_VCHAR catalog[CATSIZE] Catalog File Name Required

ODM_CHAR DvDr[DDNAMESIZE] Device Driver Name Optional

ODM_METHOD Define Define Method Required

ODM_METHOD Configure Configure Method Required

ODM_METHOD Change Change Method Required

ODM_METHOD Unconfigure Unconfigure Method Optional*

ODM_METHOD Undefine Undefine Method Optional*

ODM_METHOD Start Start Method Optional

ODM_METHOD Stop Stop Method Optional

ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required

These descriptors are described as follows:

 Descriptor Description

Device Type Specifies the product name or model number. For example,

IBM 3812-2 Model 2 Page printer and IBM 4201 Proprinter

II are two types of printer device types. Each device type

supported by the system should have an entry in the PdDv

object class.

Chapter 1. Configuration Subsystem 59

Descriptor Description

Device Class Specifies the functional class name. A functional class is a

group of device instances sharing the same high-level

function. For example, printer is a functional class name

representing all devices that generate hardcopy output.

Device Subclass Identifies the device subclass associated with the device

type. A device class can be partitioned into a set of device

subclasses whose members share the same interface and

typically are managed by the same device driver. For

example, parallel and serial printers form two subclasses

within the class of printer devices.

The configuration process uses the subclass to determine

valid parent-child connections. For example, an rs232 8-port

adapter has information that indicates that each of its eight

ports only supports devices whose subclass is rs232. Also,

the subclass for one device class can be a subclass for a

different device class. In other words, several device classes

can have the same device subclass.

Prefix Name Specifies the Assigned Prefix in the Customized database,

which is used to derive the device instance name and /dev

name. For example, tty is a Prefix Name assigned to the

tty port device type. Names of tty port instances would then

look like tty0, tty1, or tty2. The rules for generating device

instance names are given in the Customized Devices object

class under the Device Name descriptor.

Base Device Flag A base device is any device that forms part of a minimal

base system. During the first phase of system boot, a

minimal base system is configured to permit access to the

root volume group and hence to the root file system. This

minimal base system can include, for example, the standard

I/O diskette adapter and a SCSI hard drive.

The Base Device flag is a bit mask representing the type of

boot for which the device is considered a base device. The

bosboot command uses this flag to determine what

predefined device information to save in the boot file

system. The savebase command uses this flag to

determine what customized device information to save in

the boot file system. Under certain conditions, the cfgmgr

command also uses the Base Device flag to determine

whether to configure a device.

VPD Flag Specifies whether device instances belonging to the device

type contain extractable vital product data (VPD). Certain

devices contain VPD that can be retrieved from the device

itself. A value of TRUE means that the device has

extractable VPD, and a value of FALSE that it does not.

These values are defined in the /usr/include/sys/cfgdb.h

file.

Detectable/Nondetectable Flag Specifies whether the device instance is detectable or

nondetectable. A device whose presence and type can be

electronically determined, once it is actually powered on and

attached to the system, is said to be detectable. A value of

TRUE means that the device is detectable, and a value of

FALSE that it is not. These values are defined in the

/usr/include/sys/cfgdb.h file.

60 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor Description

Change Status Flag Indicates the initial value of the Change Status flag used in

the Customized Devices (CuDv) object class. Refer to the

corresponding descriptor in the CuDv object class for a

complete description of this flag. A value of NEW means

that the device is to be flagged as new, and a value of

DONT_CARE means ″it is not important.″ These values are

defined in the /usr/include/sys/cfgdb.h file.

Bus Extender Flag Indicates that the device is a bus extender. The Bus

Configurator uses the Bus Extender flag descriptor to

determine whether it should directly invoke the device’s

Configure method. A value of TRUE means that the device

is a bus extender, and a value of FALSE that it is not. These

values are defined in the /usr/include/sys/cfgdb.h file.

This flag is further described in ″Device Methods for Adapter

Cards: Guidelines″ .

Inventory Only Flag Distinguishes devices that are represented solely for their

replacement algorithm from those that actually manage the

system. There are several devices that are represented

solely for inventory or diagnostic purposes. Racks, drawers,

and planars represent such devices. A value of TRUE

means that the device is used solely for inventory or

diagnostic purposes, and a value of FALSE that it is not

used solely for diagnostic or inventory purposes. These

values are defined in the /usr/include/sys/cfgdb.h file

FRU Flag Identifies the type of field replaceable unit (FRU) for the

device. The three possible values for this field are:

NO_FRU

Indicates that there is no FRU (for

pseudo-devices).

SELF_FRU

Indicates that the device is its own FRU.

PARENT_FRU

Indicates that the FRU is the parent.

These values are defined in the /usr/include/sys/cfgdb.h

file.

LED Value Indicates the hexadecimal value displayed on the LEDs

when the Configure method executes.

Catalog File Name Identifies the file name of the NLS message catalog that

contains all messages pertaining to this device. This

includes the device description and its attribute descriptions.

All NLS messages are identified by a catalog file name, set

number, and message number.

Set Number Identifies the set number that contains all the messages for

this device in the specified NLS message catalog. This

includes the device description and its attribute descriptions.

Message Number Identifies the message number in the specified set of the

NLS message catalog. The message corresponding to the

message number contains the textual description of the

device.

Chapter 1. Configuration Subsystem 61

Descriptor Description

Device Driver Name Identifies the base name of the device driver associated

with all device instances belonging to the device type. For

example, a device driver name for a keyboard could be

ktsdd. For the tape device driver, the name could be

tapedd. The Device Driver Name descriptor can be passed

as a parameter to the loadext routine to load the device

driver, if the device driver is located in the /usr/lib/drivers

directory. If the driver is located in a different directory, the

full path must be appended in front of the Device Driver

Name descriptor before passing it as a parameter to the

loadext subroutine.

Define Method Names the Define method associated with the device type.

All Define method names start with the def prefix.

Configure Method Names the Configure method associated with the device

type. All Configure method names start with the cfg prefix.

Change Method Names the Change method associated with the device type.

All Change method names start with the chg prefix.

Unconfigure Method Names the Unconfigure method associated with the device

type. All Unconfigure method names start with the ucfg

prefix.

Note: The Optional* descriptor status indicates that this

field is optional for those devices (for example, the bus) that

are never unconfigured or undefined. For all other devices,

this descriptor is required.

Undefine Method Names the Undefine method associated with the device

type. All Undefine method names start with the und prefix.

Note: The Optional* descriptor status indicates that this

field is optional for those devices (for example, the bus) that

are never unconfigured or undefined. For all other devices,

this descriptor is required.

Start Method Names the Start method associated with the device type. All

Start method names start with the stt prefix. The Start

method is optional and only applies to devices that support

the Stopped device state.

Stop Method Names the Stop method associated with the device type. All

Stop method names start with the stp prefix. The Stop

method is optional and only applies to devices that support

the Stopped device state.

Unique Type A key that is referenced by the PdDvLn link in CuDv object

class. The key is a concatenation of the Device Class,

Device Subclass, and Device Type values with a / (slash)

used as a separator. For example, for a class of disk, a

subclass of scsi, and a type of 670mb, the Unique Type is

disk/scsi/670mb.

This descriptor is needed so that a device instance’s object

in the CuDv object class can have a link to its

corresponding PdDv object. Other object classes in both the

Predefined and Customized databases also use the

information contained in this descriptor.

Files

 /usr/lib/drivers directory Contains device drivers.

62 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

Customized Devices (CuDv) object class.

The loadext subroutine, odm_add_obj subroutine.

The odmadd command.

Writing a Define Method , Writing a Configure Method , Writing a Change Method , Writing an Undefine

Method , Writing an Unconfigure Method , Writing Optional Start and Stop Methods .

Adapter-Specific Considerations for the Predefined Devices (PdDv)

Object Class

Description

The information to be populated into the Predefined Devices object class is described in the Predefined

Devices (PdDv) Object Class. The following descriptors should be set as indicated:

 Device Class Set to adapter.

Device ID Must identify the values that are obtained from the POS(0) and POS(1) registers on

the adapter card. The format is 0xAABB, where AA is the hexadecimal value obtained

from POS(0), and BB the value from POS(1). This descriptor is used by the Bus

Configurator to match up the physical device with its corresponding information in

the Configuration database.

Bus Extender Flag Usually set to FALSE, which indicates that the adapter card is not a bus extender.

This descriptor is set to TRUE for a multi-adapter card requiring different sets of

bus resources assigned to each adapter. The Standard I/O Planar is an example of

such a card.

The Bus Configurator behaves slightly differently for cards that are bus extenders. Typically, it finds an

adapter card and returns the name of the adapter to the Configuration Manager so that it can be

configured.

However, for a bus extender, the Bus Configurator directly invokes the device’s Configure method. The

bus extender’s Configure method defines the various adapters on the card as separate devices (each

needing its own predefined information and device methods), and writes the names to standard output for

the Bus Configurator to intercept. The Bus Configurator adds these names to the list of device names for

which it is to assign bus resources.

An example of a type of adapter card that would be a bus extender is one which allows an expansion box

with additional card slots to be connected to the system.

Related Information

Adapter-Specific Considerations for the PdAt Object Class .

Writing a Configure Method .

Predefined Devices (PdDv) object class.

Chapter 1. Configuration Subsystem 63

64 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 2. Communications Subsystem

ddclose Communications PDH Entry Point

Purpose

Frees up system resources used by the specified communications device until they are needed.

Syntax

#include <sys/device.h>
int ddclose (devno, chan) dev_t devno; int chan;

Parameters

 devno Major and minor device numbers.

chan Channel number assigned by the device handler’s ddmpx entry point.

Description

The ddclose entry point frees up system resources used by the specified communications device until

they are needed again. Data retained in the receive queue, transmit queue, or status queue is purged. All

buffers associated with this channel are freed. The ddclose entry point should be called once for each

successfully issued ddopen entry point.

Before issuing a ddclose entry point, a CIO_HALT operation should be issued for each previously

successful CIO_START operation on this channel.

Execution Environment

A ddclose entry point can be called from the process environment only.

Return Value

In general, communication device-handlers use the common return codes defined for entry points.

However, device handlers for specific communication devices may return device-specific codes. The

common return code for the ddclose entry point is the following:

 ENXIO Indicates an attempt to close an unconfigured device.

Related Information

The ddmpx entry point, ddopen entry point.

The CIO_HALT ddioctl Communications PDH Operation, CIO_START ddioctl Communications PDH

Operation.

dd_fastwrt Communications PDH Entry Point

Purpose

Allows kernel-mode users to transmit data.

© Copyright IBM Corp. 1997, 2007 65

Description

You use the dd_fastwrt entry point from a kernel-mode process to pass a write packet or string of packets

to a PDH for transmission. To get the address of this entry point, you issue the fp_ioctl

(CIO_GET_FASTWRT) kernel service.

The syntax and rules of usage are device-dependent and therefore not listed here. See the documentation

on individual devices for more information. Some of the information that should be provided is:

v Number of packets allowed on a single fast write function call.

v Operational level from which the fast write function can be called.

v Syntax of the entry point.

v Trusted path usage. The device may not check every parameter.

When you call this entry point from a different adapter’s receive interrupt level, you must ensure that the

calling level is equal to or lower than the target adapter’s operational level. This is the case when you

forward packets from one port to another. To find out the operational level, see the documentation for the

specific device.

Related Information

The fp_ioctl kernel service.

CIO_GET_FASTWRT ddioctl Communications PDH Operation

Purpose

Provides the parameters required to issue a kernel-mode fast-write call.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int

ddioctl (devno, op, parmptr,

devflag, chan, ext)

dev_t devno;

int op;

struct status_block * parmptr;

ulong devflag;

int chan, ext;

Description

The CIO_GET_FASTWRT operation returns the parameters required to issue a kernel-mode fast write for

a particular device. Only a kernel-mode process can issue this entry point and use the fast-write function.

The parameters returned are located in the cio_get_fastwrt structure in the /usr/include/sys/comio.h file.

Note: This operation should not be called by user-mode processes.

Parameters

 devno Specifies major and minor device numbers.

op Indicates the entry point for the CIO_GET_FASTWRT operation.

parmptr Points to a cio_get_fastwrt structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Indicates the DKERNEL flag. This flag must be set, indicating a call by a kernel-mode process.

chan Specifies the channel number assigned by the device-handler ddmpx entry point.

66 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

ext Specifies the extended subroutine parameter. This parameter is device-dependent.

Execution Environment

A CIO_GET_FASTWRT operation can be called from the process environment only.

Return Values

In general, communication device handlers use the common codes defined for an operation. However,

device handlers for specific communication devices may return device-specific codes. The common return

codes for the CIO_GET_FASTWRT operation are:

 ENXIO Indicates an attempt to use an unconfigured device.

EFAULT Indicates that the specified address is not valid.

EINVAL Indicates a parameter call that is not valid.

EPERM Indicates a call from a user-mode process is not valid.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The ddioctl device driver entry point in AIX Version 6.1 Technical Reference: Kernel and Subsystems

Volume 1.

The ddwrite entry point, dd_fastwrt entry point.

CIO_GET_STAT ddioctl Communications PDH Operation

Purpose

Returns the next status block in a status queue to user-mode process.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int ddioctl

(devno, op, parmptr,

devflag, chan, ext)

dev_t devno;

int op;

struct status_block * parmptr;

ulong devflag;

int chan,

 ext;

Parameters

 devno Specifies major and minor device numbers.

op Indicates the entry point for the CIO_GET_STAT operation.

parmptr Points to a status_block structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Specifies the DKERNEL flag. This flag must be clear, indicating a call by a user-mode process.

chan Specifies the channel number assigned by the device-handler ddmpx entry point.

ext Indicates device-dependent.

Chapter 2. Communications Subsystem 67

Description

Note: This entry point should not be called by kernel-mode processes.

The CIO_GET_STAT operation returns the next status block in the status queue to a user-mode process.

Execution Environment

A CIO_GET_STAT operation can be called from the process environment only.

Return Values

In general, communication device handlers use the common codes defined for an operation. However,

device handlers for specific communication devices may return device-specific codes. The common return

codes for the CIO_GET_STAT operation are the following:

 ENXIO Indicates an attempt to use an unconfigured device.

EFAULT Indicates the specified address is not valid.

EINVAL Indicates a parameter is not valid.

EACCES Indicates a call from a kernel process is not valid.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The ddioctl device driver entry point, ddmpx entry point in AIX Version 6.1 Technical Reference: Kernel

and Subsystems Volume 1.

CIO_HALT ddioctl Communications PDH Operation

Purpose

Removes the network ID of the calling process and cancels the results of the corresponding CIO_START

operation.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int ddioctl

(devno, op, parmptr,

devflag, chan, ext)

dev_t devno;

int op;

struct session_blk * parmptr;

ulong devflag;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

op Specifies the entry point for the CIO_HALT operation.

parmptr Points to a session_blk structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Specifies the DKERNEL flag. This flag is set by kernel-mode processes and cleared by calling

user-mode processes.

chan Specifies the channel number assigned by the device handler’s ddmpx routine.

68 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

ext Indicates device-dependent.

Description

The CIO_HALT operation must be supported by each physical device handler in the communication I/O

subsystem. This operation should be issued once for each successfully issued CIO_START operation. The

CIO_HALT operation removes the caller’s network ID and undoes all that was affected by the

corresponding CIO_START operation.

The CIO_HALT operation returns immediately to the caller, before the operation completes. If the return

indicates no error, the PDH builds a CIO_HALT _DONE status block upon completion. For kernel-mode

processes, the status block is passed to the associated status function (specified at open time). For

user-mode processes, the block is placed in the associated status or exception queue.

session_blk Parameter Block

For the CIO_HALT operation, the ext parameter can be a pointer to a session_blk structure. This

structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Indicates the status of the port. This field may contain additional information about the completion of the

CIO_HALT operation. Besides the status codes listed here, device-dependent codes can be returned:

CIO_OK

Indicates the operation was successful.

CIO_INV_CMD

Indicates an invalid command was issued.

CIO_NETID_INV

Indicates the network ID was not valid.

The status field is used for specifying immediately detectable errors. If the status is CIO_OK, the

CIO_HALT _DONE status block should be processed to determine whether the halt completed without

errors.

netid Contains the network ID to halt.

Execution Environment

A CIO_HALT operation can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an operation.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the CIO_HALT operation are the following:

 Return

Code Description

ENXIO Indicates an attempt to use an unconfigured device.

EFAULT Indicates an incorrect address was specified.

EINVAL Indicates an incorrect parameter was specified.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The ddioctl device driver entry point in AIX Version 6.1 Technical Reference: Kernel and Subsystems

Volume 1.

Chapter 2. Communications Subsystem 69

The CIO_GET_STAT ddioctl Communications PDH Operation, CIO_START ddioctl Communications PDH

Operation.

CIO_QUERY ddioctl Communications PDH Operation

Purpose

Returns device statistics.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int ddioctl

(devno, op, parmptr,

devflag, chan, ext)

dev_t devno;

int op;

struct query_parms * parmptr;

ulong devflag;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

op Indicates the entry point of the CIO_QUERY operation.

parmptr Points to a query_parms structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Specifies the DKERNEL flag. This flag is set by calling kernel-mode processes and cleared by calling

user-mode processes.

chan Specifies channel number assigned by the device handler’s ddmpx entry point.

ext Indicates device-dependent.

Description

The CIO_QUERY operation returns various statistics from the device. Counters are zeroed by the physical

device handler when the device is configured. The data returned consists of two contiguous portions. The

first portion contains counters to be collected and maintained by all device handlers in the communication

I/O subsystem. The second portion consists of device-dependent counters and parameters.

query_parms Parameter Block

For the CIO_QUERY operation, the paramptr parameter points to a query_parms structure. This structure

is located in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Contains additional information about the completion of the status block. Besides the status codes

listed here, the following device-dependent codes can be returned:

CIO_OK

Indicates the operation was successful.

CIO_INV_CMD

Indicates a command was issued that is not valid.

bufptr Points to the buffer where the statistic counters are to be copied.

buflen Indicates the length of the buffer pointed to by the bufptr field.

clearall When set to CIO_QUERY_CLEAR, the statistics counters are set to 0 upon return.

70 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Execution Environment

A CIO_QUERY operation can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the CIO_QUERY operation are the following:

 Return

Code Description

ENXIO Indicates an attempt to use unconfigured device.

EFAULT Indicates an address was specified that is not valid.

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.

ENOMEM Indicates the operation was unable to allocate the required memory.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The ddioctl device driver entry point, ddmpx entry point in AIX Version 6.1 Technical Reference: Kernel

and Subsystems Volume 1.

CIO_START ddioctl Communications PDH Operation

Purpose

Opens a communication session on a channel opened by a ddopen entry point.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int ddioctl (devno, op, parmptr, devflag, chan, ext)

dev_t devno;

int op;

struct session_blk * parmptr;

ulong devflag;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

op Specifies the entry point for the CIO_START operation.

parmptr Points to a session_blk structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Specifies the DKERNEL flag. This flag is set by calling kernel-mode processes and cleared by calling

user-mode processes.

chan Specifies the channel number assigned by the device handler’s ddmpx entry point.

ext Indicates device-dependent.

Description

The CIO_START operation must be supported by each physical device handler (PDH) in the

communication I/O subsystem. Its use varies from adapter to adapter. This operation opens a

Chapter 2. Communications Subsystem 71

communication session on a channel opened by a ddopen entry point. Once a channel is opened,

multiple CIO_START operations can be issued. For each successful start, a corresponding CIO_HALT

operation must be issued later.

The CIO_START operation requires only the netid input parameter. This parameter is registered for the

session. At least one network ID must be registered for this session before the PDH successfully accepts

a call to the ddwrite or ddread entry point on this session. If this start is the first issued for this port or

adapter, the appropriate hardware initialization is performed. Time-consuming initialization activities, such

as call connection, are also performed.

This call returns immediately to the caller before the asynchronous command completes. If the return

indicates no error, the PDH builds a CIO_START_DONE status block upon completion. For kernel-mode

processes, the status block is passed to the associated status function (specified at open time). For

user-mode processes, the status block is placed in the associated status or exception queue.

The session_blk Parameter Block

For the CIO_START operation, the ext parameter may be a pointer to a session_blk structure. This

structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Indicates the status of the port. This field may contain additional information about the completion of the

CIO_START operation. Besides the status codes listed here, device-dependent codes can also be

returned:

CIO_OK

Indicates the operation was successful.

CIO_INV_CMD

Indicates an issued command was not valid.

CIO_NETID_INV

Indicates the network ID was not valid.

CIO_NETID_DUP

Indicates the network ID was a duplicate of an existing ID already in use on the network.

CIO_NETID_FULL

Indicates the network table is full.

netid Contains the network ID to register with the start.

Execution Environment

A CIO_START operation can be called from the process environment only.

Return Values

In general, communication device-handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the CIO_START operation are the following:

 Return Code Description

ENXIO Indicates an attempt to use an unconfigured device.

EFAULT Indicates a specified address is not valid.

EINVAL Indicates a parameter is not valid.

ENOSPC Indicates the network ID table is full.

EADDRINUSE Indicates a duplicate network ID.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

72 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

The ddioctl device driver entry point in AIX Version 6.1 Technical Reference: Kernel and Subsystems

Volume 1.

The CIO_GET_FASTWRT ddioctl Communications PDH Operation, CIO_GET_STAT ddioctl

Communications PDH Operation, CIO_HALT ddioctl Communications PDH Operation.

The ddread entry point, ddwrite entry point.

ddopen (Kernel Mode) Communications PDH Entry Point

Purpose

Performs data structure allocation and initialization for a communications physical device handler (PDH).

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int ddopen (devno, devflag, chan, extptr)

dev_t devno;

ulong devflag;

int chan;

struct kopen_ext * extptr;

Parameters for Kernel-Mode Processes

 devno Specifies major and minor device numbers.

devflag Specifies the flag word with the following definitions:

DKERNEL

Set to call a kernel-mode process.

DNDELAY

When set, the PDH performs nonblocking writes for this channel. Otherwise, blocking writes

are performed.

chan Specifies the channel number assigned by the device handler’s ddmpx entry point.

extptr Points to the kopen_ext structure.

Description

The ddopen entry point performs data structure allocation and initialization. Hardware initialization and

other time-consuming activities, such as call initialization, are not performed. This call is synchronous,

which means it does not return until the ddopen entry point is complete.

kopen_ext Parameter Block

For a kernel-mode process, the extptr parameter points to a kopen_ext structure. This structure contains

the following fields:

Chapter 2. Communications Subsystem 73

Field Description

status The status field may contain additional information about the completion of an open. Besides the status

code listed here, the following device-dependent codes can also be returned:

CIO_OK

Indicates the operation was successful.

CIO_NOMBUF

Indicates the operation was unable to allocate mbuf structures.

CIO_BAD_RANGE

Indicates a specified address or parameter was not valid.

CIO_HARD_FAIL

Indicates a hardware failure has been detected.

rx_fn Specifies the address of a kernel procedure. The PDH calls this procedure whenever there is a receive

frame to be processed. The rx_fn procedure must have the following syntax:

#include </usr/include/sys/comio.h>

void rx_fn (open_id, rd_ext_p, mbufptr)

ulong open_id;

struct read_extension *rd_ext_p;

struct mbuf *mbufptr;

open_id

Identifies the instance of open. This parameter is passed to the PDH with the ddopen entry

point.

rd_ext_p

Points to the read extension as defined in the /usr/include/sys/comio.h file.

mbufptr Points to an mbuf structure containing received data.

The kernel procedure calling the ddopen entry point is responsible for pinning the rx_fn kernel

procedure before making the open call. It is the responsibility of code scheduled by the rx_fn

procedure to free the mbuf chain.

tx_fn Specifies the address of a kernel procedure. The PDH calls this procedure when the following

sequence of events occurs:

1. The DNDELAY flag is set (determined by its setting in the last uiop->uio_fmode field).

2. The most recent ddwrite entry point for this channel returned an EAGAIN value.

3. Transmit queue for this channel now has room for a write.

The tx_fn procedure must have the following syntax:

#include </usr/include/sys/comio.h>

void tx_fn (open_id)

ulong open_id;

open_id

Identifies the instance of open. This parameter is passed to the PDH with the ddopen call.

The kernel procedure calling the ddopen entry point is responsible for pinning the tx_fn kernel

procedure before making the call.

74 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

stat_fn Specifies the address of a kernel procedure to be called by the PDH whenever a status block becomes

available. This procedure must have the following syntax:

#include </usr/include/usr/comio.h>

void stat_fn (open_id, sblk_ptr);

ulong open_id;

struct status_block *sblk_ptr

open_id

Identifies the instance of open. This parameter is passed to the PDH with the ddopen entry

point.

sblk_ptr

Points to a status block defined in the /usr/include/sys/comio.h file.

The kernel procedure calling the ddopen entry point is responsible for pinning the stat_fn kernel

procedure before making the open call.

The rx_fn, tx_fn, and stat_fn procedures are made synchronously from the off-level portion of the

PDH at high priority from the PDH. Therefore, the called kernel procedure must return quickly.

Parameter blocks are passed by reference and are valid only for the call’s duration. After a return from

this call, the parameter block should not be accessed.

Execution Environment

A ddopen (kernel mode) entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common codes defined for an entry point. However,

device handlers for specific communication devices may return device-specific codes. The common return

codes for the ddopen entry point are the following:

 Return Code Description

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred. The status field contains the relevant exception code.

ENODEV Indicates there is no such device.

EBUSY Indicates the maximum number of opens was exceeded, or the device was opened in

exclusive-use mode.

ENOMEM Indicates the PDH was unable to allocate the space that it needed.

ENXIO Indicates an attempt was made to open the PDH before it was configured.

ENOTREADY Indicates the PDH is in the process of shutting down the adapter.

Related Information

The CIO_GET_FASTWRT ddioctl Communications PDH Operation, ddclose entry point, ddopen entry

point for user-mode processes, ddwrite entry point.

The ddmpx entry point.

Status Blocks for Communication Device Handlers Overview in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Communications Physical Device Handler Model Overview in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Chapter 2. Communications Subsystem 75

ddopen (User Mode) Communications PDH Entry Point

Purpose

Performs data structure allocation and initialization for a communications physical device handler (PDH).

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int ddopen (devno, devflag, chan, ext)

dev_t devno;

ulong devflag;

int chan;

int ext;

Parameters for User-Mode Processes

 devno Specifies major and minor device numbers.

devflag Specifies the flag word with the following definitions:

DKERNEL

This flag must be clear, indicating call by a user-mode process.

DNDELAY

If this flag is set, the PDH performs nonblocking reads and writes for this channel. Otherwise,

blocking reads and writes are performed for this channel.

chan Specifies the channel number assigned by the device handler’s ddmpx entry point.

ext Indicates device-dependent.

Description

The ddopen entry point performs data structure allocation and initialization. Hardware initialization and

other time-consuming activities such as call initialization are not performed. This call is synchronous and

does not return until the open operation is complete.

Execution Environment

A ddopen entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices can return device-specific codes. The

common return codes for the ddopen entry point are:

 Return Code Description

EINVAL Indicates a parameter is not valid.

ENODEV Indicates there is no such device.

EBUSY Indicates the maximum number of opens was exceeded.

ENOMEM Indicates the PDH was unable to allocate needed space.

ENOTREADY Indicates the PDH is in the process of shutting down the adapter.

ENXIO Indicates an attempt was made to open the PDH before it was configured.

Related Information

The ddclose entry point, ddopen entry point for kernel-mode processes.

76 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

ddread Communications PDH Entry Point

Purpose

Returns a data message to a user-mode process.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int ddread (devno, uiop, chan, extptr)

dev_t devno;

struct uio * uiop;

int chan;

read_extension * extptr;

Parameters

 devno Specifies major and minor device numbers.

uiop Points to a uio structure. For a calling user-mode process, the uio structure specifies the location and

length of the caller’s data area in which to transfer information.

chan Specifies the channel number assigned by the device handler’s ddmpx entry point.

extptr Indicates null or points to the read_extension structure. This structure is defined in the

/usr/include/sys/comio.h file.

Description

Note: The entry point should not to be called by a kernel-mode process.

The ddread entry point returns a data message to a user-mode process. This entry point may or may not

block, depending on the setting of the DNDELAY flag. If a nonblocking read is issued and no data is

available, the ddread entry point returns immediately with 0 (zero) bytes.

For this entry point, the extptr parameter points to an optional user-supplied read_extension structure.

This structure contains the following fields:

 Field Description

status Contains additional information about the completion of the ddread entry point. Besides the status codes

listed here, device-dependent codes can be returned:

CIO_OK

Indicates the operation was successful.

CIO_BUF_OVFLW

Indicates the frame was too large to fit in the receive buffer. The PDH truncates the frame and

places the result in the receive buffer.

netid Specifies the network ID associated with the returned frame. If a CIO_BUF_OVFLW code was received,

this field may be empty.

sessid Specifies the session ID associated with the returned frame. If a CIO_BUF_OVFLW code was received,

this field may be empty.

Execution Environment

A ddread entry point can be called from the process environment only.

Chapter 2. Communications Subsystem 77

Return Values

In general, communication device handlers use the common codes defined for an entry point. However,

device handlers for specific communication devices may return device-specific codes. The common return

codes for the ddread entry point are the following:

 Return Code Description

ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.

EACCES Indicates a call from a kernel process is not valid.

EMSGSIZE Indicates the frame was too large to fit into the receive buffer and that no extptr parameter was

supplied to provide an alternate means of reporting this error with a status of CIO_BUF_OVFLW.

EINTR Indicates a locking mode sleep was interrupted.

EFAULT Indicates a supplied address is not valid.

EBIDEV Indicates the specified device does not exist.

Related Information

The CIO_GET_FASTWRT ddioctl Communication PDH Operation, CIO_START ddioctl Communication

PDH Operation.

The ddmpx entry point, ddwrite entry point.

The uio structure.

ddselect Communications PDH Entry Point

Purpose

Checks to see whether a specified event or events has occurred on the device.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int ddselect (devno, events, reventp, chan)

dev_t devno;

ushort events;

ushort * reventp;

int chan;

Parameters

 devno Specifies major and minor device numbers.

78 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

events Specifies conditions to check. The conditions are denoted by the bitwise OR of one or more of the

following:

POLLIN

Check whether receive data is available.

POLLOUT

Check whether transmit available.

POLLPRI

Check whether status is available.

POLLSYNC

Check whether asynchronous notification is available.

reventp Points to the result of condition checks. A bitwise OR of the following conditions is returned:

POLLIN

Indicates receive data is available.

POLLOUT

Indicates transmit available.

POLLPRI

Indicates status is available.

chan Specifies the channel number assigned by the device handler’s ddmpx entry point.

Description

Note: This entry point should not be called by a kernel-mode process.

The ddselect communications PDH entry point checks and returns the status of 1 or more conditions for a

user-mode process. It works the same way the common ddselect device driver entry point does.

Execution Environment

A ddselect entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the ddselect entry point are the following:

 Return

Code Description

ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates a specified argument is not valid.

EACCES Indicates a call from a kernel process is not valid.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The ddmpx entry point.

Chapter 2. Communications Subsystem 79

ddwrite Communications PDH Entry Point

Purpose

Queues a message for transmission or blocks until the message can be queued.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int ddwrite (devno, uiop, chan, extptr)

dev_t devno;

struct uio * uiop;

int chan;

struct write_extension * extptr;

Parameters

 devno Specifies major and minor device numbers.

uiop Points to a uio structure specifying the location and length of the caller’s data.

chan Specifies the channel number assigned by the device handler’s ddmpx entry point.

extptr Points to a write_extension structure. If the extptr parameter is null, then default values are assumed.

Description

The ddwrite entry point either queues a message for transmission or blocks until the message can be

queued, depending upon the setting of the DNDELAY flag.

The ddwrite communications PDH entry point determines whether the data is in user or system space by

looking at the uiop->uio_segflg field. If the data is in system space, then the uiop->uio_iov->iov_base

field contains an mbuf pointer. The mbuf chain contains the data for transmission. The uiop->uio_resid

field has a value of 4. If the data is in user space, the data is located in the same manner as for the

ddwrite device driver entry point.

write_extension Parameter Block

For this entry point, the extptr parameter can point to a write_extension structure. This structure is

defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Indicates the status of the port. This field may contain additional information about the completion of the

ddwrite entry point. Besides the status codes listed here, device-dependent codes can be returned:

CIO_OK

Indicates that the operation was successful.

CIO_NOMBUF

Indicates that the operation was unable to allocate mbuf structures.

80 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

flag Contains a bitwise OR of one or more of the following:

CIO_NOFREE_MBUF

Requests that the physical device handler (PDH) not free the mbuf structure after transmission

is complete. The default is bit clear (free the buffer). For a user-mode process, the PDH always

frees the mbuf structure.

CIO_ACK_TX_DONE

Requests that, when done with this operation, the PDH acknowledge completion by building a

CIO_TX_DONE status block. In addition, requests that the PDH either call the kernel status

function or (for a user-mode process) place the status block in the status or exception queue.

The default is bit clear (do not acknowledge transmit completion).

writid Contains the write ID to be returned in the CIO_TX_DONE status block. This field is ignored if the user

did not request transmit acknowledgment by setting CIO_ACK_TX_DONE status block in the flag field.

netid Contains the network ID.

Execution Environment

A ddwrite entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices can return device-specific codes. The

common return codes for the ddwrite entry point are the following:

 Return Code Description

ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates a parameter that is not valid.

EAGAIN Indicates the transmit queue is full and the DNDELAY flag is set. The command was not

accepted.

EFAULT Indicates a specified address is not valid.

EINTR Indicates a blocking mode sleep was interrupted.

ENOMEM Indicates the operation was unable to allocate the needed mbuf space.

ENOCONNECT Indicates a connection was not established.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The CIO_GET_FASTWRT ddioctl Communications PDH Operation, CIO_GET_STAT ddioctl

Communications PDH Operation, CIO_START ddioctl Communications PDH Operation.

The ddmpx entry point.

The uio structure.

ent_fastwrt Ethernet Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides a faster means for a kernel user to transmit data from the Ethernet device.

Chapter 2. Communications Subsystem 81

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/entuser.h>

#include <sys/mbuf.h>

int ent_fastwrt(devno, m)

int devno;

struct mbuf * m;

Description

By using the ent_fastwrt entry point, a kernel-mode user can transmit data more quickly than through the

normal write system call. The address of the ent_fastwrt entry point, along with the devno parameter, is

given to a kernel-mode caller by way of the CIO_GET_FASTWRT entioctl operation.

The ent_fastwrt entry point works with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the network adapter and network qualifications.

Parameters

 devno Specifies major and minor device numbers.

m Points to an mbuf structure containing the caller’s data.

Execution Environment

The ent_fastwrt entry point can be called from the kernel process environment or the interrupt

environment. If the ent_fastwrt function is called from the interrupt environment it is the responsibility of

the caller to ensure that the interrupt level is ENT_OFF_LEVEL, as defined in the /usr/include/sys/
entuser.h file, or a less-favored priority.

The ent_fastwrt entry point does not support a multiple-packet write. The m_nextpkt field in the mbuf

structure is ignored by the device driver.

The ent_fastwrt entry point does not support a write extension. The mbufs are freed when the transmit is

complete, and no transmit acknowledgement is sent to the caller. If these defaults are not appropriate, use

the normal entwrite entry point.

The entwrite entry point assumes a trusted caller. The parameter checking done in the normal entwrite

entry point is not done in the ent_fastwrt entry point. The caller should ensure such things as a valid

devno parameter and a valid mbuf length.

Return Values

 ENODEV Indicates that a minor number is not valid.

EAGAIN Indicates that the transmit queue is full.

Related Information

The entwrite entry point.

The CIO_GET_FASTWRT entioctl Ethernet Device Handler Operation.

82 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

entclose Ethernet Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Resets the Ethernet device to a known state and returns system resources to the system.

Syntax

#include <sys/device.h>

int entclose (devno, chan, ext)

dev_t devno;

int chan, ext;

Parameters

 devno Identifies major and minor device numbers.

chan Specifies the channel number assigned by the entmpx entry point.

ext Ignored by the Ethernet device handler.

Description

The entclose entry point closes the device. It is called when a user-mode caller issues a close

subroutine. Before issuing the entclose entry point, the caller should have issued a CIO_HALT operation

for each successfully issued CIO_START operation during the particular instance of the open.

The entclose entry point functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the network adapter and network qualifications.

Note: For each entopen entry point issued, there must be a corresponding entclose entry point.

If the caller has specified a multicast address, the caller first needs to issue the appropriate entioctl

operation to remove all multicast addresses before issuing the entclose entry point.

Execution Environment

An entclose entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the entclose entry point are the following:

 Return

Code Description

ENXIO Indicates that the device is not configured.

EBUSY Indicates that the maximum number of opens was exceeded.

ENODEV Indicates that the specified device does not exist.

Chapter 2. Communications Subsystem 83

Related Information

The CIO_START entioctl Communications PDH Operation.

The close subroutine.

The entmpx entry point, entopen entry point.

entconfig Ethernet Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Initializes, terminates, and queries the vital product data (VPD) of the Ethernet device handler.

Syntax

#include <sys/device.h>

#include <sys/uio.h>

int entconfig (devno, cmd, uiop)

dev_t devno;

int cmd;

struct uio * uiop;

Parameters

 devno Specifies major and minor device numbers.

cmd Specifies which of the following functions this routine should perform:

CFG_INIT

Initializes device handler and internal data areas.

CFG_TERM

Terminates the device handler.

CFG_QVPD

Queries VPD.

uiop Points to a uio structure. The uio structure is defined in the /usr/include/sys/uio.h file.

Description

The entconfig entry point initializes, terminates, and queries the VPD of the Ethernet device handler.

The following are three possible entconfig operations:

The entconfig entry point functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the network adapter and network qualifications.

 Operation Description

CFG_INIT Registers entry point of the Ethernet device handler by placing them into the device switch table for

the major device number specified by the devno parameter. The uio structure contains the iov_base

pointer, which points to the Ethernet device-dependent structure (DDS). The caller provides the uio

structure. The structure is copied into an internal save area by the init function.

84 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

CFG_TERM If there are no outstanding opens, the following occurs:

v The Ethernet device handler marks itself terminated and prevents subsequent opens.

v All dynamically allocated areas are freed.

v All Ethernet device handler entry points are removed from the device switch table.

CFG_QVPD Returns the Ethernet VPD to the caller. The VPD is placed in the area specified by the caller in the

uio structure.

Execution Environment

An entconfig entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the entconfig entry point are the following:

 Return Code Description

EINVAL Indicates an address range or op code (common to all entconfig cmd operations) is not valid.

EBUSY Indicates the device was already open in Diagnostic Mode and the open request was denied (issued

for CFG_TERM and CFG_INIT operations).

EEXIST Indicates the DDS structure already exists (CFG_TERM operation).

ENODEV Indicates no such device exists (issued for all three operations).

EUNATCH Indicates the protocol driver was not attached (issued for the CFG_TERM operation).

EFAULT Indicates a specified address (common to the CFG_QVPD and CFG_INIT operations) is not valid.

EINVAL Indicates a range or op code (common to all three operations) is not valid.

EACCES Indicates permission was denied because the device was already open, or because there were

outstanding opens that were unable to terminate (common to the CFG_TERM and CFG_QVPD

operations).

ENOENT Indicates no DDS to delete (common to the CFG_TERM and CFG_QVPD operations).

ENXIO Indicates no such device exists or the maximum number of adapters was exceeded (common to all

three operations).

EEXIST Indicates the DDS structure already exists (common to CFG_TERM and CFG_INIT operations).

EFAULT Indicates a specified address (issued for CFG_TERM and CFG_INIT operations) is not valid.

ENOMEM Indicates insufficient memory (issued for the CFG_INIT operation).

Related Information

Device-Dependent Structure (DDS) Overview in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

The uio structure.

entioctl Ethernet Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides various functions for controlling the Ethernet device.

Chapter 2. Communications Subsystem 85

Syntax

#include <sys/device.h>

#include <sys/devinfo.h>

#include <sys/ioctl.h>

#include <sys/comio.h>

#include <sys/entuser.h>

int entioctl (devno, cmd, arg, devflag, chan, ext)

dev_t devno;

int cmd, arg;

ulong devflag;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

cmd Specifies which operation to perform. The possible entioctl operation codes can be found in the

/usr/include/sys/ioctl.h and /usr/include/sys/comio.h files.

arg Specifies the address of the entioctl parameter block.

devflag Specifies a parameter ignored by the Ethernet device handler.

chan Specifies the channel number assigned by the entmpx routine.

ext Specifies a parameter not used by the Ethernet device handler.

Description

The entioctl Ethernet device-handler entry point provides various functions for controlling the Ethernet

device. Common entioctl operations are supplemented by entioctl operations available for diagnostic

purposes.

The entioctl entry point functions with an Ethernet High-Performance LAN adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the network adapter and network qualifications.

These are the common valid entioctl operations:

 Operation Description

CCC_GET_VPD Returns vital product data (VPD) about the adapter.

CIO_GET_FASTWRT Provides the parameters required to issue a fast write.

CIO_GET_STAT Returns the current adapter and device handler status.

CIO_HALT Halts a session and removes the registered network ID.

CIO_QUERY Returns the current random access storage (RAS) counter values.

CIO_START Starts a session and registers a network ID.

ENT_SET_MULTI Sets or resets a multicast address.

IOCINFO Returns I/O character information.

The following entioctl operations are for diagnostic purposes:

 Operation Description

CCC_TRCTBL Returns the address of the internal device driver trace table.

CIO_MEM_ACC Reads or writes data from or to selected adapter RAM addresses.

CIO_POS_ACC Reads or writes a byte from or to a selected adapter POS register

CIO_REG_ACC Reads or writes a byte from or to a selected adapter I/O register.

86 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The following are DMA facilities operations:

 Operation Description

ENT_LOCK_DMA Sets up (locks) a user buffer to DMA from or to the adapter.

ENT_UNLOCK_DMA Clears (unlocks) a user buffer from DMA control.

Execution Environment

An entioctl entry point can be called from the process environment only.

Related Information

The entmpx entry point.

CCC_GET_VPD (Query Vital Product Data) entioctl Ethernet Device

Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Returns vital product data (VPD) about the Ethernet adapter.

Description

The CCC_GET_VPD operation returns VPD about the Ethernet adapter. For this operation, the arg

parameter points to the vital_product_data structure. This structure is defined in the

/usr/include/sys/ciouser.h file and has the following fields:

 Field Description

status Indicates the status of the VPD characters returned in the array of characters. Valid values for this status

word are found in the /usr/include/sys/ciouser.h file:

VPD_NOT_READ

VPD data has not been obtained from the adapter.

VPD_NOT_AVAIL

VPD data is not available for this adapter.

VPD_INVALID

VPD data that was obtained is not valid.

VPD_VALID

VPD data was obtained and is valid.

length Specifies the number of bytes that are valid in the VPD character array. This value can be 0, depending

on the status returned.

vpd[n] An array of characters that contain the adapter’s VPD. The number of valid characters is determined by

the length value.

The CCC_GET_VPD operation functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the network adapter and network qualifications.

Execution Environment

A CCC_GET_VPD operation can be called from the process environment only.

Chapter 2. Communications Subsystem 87

Return Values

The return codes for the CCC_GET_VPD operation are:

 Return

Code Description

EFAULT Indicates a specified address is not valid.

ENXIO Indicates no such device exists.

Related Information

The entioctl entry point.

The Vital Product Data Structure (VPD) for the Ethernet Device Handler in AIX Version 6.1 Kernel

Extensions and Device Support Programming Concepts.

CIO_GET_FASTWRT (Get Fast Write) entioctl Ethernet Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Returns the parameters required to issue an ent_fastwrt call.

Description

The CIO_GET_FASTWRT operation returns the parameters required to issue the kernel-mode fast write

for the Ethernet adapter. The parameters are returned in the cio_get_fastwrt structure, which is defined in

the /usr/include/sys/comio.h file. The arg pointer points to the cio_get_fastwrt structure, which contains

the following fields:

 Field Description

status Indicates the status condition that occurred; either CIO_OK or CIO_INV_CMD.

fastwrt_fn Indicates the address of the fast write function.

devno Specifies major and minor numbers of the device.

The CIO_GET_FASTWRT operation works with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the network adapter and network qualifications.

Execution Environment

The CIO_GET_FASTWRT operation can be called from a kernel-mode process only.

Return Values

 EINVAL Indicates that a parameter is not valid.

ENODEV Indicates that a minor number is not valid.

ENXIO Indicates an attempt to use an unconfigured device.

EPERM Indicates the calling process is a user-mode process.

EBUSY Indicates the maximum number of opens was exceeded.

Related Information

The entwrite entry point, ent_fastwrt entry point.

88 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

CIO_GET_STAT (Get Status) entioctl Ethernet Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Returns the current Ethernet adapter and device handler status.

Description

Note: Only user-mode callers can use the CIO_GET_STAT operation.

The CIO_GET_STAT operation returns the current Ethernet adapter and device handler status. The device

handler fills in the parameter block with the appropriate information upon return. For this operation, the arg

parameter points to a status block structure. This structure is defined in the /usr/include/sys/comio.h file.

The CIO_GET_STAT operation functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the network adapter and network qualifications.

Status Blocks for the Ethernet Device Handler

Status blocks are used to communicate status and exception information to user-mode processes.

User-mode processes receive a status block whenever they request a CIO_GET_STAT operation. A

user-mode process can wait for the next available status block by issuing a entselect entry point with the

specified POLLPRI event.

Status blocks contain a code field and possible options. The code field indicates the type of status block

code (for example, CIO_START_DONE).

Ethernet-specific status blocks are:

v CIO_START_DONE

v CIO_HALT_DONE

The Ethernet device handler also returns the following general communications status blocks:

v CIO_ASYNC_STATUS

v CIO_LOST_STATUS

v CIO_NULL_BLK

v CIO_TX_DONE

CIO_START_DONE

On successful completion of the CIO_START entioctl operation, a status block having the following fields

is provided:

 Field Status

option[0] CIO_OK.

option[1] The two high-order bytes contain the two high-order bytes of the network address. The two

low-order bytes contain the middle two bytes of the network address.

option[2] The two low-order bytes contain the two low-order bytes of the network address.

Chapter 2. Communications Subsystem 89

CIO_HALT_DONE

On successful completion of the CIO_HALT entioctl operation, a status block having the following fields is

provided:

 Field Status

option[0] CIO_OK

option[1] Not used

option[2] Not used

Execution Environment

A CIO_GET_STAT operation can be called from the process environment only.

Return Values

The return codes for the CIO_GET_STAT operation are:

 Return

Code Description

EACCES Indicates that permission was denied.

EBUSY Indicates that the open request was denied because the device was already open in Diagnostic mode or

because the adapter was busy.

ENODEV Indicates that no such device exists.

ENXIO Indicates that an attempt was made to use an unconfigured device.

Related Information

The entioctl entry point.

CIO_HALT (Halt Device) entioctl Ethernet Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Ends a session with the Ethernet device handler.

Description

The CIO_HALT operation ends a session with the Ethernet device handler. The caller indicates the

network ID to halt. This CIO_HALT operation corresponds with the CIO_START operation successfully

issued with the specified network ID.

The CIO_HALT operation functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the network adapter specifications for more

information on configuring the network adapter and network qualifications.

Data for the specified network ID is no longer received. Data already received for the specified network ID,

before the CIO_HALT operation, is still passed up to a user-mode caller by the entselect and entread

entry points. The rx_fn routine specified at open time passes data to a kernel-mode caller.

When a CIO_HALT operation has ended the last open session on a channel, the caller should then issue

the entclose operation.

Note: If the caller has specified a multicast address, the caller first needs to issue the appropriate entioctl

entry point to remove all the multicast addresses before issuing a CIO_HALT operation.

90 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

For a CIO_HALT operation, the arg parameter points to a session_blk structure. This structure is defined

in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status There are two possible returned status values:

v CIO_OK

v CIO_NETID_INV

netid Specifies the network ID. When IEEE 802.3 Ethernet is being used, the network ID is placed in the least

significant byte of the netid field.

Execution Environment

A CIO_HALT operation can be called from the process environment only.

Return Values

The return codes for the CIO_HALT operation are:

 Return

Code Description

EINVAL Indicates the specified network ID is not in the table.

EBUSY Indicates the open request was denied because the device was already open in Diagnostic mode or

because the adapter was busy.

ENODEV Indicates no such device exists.

ENXIO Indicates an attempt to use an unconfigured device.

Related Information

The CIO_START entioctl Ethernet Device Handler Operation.

The entioctl entry point, entread entry point, entselect entry point.

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

CIO_QUERY (Query Statistics) entioctl Ethernet Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Reads the counter values accumulated by the Ethernet device handler.

Description

The CIO_QUERY operation reads the counter values accumulated by the device handler. The counters

are initialized to 0 (zero) by each CIO_START operation issued.

For the CIO_QUERY operation, the arg parameter points to a query_parms structure. This structure is

defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Specifies the current status condition. This field accepts two possible status values:

v CIO_OK

v COP_BUF_OVFLW

Chapter 2. Communications Subsystem 91

Field Description

buffptr Specifies the address of a buffer where the returned statistics are to be placed.

bufflen Specifies the length of the buffer.

clearall When set to a value of CIO_QUERY_CLEAR, the counters are cleared upon completion of the call.

This value is defined in the /usr/include/sys/comio.h file.

The CIO_QUERY operation specifies the device-specific information placed in the supplied buffer. The

counter placed in the supplied buffer by this operation is the ent_query_stats_t structure, which is defined

in the /usr/include/sys/entuser.h file.

The CIO_QUERY operation functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the network adapter specifications for more

information on configuring the network adapter and network qualifications.

Execution Environment

A CIO_QUERY operation can be called from the process environment only.

Return Values

The return codes for the CIO_QUERY operation are:

 Return

Codes Description

ENOMEM Indicates insufficient memory.

EIO Indicates the caller’s buffer is too small.

EBUSY Indicates the open request was denied because the device was already open in Diagnostic mode or

because the adapter was busy.

ENODEV Indicates no such device exists.

ENXIO Indicates an attempt to use an unconfigured device.

Related Information

The entioctl entry point, entopen entry point.

The CIO_START entioctl Ethernet Device Handler Operation.

CIO_START (Start Device) entioctl Ethernet Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Establishes a session with the Ethernet device handler.

Description

The CIO_START operation establishes a session with the Ethernet device handler. The caller notifies the

device handler of the network ID that it will use. The caller can issue multiple CIO_START operations. For

each successful start issued, there should be a corresponding CIO_HALT operation issued.

The CIO_START operation functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the network adapter and network qualifications.

92 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

If the CIO_START operation is the first issued, the device handler initializes and opens the Ethernet

adapter. When the first CIO_START operation successfully completes, the adapter is ready to transmit and

receive data. The Ethernet adapter can receive the following packet types:

v Packets matching the Ethernet adapter’s burned-in address (or the address specified in the

device-dependent structure (DDS))

v Broadcast packets

v Multicast packets

v Packets matching the network ID specified in the netid field

The Ethernet device handler allows a maximum of 32 network IDs. The network ID must correspond to the

type field in a standard Ethernet packet or the destination service access point (DSAP) address in an IEEE

802.3 packet.

For the CIO_START operation, the arg parameter points to a session_blk structure. This structure is

defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status There are four possible returned status values:

v CIO_OK

v CIO_NETID_FULL

v CIO_NETID_DUP

v CIO_HARD_FAIL

netid Specifies the network ID the caller uses on the network. When IEEE 802.3 Ethernet is being used, the

network ID is placed in the least significant byte of the netid field.

Note: The Ethernet device handler does not allow the caller to specify itself as the wildcard network ID.

length This field is used to specify the number of valid bytes in the netid field for mixed Ethernet. Valid values

are 1 or 2.

After the CIO_START operation has successfully completed, the caller is free to issue any valid Ethernet

command.

Note: The Ethernet device handler does not support indiscriminate addressing.

Execution Environment

A CIO_START operation can be called from the process environment only.

Return Values

The return codes for the CIO_START operation are the following:

 Return Codes Description

ENETUNREACH Indicates the operation was unable to reach the network.

EBUSY Indicates the open request was denied because the device was already open in Diagnostic

mode or because the adapter was busy.

ENODEV Indicates no such device exists.

ENXIO Indicates an attempt to use an unconfigured device.

ENOSPC Indicates the netid table is full.

EADDRINUSE Indicates a duplicate network ID.

Related Information

The CIO_HALT entioctl Ethernet Device Handler Operation.

The entioctl entry point.

Chapter 2. Communications Subsystem 93

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

ENT_SET_MULTI (Set Multicast Address) entioctl Ethernet Device

Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Sets the multicast address for the Ethernet device.

Description

The ENT_SET_MULTI operation sets the multicast address for the Ethernet device. For this operation, the

arg parameter points to the ent_set_multi_t structure. This structure is defined in the

/usr/include/sys/entuser.h file and contains the following fields:

 Field Description

opcode Specifies whether to add or delete a multicast address. When this field is ENT_ADD, the

multicast address is added to the multicast entry table. When this field is ENT_DEL, the

multicast address is removed from the multicast entry table. Valid Ethernet types are

defined in the /usr/include/sys/entuser.h file.

multi_addr(6) Identifies the multicast address array where the multi_addr(0) field specifies the most

significant byte and the multi_addr(5) field specifies the least significant byte.

The ENT_SET_MULTI operation functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the network adapter and network qualifications.

Note: The Ethernet device handler allows a maximum of 10 multicast addresses.

Execution Environment

An ENT_SET_MULTI operation can be called from the process environment only.

Return Values

The return codes for the ENT_SET_MULTI operation are:

 Return Code Description

EFAULT Indicates the specified address is not valid.

EINVAL Indicates the operation code is not valid.

ENOSPC Indicates no space was left on the device. The multicast table is full.

ENOTREADY Indicates the device was not ready. (The first CIO_START operation was not issued and not

completed.)

EACCES Indicates permission was denied. (The device was open in Diagnostic mode.)

EAFNOSUPPORT Indicates the address family was not supported by protocol. (The multicast bit in the address

was not set.)

ENXIO Indicates no such device exists.

Related Information

The CIO_START entioctl Ethernet Device Handler Operation.

94 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

IOCINFO (Describe Device) entioctl Ethernet Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Returns a structure that describes the Ethernet device.

Description

The IOCINFO operation returns a structure that describes the Ethernet device. For this operation, the arg

parameter points to the ethernet substructure, which is defined as part of the devinfo structure. This

devinfo structure is located in the /usr/include/sys/devinfo.h file and contains the following fields:

 Field Description

devtype Identifies the device type. The Ethernet type is DD_NET_DH. This label is defined in the

/usr/include/sys/devinfo.h file.

devsubtype Identifies the device subtype. The Ethernet subtype is DD_EN. This label can be found in the

/usr/include/sys/devinfo.h file.

broad_wrap Indicates the adapter’s ability to receive its own packets. A value of 1 indicates that the adapter

can receive its own packets. A value of 0 indicates that the adapter cannot receive its own

packets. For this adapter, a value of 0 is returned.

rdto Specifies the receive data transfer offset. This value indicates an offset (in bytes) into the data

area of the receive page-sized mbuf structure. The device handler places received data in this

buffer.

haddr Identifies the 6-byte unique Ethernet adapter address. This address is the burned-in address that

is readable from the adapter’s vital product data (VPD). The most significant byte of the address

is placed in the haddr(0) field. The least significant byte is placed in the address specified by the

haddr(5) field.

net_addr Identifies the 6-byte unique Ethernet adapter address currently being used by the Ethernet

adapter card. This address is either the burned-in address (readable from the VPD) or the

alternate address that can be used to configure the adapter. The most significant byte of the

address is placed in the address specified by the net_addr(0) field. The least significant byte is

placed in the address specified by net_addr(5) field.

The IOCINFO operation functions with an Ethernet High-Performance LAN adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the network adapter and network qualifications.

The parameter block is filled in with the appropriate values upon return.

Execution Environment

An IOCINFO operation can be called from the process environment only.

Return Values

The return codes for the IOCINFO operation are:

 Return

Code Description

EFAULT Indicates a specified address is not valid.

EINVAL Indicates an operation code is not valid.

ENXIO Indicates no such device exists.

Related Information

The entioctl entry point.

Chapter 2. Communications Subsystem 95

entmpx Ethernet Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Allocates and deallocates a channel for an Ethernet device handler.

Syntax

#include <sys/device.h>

int entmpx (devno, chanp, channame)

dev_t devno;

int * chanp;

char * channame;

Parameters

 devno Specifies the major and minor device numbers.

chanp Contains the channel ID passed as a reference parameter. If the channame parameter is null, this

parameter is the channel ID to be deallocated. Otherwise, the chanp parameter is set to the ID of the

allocated channel.

channame Points to the remaining path name describing the channel to allocate. The channame parameter

accepts the following values:

null Deallocates the channel.

Pointer to a null string

Allows a normal open sequence of the Ethernet device on the channel ID generated by the

entmpx entry point.

Pointer to a ″D″

Allows the Ethernet device to be opened in Diagnostic mode on the channel ID generated

by the entmpx entry point.

Description

The entmpx entry point allocates and deallocates a channel for an Ethernet device handler. This entry

point is not called directly by a user. The kernel calls the entmpx entry point in response to an open or

close request.

The entmpx entry point functions with an Ethernet High-Performance LAN adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Note: If the Ethernet device has been successfully opened, any subsequent Diagnostic mode open

requests is unsuccessful. If the device has been successfully opened in Diagnostic mode, all

subsequent open requests is unsuccessful.

Execution Environment

An entmpx entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the entmpx entry point are the following:

96 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Return

Code Description

EBUSY Indicates the maximum number of opens was exceeded.

ENOMSG No message of desired type.

ENODEV Indicates the specified device does not exist.

ENXIO Indicates the device is not configured.

Related Information

The entopen entry point.

entopen Ethernet Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Initializes the Ethernet device handler and allocates the required system resources.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/entuser.h>

int entopen (devno, devflag, chan, ext)

dev_t devno;

ulong devflag;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers for both kernel- and user-mode entry pointers.

devflag Specifies the DKERNEL flag, which must be set for a kernel-mode entry pointer. This flag cannot be

set for user-mode entry pointers.

chan Specifies the channel number assigned by the entmpx routine for both kernel- and user-mode entry

pointers.

ext Points to a kopen_ext structure. This structure is defined in the /usr/include/sys/comio.h file. This

parameter is valid only for kernel-mode users; it is null for user-mode users.

Description

The entopen entry point prepares the Ethernet device for transmitting and receiving data. It is called when

a user-mode entry pointer issues an open, openx, or creat subroutine. After the entopen entry point has

successfully completed, the entry pointer must issue a CIO_START operation before using the Ethernet

device handler. The device handler is then opened for reading and writing data.

The entopen entry point functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the network adapter and network qualifications.

Execution Environment

An entopen entry point can be called from the process environment only.

Chapter 2. Communications Subsystem 97

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the entopen entry point are the following:

 Return Code Description

EINVAL Indicates a range or op code that is not valid, or that the device is not in diagnostic mode.

ENOMEM Indicates insufficient memory.

ENOTREADY Indicates that the device was not ready. The first CIO_START operation was not issued and hence

not completed.

ENXIO Indicates that no such device exists. (The maximum number of adapters was exceeded.)

Related Information

The entclose entry point, entmpx entry point.

The open, openx, or create subroutine.

The CIO_START entioctl Ethernet Device Handler Operation.

entread Ethernet Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means of receiving data from the Ethernet device handler.

Syntax

#include <sys/device.h>

#include <sys/uio.h>

int entread (devno, uiop, chan, ext)

dev_t devno;

struct uio * uiop;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

uiop Points to a uio structure. This structure is defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the entmpx routine.

ext Can specify the address of the entread parameter block. If the ext parameter is null, then no parameter

block is specified.

Description

Note: The entread entry point should only be called by user-mode callers.

The entread entry point provides the means of receiving data from the Ethernet device handler. When a

user-mode caller issues a read, readx, readv, or readvx subroutine, the kernel calls the entread entry

point.

98 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

When the entread entry point is called, the file system fills in the uio structure fields with the appropriate

values. In addition, the device handler copies the data into the buffer specified by the caller.

For the entread entry point, the ext parameter may point to the read_extension structure. This structure

is defined in the /usr/include/sys/comio.h file and contains the following field:

 Field Description

status Contains one of the following status codes:

v CIO_OK

v CIO_BUF_OVRFLW

v CIO_NOT_STARTED

The entread entry point functions with an Ethernet High-Performance LAN adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the network adapter and network qualifications.

Execution Environment

An entread entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the entread entry point are the following:

 Return Code Description

EACCES Indicates permission was denied because the device was already open. Diagnostic mode open

request denied.

EFAULT Indicates a specified address is not valid.

EINTR Indicates an interrupted system call.

EIO Indicates an I/O error.

EMSGSIZE Indicates the data returned was too large for the buffer.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the specified device does not exist.

ENOCONNECT Indicates no connection was established.

ENXIO Indicates an attempt to use an unconfigured device.

Related Information

The entmpx entry point.

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

entselect Ethernet Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Determines whether a specified event has occurred on the Ethernet device.

Chapter 2. Communications Subsystem 99

Syntax

#include <sys/device.h>

#include <sys/comio.h>

int entselect (devno, events, reventp, chan)

dev_t devno;

ushort events;

ushort * reventp;

int chan;

Parameters

 devno Specifies major and minor device numbers.

events Identifies the events to check.

reventp Returned events pointer passed by reference. This pointer is used by the entselect entry point to

indicate which of the selected events are true when the call occurs.

chan Specifies the channel number assigned by the entmpx entry point.

Description

Note: Only user-mode callers should use the entselect entry point.

The entselect entry point determines if a specified event has occurred on the Ethernet device. This entry

point must be called with the select or poll subroutine.

When the Ethernet device handler is in a state in which the specified event cannot be satisfied (for

example, an adapter failure), then the entselect entry point sets the returned event flags to 1. This

prevents the select or poll subroutine from waiting indefinitely.

The entselect entry point functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the adapter and network qualifications.

Execution Environment

An entselect entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the entselect entry point are the following:

 Return

Code Description

EACCES Indicates permission was denied because the device had not been initialized. Indicates that the

Diagnostic mode open request was denied. Indicates permission was denied because the call is from a

kernel-mode process.

ENXIO Indicates there was no such device. (Maximum number of adapters was exceeded.)

EBUSY Indicates the open request was denied because the device was already open in Diagnostic mode or

because the adapter was busy.

ENODEV Indicates no such device exists.

100 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

The CIO_GET_FASTWRT ddioctl Communications PDH Operation, the entmpx entry point.

The poll subroutine, select subroutine.

entwrite Ethernet Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for transmitting data from the Ethernet device.

Syntax

#include <sys/device.h>

#include <sys/uio.h>

#include <sys/comio.h>

#include <sys/entuser.h>

int entwrite (devno, uiop, chan, ext)

dev_t devno;

struct uio * uiop;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

uiop Points to a uio structure that provides variables to control the data transfer operation. This uio structure is

defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the entmpx entry point.

ext Specifies the address of the entwrite parameter block. If the ext parameter is null, then no parameter block

is specified.

Description

The entwrite entry point provides the means for transmitting data for the Ethernet device. The kernel calls

it when a user-mode caller issues a write, writex, writev, or writevx subroutine.

For a user-mode caller, the file system fills in the uio structure variables with the appropriate values. A

kernel-mode caller must fill in the uio structure in the same manner as the general ddwrite entry point.

For the entwrite entry point, the ext parameter is a pointer to a write_extension structure. This structure

is defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Identifies the status of the write operation. This field is in the write_extension structure and accepts

the following values:

v CIO_OK

v CIO_TX_FULL

write_id For a user-mode caller, the write_id field is returned to the caller by the CIO_GET_STAT operation if

the ACK_TX_DONE option is selected. For a kernel-mode caller, the write_id field is returned to the

caller by the stat_fn function that was provided at open time.

Chapter 2. Communications Subsystem 101

The entwrite entry point functions with an Ethernet High-Performance LAN adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the network adapter and network qualifications.

Execution Environment

An entwrite entry point can be called from the process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.

However, device handlers for specific communication devices may return device-specific codes. The

common return codes for the entwrite entry point are the following:

 Return Code Description

EAGAIN Indicates the transmit queue is full.

EFAULT Indicates a specified address is not valid.

EINTR Indicates an interrupted system call.

EINVAL Indicates an address range or op code is not valid.

ENOCONNECT Indicates no connection was established.

ENOMEM Indicates insufficient memory.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the specified device does not exist.

ENXIO Indicates an attempt to use an unconfigured device.

Related Information

The entmpx entry point, entread entry point, ent_fastwrt entry point.

The CIO_GET_FASTWRT ddioctl Communications PDH Operation.

The write, writex, writev, or writevx subroutine.

The uio structure.

mpclose Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Resets the Multiprotocol Quad Port (MPQP) adapter to a known state and returns system resources back

to the system on the last close for that adapter.

Syntax

int mpclose (devno, chan, ext)

dev_t devno;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

chan Specifies the channel number assigned by the mpmpx entry point.

ext Ignored by the MPQP device handler.

102 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The mpclose entry point routine resets the MPQP adapter to a known state and returns system resources

to the system on the last close for that adapter. The port no longer accepts mpread, mpwrite, or mpioctl

operation requests. The mpclose entry point is called in user mode by issuing a close system call. The

mpclose entry point is invoked in response to an fp_close kernel service.

On an mpclose entry point, the MPQP device handler does the following:

v Frees all internal data areas for the corresponding mpopen entry point.

v Purges receive data queued for this mpopen entry point.

On the last mpclose entry point for a particular adapter, the MPQP device handler also does the following:

v Frees its interrupt level to the system.

v Frees the DMA channel.

v Disables adapter interrupts.

v Sets all internal data elements to their default settings.

The mpclose entry point closes the device. For each mpopen entry point issued, there must be a

corresponding mpclose entry point.

Before issuing the mpclose entry point, the caller should issue a CIO_HALT operation for each

CIO_START operation issued during that particular instance of open. If a close request is received without

a preceding CIO_HALT operation, the functions of the halt are performed. A close request without a

preceding CIO_HALT operation occurs only during abnormal termination of the port.

The mpclose entry point functions with a 4-port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The mpclose entry point can be called from the process environment only.

Return Values

The common return codes for the mpclose entry point are:

 Return

Code Description

ECHRNG Indicates the channel number is too large.

ENXIO Indicates the port initialization was unsuccessful. This code could also indicate that the registration of the

interrupt was unsuccessful.

ECHRNG Indicates the channel number is out of range (too high).

Related Information

The mpconfig entry point, mpioctl entry point, mpmpx entry point, mpopen entry point, mpread entry

point, mpselect entry point, mpwrite entry point.

The CIO_HALT mpioctl MPQP Device Handler Operation, CIO_START mpioctl MPQP Device Handler

Operation.

The close system call.

The fp_close kernel service.

Chapter 2. Communications Subsystem 103

mpconfig Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides functions for initializing and terminating the Multiprotocol Quad Port (MPQP) device handler and

adapter.

Syntax

#include <sys/uio.h>

int mpconfig (devno, cmd, uiop)

dev_t devno;

int cmd;

struct uio *uiop;

Parameters

 devno Specifies major and minor device numbers.

cmd Specifies the function to be performed by this routine. There are two possible functions:

CFG_INIT

Initializes device handler and internal data areas.

CFG_TERM

Terminates the device handler.

uiop Points to a uio structure. The uio structure is defined in the /usr/include/sys/uio.h file.

Description

The mpconfig entry point provides functions for initializing and terminating the MPQP device handler and

adapter. It is invoked through the /usr/include/sys/config device driver at device configuration time. This

entry point supports the following operations:

v CFG_INIT

v CFG_TERM

The mpconfig entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The mpconfig entry point can be called from the process environment only.

Related Information

The mpclose entry point, mpioctl entry point, mpmpx entry point, mpopen entry point, mpread entry

point, mpselect entry point, mpwrite entry point.

The ddconfig routine.

MPQP Device Handler Interface Overview.

Communications I/O Subsystem: Programming Introduction.

104 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

mpioctl Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides various functions for controlling the Multiprotocol Quad Port (MPQP) adapter.

Syntax

#include <sys/devinfo.h>

#include <sys/ioctl.h>

#include <sys/comio.h>

#include <sys/mpqp.h>

int mpioctl

(devno, cmd, extptr, devflag, chan, ext)

dev_t devno;

int cmd, extptr;

ulong devflag;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

cmd Identifies the operation to be performed.

extptr Specifies an address of the parameter block.

devflag Allows mpioctl calls to inherit properties that were specified at open time. The MPQP device handler

inspects the DNDELAY flag for ioctl calls. Kernel-mode data link control (DLC) sets the DKERNAL flag

that must be set for an mpopen call.

chan Specifies the channel number assigned by the mpmpx entry point.

ext Not used by MPQP device handler.

Description

The mpioctl entry point provides various functions for controlling the MPQP adapter. There are 16 valid

mpioctl operations, including:

 Operation Description

CIO_GET_STATUS Gets the status of the current MPQP adapter and device handler.

CIO_HALT Ends a session with the MPQP device handler.

CIO_START Initiates a session with the MPQP device handler.

CIO_QUERY Reads the counter values accumulated by the MPQP device handler.

MP_CHG_PARMS Permits the DLC to change certain profile parameters after the MPQP device has been

started.

MP_START_AR Puts the MPQP port into Autoresponse mode.

MP_STOP_AR Permits the MPQP port to exit Autoresponse mode.

The mpioctl entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

The possible mpioctl operation codes can be found in the /usr/include/sys/ioctl.h, /usr/include/sys/
comio.h, and /usr/include/sys/mpqp.h files.

Execution Environment

The mpioctl entry point can be called from the process environment only.

Chapter 2. Communications Subsystem 105

Return Values

The common return codes for the mpioctl entry point are:

 Return

Code Description

ENOMEM Indicates the no memory buffers (mbufs) or mbuf clusters are available.

ENXIO Indicates the adapter number is out of range.

Related Information

The mpclose entry point, mpconfig entry point, mpmpx entry point,, mpopen entry point, mpread entry

point, mpselect entry point, mpwrite entry point.

The CIO_GET_STAT mpioctl MPQP Device Handler Operation, CIO_HALT mpioctl MPQP Device Handler

Operation, CIO_QUERY mpioctl MPQP Device Handler Operation, CIO_START mpioctl MPQP Device

Handler Operation, MP_CHG_PARMS mpioctl MPQP Device Handler Operation, MP_START_AR and

MP_STOP_AR mpioctl MPQP Device Handler Operations.

CIO_GET_STAT (Get Status) mpioctl MPQP Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Gets the status of the current Multiprotocol Quad Port (MPQP) adapter and device handler.

Description

Note: Only user-mode processes can use the CIO_GET_STAT operation.

The CIO_GET_STAT operation gets the status of the current MPQP adapter and device handler. For the

MPQP device handler, both solicited and unsolicited status can be returned.

Solicited status is status information that is returned as a completion status to a particular operation. The

CIO_START, CIO_HALT, and mpwrite operations all have solicited status returned. However, for many

asynchronous events common to wide-area networks, these are considered unsolicited status. The

asynchronous events are divided into three classes:

v Hard failures

v Soft failures

v Informational (or status-related) messages

The CIO_GET_STAT operation functions with a 4-Port Multiprotocol Interface adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the adapter and network qualifications.

Status Blocks for the Multiprotocol Device Handler

For the CIO_GET_STAT operation, the extptr parameter points to a status_block structure. When

returned, the device handler fills this structure with the appropriate information. The status_block structure

is defined in the /usr/include/sys/comio.h file and returns one of seven possible status conditions:

Status blocks are used to communicate status and exception information to user-mode processes.

106 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

User-mode processes receive a status block whenever they request a CIO_GET_STAT operation. A

user-mode process can wait for the next available status block by issuing a mpselect entry point with the

specified POLLPRI event.

Status blocks contain a code field and possible options. The code field indicates the type of status block

code (for example, CIO_START_DONE). Seven possible MPQP status blocks exist:

v CIO_ASYNC_STATUS

v CIO_HALT_DONE

v CIO_START_DONE

v CIO_TX_DONE

v MP_END_OF_AUTO_RESP

v MP_RDY_FOR_MAN_DIAL

v MP_THRESH_EXC

CIO_ASYNC_STATUS Status Block

Asynchronous status notifies the data link control of asynchronous events such as network and adapter

failures.

 Code CIO_ASYNC_STATUS

option[0] Can be one of the following:

MP_DSR_DROPPED, MP_RCV_TIMEOUT, MP_RELOAD_CMPL, MP_RESET_CMPL,

MP_X21_CLEAR

option[1] Not used

option[2] Not used

option[3] Not used

Note: The MP_RELOAD_C and MPLMP_RESET_CMPL values are for diagnostic use only.

CIO_HALT_DONE Status Block

The CIO_HALT operation ends a session with the MPQP device handler. On a successfully completed

Halt Device operation, the following status block is provided:

 Code CIO_HALT_DONE

option[0] CIO_OK

option[1] MP_FORCED_HALT or MP_NORMAL_HALT

option[2] MP_NETWORK_FAILURE or MP_HW_FAILURE

A forced halt is a halt completed successfully in terms of the data link control is concerned, but terminates

forcefully because of either an adapter error or a network error. This is significant for X.21 or other

switched networks where customers can be charged if the call does not disconnect properly.

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a

leased-circuit public data network is not supported.

CIO_START_DONE Status Block

On a successfully completed CIO_START operation, the following status block is provided:

 Code CIO_START_DONE

option[0] CIO_OK

option[1] Network ID

Chapter 2. Communications Subsystem 107

Code CIO_START_DONE

option[2] Not used

option[3] Not used

On an unsuccessful Start Device CIO_START mpioctl operation, the following status block is provided:

 Code CIO_START_DONE

option[0] Can be one of the following:

MP_ADAP_NOT_FUNC

Adapter not functional

MP_TX_FAILSAFE_TIMEOUT

Transmit command did not complete.

MP_DSR_ON_TIMEOUT

DSR failed to come on.

MP_DSR_ALRDY_ON

DSR already on for a switched line.

MP_X21_RETRIES_EXC

X.21 retries exceeded. Call not completed.

MP_X21_TIMEOUT

X.21 timer expired.

MP_X21_CLEAR

Unexpected clear received from the DCE.

option[1] If the option[0] field is set to MP_X21_TIMEOUT, the option[1] field

contains the specific X.21 timer that expired.

option[2] Not used.

option[3] Not used.

CIO_TX_DONE Status Block

On completion of a multiprotocol transmit, the following status block is provided:

 Code CIO_TX_DONE

option[0] Can be one of the following:

CIO_OK

MP_TX_UNDERRUN

MP_X21_CLEAR

MP_TX_FAILSAFE_TIMEOUT

The transmit command did not complete.

MP_TX_ABORT

Transmit aborted due to CIO_HALT operation.

option[1] Identifies the write_id field supplied by the caller in the write command if

TX_ACK was selected.

option[2] Points to the buffer with transmit data.

option[3] Not used.

108 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

MP_END_OF_AUTO_RESP Status Block

The MP_STOP_AR mpioctl operation has completed. The adapter is in Normal Receive mode. All receive

data is routed to the data link control.

 Code MP_END_OF_AUTO_RESP

option[0] CIO_OK

option[1] Not used

option[2] Not used

option[3] Not used

MP_RDY_FOR_MAN_DIAL Status Block

The manual dial switched line is ready for dialing. The start operation is pending the call completion.

 Code MP_RDY_FOR_MAN_DIAL

option[0] CIO_OK

option[1] Not used

option[2] Not used

option[3] Not used

MP_THRESH_EXC Status Block

A threshold for one of the counters defined in the start profile has reached its threshold.

 Code MP_THRESH_EXC

option[0] Indicates the expired threshold.

The following values are returned to indicate the

threshold that was exceeded: MP_TOTAL_TX_ERR,

MP_TOTAL_RX_ERR, MP_TX_PERCENT,

MP_RX_PERCENT

option[1] Not used.

option[2] Not used.

option[3] Not used.

Execution Environment

The CIO_GET_STAT operation can be called from the process environment only.

Return Values

The return codes for the CIO_GET_STAT operation are:

 Return

Code Description

ENOMEM Indicates no mbufs or mbuf clusters are available.

ENXIO Indicates the adapter number is out of range.

Related Information

The CIO_HALT mpioctl MPQP Device Handler Operation, CIO_QUERY mpioctl MPQP Device Handler

Operation, CIO_START mpioctl MPQP Device Handler Operation, MP_CHG_PARMS mpioctl MPQP

Device Handler Operation, MP_START_AR and MP_STOP_AR mpioctl MPQP Device Handler

Operations.

Chapter 2. Communications Subsystem 109

The mpioctl entry point, mpwrite entry point.

CIO_HALT (Halt Device) mpioctl MPQP Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Ends a session with the Multiprotocol Quad Port (MPQP) device handler and terminates the connection to

the MPQP link.

Description

The CIO_HALT operation terminates a session with the MPQP device handler. The caller specifies which

network ID to halt. The CIO_HALT operation removes the network ID from the network ID table and

disconnects the physical link. A CIO_HALT operation must be issued for each CIO_START operation that

completed successfully.

Data received for the specified network ID before the CIO_HALT operation is called can be retrieved by

the caller using the mpselect and mpread entry points.

If the CIO_HALT operation terminates abnormally, the status is returned either asynchronously or as part

of the CIO_HALT_DONE. Whatever the case, the CIO_GET_STAT operation is used to get information

about the error. When a halt is terminated abnormally (for example, due to network failure), the following

occurs:

v The link is terminated.

v The drivers and receivers are disabled for the indicated port.

v The port can no longer transmit or receive data.

No recovery procedure is required by the caller; however, logging the error is required.

Errors are reported on halt operations because the user could continue to be charged for connect time if

the network does not recognize the halt. This error status permits a network application to be notified

about an abnormal link disconnection and then take corrective action, if necessary.

The CIO_HALT operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Parameter Block

For the MPQP CIO_HALT operation, the extptr parameter points to a session_blk structure. This structure

is defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Specifies the status of the port. This field is set for immediately detectable errors. Possible values for the

status filed are:

v CIO_OK

v CIO_NETID_INV

If the calling process does not wish to sleep while the halt is in progress, the DNDELAY option can be

used. In either case, the status of the halt is retrieved using the CIO_GET_STATUS operation and a

CIO_HALT_DONE status block is returned. The CIO_HALT_DONE status block should be used as an

indication of completion.

netid Contains the network ID the caller wishes to halt. The network ID is placed in the least significant byte of

the netid field.

110 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Execution Environment

The CIO_HALT operation can be called from the process environment only.

Return Values

The CIO_HALT operation returns common communications return values. In addition, the following MPQP

specific errors may be returned:

 Error Description

EBUSY Indicates the device is not started or is not in a data transfer state.

ENOMEM Indicates there are no mbufs or mbuf clusters available.

ENXIO Indicates the adapter number is out of range.

Files

 /usr/include/sys/comio.h Contains the session_blk structure definition.

Related Information

The mpread entry point, mpselect entry point.

The CIO_GET_STAT mpioctl MPQP Device Handler Operation, CIO_QUERY mpioctl MPQP Device

Handler Operation, CIO_START mpioctl MPQP Device Handler Operation, MP_CHG_PARMS mpioctl

MPQP Device Handler Operation, MP_START_AR and MP_STOP_AR mpioctl MPQP Device Handler

Operations.

Status Blocks for the Multiprotocol Device Handler.

CIO_QUERY (Query Statistics) mpioctl MPQP Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means to read counter values accumulated by the Multiprotocol Quad Port (MPQP) device

handler.

Description

The CIO_QUERY operation reads the counter values accumulated by the MPQP device handler. The

counters are initialized to 0 (zero) by the first mpopen entry point operation.

The CIO_QUERY operation returns the Reliability/Availability/Serviceability field of the define device

structure (DDS).

The CIO_QUERY operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

The t_query_parms Parameter Block

For this operation, the extptr parameter points to an t_query_parms structure. This structure is defined in

the /usr/include/sys/mpqp.h file and has the following fields:

Chapter 2. Communications Subsystem 111

Field Description

status Contains additional information about the completion of the status block. Device-dependent codes may

also be returned.

CIO_OK Indicates that the operation was successful.

bufptr Specifies the address of a buffer where the returned statistics are to be placed.

buflen Specifies the length of the buffer; it should be at least 45 words long (unsigned long).

reserve Reserved for use in future releases.

Statistics Logged for MPQP Ports

The following statistics are logged for each MPQP port.

v Bytes transmitted

v Bytes received

v Frames transmitted

v Frames received

v Receive errors

v Transmission errors

v DMA buffer not large enough or not allocated

v Autoresponse transmission fail-safe time out

v Autoresponse received time out

v CTS time out

v CTS dropped during transmit

v DSR time out

v DSR dropped

v DSR on before DTR on a switched line

v X.21 call-progress signal (CPS)

v X.21 unrecognized CPS

v X.21 invalid CPS

v DCE clear during call establishment

v DCE clear during data phase

v X.21 T1-T5 time outs

v X.21 invalid DCE-provided information (DPI)

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a

leased-circuit public data network is not supported.

Execution Environment

The CIO_QUERY operation can be called from the process environment only.

Return Values

 EFAULT Indicates a specified address is not valid.

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.

ENOMEM Indicates the operation was unable to allocate the required memory.

ENXIO Indicates an attempt to use unconfigured device.

Related Information

The mpioctl entry point, mpopen entry point.

112 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The CIO_GET_STAT mpioctl MPQP Device Handler Operation, CIO_HALT mpioctl MPQP Device Handler

Operation, CIO_START mpioctl MPQP Device Handler Operation, MP_CHG_PARMS mpioctl MPQP

Device Handler Operation, MP_START_AR and MP_STOP_AR mpioctl MPQP Device Handler

Operations.

CIO_START (Start Device) mpioctl MPQP Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Starts a session with the Multiprotocol Quad Port (MPQP) device handler.

Description

The CIO_START operation registers a network ID in the network ID table and establishes the physical

connection with the MPQP device. Once this start operation completes successfully, the port is ready to

transmit and receive data.

Note: The CIO_START operation defines the protocol- and configuration-specific attributes of the selected

port. All bits that are not defined must be set to 0 (zero).

For the MPQP CIO_START operation, the extptr parameter points to a t_start_dev structure. This

structure contains pointers to the session_blk structure.

The session_blk structure contains the netid and status fields. The t_start_dev device-dependent

information for an MPQP device follows the session block. All of these structures can be found in the

/usr/include/sys/mpqp.h file.

The CIO_START operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Chapter 2. Communications Subsystem 113

t_start_dev Fields

The t_start_dev structure contains the following fields:

 Field Description

phys_link Indicates the physical link protocol. Only one type of physical link is valid at a time.

The six supported values are:

Physical Link

Type

PL_232D

EIA-232D

PL_422A

EIA-422A

PL_V35

V.35

PL_X21

X.21

PL_SMART_MODEM

Hayes EIA232-D autodial protocol

PL_V25

V.25bis EIA-422A autodial protocol

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop)

operation on a leased-circuit public data network is not supported.

If the phys_link field is PL_SMART_MODEM or PL_V25, the dial_proto and

dial_flags fields are applicable. Otherwise, these fields are ignored. If no dial

protocol or flags are supplied when the PL_SMART_MODEM or PL_V25 link is

selected, defaults are used. The defaults for the dial phase for a

PL_SMART_MODEM link is an asynchronous protocol at 2400 baud with even parity,

7 bits per character, and 1 stop bit. A PL_V25 link has the same defaults.

dial_proto Identifies the autodial protocol, which communicates with the modem to send

information such as dial sequence or register settings. Most modems use an

asynchronous protocol during the connect phase of call establishment. If no value is

set, the default mode is asynchronous.

Note: The dial_proto field is ignored if the physical link is not an autodial protocol.

data_proto Identifies the possible data protocol selections during the data transfer phase. The

data_flags field has different meanings depending on what protocol is selected. The

data_proto field accepts the following values:

DATA_PRO_BSC

Indicates a bisync protocol.

DATA_PRO_SDLC_FDX

Indicates receivers enabled during transmit.

DATA_PRO_SDLC_HDX

Indicates receivers disabled during transmit.

114 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

modem_flags Establishes modem characteristics. This field accepts the following values:

MF_AUTO

Indicates that the call is to be answered or dialed automatically.

MF_CALL

Indicates an outgoing call (switched only).

MF_CDSTL_OFF

Indicates that the data terminal ready (DTR) should be enabled without

waiting for ring indicate (RI) to connect data set to line.

MF_CDSTL_ON

Enables DTR after RI occurs. If the data set ready (DSR) goes active prior

to RI, DTR is enabled and RI is ignored.

MF_DRS_ON

Enables date rate selected (DRS).

MF_DRS_OFF

Disables DRS (full speed). This is the default.

MF_LEASED

Indicates a leased telephone circuit.

MF_LISTEN

Indicates an incoming call (switched only).

MF_MANUAL

Indicates that the operator answers or dials the call manually.

MF_SWITCHED

Indicates a switched telephone circuit.

Note: The MF_DRS_ON and MF_DRS_OFF modem characteristics are not currently

supported. The default is full speed.

poll_addr Identifies the address-compare value for a Binary Synchronous Communication (BSC)

polling frame or an Synchronous Data Link Control (SDLC) frame. If using BSC, a

value for the selection address must also be provided or the address-compare is not

enabled. If a frame is received that does not match the poll address (or select

address for BSC), the frame is not passed to the system.

select_addr Specifies a valid select address for BSC only.

modem_int_mask Reserved. This value must be 0.

Chapter 2. Communications Subsystem 115

Field Description

baud_rate Specifies the baud rate for transmit and receive clock. This field is used for date

terminal equipment (DTE) clocking only (that is, when the modem does not supply the

clock). Acceptable baud rates range from 150 baud to a maximum speed of 38400

baud. If this field contains a value that does not match one of the following choices,

the next lowest baud rate is used:

v 38400

v 19200

v 9600

v 4800

v 2400

v 2000

v 1200

v 1050

v 600

v 300

A value of 0 indicates the port is to be externally clocked (that is, use modem

clocking). The on-board baud rate generator is limited to a speed of 38400. All higher

baud rates up to the maximum of 64000 bits must be accomplished with modem

clocking. For RS232, the adapter drives a clock signal on the DTE clock. Most

modems provide their own clocking.

If the physical link is set to the PL_SMART_MODEM or PL_V25 link, the baud rate is

the speed of the dial sequence and modem clocking is used for data transfer.

rcv_timeout Indicates the period of time, expressed in 100-msec units (0.10 sec), used for setting

the receive timer. The MPQP device driver starts the receive timer whenever the

CIO_START operation completes and a final transmit occurs.

If a receive occurs that is not a receive final frame, the timer is restarted. The timer is

stopped when the receive final occurs. If the timer expires before a receive occurs, an

error is reported to the logical link control (LLC) protocol. After the CIO_START

operation completes, the receive time out value can be changed by the

MP_CHANGE_PARAMS operation. A value of zero indicates that a receive timer

should not be activated.

Final frames in SDLC are all frames with the poll or final bit set. In BSC, all frames

are final frames except intermediate text block (ITB) frames.

rcv_data_offset Reserved

dial_data_length Specifies the length of the dial data. Dial data for Hayes-style dial data can be up to

256 bytes.

Flag Fields for Autodial Protocols

Flag fields in the t_start_dev structure take different values depending on the type of autodial protocol

selected.

Data Flags for the BSC Autodial Protocol

If BSC is selected in the data_proto field, either ASCII or EBCDIC character sets can be used. Control

characters are stripped automatically on reception. Data link escape (DLE) characters are automatically

inserted and deleted in transparent mode. If BSC Address Check mode is selected, values for both poll

and select addresses must be supplied. Odd parity is used if ASCII is selected.

The following are the default values:

v EBCDIC.

116 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

v Do not restart the receive timer.

v Do not check addresses.

v RTS controlled.

The data flags for the BSC autodial protocol are:

 Data Flag Description

DATA_FLG_RST_TMR Reset receive timer.

DATA_FLG_ADDR_CHK Address-compare select. This causes frames to be filtered by the hardware

based on address. Only frames with matching addresses are sent to the

system.

DATA_FLG_BSC_ASC ASCII BSC select.

DATA_FLG_C_CARR_ON Continuous carrier (RTS always on).

DATA_FLG_C_CARR_OFF RTS-disabled between transmits (default).

Dial Flags for ASC Protocols

If ASC and the parity enable bit is set, the value for parity select is honored. A value of 0 equals even

parity. A value of 1 equals odd parity. If parity enable is set to 0, no parity type is enforced. The following

are acceptable ASC dial flags:

 ASC Dial Flag Description

DIAL_FLG_PAR_EN Enable parity.

DIAL_FLG_PAR_ODD Odd parity.

DIAL_FLG_STOP_0 0 stop bits.

DIAL_FLG_STOP_1 1 stop bit.

DIAL_FLG_STOP_15 1.5 stop bits.

DIAL_FLG_STOP_2 2 stop bits.

DIAL_FLG_CHAR_5 5 bits per character.

DIAL_FLG_CHAR_6 6 bits per character.

DIAL_FLG_CHAR_7 7 bits per character.

DIAL_FLG_CHAR_8 8 bits per character.

DIAL_FLG_C_CARR_ON Continuous carrier (RTS always on).

DIAL_FLG_C_CARR_OFF RTS disabled between transmits (default).

DIAL_FLG_TX_NO_CTS Transmit without waiting for clear to send (CTS).

DIAL_FLG_TX_CTS Wait for CTS to transmit (default).

Data Flags for the SDLC Protocol

For the Synchronous Data Link Control (SDLC) protocol, the flag for NRZ or NRZI must match the

data-encoding method that is used by the remote DTE. If SDLC Address Check mode is selected, the poll

address byte must also be specified. The receive timer (RT) is started whenever a final block is

transmitted. If RT is set to 1, the receive timer is restarted after expiration. If RT is set to 0, the receive

timer is not restarted after expiration. The receive timer value is specified by the 16-bit rcv_time out field.

The following are the acceptable SDLC data flags:

 SLDC Data Flag Description

DATA_FLG_NRZI NRZI select (default is NRZ).

DATA_FLG_ADDR_CHK Address-compare select.

DATA_FLG_RST_TMR Restart receive timer.

DIAL_FLG_C_CARR_ON Continuous carrier (RTS always on).

DIAL_FLG_C_CARR_OFF RTS disabled between transmits (default).

Chapter 2. Communications Subsystem 117

t_auto_data Fields

The t_auto_data structure contains the following fields that specify aspects of the X.21 call progress

signal retry and logging data format:

 Field Description

len Length of autodial to be sent to the modem.

sig[] Signals to be sent to the modem data in the form of an array of characters.

connect_timer Time-out value. This value is specified in 0.1 seconds. The adapter should wait for call to

complete before reporting a connection failure to the DLC. The default is 30 seconds if no

value is set.

v25b_tx_timer Time-out value. This value is specified in 0.1 seconds of delay after driving DTR and before

sending dial data in V.25bis modem protocol. If no value is set, a default value of 0.1

seconds is used.

t_x21_data Fields

The t_x21_data structure contains the following fields that specify aspects of the X.21 call progress signal

retry and logging data format:

 Field Description

selection signal length Contains the length of the data held in the selection-signals portion of

the buffer in bytes. Values from 0 to 256 are valid.

selection signals The selection signals are allocated 256 bytes each. Items are stored in

the International Alphabet 5 (IA5) format.

retry_cnt Indicates how many attempts at outgoing call establishment must fail

before the adapter software returns an error to the driver for the

CIO_START operation. Values between 0 and 255 are allowed. This is

a 1-byte field.

retry_delay Contains the number of 100-msec (0.1 sec) intervals to wait between

successive call retries. This is a 2-byte field.

cps_group There are nine characters-per-second (cps) groups. Each cps group

can generate a driver interrupt after a configurable number of errors are

detected. Optionally, this interrupt can cause an X.21 network

transaction to notify network error-logging monitors of excessive error

rates. The netlog bit definitions determine which signals in each group

are considered countable.

Retry and Netlog Groups

Specify the retry and netlog fields for a cps-particular group. The bits definitions are as follows:

v In the retry field, a 1-bit (On) indicates that retries are enabled for this signal.

v In logging fields, a set bit indicates that errors of this type should be counted in the cumulative group

error statistics. Eventually, these statistics can generate interrupts to the driver.

Call progress signals are divided into groups of 10; for example, cps 43 is group 4, signal 3. To indicate

retries for cps 43, the value for signal 3 should be ORed into the retry unsigned short for group 4. Possible

values for retry groups are the following:

v CG_SIG_0

v CG_SIG_1

v CG_SIG_2

v CG_SIG_3

v CG_SIG_4

v CG_SIG_5

118 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

v CG_SIG_6

v CG_SIG_7

v CG_SIG_8

v CG_SIG_9

t_err_threshold Fields

The t_err_threshold structure describes the format for defining thresholds for transmit and receive errors.

Counters track the total number of transmit and receive errors. Individual counters track certain types of

errors. Thresholds can be set for individual errors, total errors, or a percentage of transmit and receive

errors from all frames received.

When a counter reaches its threshold value, a status block is returned by the driver. The status block

indicates the type of error counter that reached its threshold. If multiple thresholds are reached at the

same time, the first expired threshold in the list is reported as having expired and its counter is reset to 0.

The user can issue a CIO_QUERY operation call to retrieve the values of all counters.

If no thresholding is desired, the threshold should be set to 0. A value of 0 indicates that LLC should not

be notified of an error at any time. To indicate that the LLC should be notified of every occurrence of an

error, the threshold should be set to 1.

The t_err_threshold structure contains the following fields:

 Field Description

tx_err_thresh Specifies the threshold for all transmit errors. Transmit errors include transmit underrun,

CTS dropped, CTS time out, and transmit failsafe time out.

rx_err_thresh Specifies the threshold for all receive errors. Receive errors include overrun errors,

break/abort errors, framing/cyclic redundancy check (CRC)/frame check sequence (FCS)

errors, parity errors, bad frame synchronization, and receive-DMA-buffer-not-allocated

errors.

tx_err_percent Specifies the percentage of transmit errors that must occur before a status block is sent

to the LLC.

rx_err_percent Specifies the percentage of receive errors that must occur before a status block is sent to

the LLC.

Execution Environment

The CIO_START operation can be called from the process environment only.

Return Values

 EBUSY Indicates the port state is not opened for a CIO_START operation.

EFAULT Indicates the cross-memory copy service was unsuccessful.

EINVAL Indicates the physical link parameter is not valid for the port.

EIO Indicates the device handler could not queue command to the adapter.

ENOMEM Indicates no mbuf clusters are available.

ENXIO Indicates the adapter number is out of range.

Related Information

The ddioctl CIO_GET_FASTWRT entry point, mpioctl entry point.

Chapter 2. Communications Subsystem 119

The CIO_GET_STAT mpioctl MPQP Device Handler Operation, CIO_HALT mpioctl MPQP Device Handler

Operation, CIO_QUERY mpioctl MPQP Device Handler Operation, MP_CHG_PARMS mpioctl MPQP

Device Handler Operation, MP_START_AR and MP_STOP_AR mpioctl MPQP Device Handler

Operations.

MP_CHG_PARMS (Change Parameters) mpioctl MPQP Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Permits the data link control (DLC) to change certain profile parameters after the Multiprotocol Quad Port

(MPQP) device has been started.

Description

The MP_CHG_PARMS operation permits the DLC to change certain profile parameters after the MPQP

device has been started. The cmd parameter in the mpioctl entry point is set to the MP_CHG_PARMS

operation. This operation can interfere with communications that are in progress. Data transmission should

not be active when this operation is issued.

For this operation, the extptr parameter points to a chng_params structure. This structure has the

following changeable fields:

 Field Description

chg_mask Specifies the mask that indicates which fields are to be changed. The possible choices are:

v CP_POLL_ADDR

v CP_RCV_TMR

v CP_SEL_ADDR

More than one field can be changed with one MP_CHG_PARAMS operation.

rcv_timer Identifies the timeout value used after transmission of final frames when waiting for receive data in

0.1 second units.

poll_addr Specifies the poll address. Possible values are Synchronous Data Link Control (SDLC) or Binary

Synchronous Communications (BSC) poll addresses.

sel_addr Specifies the select address. BSC is the only possible protocol that supports select addresses.

Related Information

The mpioctl entry point.

The CIO_GET_STAT mpioctl MPQP Device Handler Operation, CIO_HALT mpioctl MPQP Device Handler

Operation, CIO_START mpioctl MPQP Device Handler Operation, CIO_QUERY mpioctl MPQP Device

Handler Operation, MP_START_AR and MP_STOP_AR mpioctl MPQP Device Handler Operations.

MP_START_AR (Start Autoresponse) and MP_STOP_AR (Stop

Autoresponse) mpioctl MPQP Device Handler Operations

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Permits the Multiprotocol Quad Port (MPQP) to exit or enter Autoresponse mode.

120 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The MP_START_AR and MP_STOP_AR operations permit the MPQP to enter and exit Autoresponse

mode. When the cmd parameter is set to the MP_STOP_AR operation, the device exits from

Autoresponse mode. All received data is sent up to the host. The data link control (DLC) receives an

end-of-autoresponse status in the status_block structure of the CIO_GET_STAT operation.

When the cmd parameter is set to the MP_START_AR operation, the port is put into Autoresponse mode.

The DLC supplies the address and control bytes for receive compare and transmit in the t_auto_resp

structure pointed to by the extptr parameter. This structure contains the following fields:

 Field Description

rcv_timer Identifies the time in 100-msec units that the adapter waits after a frame has been transmitted

before reporting an error.

tx_rx_addr Contains the 1-byte address used for compare on the receive frames and as the address byte on

transmitted frames.

tx_cntl Specifies the control byte used for transmitted frames.

rx_cntl Identifies the value of control byte on receive frames used for receive compare.

Autoresponse mode is applicable for Synchronous Data Link Control SDLC protocol only. Autoresponse

reduces the amount of system overhead during nonproductive link communications. While Data

Termination Endpoints (DTEs) are exchange-control information to maintain the link, the adapter can

respond to polls from the host without generating any system interrupts.

When in Autoresponse mode, the MPQP adapter compares the receive address and control bytes with the

values supplied by the DLC. If a match is found, it generates a response frame with the address and

control bytes given in the MP_START_AR operation. When a response frame is transmitted, a timer is

started with the value given in the rcv_timer field. If the adapter does not receive a frame before the timer

expires, it detects an error and exits Autoresponse mode.

The following five conditions cause the MPQP adapter to exit Autoresponse mode:

v A receive time out occurs.

v A transmit time out occurs.

v A poll/final frame is received that does not compare with the control data given in the autoresponse

operation.

v A fatal link error occurs. Fatal errors include data rate select (DSR) dropped and X.21 cleared received.

v A stop autoresponse command is received from the DLC.

If one of these errors occurs, the adapter exits Autoresponse mode and stays in receive mode. Polls

received after these errors occur are passed to the DLC.

The autoresponse operations function with a 4-Port Multiprotocol Interface adapter been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The autoresponse operations can be called from the process environment only.

Return Values

 ENOMEM Indicates no mbufs or mbuf clusters are available.

ENXIO Indicates the adapter number is out of range.

Chapter 2. Communications Subsystem 121

Related Information

The CIO_GET_FASTWRT ioctl Communications PDH Operation.

The CIO_GET_STAT mpioctl MPQP Device Handler Operation, CIO_HALT mpioctl MPQP Device Handler

Operation, CIO_QUERY mpioctl MPQP Device Handler Operation, CIO_START mpioctl MPQP Device

Handler Operation, MP_CHG_PARMS mpioctl MPQP Device Handler Operation.

mpmpx Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Allocates and deallocates a channel for the Multiprotocol Quad Port (MPQP) device handler.

Syntax

int mpmpx (devno, chanp, channame)

dev_t devno;

int *chanp;

char *channame;

int openflag;

Parameters

 devno Specifies the major and minor device numbers.

chanp Identifies the channel ID passed as a reference parameter. Unless specified as null, the channame

parameter is set to the allocated channel ID. If this parameter is null it is set as the ID of the channel

to be deallocated.

channame Points to the remaining path name describing the channel to be allocated. There are four possible

values:

Equal to NULL

Deallocates the channel.

A pointer to a NULL string

Allows a normal open sequence of the device on the channel ID generated by the mpmpx

entry point.

D Allows the device to be opened in Diagnostic mode on the channel ID generated by the

mpmpx entry point.

Pointer to a ″W″

Allows the MPQP device to be opened in Diagnostic mode with the adapter in Wrap mode.

The device is opened on the channel ID generated by the mpmpx entry point.

Description

The mpmpx entry point allocates and deallocates a channel. The mpmpx entry point is supported similar

to the common ddmpx entry point.

Return Values

The common return codes for the mpmpx entry point are the following:

 Return

Code Description

EINVAL Indicates an invalid parameter.

ENXIO Indicates the device was open and the Diagnostic mode open request was denied.

EBUSY Indicates the device was open in Diagnostic mode and the open request was denied.

122 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

The ddmpx entry point, mpclose entry point, mpconfig entry point, mpioctl entry point, mpopen entry

point, mpread entry point, mpselect entry point, mpwrite entry point.

MPQP Device Handler Interface Overview in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Communications I/O Subsystem: Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Communications Physical Device Handler Model Overview in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

mpopen Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Prepares the Multiprotocol Quad Port (MPQP) device for transmitting and receiving data.

Syntax

#include <sys/comio.h>

#include <sys/mpqp.h> int mpopen (devno, devflag, chan, ext)

dev_t devno;

ulong devflag;

int chan;

STRUCT kopen_ext *ext;

Parameters

 devno Specifies the major and minor device numbers.

devflag Specifies the flag word. For kernel-mode processes, the devflag parameter must be set to the

DKERNEL flag, which specifies that a kernel routine is making the mpopen call. In addition, the

following flags can be set:

DWRITE

Specifies to open for reading and writing.

DREAD

Specifies to open for a trace.

DNDELAY

Specifies to open without waiting for the operation to complete. If this flag is set, write

requests return immediately and read requests return with 0 length data if no read data is

available. The calling process does not sleep. The default is DELAY or blocking mode.

DELAY Specifies to wait for the operation to complete before opening. This is the default.

Note: For user-mode processes, the DKERNEL flag must be clear.

chan Specifies the channel number assigned by the mpmpx entry point.

ext Points to the kopen_ext parameter block for kernel-mode processes. Specifies the address to the

mpopen parameter block for user-mode processes.

Chapter 2. Communications Subsystem 123

Description

The mpopen entry point prepares the MPQP device for transmitting and receiving data. This entry point is

invoked in response to a fp_open kernel service call. The file system in user mode also calls the mpopen

entry point when an open subroutine is issued. The device should be opened for reading and writing data.

Each port on the MPQP adapter must be opened by its own mpopen call. Only one open call is allowed

for each port. If more than one open call is issued, an error is returned on subsequent mpopen calls.

The MPQP device handler only supports one kernel-mode process to open each port on the MPQP

adapter. It supports the multiplex (mpx) routines and structures compatible with the communications I/O

subsystem, but it is not a true multiplexed device.

The kernel process must provide a kopen_ext parameter block. This parameter block is found in

/usr/include/sys/comio.h file.

For a user-mode process, the ext parameter points to the mpopen structure. This is defined in the

/usr/include/sys/comio.h file. For calls that do not specify a parameter block, the default values are used.

If adapter features such as the read extended status field for binary synchronous communication (BSC)

message types as well as other types of information about read data are desired, the ext parameter must

be supplied. This also requires the readx or read subroutine. If a system call is used, user data is

returned, although status information is not returned. For this reason, it is recommended that readx

subroutines be used.

The mpopen entry point functions with a 4-Port Multiprotocol Interface Adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Note: A CIO_START operation must be issued before the adapter is ready to transmit and receive data.

Write commands are not accepted if a CIO_START operation has not been completed successfully.

Execution Environment

The mpopen entry point can be called from the process environment only.

Return Values

The common return codes for the mpopen entry point are the following:

 Return

Code Description

ENXIO Indicates that the port initialization was unsuccessful. This code could also indicate that the registration of

the interrupt was unsuccessful.

ECHRNG Indicates that the channel number is out of range (too high).

ENOMEM Indicates that there were no mbuf clusters available.

EBUSY Indicates that the port is in the incorrect state to receive an open call. The port may be already opened

or not yet configured.

Related Information

The mpclose entry point, mpconfig entry point, mpioctl entry point, mpmpx entry point, mpread entry

point, mpselect entry point, mpwrite entry point.

The read or readx subroutine.

The fp_open kernel service.

124 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The CIO_START mpioctl MPQP Device Handler Operation.

mpread Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for receiving data from the Multiprotocol Quad Port (MPQP) device.

Syntax

#include <sys/uio.h>

int mpread (devno, uiop, chan, ext)

dev_t devno;

struct uio *uiop;

int chan, ext;

Parameters

 devno Specifies the major and minor device numbers.

uiop Pointer to an uio structure that provides variables to control the data transfer operation. The uio structure

is defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the mpmpx routine.

ext Specifies the address of the read_extension structure. If the ext parameter is null, then no parameter

block is specified.

Description

Note: Only user-mode processes should use the mpread entry point.

The mpread entry point provides the means for receiving data from the MPQP device. When a user-mode

process user issues a read or readx subroutine, the kernel calls the mpread entry point.

The DNDELAY flag, set either at open time or later by an mpioctl operation, controls whether mpread

calls put the caller to sleep pending completion of the call. If a program issues an mpread entry point with

the DNDELAY flag clear (the default), program execution is suspended until the call completes. If the

DNDELAY flag is set, the call always returns immediately. The user must then issue a poll and a

CIO_GET_STAT operation to be notified when read data is available.

When user application programs invoke the mpread operation through the read or readx subroutine, the

returned length value specifies the number of bytes read. The status field in the read_extension

parameter block should be checked to determine if any errors occurred on the read. One frame is read

into each buffer. Therefore, the number of bytes read depends on the size of the frame received.

For a nonkernel process, the device handler copies the data into the buffer specified by the caller. The

size of the buffer is limited by the size of the internal buffers on the adapter. If the size of the use buffer

exceeds the size of the adapter buffer, the maximum number of bytes on a mpread entry point is the size

of the internal buffer. For the MPQP adapter, the maximum frame size is defined in the

/usr/include/sys/mpqp.h file.

Data is not always returned on a read operation when an error occurs. In most cases, the error causes an

error log to occur. If no data is returned, the buffer pointer is null. On errors such as buffer overflow, a

kernel-mode process receives the error status and the data.

Chapter 2. Communications Subsystem 125

There are also some cases where network data is returned (usually during a CIO_START operation).

Network data is distinguished from normal receive data by the status field in the read_extension

structure. A nonzero status in this field indicates an error or information about the data.

The MPQP device handler uses a fixed length buffer for transmitting and receiving data. The maximum

supported buffer size is 4096 bytes.

The mpread entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Note: The MPQP device handler uses fixed length buffers for transmitting and receiving data. The

RX_BUF_LEN field in the /usr/include/sys/mpqp.h file defines the maximum buffer size.

read_extension Parameter Block

For the mpread entry points, the ext parameter may point to a read_extension structure. This structure is

found in the /usr/include/sys/comio.h file and contains this field:

 Field Description

status Specifies the status of the port. There are six possible values for the returned status parameter. The

following status values accompany a data buffer:

CIO_OK

Indicates that the operation was successful.

MP_BUF_OVERFLOW

Indicates receive buffer overflow. For the MP_BUF_OVERFLOW value, the data that was

received before the buffer overflowed is returned with the overflow status.

MP_X21_CPS

Holds an X.21 call progress signal.

MP_X21_DPI

Holds information provided by X.21 Data Communications Equipment (DCE) (network data).

MP_MODEM_DATA

Contains modem data (for example, an autodial sent by the modem).

MP_AR_DATA_RCVD

Contains data received while in Autoresponse mode.

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a

leased-circuit public data network is not supported.

Execution Environment

The mpread entry point can be called from the process environment only.

Return Values

The mpread entry point returns the number of bytes read. In addition, this entry point may return one of

the following:

 Return

Code Description

ECHRNG Indicates the channel number was out of range.

ENXIO Indicates the port is not in the proper state for a read.

EINTR Indicates the sleep was interrupted by a signal.

EINVAL Indicates the read was called by a kernel process.

126 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

The mpclose entry point, mpconfig entry point, mpioctl entry point, mpmpx entry point, mpopen entry

point, mpselect entry point, mpwrite entry point.

The read or readx subroutine.

The CIO_START mpioctl operation, MP_START_AR mpioctl operation.

The uio structure.

Communications Physical Device Handler Model Overview in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

MPQP Device Handler Interface Overview in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Communications I/O Subsystem: Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

mpselect Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for determining whether specified events have occurred on the Multiprotocol Quad

Port (MPQP) device.

Syntax

#include <sys/devices.h>

#include <sys/comio.h>

int mpselect (devno, events, reventp, chan)

dev_t devno;

ushort events;

ushort *reventp;

int chan;

Parameters

 devno Specifies major and minor device numbers.

events Identifies the events to check.

reventp Returns events pointer. This parameter is passed by reference and is used by the mpselect entry point

to indicate which of the selected events are true at the time of the call.

chan Specifies the channel number assigned by the mpmpx entry point.

Description

Note: Only user-mode processes can use the mpselect entry point.

The mpselect entry point provides the means for determining if specified events have occurred on the

MPQP device. This entry point is supported similar to the ddselect communications entry point.

Chapter 2. Communications Subsystem 127

The mpselect entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The mpselect entry point can be called from the process environment only.

Return Values

The common return codes for the mpselect entry point are the following:

 Return

Code Description

ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates the select operation was called from a kernel process.

ECHNG Indicates the channel number is too large.

Related Information

The mpclose entry point, mpconfig entry point, mpioctl entry point, mpmpx entry point, mpopen entry

point, mpread entry point, mpwrite entry point.

The ddselect communications PDH entry point.

The poll subroutine, select subroutine.

MPQP Device Handler Interface Overview in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Communications I/O Subsystem: Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Communications Physical Device Handler Model Overview in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

mpwrite Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for transmitting data to the Multiprotocol Quad Port (MPQP) device.

Syntax

#include <sys/uio.h>

#include <sys/comio.h>

#include <sys/mpqp.h>

int mpwrite (devno, uiop, chan, ext)

dev_t devno;

struct uio *uiop;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

128 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

uiop Points to a uio structure that provides variables to control the data transfer operation. The uio structure is

defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the mpmpx entry point.

ext Specifies the address of the mp_write_extension parameter block. If the ext parameter is null, no

parameter block is specified.

Description

The mpwrite entry point provides the means for transmitting data to the MPQP device. The kernel calls it

when a user-mode process issues a write or writex subroutine. The mpwrite entry point can also be

called in response to an fpwrite kernel service.

The MPQP device handler uses a fixed length buffer for transmitting and receiving data. The maximum

supported buffer size is 4096 bytes.

The mpwrite entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

mpwrite Parameter Block

For the mpwrite operation, the ext parameter points to the mp_write_extension structure. This structure

is defined in the /usr/include/sys/comio.h file. The mp_write_extension structure contains the following

fields:

 Field Description

status Identifies the status of the port. The possible values for the returned status field are:

CIO_OK

Indicates the operation was successful.

CIO_TX_FULL

Indicates unable to queue any more transmit requests.

CIO_HARD_FAIL

Indicates hardware failure.

CIO_INV_BFER

Indicates invalid buffer (length equals 0, invalid address).

CIO_NOT_STARTED

Indicates device not yet started.

write_id Contains a user-supplied correlator. The write_id field is returned to the caller by the

CIO_GET_STAT operation if the CIO_ACK_TX_DONE flag is selected in the asynchronous status

block.

For a kernel user, this field is returned to the caller with the stat_fn function which was provided at

open time.

In addition to the common parameters, the mp_write_extension structure contains a field for selecting

Transparent mode for binary synchronous communication (BSC). Any nonzero value for this field causes

Transparent mode to be selected. Selecting Transparent mode causes the adapter to insert data link

escape (DLE) characters before all appropriate control characters. Text sent in Transparent mode is

unaltered. Transparent mode is normally used for sending binary files.

Note: If an mp_write_extension structure is not supplied, Transparent mode can be implemented by the

kernel-mode process by imbedding the appropriate DLE sequences in the data buffer.

Chapter 2. Communications Subsystem 129

Execution Environment

The mpwrite entry point can be called from the process environment only.

Return Values

The common return codes for the mpwrite entry point are the following:

 Return

Code Description

EAGAIN Indicates that the number of direct memory accesses (DMAs) has reached the maximum allowed or that

the device handler cannot get memory for internal control structures.

Note: The MPQP device handler does not currently support the tx_fn function. If a value of EAGAIN is

returned by an mpwrite entry point, the application is responsible for retrying the write.

ECHRNG Indicates that the channel number is too high.

EINVAL Indicates one of the following:

v The port is not set up properly.

v The MPQP device handler could not set up structures for the write.

v The port is not valid.

ENOMEM Indicates that no mbuf structure or clusters are available or the total data length is more than a page.

ENXIO Indicates one of the following:

v The port has not been successfully started.

v An invalid adapter number was passed.

v The specified channel number is illegal.

Related Information

The mpclose entry point, mpconfig entry point, mpioctl entry point, mpmpx entry point, mpopen entry

point, mpread entry point, mpselect entry point.

The CIO_GET_STAT (Get Status) mpioctl MPQP Device Handler Operation.

The write or writex subroutine.

The uio structure.

Communications Physical Device Handler Model Overview in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

MPQP Device Handler Interface Overview in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Communications I/O Subsystem: Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Binary Synchronous Communication (BSC) with the MPQP Adapter in AIX Version 6.1 Kernel Extensions

and Device Support Programming Concepts.

tsclose Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose

Resets the IBM ARTIC960Hx adapter (PCI MPQP) and device handler to a known state and returns

system resources back to the system on the last close for that adapter.

130 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Syntax

int tsclose (devno, chan, ext)

dev_t devno;

int chan, ext;

Description

The tsclose entry point routine resets the PCI MPQP adapter to a known state and returns system

resources to the system on the last close for that adapter. The port no longer accepts tsread, tswrite, or

tsioctl operation requests. The tsclose entry point is called in user mode by issuing a close system call.

The tsclose entry point is invoked in response to an fp_close kernel service.

On an tsclose entry point, the PCI MPQP device handler does the following:

v Frees all internal data areas for the corresponding tsopen entry point.

v Purges receive data queued for this tsopen entry point.

On the last tsclose entry point for a particular adapter, the PCI MPQP device handler also does the

following:

v Frees its interrupt level to the system.

v Frees the DMA channel.

v Disables adapter interrupts.

v Sets all internal data elements to their default settings.

The tsclose entry point closes the device. For each tsopen entry point issued, there must be a

corresponding tsclose entry point.

Before issuing the tsclose entry point, the caller should issue a CIO_HALT operation for each

CIO_START operation issued during that particular instance of open. If a close request is received without

a preceding CIO_HALT operation, the functions of the halt are performed. A close request without a

preceding CIO_HALT operation occurs only during abnormal termination of the port.

The tsclose entry point functions with a 4-port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Parameters

 devno Specifies major and minor device numbers.

chan Specifies the channel number assigned by the tsmpx entry point.

ext Ignored by the PCI MPQP device handler.

Execution Environment

The tsclose entry point can be called from the process environment only.

Return Values

The common return codes for the tsclose entry point are:

 ECHRNG Indicates the channel number is too large.

ENXIO Indicates the port initialization was unsuccessful. This code could also indicate that the registration of

the interrupt was unsuccessful.

ECHRNG Indicates the channel number is out of range (too high).

Chapter 2. Communications Subsystem 131

Related Information

Thetsconfig entry point, tsioctl entry point, tsmpx entry point, tsopen entry point, tsread entry point,

tsselect entry point, tswrite entry point.

The CIO_HALT tsioctl PCI MPQP Device Handler Operation, CIO_START tsioctl PCI MPQP Device

Handler Operation.

The close system call.

The fp_close kernel service.

tsconfig Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose

Provides functions for initializing and terminating the IBM ARTIC960Hx PCI adapter (PCI MPQP) and

device handler.

Syntax

#include <sys/uio.h>

int tsconfig (devno, cmd, uiop)

dev_t devno;

int cmd;

struct uio *uiop;

Description

The tsconfig entry point provides functions for initializing and terminating the PCI MPQP device handler

and adapter. It is invoked through the /usr/include/sys/config device driver at device configuration time.

This entry point supports the following operations:

v CFG_INIT

v CFG_TERM

The tsconfig entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Parameters

 devno Specifies major and minor device numbers.

cmd Specifies the function to be performed by this routine. There are two possible functions:

CFG_INIT

Initializes device handler and internal data areas.

CFG_TERM

Terminates the device handler.

uiop Points to a uio structure. The uio structure is defined in the /usr/include/sys/uio.h file.

Execution Environment

The tsconfig entry point can be called from the process environment only.

Related Information

The tsclose entry point, tsioctl entry point, tsmpx entry point, tsopen entry point, tsread entry point,

tsselect entry point, tswrite entry point.

132 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The ddconfig routine.

PCI MPQP Device Handler Interface Overview.

Communications I/O Subsystem: Programming Introduction.

tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose

Provides various functions for controlling the IBM ARTIC960Hx PCI adapter (PCI MPQP) and device

handler.

Syntax

#include <sys/devinfo.h>

#include <sys/ioctl.h>

#include <sys/comio.h>

#include <sys/mpqp.h>

int tsioctl

(devno, cmd, extptr, devflag, chan, ext)

dev_t devno;

int cmd, extptr;

ulong devflag;

int chan, ext;

Description

The tsioctl entry point provides various functions for controlling the PCI MPQP adapter. There are 16 valid

tsioctl operations, including:

 CIO_GET_STAT Gets the status of the current PCI MPQP adapter and device handler.

CIO_HALT Ends a session with the PCI MPQP device handler.

CIO_START Initiates a session with the PCI MPQP device handler.

CIO_QUERY Reads the counter values accumulated by the PCI MPQP device handler.

MP_CHG_PARMS Permits the DLC to change certain profile parameters after the PCI MPQP device has

been started.

The tsioctl entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

The possible tsioctl operation codes can be found in the /usr/include/sys/ioctl.h, /usr/include/sys/
comio.h, and /usr/include/sys/mpqp.h files.

Parameters

 devno Specifies major and minor device numbers.

cmd Identifies the operation to be performed.

extptr Specifies an address of the parameter block.

devflag Allows tsioctl calls to inherit properties that were specified at open time. The PCI MPQP device

handler inspects the DNDELAY flag for ioctl calls. Kernel-mode data link control (DLC) sets the

DKERNEL flag that must be set for a tsopen call.

chan Specifies the channel number assigned by the tsmpx entry point.

ext Not used by PCI MPQP device handler.

Chapter 2. Communications Subsystem 133

Execution Environment

The tsioctl entry point can be called from the process environment only.

Return Values

The common return codes for the tsioctl entry point are:

 ENOMEM Indicates the no memory buffers (mbufs) or mbuf clusters are available.

ENXIO Indicates the adapter number is out of range.

Related Information

The tsclose entry point, tsconfig entry point, tsmpx entry point,, tsopen entry point, tsread entry point,

tsselect entry point, tswrite entry point.

The CIO_GET_STAT tsioctl PCI MPQP Device Handler Operation, CIO_HALT tsioctl PCI MPQP Device

Handler Operation, CIO_QUERY tsioctl PCI MPQP Device Handler Operation, CIO_START tsioctl PCI

MPQP Device Handler Operation, MP_CHG_PARMS tsioctl PCI MPQP Device Handler Operation.

CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler

Operation

Purpose

Gets the status of the current IBM ARTIC960Hx PCI adapter (PCI MPQP) and device handler.

Description

Note: Only user-mode processes can use the CIO_GET_STAT operation.

The CIO_GET_STAT operation gets the status of the current PCI MPQP adapter and device handler. For

the PCI MPQP device handler, both solicited and unsolicited status can be returned.

Solicited status is status information that is returned as a completion status to a particular operation. The

CIO_START, CIO_HALT, and tswrite operations all have solicited status returned. However, for many

asynchronous events common to wide-area networks, these are considered unsolicited status. The

asynchronous events are divided into three classes:

v Hard failures

v Soft failures

v Informational (or status-related) messages

The CIO_GET_STAT operation functions with a 4-Port Multiprotocol Interface adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the adapter and network qualifications.

Status Blocks for the Multiprotocol Device Handler

For the CIO_GET_STAT operation, the extptr parameter points to a status_block structure. When

returned, the device handler fills this structure with the appropriate information. The status_block structure

is defined in the /usr/include/sys/comio.h file and returns one of the possible status conditions:

Status blocks are used to communicate status and exception information to user-mode processes.

134 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

User-mode processes receive a status block whenever they request a CIO_GET_STAT operation. A

user-mode process can wait for the next available status block by issuing a tsselect entry point with the

specified POLLPRI event.

Status blocks contain a code field and possible options. The code field indicates the type of status block

code (for example, CIO_START_DONE). The following possible PCI MPQP status blocks exist:

v CIO_ASYNC_STATUS

v CIO_HALT_DONE

v CIO_START_DONE

v CIO_TX_DONE

v MP_THRESH_EXC

CIO_ASYNC_STATUS Status Block

Asynchronous status notifies the data link control of asynchronous events such as network and adapter

failures.

 Code CIO_ASYNC_STATUS

option[0] Can be one of the following:

MP_DSR_DROPPED, MP_RCV_TIMEOUT, MP_RELOAD_CMPL, MP_RESET_CMPL,

MP_X21_CLEAR

option[1] Not used

option[2] Not used

option[3] Not used

Note: The MP_RELOAD_C and MPLMP_RESET_CMPL values are for diagnostic use only.

CIO_HALT_DONE Status Block

The CIO_HALT operation ends a session with the PCI MPQP device handler. On a successfully

completed Halt Device operation, the following status block is provided:

 Code CIO_HALT_DONE

option[0] CIO_OK

option[1] MP_FORCED_HALT or MP_NORMAL_HALT

option[2] MP_NETWORK_FAILURE or MP_HW_FAILURE

A forced halt is a halt completed successfully in terms of the data link control is concerned, but terminates

forcefully because of either an adapter error or a network error. This is significant for X.21 or other

switched networks where customers can be charged if the call does not disconnect properly.

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a

leased-circuit public data network is not supported.

CIO_START_DONE Status Block

On a successfully completed CIO_START operation, the following status block is provided:

 Code CIO_START_DONE

option[0] CIO_OK

option[1] Network ID

option[2] Not used

option[3] Not used

Chapter 2. Communications Subsystem 135

On an unsuccessful Start Device CIO_START tsioctl operation, the following status block is provided:

 Code CIO_START_DONE

option[0] Can be one of the following:

MP_ADAP_NOT_FUNC

Adapter not functional

MP_TX_FAILSAFE_TIMEOUT

Transmit command did not complete.

MP_DSR_ON_TIMEOUT

DSR failed to come on.

MP_DSR_ALRDY_ON

DSR already on for a switched line.

MP_X21_CLEAR

Unexpected clear received from the DCE.

option[1] If the option[0] field is set to MP_X21_TIMEOUT, the option[1] field

contains the specific X.21 timer that expired.

option[2] Not used.

option[3] Not used.

CIO_TX_DONE Status Block

On completion of a multiprotocol transmit, the following status block is provided:

 Code CIO_TX_DONE

option[0] Can be one of the following:

CIO_OK

MP_TX_UNDERRUN

MP_X21_CLEAR

MP_TX_FAILSAFE_TIMEOUT

The transmit command did not complete.

MP_TX_ABORT

Transmit aborted due to CIO_HALT operation.

option[1] Identifies the write_id field supplied by the caller in the write command if

TX_ACK was selected.

option[2] Points to the buffer with transmit data.

option[3] Not used.

MP_THRESH_EXC Status Block

A threshold for one of the counters defined in the start profile has reached its threshold.

 Code MP_THRESH_EXC

option[0] Indicates the expired threshold.

The following values are returned to indicate the

threshold that was exceeded: MP_TOTAL_TX_ERR,

MP_TOTAL_RX_ERR, MP_TX_PERCENT,

MP_RX_PERCENT

option[1] Not used.

136 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Code MP_THRESH_EXC

option[2] Not used.

option[3] Not used.

Execution Environment

The CIO_GET_STAT operation can be called from the process environment only.

Return Values

The return codes for the CIO_GET_STAT operation are:

 ENOMEM Indicates no mbufs or mbuf clusters are available.

ENXIO Indicates the adapter number is out of range.

Related Information

The CIO_HALT tsioctl PCI MPQP Device Handler Operation, CIO_QUERY tsioctl PCI MPQP Device

Handler Operation, CIO_START tsioctl PCI MPQP Device Handler Operation, MP_CHG_PARMS tsioctl

PCI MPQP Device Handler Operation.

The tsioctl entry point, tswrite entry point.

CIO_HALT (Halt Device) tsioctl PCI MPQP Device Handler Operation

Purpose

Ends a session with the IBM ARTIC960Hx PCI adapter (PCI MPQP) and device handler and terminates

the connection to the PCI MPQP link.

Description

The CIO_HALT operation terminates a session with the PCI MPQP device handler. The caller specifies

which network ID to halt. The CIO_HALT operation removes the network ID from the network ID table and

disconnects the physical link. A CIO_HALT operation must be issued for each CIO_START operation that

completed successfully.

Data received for the specified network ID before the CIO_HALT operation is called can be retrieved by

the caller using the tsselect and tsread entry points.

If the CIO_HALT operation terminates abnormally, the status is returned either asynchronously or as part

of the CIO_HALT_DONE. Whatever the case, the CIO_GET_STAT operation is used to get information

about the error. When a halt is terminated abnormally (for example, due to network failure), the following

occurs:

v The link is terminated.

v The drivers and receivers are disabled for the indicated port.

v The port can no longer transmit or receive data.

No recovery procedure is required by the caller; however, logging the error is required.

Errors are reported on halt operations because the user could continue to be charged for connect time if

the network does not recognize the halt. This error status permits a network application to be notified

about an abnormal link disconnection and then take corrective action, if necessary.

Chapter 2. Communications Subsystem 137

The CIO_HALT operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Parameter Block

For the PCI MPQP CIO_HALT operation, the extptr parameter points to a session_blk structure. This

structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

 status Specifies the status of the port. This field is set for immediately detectable errors. Possible values for the

status filed are:

v CIO_OK

v CIO_NETID_INV

If the calling process does not wish to sleep while the halt is in progress, the DNDELAY option can be

used. In either case, the status of the halt is retrieved using the CIO_GET_STAT operation and a

CIO_HALT_DONE status block is returned. The CIO_HALT_DONE status block should be used as an

indication of completion.

netid Contains the network ID the caller wishes to halt. The network ID is placed in the least significant byte of

the netid field.

Execution Environment

The CIO_HALT operation can be called from the process environment only.

Return Values

The CIO_HALT operation returns common communications return values. In addition, the following PCI

MPQP specific errors may be returned:

 EBUSY Indicates the device is not started or is not in a data transfer state.

ENOMEM Indicates there are no mbufs or mbuf clusters available.

ENXIO Indicates the adapter number is out of range.

Files

 /usr/include/sys/comio.h Contains the session_blk structure definition.

Related Information

The tsread entry point, tsselect entry point.

The CIO_GET_STAT tsioctl PCI MPQP Device Handler Operation, CIO_QUERY tsioctl PCI MPQP Device

Handler Operation, CIO_START tsioctl PCI MPQP Device Handler Operation, MP_CHG_PARMS tsioctl

PCI MPQP Device Handler Operation.

Status Blocks for the Multiprotocol Device Handler.

CIO_QUERY (Query Statistics) tsioctl PCI MPQP Device Handler

Operation

Purpose

Provides the means to read counter values accumulated by the IBM ARTIC960Hx PCI adapter (PCI

MPQP) and device handler.

138 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The CIO_QUERY operation reads the counter values accumulated by the PCI MPQP device handler. The

counters are initialized to 0 by the first tsopen entry point operation.

The CIO_QUERY operation returns the Reliability/Availability/Serviceability field of the define device

structure (DDS).

The CIO_QUERY operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

The t_query_parms Parameter Block

For this operation, the extptr parameter points to an t_query_parms structure. This structure is defined in

the /usr/include/sys/mpqp.h file and has the following fields:

 status Contains additional information about the completion of the status block. Device-dependent codes may

also be returned.

CIO_OK Indicates that the operation was successful.

bufptr Specifies the address of a buffer where the returned statistics are to be placed.

buflen Specifies the length of the buffer; it should be at least 45 words long (unsigned long).

reserve Reserved for use in future releases.

Statistics Logged for PCI MPQP Ports

The following statistics are logged for each PCI MPQP port.

v Bytes transmitted

v Bytes received

v Frames transmitted

v Frames received

v Receive errors

v Transmission errors

v DMA buffer not large enough or not allocated

v CTS time out

v CTS dropped during transmit

v DSR time out

v DSR dropped

v DSR on before DTR on a switched line

v DCE clear during call establishment

v DCE clear during data phase

v X.21 T1-T5 time outs

v X.21 invalid DCE-provided information (DPI)

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a

leased-circuit public data network is not supported.

Execution Environment

The CIO_QUERY operation can be called from the process environment only.

Return Values

 EFAULT Indicates a specified address is not valid.

Chapter 2. Communications Subsystem 139

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.

ENOMEM Indicates the operation was unable to allocate the required memory.

ENXIO Indicates an attempt to use unconfigured device.

Related Information

The tsioctl entry point, tsopen entry point.

The CIO_GET_STAT tsioctl PCI MPQP Device Handler Operation, CIO_HALT tsioctl PCI MPQP Device

Handler Operation, CIO_START tsioctl PCI MPQP Device Handler Operation, MP_CHG_PARMS tsioctl

PCI MPQP Device Handler Operation.

CIO_START (Start Device) tsioctl PCI MPQP Device Handler Operation

Purpose

Starts a session with the IBM ARTIC960Hx PCI (PCI MPQP) device handler.

Description

The CIO_START operation registers a network ID in the network ID table and establishes the physical

connection with the PCI MPQP device. Once this start operation completes successfully, the port is ready

to transmit and receive data.

Note: The CIO_START operation defines the protocol- and configuration-specific attributes of the selected

port. All bits that are not defined must be set to 0 (zero).

For the PCI MPQP CIO_START operation, the extptr parameter points to a t_start_dev structure. This

structure contains pointers to the session_blk structure.

The session_blk structure contains the netid and status fields. The t_start_dev device-dependent

information for an PCI MPQP device follows the session block. All of these structures can be found in the

/usr/include/sys/mpqp.h file.

The CIO_START operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

140 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

t_start_dev Fields

The t_start_dev structure contains the following fields:

 phys_link Indicates the physical link protocol. Only one type of physical link is valid at a time.

The supported values are:

Physical Link

Type

PL_232D

EIA-232D

PL_V35

V.35

PL_X21

X.21

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop)

operation on a leased-circuit public data network is not supported.

dial_proto The dial_proto field is ignored.

data_proto Identifies the possible data protocol selections during the data transfer phase. The

data_flags field has different meanings depending on what protocol is selected. The

data_proto field accepts the following values:

DATA_PRO_BSC

Indicates a bisync protocol.

DATA_PRO_SDLC_FDX

Indicates receivers enabled during transmit.

DATA_PRO_SDLC_HDX

Indicates receivers disabled during transmit.

modem_flags Establishes modem characteristics. This field accepts the following values:

MF_AUTO

Indicates that the call is to be answered or dialed automatically.

MF_CALL

Indicates an outgoing call.

MF_LEASED

Indicates a leased telephone circuit.

MF_LISTEN

Indicates an incoming call (switched only).

MF_MANUAL

Indicates that the operator answers or dials the call manually.

MF_SWITCHED

Indicates a switched telephone circuit.

Note: Since each of these modem chracteristics are handled by the modem, the

driver actually determines connection status in the same way, no matter what value is

set in the modem_flags field. When the CIO_START ioctl is executed, the DTR signal

is asserted and an active connection is reported when an active DSR signal is

detected.

poll_addr Identifies the address-compare value for a Binary Synchronous Communication (BSC)

polling frame or an Synchronous Data Link Control (SDLC) frame. If using BSC, a

value for the selection address must also be provided or the address-compare is not

enabled. If a frame is received that does not match the poll address (or select

address for BSC), the frame is not passed to the system.

select_addr Specifies a valid select address for BSC only.

Chapter 2. Communications Subsystem 141

modem_int_mask Reserved. This value must be 0.

baud_rate This value should be set to 0 to indicate the port is to be externally clocked (that is,

use modem clocking).

rcv_timeout Indicates the period of time, expressed in 100-msec units (0.10 sec), used for setting

the receive timer. The PCI MPQP device driver starts the receive timer whenever the

CIO_START operation completes and a final transmit occurs.

If a receive occurs that is not a receive final frame, the timer is restarted. The timer is

stopped when the receive final occurs. If the timer expires before a receive occurs, an

error is reported to the logical link control (LLC) protocol. After the CIO_START

operation completes, the receive time out value can be changed by the

MP_CHG_PARMS operation. A value of zero indicates that a receive timer should not

be activated.

Final frames in SDLC are all frames with the poll or final bit set. In BSC, all frames

are final frames except intermediate text block (ITB) frames.

rcv_data_offset Reserved

dial_data_length Not used.

Flag Fields for Protocols

Flag fields in the t_start_dev structure take different values depending on the type of protocol selected.

Data Flags for the BSC Protocol

If BSC is selected in the data_proto field, either ASCII or EBCDIC character sets can be used. Control

characters are stripped automatically on reception. Data link escape (DLE) characters are automatically

inserted and deleted in transparent mode. If BSC Address Check mode is selected, values for both poll

and select addresses must be supplied. Odd parity is used if ASCII is selected.

The following are the default values:

v EBCDIC.

v Do not restart the receive timer.

v Do not check addresses.

v RTS controlled.

The data flags for the BSC protocol are:

 DATA_FLG_ADDR_CHK Address-compare select. This causes frames to be filtered by the hardware

based on address. Only frames with matching addresses are sent to the

system.

DATA_FLG_BSC_ASC ASCII BSC select.

DATA_FLG_C_CARR_ON Continuous carrier (RTS always on).

DATA_FLG_C_CARR_OFF RTS-disabled between transmits (default).

Data Flags for the SDLC Protocol

For the Synchronous Data Link Control (SDLC) protocol, the flag for NRZ or NRZI must match the

data-encoding method that is used by the remote DTE. If SDLC Address Check mode is selected, the poll

address byte must also be specified. The receive timer (RT) is started whenever a final block is

transmitted. If RT is set to 1, the receive timer is restarted after expiration. If RT is set to 0, the receive

timer is not restarted after expiration. The receive timer value is specified by the 16-bit rcv_timeout field.

The following are the acceptable SDLC data flags:

 DATA_FLG_NRZI NRZI select (default is NRZ).

DATA_FLG_ADDR_CHK Address-compare select.

DATA_FLG_RST_TMR Restart receive timer.

142 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

DATA_FLG_C_CARR_ON Continuous carrier (RTS always on).

DATA_FLG_C_CARR_OFF RTS disabled between transmits (default).

t_err_threshold Fields

The t_err_threshold structure describes the format for defining thresholds for transmit and receive errors.

Counters track the total number of transmit and receive errors. Individual counters track certain types of

errors. Thresholds can be set for individual errors, total errors, or a percentage of transmit and receive

errors from all frames received.

When a counter reaches its threshold value, a status block is returned by the driver. The status block

indicates the type of error counter that reached its threshold. If multiple thresholds are reached at the

same time, the first expired threshold in the list is reported as having expired and its counter is reset to 0.

The user can issue a CIO_QUERY operation call to retrieve the values of all counters.

If no thresholding is desired, the threshold should be set to 0. A value of 0 indicates that LLC should not

be notified of an error at any time. To indicate that the LLC should be notified of every occurrence of an

error, the threshold should be set to 1.

The t_err_threshold structure contains the following fields:

 tx_err_thresh Specifies the threshold for all transmit errors. Transmit errors include transmit underrun,

CTS dropped, CTS time out, and transmit failsafe time out.

rx_err_thresh Specifies the threshold for all receive errors. Receive errors include overrun errors,

break/abort errors, framing/cyclic redundancy check (CRC)/frame check sequence (FCS)

errors, parity errors, bad frame synchronization, and receive-DMA-buffer-not-allocated

errors.

tx_err_percent Specifies the percentage of transmit errors that must occur before a status block is sent

to the LLC.

rx_err_percent Specifies the percentage of receive errors that must occur before a status block is sent to

the LLC.

Execution Environment

The CIO_START operation can be called from the process environment only.

Return Values

 CIO_OK Indicates successful CIO_START operation.

EBUSY Indicates the port state is not opened for a CIO_START operation.

EFAULT Indicates the cross-memory copy service was unsuccessful.

EINVAL Indicates the physical link parameter is not valid for the port.

EIO Indicates the device handler could not queue command to the adapter.

ENOMEM Indicates no mbuf clusters are available.

ENXIO Indicates the adapter number is out of range.

Related Information

The tsioctl entry point.

The CIO_GET_STAT tsioctl PCI MPQP Device Handler Operation, CIO_HALT tsioctl PCI MPQP Device

Handler Operation, CIO_QUERY tsioctl PCI MPQP Device Handler Operation, MP_CHG_PARMS tsioctl

PCI MPQP Device Handler Operation.

Chapter 2. Communications Subsystem 143

MP_CHG_PARMS (Change Parameters) tsioctl PCI MPQP Device

Handler Operation

Purpose

Permits the data link control (DLC) to change certain profile parameters after the IBM ARTIC960Hx PCI

(PCI MPQP) device has been started.

Description

The MP_CHG_PARMS operation permits the DLC to change certain profile parameters after the PCI

MPQP device has been started. The cmd parameter in the tsioctl entry point is set to the

MP_CHG_PARMS operation. This operation can interfere with communications that are in progress. Data

transmission should not be active when this operation is issued.

For this operation, the extptr parameter points to a t_chg_parms structure. This structure has the

following changeable fields:

 chg_mask Specifies the mask that indicates which fields are to be changed. The possible choices are:

v CP_POLL_ADDR

v CP_RCV_TMR

v CP_SEL_ADDR

More than one field can be changed with one MP_CHG_PARMS operation.

rcv_timer Identifies the timeout value used after transmission of final frames when waiting for receive data in

0.1 second units.

poll_addr Specifies the poll address. Possible values are Synchronous Data Link Control (SDLC) or Binary

Synchronous Communications (BSC) poll addresses.

select_addr Specifies the select address. BSC is the only possible protocol that supports select addresses.

Related Information

The tsioctl entry point.

The CIO_GET_STAT tsioctl PCI MPQP Device Handler Operation, CIO_HALT tsioctl PCI MPQP Device

Handler Operation, CIO_START tsioctl PCI MPQP Device Handler Operation, CIO_QUERY tsioctl PCI

MPQP Device Handler Operation.

tsmpx Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose

Allocates and deallocates a channel for the IBM ARTIC960Hx PCI (PCI MPQP) device handler.

Syntax

int tsmpx (devno, chanp, channame)

dev_t devno;

int *chanp;

char *channame;

int openflag;

Description

The tsmpx entry point allocates and deallocates a channel. The tsmpx entry point is supported similar to

the common ddmpx entry point.

144 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

 devno Specifies the major and minor device numbers.

chanp Identifies the channel ID passed as a reference parameter. Unless specified as null, the channame

parameter is set to the allocated channel ID. If this parameter is null it is set as the ID of the channel

to be deallocated.

channame Points to the remaining path name describing the channel to be allocated. There are four possible

values:

Equal to NULL

Deallocates the channel.

A pointer to a NULL string

Allows a normal open sequence of the device on the channel ID generated by the tsmpx

entry point.

Return Values

The common return codes for the tsmpx entry point are the following:

 EINVAL Indicates an invalid parameter.

ENXIO Indicates the device was open and the Diagnostic mode open request was denied.

EBUSY Indicates the device was open in Diagnostic mode and the open request was denied.

Related Information

The ddmpx entry point, tsclose entry point, tsconfig entry point, tsioctl entry point, tsopen entry point,

tsread entry point, tsselect entry point, tswrite entry point.

PCI MPQP Device Handler Interface Overview in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Communications I/O Subsystem: Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Communications Physical Device Handler Model Overview in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

tsopen Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose

Prepares the IBM ARTIC960Hx PCI (PCI MPQP) device for transmitting and receiving data.

Syntax

#include <sys/comio.h>

#include <sys/mpqp.h>

int tsopen (devno, devflag, chan, ext)

dev_t devno;

ulong devflag;

int chan;

STRUCT kopen_ext *ext;

Chapter 2. Communications Subsystem 145

Description

The tsopen entry point prepares the PCI MPQP device for transmitting and receiving data. This entry

point is invoked in response to a fp_open kernel service call. The file system in user mode also calls the

tsopen entry point when an open subroutine is issued. The device should be opened for reading and

writing data.

Each port on the PCI MPQP adapter must be opened by its own tsopen call. Only one open call is

allowed for each port. If more than one open call is issued, an error is returned on subsequent tsopen

calls.

The PCI MPQP device handler only supports one kernel-mode process to open each port on the PCI

MPQP adapter. It supports the multiplex (mpx) routines and structures compatible with the

communications I/O subsystem, but it is not a true multiplexed device.

The kernel process must provide a kopen_ext parameter block. This parameter block is found in

/usr/include/sys/comio.h file.

For a user-mode process, the ext parameter points to the tsopen structure. This is defined in the

/usr/include/sys/comio.h file. For calls that do not specify a parameter block, the default values are used.

If adapter features such as the read extended status field for binary synchronous communication (BSC)

message types as well as other types of information about read data are desired, the ext parameter must

be supplied. This also requires the readx or read subroutine. If a system call is used, user data is

returned, although status information is not returned. For this reason, it is recommended that readx

subroutines be used.

The tsopen entry point functions with a 4-Port Multiprotocol Interface Adapter that has been correctly

configured for use on a qualified network. Consult the adapter specifications for more information on

configuring the adapter and network qualifications.

Note: A CIO_START operation must be issued before the adapter is ready to transmit and receive data.

Write commands are not accepted if a CIO_START operation has not been completed successfully.

Parameters

 devno Specifies the major and minor device numbers.

devflag Specifies the flag word. For kernel-mode processes, the devflag parameter must be set to the

DKERNEL flag, which specifies that a kernel routine is making the tsopen call. In addition, the

following flags can be set:

DWRITE

Specifies to open for reading and writing.

DREAD

Specifies to open for a trace.

DNDELAY

Specifies to open without waiting for the operation to complete. If this flag is set, write

requests return immediately and read requests return with 0 length data if no read data is

available. The calling process does not sleep. The default is DELAY or blocking mode.

DELAY Specifies to wait for the operation to complete before opening. This is the default.

Note: For user-mode processes, the DKERNEL flag must be clear.

chan Specifies the channel number assigned by the tsmpx entry point.

ext Points to the kopen_ext parameter block for kernel-mode processes. Specifies the address to the

tsopen parameter block for user-mode processes.

146 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Execution Environment

The tsopen entry point can be called from the process environment only.

Return Values

The common return codes for the tsopen entry point are the following:

 ENXIO Indicates that the port initialization was unsuccessful. This code could also indicate that the registration of

the interrupt was unsuccessful.

ECHRNG Indicates that the channel number is out of range (too high).

ENOMEM Indicates that there were no mbuf clusters available.

EBUSY Indicates that the port is in the incorrect state to receive an open call. The port may be already opened

or not yet configured.

Related Information

The tsclose entry point, tsconfig entry point, tsioctl entry point, tsmpx entry point, tsread entry point,

tsselect entry point, tswrite entry point.

The read or readx subroutine.

The fp_open kernel service.

The CIO_START tsioctl PCI MPQP Device Handler Operation.

tsread Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose

Provides the means for receiving data from the IBM ARTIC960Hx PCI (PCI MPQP) device.

Syntax

#include <sys/uio.h>

int tsread (devno, uiop, chan, ext)

dev_t devno;

struct uio *uiop;

int chan, ext;

Description

Note: Only user-mode processes should use the tsread entry point.

The tsread entry point provides the means for receiving data from the PCI MPQP device. When a

user-mode process user issues a read or readx subroutine, the kernel calls the tsread entry point.

The DNDELAY flag, set either at open time or later by an tsioctl operation, controls whether tsread calls

put the caller to sleep pending completion of the call. If a program issues an tsread entry point with the

DNDELAY flag clear (the default), program execution is suspended until the call completes. If the

DNDELAY flag is set, the call always returns immediately. The user must then issue a poll and a

CIO_GET_STAT operation to be notified when read data is available.

When user application programs invoke the tsread operation through the read or readx subroutine, the

returned length value specifies the number of bytes read. The status field in the read_extension

parameter block should be checked to determine if any errors occurred on the read. One frame is read

into each buffer. Therefore, the number of bytes read depends on the size of the frame received.

Chapter 2. Communications Subsystem 147

For a nonkernel process, the device handler copies the data into the buffer specified by the caller. The

size of the buffer is limited by the size of the internal buffers on the adapter. If the size of the use buffer

exceeds the size of the adapter buffer, the maximum number of bytes on a tsread entry point is the size

of the internal buffer. For the PCI MPQP adapter, the maximum frame size is defined in the

/usr/include/sys/mpqp.h file.

Data is not always returned on a read operation when an error occurs. In most cases, the error causes an

error log to occur. If no data is returned, the buffer pointer is null. On errors such as buffer overflow, a

kernel-mode process receives the error status and the data.

There are also some cases where network data is returned (usually during a CIO_START operation).

Network data is distinguished from normal receive data by the status field in the read_extension

structure. A nonzero status in this field indicates an error or information about the data.

The PCI MPQP device handler uses a fixed length buffer for transmitting and receiving data. The

maximum supported buffer size is 4096 bytes.

The tsread entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Note: The PCI MPQP device handler uses fixed length buffers for transmitting and receiving data. The

RX_BUF_LEN field in the /usr/include/sys/mpqp.h file defines the maximum buffer size.

read_extension Parameter Block

For the tsread entry points, the ext parameter may point to a read_extension structure. This structure is

found in the /usr/include/sys/comio.h file and contains this field:

 status Specifies the status of the port. There are six possible values for the returned status parameter. The

following status values accompany a data buffer:

CIO_OK

Indicates that the operation was successful.

MP_BUF_OVERFLOW

Indicates receive buffer overflow. For the MP_BUF_OVERFLOW value, the data that was

received before the buffer overflowed is returned with the overflow status.

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a

leased-circuit public data network is not supported.

Parameters

 devno Specifies the major and minor device numbers.

uiop Pointer to an uio structure that provides variables to control the data transfer operation. The uio structure

is defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the tsmpx routine.

ext Specifies the address of the read_extension structure. If the ext parameter is null, then no parameter

block is specified.

Execution Environment

The tsread entry point can be called from the process environment only.

148 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

The tsread entry point returns the number of bytes read. In addition, this entry point may return one of the

following:

 ECHRNG Indicates the channel number was out of range.

ENXIO Indicates the port is not in the proper state for a read.

EINTR Indicates the sleep was interrupted by a signal.

EINVAL Indicates the read was called by a kernel process.

Related Information

The tsclose entry point, tsconfig entry point, tsioctl entry point, tsmpx entry point, tsopen entry point,

tsselect entry point, tswrite entry point.

The read or readx subroutine.

The CIO_START tsioctl operation.

The uio structure.

Communications Physical Device Handler Model Overview in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

PCI MPQP Device Handler Interface Overview in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Communications I/O Subsystem: Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

tsselect Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose

Provides the means for determining whether specified events have occurred on the IBM ARTIC960Hx PCI

(PCI MPQP) device.

Syntax

#include <sys/devices.h>

#include <sys/comio.h>

int tsselect (devno, events, reventp, chan)

dev_t devno;

ushort events;

ushort *reventp;

int chan;

Description

Note: Only user-mode processes can use the tsselect entry point.

The tsselect entry point provides the means for determining if specified events have occurred on the PCI

MPQP device. This entry point is supported similar to the ddselect communications entry point.

The tsselect entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Chapter 2. Communications Subsystem 149

Parameters

 devno Specifies major and minor device numbers.

events Identifies the events to check.

reventp Returns events pointer. This parameter is passed by reference and is used by the tsselect entry point

to indicate which of the selected events are true at the time of the call.

chan Specifies the channel number assigned by the tsmpx entry point.

Execution Environment

The tsselect entry point can be called from the process environment only.

Return Values

The common return codes for the tsselect entry point are the following:

 ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates the select operation was called from a kernel process.

ECHNG Indicates the channel number is too large.

Related Information

The tsclose entry point, tsconfig entry point, tsioctl entry point, tsmpx entry point, tsopen entry point,

tsread entry point, tswrite entry point.

The ddselect communications PDH entry point.

The poll subroutine, select subroutine.

PCI MPQP Device Handler Interface Overview in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Communications I/O Subsystem: Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Communications Physical Device Handler Model Overview in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

tswrite Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose

Provides the means for transmitting data to the IBM ARTIC960Hx PCI (PCI MPQP) device.

Syntax

#include <sys/uio.h>

#include <sys/comio.h>

#include <sys/mpqp.h>

int tswrite (devno, uiop, chan, ext)

dev_t devno;

struct uio *uiop;

int chan, ext;

150 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The tswrite entry point provides the means for transmitting data to the PCI MPQP device. The kernel calls

it when a user-mode process issues a write or writex subroutine. The tswrite entry point can also be

called in response to an fpwrite kernel service.

The PCI MPQP device handler uses a fixed length buffer for transmitting and receiving data. The

maximum supported buffer size is 4096 bytes.

The tswrite entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

tswrite Parameter Block

For the tswrite operation, the ext parameter points to the mp_write_extension structure. This structure is

defined in the /usr/include/sys/comio.h file. The mp_write_extension structure contains the following

fields:

 status Identifies the status of the port. The possible values for the returned status field are:

CIO_OK

Indicates the operation was successful.

CIO_TX_FULL

Indicates unable to queue any more transmit requests.

CIO_HARD_FAIL

Indicates hardware failure.

CIO_INV_BFER

Indicates invalid buffer (length equals 0, invalid address).

CIO_NOT_STARTED

Indicates device not yet started.

write_id Contains a user-supplied correlator. The write_id field is returned to the caller by the

CIO_GET_STAT operation if the CIO_ACK_TX_DONE flag is selected in the asynchronous status

block.

For a kernel user, this field is returned to the caller with the stat_fn function which was provided at

open time.

In addition to the common parameters, the mp_write_extension structure contains a field for selecting

Transparent mode for binary synchronous communication (BSC). Any nonzero value for this field causes

Transparent mode to be selected. Selecting Transparent mode causes the adapter to insert data link

escape (DLE) characters before all appropriate control characters. Text sent in Transparent mode is

unaltered. Transparent mode is normally used for sending binary files.

Note: If an mp_write_extension structure is not supplied, Transparent mode can be implemented by the

kernel-mode process by imbedding the appropriate DLE sequences in the data buffer.

Parameters

 devno Specifies major and minor device numbers.

uiop Points to a uio structure that provides variables to control the data transfer operation. The uio structure is

defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the tsmpx entry point.

ext Specifies the address of the mp_write_extension parameter block. If the ext parameter is null, no

parameter block is specified.

Chapter 2. Communications Subsystem 151

Execution Environment

The tswrite entry point can be called from the process environment only.

Return Values

The common return codes for the tswrite entry point are the following:

 EAGAIN Indicates that the number of direct memory accesses (DMAs) has reached the maximum allowed or that

the device handler cannot get memory for internal control structures.

Note: The PCI MPQP device handler does not currently support the tx_fn function. If a value of

EAGAIN is returned by an tswrite entry point, the application is responsible for retrying the write.

ECHRNG Indicates that the channel number is too high.

EINVAL Indicates one of the following:

v The port is not set up properly.

v The PCI MPQP device handler could not set up structures for the write.

v The port is not valid.

ENOMEM Indicates that no mbuf structure or clusters are available or the total data length is more than a page.

ENXIO Indicates one of the following:

v The port has not been successfully started.

v An invalid adapter number was passed.

v The specified channel number is illegal.

Related Information

The tsclose entry point, tsconfig entry point, tsioctl entry point, tsmpx entry point, tsopen entry point,

tsread entry point, tsselect entry point.

The CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler Operation.

The write or writex subroutine.

The uio structure.

Communications Physical Device Handler Model Overview in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

PCI MPQP Device Handler Interface Overview in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Communications I/O Subsystem: Programming Introduction in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Binary Synchronous Communication (BSC) with the MPQP Adapter in AIX Version 6.1 Kernel Extensions

and Device Support Programming Concepts.

Sense Data for the Serial Optical Link Device Driver

Note: This information is supported in AIX 5.1 and earlier only.

Sense Data consists of failure data analyzed by the diagnostic programs. The following sense data applies

to all the error log entries related to the Serial Optical Link device driver.

152 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Status 1 Register

 0x80000000 Program check

0x40000000 Link check

0x20000000 Internal check

0x10000000 Unexpected frame

0x08000000 Reserved bit 4

0x04000000 Connection recovery complete

0x02000000 Connection recovery in progress

0x01000000 Command reject

0x00800000 Secondary command reject

0x00400000 Response time out

0x00200000 Reserved bit 10

0x00100000 Abort sent

0x00080000 Reserved bit 12

0x00040000 Reserved bit 13

0x00020000 Reserved bit 14

0x00010000 Frame discarded

0x00008000 Busy discarded

0x00004000 Reject discarded

0x00002000 Reserved bit 18

0x00001000 Reserved bit 19

0x00000800 Operation complete

0x00000400 Reserved bit 21

0x00000200 Command pending

0x00000100 Primary frame received

0x00000080 Reserved bit 24

0x00000040 Reserved bit 25

0x00000020 Reserved bit 26

0x00000018 One of following:

0 PU not operational

1 PU stopped

2 PU working 1

3 PU working 2

0x00000004 Reserved bit 28

0x00000003 One of following:

0 LI connect wait

1 LI connect try

2 LI Listen

3 LI running

Status 2 Register

 0x80000000 Receive buffer check

0x40000000 Transmit buffer check

0x20000000 Command check

0x10000000 Synch cmd reject

0x08000000 Reserved bit 4

0x04000000 Tag parity check

0x02000000 Buffer parity check

0x01000000 Storage access check

Chapter 2. Communications Subsystem 153

0x00800000 Reset received

0x00400000 Send count error

0x00200000 Address mismatch

0x00100000 Reserved bit 11

0x00080000 Signal failure

0x00040000 Transmit driver fault

0x00020000 Reserved bit 14

0x00010000 Reserved bit 15

0x00008000 Reserved bit 16

0x00004000 Reserved bit 17

0x00002000 Reserved bit 18

0x00001000 Reserved bit 19

0x00000800 Reserved bit 20

0x00000400 Reserved bit 21

0x00000200 Reserved bit 22

0x00000100 Reserved bit 23

0x00000080 Reserved bit 24

0x00000040 OLS received

0x00000020 NOS received

0x00000010 UD received

0x00000008 UDR received

0x00000004 Reserved bit 29

0x00000002 Signal error

0x00000001 No optics card

Related Information

Status Blocks for the Serial Optical Link Device Driver.

sol_close Serial Optical Link Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Resets the Serial Optical Link (SOL) device handler to a known state and frees system resources.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/soluser.h>

int sol_close (devno, chan)

dev_t devno;

int chan;

Parameters

 devno Specifies major and minor device numbers.

chan Specifies the channel number assigned by the sol_mpx entry point.

Description

The sol_close entry point is called when a user-mode caller issues a close subroutine. The sol_close

entry point can also be invoked in response to an fp_close kernel service.

154 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The sol_close entry point functions with a Serial Link Adapter and Serial Optical Channel Converter, that

have been correctly configured for use on a qualified network. Consult the hardware specifications for

more information on configuring hardware and network qualifications.

Execution Environment

The sol_close entry point can be called from the process environment only.

Return Values

 ENODEV Indicates that the specified minor number is not valid.

Related Information

The close subroutine.

The fp_close kernel service.

The sol_mpx entry point.

sol_config Serial Optical Link Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides functions to initialize and terminate the device handler and to query the Software Vital Product

Data (SWVPD).

Syntax

#include <sys/device.h>

#include <sys/uio.h>

#include <sys/comio.h>

#include <sys/soluser.h>

int sol_config (devno, cmd, uiop)

dev_t devno;

int cmd;

struct uio *uiop;

Parameters

 devno Specifies major and minor device numbers.

cmd Identifies the function to be performed by the sol_config routine.

uiop Points to a uio structure that describes the relevant data area for reading or writing.

Description

The sol_config entry point is invoked at device configuration time and provides the following operations:

 Operation Description

CFG_INIT Initializes the Serial Optical Link (SOL) device handler. The device handler registers entry points in

the device switch table. The uio structure describes the SOL device-dependent structure (DDS)

address and length. The device handler copies the DDS into an internal save area.

Chapter 2. Communications Subsystem 155

Operation Description

CFG_TERM Terminates the SOL device handler. If there are no outstanding opens, the device handler marks itself

terminated and prevents subsequent opens. All dynamically allocated areas are freed. All SOL device

handler entry points are removed from the device switch table.

CFG_QVPD Returns the SOL VPD to the caller. The VPD is placed in the area specified by the caller in the uio

structure.

The sol_config entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Execution Environment

The sol_config entry point can be called from the process environment only.

Return Values for the CFG_INIT Operation

 ENOMEM Indicates the routine was not able to allocate the internal space needed.

EBUSY Indicates the device was already initialized.

EFAULT Indicates the specified address is not valid.

Return Values for the CFG_TERM Operation

 EBUSY Indicates there are outstanding opens; not able to terminate.

ENODEV Indicates there was no device to terminate.

Return Values for the CFG_QVPD Operation

 ENODEV Indicates that there was no device to query the VPD.

EFAULT Indicates that the specified address is not valid.

Related Information

The uio structure in AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 1.

sol_fastwrt Serial Optical Link Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for kernel-mode users to transmit data to the Serial Optical Link (SOL) device driver.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/soluser.h>

#include <sys/mbuf.h>
int sol_fastwrt (m, chan)
struct mbuf *m;
int chan;

156 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

 m Points to an mbuf structure containing caller data.

chan Specifies the channel number assigned by the sol_mpx entry point.

Description

A kernel user can transmit data more quickly using the sol_fastwrt entry point than through a normal

write system call. The address of the sol_fastwrt entry point, along with the chan parameter, is given to a

kernel-mode caller by way of the CIO_GET_FASTWRT sol_ioctl call.

If there is more than one path to the destination, the device handler uses any link that is available. If the S

(serialized) option was specified on the open, and the connection is point to point, the data is guaranteed

to have been received in the order in which it was sent. See the sol_mpx entry point for a description of

the S option.

Note: When communicating through the Network Systems Corp. DX Router, in-order, guaranteed delivery

to the destination is not possible. A successful transmission indicates only that the data was

successfully received at the DX Router, not necessarily at the final destination. It is the application’s

responsibility to ensure that the data arrives at the destination.

The data packet must start with a 4-byte field for the destination processor ID (the ID goes in the low-order

byte), followed by a 1-byte field for the destination network ID. When the data is received at the

destination, the 1-byte processor ID is stripped off, so that the first byte is the 1-byte network ID.

The maximum packet size allowed is SOL_MAX_XMIT, as defined in the /usr/include/sys/soluser.h file.

The sol_fastwrt entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

detailed information on configuring hardware and network qualifications.

Execution Environment

The sol_fastwrt entry point can be called from the kernel process environment or the interrupt

environment. If the sol_fastwrt function is called from the interrupt environment, it is the responsibility of

the caller to ensure that the interrupt level is SOL_OFF_LEVEL, as defined in the /usr/include/sys/
soluser.h file, or a less-favored priority.

The sol_fastwrt entry point does not support a multiple-packet write. The m_nextpkt field in the mbuf

structure is ignored by the device driver.

The sol_fastwrt entry point does not support a write extension. The mbufs are freed when the transmit is

complete, and there will be no transmit acknowledgement sent to the caller. If these defaults are not

appropriate, use the normal sol_write entry point.

The sol_fastwrt entry point assumes a trusted caller. The parameter checking done in the normal

sol_write entry point is not done in sol_fastwrt. The caller should ensure such things as a valid channel,

page-aligned and page-length mbuf clusters, and a valid packet length.

Return Values

 ENODEV Indicates a minor number was specified that was not valid.

ENETDOWN Indicates the network is down. The device is not able to process the write.

ENOCONNECT Indicates the device has not been started.

EAGAIN Indicates the transmit queue is full.

EINVAL Indicates a parameter was specified that was not valid.

Chapter 2. Communications Subsystem 157

ENOMEM Indicates the device driver was not able to allocate the required memory.

EFAULT Indicates an invalid address was supplied.

EIO Indicates an error occurred.

Related Information

The sol_close entry point, sol_config entry point, sol_ioctl entry point, sol_mpx entry point, sol_open

entry point, sol_read entry point, sol_select entry point, sol_write entry point.

The CIO_GET_FASTWRT sol_ioctl Serial Optical Link Device Handler Operation.

sol_ioctl Serial Optical Link Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides various functions for controlling the Serial Optical Link (SOL) device handler.

Syntax

#include <sys/device.h>

#include <sys/devinfo.h>

#include <sys/ioctl.h>

#include <sys/comio.h>

#include <sys/soluser.h>

int sol_ioctl (devno, cmd, arg, devflag, chan, ext)

dev_t devno;

int cmd, arg;

ulong devflag;

int chan, ext;

Parameters

 devno Specifies major and minor device numbers.

cmd Specifies the operation to be performed. The possible sol_ioctl operation codes are in the

/usr/include/sys/ioctl.h, /usr/include/sys/comio.h, and /usr/include/sys/soluser.h files.

arg Specifies the address of the sol_ioctl parameter block.

devflag Indicates the conditions under which the device was opened.

chan Specifies the channel number assigned by the sol_mpx entry point.

ext This parameter is not used by the SOL device handler.

Description

The sol_ioctl entry point provides various functions for controlling the SOL device handler. The possible

sol_ioctl operations are:

 Operation Description

CIO_GET_FASTWRT Provides the attributes of the sol_fastwrt entry point.

CIO_GET_STAT Gets device status.

CIO_HALT Halts the device.

CIO_QUERY Queries device statistics.

CIO_START Starts the device.

IOCINFO Returns I/O character information.

158 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

SOL_CHECK_PRID Checks whether a processor ID is connected.

SOL_GET_PRIDS Gets connected processor IDs.

The sol_ioctl entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Execution Environment

The sol_ioctl entry point can be called from the process environment only.

Related Information

The sol_mpx entry point.

The CIO_GET_FASTWRT sol_ioctl Serial Optical Link Device Handler Operation, CIO_GET_STAT

sol_ioctl Serial Optical Link Device Handler Operation, CIO_HALT sol_ioctl Serial Optical Link Device

Handler Operation, CIO_QUERY sol_ioctl Serial Optical Link Device Handler Operation, CIO_START

sol_ioctl Serial Optical Link Device Handler Operation, IOCINFO sol_ioctl Serial Optical Link Device

Handler Operation, SOL_CHECK_PRID sol_ioctl Serial Optical Link Device Handler Operation,

SOL_GET_PRIDS sol_ioctl Serial Optical Link Device Handler Operation.

CIO_GET_FASTWRT (Get Fast Write) sol_ioctl Serial Optical Link

Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the attributes of the sol_fastwrt entry point.

Description

The CIO_GET_FASTWRT operation provides the attributes of the Serial Optical Link (SOL) device driver’s

sol_fastwrt entry point.

For the CIO_GET_FASTWRT operation, the arg parameter points to the cio_get_fastwrt structure. This

structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Returns one of the following possible status values:

v CIO_OK

v CIO_INV_CMD

fastwrt_fn Specifies the function address that can be called to issue a fast path write.

chan Specifies the channel number assigned by the device driver’s mpx routine.

devno Specifies major and minor device numbers for the device driver, also known as the dev_t.

The CIO_GET_FASTWRT operation works with a Serial Link Adapter and Serial Optical Channel

Converter that have been correctly configured for use on a qualified network. Consult hardware

specifications for more information on configuring hardware and network qualifications.

Chapter 2. Communications Subsystem 159

Return Values

 EACCES Illegal call from kernel user.

EFAULT Indicates that an address was not valid.

EINVAL Indicates that a parameter was not valid.

ENODEV Indicates that a minor number was not valid.

Related Information

The sol_fastwrt entry point, sol_ioctl entry point, sol_write entry point.

The CIO_START sol_ioctl Serial Optical Link Device Handler Operation.

CIO_GET_STAT (Get Status) sol_ioctl Serial Optical Link Device

Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Gets the current status of the Serial Optical Link (SOL) device and device handler.

Description

Note: Only user-mode callers can use the CIO_GET_STAT operation.

The CIO_GET_STAT operation returns the current status of the SOL device and device handler. For this

operation, the arg parameter points to a status_block structure.

The CIO_GET_STAT operation functions with a Serial Link Adapter and Serial Optical Channel Converter

that have been correctly configured for use on a qualified network. Consult hardware specifications for

more information on configuring hardware and network qualifications.

Status Blocks for the Serial Optical Link Device Driver

Status blocks contain a code field and possible options. The code field indicates the type of status block

(for example, CIO_START_DONE). The following are possible status blocks returned by the SOL device

driver:

v CIO_ASYNC_STATUS

v CIO_HALT_DONE

v CIO_START_DONE

v CIO_TX_DONE

The status block structure is defined in the /usr/include/sys/comio.h file and includes the following status

codes:

160 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Status Code Description

code Indicates one of the following status conditions:

v CIO_ASYNC_STATUS

v CIO_HALT_DONE

v CIO_NULL_BLK

v CIO_START_DONE

v CIO_TX_DONE

option[4] Contains up to four words of additional information, depending on which of the codes listed above

is returned.

Status blocks provide status and exception information to users of the SOL device driver.

User-mode processes receive a status block when they request a CIO_GET_STAT operation. A user-mode

process can wait for the next available status block by issuing a select system call with the specified

POLLPRI event.

Kernel-mode processes receive a status block by way of the stat_fn entry point that is specified at open

time.

CIO_ASYNC_STATUS Status Block

The SOL device driver can return the following types of asynchronous status:

v Hard failure status

v Lost data status

v Network Recovery Mode status

v Processor ID status

Hard Failure Status Block Values: When a CIO_HARD_FAIL status block is returned, the SOL device

is no longer functional. The user should begin shutting down the SOL device driver.

v Unrecoverable Hardware Failure

When an unrecoverable hardware failure has occurred, the following status block is returned:

 Code CIO_ASYNC_STATUS

option[0] CIO_HARD_FAIL

option[1] SOL_FATAL_ERROR

option[2] Not used

option[3] Not used

v Exceeded Network Recovery Entry Threshold

When the SOL device driver has exceeded the entry threshold of the Network Recovery mode, the

following status block is returned:

 Code CIO_ASYNC_STATUS

option[0] CIO_HARD_FAIL

option[1] SOL_RCVRY_THRESH

option[2] Not used

option[3] Not used

Lost Data Status Block Value: For a user-mode process, when the receive queue overflows, the data is

lost, and the following status block is returned:

Chapter 2. Communications Subsystem 161

Code CIO_ASYNC_STATUS

option[0] CIO_LOST_DATA

option[1] Not used

option[2] Not used

option[3] Not used

Network Recovery Mode Status Block Values:

v Entered Network Recovery Mode

When the SOL device driver has entered Network Recovery mode, the following status block is

returned:

 Code CIO_ASYNC_STATUS

option[0] CIO_NET_RCVRY_ENTER

option[1] Not used

option[2] Not used

option[3] Not used

v Exited Network Recovery Mode

When the SOL device driver has exited Network Recovery mode, the following status block is returned:

 Code CIO_ASYNC_STATUS

option[0] CIO_NET_RCVRY_EXIT

option[1] Not used

option[2] Not used

option[3] Not used

Processor ID Status Block Values:

v New Processor ID

When the SOL device driver detects a new processor ID that is now reachable, the following status

block is returned:

 Code CIO_ASYNC_STATUS

option[0] SOL_NEW_PRID

option[1] Indicates the low-order byte contains the new processor ID.

option[2] Not used.

option[3] Not used.

v Processor ID Conflict

When the SOL device driver detects a processor ID conflict, the following status block is returned. The

network administrator should ensure that each machine connected to the optical network has a unique

processor ID.

 Code CIO_ASYNC_STATUS

option[0] SOL_PRID_CONFLICT

option[1] Indicates the low-order byte contains the processor ID that is in conflict.

option[2] Indicates the low-order byte contains the local processor ID.

option[3] Not used.

162 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

CIO_HALT_DONE Status Block

On a successfully completed CIO_HALT operation, the status block is filled as follows:

 Code CIO_HALT_DONE

option[0] CIO_OK

option[1] Indicates the low-order bytes are filled in with the netid field passed with the CIO_START

operation.

option[2] Not used.

option[3] Not used.

CIO_START_DONE Status Block

On a successfully completed CIO_START operation, the status block is filled as follows:

 Code CIO_START_DONE

option[0] CIO_OK

option[1] Indicates the low-order bytes are filled in with the netid field passed with the CIO_START

operation.

option[2] Not used.

option[3] Not used.

If the CIO_START operation is unsuccessful, the status block is filled as follows:

 Code CIO_START_DONE

option[0] Specifies one of the following:

v CIO_TIMEOUT

v CIO_HARD_FAIL

option[1] Indicates the low-order bytes are filled in with the netid field passed with the CIO_START

operation.

option[2] Not used.

option[3] Not used.

CIO_TX_DONE Status Block

When a write request completes for which transmit acknowledgment has been requested, the following

status block is built and returned to the caller:

 Code CIO_TX_DONE

option[0] Specifies one of the following:

v CIO_HARD_FAIL

v CIO_OK

v CIO_TIMEOUT

option[1] Contains the write_id field specified in the write_extension structure in the write

operation.

option[2] For a kernel-mode process, contains the mbuf pointer that was passed in the write

operation.

option[3] Specifies one of the following:

SOL_ACK Indicates the data was received by the destination processor.

SOL_DOWN_CONN Indicates the link to the destination has failed.

SOL_NACK_NB Indicates the destination processor ID cannot allocate enough buffers to receive the data.

SOL_NACK_NR Indicates the destination processor ID is currently not receiving.

SOL_NACK_NS Indicates the destination processor ID cannot allocate enough buffers to receive the data.

SOL_NEVER_CONN Indicates a connection has never been established with the destination processor ID.

Chapter 2. Communications Subsystem 163

Code CIO_TX_DONE

SOL_NO_CONN Indicates the destination processor ID is currently not responding.

When the option[0] field indicates CIO_OK, the data is guaranteed to have been received into memory at

the destination. If the S (serialized) option was specified on the open, and the connection is point-to-point,

the data is guaranteed to have been received in the order in which it was sent.

Note: When communicating through the Network Systems Corp. DX Router, in-order guaranteed delivery

to the destination is not possible. A successful transmission indicates only that the data was

successfully received at the DX Router, not necessarily at the final destination. It is the application’s

responsibility to ensure the data arrives at the destination.

Execution Environment

The CIO_GET_STAT operation can be called from the process environment only.

Return Values

 EACCES Illegal call from kernel user.

EFAULT Indicates the specified address is not valid.

EINVAL Indicates the parameter is not valid.

Related Information

The sol_ioctl entry point, sol_mpx entry point, sol_select entry point.

The stat_fn kernel procedure.

The CIO_START sol_ioctl Serial Optical Link Device Handler Operation, CIO_HALT sol_ioctl Serial Optical

Link Device Handler Operation.

CIO_HALT (Halt Device) sol_ioctl Serial Optical Link Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Ends a session with the Serial Optical Link (SOL) device handler.

Description

The CIO_HALT operation ends a session with the SOL device handler. The caller indicates the network ID

to halt. This CIO_HALT operation corresponds to the CIO_START operation successfully issued with the

specified network ID. A CIO_HALT operation should be issued for each CIO_START operation

successfully issued.

Data for the specified network ID is no longer received. Data received for the specified network ID before

the halt is passed to a user-mode caller by the sol_select and sol_read entry points. Data is passed back

to a kernel-mode caller by the rx_fn routine specified at open time.

For the CIO_HALT operation, the arg parameter points to the session_blk structure. This structure is

defined in the /usr/include/sys/comio.h file and contains the following fields:

164 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

status Returns one of the following status values:

v CIO_OK

v CIO_NETID_INV

netid Specifies the network ID. The network ID is placed in the least significant byte of the netid field.

The CIO_HALT operation functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Execution Environment

The CIO_HALT operation can be called from the process environment only.

Return Values

 EFAULT Indicates the specified address is not valid.

EINVAL Indicates the parameter is not valid.

EIO Indicates a general error. If an extension was provided in the call, additional data identifying the cause of

the error can be found in the status field.

ENODEV Indicates the specified minor number is not valid.

Related Information

Serial Optical Link Device Handler Entry Points.

The sol_ioctl entry point, sol_read entry point, sol_select entry point.

CIO_QUERY (Query Statistics) sol_ioctl Serial Optical Link Device

Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Enables the caller to read the counter values accumulated by the Serial Optical Link (SOL) device handler.

Description

The CIO_QUERY operation reads the counter values accumulated by the SOL device handler. The first

call to the sol_open entry point initializes the counters to 0.

For the CIO_QUERY operation, the arg parameter points to the query_parms structure. This structure is

defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Indicates the status of the command. This field may have a value of CIO_OK or CIO_INV_CMD.

bufptr Specifies the address of a buffer where the returned statistics are to be placed.

buflen Specifies the length of the buffer.

clearall When the value of this field is CIO_QUERY_CLEAR, the counters are cleared upon completion of

the call. The CIO_QUERY_CLEAR label can be found in the /usr/include/sys/comio.h file.

The counters placed in the supplied buffer by the CIO_QUERY operation are the counters declared in the

sol_query_stats_t structure defined in the /usr/include/sys/soluser.h file.

Chapter 2. Communications Subsystem 165

The CIO_QUERY operation functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult the hardware specifications for

more information on configuring hardware and network qualifications.

Execution Environment

The CIO_QUERY operation can be called from the process environment only.

Return Values

 EFAULT Indicates the specified address is not valid.

EINVAL Indicates the parameter is not valid.

EIO Indicates a general error. If an extension was provided in the call, additional data identifying the cause of

the error can be found in the status field.

ENODEV Indicates the specified minor number is not valid.

Related Information

The sol_ioctl entry point, sol_open entry point.

CIO_START (Start Device) sol_ioctl Serial Optical Link Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Initiates a session with the Serial Optical Link (SOL) device handler.

Description

The CIO_START operation initiates a session with the SOL device handler. If the start is the first on the

device, the device handler initializes and opens the SOL. For each successful CIO_START call issued,

there should be a corresponding CIO_HALT operation issued.

After the CIO_START operation has successfully completed, the device is ready to transmit and receive

data. The caller is free to issue any valid SOL operation. Once started, the adapter receives packets from

any of the available optical ports.

The caller notifies the device handler of the network ID to use. The network ID corresponds to the

destination service access point (DSAP) in the packet. The caller can issue multiple CIO_START

operations. The SOL device handler can handle from 0 to the number of network IDs specified by the

SOL_MAX_NETIDS label. This label is defined in the /usr/include/sys/soluser.h file.

For the CIO_START operation, the arg parameter points to the session_blk structure. This structure is

defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Indicates the status of the CIO_START. Possible returned status values are:

v CIO_OK

v CIO_NETID_FULL

v CIO_NETID_DUP

v CIO_NETID_INV

166 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

netid Specifies the network ID the caller uses on the network. The Network ID is placed in the least significant

byte of the netid field.

Note: Only even number IDs are valid. Odd number IDs are reserved for group IDs not supported for

this device and return a status value of CIO_NETID_INV

The CIO_START operation functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Execution Environment

The CIO_START operation can be called from the process environment only.

Return Values

 EADDRINUSE Indicates the network ID is in use.

EFAULT Indicates the supplied address is not valid.

EINVAL Indicates the parameter is not valid.

EIO Indicates a general error. If an extension was provided in the call, additional data identifying the

cause of the error can be found in the status field.

ENETDOWN Indicates a hardware error for which there is no recovery.

ENODEV Indicates the specified minor number is not valid.

ENOSPC Indicates the network ID table is full.

Related Information

The sol_ioctl entry point.

The CIO_HALT sol_ioctl Serial Optical Link Device Handler Operation.

IOCINFO (Describe Device) sol_ioctl Serial Optical Link Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Returns a structure that describes the Serial Optical Link (SOL) device.

Description

The IOCINFO operation returns a structure that describes the SOL device. For this operation, the arg

parameter points to the devinfo structure. This structure is defined in the /usr/include/sys/devinfo.h file

and contains the following fields:

 Field Description

devtype Identifies the device type. The SOL device type is DD_NET_DH. This value is defined in the

/usr/include/sys/devinfo.h file.

devsubtype Identifies the device subtype. The SOL device subtype is DD_SOL. This value is defined in

the /usr/include/sys/devinfo.h file.

broad_wrap Specifies whether the wrapping of broadcast packets is supported by the device.

rdto Specifies the configured receive data transfer offset (RDTO) value.

processor_id Identifies the processor ID used by other systems to address this system. This is a

customized attribute in the configuration database.

Chapter 2. Communications Subsystem 167

The parameter block is filled in with the appropriate values upon return.

The IOCINFO operation functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Execution Environment

The IOCINFO operation can be called from the process environment only.

Return Values

 EFAULT Indicates the specified address is not valid.

EINVAL Indicates the parameter is not valid.

ENODEV Indicates the specified minor number is not valid.

Related Information

The sol_ioctl entry point.

SOL_CHECK_PRID (Check Processor ID) sol_ioctl Serial Optical Link

Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Checks whether a processor ID is connected to the Serial Optical Link (SOL) subsystem.

Description

The SOL_CHECK_PRID operation returns a 0 if the specified processor ID is connected to the SOL

subsystem. For this operation, the arg parameter is the processor ID to check.

The SOL_CHECK_PRID operation functions with a Serial Link Adapter and Serial Optical Channel

Converter that have been correctly configured for use on a qualified network. Consult hardware

specifications for more information on configuring hardware and network qualifications.

Execution Environment

The SOL_CHECK_PRID operation can be called from the process environment only.

Return Values

 EINVAL Indicates a parameter is not valid.

ENOCONNECT Indicates the processor ID is not connected to the SOL subsystem.

ENODEV Indicates a minor number was specified that is not valid.

Related Information

The sol_ioctl entry point.

168 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

SOL_GET_PRIDS (Get Processor IDs) sol_ioctl Serial Optical Link

Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Returns all processor IDs connected to the Serial Optical Link (SOL) subsystem.

Description

The SOL_GET_PRIDS operation returns all processor IDs connected to the SOL subsystem. For this

operation, the arg parameter points to the sol_get_prids structure. This structure is defined in the

/usr/include/sys/soluser.h file and includes the following fields:

 Field Description

bufptr A pointer to the caller buffer where the list of processor IDs are written. Each processor ID is one byte.

buflen The length of the caller’s buffer, in bytes. This is the number of processor IDs the buffer can hold.

num_ids The number of IDs detected. This value is filled in by the SOL device handler. A value greater than the

buflen value indicates an overflow condition in which there are more processors connected than can

be reported in the supplied buffer. If this value is 0, and an error is not returned, no other processor IDs

were detected.

The SOL_GET_PRIDS operation functions with a Serial Link Adapter and Serial Optical Channel

Converter that have been correctly configured for use on a qualified network. Consult hardware

specifications for more information on configuring hardware and network qualifications.

Execution Environment

The SOL_GET_PRIDS operation can be called from the process environment only.

Return Values

 EFAULT Indicates that the specified address is not valid.

EINVAL Indicates that the parameter is not valid.

EIO Indicates a general error. If an extension was provided in the call, the status field will contain additional

data identifying the cause of the error.

ENODEV Indicates that the minor number specified is not valid.

ENOMEM Indicates an attempt to get memory failed.

Related Information

The sol_ioctl entry point.

sol_mpx Serial Optical Link Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Allocates and deallocates a channel for the Serial Optical Link (SOL) device handler.

Chapter 2. Communications Subsystem 169

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/soluser.h>

int sol_mpx (devno, chanp, channame)

dev_t devno;

int *chanp;

char *channame;

Parameters

 devno Specifies major and minor device numbers.

chanp Specifies the channel ID passed as a reference parameter. If the channame parameter is null, the

chanp parameter specifies the ID of the channel to deallocate. Otherwise, this parameter is set to the

ID of the allocated channel.

channame Points to the remaining path name describing the channel to allocate. The channame parameter

accepts the following values:

null Deallocates the channel.

Pointer to a null string

Allows a normal open sequence of the SOL device on the channel ID generated by the

sol_mpx entry point.

Pointer to a ″D″

Allows the SOL device to be opened in Diagnostic mode on the channel ID generated by the

sol_mpx entry point. Diagnostic mode is only valid when opening a /dev/opn special file.

Pointer to an ″F″

Allows a forced open of any of the /dev/opn special files even after the /dev/ops0 file has

been opened.

Pointer to an ″S″

Indicates that data serialization is required when the /dev/ops0 file is being opened. When

the Network Systems Corp. DX Router is used for communication, in-order reception cannot

be guaranteed.

Description

The sol_mpx entry point is not called directly by a user of the SOL device handler. The kernel calls the

sol_mpx entry point in response to an open or close request.

If the /dev/ops0 special file is open, the /dev/opn special files cannot be opened unless a forced open is

requested. If one or more of the /dev/opn special files are open, opening the /dev/ops0 special file will

succeed, but the ports already opened will not be used. Only one open is allowed for each /dev/opn

special file.

The sol_mpx entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Note: When the Network Systems Corp. DX Router is used for communication, in-order reception cannot

be guaranteed.

Execution Environment

The sol_mpx entry point can be called from the process environment only.

170 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

 EPERM Indicates the device is open in a mode that does not allow the Diagnostic-mode open request.

EACCES Indicates a nonprivileged user tried to open the device in Diagnostic mode.

EINVAL Indicates an invalid argument was detected.

EIO Indicates an error occurred.

ENOMEM Indicates memory requests for the open failed.

ENODEV Indicates an invalid minor number was specified.

EBUSY Indicates the maximum number of opens has been exceeded.

Related Information

The sol_open entry point.

sol_open Serial Optical Link Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Initializes the Serial Optical Link (SOL) device handler and allocates the required system resources.

Kernel-Mode Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/soluser.h>

int sol_open (devno, devflag, chan, arg)

dev_t devno;

ulong devflag;

int chan;

struct kopen_ext *arg;

User-Mode Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/soluser.h>

int sol_open (devno, devflag, chan, arg)

dev_t devno;

ulong devflag;

int chan;

int arg;

Parameters

 devno Specifies the major and minor device numbers.

devflag Specifies the flag word with the following definitions:

DKERNEL

Indicates a kernel-mode process. For user-mode processes, this flag must be clear.

DNDELAY

Performs nonblocking reads and writes for this channel. Otherwise, the device handler

performs blocking reads and writes for this channel.

chan Specifies the channel number assigned by the sol_mpx entry point.

Chapter 2. Communications Subsystem 171

arg Points to a kopen_ext structure for kernel-mode processes. The /usr/include/sys/comio.h file

contains a description of this structure. For user-mode processes, this field is not used.

Description

The sol_open entry point is called when a user-mode caller issues an open, openx, or creat subroutine.

The sol_open routine can also be invoked in response to an fp_opendev kernel service. This routine

opens a device to read and write data.

The sol_open entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Note: After the sol_open operation has successfully completed, the caller must issue a CIO_START

operation before the SOL device handler can transmit or receive any data.

Execution Environment

The sol_open entry point can be called from the process environment only.

Return Values

 ENODEV Indicates the specified minor number is not valid.

EINVAL Indicates the specified parameter is not valid.

ENOMEM Indicates the device handler was not able to allocate the required memory.

EBUSY Indicates the device is already open in Diagnostic mode.

Related Information

The sol_mpx entry point.

The open, openx, or creat subroutine.

The fp_opendev kernel service.

The CIO_START sol_operation.

sol_read Serial Optical Link Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for receiving data from the Serial Optical Link (SOL) device handler.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/soluser.h>

int sol_read (devno, uiop, chan, arg)

dev_t devno;

struct uio *uiop;

int chan;

struct read_extension *arg;

172 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

 devno Specifies the major and minor device numbers.

uiop Points to a uio structure. For a calling user-mode process, the uio structure specifies the location and

length of the caller’s data area in which to transfer information. The kernel fills in the uio structure for the

user.

chan Specifies the channel number assigned by the sol_mpx entry point.

arg Has a value of null or else points to a read_extension structure. This structure is defined in the

/usr/include/sys/comio.h file.

Description

Note: Only user-mode callers should use the sol_read entry point.

The sol_read entry point provides the means for receiving data from the SOL device handler. When a

user-mode caller issues a read, readx, readv, or readvx subroutine, the kernel calls the sol_read entry

point. Any data available for the specified channel is returned.

For this operation, the arg parameter may point to the read_extension structure. This structure is defined

in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Contains additional information about the completion of the sol_read entry point. Possible values for this

field are:

CIO_OK

Indicates the operation was successful.

CIO_BUF_OVRFLW

Indicates the user buffer was too small, and the data was truncated.

netid Not used

sessid Not use.

The data received does contain the 4-byte field for the processor ID. Therefore, the first byte of data will

be the netid field.

The sol_read entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Execution Environment

The sol_read entry point can be called from the process environment only.

Return Values

 EACCES Indicates an illegal call from a kernel-mode user.

ENODEV Indicates an invalid minor number was specified.

EINTR Indicates a system call was interrupted.

EMSGSIZE Indicates the data was too large to fit into the receive buffer and that no arg parameter was

supplied to provide an alternate means of reporting this error with a status of

CIO_BUF_OVFLW.

EFAULT Indicates an invalid address was supplied.

ENOCONNECT Indicates the device has not been started.

Chapter 2. Communications Subsystem 173

Related Information

Serial Optical Link Device Handler Entry Points.

The uio structure in AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 1.

The sol_mpx entry point.

The read, readx, readv, or readvx subroutine.

sol_select Serial Optical Link Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Determines whether a specified event has occurred on the Serial Optical Link (SOL) device.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/soluser.h>

int sol_select (devno, events, reventp, chan)

dev_t devno;

ushort events;

ushort *reventp;

int chan;

Parameters

 devno Specifies major and minor device numbers.

events Specifies conditions to check, which are denoted by the bitwise OR of one or more of the following:

POLLIN

Check whether receive data is available.

POLLOUT

Check whether transmit available.

POLLPRI

Check whether status is available.

POLLSYNC

Specifies synchronous notification only. The request is not registered for notification on

occurrence.

reventp Points to the result of condition checks. A bitwise OR of one of the following conditions is returned:

POLLIN

Receive data is available.

POLLOUT

Transmit available.

POLLPRI

Status is available.

chan Specifies the channel number assigned by the sol_mpx entry point.

174 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

Note: Only user-mode callers should call this entry point.

The sol_select entry point is called when the select or poll subroutine is used to determine if a specified

event has occurred on the SOL device. When the SOL device handler is in a state in which the event can

never be satisfied (such as a hardware failure), the sol_select entry point sets the returned events flags to

1 (one) for the event that cannot be satisfied. This prevents the select or poll subroutines from waiting

indefinitely.

The sol_select entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Execution Environment

The sol_select entry point can be called from the process environment only.

Return Values

 ENODEV Indicates the specified minor number is not valid.

EACCES Indicates the call from a kernel process is not valid.

Related Information

Serial Optical Link Device Handler Entry Points.

The sol_mpx entry point.

The poll subroutine, select subroutine.

sol_write Serial Optical Link Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for transmitting data to the Serial Optical Link (SOL) device handler.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/soluser.h>

int sol_write (devno, uiop, chan, arg)

dev_t devno;

struct uio *uiop;

int chan;

struct write_extension *arg;

Parameters

 devno Specifies major and minor device numbers.

uiop Points to a uio structure specifying the location and length of the caller’s data.

chan Specifies the channel number assigned by the sol_mpx entry point.

arg Points to a write_extension structure. If the arg parameter is null, default values are assumed.

Chapter 2. Communications Subsystem 175

Description

The sol_write entry point provides the means for transmitting data to the SOL device handler. The kernel

calls this entry point when a user-mode caller issues a write, writex, writev, or writevx subroutine.

For a user-mode process, the kernel fills in the uio structure with the appropriate values. A kernel-mode

process must fill in the uio structure as described by the ddwrite communications entry point.

For the sol_write entry point, the arg parameter may point to a write_extension structure. This structure

is defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Indicates the status condition that occurred. Possible values for the returned status field are:

v CIO_OK

v CIO_TX_FULL

v CIO_NOT_STARTED

v CIO_BAD_RANGE

v CIO_NOMBUF

flag Consists of a possible bitwise OR of the following:

CIO_NOFREE_MBUF

Requests that the physical device handler (PDH) not free the mbuf structure after

transmission is complete. The default is bit clear (free the buffer). For a user-mode process,

the PDH always frees the mbuf structure.

CIO_ACK_TX_DONE

Requests that when done with this operation, the PDH acknowledges completion by building

a CIO_TX_DONE status block. In addition, requests the PDH either call the kernel status

function or (for a user-mode process) place the status block in the status/exception queue.

The default is bit clear (do not acknowledge transmit completion).

write_id For a user-mode caller, the write_id field is returned to the caller by the CIO_GET_STAT operation

(if the CIO_ACK_TX_DONE option is selected). For a kernel-mode caller, the write_id field is

returned to the caller by the stat_fn routine that was provided at open time.

The data packet must start with a 4-byte field for the destination processor ID (the ID goes in the low-order

byte), followed by a 1-byte field for the destination netid. When the data is received at the destination, the

4-byte processor ID will be stripped off, so that the first byte is the 1-byte netid.

The maximum packet size allowed is SOL_MAX_XMIT, as defined in the /usr/include/sys/soluser.h file.

In case of a link failure, the device handler uses any link that is available. In-order reception of data

frames is not guaranteed unless the S (serialized) option is specified on the open of the device. See the

sol_mpx entry point for a description of this option.

The sol_write entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that

have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Note: When the Network Systems Corp. DX Router is used for communication, in-order reception cannot

be guaranteed even when using a serialized open.

Execution Environment

The sol_write entry point can be called from the process environment only.

176 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

 ENODEV Indicates the specified minor number is not valid.

ENETDOWN Indicates the network is down. The device is not able to process the write.

ENOCONNECT Indicates the device has not been started.

EAGAIN Indicates the transmit queue is full.

EINVAL Indicates the specified parameter is not valid.

ENOMEM Indicates the device handler was not able to allocate the required memory.

EINTR Indicates a system call was interrupted.

EFAULT Indicates the address supplied is not valid.

Related Information

The uio structure in AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 1.

The write, writex, writev, or writevx subroutine.

The sol_mpx entry point.

The stat_fn routine.

tokclose Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Resets the token-ring device handler to a known state and frees system resources.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

int tokclose (devno, chan)

dev_t devno;

int chan;

Parameters

 devno Specifies major and minor device numbers.

chan Identifies the channel number assigned by the tokmpx entry point.

Description

The tokclose entry point is called when a user-mode caller issues a close subroutine. The tokclose entry

point can also be invoked in response to a fp_close kernel service.

The tokclose entry point functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The tokclose entry point can be called from the process environment only.

Chapter 2. Communications Subsystem 177

Return Values

 ENXIO Indicates the specified minor number is not valid.

Related Information

The tokmpx entry point, tokopen entry point.

The ddclose Communications PDH entry point.

The close subroutine.

The fp_close kernel service.

tokconfig Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides functions for initializing, terminating, and querying the vital product data (VPD) of the token-ring

device handler.

Syntax

#include <sys/device.h>

#include <sys/uio.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

int tokconfig

(devno, cmd, uiop)

dev_t devno;

int cmd;

struct uio *uiop;

Parameters

 devno Specifies major and minor device numbers.

cmd Identifies the function to be performed by the tokconfig routine.

uiop Points to a uio structure, that describes the relevant data area for reading or writing.

Description

The tokconfig entry point provides functions for initializing, terminating, and querying the VPD of the

token-ring device handler. The tokconfig routine is invoked at device configuration time. The tokconfig

entry point provides the following three operations:

 Operation Description

CFG_INIT Initializes the token-ring device handler. The token-ring device handler registers the entry points in

the device switch table.

The token-ring define device structure (DDS) address and length is described in the uio structure.

The DDS is copied into an internal save area by the device handler.

CFG_TERM Terminates the token-ring device handler. If there are no outstanding opens, the token-ring device

handler marks itself terminated and prevents subsequent opens. All dynamically allocated areas are

freed. All token-ring device handler entry points are removed from the device switch table.

178 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

CFG_QVPD Returns the token-ring VPD to the caller. The VPD is placed in the area specified by the caller in the

uio structure.

The tokconfig entry point functions with a Token-Ring High Performance Network adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The tokconfig entry point can be called from the process environment only.

Return Values

Depending on the operation selected, the tokconfig entry point returns values.

Return Values for the CFG_INIT Operation

 ENOMEM Indicates the routine was unable to allocate space for the DDS.

EEXIST Indicates the device was already initialized.

EINVAL Indicates the DDS provided is not valid.

ENXIO Indicates the initialization of the token-ring device was unsuccessful.

EFAULT Indicates that the specified address is not valid.

Return Values for the CFG_TERM Operation

 EBUSY Indicates there are outstanding opens unable to terminate.

ENOENT Indicates there was no device to terminate.

EACCES Indicates the device was not configured.

EEXIST Unable to remove the device from the device switch table.

Return Values for the CFG_QVPD Operation

 ENOENT Indicates there was no device to query the VPD.

EFAULT Indicates that the specified address is not valid.

EACCES Indicates the token-ring device handler is not initialized.

Related Information

The uio structure in AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 1.

tokdump Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for performing a network dump.

Syntax

Refer to the dddump entry point for the complete syntax of the dump entry point.

Chapter 2. Communications Subsystem 179

Description

The tokdump entry point provides support for six of the seven dump commands. The DUMPWRITE

command is not supported for network dump. The tokdumpwrt entry point supports this write function.

The supported commands are:

 DUMPINIT Initializes the token-ring device handler as a dump device.

DUMPQUERY Gets the information required for performing a network dump. The information is returned in the

dmp_query structure in /usr/include/sys/dump.h file. It contains the following information:

v tokdumpwrt operation address

v Minimum data transfer size

v Maximum data transfer size

DUMPSTART Starts the network dump processing.

DUMPREAD Initiates a dump read request to the token-ring device handler.

DUMPEND Terminates the network dump processing.

DUMPTERM Terminates the token-ring device hander as a dump device.

The tokdump entry point functions with a Token-Ring High-Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The DUMPINIT command can be called from the process environment only. DUMPQUERY, DUMPSTART,

DUMPREAD, DUMPEND, and DUMPTERM commands can be called in both the process environment

and the interrupt environment.

Related Information

The dddump entry point, tokdumpwrt entry point.

tokdumpwrt Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for a network dump program to transmit data to the token-ring device handler.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

#include <sys/mbuf.h>

int tokdumpwrt

(devno, m)

dev_t devno;

struct mbuf *m;

Parameters

 devno Specifies major and minor device numbers.

m Pointer to an mbuf structure containing the data to be transmitted.

180 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The tokdumpwrt entry point can be called by a kernel-mode process to pass a write packet to the

token-ring device handler for subsequent transmission. The address of this operation is provided to the

kernel user by the dump user, who obtains it with the DUMPQUERY command.

The tokdumpwrt entry point provides for only one data packet to be transmitted for a single tokdumpwrt

call. The tokdumpwrt entry point also assumes that the calling user is a valid kernel user and that the

mbuf structure contains a valid data packet. It does not free the mbuf structure.

The tokdumpwrt entry point functions with a Token-Ring High Performance Network Adapter that has

been correctly configured for use on a qualified network. Consult the adapter specifications for more

information on configuring the adapter and network qualifications.

Execution Environment

The tokdumpwrt entry point can be called from the process or interrupt environment.

Return Values

 ENODEV Indicates the specified minor number is not valid.

EAGAIN Indicates the transmit queue is full.

Related Information

The tokdump entry point, tokmpx entry point, tokopen entry point.

The Memory Buffer (mbuf) Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

tokfastwrt Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for kernel users to perform direct-access write operations.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

#include <sys/mbuf.h>

int tokfastwrt (devno, m)

dev_t devno;

struct mbuf *m;

Parameters

 devno Specifies major and minor device numbers.

m Pointer to an mbuf structure containing the data to transmit.

Chapter 2. Communications Subsystem 181

Description

The tokfastwrt entry point is called from a kernel-mode process to pass a write packet to the token-ring

device handler for subsequent transmission. The address of this entry point is provided to the kernel user

by the CIO_GET_FASTWRT ioctl entry point.

The tokfastwrt entry point provides for only one data packet to be transmitted for a single tokfastwrt call.

The tokfastwrt entry point assumes that the calling user is a valid kernel user and that the mbuf structure

contains a valid data packet. The device handler frees the mbuf and does not acknowledge transmit

completion.

The tokfastwrt entry point functions with a Token-Ring High-Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The tokfastwrt entry point can be called from a kernel process or interrupt level. The operation level of

the token-ring device handler is TOK_OPLEVEL. This label is defined in the /usr/include/sys/tokuser.h

file. The tokfastwrt entry point treats this path as a trusted path and the device handler does not check

the parameters.

Return Values

 ENODEV Indicates the specified minor number is not valid.

EAGAIN Indicates the transmit queue is full.

Related Information

The tokmpx entry point, tokopen entry point.

The CIO_GET_FASTWRT tokioctl Token-Ring Device Handler Operation, CIO_START tokioctl Token-Ring

Device Handler Operation.

The Memory Buffer (mbuf) Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

tokioctl Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides various functions for controlling the token-ring device handler.

Syntax

#include <sys/device.h>

#include <sys/devinfo.h>

#include <sys/ioctl.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

int tokioctl

(devno, cmd, arg, devflag, chan, ext)

dev_t devno;

int cmd, arg;

ulong devflag;

int chan, ext;

182 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

 devno Specifies major and minor device numbers.

cmd Specifies the operation to be performed. The possible tokioctl operation codes can be found in the

/usr/include/sys/ioctl.h, /usr/include/sys/comio.h, and /usr/include/sys/tokuser.h files.

arg Specifies the address of the tokioctl parameter block.

devflag Indicates the conditions under which the device was opened.

chan Specifies the channel number assigned by the tokmpx entry point.

ext This parameter is not used by the token-ring device handler.

Description

The tokioctl entry point provides various functions for controlling the token-ring device handler. The

possible tokioctl operations are:

 Operation Description

CIO_GET_FASTWRT Gets function address for the tokfastwrt operation.

CIO_GET_STAT Gets device status.

CIO_HALT Halts the device.

CIO_QUERY Queries device statistics.

CIO_START Starts the device.

IOCINFO I/O character information.

TOK_FUNC_ADDR Sets functional addresses.

TOK_GRP_ADDR Sets the group address.

TOK_QVPD Queries vital product data (VPD).

TOK_RING_INFO Queries token-ring information.

The tokioctl entry point functions with a Token-Ring High-Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The tokioctl entry point can be called from the process environment only.

Related Information

The tokmpx entry point.

CIO_GET_FASTWRT (Get Fast Write) tokioctl Token-Ring Device

Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the attributes of the tokfastwrt entry point.

Description

The CIO_GET_FASTWRT tokioctl operation is used to get the parameters required to issue the tokfastwrt

entry point, which is the kernel-mode fast write command for the token-ring device handler. For the

CIO_GET_FASTWRT operation, the arg parameter points to the cio_get_fastwrt structure. This structure

is defined in the /usr/include/sys/comio.h file and contains the following fields:

Chapter 2. Communications Subsystem 183

Field Description

status Returns one of the following status values:

v CIO_INV_CMD

v CIO_OK

fastwrt_fn Specifies the address of the tokfastwrt entry point.

chan Specifies the channel ID.

devno Specifies the major and minor device numbers.

The CIO_GET_FASTWRT tokioctl operation functions with a Token-Ring High Performance Network

Adapter that has been correctly configured for use on a qualified network. Consult the adapter

specifications for more information on configuring the adapter and network qualifications.

Execution Environment

The CIO_GET_FASTWRT tokioctl operation can be called from the kernel-mode process environment

only.

Return Values

 EFAULT Indicates that the specified address is not valid, or the calling process is a user-mode process.

EINVAL Indicates that the specified parameter is not valid.

EIO Indicates that an error occurred. See the status field for more information.

ENODEV Indicates that the specified minor number is not valid.

ENXIO Indicates that an attempt was made to use an unconfigured device.

Related Information

The tokfastwrt entry point, tokioctl entry point, tokwrite entry point.

CIO_GET_STAT (Get Status) tokioctl Token-Ring Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Gets the current status of the token-ring adapter and device handler.

Description

The CIO_GET_STAT tokioctl operation returns the current status of the token-ring adapter and device

handler. For this operation, the arg parameter points to the status_block structure. This structure is

defined in the /usr/include/sys/comio.h file and takes the following status codes:

v CIO_ASYNC_STATUS

v CIO_HALT_DONE

v CIO_LOST_STATUS

v CIO_NULL_BLK

v CIO_START_DONE

v CIO_TX_DONE

Status Blocks for the Token-Ring Device Handler

Status blocks are used to communicate status and exception information to user-mode processes.

184 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

User-mode processes receive a status block whenever they request a CIO_GET_STAT operation. A

user-mode process can wait for the next available status block by issuing a tokselect entry point with the

specified POLLPRI event.

Status blocks contain a code field and possible options. The code field indicates the type of status block

code (for example, CIO_START_DONE).

There are six possible token-ring status blocks:

v CIO_ASYNC_STATUS

v CIO_HALT_DONE

v CIO_LOST_STATUS

v CIO_NULL_BLK

v CIO_START_DONE

v CIO_TX_DONE

CIO_ASYNC_STATUS Status Block

The token-ring device handler can return the following types of asynchronous status:

v CIO_HARD_FAIL

– TOK_ADAP_CHECK

– TOK_PIO_FAIL

– TOK_RCVRY_THRESH

v CIO_NET_RCVRY_ENTER

v CIO_NET_RCVRY_EXIT

– TOK_RING_STATUS

v CIO_LOST_DATA

When a CIO_HARD_FAIL status block is returned, the token-ring adapter is no longer functional. The user

should shut down the token-ring device handler.

Hard Failure Status Block Values: The following items describe the hard failure status block values for

several types of errors.

v Unrecoverable adapter check

When an unrecoverable adapter check has occurred, this status block is returned:

 Code CIO_ASYNC_STATUS

option[0] CIO_HARD_FAIL

option[1] TOK_ADAP_CHECK

option[2] The adapter return code is in the two high-order bytes. The adapter returns three parameters when

an adapter check occurs. Parameter 0 is returned in the two low-order bytes.

option[3] The two high-order bytes contain parameter 1. The two low-order bytes contain parameter 2.

v Unrecoverable PIO error

When an unrecoverable PIO error has occurred, this status block is returned:

 Code CIO_ASYNC_STATUS

option[0] CIO_HARD_FAIL

option[1] TOK_PIO_FAIL

option[2] Not used

option[3] Not used

v Exceeded network recovery entry threshold

Chapter 2. Communications Subsystem 185

When the token-ring device handler has exceeded the network Recovery mode entry threshold, this

status block is returned:

 Code CIO_ASYNC_STATUS

option[0] CIO_HARD_FAIL

option[1] TOK_RCVRY_THRESH

option[2] Not used

option[3] Not used

Entered Network Recovery Mode Status Block:

When the token-ring device handler has entered network Recovery mode, this status block is returned:

 Code CIO_ASYNC_STATUS

option[0] CIO_NET_RCVRY_ENTER

option[1] Specifies the reason for entering network Recovery mode. Can be one of these seven options:

v TOK_ADAP_CHECK

v TOK_AUTO_REMOVE

v TOK_CMD_FAIL

v TOK_LOBE_WIRE_FAULT

v TOK_MC_ERROR

v TOK_REMOVE_RECEIVED

v TOK_RING_STATUS

option[2] Specifies the adapter return code. For an adapter check, the adapter return code is in the two

high-order bytes. The adapter returns three parameters when an adapter check occurs. The

adapter check parameter 0 is returned in the two low-order bytes.

option[3] For an adapter check, the two high-order bytes contain parameter 1. The two low-order bytes

contain parameter 2.

Exited Network Recovery Mode Status Block:

When the token-ring device handler has exited network Recovery mode, the status block contains the

following:

 Code CIO_ASYNC_STATUS

option[0] CIO_NET_RCVRY_EXIT

option[1] Not used

option[2] Not used

option[3] Not used

Ring Beaconing Status Block Values:

When the token-ring adapter detects a beaconing condition on the ring, it notifies the device handler. The

device handler returns the following status block:

 Code CIO_ASYNC_STATUS

option[0] TOK_RING_STATUS

option[1] TOK_RING_BEACONING

option[2] Specifies the adapter return code. The two low-order bytes contain the ring status.

option[3] Not used.

Ring Recovered Status Block Values:

186 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

When the token-ring detects that the beaconing condition has ceased, it notifies the device handler. The

device handler returns the following status block:

 Code CIO_ASYNC_STATUS

option[0] TOK_RING_STATUS

option[1] TOK_RING_RECOVERED

option[2] Not used

option[3] Not used

Lost Data Status Block: The token-ring device handler has detected lost data due to the receive queue

overflowing. The device handler returns the following status block:

 Code CIO_ASYNC_STATUS

option[0] CIO_LOST_DATA

option[2] Not used

option[3] Not used

CIO_HALT_DONE Status Block

On a successfully completed CIO_HALT operation, the status block is filled in as follows:

 Code CIO_HALT_DONE

option[0] CIO_OK

option[1] The two low-order bytes contain the netid field passed with the CIO_HALT operation. If a medium

access control (MAC) frame session was requested, this field is set to TOK_MAC_FRAME_NETID.

option[2] Not used

option[3] Not used

CIO_LOST_STATUS Status Block

This status block is returned when it is not available due to a status queue overflow:

 Code CIO_LOST_STATUS

option[0] Not used

option[1] Not used

option[2] Not used

option[3] Not used

CIO_NULL_BLK Status Block

This is returned when the status block is not available.

 Code CIO_NULL_BLK

option[0] Not used

option[1] Not used

option[2] Not used

option[3] Not used

CIO_START_DONE Status Block

On a successfully completed CIO_START operation, the following status block is provided:

 Code CIO_START_DONE

option[0] CIO_OK

option[1] The two low-order bytes contain the netid field passed with the CIO_START operation. If a MAC

frame session was requested, this field is set to TOK_MAC_FRAME_NETID.

Chapter 2. Communications Subsystem 187

Code CIO_START_DONE

option[2] The two high-order bytes contain the two high-order bytes of the network address. The two

low-order bytes are filled in with the 2 middle bytes of the network address.

option[3] The two high-order bytes contain the two low-order bytes of the network address.

If the CIO_START operation is unsuccessful, the status block contains the following:

 Code CIO_START_DONE

option[0] Can be one of the following options:

v CIO_TIMEOUT

v TOK_ADAP_CONFIG

v TOK_ADAP_INIT_FAIL

v TOK_ADAP_INIT_PARMS_FAIL

v TOK_ADAP_INIT_TIMEOUT

v TOK_ADDR_VERIFY_FAIL

v TOK_LOBE_MEDIA_TST_FAIL

v TOK_PHYS_INSERT

v TOK_REQ_PARMS

v TOK_RING_POLL

option[1] The two low-order bytes contain the netid field passed with the CIO_START operation. If a MAC

frame session was requested, this field is set to TOK_MAC_FRAME_NETID.

option[2] This is the adapter return code. For each of the device-specific codes returned in option[0], an

adapter return code is placed in the two low-order bytes of this field. Possible values for the

option[2] field are the adapter reset, initialization, and open completion codes.

option[3] Not used

CIO_TX_DONE Status Block

When a tokwrite entry point completes for which transmit acknowledgment has been requested, the

following status block is built and returned to the caller.

 Code CIO_TX_DONE

option[0] CIO_OK or TOK_TX_ERROR

option[1] Contains the write_id field specified in the write_extension structure passed to the tokwrite

operation.

option[2] For a kernel-mode process, contains the mbuf pointer passed in the tokwrite operation.

option[3] The two high-order bytes contain the adapter’s transmit command complete code that the adapter

returns. The two low-order bytes contain the adapter’s transmit CSTAT completion code that is

returned when a packet is transmitted by the adapter.

Return Values

 EACCES Indicates an illegal call from a kernel-mode user.

EFAULT Specifies an address is not valid.

EINVAL Indicates a parameter is not valid.

Execution Environment

Related Information

The tokioctl entry point, tokopen entry point, tokwrite entry point.

188 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The CIO_HALT tokioctl Token-Ring Device Handler Operation, CIO_START tokioctl Token-Ring Device

Handler Operation.

CIO_HALT (Halt Device) tokioctl Token-Ring Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Ends a session with the token-ring device handler.

Description

The CIO_HALT tokioctl operation ends a session with the token-ring device handler. The caller indicates

the network ID to halt. This CIO_HALT operation corresponds to the CIO_START operation successfully

issued with the specified network ID. A CIO_HALT operation should be issued for each CIO_START

operation.

Data for the specified network ID is no longer received. Data received for the specified network ID, before

the halt, is still passed up to a user-mode caller by tokselect and tokread entry points. Data is passed

back to a kernel-mode caller by the rx_fn routine specified at open time.

For the CIO_HALT operation, the arg parameter points to the session_blk structure. This structure is

defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Returns one of the following status values:

v CIO_NETID_INV

v CIO_OK

netid Specifies the network ID. The network ID is placed in the least significant byte of the netid field. When

terminating the medium-access control (MAC) frame session, the netid field should be set to

TOK_MAC_FRAME_NETID.

The CIO_HALT operation functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The CIO_HALT operation can be called from the process environment only.

Return Values

 EFAULT Indicates the specified address is not valid.

EINVAL Indicates a parameter is not valid.

ENOMSG Indicates an error occurred.

Related Information

The ddioctl (CIO_HALT) operation.

The CIO_GET_STAT tokioctl Token-Ring Device Handler Operation, CIO_START tokioctl Token-Ring

Device Handler Operation.

The tokselect entry point, tokread entry point, tokioctl entry point.

Chapter 2. Communications Subsystem 189

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

CIO_QUERY (Query Statistics) tokioctl Token-Ring Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Allows the caller to read the counter values accumulated by a token-ring device handler.

Description

The CIO_QUERY tokioctl operation is used by the caller to read the counter values accumulated by a

token-ring device handler. The first call to the tokopen entry point initializes the counters to 0.

For the CIO_QUERY operation, the arg parameter points to the query_parms structure. This structure is

defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Indicates the status of the port. Returns one of the following status values:

v CIO_OK

v CIO_INV_CMD

buffptr Specifies the address of a buffer where the returned statistics are to be placed.

bufflen Specifies the length of the buffer.

clearall When this value equals CIO_QUERY_CLEAR, the counters are cleared upon completion of call. The

CIO_QUERY_CLEAR label can be found in the /usr/include/sys/comio.h file.

The counters placed in the supplied buffer by the CIO_QUERY operation are the counters declared in the

tok_query_stats_t structure defined in the /usr/include/sys/tokuser.h file.

The CIO_QUERY operation functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The CIO_QUERY operation can be called from the process environment only.

Return Values

 EFAULT Indicates that the specified address is not valid.

EINVAL Indicates that a parameter is not valid.

Related Information

The ddioctl (CIO_QUERY) entry point.

The tokioctl entry point, tokopen entry point.

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

190 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

CIO_START (Start Device) tokioctl Token-Ring Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Initiates a session with the token-ring device.

Description

The CIO_START tokioctl operation initiates a session with the token-ring device handler. If the start is the

first on the port, the device handler initializes and opens the token-ring adapter. For each successful

CIO_START call issued, there should be a corresponding CIO_HALT operation issued.

After the CIO_START operation has successfully completed, the adapter is ready to transmit and receive

data. The caller can issue any valid token-ring operation. Once started, the adapter receives packets that

match the token-ring adapter’s (hardware) address or the address specified in the device-dependent

structure (DDS) and broadcast packets. No group or functional address is specified when the adapter is

started.

The caller notifies the device handler which network ID to use. The network ID corresponds to the

destination service access point (DSAP) in the token-ring packet. The caller can issue multiple

CIO_START operations. For each adapter the token-ring device handler can handle from 0 to the number

of network IDs specified by the TOK_MAX_NETIDS label. This label is defined in the

/usr/include/sys/tokuser.h file.

The CIO_START operation functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

session_blk Parameter Block

For the CIO_START operation, the arg parameter points to the session_blk structure. This structure is

defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Indicates the status of the CIO_START operation. Possible returned status values are:

v CIO_NETID_DUP

v CIO_NETID_FULL

v CIO_OK

netid Specifies the network ID the caller will use on the network. The network ID is placed in the least

significant byte of the netid field. To request a medium-access control (MAC) frame session, the netid

field should be set to the TOK_MAC_FRAME_NETID label. This value has a unique identifier in the most

significant byte of the netid field. There can be only one MAC frame session per adapter.

Note: The token-ring device handler does not allow the caller to specify itself as the wild card network ID.

Execution Environment

The CIO_START tokioctl operation can be called from the process environment only.

Return Values

 EADDRINUSE Indicates the network ID is in use.

EINVAL Indicates a parameter is not valid.

Chapter 2. Communications Subsystem 191

ENETDOWN Indicates an unrecoverable hardware error.

ENOMSG Indicates an error.

ENOSPC Indicates the network ID table is full.

Related Information

The ddioctl (CIO_START) operation.

The CIO_GET_STAT tokioctl Token-Ring Device Handler Operation, CIO_HALT tokioctl Token-Ring Device

Handler Operation.

The tokioctl entry point.

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

IOCINFO (Describe Device) tokioctl Token-Ring Device Handler

Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Returns a structure that describes the token-ring device.

Description

The IOCINFO tokioctl operation returns a structure that describes the token-ring device. For this operation,

the arg parameter points to the devinfo structure. This structure is defined in the /usr/include/sys/
devinfo.h file and contains the following fields:

 Field Description

devtype Identifies the device type. The token-ring device type is DD_NET_DH. This value is defined in the

/usr/include/sys/devinfo.h file.

devsubtype Identifies the device subtype. The token-ring device subtype is DD_TR. This value is defined in

the /usr/include/sys/devinfo.h file.

speed Specifies the capabilities of the token-ring device. This is equal to TOK_4M when the token-ring

device is configured with a data rate of 4 Mbps. The capabilities are TOK_16M when the

token-ring device is configured with a data rate of 16 Mbps. The TOK_4M and TOK_16M labels

are defined in the /usr/include/sys/tokuser.h file.

broad_wrap Specifies whether the wrapping of broadcast packets is supported by the device.

rdto Specifies the configured receive data transfer offset (RDTO) value.

haddr Specifies the 6-byte hardware address of the token-ring adapter card.

net_addr Specifies the 6-byte network address currently used by the token-ring device handler.

The IOCINFO operation functions with a Token-Ring High-Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

The parameter block is filled in with the appropriate values upon return.

Execution Environment

The IOCINFO tokioctl operation can be called from the process environment only.

192 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

 EFAULT Indicates the specified address is not valid.

EINVAL Indicates a parameter is not valid.

ENXIO Indicates the specified minor number is not valid.

Related Information

The tokioctl entry point.

TOK_FUNC_ADDR (Set Functional Address) tokioctl Token-Ring

Device Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Specifies a functional address to be used on a token-ring device.

Description

The TOK_FUNC_ADDR tokioctl operation allows the caller to specify a functional address on a token-ring

network. A successful CIO_START operation must be issued before a TOK_FUNC_ADDR operation can

be issued. The parameter block for the functional address is the tok_func_addr_t structure defined in the

/usr/include/sys/tokuser.h file.

The tok_func_addr_t structure has four fields:

 Field Description

status Returns one of the following status values:

v CIO_INV_CMD

v CIO_NETID_INV

v CIO_NOT_STARTED

v CIO_OK

v CIO_TIMEOUT

netid Specifies the network ID associated with this functional address. The network ID must have been

successfully started by the CIO_START operation. There can only be one functional address

specified per network ID.

opcode When set to TOK_ADD, the functional address is added to the list of possible functional addresses

for which the token-ring adapter accepts packets. When set to TOK_DEL, the current functional

address is removed from the list of possible functional addresses for which the token-ring adapter

accepts packets. The TOK_ADD and TOK_DEL values are defined in the /usr/include/sys/
tokuser.h file.

func_addr Specifies the 4 least significant bytes of the 6-byte network function address. The 2 most significant

bytes are automatically set to 0xC000 by the token-ring adapter. The most significant bit and the 2

least significant bits within these 4 bytes cannot be set. They are ignored by the token-ring adapter.

The TOK_FUNC_ADDR operation functions with a Token-Ring High Performance Network Adapter that

has been correctly configured for use on a qualified network. Consult adapter specifications for more

information on configuring the adapter and network qualifications.

Execution Environment

The TOK_FUNC_ADDR tokioctl operation can be called from the process environment only.

Chapter 2. Communications Subsystem 193

Return Values

 EFAULT Indicates the specified address is not valid.

EINVAL Indicates a parameter is not valid.

ENETDOWN Indicates an unrecoverable hardware error.

ENOCONNECT Indicates the device has not been started.

ENOMSG Indicates an error occurred.

Related Information

The CIO_GET_STAT tokioctl Token-Ring Device Handler Operation for more information about Token-Ring

status blocks.

The CIO_START tokioctl Token-Ring Device Handler Operation.

The tokioctl entry point.

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

TOK_GRP_ADDR (Set Group Address) tokioctl Token-Ring Device

Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Sets the active group address for a token-ring adapter.

Description

The TOK_GRP_ADDR tokioctl operation sets the active group address for a token-ring adapter. Only one

group address can be specified at a time for a token-ring adapter. For this operation, the arg parameter

points to the tok_group_addr_t structure. This structure is defined in the /usr/include/sys/tokuser.h file

and contains the following fields:

 Field Description

status Returns one of the following possible status values:

v CIO_INV_CMD

v CIO_NOT_STARTED

v CIO_OK

v CIO_TIMEOUT

v TOK_NO_GROUP

opcode When set to TOK_ADD, the group address specified is added to the possible address for which

the token-ring device accepts packets. When set to TOK_DEL, the group address is removed

from the possible receive packet addresses. The TOK_ADD and TOK_DEL values are defined in

the /usr/include/sys/tokuser.h file.

group_addr Specifies the 4 least significant bytes of the 6-byte network group address. The 2 most significant

bytes are automatically set to 0xC000 by the token-ring adapter. The most significant bit within

these 4 bytes cannot be set. They are ignored by the token-ring adapter.

The TOK_GRP_ADDR operation functions with a Token-Ring High Performance Network Adapter that has

been correctly configured for use on a qualified network. Consult adapter specifications for more

information on configuring the adapter and network qualifications.

194 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Execution Environment

The TOK_GRP_ADDR tokioctl operation can be called from the process environment only.

Return Values

 EFAULT Indicates the specified address is not valid.

EINVAL Indicates a parameter is not valid.

ENETDOWN Indicates an unrecoverable hardware error.

ENOCONNECT Indicates the device has not been started.

ENOMSG Indicates an error occurred.

Related Information

Token-Ring Operation Results in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts.

The CIO_GET_STAT tokioctl Token-Ring Device Handler Operation for more information about Token-Ring

status blocks.

The tokioctl entry point.

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

TOK_QVPD (Query Vital Product Data) tokioctl Token-Ring Device

Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Returns the vital product data (VPD) for the token-ring adapter.

Description

The TOK_QVPD tokioctl operation returns VPD about the token-ring device. For this operation, the arg

parameter points to the tok_vpd_t block to query the VPD. This structure is defined in the

/usr/include/sys/tokuser.h file and contains the following fields:

 Field Description

status Returns one of the following status values:

v TOK_VPD_INVALID

v TOK_VPD_NOT_READ

v TOK_VPD_VALID

l_vpd Specifies the length of the vpd parameter.

vpd[TOK_VPD_LENGTH] Contains the VPD upon return.

The TOK_QVPD operation functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The TOK_QVPD tokioctl operation can be called from the process environment only.

Chapter 2. Communications Subsystem 195

Return Values

 EFAULT Indicates the specified address is not valid.

EINVAL Indicates a parameter is not valid.

ENXIO Indicates the specified minor number is not valid.

Related Information

The tokioctl entry point.

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

TOK_RING_INFO (Query Token-Ring) tokioctl Token-Ring Device

Handler Operation

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Reads information about a token-ring device.

Description

The TOK_RING_INFO tokioctl operation reads information about the token-ring device. For this operation,

the arg parameter points to the tok_q_ring_info_t structure. This structure is defined in the

/usr/include/sys/tokuser.h file and contains the following fields:

 status Indicates the status condition that occurred. Possible values are:

v TOK_NO_RING_INFO

v CIO_NOT_STARTED

v CIO_OK

p_info Points to the buffer where the tok_ring_info_t structure is to be copied. The tok_ring_info_t structure is

defined in the /usr/include/sys/tokuser.h file.

l_buf Specifies the length of the buffer for the returned ring information structure.

The TOK_RING_INFO operation functions with a Token-Ring High Performance Network Adapter that has

been correctly configured for use on a qualified network. Consult adapter specifications for more

information on configuring the adapter and network qualifications.

Execution Environment

The TOK_RING_INFO operation can be called from the process environment only.

Return Values

 EFAULT Indicates a specified address is not valid.

EINVAL Indicates a parameter is not valid.

ENOCONNECT Indicates the device has not been started.

ENOMSG Indicates an error occurred.

Related Information

Token-Ring Operation Results in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts.

196 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

The CIO_GET_STAT tokioctl Token-Ring Device Handler Operation for more information about Token-Ring

status blocks.

The tokioctl entry point.

tokmpx Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Allocates and deallocates a channel for the token-ring device handler.

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

int tokmpx (devno, chanp, channame)

dev_t devno;

int *chanp;

char *channame;

Parameters

 devno Specifies major and minor device numbers.

chanp Specifies the channel ID passed as a reference parameter. If the channame parameter is null, this is

the ID of the channel to be deallocated. Otherwise, this parameter is set to the ID of the allocated

channel.

channame Points to the remaining path name describing the channel to allocate. The channame parameter

accepts the following values:

null Deallocates the channel.

Pointer to a null string

Allows a normal open sequence of the token-ring device on the channel ID generated by the

tokmpx entry point.

Pointer to a ″D″

Allows the token-ring device to be opened in Diagnostic mode on the channel ID generated

by the tokmpx entry point.

Pointer to a ″W″

Allows the token-ring device to be opened in Diagnostic mode with the adapter in Wrap

mode on the channel ID generated by the tokmpx entry point.

Description

The tokmpx entry point is not called directly by a user of the token-ring device handler. The kernel calls

the tokmpx entry point in response to an open or close request.

If the token-ring device has been successfully opened, any Diagnostic-mode open request is unsuccessful.

The tokmpx entry point functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Chapter 2. Communications Subsystem 197

Execution Environment

The tokmpx entry point can be called from the process environment only.

Return Values

 EBUSY Indicates the device was already open in Diagnostic mode and the open request was denied.

ENOMSG Indicates an error occurred.

ENXIO Indicates the specified minor number is not valid.

ENOSPC Indicates the maximum number of opens has been exceeded.

Related Information

The ddmpx entry point, tokclose entry point, tokopen entry point.

The ddclose Communications PDH entry point, ddopen Communications PDH entry point.

tokopen Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Initializes a token-ring device handler and allocates the required system resources.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/tokuser.h>
int tokopen (devno, devflag, chan, arg)
dev_t devno;
ulong devflag;
int chan;
struct kopen_ext * arg;

Parameters

 devno Specifies major and minor device numbers.

devflag Specifies the flag word with the following definitions:

DKERNEL

Indicates kernel-mode processes. For user-mode processes, this flag must be clear.

DNDELAY

Specifies that the device handler performs nonblocking reads and writes for this channel.

Otherwise, blocking reads and writes are performed for this channel.

chan Specifies the channel number assigned by the tokmpx entry point.

arg Points to a kopen_ext structure for kernel-mode processes. For user-mode processes, this field is not

used.

Description

The tokopen entry point is called when a user-mode caller issues an open, openx, or creat subroutine.

The tokopen routine can also be invoked in response to an fp_opendev kernel service. The device is

opened to read and write data.

198 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The tokopen entry point functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Note: After the tokopen operation has successfully completed, the caller must then issue a CIO_START

operation before any data can be transmitted or received from a token-ring device handler.

Execution Environment

The tokopen entry point can be called from the process environment only.

Return Values

 ENXIO Indicates the specified minor number is not valid.

EINVAL Indicates a specified parameter is not valid.

ENOMEM Indicates the device handler was unable to allocate the required memory.

Related Information

The CIO_START tokioctl Token-Ring Device Handler Operation.

The open, openx or creat subroutine.

The ddopen Communications PDH entry point.

The fp_opendev kernel service.

tokread Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for receiving data from the token-ring device handler.

Syntax

#include <sys/device.h>

#include <sys/uio.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

int tokread (devno, uiop, chan, arg)

dev_t devno;

struct uio *uiop;

int chan;

read_extension *arg;

Parameters

 devno Specifies major and minor device numbers.

uiop Points to a uio structure. For a calling user-mode process, the uio structure specifies the location and

length of the caller’s data area in which to transfer information. The kernel fills in the uio structure for the

user.

chan Specifies the channel number assigned by the tokmpx entry point.

arg Can be null or points to the read_extension structure. This structure is defined in the /usr/include/sys/
comio.h file.

Chapter 2. Communications Subsystem 199

Description

Note: Only user-mode callers should use the tokread entry point.

The tokread entry point provides the means for receiving data from the token-ring device handler. When a

user-mode caller issues a read, readx, readv, or readvx subroutine, the kernel calls the tokread entry

point.

For this operation, the arg parameter may point to the read_extension structure. This structure is defined

in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Contains additional information about the completion of the tokread entry point. Possible values for this

field are:

v CIO_OK

v CIO_BUF_OVFLW

netid Not used

sessid Not used

The tokread entry point functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The tokread entry point can be called from the process environment only.

Return Values

 EACCES Indicates an illegal call from a kernel-mode user.

ENXIO Indicates the specified minor number is not valid.

EINTR Indicates a system call was interrupted.

EMSGSIZE Indicates the data was too large to fit into the receive buffer and that no arg parameter was

supplied to provide an alternate means of reporting this error with a status of CIO_BUF_OVFLW.

EFAULT Indicates that the supplied address is not valid.

ENOCONNECT Indicates the device has not been started.

Related Information

The read, readx, readv, or readvx subroutine.

The tokmpx entry point, tokwrite entry point.

Common Communications Status and Exception Codes in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

tokselect Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Determines whether a specified event has occurred on the token-ring device.

200 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Syntax

#include <sys/device.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

int tokselect (devno, events, reventp, chan)

dev_t devno;

ushort events;

ushort *reventp;

int chan;

Parameters

 devno Specifies major and minor device numbers.

events Specifies the conditions to check, denoted by the bitwise OR of one or more of the following:

POLLIN

Check whether receive data is available.

POLLOUT

Check whether transmit available.

POLLPRI

Check whether status is available.

POLLSYNC

Check whether asynchronous notification is available.

reventp Points to the result of condition checks. A bitwise OR one of the following conditions is returned:

POLLIN

Indicates available receive data.

POLLOUT

Indicates available transmit.

POLLPRI

Indicates available status.

chan Specifies the channel number assigned by the tokmpx entry point.

Description

Note: Only user-mode callers should call this entry point.

The tokselect entry point is called when the select or poll subroutine is used to determine if a specified

event has occurred on the token-ring device.

When the token-ring device handler is in a state in which the event can never be satisfied (for example, an

adapter failure), then the tokselect entry point sets the returned events flags to 1 for the event that cannot

be satisfied. This prevents the select or poll subroutines from waiting indefinitely.

The tokselect entry point functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The tokselect entry point can only be called from the process environment.

Chapter 2. Communications Subsystem 201

Return Values

 ENXIO Indicates the specified minor number is not valid.

EACCES Indicates a call from a kernel process is not valid.

Related Information

The poll subroutine, select subroutine.

Select/Poll Logic for ddwrite and ddread Routines.

tokwrite Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Provides a means of transmitting data to the token-ring device handler.

Syntax

#include <sys/device.h>

#include <sys/uio.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

int tokwrite (devno, uiop, chan, arg)

dev_t devno;

struct uio * uiop;

int chan;

struct write_extension * arg;

Parameters

 devno Specifies major and minor device numbers.

uiop Points to a uio structure specifying the location and length of the caller’s data.

chan Specifies the channel number assigned by the tokmpx entry point.

arg Points to a write_extension structure. If the arg parameter is null, then default values are assumed.

Description

The tokwrite entry point provides the means for transmitting data to the token-ring device handler. The

kernel calls it when a user-mode caller issues a write, writex, writev, or a writevx subroutine.

For a user-mode process, the kernel fills in the uio structure with the appropriate values. A kernel-mode

process must fill in the uio structure as described by the ddwrite communications entry point.

For the tokwrite entry point, the arg parameter may point to a write_extension structure. This structure is

defined in the /usr/include/sys/comio.h file and contains the following fields:

 Field Description

status Indicates the status condition that occurred. Possible values for the returned status field are:

v CIO_OK

v CIO_TX_FULL

v CIO_NOT_STARTED

v CIO_NET_RCVRY_MODE

202 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

flag Consists of a possible bitwise OR one of the following:

CIO_NOFREE_MBUF

Requests that the token-ring device handler not free the mbuf structure after transmission is

complete. The default is bit clear (free the buffer). For a user-mode process, the token-ring

device handler always frees the mbuf structure.

CIO_ACK_TX_DONE

Requests that, when done with this operation, the token-ring device handler acknowledges

completion by building a CIO_TX_DONE status block. In addition, requests the token-ring

device handler either call the kernel status function or (for a user-mode process) place the

status block in the status/exception queue. The default is bit clear (do not acknowledge

transmit completion).

write_id For a user-mode caller, the write_id field is returned to the caller by the CIO_GET_STAT operation

(if the CIO_ACK_TX_DONE option is selected). For a kernel-mode caller, the write_id field is

returned to the caller by the stat_fn function that was provided at open time.

The tokwrite entry point functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment

The tokwrite entry point can be called from the process environment only.

Return Values

 EAGAIN Indicates the transmit queue is full.

EFAULT Indicates an invalid address was supplied.

EINTR Indicates a system call was interrupted.

EINVAL Indicates the specified parameter is not valid.

ENETDOWN Indicates the network is down. The device is unable to process the write.

ENETUNREACH Indicates the device is in network Recovery mode and unable to process the entry point.

ENOCONNECT Indicates the device has not been started.

ENOMEM Indicates the device handler was unable to allocate the required memory.

ENXIO Indicates the specified minor number is not valid.

Related Information

The CIO_GET_FASTWRT tokioctl entry point

The ddwrite entry point, tokfastwrt entry point, tokmpx entry point, tokopen entry point.

The write, writex, writev, or writevx,subroutine.

The CIO_START tokioctl operation.

The uio structure in AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 1.

See the Use of mbuf Structures in the Communications PDH in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts for more information about mbuf structures.

Chapter 2. Communications Subsystem 203

204 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 3. LFT Subsystem

lft_t Structure

The lft_t structure is defined in the lft.h file. The lft_t structure is defined as lft_t with the typedef storage

class specifier. The global variable of type lft_t is declared within the Low Function Terminal (LFT)

subsystem. A pointer to the lft_t structure is stored in the devsw structure in the LFT device-switch table

entry. The lft_t structure is defined as follows:

typedef struct lft {

 lft_dds_t *dds_ptr;

 uint initialized;

 uint open_count;

 unit default_cursor;

 struct font_data *fonts;

 lft_swkbd_t *swkbd;

 lft_fkp_t lft_fkp;

 strlft_ptr_t strlft;

} lft_t, *lft_ptr_t;

The lft_t structure members are defined as follows:

 Structure Member Description

dds_ptr Specifies a pointer to the device-dependent structure (DDS). This pointer is initialized by

the lft_init routine after the DDS has been allocated.

initialized Specifies a Boolean flag indicating whether LFT is fully initialized.

open_count Specifies a count of the current number of opens to LFT. When the open_count member

is decremented to 0, LFT is unconfigured.

default_cursor Serves as a place holder for a default cursor pointer.

fonts Specifies a pointer to all of the font information.

swkbd Specifies a pointer to the software keyboard information.

lft_fkp Contains font kernel process (fkproc attribute) information.

strlft Specifies streams-specific information.

Related Information

vtmstruct Structure.

phys_displays Structure.

lft_dds_t Structure

The lft_dds_t structure is defined in the lft_dds.h file and is defined as lft_dds_t by the typedef storage

class specifier. The lft_dds_t structure is a common structure that is shared by the Low Function Terminal

(LFT) Configure method and the LFT subsystem.

Most of the lft_dds_t structure is initialized by the configure method’s build_dds routine. This routine

queries the Object Data Manager (ODM) for all LFT-relevant data. After the build_dds routine has

completed its initialization of the lft_dds_t structure, the configure method calls the lft_init routine and

passes it the pointer to the lft_dds_t structure. The lft_init routine then copies the lft_dds_t structure

from user space into LFT’s own local device-dependent structure (DDS) in kernel space. A pointer to this

local lft_dds_t structure is then stored in the anchored LFT DDS.

The lft_dds_t structure contains values initialized by LFT, as well as values from the ODM. The values

initialized by LFT are the keyboard file pointer (kbd.fp), the display file pointers (displays[i].fp), and the

vtmstruct structure pointers (displays[i].vtm_ptr).

© Copyright IBM Corp. 1997, 2007 205

The lft_dds_t structure is defined as follows:

typedef struct {

 lft_dev_t lft;

 lft_kbd_t kbd;

 int number_of_displays;

 int default_disp_index;

 char *swkbd_file;

 char *font_file_names;

 int number_of_fonts;

 uint start_fkproc;

 lft_disp_t displays[1];

} lft_dds_t;

The lft_dds_t structure members are defined as follows:

 Structure Member Description

lft Specifies a structure that contains the device number and logical name of LFT.

The lft structure is initialized by the LFT Configure method. The lft structure is

defined as follows:

typedef struct {

 dev_t devno;

 char devname[NAMESIZE];

} lft_dev_t;

kbd Specifies a structure that contains keyboard-specific information. The kbd

structure is defined as follows:

typedef struct {

dev_t devno;

char devname[NAMESIZE];

struct file *fp;

struct diacritic *diac;

uint kbd_type;

number_of_displays Specifies the total number of displays found to be available by LFT’s configure

method. This reflects the number of entries in the lft_disp_info array.

default_disp_index Specifies an index into the displays array and specifies the display currently in

use by LFT. The default_disp_index member is initialized by the LFT Configure

method. The value of the default_disp_index member is set to -1 if the

default_disp attribute is not found in the ODM. LFT provides an ioctl call that

allows the value of the default_disp_index member to be changed after LFT has

been initialized.

*swkbd_file Specifies a pointer to the software-keyboard file name. The LFT Configure

method allocates space for the software-keyboard file name. LFT copies the

software-keyboard file name into kernel space, opens the file, and reads the

software-keyboard information into kernel space.

*font_file_names Specifies a pointer to the names of the font files. The LFT Configure method

allocates space for the font file names. LFT copies the font file names into kernel

space, opens each of the font files, and reads the font information into kernel

space. The space allocated in the kernel for holding the font file names is then

released.

number_of_fonts Specifies the number of fonts. The number_of_fonts member is initialized by the

LFT Configure method.

start_fkproc Specifies a Boolean flag. This flag is set to True if the LFT Configure method

finds an fkproc attribute in the ODM for any of the displays associated with LFT.

LFT then calls the font server if the flag was set to True.

206 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Structure Member Description

displays[1] Specifies an array, the size of which is determined by the number of available

displays found during the configuration process. The displays[1] structure is

defined as follows:

typedef struct {

dev_t devno;

char devname[NAMESIZE];

int font_index;

struct file *fp;

ushort fp_valid:

ushort flags;

struct vtmstruct *vtm_ptr;

} lft_disp_t;

This is an array of lft_disp_t structures, one for each available display. Each

structure is tied to a display that has been attached to LFT by the LFT Configure

method. The LFT Configure method initializes the device number, device name,

and default font index members for each structure associated with an available

display. LFT then initializes each vtmstruct structure and *vtm_ptr file pointer

associated with a display. The number_of_displays member of the lft_dds_t

structure defines how many of the lft_disp_t structures are valid. The lft_disp_t

structure members are defined as follows:

devno Specifies the device number of the display adapter. The LFT Configure

method initializes this member.

devname{NAMESIZE]

Specifies the logical name of the adapter. The LFT Configure method

initializes this member.

font_index

Specifies an integer which contains the index of the default font to be

used by the associated adapter. The LFT Configure method initializes

this member.

*fp Specifies a pointer to an integer which specifies the file pointer of the

opened display adapter. The *fp pointer is used when the display needs

to be closed. LFT initializes this member.

fp_valid

Specifies a boolean flag that is set to True if LFT can write to this

display. LFT initializes this member.

flags Specifies state flags. Only the APP_IS_DIAG flag is currently used.

*vtm_ptr

Specifies a pointer to a structure of type vtmstruct. The *vtm_ptr

structure pointer is used in all virtual device driver (VDD) calls to the

display device driver. LFT allocates and initializes the vtmstruct

structure.

phys_displays Structure

Each display driver allocates and initializes a phys_displays structure during configuration. The

phys_displays structure is defined in the /usr/include/sys/display.h file. The display driver stores a

pointer to the phys_displays structure in the display driver’s devsw structure, which is then added to the

device switch table. A pointer to the display driver’s vtmstruct structure is initialized in the phys_displays

structure when the display driver’s vttact routine is called. The phys_displays structure is defined as

follows:

Note: Micro Channel machines only run AIX 5.1 or earlier.

Chapter 3. LFT Subsystem 207

struct phys_displays { /***********************************/

 struct { /* data to set up interrupt call */

 struct intr intr; /* at init time (i_init) */

 long intr_args[4]; /* */

 } interrupt_data; /***********************************/

 struct phys_displays *same_level; /* other interrupts on same level */

 struct phys_displays *next; /* ptr to next minor number data */

 struct _gscDev *pGSC; /* device struct used by rcm */

 dev_t devno; /* Device number of this adapter */

 struct lft *lftanchor;/* lft subsystem */

 int dds_length; /* length in bytes */

 char *odmdds; /* ptr to define device structure */

 struct display_info display_info; /* display information */

 uchar disp_devid[4]; /* device information */

 /* [1] = 04=display device */

 /* [2] = 21=reserved 22=reserved */

 /* 25=reserved 27=reserved */

 /* 29=reserved */

 /* [3] = 00=functional */

 /* [4] = 01-04=adapter instance */

 uchar usage; /* number of VT’s using real screen */

 /* used to prevent deletion of */

 /* real screen from configuration */

 /* if any VT is using it. */

 uchar open_cnt; /* Open flag for display */

 uchar display_mode; /* Actual state of the display, */

 /* not the virtual terminal: */

 /* KSR_MODE or MOM_MODE (see vt.h) */

 uchar dma_characteristics; /* Attributes related to DMA ops */

define DMA_SLAVE_DEV 1 /* Device is bus slave, ow. master */

 struct font_data *default_font; /* Pointer to the default font for */

 /* this display */

 struct vtmstruc *visible_vt; /* Pointer to current vt active or */

 /* pseudo-active on THIS display */

 /***********************************/

 /* DMA Data Areas */

 /***********************************/

 int dma_chan_id; /* channel id returned from d_init */

 struct dma_bufs /* DMA buffer structure */

 d_dma_area[MAXDMABUFS]; /* */

 /***********************************/

 /* Rendering Context Manager Areas */

 /***********************************/

 rcmProcPtr cur_rcm; /* Pointer to current rcm on this */

 /* display */

 int num_domains; /* number of domains */

 int dwa_device; /* supports direct window access */

 struct _bmr /* bus memory ranges */

 busmemr[MAX_DOMAINS]; /* */

 uint io_range; /* Used for MCA adapter only! */

 /* low limit in high short */

 /* high limit in low short */

 /* to match IOCC register */

 uint *free_area; /* area free for usage in a device */

 /* dependent manner by the VDD */

 /* for this real screen. */

#ifndef __64BIT_KERNEL

#define RCM_ACC_METHOD_1 (0L) /* MCA and SGA bus adapters */

#endif

#define RCM_ACC_METHOD_2 (1L) /* 60X and PCI bus adapters */

 uint access_method; /* Access method flags */

#ifndef __64BIT_KERNEL

#define RCM_RUBY_NO_MAP (1L) /* Tells RCM to not map the space */

#endif

 uint access_flags; /* Misc flags (used for Ruby now) */

 uint reserved13[13];

 int current_dpm_phase; /* current phase of DPM this display is in */

208 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

/* full-on=1, standby=2, suspend=3, off=4 */

#define DPMS_ON 0x1

#define DPMS_STANDBY 0x2

#define DPMS_SUSPEND 0x3

#define DPMS_OFF 0x4

 int NumAddrRanges;

 rcmAddrRange *AddrRange;

 int reserved4;

 int (*reserved7)(); /***********************************/

 /* VDD Function Pointers */

 /***********************************/

 int (*vttpwrphase)(); /* power management phase change */

 /* function. It’s device dependent */

 int (*vttact)(); /* Activate the display */

 int (*vttcfl)(); /* Move lines around */

 int (*vttclr)(); /* Clear a box on screen */

 int (*vttcpl)(); /* Copy a part of the line */

 int (*vttdact)(); /* Mark the terminal as being */

 /* deactivated */

 int (*vttddf)(); /* Device dependent functions */

 /* i.e. Pacing, context support */

 int (*vttdefc)(); /* Change the cursor shape */

 int (*vttdma)(); /* Issue dma operation */

 int (*vttdma_setup)(); /* Setup dma */

 int (*vttterm)(); /* Free any resources used */

 /* by this VT */

 int (*vttinit)(); /* setup new logical terminal */

 int (*vttmovc)(); /* Move the cursor to the */

 /* position indicated */

 int (*vttrds)(); /* Read a line segment */

 int (*vtttext)(); /* Write a string of chars */

 int (*vttscr)(); /* Scroll text on the VT */

 int (*vttsetm)(); /* Set mode to KSR or MOM */

 int (*vttstct)(); /* Change color mappings */

 int (*reserved5)(); /* Despite its name, this field is */

 /* used for kdb debug */

 int (*bind_draw_read_windows)();

 /***********************************/

 /* RCM Function Pointers */

 /***********************************/

 int (*make_gp)(); /* Make a graphics process */

 int (*unmake_gp)(); /* Unmake a graphics process */

 int (*state_change)(); /* State change handler invoked */

 int (*update_read_win_geom)();

 int (*create_rcx)(); /* Create a hardware context */

 int (*delete_rcx)(); /* Delete a hardware context */

#ifdef __64BIT_KERNEL

 int (*reserved21)();

 int (*reserved22)();

 int (*reserved23)();

 int (*reserved24)();

#else

 int (*create_rcxp)(); /* Create a context part */

 int (*delete_rcxp)(); /* Delete a context part */

 int (*associate_rcxp)(); /* Link a part to a context */

 int (*disassociate_rcxp)(); /* Unlink a part from a context */

#endif

 int (*create_win_geom)(); /* Create a window on the screen */

 int (*delete_win_geom)(); /* Delete a window on the screen */

 int (*update_win_geom)(); /* Update a window on the screen */

#ifdef __64BIT_KERNEL

 int (*reserved25)();

 int (*reserved26)();

 int (*reserved27)();

#else

 int (*create_win_attr)(); /* Create a window on the screen */

 int (*delete_win_attr)(); /* Delete a window on the screen */

Chapter 3. LFT Subsystem 209

int (*update_win_attr)(); /* Update a window on the screen */

#endif

 int (*bind_window)(); /* Update a window bound to rcx */

 int (*start_switch)(); /* Start a context switch */

 /* Note: This routine runs on */

 /* the interrupt level */

 int (*end_switch)(); /* Finish the context switch */

 /* started by start_switch() */

#ifdef __64BIT_KERNEL

 int (*reserved28)();

 int (*reserved29)();

 int (*reserved30)();

 int (*reserved31)();

#else

 int (*check_dev)(); /* Check if this address beints */

 /* to this device. */

 /* Note: this is run on interrupt */

 /* level. */

 int (*async_mask)(); /* Set async events reporting */

 int (*sync_mask)(); /* Set sync events reporting */

 int (*enable_event)(); /* Turns adapter function on */

 /* without reports to application */

#endif

 int (*create_thread)(); /* Make a graphics thread */

 int (*delete_thread)(); /* Delete a graphics thread */

 void (*give_up_time_slice)(); /* Relinquish remaining time */

#ifdef __64BIT_KERNEL

 int (*reserved32)();

#else

 int (*diag_svc)(); /* Diagnostics Services (DMA) */

#endif

 int (*dev_init)(); /* Device dep. initialization */

#ifdef __64BIT_KERNEL

 int (*reserved33)();

#else

 int (*dev_term)(); /* Device dep. cleanup */

#endif

 /***********************************/

 /* Font Support Function Pointers */

 /***********************************/

#ifdef __64BIT_KERNEL

 int (*reserved34)();

#else

 int (*pinned_font_ready)();

#endif

 int (*vttddf_fast)(); /* fast ddf functions */

 ushort bus_type; /* indicates what type of bus */

#ifndef __64BIT_KERNEL

define DISP_BUS_MCA 0x8000/* Microchannel */

define DISP_BUS_SGA 0x4000/* currently not used */

define DISP_BUS_PPC 0x2000/* processor bus */

define DISP_PLANAR 0x0800/* planar registers */

#endif

define DISP_BUS_PCI 0x1000/* PCI bus */

 ushort flags; /* physical display flags */

define GS_DD_DOES_AS_ATT(1L << 0)/* no as_att() by RCM */

 /* not currently used */

define GS_BUS_AUTH_CONTROL(1L << 1)/* Request bus access ctrl */

define GS_HAS_INTERRUPT_HANDLER (1L << 2)/* 1 after i_init() */

 /* 0 after i_clear() */

 /* not currently used */

define GS_DD_SUPPORTS_MP (1L << 3)

210 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

uint reserved11[5]; /* not used */

 int ear; /* image for EAR reg (xferdata) if !0 */

 uint spares[18]; /* not used - for future development */

};

Related Information

lft Structure.

lft_dds Structure.

vtmstruct Structure.

vtmstruct Structure

The vtmstruct structure is defined in the vt.h file. The Low Function Terminal (LFT) subsystem does not

support virtual terminals. However, for backward compatibility with current display drivers, the name of this

structure remains the same as in previous releases. The vtmstruct structure contains all of the

device-dependent data needed by LFT for a given display adapter. LFT allocates and initializes each

vtmstruct structure. The number of vtmstruct structures is determined by the number_of_displays

variable stored in the lft_dds structure. The vtmstruct structure is defined as follows:

struct vtmstruct {

 struct phys_displays *display;

 struct vtt_cp_parms mparms;

 char *vttld;

 off_t vtid;

 uchar vtm_mode;

 int font_index;

 int number_of_fonts;

 struct font_data *fonts;

 int (*fsp_enq) ();

};

The vtmstruct structure members are defined as follows:

 Structure Member Description

display Specifies a pointer to the physical display structure with the display. The *display

pointer is acquired by LFT by passing the display’s device number to the devswqry

command. The display device drivers initialize the phys_displays structures.

mparms Specifies a structure that contains a code-point mask for implementing 7- or 8-bit ASCII,

the code base that is added to the code point if the code base is greater than or equal

to 0, the attribute bits, and the cursor position. The x and y cursor coordinates are

initialized to 0. The vtt_cp_parms structure is defined as follows:

struct vtt_cp_parms

{

 ulong cp_mask;

 long cp_base;

 ushort attributes;

 struct vtt_cursor cursor;

};

vttld Specifies a pointer to the local data area of the display adapter. The display driver

initializes the *vttld pointer.

vtid Specifies the virtual terminal ID. This ID is no longer used, but is retained for backward

compatibility. LFT initializes the vtid member to 0.

vtm_mode Specifies a flag which indicates the state of the display. LFT initializes the vtm_mode

member to ksr mode, and the vtm_mode member remains unchanged, since using a

hot-key to switch between Keyboard Send-Receive (KSR) and Monitor Mode (MOM) is

no longer allowed. The vtm_mode member is retained only for backward compatibility.

Chapter 3. LFT Subsystem 211

Structure Member Description

font_index Specifies an index into the font structures for a specific font chosen via a chfont

command. LFT copies this member from the font_index member of the lft_disp_t

structure.

number_of_fonts Specifies the number of fonts. The number_of_fonts member is copied from the

lft_dds structure during the initialization of the vtmstruct structure.

fonts Specifies a pointer to the array of font tables initialized by LFT. The display driver uses

this pointer to acquire its font information.

LFT initializes an array of structures of type font_data from data read in from the font

files specified in the Object Data Manager (ODM). A pointer to this array is then stored

in the vtmstruct structure for each display. The display drivers use this pointer to load

the appropriate font information. The members of the font_data structure are defined

as follows:

struct font_data {

 ulong font_id;

 char font_name[20];

 char font_weight[8];

 char font_slant[8];

 char font_page[8];

 ulong font_style;

 long font_width;

 long font_height;

 long f*font_ptr;

 ulong font_size;

};

(*fsq_enq()) Specifies a pointer to the LFT function that queues messages to the font server. LFT

initializes this pointer. If a display driver requires the services of the font server, it can

queue a message to the font server using the function pointed to by the (*fsq_enq())

pointer.

Virtual Display Driver (VDD) Interface (lftvi)

Purpose

Provides a communication path from the LFT driver to the lower-level display adapter drivers.

Syntax

static int Function (VP, Down)

struct vtmstruc *VP;

struct down_stream *Down;

Description

The lftvi interface provides a communication path from the LFT driver to the lower-level display adapter

drivers. an array of vtmstruc structures with one entry for each configured display adapter is maintained

by the lftvi interface.

LFT cannot use the normal driver entry points, since the display drivers cannot sleep except in their own

open routines. Therefore, all virtual display driver (VDD) functions are called via function pointers in the

phys_display structure.

The lftvi interface includes a collection of functions called by the vtmupd and vtmupd3 subroutines.

These functions update information such as cursor position and the tab stop map by calling the

appropriate display driver function.

212 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

 Function Specifies one of the functions provided by the lftvi interface. The following functions are provided:

cursor_up

Moves the cursor up the number of rows specified in the escape sequence.

cursor_down

Moves the cursor down the number of rows specified in the escape sequence.

cursor_left

Moves the cursor left the number of columns specified in the escape sequence.

cursor_right

Moves the cursor right the number of columns specified in the escape sequence.

cursor_absolute

Moves the cursor to the row and column coordinates specified in the escape sequence.

delete_char

Deletes data from the cursor X position. The number of characters to be deleted is specified

in the escape sequence.

delete_line

Deletes the number of lines specified in the escape sequence from the cursor line. Any data

following the deleted lines is scrolled up.

erase_l

Erases a line. The escape sequence specifies whether to delete to the end of the line, from

the start of the line, or all of the line. This routine calls the clear_rectangle function to

perform the erasure.

erase_display

Clears all or part of the screen as specified in the escape sequence.

screen_updat

Processes a graphics string. Chops the output string into lines if necessary and calls the vtt*

routines in the display driver.

copy_part

Calls the VDD that services the terminal to copy part of a line to the presentation space.

clear_rect

Calls the VDD that services the terminal to clear a rectangle.

sound_beep

Calls the sound driver to emit a beep.

set_attributes

Sets the graphics rendition.

update_ds_modes

Sets or resets the data-stream modes.

set_clear_tab

Sets or clears the tabs as specified in the escape sequence. This function operates on

either a line or screen model.

update_ht_stop

Sets or clears horizontal tabs. This function can set or clear the horizontal tabs for one line

or the whole screen.

clear_all_ht

Clears all horizontal tabs on a line.

cursor_back_tab

Moves the cursor to the previous tab stop.

Chapter 3. LFT Subsystem 213

cursor_ht

Places the cursor at the next horizontal tab.

find_prior_tab

Finds the previous tab by examining the terminal’s tab array and setting the cursor’s X and

Y coordinates to that point. This function takes wrap and autonewline into consideration.

find_next_tab

Finds the next tab by examining the terminal’s tab array and setting the cursor’s X and Y

coordinates to that point. This function takes wrap and autonewline into consideration.

scroll_down

Moves the entire presentation space down the number of lines specified in the escape

sequence.

scroll_up

Moves the entire presentation space up the number of lines specified in the escape

sequence.

erase_char

Erases the number of characters specified in the escape sequence from the line. If an erase

occurs at the end of a line, the line length is altered.

insert_line

Scrolls the cursored line and all lines following it down the number of lines specified in the

escape sequence.

insert_char

Inserts the number of empty spaces specified in the escape sequence before the character

indicated by the cursor. Characters beginning at the cursor are shifted right. Characters

shifted past the right margin are lost.

upd_cursor

Calls the vttmove function to update the cursor position.

ascii_index

Moves the cursor down one line. If the cursor was already on the last line, all lines are

scrolled up one line.

vttscr Specifies the scroll entry point.

vtttext Specifies the display graphics characters entry point.

vttclr Specifies the clear rectangle entry point.

vttcpl Specifies the copy line entry point.

vttmove

Specifies the move cursor entry point.

vttcfl Specifies the copy full line entry point.

Input Device Driver ioctl Operations

The keyboard special file supports the ioctl operations listed below. Because configuration information is

shared between channels, certain ioctl operations such as the KSTRATE (set typematic rate) ioctl

operation affect both channels regardless of which channel the request is received from.

 Operation Description

IOCINFO Returns devinfo structure.

KSQUERYID Queries keyboard device identifier.

KSQUERYSV Queries keyboard service vector.

KSREGRING Registers input ring.

214 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

KSRFLUSH Flushes input ring.

KSLED Illuminates and darkens LEDs on the keyboard.

KSCFGCLICK Configures the keyboard clicker.

KSVOLUME Sets alarm volume.

KSALARM Sounds alarm.

KSTRATE Sets typematic rate.

KSTDELAY Sets typematic delay.

KSKAP Enables/disables keep alive poll.

KSKAPACK Acknowledges keep alive poll.

KSDIAGMODE Enables/disables diagnostics mode.

MQUERYID Queries mouse device identifier.

MREGRING Registers input ring.

MRFLUSH Flushes input ring.

MTHRESHOLD Sets mouse reporting threshold.

MRESOLUTION Sets mouse resolution.

MSCALE Sets mouse scale factor.

MSAMPLERATE Sets mouse sample rate.

TABQUERYID Queries tablet device identifier.

TABREGRING Registers input ring.

TABRFLUSH Flushes input ring.

TABCONVERSION Sets tablet conversion mode.

TABRESOLUTION Sets tablet resolution.

TABORIGIN Sets tablet origin.

TABSAMPLERATE Sets tablet sample rate.

TABDEADZONE Sets tablet dead zone.

GIOQUERYID Queries attached devices.

DIALREGRING Registers input ring.

DIALRFLUSH Flushes input ring.

DIALSETGRAND Sets dial granularity.

LPFKREGRING Registers input ring.

LPFKRFLUSH Flushes input ring.

LPFKLIGHT Sets/resets key lights.

The following ioctl operations are ignored (return immediately with a good return code) when sent to a

channel which is not active, and return an EBUSY error code if the keyboard is in diagnostics mode:

KSLED

KSCFGCLICK

KSVOLUME

KSALARM

KSTRATE

KSTDELAY

IOCINFO (Return devinfo Structure) ioctl Input Device Driver

Purpose

Returns devinfo structure.

Syntax

#include <sys/devinfo.h>

Chapter 3. LFT Subsystem 215

int ioctl (FileDescriptor, IOCINFO, Arg)

int FileDescriptor;

struct devinfo *Arg;

Description

The IOCINFO ioctl operation returns a devinfo structure, defined in the /usr/include/sys/devinfo.h file,

that describes the device. Only the first two fields are valid for this device. The values are as follows:

char devtype; /* device type TBD */

char flags; /* open flags (see sys/device.h) */

Parameters

 FileDescriptor Specifies the open file descriptor for the device.

Arg Specifies the address of the devinfo structure.

KSQUERYID (Query Keyboard Device Identifier)

Purpose

Queries keyboard device identifier.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSQUERYID, Arg)

int FileDescriptor;

uint *Arg;

Description

The KSQUERYID ioctl subroutine call returns the keyboard device identifier in the location pointed to by

the calling argument. Valid keyboard identifiers are:

#define KS101 /0x01 /* 101 keyboard */

#define KS102 /0x02 /* 102 keyboard *

#define KS106 /0x03 /* 106 keyboard */

#define KS101 0x01 /**/

#define KS102 0x02 /**

#define KS103 0x03 /**/

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of the location to return the keyboard identifier.

KSQUERYSV (Query Keyboard Service Vector)

Purpose

Queries keyboard service vector.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSQUERYSV, Arg)

int FileDescriptor;

caddr_t *Arg;

216 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The KSQUERYSV ioctl subroutine call returns the address of the keyboard service vector via the calling

argument. The keyboard service vector is provided so that certain services may be invoked by kernel

extensions without the occurrence of sleeps or page faults. The services provided by the vector must not

be invoked by a user process.

The following offsets into the vector are defined:

#define KSVALARM 0 /* sound alarm */

#define KSVSAK 1 /* disable/enable secure attention key */

#define KSVRFLUSH 2 /* flush input ring */

#define KSVALARM 0 /*......*/

#define KSVSAK 1 /*......*/

#define KSVRFLUSH 2 /*......*/

Service vector routines are invoked using an indirect call as follows:

(*service_vector[service_number])(dev_t devno, caddr_t arg)

where:

v The service vector is a pointer to the service vector obtained by the KSQVERYSU fp_ioctl subroutine

call.

v The service_number parameter is offset into the service vector.

v The devno parameter is the device number for the keyboard.

v The arg parameter points to a ksalarm structure for alarm requests and an unsigned integer (uint) for

secure attention key (SAK) enable/disable requests. The arg parameter is NULL for flush queue

requests.

A value of zero is returned if the service vector function is successful. Otherwise, an error number defined

in the errno.h file is returned. Alarm requests are ignored if the kernel extension’s channel is not active;

enable/disable SAK and queue flush requests are always processed.

The KSQUERYSV ioctl subroutine call returns a value of -1 and sets the errno global variable to a value

of EINVAL when called by a user process.

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of the location to return the service vector address.

KSREGRING (Register Input Ring)

Purpose

Registers input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSREGRING, Arg)

int FileDescriptor;

caddr_t * Arg;

Chapter 3. LFT Subsystem 217

Description

If the keyboard special file was opened by a process in user mode, the Arg parameter should point to a

uregring structure containing:

v A pointer to an input ring in user memory.

v The value to be used as the source identifier when enqueuing reports on the ring.

v The size of the input ring in bytes.

If the keyboard special file was opened by a process in kernel mode, the Arg parameter should point to a

kregring structure containing:

v A pointer to an input ring in pinned kernel memory.

v The value to be used as the source identifier when enqueuing reports on the ring.

v A pointer to the notification callback routine. The callback is invoked following the occurrence of an

event as specified via the ir_notify field in the input ring structure.

v A pointer to the secure attention key (SAK) callback routine. The callback is invoked following the

occurrence of a SAK (Ctrl x-r) when SAK detection is enabled.

All callbacks execute within the interrupt environment. All fields within the input ring header as defined by

the input ring structure must be properly initialized before the invocation of the ioctl. A subsequent

KSREGRING ioctl subroutine call replaces the input ring supplied earlier. Specify a null input ring pointer

to disable keyboard input.

The input ring acts as a buffer for operator input. Key press and release events are placed on the ring as

they occur, without processing or filtering.

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of the uregring or kregring structure.

KSRFLUSH (Flush Input Ring)

Purpose

Flushes input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSRFLUSH, NULL)

int FileDescriptor;

Description

The KSRFLUSH ioctl subroutine call flushes the input ring. The KSRFLUSH ioctl subroutine call loads the

starting address of the reporting area into the input ring head and tail pointers, then clears the overflow

flag.

Parameter

 FileDescriptor Specifies the open file descriptor for the keyboard.

218 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

KSLED (Illuminate/Darken Keyboard LEDs)

Purpose

Illuminates and darkens LEDs on the keyboard.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSLED, Arg)

int FileDescriptor, * Arg;

Description

The KSLED ioctl subroutine call illuminates and darkens the LEDs on the natively attached keyboard. The

Arg parameter points to a bit mask (one bit per LED) that specifies the state of each keyboard LED.

The current state of the keyboard LEDs is returned in the input ring event report for the keyboard.

When keyboard diagnostics are enabled, the KSLED ioctl operation fails and sets the errno global

variable to a value of EBUSY.

Parameters

 Arg Specifies the address of the LED bit mask. The bit mask can be any combination of the

following values ORed together:

#define KSCROLLLOCK 0x01 /*Illuminates ScrollLock LED.*/

#define KSNUMLOCK 0x02 /*Illuminates NumLock LED.*/

#define KSCAPLOCK 0x04 /*Illuminates CapsLock LED.*/

FileDescriptor Specifies the open file descriptor for the keyboard.

KSCFGCLICK (Enable/Disable Keyboard Clicker)

Purpose

Configures the keyboard clicker.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSCFGCLICK, Arg)

int FileDescriptor;

uint * Arg;

Description

The KSCFGCLICK ioctl subroutine call enables and disables the keyboard clicker and sets the clicker’s

volume. When the keyboard clicker is enabled, the native keyboard speaker generates a sound when a

key is pressed.

The KSCFGCLICK ioctl subroutine call is supported even when the workstation does not provide a

keyboard clicker.

When keyboard diagnostics are enabled, the KSCFGCLICK ioctl subroutine call fails and set the errno

global variable to a value of EBUSY.

Chapter 3. LFT Subsystem 219

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies an address of an integer that contains one of the following values:

#define KSCLICKOFF 0 /*Turns off clicker.*/

#define KSCLICKLOW 1 /*Sets clicker to low volume.*/

#define KSCLICKMED 2 /*Sets clicker to medium volume.*/

#define KSCLICKHI 3 /*Sets clicker to high volume.*/

KSVOLUME (Set Alarm Volume) ioctl

Purpose

Sets alarm volume.

Syntax

#include <sys/inputdd.h>int ioctl (FileDescriptor, KSVOLUME, Arg)

int FileDescriptor;

uint * Arg;

Description

The KSVOLUME ioctl subroutine call sets the alarm volume.

When keyboard diagnostics are enabled, the KSVOLUME ioctl subroutine call fails and sets the errno

global variable to a value of EBUSY.

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies an integer that contains one of the following values:

#define KSAVOLOFF 0 /*Turns off alarm.*/

#define KSAVOLLOW 1 /*Sets alarm to low volume.*/

#define KSAVOLMED 2 /*Sets alarm to medium volume*/

#define KSAVOLHI 3 /*Sets alarm to high volume.*/

KSALARM (Sound Alarm)

Purpose

Sounds alarm.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSALARM, Arg)

int FileDescriptor;

struct ksalarm * Arg;

220 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The KSALARM ioctl subroutine call causes the native keyboard speaker to produce a sound using the

specified frequency and duration. A valid frequency is 32Hz-12KHz inclusive. A valid duration is a number

between 0 and 32767. Duration is specified in units of 1/128 of a second, with a maximum of 4.3 minutes.

If the alarm is already on, the request is queued and processed after the previous alarm request has

completed. If the queue is full, an EBUSY error code is returned. The KSALARM function returns

immediately if the alarm volume is off (KSAVOLOFF) or a duration of 0 is specified.

When keyboard diagnostics are enabled, the KSALARM ioctl subroutine call fails and sets the errno

global variable to a value of EBUSY.

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of the KSALARM structure.

Related Information

The KSVOLUME ioctl subroutine call.

The chhwkbd command.

KSTRATE (Set Typematic Rate)

Purpose

Sets typematic rate.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSTRATE, Arg)

int FileDescriptor;

uint * Arg;

Description

The KSTRATE ioctl subroutine call changes the rate at which a pressed key repeats itself, specified in

number of repeats per second. The minimum rate is 2 repeats per second, and the maximum rate is 30

repeats per second.

When keyboard diagnostics are enabled, the KSTRATE ioctl subroutine call fails and sets the errno global

variable to a value of EBUSY.

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of an integer that contains the desired typematic rate.

Related Information

The chhwkbd command.

Chapter 3. LFT Subsystem 221

KSTDELAY (Set Typematic Delay)

Purpose

Sets typematic delay.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSTDELAY, Arg)

int FileDescriptor;

uint * Arg;

Description

The KSTDELAY ioctl subroutine call sets the time, specified in milliseconds, that a key must be held down

before it repeats.

When keyboard diagnostics are enabled, the KSTDELAY ioctl subroutine call fails and sets the errno

global variable to a value of EBUSY.

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of a value representing the typematic delay. The Arg parameter can

be one of the following delay values:

#define KSTDLY250 1 250ms.

#define KSTDLY500 2 500ms.

#define KSTDLY750 3 750ms.

#define KSTDLY1000 4 1000ms.

Note: For the 106-keyboard, the delays are 300, 400®, 500, and 600 milliseconds. All

delays are +/- 20%.

Related Information

The chhwkbd command.

KSKAP (Enable/Disable Keep Alive Poll)

Purpose

Enables/disables keep alive poll.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSKAP, Arg)

int FileDescriptor;

uchar * Arg;

Description

The KSKAP ioctl subroutine call enables and disables the keep alive poll. The KSKAP ioctl subroutine call

defines the key sequence that the operator can use to kill the process that owns the keyboard. The Arg

parameter must point to an array of characters or be equal to NULL. When the Arg parameter points to an

222 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

array of characters, the first character specifies the number of keys in the sequence. The remainder of the

characters in the array define the sequence. Each key of the sequence consists of a position code

followed by a modifier flag. The modifier flags can be any combination ok KBDUXSHIFT, KBUXCTRL, and

KBDUXALT. If the Arg parameter is equal to NULL, the keep alive poll is disabled. A sequence key count

of 0 is invalid.

When the keep alive poll is enabled, a SIGKAP signal is sent to the user process thatregistered the input

ring associated with the active channel when the operator presses and holds down the keys in the order

specified by the KSKAP ioctl subroutine call. The process must respond with a KSKAPACK ioctl

subroutine call within 30 seconds or the keyboard driver issues a SIGKILL signal to terminate the process.

The keep alive poll is controlled on a per-channel basis and defaults to disabled. The KSKAP ioctl

subroutine call is not available when the channel is owned by a kernel extension.

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of an array of characters or is equal to NULL.

Related Information

The KSKAPACK subroutine call.

KSKAPACK (Acknowledge Keep Alive Poll)

Purpose

Acknowledges SIGKAP signals.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSKAPACK, NULL)

int FileDescriptor;

Description

The KSKAPACK ioctl subroutine call acknowledges a SIGKAP (keep alive poll) signal.

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Related Information

The KSKAP subroutine call.

KSDIAGMODE (Enable/Disable Diagnostics Mode)

Purpose

Enables/disables diagnostics mode.

Chapter 3. LFT Subsystem 223

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSDIAGMODE, Arg)

uint * Arg;

Description

The KSDIAGMODE ioctl subroutine call enables and disables keyboard diagnostics mode. When

diagnostics mode is enabled, the keyboard driver undefines the keyboard driver interrupt handler and

stops processing keyboard events. When diagnostics mode is disabled, the keyboard driver redefines its

interrupt handler, then resets and reconfigures the keyboard.

When keyboard diagnostics mode is enabled, the following keyboard ioctl subroutine calls fail and set the

errno global variable to a value of EBUSY:

v KSLED

v KSCFGCLICK

v KSVOLUME

v KSALARM

v KSTRATE

v KSTDELAY

Parameters

 FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of an integer that is equal to one of the following values:

#define KSDDISABLE 0 /*Disables diagnostics mode.*/

#define KSDENABLE 1 /*Enables diagnostics mode.*/

Return Values

The KSDIAGMODE ioctl subroutine call returns a value of -1 and sets the errno global variable to a value

of EINVAL when called by a kernel extension. The KSDIAGMODE ioctl subroutine call sets the errno

global variable to a value of EBUSY on the RS1/RS2 platform when the tablet special file is open.

MQUERYID (Query Mouse Device Identifier)

Purpose

Queries mouse device identifier.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, MQUERYID, Arg)

int FileDescriptor;

unit *Arg;

Description

The MQUERYID ioctl subroutine call returns the identifier of the natively connected mouse.

224 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

 FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of the location to return the mouse identifier. The mouse identifier

returned in the Arg parameter is:

#define MOUSE3B 0x01 /*.......... */

#define MOUSE2B 0x02 /*2 Button Mouse*/

MREGRING (Register Input Ring)

Purpose

Registers input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, MREGRING, Arg)

int FileDescriptor;

struct uregring *Arg;

Description

The MREGRING ioctl subroutine call specifies the address of the input ring and the value to be used as

the source identifier when enqueuing reports on the ring. A subsequent MREGRING ioctl subroutine call

replaces the input ring supplied earlier. Specify a null input ring pointer to disable mouse input.

Parameters

 FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of an URERING structure.

MRFLUSH (Flush Input Ring)

Purpose

Flushes input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, MRFLUSH, NULL)

int FileDescriptor;

Description

The MRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail pointers with

the starting address of the reporting area. The overflow flag is then cleared.

Parameters

 FileDescriptor Specifies the open file descriptor for the mouse.

Chapter 3. LFT Subsystem 225

MTHRESHOLD (Set Mouse Reporting Threshold)

Purpose

Sets mouse reporting threshold.

Syntax

#include <sys/inputdd.h>

int ioctlFileDescriptor, MTHRESHOLD, Arg)

int FileDescriptor;

ulong *Arg;

Description

The MTHRESHOLD ioctl subroutine call sets the minimum horizontal or vertical distance (in counts) that

the mouse must be moved before the driver reports an event. The high-order two bytes of the Arg

parameter specify the horizontal threshold and the low-order two bytes specify the vertical threshold. The

minimum threshold is 0, while the maximum threshold is 32767. The default horizontal and vertical mouse

reporting threshold is 22.

Parameters

 FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of the desired threshold.

MRESOLUTION (Set Mouse Resolution)

Purpose

Sets mouse resolution.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, MRESOLUTION, Arg)

int FileDescriptor;

uint *Arg;

Description

The MRESOLUTION ioctl subroutine call sets the value reported when the mouse is moved one millimeter

Parameters

 FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of an integer where value is one of the following values:

#define MRES1 1 /* minimum */

#define MRES2 2 /* */

#define MRES3 3 /* */

#define MRES4 4 /* maximum */

226 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

MSCALE (Set Mouse Scale Factor)

Purpose

Sets mouse scale factor.

Syntax

#include <sys/inputdd.h>

int ioctl

(FileDescriptor, MSCALE, Arg)

int FileDescriptor;

uint * Arg;

Description

The MSCALE ioctl subroutine call provides a course/fine tracking response. The reported horizontal and

vertical movement is converted as follows:

 Reported Value

Real Value 1:1 Scale 2:1 Scale

 0 0 0

 1 1 1

 2 2 1

 3 3 3

 4 4 6

 5 5 9

 N N N x 2

 where N >= 6

The default scale factor is 1:1.

Parameters

 FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of an integer where value is one of the following values:

#define MSCALE11 1 /* 1:1 scale*/

#define MSCALE21 2 /* 2:1 scale*/

MSAMPLERATE (Set Mouse Sample Rate)

Purpose

Sets mouse sample rate.

Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, MSAMPLERATE, Arg)

int FileDescriptor;

uint *Arg;

Chapter 3. LFT Subsystem 227

Description

The MSAMPLERATE ioctl subroutine call specifies the maximum number of mouse events that are

reported per second.

The default sample rate is 100 samples per second.

Parameters

 FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of an integer where value is one of the following values:

#define MSR10 1 /* 10 samples per second */

#define MSR20 2 /* 20 samples per second */

#define MSR40 3 /* 40 samples per second */

#define MSR60 4 /* 60 samples per second */

#define MSR80 5 /* 80 samples per second */

#define MSR100 6 /* 100 samples per second */

#define MSR200 7 /* 200 samples per second */

TABQUERYID (Query Tablet Device Identifier) ioctl Tablet Device Driver

Operation

Purpose

Queries tablet device identifier.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABQUERYID, Arg)

int FileDescriptor;

struct tabqueryid *Arg;

Description

The TABQUERYID ioctl subroutine call returns the identifier of the natively connected tablet and its input

device. The first field in the returned structure specifies the model number and may be:

#define TAB6093M11 0x01 /* 6093 model 11

or equivalent */

#define TAB6093M12 0x02 /* 6093 model 12 or equivalent */

The second field in the structure indicates what type of input device is connected to the tablet and may be

one of the following:

#define TABUNKNOWN 0x00 /* unknown input

device */

#define TABSTYLUS 0x01 /* stylus */

#define TABPUCK 0x02 /* puck */

Parameters

 FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of a TABQUERYID structure.

228 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

TABREGRING (Register Input Ring)

Purpose

Registers input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABREGRING, Arg)

int FileDescriptor;

struct uregring *Arg;

Description

The TABREGRING ioctl subroutine call specifies the address of the input ring and the value to be used as

the source identifier when enqueuing reports on the ring. A subsequent TABREGRING ioctl subroutine call

replaces the input ring supplied earlier. Specify a null input ring pointer to disable tablet input.

Parameters

 FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of a uregring structure.

TABRFLUSH (Flush Input Ring

Purpose

Flushes input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABRFLUSH, NULL)

int FileDescriptor;

Description

The TABRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail pointers

with the starting address of the reporting area. The overflow flag is then cleared.

Parameters

 FileDescriptor Specifies the open file descriptor for the tablet.

TABCONVERSION (Set Tablet Conversion Mode)

Purpose

Sets tablet conversion mode.

Chapter 3. LFT Subsystem 229

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABCONVERSION, Arg)

int FileDescriptor;

uint *Arg;

Description

The TABCONVERSION ioctl subroutine call specifies whether the value specified by the

TABRESOLUTION ioctl subroutine call are in English units (inches) or metric units (centimeters).

Parameters

 FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of an integer where value is one of the following values:

#define TABINCH 0

/* report coordinates in inches

 */

#define TABCM 1

/* report coordinates in centimeters */

Related Information

The TABRESOLUTION ioctl subroutine call.

TABRESOLUTION (Set Tablet Resolution)

Purpose

Sets tablet resolution.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABRESOLUTION, Arg)

int FileDescriptor;

uint *Arg;

Description

The TABRESOLUTION ioctl subroutine call specifies the resolution of the tablet in lines per inch. Specify

the resolution in lines per inch unless changed by the TABCONVERSION ioctl subroutine call. The

minimum resolution is 0 and the maximum resolution is 1279 lines per inch or 580 lines per centimeter.

The default resolution is 500 lines per inch.

Parameters

 FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of an integer that contains the desired resoultion.

Related Information

The TABCONVERSION ioctl subroutine call.

230 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

TABORIGIN (Set Tablet Origin)

Purpose

Sets tablet origin.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABORIGIN,Arg)

int FileDescriptor;

uint *Arg;

Description

The TABORIGIN ioctl subroutine call sets the origin of the tablet to either the lower left-hand corner or the

center of the tablet. The default origin is the lower left-hand corner.

Parameters

 FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of an integer whose value is one of the following values:

#define TABORGLL 0 /* origin is lower left corner */

#define TABORGC 1 /* origin is center */

TABSAMPLERATE (Set Tablet Sample Rate) ioctl Tablet Device Driver

Operation

Purpose

Sets tablet sample rate.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABSAMPLERATE, Arg)

int FileDescriptor;

uint *Arg;

Description

The TABSAMPLERATE ioctl subroutine call specifies the number of times per second that the puck

location and button status are sampled. The minimum rate is 0 and the maximum rate is 100. The default

rate is one sample per second.

Parameters

 FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of an integer that contains the desired sample rate.

TABDEADZONE (Set Tablet Dead Zone)

Purpose

Sets tablet dead zone.

Chapter 3. LFT Subsystem 231

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABDEADZONE, Arg)

int FileDescriptor;

ulong *Arg;

Description

The TABDEADZONE ioctl subroutine call specifies the edges of a zone on the tablet. When the puck is

outside of this zone, motion events are not reported (button events are still reported). The high-order two

bytes of the Arg parameter specify the horizontal edge and the low-order two bytes of the Arg parameter

specify the vertical edge of the zone. If the tablet is configured with a center origin, the negative of the

horizontal value becomes the bottom edge of the zone and the horizontal value becomes the top edge of

the zone square. The left and right edges of the zone are generated from the vertical specification in a

similar fashion. The minimum horizontal or vertical specification is 0 and the maximum horizontal or

vertical specification is 32767.

Parameters

 FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of the dead zone specification.

GIOQUERYID (Query Attached Devices)

Purpose

Queries attached devices.

Syntax

#include <sys/inputdd.h>

int ioctl(FileDescriptor, GIOQUERYID, Arg)

int FileDescriptor;

struct gioqueryid *Arg;

Description

The GIOQUERYID ioctl subroutine call returns the identifier of devices connected to the GIO adapter. The

ID of the device connected to port 0 is returned in the first field of the structure, and the device connected

to port 1 is returned in the second field of the structure. Valid device IDs are as follows:

#define giolpfkid 0x01 /* LPFK device ID */

#define giodialsid 0x02 /* dials device ID */

Parameters

 FileDescriptor Specifies the open file descriptor for the gio adapter.

Arg Specifies the address of a gioqueryid structure.

DIALREGRING (Register Input Ring)

Purpose

Registers input ring.

232 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, DIALREGRING, Arg)

int FileDescriptor;

struct uregring *Arg;

Description

The DIALREGRING ioctl subroutine call specifies the address of the input ring and the value to be used

as the source identifier when enqueuing reports on the ring. A subsequent DIALREGRING ioctl subroutine

call replaces the input ring supplied earlier. Specify a null input ring pointer to disable dial input.

Parameters

 FileDescriptor Specifies the open file descriptor for the dials.

Arg Specifies the address of the uregring structure.

DIALRFLUSH (Flush Input Ring)

Purpose

Flushes input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, DIALRFLUSH, Arg)

int FileDescriptor;

Description

The DIALRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail pointers

with the starting address of the reporting area. The overflow flag is then cleared.

Parameters

 FileDescriptor Specifies the open file descriptor for the dials.

DIALSETGRAND (Set Dial Granularity)

Purpose

Sets dial granularity.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, DIALSETGRAND, Arg)

int FileDescriptor;

struct dialsetgrand *Arg;

Description

The DIALSETGRAND ioctl subroutine call sets the number of events reported per 360 degree revolution,

specified as a power of two on a per-dial basis. The dialsetgrand structure contains a bit mask that

Chapter 3. LFT Subsystem 233

indicates which dial or dials should be modified. Valid granularity is any number between 2 and 8,

inclusive. The default granularity is 7 (128 reports per rotation).

Parameters

 FileDescriptor Specifies the open file descriptor for the dials.

Arg Specifies the address of the dialsetgrand structure.

LPFKREGRING (Register Input Ring)

Purpose

Registers input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, LPFKREGRING, Arg)

int FileDescriptor;

struct uregring *Arg;

Description

The LPFKREGRING ioctl subroutine call specifies the address of the input ring and the value to be used

as the source identifier when enqueuing reports on the ring. A subsequent LPFKREGRING ioctl subroutine

call replaces the input ring supplied earlier. Specify a null input ring pointer to disable LPFK input.

Parameters

 FileDescriptor Specifies the open file descriptor.

Arg Specifies the address of the uregring structure.

LPFKRFLUSH (Flush Input Ring)

Purpose

Flushes input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, LPFKRFLUSH, NULL)

int FileDescriptor;

Description

The LPFKRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail pointers

with the starting address of the reporting area. The overflow flag is then cleared.

Parameters

 FileDescriptor Specifies the open file descriptor.

234 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

LPFKLIGHT (Set/Reset Key Lights)

Purpose

Sets/resets key lights.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, LPFKLIGHT, Arg)

int FileDescriptor;

ulong *Arg;

Description

The LPFKLIGHT ioctl subroutine call illuminates and darkens lights associated with keys in the LPFK

array. The Arg parameter points to a bit mask (one bit per key) that indicates the state (1 = on, 0 = off)

of the key’s light.

Parameters

 FileDescriptor Specifies the open file descriptor.

Arg Specifies the address of a bit mask (one bit per key) that indicates the state of the key

lights (0 = off, 1 = on).

dd_open LFT Device Driver Interface

Purpose

Allocates device driver resources and ensures exclusive access to a device.

Syntax

int dd_open (DevNo, Flag, Chan, Ext)

dev_t DevNo;

long Flag, Chan, Ext;

Description

The dd_open low function terminal (LFT) device driver interface allocates resources needed by a device

driver and can be used to ensure exclusive access to a device if necessary.

Parameters

 DevNo Specifies the major and minor device numbers.

Flag Specifies the open file control flags.

Chan Specifies the channel number (multiplexed devices only).

Ext Specifies the extension parameter for device-dependent functions.

Return Values

If successful, the dd_open device driver interface returns a value of 0. Otherwise, a value of 1 is returned

and the errno global variable is set to indicate the error.

Chapter 3. LFT Subsystem 235

dd_close LFT Device Driver Interface

Purpose

Deallocates device driver resources and can be used with the dd_open low function terminal (LFT) device

driver interface to ensure exclusive access to a device.

Syntax

int dd_close (DevNo, Chan, Ext)
dev_t DevNo;
long Chan, Ext;

Description

The dd_close LFT device driver interface deallocates resources used by a device driver and can be used

in conjunction with the dd_open LFT device driver to ensure exclusive access to a device.

Parameters

 DevNo Specifies the major and minor device numbers.

Chan Specifies the channel number (multiplexed devices only).

Ext Specifies the extension parameter for device-dependent functions.

Return Values

If successful, the dd_close device driver interface returns a value of 0. Otherwise, a value of 1 is returned

and the errno global variable is set to indicate the error.

dd_ioctl LFT Device Driver Interface

Purpose

Performs device-dependent processing.

Syntax

int dd_ioctl (DevNo, Cmd, Arg, DevFlag, Chan, Ext)

dev_t DevNo;

long Cmd, Arg, DevFlag, Chan, Ext;

Description

The dd_ioctl low function terminal (LFT) device driver interface performs device-dependent processing not

related to reading from and writing to the device.

Parameters

 DevNo Specifies the major and minor device numbers.

Cmd Specifies the device-dependent command.

Arg Specifies the command-dependent parameter block address.

DevFlag Specifies the flag indicating the type of operation.

Chan Specifies the channel number (multiplexed devices only).

Ext Specifies the extension parameter for device-dependent functions.

236 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

If successful, the dd_ioctl device driver interface returns a value of 0. Otherwise, a value of 1 is returned

and the errno global variable is set to indicate the error.

Chapter 3. LFT Subsystem 237

238 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 4. Printer Subsystems

Subroutines for Print Formatters

The pioformat formatter driver provides the following subroutines for the print formatters that it loads,

links, and drives:

 Subroutine Description

piocmdout Outputs an attribute string for a printer formatter.

pioexit Exits from a printer formatter.

piogetstr Retrieves an attribute string for a printer formatter.

piogetopt Used by printer formatters to overlay default flag values from the database with override values

from the command line.

piogetvals Initializes a copy of the database variables for a printer formatter.

piomsgout Sends a message from a printer formatter.

piocmdout Subroutine

Purpose

Outputs an attribute string for a printer formatter.

Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

piocmdout (attrname, fileptr, passthru, NULL)

char * attrname;

FILE * fileptr;

int passthru;

Description

The piocmdout subroutine retrieves the specified attribute string from the Printer Attribute database and

outputs the string to standard output. In the course of retrieval, this subroutine also resolves any logic and

any embedded references to other attribute strings or integers.

The fileptr and passthru parameters are used to pass data that the formatter does not need to scan (for

example, graphics data) from the input data stream to standard output.

Parameters

 attrname Points to a two-character attribute name for a string. The attribute name must be defined in the

database and can optionally have been defined to the piogetvals subroutine as a variable string.

The attribute should not be one that has been defined to the piogetvals subroutine as an integer.

fileptr Specifies a file pointer for the input data stream. If the piocmdout routine is called from the lineout

formatter routine, the fileptr value should be the fileptr passed to the lineout routine as a parameter.

Otherwise, the fileptr value should be stdin. If the passthru parameter is 0, the fileptr parameter is

ignored.

© Copyright IBM Corp. 1997, 2007 239

passthru Specifies the number of bytes to be passed to standard output unmodified from the input data stream

specified by the fileptr parameter. This occurs when the %x escape sequence is found in the attribute

string or in a string included by the attribute string. If no %x escape sequence is found, the specified

number of bytes is read from the input data stream and discarded. If no bytes are to be passed

through, the passthru parameter should be 0.

Note: The fourth parameter is reserved for future use. This parameter should be a NULL pointer.

Return Values

Upon successful completion, the piocmdout subroutine returns the length of the constructed string.

If the piocmdout subroutine detects an error, it issues an error message and terminates the print job.

Related Information

The lineout subroutine, piogetvals subroutine.

Understanding Embedded References in Printer Attribute Strings in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts

Adding a New Printer Type to Your System in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Print formatter example in AIX Version 6.1 General Programming Concepts: Writing and Debugging

Programs.

pioexit Subroutine

Purpose

Exits from a printer formatter.

Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

void pioexit (exitcode)

int exitcode;

Description

The pioexit subroutine should be used by printer formatters to exit either when formatting is complete or

an error has been detected. This subroutine is supplied by the formatter driver.

The pioexit subroutine has no return values.

Parameters

 exitcode Specifies whether the formatting operation completed successfully. A value of PIOEXITGOOD

indicates that the formatting completed normally. A value of PIOEXITBAD indicates that an error was

detected.

240 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

Understanding Embedded References in Printer Attribute Strings in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Adding a New Printer Type to Your System in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Print formatter example in AIX Version 6.1 General Programming Concepts: Writing and Debugging

Programs.

piogetattrs Subroutine

Purpose

Retrieves printer attribute values, descriptions, and limits from a printer attribute database.

Library

libqb.a

Syntax

#include <piostruct.h>
int piogetattrs(QueueName, QueueDeviceName, NumAttrElems, AttrElemTable)
const char * QueueName, * QueueDeviceName;
unsigned short NumAttrElems;
struct pioattr * AttrElemTable;

Description

The piogetattrs subroutine retrieves printer attribute values and their associated descriptions and limits

from a printer attribute database. Any logic (using the % escape sequence character) within the attribute

description will be returned as a text string obtained from a message catalog, and will be in the language

determined by the NLSPATH and LANG environment variables.

Information can be retrieved for any number of attributes defined in the printer attribute database, and for

any combination of attribute value, attribute description, and attribute limit for each of the attributes with

one piogetattrs subroutine call.

The combination of the QueueName and QueueDeviceName parameters identify a specific printer attribute

database. Therefore, the QueueName and QueueDeviceName parameters must be unique for a particular

host.

Parameters

 QueueName Specifies the print queue name. The print queue does not have to exist.

QueueDeviceName Specifies the queue device name for the print queue name specified by the

QueueName parameter. The queue device does not have to exist.

NumAttrElems Specifies the number of attribute elements in the table specified by the AttrElemTable

parameter.

AttrElemTable Points to a table of attribute element structures. Each structure element in the table

specifies an attribute name, the type of value to be returned for the attribute, fields

where the location and length of the returned value are to be stored, and a field for the

return code of the retrieval operation. Memory is allocated for each resolved value that

is returned, and the memory location and length are returned in the structure element.

The format of each structure element is defined by the pioattr structure definition in the

/usr/include/piostruct.h file.

Chapter 4. Printer Subsystems 241

Return Values

 NumAttrElems Specifies the number of attribute elements for which the piogetattrs subroutine has

successfully retrieved the requested information.

-1 Indicates that an error occurred.

Examples

/* Array of elements to be passed to

piogetattrs() */

#define ATTR_ARRAY_NO (sizeof(attr_table)/sizeof(attr_table[0]))

struct pioattr attr_table[] = {

 {"_b", PA_AVALT, NULL, 0, 0}, /* attribute record */

 /* for _b (bottom margin)*/

 {"_i", PA_AVALT, NULL, 0, 0}, /* attribute record for */

 /* _i (left indentation) */

 {"_t", PA_AVALT, NULL, 0, 0}, /* attribute record for */

 /* _t (top margin) */

}

...

const char *qnm = "ps";

const char *qdnm = "lp0";

int retno;

register const pioattr_t *pap;

...

if((retno = piogetattrs(qnm,qdnm,ATTR_ARRAY_NO,attr_table)) ==-1) {(void)

fprintf(stderr,"Fatal error in piogetattrs()\n");

...

}

else if (retno != ATTR_ARRAY_NO) _{

 (void) printf("Warning! Infor was not retrieved for all \

 the attributes.\n");

}

for(pap = attr_table; pap<attr_table+ATTR_ARRAY_NO;pap++)

 if(pap->pa_retcode) /* If info was successfully */

 /* retrieved for this attr */

...

piogetopt Subroutine

Purpose

Overlays default flag values from the database colon file with override values from the command line.

Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

int piogetopt (argc, argv, NULL, NULL)

int argc;

char *argv [];

242 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The piogetopt subroutine should be used by a printer formatter’s setup routine to perform these three

tasks:

v Parse the command line flags.

v Convert the flag arguments, as needed, to the data types specified in the array of attrparms structures

previously passed to the piogetvals subroutine.

v Overlay the default flag arguments with values from the database.

The piogetopt subroutine is supplied by the formatter driver.

The database attribute names for flags with integer arguments must have previously been defined to the

formatter driver with the piogetvals subroutine. Based on the information that was provided to the

piogetvals subroutine, the piogetopt subroutine takes these three actions:

v Recognizes each flag argument that needs to be converted to an integer value.

v Converts the argument string to an integer value using the conversion method specified to the

piogetvals subroutine.

v Regardless of the data type (integer variable, string variable, or string constant), overlays the default

value from the database.

Parameters

 argc Same as the argc parameter received by the formatter’s setup routine when it was called by the formatter

driver.

argv Same as the argv parameter received by the formatter’s setup routine when it was called by the formatter

driver.

Note: The third parameter, NULL, is a place holder. The fourth parameter, NULL, is reserved for future

use. The fourth parameter should be a NULL pointer.

Return Values

A return value of 0 indicates successful completion. If the piogetopt subroutine detects an error, it issues

an error message and terminates the print job.

Related Information

The piogetvals subroutine, setup subroutine.

Understanding Embedded References in Printer Attribute Strings in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Adding a New Printer Type to Your System in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Print formatter example in AIX Version 6.1 General Programming Concepts: Writing and Debugging

Programs.

piogetstatus Subroutine

Purpose

Retrieves print job status information from a status file.

Chapter 4. Printer Subsystems 243

Library

libqb.a

Syntax

#include <IN/stfile.h>

int piogetstatus(StatusFileDescriptor,

VersionMagicNumber, StatusInformation)

int StatusFileDescriptor, VersionMagicNumber;

void *StatusInformation;

Description

The information returned by the piogetstatus subroutine includes the queue name, queue device name,

job number, job status, percent done, and number of pages printed. The piogetstatus subroutine reads

the specified status file and places the information in the structure specified by the StatusInformation

parameter. The format of the status structure is determined by the version magic number specified by the

VersionMagicNumber parameter. Each time there is a change in the status file structure for a new release,

a unique number is assigned to the release’s version magic number. This supports structure formats of

previous releases.

Parameters

 StatusFileDescriptor Specifies the file descriptor of the status file. The StatusFileDescriptor

parameter must specify a value of 3, because the print spooler always opens

a status file with a file descriptor value of 3.

VersionMagicNumber Specifies the version magic number that identifies the format of the status

structure in which information is specified.

StatusInformation Specifies a generic pointer to a status structure that contains print job status

information that is to be stored in the status file.

Return Values

 1 Indicates that the pioputstatus subroutine was successful.

-1 Indicates that an error occurred.

piogetstr Subroutine

Purpose

Retrieves an attribute string for a printer formatter.

Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>
piogetstr (attrname, bufrptr, bufsiz, NULL)
char * attrname,* bufptr;
int bufsiz;

244 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The piogetstr subroutine retrieves the specified attribute string from the Printer Attribute database and

returns the string to the caller. In the course of retrieval, this subroutine also resolves any logic and any

embedded references to other attribute strings or integers.

Parameters

 attrname Points to a two-character attribute name for a string. The attribute name must be defined in the

database. It may optionally have been defined to the piogetvals subroutine as a variable string. The

attribute should not be one that has been defined to the piogetvals subroutine as an integer.

bufptr Points to where the constructed attribute string is to be stored.

bufsiz Specifies the amount of memory that is available for storage of the string.

Note: The fourth parameter is reserved for future use. This parameter should be a NULL pointer.

Return Values

Upon successful completion, the piogetstr subroutine returns the length of the constructed string. The null

character placed at the end of a constructed string by the piogetstr subroutine is not included in the

length.

If the piogetstr subroutine detects an error, it issues an error message and terminates the print job.

Related Information

The piogetvals subroutine.

Understanding Embedded References in Printer Attribute Strings in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Adding a New Printer Type to Your System in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Print formatter example in AIX Version 6.1 General Programming Concepts: Writing and Debugging

Programs.

piogetvals Subroutine

Purpose

Initializes a copy of Printer Attribute database variables for a printer formatter.

Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

int piogetvals (attrtable, NULL)

struct attrparms attrtable [];

Chapter 4. Printer Subsystems 245

Description

The piogetvals subroutine provides a way for a printer formatter’s setup routine to define a list of printer

attribute variables (and their characteristics) to the formatter driver. This routine, which is supplied by the

formatter driver, allocates storage for the requested variables and uses the Printer Attribute database colon

file to arrive at initial values.

The variables defined by the piogetvals subroutine are copies of variables in the database; they are used

to hold current values of the variables. After the piogetvals subroutine returns pointers to each of the

variables, the characteristics and memory location of each variable is known to both the formatter and the

formatter driver. Subsequent changes to printer attribute values (made by the formatter while formatting an

input data stream) are made to the newly defined variables, not to the database values. As a result of this

scheme, the formatter driver always has access to the current value of each variable, but does not itself

ever modify them.

The caller requests variables by filling in entries (an attribute name, its data type, and other characteristics)

in the table pointed to by the attrtable parameter. For each entry, the piogetvals subroutine retrieves the

requested attribute string in the Printer Attribute database and converts it, if necessary, into an actual

value. The piogetvals subroutine then allocates memory for each of the variables, places the initial values

there, and stores information about the variable (its name, data type, and memory location) in storage

accessible to the piogetopt, piocmdout, and piogetstr subroutines.

Printer Attribute Variables

A Printer Attribute database is a colon file containing printer attribute values, which can be overridden at

the time a print job is requested. These attributes can be constants or may be expressions with unresolved

references to other attributes in them. These references are resolved before a database attribute is used

to fill in the value of a requested variable.

Database attribute values, which are stored in the database as ASCII strings, have possible data types of

string constant (the default), integer variable, or string variable. The requested variables should be either

integers or strings. String variables are used primarily for strings that the formatter may need to modify

during its processing. NULL characters have no special significance and are permissible within variable

strings.

Data types for the requested variables are specified in the array of the attrparms structures pointed to by

the attrtable parameter and are not specified at all in the Printer Attribute database. This means that for

database values used exclusively by the formatter, only the formatter knows the actual data type of each

value. The formatter uses the piogetvals routine in part to inform the formatter driver of the actual data

type for database values that are not the default data type.

Converting a Database Attribute String to an Actual Value

Converting a database attribute string to an actual value involves two aspects. First, the piogetvals

routine resolves any logic and any embedded references to other attribute strings, which yields a resolved

string variable. Secondly, the data type of the requested variable must be checked. If this data type

specifies a character string, then the resolved string is the final value, and it is stored in the memory

allocated for it.

However, if the specified data type is integer variable, then the resolved string is converted to an integer.

In this case, the attrtable entry for the attribute string is checked to determine how this conversion is to be

performed. Either use the atoi subroutine for this purpose, or provide a pointer to a lookup table. After

being converted to an integer, the value is stored in the memory allocated for it.

Using the piogetvals subroutine to convert database strings to integers as specified by the attrtable

entries provides a table-driven procedure for the conversions. It also informs the formatter driver which

values are integers and how strings that represent the integers can be converted into integer values. The

246 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

piogetopt, piocmdout, and piogetstr subroutines assume that the formatter has used the piogetvals

subroutine to provide this information about the variables to the formatter driver.

When a formatter subsequently calls either the piocmdout subroutine or the piogetstr subroutine to

access a string from the database, a global list of variables defined by the piogetvals subroutine is

checked by the subroutine to see if the desired string has been defined. If so, then the value of the

variable is taken from the memory location specified in the global list. If not, then the Printer Attribute

database is consulted for the correct attribute string. Either the piocmdout or piogetstr subroutine scans

the string to resolve any logic and any references to other strings or integers. The characteristics and

memory locations of the variables, as remembered by the piogetvals subroutine, are used to obtain the

current values of the variables.

Parameters

 attrtable Points to a table of variables and their characteristics. The table is an array of attrparms

structures, as defined in the piostruct.h file.

Note: The second parameter is reserved for future use. This parameter should be a NULL pointer.

Return Values

A return value of 0 indicates a successful operation. If the piogetvals subroutine detects an error, it issues

an error message and terminates the print job.

Related Information

The atoi subroutine, piocmdout subroutine, piogetopt subroutine, piogetstr subroutine, the setup

subroutine.

Understanding Embedded References in Printer Attribute Strings in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Adding a New Printer Type to Your System in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Print formatter example in AIX Version 6.1 General Programming Concepts: Writing and Debugging

Programs.

piomsgout Subroutine

Purpose

Sends a message from a printer formatter.

Library

None (linked with the pioformat formatter driver)

Syntax

void piomsgout (msgstr)

char *msgstr;

Description

The piomsgout subroutine should be used by printer formatters to send a message to the print job

submitter, usually when an error is detected. This subroutine is supplied by the formatter driver.

Chapter 4. Printer Subsystems 247

If the formatter is running under the spooler, the message is displayed on the submitter’s terminal if the

submitter is logged on. Otherwise, the message is mailed to the submitter. If the formatter is not running

under the spooler, the message is sent as standard error output.

The piomsgout subroutine has no return values.

Parameters

 msgstr Points to the string of message text to be sent.

Related Information

Understanding Embedded References in Printer Attribute Strings in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Adding a New Printer Type to Your System in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Print formatter example in AIX Version 6.1 General Programming Concepts: Writing and Debugging

Programs.

pioputattrs Subroutine

Purpose

Updates printer attribute values in a printer attribute database.

Library

libqb.a

Syntax

#include <piostruct.h>
int pioputattrs (QueueName, QueueDeviceName, NumAttrElems, AttrElemTable)
const char * QueueName, * QueueDeviceName;
unsigned short NumAttrElems;
struct pioattr * AttrElemTable;

Description

The pioputattrs subroutine can update with one call any number of attributes defined in a printer attribute

database.

The combination of the QueueName and QueueDeviceName parameters identify a specific printer attribute

database. The QueueName and QueueDeviceName parameters must be unique for a particular host.

Parameters

 QueueName Specifies the print-queue name. The print queue does not have to exist.

QueueDeviceName Specifies the queue device name for the print queue name specified by the

QueueName parameter. The queue device does not have to exist.

NumAttrElems Specifies the number of attribute elements in the table specified by the AttrElemTable

parameter.

248 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

AttrElemTable Points to a table of attribute element structures. Each structure element in the table

specifies an attribute name, the type of value to be updated for the attribute, the value

and length of the value, and a field for the return code of the update operation. The

type of the value to be updated should be PA_AVALT. If a specified attribute is not

valid, the specified value is put in the database. The format of each structure element is

defined by the pioattr structure definition in the /usr/include/piostruct.h file.

Return Values

 NumAttrElems Specifies the number of attribute elements for which the pioputattrs subroutine has

successfully updated the specified values in the database.

-1 Indicates that an error occurred.

Examples

/* Array of elements to be passed to

pioputattrs() */

#define ATTR_ARRAY_NO (sizeof(attr_table)/sizeof(attr_table[0]))

struct pioattr attr_table[] = {

 {"_b", PA_AVALT, "2", 1, 0}, /* attribute record for */

 /* _b (bottom margin) */

 {"_i", PA_AVALT, "0", 1, 0}, /* attribute record for */

 /* _i (left indentation) */

 {"_t", PA_AVALT, "3", 1, 0}, /* attribute record for */

 /* _t (top margin) */

 {"sA", PA_AVALT, "CP851", 5, 0} /* attribute record */

 /*for eS (country code)*/

}

...

const char *qnm = "ps";

const char *qdnm = "lp0";

int retno;

register const pioattr_t *pap;

...

if((retno = pioputattrs(qnm,qdnm,ATTR_ARRAY_NO,attr_table)) ==-1)

 {(void) fprintf(stderr,"Fatal error in pioputattrs()\n");

...

}

pioputstatus Subroutine

Purpose

Puts job-status information for the specified print job into the specified status file.

Library

libqb.a

Syntax

#include <IN/stfile.h>

int pioputstatus(StatusFileDescriptor, VersionMagicNumber, StatusInformation)

int StatusFileDescriptor, VersionMagicNumber;

const void * StatusInformation;

Chapter 4. Printer Subsystems 249

Description

The pioputstatus subroutine stores status information for a current print job.

The pioputstatus subroutine accepts a status structure containing print job information. This information

includes queue name, queue device name, job number, and job status. The pioputstatus subroutine then

stores the specified information in the specified status file.

The format of the status structure is determined by the version magic number specified by the

VersionMagicNumber parameter. Each time there is a change in the status file structure for a new release,

a unique number is assigned to the release’s version magic number. This supports structure formats of

previous releases.

Parameters

 StatusFileDescriptor Specifies the file descriptor of the status file. The StatusFileDescriptor

parameter must specify a value of 3, because the print spooler always opens

a status file with a file descriptor value of 3.

VersionMagicNumber Specifies the version magic number that identifies the format of the status

structure in which information is specified.

StatusInformation Specifies a generic pointer to a status structure that contains print job status

information that is to be stored in the status file.

Return Values

 1 Indicates that the pioputstatus subroutine was successful.

-1 Indicates that an error occurred.

Subroutines for Writing a Print Formatter

The pioformat formatter driver requires a print formatter to contain the following function routines:

 initialize Performs printer initialization.

lineout Formats a print line.

passthru Passes through the input data stream without modification or formats the input data stream

without assistance from the formatter driver.

restore Restores the printer to its default state.

setup Performs setup processing for the print formatter.

passthru Subroutine

Purpose

Passes through the input data stream without modification or formats the input data stream without

assistance from the formatter driver.

Library

None (provided by the formatter).

Syntax

#include <piostruct.h>

int passthru ()

250 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The passthru subroutine is invoked by the formatter driver only if the setup subroutine returned a null

pointer. If this is the case, the passthru subroutine is invoked (instead of the lineout subroutine) for one

of the following reasons:

v The input data stream is to be passed through without modification.

v Formatting is done without the help of the formatter driver to handle vertical spacing.

Even if the data is being passed through from input to output without modification, a formatter program is

used to initialize the printer before printing the file and to restore it to a known state afterward. However,

gathering accounting information for an unknown data stream being passed through is difficult, if not

impossible.

The passthru subroutine can also be used to format the input data stream if no help from the formatter

driver for vertical spacing is needed. For example, if the only formatting to be done is to add a

carrier-return control character to each linefeed control character, the passthru subroutine provides this

simple task. The passthru subroutine can also count line feeds and form feeds to keep track of the page

count. These counts can then be reported to the log_pages status subroutine, which is provided by the

spooler.

Return Values

A return value of 0 indicates a successful operation. If the passthru subroutine detects an error, it uses

the piomsgout subroutine to issue an error message. It then invokes the pioexit subroutine with a value

of PIOEXITBAD. Note that if the passthru subroutine calls the piocmdout subroutine or the piogetstr

subroutine and either of these detects an error, then the subroutine that detects the error automatically

issues its own error message and terminates the print job.

Related Information

The lineout subroutine, piocmdout subroutine, pioexit subroutine, piogetstr subroutine, piomsgout

subroutine, setup subroutine.

Adding a New Printer Type to Your System in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Example of Print Formatter in AIX Version 6.1 General Programming Concepts: Writing and Debugging

Programs.

restore Subroutine

Purpose

Restores the printer to its default state.

Library

None (provided by the formatter)

Syntax

#include <piostruct.h>

int restore ()

Description

The restore subroutine is invoked by the formatter driver after either the lineout subroutine or the

passthru subroutine has reported that printing has completed.

Chapter 4. Printer Subsystems 251

If the -J flag passed from the command line has a nonzero value (True), the initialize subroutine should

use the piocmdout subroutine to send a command string to the printer to restore the printer to its default

state. This default state is defined by the attribute values in the database. Any variables referenced by the

command string should be values from the database that have not been overridden by values from the

command line. This can be accomplished by placing a %o escape sequence at the beginning of the

command string.

Return Values

A return value of 0 indicates a successful operation. If the restore subroutine detects an error, it uses the

piomsgout subroutine to issue an error message. The restore subroutine then invokes the pioexit

subroutine with a value of PIOEXITBAD. If either the piocmdout or piogetstr subroutines detect an error,

then the subroutine that detects the error issues an error message and terminates the print job.

Related Information

The initialize subroutine, lineout subroutine, passthru subroutine, piocmdout subroutine, pioexit

subroutine, piogetstr subroutine.

Understanding Embedded References in Printer Attribute Strings in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Adding a New Printer Type to Your System in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Print formatter example in AIX Version 6.1 General Programming Concepts: Writing and Debugging

Programs.

setup Subroutine

Purpose

Performs setup processing for the print formatter.

Library

None (provided by the formatter).

Syntax

#include <piostruct.h>
struct shar_vars *setup (argc, argv, passthru)
unsigned argc;
char * argv [];
int passthru;

Description

The setup subroutine performs the following tasks:

v Invokes the piogetvals subroutine to initialize the database variables that the formatter uses.

v Processes the command line flags using the piogetopt subroutine.

v Validates the input parameters from the database and the command line.

The setup subroutine should not send commands or data to the printer since the formatter driver performs

additional error checking when the setup subroutine returns.

252 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

 argc Specifies the number of formatting arguments from the command line (including the command

name).

argv Points to a list of pointers to the formatting arguments.

passthru Indicates whether the input data stream should be formatted (the passthru value is 0) or passed

through without modification (the passthru value is1). The value for this parameter is the argument

value for the -# flag specified to the pioformat formatter driver. If the -# flag is not specified, the

passthru value is 0.

Return Values

Upon successful completion, the setup subroutine returns one of the following pointers:

v A pointer to a shar_vars structure that contains pointers to initialized vertical spacing variables. These

variables are shared with the formatter driver, which provides vertical page movement.

v A null pointer, which indicates that the formatter handles its own vertical page movement or that the

input data stream is to be passed through without modification. Vertical page movement includes top

and bottom margins, new pages, initial pages to be skipped, and progress reports to the qdaemon

daemon.

Returning a pointer to a shar_vars structure causes the formatter driver to invoke the formatter’s lineout

function for each line to be printed. Returning a null pointer causes the formatter driver to invoke the

formatter’s passthru function once instead.

If the setup subroutine detects an error, it uses the piomsgout subroutine to issue an error message. The

setup subroutine then invokes the pioexit subroutine with a value of PIOEXITBAD. Note that if the

piogetvals, piogetopt, piocmdout, or piogetstr subroutine detects an error, it automatically issues its

own error message and terminates the print job.

Related Information

The piocmdout subroutine, pioexit subroutine, piogetopt subroutine, piogetstr subroutine, piogetvals

subroutine, piomsgout subroutine.

The qdaemon daemon.

Understanding Embedded References in Printer Attribute Strings in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Adding a New Printer Type to Your System in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Print formatter example in AIX Version 6.1 General Programming Concepts: Writing and Debugging

Programs.

Chapter 4. Printer Subsystems 253

254 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 5. SCSI Subsystem

scdisk SCSI Device Driver

Purpose

Supports the small computer system interface (SCSI) fixed disk, CD-ROM (compact disk read only

memory), and read/write optical (optical memory) devices.

Syntax

#include <sys/devinfo.h>

#include <sys/scsi.h>

#include <sys/scdisk.h>

#include <sys/pcm.h>

#include <sys/mpio.h>

Device-Dependent Subroutines

Typical fixed disk, CD-ROM, and read/write optical drive operations are implemented using the open,

close, read, write, and ioctl subroutines. The scdisk device driver has additional support added for MPIO

capable devices.

open and close Subroutines

The open subroutine applies a reservation policy based on the ODM reserve_policy attribute. In the past,

the open subroutine always applied a SCSI2 reserve. The open and close subroutines support working

with multiple paths to a device if the device is a MPIO capable device.

The openx subroutine is intended primarily for use by diagnostic commands and utilities. Appropriate

authority is required for execution. If an attempt is made to run the open subroutine without the proper

authority, the subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The ext parameter passed to the openx subroutine selects the operation to be used for the target device.

The /usr/include/sys/scsi.h file defines possible values for the ext parameter.

The ext parameter can contain any combination of the following flag values logically ORed together:

 SC_DIAGNOSTIC Places the selected device in Diagnostic mode. This mode is singularly entrant; that

is, only one process at a time can open it. When a device is in Diagnostic mode,

SCSI operations are performed during open or close operations, and error logging

is disabled. In Diagnostic mode, only the close and ioctl subroutine operations are

accepted. All other device-supported subroutines return a value of -1 and set the

errno global variable to a value of EACCES.

A device can be opened in Diagnostic mode only if the target device is not currently

opened. If an attempt is made to open a device in Diagnostic mode and the target

device is already open, the subroutine returns a value of -1 and sets the errno

global variable to a value of EACCES.

SC_FORCED_OPEN_LUN On a device that supports Lun Level Reset, the device is reset regardless of any

reservation placed by another initiator before the open sequence takes place. If the

device does not support Lun Level Reset, and both SC_FORCED_OPEN_LUN and

SC_FORCE_OPEN flags are set, then a target reset occurs before the open

sequence takes place.

SC_FORCED_OPEN Forces a bus device reset, regardless of whether another initiator has the device

reserved. The SCSI bus device reset is sent to the device before the open

sequence begins. In other respects, the open operation runs normally.

© Copyright IBM Corp. 1997, 2007 255

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not issuing the

release. This flag prevents other initiators from using the device unless they break

the host machine’s reservation.

SC_NO_RESERVE Prevents the reservation of a device during an openx subroutine call to that device.

This operation is provided so a device can be controlled by two processors that

synchronize their activity by their own software means.

SC_SINGLE Places the selected device in Exclusive Access mode. Only one process at a time

can open a device in Exclusive Access mode.

A device can be opened in Exclusive Access mode only if the device is not

currently open. If an attempt is made to open a device in Exclusive Access mode

and the device is already open, the subroutine returns a value of -1 and sets the

errno global variable to a value of EBUSY. If the SC_DIAGNOSTIC flag is specified

along with the SC_SINGLE flag, the device is placed in Diagnostic mode.

SC_PR_SHARED_REGISTER In a multi-initiator shared device environment, a Persistent Reserve with service

action Register and Ignore Key is sent to the device as part of the open

sequence. This feature is aimed at the cluster environment, where an upper

management software needs to follow an advisory lock mechanism to control when

the initiator reads or writes. The device is required to support Persistent Reserve

(refer to SCSI Primary Command version 2 description of Persistent Reserve).

SCSI Options to the openx Subroutine in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts gives more specific information on the open operations.

readx and writex Subroutines

The readx and writex subroutines provide additional parameters which affect the raw data transfer. These

subroutines pass the ext parameter, which specifies request options. The options are constructed by

logically ORing zero or more of the following values:

 HWRELOC Indicates a request for hardware relocation (safe relocation only)

UNSAFEREL Indicates a request for unsafe hardware relocation

WRITEV Indicates a request for write verification

ioctl Subroutine

ioctl subroutine operations that are used for the scdisk device driver are specific to the following

categories:

v Fixed disk and read/write optical devices only

v CD-ROM devices only

v Fixed disk, CD-ROM, and read/write optical devices

Fixed Disk and Read/Write Optical Devices: The following ioctl operation is available for fixed disk and

read/write optical devices only:

256 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

DKIOWRSE Provides a means for issuing a write command to the device and obtaining the target-device sense

data when an error occurs. If the DKIOWRSE operation returns a value of -1 and the status_validity

field is set to a value of sc_valid_sense, valid sense data is returned. Otherwise, target sense data is

omitted.

The DKIOWRSE operation is provided for diagnostic use. It allows the limited use of the target device

while operating in an active system environment. The arg parameter to the DKIOWRSE operation

contains the address of an sc_rdwrt structure. This structure is defined in the /usr/include/sys/scsi.h

file.

The devinfo structure defines the maximum transfer size for a write operation. If an attempt is made to

transfer more than the maximum, the subroutine returns a value of -1 and sets the errno global variable

to a value of EINVAL. Refer to the Small Computer System Interface (SCSI) Specification for the

format of the request-sense data for a particular device.

CD-ROM Devices Only: The following ioctl operation is available for CD-ROM devices only:

 CDIOCMD Allows SCSI commands to be issued directly to the attached CD-ROM device. The CDIOCMD

operation preserves binary compatibility for CD-ROM applications that were compiled on earlier

releases of the operating system. It is recommended that newly written CD-ROM applications use the

DKIOCMD operation instead. For the CDIOCMD operation, the device must be opened in Diagnostic

mode. The CDIOCMD operation parameter specifies the address of a sc_iocmd structure. This

structure is defined in the /usr/include/sys/scsi.h file.

If this operation is attempted on a device other than CD-ROM, it is interpreted as a DKIORDSE

operation. In this case, the arg parameter is treated as an sc_rdwrt structure.

If the CDIOCMD operation is attempted on a device not in Diagnostic mode, the subroutine returns a

value of -1 and sets the errno global variable to a value of EACCES. Refer to the Small Computer

System Interface (SCSI) Specification for the format of the request-sense data for a particular device.

Note: Diagnostic mode is required only for the CDIOCMD and DKIOCMD operations.

Fixed Disk, CD-ROM, and Read/Write Optical Devices: The following ioctl operations are available for

fixed disk, CD-ROM, and read/write optical devices:

 IOCINFO Returns the devinfo structure defined in the /usr/include/sys/devinfo.h file. The

IOCINFO operation is the only operation defined for all device drivers that use

the ioctl subroutine. The remaining operations discussed in this article are all

specific to fixed disk, CD-ROM, and read/write optical devices.

DKIORDSE Provides a means for issuing a read command to the device and obtaining the

target-device sense data when an error occurs. If the DKIORDSE operation

returns a value of -1 and the status_validity field is set to a value of

sc_valid_sense, valid sense data is returned. Otherwise, target sense data is

omitted.

The DKIORDSE operation is provided for diagnostic use. It allows the limited use

of the target device while operating in an active system environment. The arg

parameter to the DKIORDSE operation contains the address of an sc_rdwrt

structure. This structure is defined in the /usr/include/sys/scsi.h file.

The devinfo structure defines the maximum transfer size for a read operation. If

an attempt is made to transfer more than the maximum, the subroutine returns a

value of -1 and sets the errno global variable to a value of EINVAL. Refer to the

Small Computer System Interface (SCSI) Specification for the format of the

request-sense data for a particular device.

Note: The CDIORDSE operation may be substituted for the DKIORDSE

operation when issuing a read command to and obtaining sense data from a

CD-ROM device. DKIORDSE is the recommended operation.

Chapter 5. SCSI Subsystem 257

DKIOCMD When the device has been successfully opened in the Diagnostic mode, the

DKIOCMD operation provides the means for issuing any SCSI command to the

specified device. If the DKIOCMD operation is issued when the device is not in

Diagnostic mode, the subroutine returns a value of -1 and sets the errno global

variable to a value of EACCES. The device driver performs no error recovery or

logging on failures of this operation.

The SCSI status byte and the adapter status bytes are returned through the arg

parameter, which contains the address of a sc_iocmd structure (defined in the

/usr/include/sys/scsi.h file). If the DKIOCMD operation fails, the subroutine

returns a value of -1 and sets the errno global variable to a nonzero value. In this

case, the caller should evaluate the returned status bytes to determine why the

operation was unsuccessful and what recovery actions should be taken.

The devinfo structure defines the maximum transfer size for the command. If an

attempt is made to transfer more than the maximum, the subroutine returns a

value of -1 and sets the errno global variable to a value of EINVAL. Refer to the

Small Computer System Interface (SCSI) Specification for the format of the

request-sense data for a particular device.

Note: Diagnostic mode is required only for the CDIOCMD and DKIOCMD

operations.

DKPMR Issues a SCSI prevent media removal command when the device has been

successfully opened. This command prevents media from being ejected until the

device is closed, powered off and back on, or until a DKAMR operation is issued.

The arg parameter for the DKPMR operation is null. If the DKPMR operation is

successful, the subroutine returns a value of 0. If the device is a SCSI fixed disk,

the DKPMR operation fails, and the subroutine returns a value of -1 and sets the

errno global variable to a value of EINVAL. If the DKPMR operation fails for any

other reason, the subroutine returns a value of -1 and sets the errno global

variable to a value of EIO.

DKAMR Issues an allow media removal command when the device has been successfully

opened. As a result media can be ejected using either the drive’s eject button or

the DKEJECT operation. The arg parameter for this ioctl is null. If the DKAMR

operation is successful, the subroutine returns a value of 0. If the device is a

SCSI fixed disk, the DKAMR operation fails, and the subroutine returns a value

of -1 and sets the errno global variable to a value of EINVAL. For any other

failure of this operation, the subroutine returns a value of -1 and sets the errno

global variable to a value of EIO.

DKEJECT Issues an eject media command to the drive when the device has been

successfully opened. The arg parameter for this operation is null. If the

DKEJECT operation is successful, the subroutine returns a value of 0. If the

device is a SCSI fixed disk, the DKEJECT operation fails, and the subroutine

returns a value of -1 and sets the errno global variable to a value of EINVAL. For

any other failure of this operation, the subroutine returns a value of -1 and sets

the errno global variable to a value of EIO.

258 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

DKFORMAT Issues a format unit command to the specified device when the device has been

successfully opened.

If the arg parameter for this operation is null, the format unit sets the format

options valid (FOV) bit to 0 (that is, it uses the drive’s default setting). If the arg

parameter for the DKFORMAT operation is not null, the first byte of the defect list

header is set to the value specified in the first byte addressed by the arg

parameter. This allows the creation of applications to format a particular type of

read/write optical media uniquely.

The driver initially tries to set the FmtData and CmpLst bits to 0. If that fails, the

driver tries the remaining three permutations of these bits. If all four permutations

fail, this operation fails, and the subroutine sets the errno global variable to a

value of EIO.

If the DKFORMAT operation is specified for a fixed disk, the subroutine returns a

value of -1 and sets the errno global variable to a value of EINVAL. If the

DKFORMAT operation is attempted when the device is not in Exclusive Access

mode, the subroutine returns a value of -1 and sets the errno global variable to a

value of EACCES. If the media is write-protected, the subroutine returns a value

of -1 and sets the errno global variable to a value of EWRPROTECT. If the

format unit exceeds its timeout value, the subroutine returns a value of -1 and

sets the errno global variable to a value of ETIMEDOUT. For any other failure of

this operation, the subroutine returns a value of -1 and sets the errno global

variable to a value of EIO.

DKAUDIO Issues play audio commands to the specified device and controls the volume on

the device’s output ports. Play audio commands include: play, pause, resume,

stop, determine the number of tracks, and determine the status of a current audio

operation. The DKAUDIO operation plays audio only through the CD-ROM

drive’s output ports. The arg parameter of this operation is the address of a

cd_audio_cmds structure, which is defined in the /usr/include/sys/scdisk.h file.

Exclusive Access mode is required.

If DKAUDIO operation is attempted when the device’s audio-supported attribute

is set to No, the subroutine returns a value of -1 and sets the errno global

variable to a value of EINVAL. If the DKAUDIO operation fails, the subroutine

returns a value of -1 and sets the errno global variable to a nonzero value. In this

case, the caller should evaluate the returned status bytes to determine why the

operation failed and what recovery actions should be taken.

Chapter 5. SCSI Subsystem 259

DK_CD_MODE Determines or changes the CD-ROM data mode for the specified device. The

CD-ROM data mode specifies what block size and special file are used for data

read across the SCSI bus from the device. The DK_CD_MODE operation

supports the following CD-ROM data modes:

CD-ROM Data Mode 1

512-byte block size through both raw (dev/rcd*) and block special

(/dev/cd*) files

CD-ROM Data Mode 2 Form 1

2048-byte block size through both raw (dev/rcd*) and block special

(/dev/cd*) files

CD-ROM Data Mode 2 Form 2

2336-byte block size through the raw (dev/rcd*) special file only

CD-DA (Compact Disc Digital Audio)

2352-byte block size through the raw (dev/rcd*) special file only

DVD-ROM

2048-byte block size through both raw (/dev/rcd*) and block special

(/dev/cd*) files

DVD-RAM

2048-byte block size through both raw (/dev/rcd*) and block special

(/dev/cd*) files

DVD-RW

2048-byte block size through both raw (/dev/rcd*) and block special

(/dev/cd*) files

The DK_CD_MODE arg parameter contains the address of the mode_form_op

structure defined in the /usr/include/sys/scdisk.h file. To have the

DK_CD_MODE operation determine or change the CD-ROM data mode, set the

action field of the change_mode_form structure to one of the following values:

CD_GET_MODE

Returns the current CD-ROM data mode in the cd_mode_form field of the

mode_form_op structure, when the device has been successfully

opened.

CD_CHG_MODE

Changes the CD-ROM data mode to the mode specified in the

cd_mode_form field of the mode_form_op structure, when the device

has been successfully opened in the Exclusive Access mode.

If a CD-ROM has not been configured for different data modes (via mode-select

density codes), and an attempt is made to change the CD-ROM data mode (by

setting the action field of the change_mode_form structure set to

CD_CHG_MODE), the subroutine returns a value of -1 and sets the errno global

variable to a value of EINVAL. Attempts to change the CD-ROM mode to any of

the DVD modes will also result in a return value of -1 and the errno global

variable set to EINVAL.

If the DK_CD_MODE operation for CD_CHG_MODE is attempted when the

device is not in Exclusive Access mode, the subroutine returns a value of -1 and

sets the errno global variable to a value of EACCES. For any other failure of this

operation, the subroutine returns a value of -1 and sets the errno global variable

to a value of EIO.

260 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

DK_PASSTHRU When the device has been successfully opened, the DK_PASSTHRU operation

provides the means for issuing any SCSI command to the specified device. The

device driver will perform limited error recovery if this operation fails. The

DK_PASSTHRU operation differs from the DKIOCMD operation in that it does

not require an openx command with the ext argument of SC_DIAGNOSTIC.

Because of this, a DK_PASSTHRU operation can be issued to devices that are

in use by other operations.

The SCSI status byte and the adapter status bytes are returned through the arg

parameter, which contains the address of a sc_passthru structure (defined in the

/usr/include/sys/scsi.h file). If the DK_PASSTHRU operation fails, the

subroutine returns a value of -1 and sets the errno global variable to a nonzero

value. If this happens the caller should evaluate the returned status bytes to

determine why the operation was unsuccessful and what recovery actions should

be taken.

If a DK_PASSTHRU operation fails because a field in the sc_passthru structure

has an invalid value, the subroutine will return a value of -1 and set the errno

global variable to EINVAL. The einval_arg field will be set to the field number

(starting with 1 for the version field) of the field that had an invalid value. A value

of 0 for the einval_arg field indicates no additional information on the failure is

available.

Chapter 5. SCSI Subsystem 261

DK_PASSTHRU (continued) DK_PASSTHRU operations are further subdivided into requests which quiesce

other I/O prior to issuing the request and requests that do not quiesce I/O. These

subdivisions are based on the devflags field of the sc_passthru structure. When

the devflags field of the sc_passthru structure has a value of SC_MIX_IO, the

DK_PASSTHRU operation will be mixed with other I/O requests. SC_MIX_IO

requests that write data to devices are prohibited and will fail. When this happens

-1 is returned, and the errno global variable is set to EINVAL. When the devflags

field of the sc_passthru structure has a value of SC_QUIESCE_IO, all other I/O

requests will be quiesced before the DK_PASSTHRU request is issued to the

device. If an SC_QUIESCE_IO request has its timeout_value field set to 0, the

DK_PASSTHRU request will be failed with a return code of -1, the errno global

variable will be set to EINVAL, and the einval_arg field will be set to a value of

SC_PASSTHRU_INV_TO (defined in the /usr/include/sys/scsi.h file). If an

SC_QUIESCE_IO request has a nonzero timeout value that is too large for the

device, the DK_PASSTHRU request will be failed with a return code of -1, the

errno global variable will be set to EINVAL, the einval_arg field will be set to a

value of SC_PASSTHRU_INV_TO (defined in the /usr/include/sys/scsi.h file),

and the timeout_value will be set to the largest allowed value.

Note: The following two paragraphs pertain only to AIX 5.2 with 5200-03 and

later.The version field of the sc_passthru structure can be set to the value of

SC_VERSION_2, and the user can provide the following fields:

v variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.

v variable_cdb_length determines the length of the cdb variable to which the

variable_cdb_ptr field points.

On completion of the DK_PASSTHRU ioctl request, the residual field will

indicate the leftover data that device did not fully satify for this request. On a

successful completion, the residual field would indicate the device does not have

the all data that is requested or the device has less then the amount of data that

is requested. On a failure completion, the user needs to check the

status_validity field to determine if a valid SCSI bus problem exists. In this case,

the residual field would indicate the number bytes that the device failed to

complete for this request.

The devinfo structure defines the maximum transfer size for the command. If an

attempt is made to transfer more than the maximum transfer size, the subroutine

returns a value of -1, sets the errno global variable to a value of EINVAL, and

sets the einval_arg field to a value of SC_PASSTHRU_INV_D_LEN (defined in

the /usr/include/sys/scsi.h file).

Refer to the Small Computer System Interface (SCSI) Specification for the format

of the request-sense data for a particular device.

262 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

DKPRES_READKEYS When the device is successfully opened, the DKPRES_READKEYS operation

provides a means to read the Persistent Reserve Registration Keys on the

device. The arg parameter to the DKPRES_READKEYS contains the address of

the dk_pres_in structure. This structure is defined in /usr/include/sys/scdisk.h.

The user must provide a buffer area and size for the registered keys to be

returned. The returned_length variable sets the number of bytes returned.

In a shared-access or clustered environment, this operation identifies all

registered keys for a particular lun.

Note: For the DKPRES_READKEYS operation and following Persistent Reserve

related operation, the interpretation of the returned value and scsi status is as

follows:

v On successful attempt of the call, a 0 is returned.

v After a call fails, a -1 is returned and the errno global variable is set. For a

specific description of the errno value, refer to /usr/include/erno.h. In

addition, the SCSI status, along with the Sense Code, ASC and ASCQ, will be

set to provide further information on why the command failed. Refer to SCSI

Specification on the interpretation of the SCSI status failure code.

DKPRES_READRES When the device is successfully opened, the DKPRES_READRES operation

provides a means to read the Persistent Reserve Reservation Keys on the

device. The arg parameter to the DKPRES_READKEYS contains the address of

the dk_pres_in structure. This structure is defined in /usr/include/sys/scdisk.h.

The user must provide a buffer area and size for the reservation information to

be returned. The returned_length variable sets the number of bytes returned. In a

shared-access or clustered environment, this operation identifies the primary

initiator that holds the reservation.

DKPRES_CLEAR When the device is successfully opened, the DKPRES_CLEAR operation

provides a means to clear all Persistent Reserve Reservation Keys and

Registration Keys on the device. The arg parameter to DKPRES_CLEAR

contains the address of the dk_pres_clear structure. This structure is defined in

/usr/include/sys/scdisk.h.

Attention: Attention: Exercise care when issuing the DKPRES_CLEAR

operation. This operation leaves the device unreserved, which could allow a

foreign initiator to access the device.

DKPRES_PREEMPT When the device is successfully opened, the DKPRES_PREEMPT operation

provides a means to preempt a Persistent Reserve Reservation Key or

Registration Key on the device. The arg parameter to the DKPRES_PREEMPT

contains the address of the dk_pres_preempt structure. This structure is defined

in /usr/include/sys/scdisk.h. The user must provide the second party initiator

key on the device to be preempted. If the second party initiator holds the

reservation to the device, then the initiator that issues the preemption becomes

the owner of the reservation. Otherwise, the second party initiator access is

revoked.

In order for this operation to succeed, the initiator must be registered with the

device first before any preemption can occur. In a shared-access or clustered

environment, this operation is used to preempt any operative or inoperative

initiator, or any initiator that is not recognized to be part of the shared group.

DKPRES_PREEMPT_ABORT This operation is the same as the DKPRES_PREEMPT, except the device

follows the SCSI Primary Command Specification in aborting tasks that belong to

the preempted initiator.

Chapter 5. SCSI Subsystem 263

DKPRES_REGISTER When the device is successfully opened, the DKPRES_REGISTER operation

provides a means to register a Key with the device. The Key is extracted from

ODM Customize Attribute and passed to the device driver during configuration.

The arg parameter to the DKPRES_REGISTER contains the address of the

dk_pres_register structure. This structure is defined in /usr/include/sys/
scdisk.h.

In a shared-access or clustered environment, this operation attempts a

registration with the device, then follows with a read reservation to determine

whether the device has been reserved. If the device is not reserved, then a

reservation is placed with the device.

DK_RWBUFFER When the device has been successfully opened, the DK_RWBUFFER operation

provides the means for issuing one or more SCSI Write Buffer commands to the

specified device. The device driver will perform full error recovery upon failures of

this operation. The DK_RWBUFFER operation differs from the DKIOCMD

operation in that it does not require an exclusive open of the device (for example,

openx with the ext argument of SC_DIAGNOSTIC). Thus, a DK_RWBUFFER

operation can be issued to devices that are in use by others. It can be used in

conjunction with the DK_PASSTHRU ioctl, which (like DK_RWBUFFER) does not

require an exclusive open of the device.

The arg parameter contains the address of a sc_rwbuffer structure (defined in

the /usr/include/sys/scsi.h file). Before the DK_RWBUFFER ioctl is invoked, the

fields of this structure should be set according to the desired behavior. The mode

field corresponds to the mode field of the SCSI Command Descriptor Block

(CDB) as defined in the SCSI Primary Commands (SPC) Specification.

Supported modes are listed in the header file /usr/include/sys/scsi.h.

The device driver will quiesce all other I/O from the initiator issuing the Write

Buffer ioctl until the entire operation completes. Once the Write Buffer ioctl

completes, all quiesced I/O will be resumed.

The SCSI status byte and the adapter status bytes are returned through the arg

parameter, which contains the address of a sc_rwbuffer structure (defined in the

/usr/include/sys/scsi.h file). If the DK_RWBUFFER operation fails, the

subroutine returns a value of -1 and sets the errno global variable to a nonzero

value. In this case, the caller should evaluate the returned status bytes to

determine why the operation was unsuccessful and what recovery actions should

be taken.

If a DK_RWBUFFER operation fails because a field in the sc_rwbuffer structure

has an invalid value, the subroutine will return a value of -1 and set the errno

global variable to EINVAL.

The DK_RWBUFFER ioctl allows the user to issue multiple SCSI Write Buffer

commands (CDBs) to the device through a single ioctl invocation. This is useful

for applications such as microcode download where the user provides a pointer

to the entire microcode image, but, due to size restrictions of the device buffer(s),

desires that the images be sent in fragments until the entire download is

complete.

If the DK_RWBUFFER ioctl is invoked with the fragment_size member of the

sc_rwbuffer struct equal to data_length, a single Write Buffer command will be

issued to the device with the buffer_offset and buffer_ID of the SCSI CDB set

to the values provided in the sc_rwbuffer struct.

264 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

DK_RWBUFFER (continued) If data_length is greater than fragment_size and fragment_size is a nonzero

value, multiple Write Buffer commands will be issued to the device. The number

of Write Buffer commands (SCSI CDBs) issued will be calculated by dividing the

data_length by the desired fragment_size. This value will be incremented by 1

if the data_length is not an even multiple of fragment_size, and the final data

transfer will be the size of this residual amount. For each Write Buffer command

issued, the buffer_offset will be set to the value provided in the sc_rwbuffer

struct (microcode downloads to SCSD devices requires this to be set to 0). For

the first command issued, the buffer_ID will be set to the value provided in the

sc_rwbuffer struct. For each subsequent Write Buffer command issued, the

buffer_ID will be incremented by 1 until all fragments have been sent. Writing to

noncontiguous buffer_IDs through a single DK_RWBUFFER ioctl is not

supported. If this functionality is desired, multiple DK_RWBUFFER ioctls must be

issued with the buffer_ID set appropriately for each invocation.

Note: No I/O is quiesced between ioctl invocations.

If fragment_size is set to zero, an errno of EINVAL will be returned. If the desire

is to send the entire buffer with one SCSI Write buffer command, this field should

be set equal to data_length. An error of EINVAL will also be returned if the

fragment_size is greater than the data_length.

The Parameter List Length (fragment_size) plus the Buffer Offset can not

exceed the capacity of the specified buffer of the device. It is the responsibility of

the caller of the Write Buffer ioctl to ensure that the fragment_size setting

satisfies this requirement. A fragment_size larger than the device can

accommodate will result in a SCSI error at the device, and the Write Buffer ioctl

will simply report this error but take no action to recover.

The devinfo structure defines the maximum transfer size for the command. If an

attempt is made to transfer more than the maximum transfer size, the subroutine

returns a value of -1 and sets the errno global variable to a value of EINVAL.

Refer to the Small Computer System Interface (SCSI) Specification for the format

of the request sense data for a particular device.

DKPATHIOCMD This command is only available for MPIO capable devices. The DKPATHIOCMD

command takes as input a pointer argument which points to a single

scdisk_pathiocmd structure. The DKPATHIOCMD command behaves exactly

like the DKIOCMD command, except that the input path is used rather than

normal path selection. The DKPATHIOCMD path is used for the DKIOCMD

command regardless of any path specified by a DKPATHFORCE ioctl command.

A path cannot be unconfigured while it is being forced.

DKPATHFORCE This command is only available for MPIO capable devices. The DKPATHFORCE

command takes as input a ushort path id. The path id should correspond to one

of the path ids in CuPath ODM. The path id specifies a path to be used for all

subsequent I/O commands, overriding any previous DKPATHFORCE path. A zero

argument specifies that path forcing is terminated and that normal MPIO path

selection is to be resumed. I/O commands sent in with the DKPATHIOCMD

command will override the DKPATHFORCE option and send the I/O down the

path specified in scdisk_pathiocmd structure.

DKPATHRWBUFFER This command is only available for MPIO capable devices. The

DKPATHRWBUFFER command takes as input a pointer argument which points

to a single scdisk_pathiocmd structure. The DKPATHRWBUFFER command

behaves exactly like the DKRWBUFFER command, except that the input path is

used rather than normal path selection. The DKPATHRWBUFFER path is used

for the DKRWBUFFER command regardless of any path specified by a

DKPATHFORCE ioctl command.

Chapter 5. SCSI Subsystem 265

DKPATHPASSTHRU This command is only available for MPIO capable devices. The

DKPATHPASSTHRU command takes as input a pointer argument which points to

a single scdisk_pathiocmd structure. The DKPATHPASSTHRU command

behaves exactly like the DKPASSTHRU command, except that the input path is

used rather than normal path selection. The DKPATHPASSTHRU path is used

for the DKPASSTHRU command regardless of any path specified by a

DKPATHFORCE ioctl command.

DKPCMPASSTHRU This command is only available for MPIO capable devices. The

DKPCMPASSTHRU command takes as input a structure which is PCM specific,

it is not defined by AIX. The PCM specific structure is passed to the PCM directly.

This structure can be used to move information to or from a PCM.

Device Requirements

SCSI fixed disk, CD-ROM, and read/write optical drives have the following hardware requirements:

v SCSI fixed disks and read/write optical drives must support a block size of 512 bytes per block.

v If mode sense is supported, the write-protection (WP) bit must also be supported for SCSI fixed disks

and read/write optical drives.

v SCSI fixed disks and read/write optical drives must report the hardware retry count in bytes 16 and 17

of the request sense data for recovered errors. If the fixed disk or read/write optical drive does not

support this, the system error log may indicate premature drive failure.

v SCSI CD-ROM and read/write optical drives must support the 10-byte SCSI read command.

v SCSI fixed disks and read/write optical drives must support the SCSI write and verify command and the

6-byte SCSI write command.

v To use the format command operation on read/write optical media, the drive must support setting the

format options valid (FOV) bit to 0 for the defect list header of the SCSI format unit command. If the

drive does not support this, the user can write an application for the drive so that it formats media using

the DKFORMAT operation.

v If a SCSI CD-ROM drive uses CD_ROM Data Mode 1, it must support a block size of 512 bytes per

block.

v If a SCSI CD-ROM drive uses CD_ROM data Mode 2 Form 1, it must support a block size of 2048

bytes per block.

v If a SCSI CD-ROM drive uses CD_ROM data Mode 2 Form 2, it must support a block size of 2336

bytes per block.

v If a SCSI CD-ROM drive uses CD_DA mode, it must support a block size of 2352 bytes per block.

v To control volume using the DKAUDIO (play audio) operation, the device must support SCSI-2 mode

data page 0xE.

v To use the DKAUDIO (play audio) operation, the device must support the following SCSI-2 optional

commands:

– read sub-channel

– pause resume

– play audio MSF

– play audio track index

– read TOC

Error Conditions

Possible errno values for ioctl, open, read, and write subroutines when using the scdisk device driver

include:

266 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

EACCES Indicates one of the following circumstances:

v An attempt was made to open a device currently open in Diagnostic or Exclusive Access mode.

v An attempt was made to open a Diagnostic mode session on a device already open.

v The user attempted a subroutine other than an ioctl or close subroutine while in Diagnostic

mode.

v A DKIOCMD or CDIOCMD operation was attempted on a device not in Diagnostic mode.

v A DK_CD_MODE ioctl subroutine operation was attempted on a device not in Exclusive Access

mode.

v A DKFORMAT operation was attempted on a device not in Exclusive Access mode.

EBUSY Indicates one of the following circumstances:

v An attempt was made to open a session in Exclusive Access mode on a device already opened.

v The target device is reserved by another initiator.

EFAULT Indicates an illegal user address.

EFORMAT Indicates the target device has unformatted media or media in an incompatible format.

EINPROGRESS Indicates a CD-ROM drive has a play-audio operation in progress.

EINVAL Indicates one of the following circumstances:

v A DKAUDIO (play-audio) operation was attempted for a device that is not configured to use the

SCSI-2 play-audio commands.

v The read or write subroutine supplied an nbyte parameter that is not an even multiple of the

block size.

v A sense data buffer length of greater than 255 bytes is not valid for a CDIORDSE, DKIOWRSE,

or DKIORDSE ioctl subroutine operation.

v The data buffer length exceeded the maximum defined in the devinfo structure for a

CDIORDSE, CDIOCMD, DKIORDSE, DKIOWRSE, or DKIOCMD ioctl subroutine operation.

v An unsupported ioctl subroutine operation was attempted.

v A data buffer length greater than that allowed by the CD-ROM drive is not valid for a CDIOCMD

ioctl subroutine operation.

v An attempt was made to configure a device that is still open.

v An illegal configuration command has been given.

v A DKPMR (Prevent Media Removal), DKAMR (Allow Media Removal), or DKEJECT (Eject

Media) command was sent to a device that does not support removable media.

v A DKEJECT (Eject Media) command was sent to a device that currently has its media locked in

the drive.

v The data buffer length exceeded the maximum defined for a strategy operation.

EIO Indicates one of the following circumstances:

v The target device cannot be located or is not responding.

v The target device has indicated an unrecoverable hardware error.

EMEDIA Indicates one of the following circumstances:

v The target device has indicated an unrecoverable media error.

v The media was changed.

EMFILE Indicates an open operation was attempted for an adapter that already has the maximum

permissible number of opened devices.

ENODEV Indicates one of the following circumstances:

v An attempt was made to access an undefined device.

v An attempt was made to close an undefined device.

ENOTREADY Indicates no media is in the drive.

ENXIO Indicates one of the following circumstances:

v The ioctl subroutine supplied an invalid parameter.

v A read or write operation was attempted beyond the end of the fixed disk.

EPERM Indicates the attempted subroutine requires appropriate authority.

ESTALE Indicates a read-only optical disk was ejected (without first being closed by the user) and then

either reinserted or replaced with a second optical disk.

Chapter 5. SCSI Subsystem 267

ETIMEDOUT Indicates an I/O operation has exceeded the given timer value.

EWRPROTECT Indicates one of the following circumstances:

v An open operation requesting read/write mode was attempted on read-only media.

v A write operation was attempted to read-only media.

Reliability and Serviceability Information

SCSI fixed disk devices, CD-ROM drives, and read/write optical drives return the following errors:

 ABORTED COMMAND Indicates the device ended the command

ADAPTER ERRORS Indicates the adapter returned an error

GOOD COMPLETION Indicates the command completed successfully

HARDWARE ERROR Indicates an unrecoverable hardware failure occurred during command execution or

during a self-test

ILLEGAL REQUEST Indicates an illegal command or command parameter

MEDIUM ERROR Indicates the command ended with an unrecoverable media error condition

NOT READY Indicates the logical unit is offline or media is missing

RECOVERED ERROR Indicates the command was successful after some recovery was applied

UNIT ATTENTION Indicates the device has been reset or the power has been turned on

Error Record Values for Media Errors

The fields defined in the error record template for fixed disk, CD-ROM, and read/write optical media errors

are:

 Comment Indicates fixed disk, CD-ROM, or read/write optical media error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error occurs.

Alert Equals a value of False, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 5000, which indicates media.

User_Causes Equals a value of 5100, which indicates the media is defective.

User_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

268 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the sc_error_log_df structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df

structure is defined in the /usr/include/sys/scsi.h file.

 The sc_error_log_df structure contains the following fields:

req_sense_data

Contains the request-sense information from the particular device that had the

error, if it is valid.

reserved2

Contains the segment count, which is the number of megabytes read from the

device at the time the error occurred.

reserved3

Contains the number of bytes read since the segment count was last increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

Error Record Values for Hardware Errors

The fields defined in the error record template for fixed disk, CD-ROM, and read/write optical hardware

errors, as well as hard-aborted command errors are:

 Comment Indicates fixed disk, CD-ROM, or read/write optical hardware error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 6310, which indicates disk drive.

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

v 6310, which indicates a disk drive failure

v 6330, which indicates a disk drive electronics failure

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures should be performed.

Chapter 5. SCSI Subsystem 269

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the sc_error_log_df structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df

structure is defined in the /usr/include/sys/scsi.h file.

 The sc_error_log_df structure contains the following fields:

req_sense_data

Contains the request-sense information from the particular device that had the

error, if it is valid.

reserved2

Contains the segment count, which is the number of megabytes read from the

device at the time the error occurred.

reserved3

Contains the number of bytes read since the segment count was last increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

Error Record Values for Adapter-Detected Hardware Failures

The fields defined in the error record template for fixed disk, CD-ROM, and read/write optical media errors

adapter-detected hardware errors are:

 Comment Indicates adapter-detected fixed disk, CD-ROM, or read/write optical hardware failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error-log entry should be created when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals the following values:

v 3452, which indicates a device cable failure

v 6310, which indicates a disk drive failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

v 3452, which indicates a storage device cable failure

v 6310, which indicates a disk drive failure

v 6330, which indicates a disk-drive electronics failure

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures should be performed.

270 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the sc_error_log_df structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df

structure is defined in the /usr/include/sys/scsi.h file.

 The sc_error_log_df structure contains the following fields:

req_sense_data

Contains the request-sense information from the particular device that had the

error, if it is valid.

reserved2

Contains the segment count, which is the number of megabytes read from the

device at the time the error occurred.

reserved3

Contains the number of bytes read since the segment count was last increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

Error Record Values for Recovered Errors

The fields defined in the error record template for fixed disk, CD-ROM, and read/write optical media errors

recovered errors are:

 Comment Indicates fixed disk, CD-ROM, or read/write optical recovered error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Temp, which indicates a temporary failure.

Err_Desc Equals a value of 1312, which indicates a physical volume operation failure.

Prob_Causes Equals the following values:

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

User_Causes Equals a value of 5100, which indicates media is defective.

User_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

Chapter 5. SCSI Subsystem 271

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the sc_error_log_df structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df

structure is defined in the /usr/include/sys/scsi.h file.

 The sc_error_log_df structure contains the following fields:

req_sense_data

Contains the request-sense information from the particular device that had the

error, if it is valid.

reserved2

Contains the segment count, which is the number of megabytes read from the

device at the time the error occurred.

reserved3

Contains the number of bytes read since the segment count was last increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

Error Record Values for Unknown Errors

The fields defined in the error record template for fixed disk, CD-ROM, and read/write optical media errors

unknown errors are:

 Comment Indicates fixed disk, CD-ROM, or read/write optical unknown failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Unkn, which indicates the type of error is unknown.

Err_Desc Equals a value of FE00, which indicates an undetermined error.

Prob_Causes Equals the following values:

v 3300, which indicates an adapter failure

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of FFFF, which indicates the failure causes are unknown.

Fail_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

272 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the sc_error_log_df structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df

structure is defined in the /usr/include/sys/scsi.h file.

 The sc_error_log_df structure contains the following fields:

req_sense_data

Contains the request-sense information from the particular device that had the error,

if it is valid.

reserved2

Contains the segment count, which is the number of megabytes read from the

device at the time the error occurred.

reserved3

Contains the number of bytes read since the segment count was last increased.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

Special Files

The scdisk SCSI device driver uses raw and block special files in performing its functions.

 Attention: Data corruption, loss of data, or loss of system integrity (system crash) will occur if devices

supporting paging, logical volumes, or mounted file systems are accessed using block special files. Block

special files are provided for logical volumes and disk devices and are solely for system use in managing

file systems, paging devices, and logical volumes. These files should not be used for other purposes.

The special files used by the scdisk device driver include the following (listed by type of device):

v Fixed disk devices:

 /dev/rhdisk0,

/dev/rhdisk1,...,

/dev/rhdiskn

Provides an interface to allow SCSI device drivers character access (raw I/O access and

control functions) to SCSI fixed disks.

/dev/hdisk0,

/dev/hdisk1,...,

/dev/hdiskn

Provides an interface to allow SCSI device drivers block I/O access to SCSI fixed disks.

v CD-ROM devices:

 /dev/rcd0, /dev/rcd1,...,

/dev/rcdn

Provides an interface to allow SCSI device drivers character access(raw I/O

access and control functions) to SCSI CD-ROM disks.

/dev/cd0, /dev/cd1,..., /dev/cdn Provides an interface to allow SCSI device drivers block I/O access to SCSI

CD-ROM disks.

v Read/write optical devices:

 /dev/romd0, /dev/romd1,...,

/dev/romdn

Provides an interface to allow SCSI device drivers character access (raw I/O

access and control functions) to SCSI read/write optical devices.

/dev/omd0, /dev/omd1,...,

/dev/omdn

Provides an interface to allow SCSI device drivers block I/O access to SCSI

read/write optical devices.

Note: The prefix r on a special file name indicates the drive is accessed as a raw device rather than a

block device. Performing raw I/O with a fixed disk, CD-ROM, or read/write optical drive requires

Chapter 5. SCSI Subsystem 273

that all data transfers be in multiples of the device block size. All lseek subroutines that are

made to the raw device driver must result in a file pointer value that is a multiple of the device

block size.

Related Information

Special Files Overview in AIX Version 6.1 Files Reference.

SCSI Subsystem Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts.

A Typical Initiator-Mode SCSI Driver Transaction Sequence in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Required SCSI Adapter Device Driver ioctl Commands in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

Understanding the Execution of Initiator I/O Requests in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

SCSI Error Recovery in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Understanding the sc_buf Structure in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

SCSI Adapter Device Driver.

The close subroutine, ioctl or ioctlx subroutine, open, openx, or creat subroutine, read, readx, readv,

or readvx subroutine, write, writex, writev, or writevx subroutine.

The cd Special File, omd Special File, rhdisk Special File.

scsidisk SAM Device Driver

Purpose

Supports the Fibre Channel Protocol for SCSI (FCP), Serial Attached SCSI (SAS), and the SCSI protocol

over Internet (iSCSI) fixed disk, CD-ROM (compact disk read only memory), and read/write optical (optical

memory) devices.

Syntax

#include <sys/devinfo.h>

#include <sys/scsi.h>

#include <sys/scdisk.h>

#include <sys/pcm.h>

#include <sys/mpio.h>

Device-Dependent Subroutines

Typical fixed disk, CD-ROM, and read/write optical drive operations are implemented using the open,

close, read, write, and ioctl subroutines. The scsidisk device driver has additional support added for

MPIO capable devices.

open and close Subroutines

The open subroutine applies a reservation policy based on the ODM reserve_policy attribute, previously

the open subroutine always applied a SCSI2 reserve. The open and close subroutines will support

working with multiple paths to a device if the device is a MPIO capable device.

274 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The openx subroutine is intended primarily for use by the diagnostic commands and utilities. Appropriate

authority is required for execution. If an attempt is made to run the open subroutine without the proper

authority, the subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The ext parameter passed to the openx subroutine selects the operation to be used for the target device.

The /usr/include/sys/scsi.h file defines possible values for the ext parameter.

The ext parameter can contain any combination of the following flag values logically ORed together:

 SC_DIAGNOSTIC Places the selected device in Diagnostic mode. This mode is singularly entrant;

that is, only one process at a time can open it. When a device is in Diagnostic

mode, SCSI operations are performed during open or close operations, and error

logging is disabled. In Diagnostic mode, only the close and ioctl subroutine

operations are accepted. All other device-supported subroutines return a value of

-1 and set the errno global variable to a value of EACCES.

A device can be opened in Diagnostic mode only if the target device is not

currently opened. If an attempt is made to open a device in Diagnostic mode and

the target device is already open, the subroutine returns a value of -1 and sets the

errno global variable to a value of EACCES.

SC_FORCED_OPEN_LUN On a device that supports Lun Level Reset, the device is reset regardless of any

reservation placed by another initiator before the open sequence takes place. If the

device does not support Lun Level Reset, and both SC_FORCED_OPEN_LUN and

SC_FORCE_OPEN flags are set, then a target reset occurs before the open

sequence takes place.

SC_FORCED_OPEN Initiates actions during the open operation to break any reservation that might exist

on the device. This action might include a target reset.

Note: A target reset resets all luns on the SCSI ID.

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not issuing the

release. This flag prevents other initiators from using the device unless they break

the host machine’s reservation.

SC_NO_RESERVE Prevents the reservation of a device during an openx subroutine call to that

device. This operation is provided so a device can be controlled by two processors

that synchronize their activity by their own software means.

SC_SINGLE Places the selected device in Exclusive Access mode. Only one process at a time

can open a device in Exclusive Access mode.

A device can be opened in Exclusive Access mode only if the device is not

currently open. If an attempt is made to open a device in Exclusive Access mode

and the device is already open, the subroutine returns a value of -1 and sets the

errno global variable to a value of EBUSY. If the SC_DIAGNOSTIC flag is

specified along with the SC_SINGLE flag, the device is placed in Diagnostic mode.

SC_PR_SHARED_REGISTER In a multi-initiator shared device environment, a Persistent Reserve with service

action Register and Ignore Key is sent to the device as part of the open

sequence. This feature is aimed at the cluster environment, where an upper

management software needs to follow an advisory lock mechanism to control when

the initiator reads or writes. The device is required to support Persistent Reserve

(refer to SCSI Primary Command version 2 description of Persistent Reserve).

Options to the openx Subroutine in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts gives more specific information on the open operations.

readx and writex Subroutines

The readx and writex subroutines provide additional parameters affecting the raw data transfer. These

subroutines pass the ext parameter, which specifies request options. The options are constructed by

logically ORing zero or more of the following values:

 HWRELOC Indicates a request for hardware relocation (safe relocation only).

Chapter 5. SCSI Subsystem 275

UNSAFEREL Indicates a request for unsafe hardware relocation.

WRITEV Indicates a request for write verification.

ioctl Subroutine

ioctl subroutine operations that are used for the scsidisk device driver are specific to the following

categories:

v Fixed disk and read/write optical devices only

v CD-ROM devices only

v Fixed disk, CD-ROM, and read/write optical devices

Fixed Disk and Read/Write Optical Devices: The following ioctl operation is available for fixed disk and

read/write optical devices only:

 DKIOLWRSE Provides a means for issuing a write command to the device and obtaining the target-device

sense data when an error occurs. If the DKIOLWRSE operation returns a value of -1 and the

status_validity field is set to a value of SC_SCSI_ERROR, valid sense data is returned.

Otherwise, target sense data is omitted.

The DKIOLWRSE operation is provided for diagnostic use. It allows the limited use of the

target device while operating in an active system environment. The arg parameter to the

DKIOLWRSE operation contains the address of an scsi_rdwrt structure. This structure is

defined in the /usr/include/sys/scsi_buf.h file.

The devinfo structure defines the maximum transfer size for a write operation. If an attempt is

made to transfer more than the maximum, the subroutine returns a value of -1 and sets the

errno global variable to a value of EINVAL. Refer to the Small Computer System Interface

(SCSI) Specification for the format of the request-sense data for a particular device.

Fixed Disk, CD-ROM, and Read/Write Optical Devices: The following ioctl operations are available for

fixed disk, CD-ROM, and read/write optical devices:

 IOCINFO Returns the devinfo structure defined in the/usr/include/sys/devinfo.h file. The

IOCINFO operation is the only operation defined for all device drivers that use the

ioctl subroutine. The remaining operations discussed in this article are all specific

to fixed disk, CD-ROM, and read/write optical devices.

DKIOLRDSE Provides a means for issuing a read command to the device and obtaining the

target-device sense data when an error occurs. If the DKIOLRDSE operation

returns a value of -1 and the status_validity field is set to a value of

SC_SCSI_ERROR, valid sense data is returned. Otherwise, target sense data is

omitted.

The DKIOLRDSE operation is provided for diagnostic use. It allows the limited use

of the target device while operating in an active system environment. The arg

parameter to the DKIOLRDSE operation contains the address of an scsi_rdwrt

structure. This structure is defined in the /usr/include/sys/scsi_buf.h file.

The devinfo structure defines the maximum transfer size for a read operation. If an

attempt is made to transfer more than the maximum, the subroutine returns a value

of -1 and sets the errno global variable to a value of EINVAL. Refer to the Small

Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

276 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

DKIOLCMD When the device has been successfully opened in the Diagnostic mode, the

DKIOLCMD operation provides the means for issuing any SCSI command to the

specified device. If the DKIOLCMD operation is issued when the device is not in

Diagnostic mode, the subroutine returns a value of -1 and sets the errno global

variable to a value of EACCES. The device driver performs no error recovery or

logging on failures of this operation.

The SCSI status byte and the adapter status bytes are returned through the arg

parameter, which contains the address of a scsi_iocmd structure (defined in the

/usr/include/sys/scsi_buf.h file). If the DKIOLCMD operation fails, the subroutine

returns a value of -1 and sets the errno global variable to a nonzero value. In this

case, the caller should evaluate the returned status bytes to determine why the

operation was unsuccessful and what recovery actions should be taken.

Note: The following two paragraphs pertain only to AIX 5.2 with 5200-03 and

later.The version field of the scsi_iocmd structure can be set to the value of

SCSI_VERSION_2, and the user can provide the following fields:

v variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.

v variable_cdb_length determines the length of the cdb variable to which the

variable_cdb_ptr field points.

On completion of the DKIOLCMD ioctl request, the residual field will indicate the

leftover data that device did not fully satify for this request. On a successful

completion, the residual field would indicate the device does not have the all data

that is requested or the device has less then the amount of data that is requested.

On a failure completion, the user needs to check the status_validity field to

determine if a valid SCSI bus problem exists. In this case, the residual field would

indicate the number bytes that the device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command. If an

attempt is made to transfer more than the maximum, the subroutine returns a value

of -1 and sets the errno global variable to a value of EINVAL. Refer to the Small

Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

DKPMR Issues a SCSI prevent media removal command when the device has been

successfully opened. This command prevents media from being ejected until the

device is closed, powered off and then back on, or until a DKAMR operation is

issued. The arg parameter for the DKPMR operation is null. If the DKPMR

operation is successful, the subroutine returns a value of 0. If the device is a SCSI

fixed disk, the DKPMR operation fails, and the subroutine returns a value of -1 and

sets the errno global variable to a value of EINVAL. If the DKPMR operation fails

for any other reason, the subroutine returns a value of -1 and sets the errno global

variable to a value of EIO.

DKAMR Issues an allow media removal command when the device has been successfully

opened. As a result media can be ejected using either the drives eject button or the

DKEJECT operation. The arg parameter for this ioctl is null. If the DKAMR

operation is successful, the subroutine returns a value of 0. If the device is a SCSI

fixed disk, the DKAMR operation fails, and the subroutine returns a value of -1 and

sets the errno global variable to a value of EINVAL. For any other failure of this

operation, the subroutine returns a value of -1 and sets the errno global variable to

a value of EIO.

DKEJECT Issues an eject media command to the drive when the device has been

successfully opened. The arg parameter for this operation is null. If the DKEJECT

operation is successful, the subroutine returns a value of 0. If the device is a SCSI

fixed disk, the DKEJECT operation fails, and the subroutine returns a value of -1

and sets the errno global variable to a value of EINVAL. For any other failure of

this operation, the subroutine returns a value of -1 and sets the errno variable to a

value of EIO.

Chapter 5. SCSI Subsystem 277

DKFORMAT Issues a format unit command to the specified device when the device has been

successfully opened.

If the arg parameter for this operation is null, the format unit sets the format options

valid (FOV) bit to 0 (that is, it uses the drives default setting). If the arg parameter

for the DKFORMAT operation is not null, the first byte of the defect list header is

set to the value specified in the first byte addressed by the arg parameter. This

allows the creation of applications to format a particular type of read/write optical

media uniquely.

The driver initially tries to set the FmtData and CmpLst bits to 0. If that fails, the

driver tries the remaining three permutations of these bits. If all four permutations

fail, this operation fails, and the subroutine sets the errno variable to a value of

EIO.

If the DKFORMAT operation is specified for a fixed disk, the subroutine returns a

value of -1 and sets the errno global variable to a value of EINVAL. If the

DKFORMAT operation is attempted when the device is not in Exclusive Access

mode, the subroutine returns a value of -1 and sets the errno global variable to a

value of EACCES. If the media is write-protected, the subroutine returns a value of

-1 and sets the errno global variable to a value of EWRPROTECT. If the format

unit exceeds its timeout value, the subroutine returns a value of -1 and sets the

errno global variable to a value of ETIMEDOUT. For any other failure of this

operation, the subroutine returns a value of -1 and sets the errno global variable to

a value of EIO.

DKAUDIO Issues play audio commands to the specified device and controls the volume on

the device’s output ports. Play audio commands include: play, pause, resume, stop,

determine the number of tracks, and determine the status of a current audio

operation. The DKAUDIO operation plays audio only through the CD-ROM drives

output ports. The arg parameter of this operation is the address of a

cd_audio_cmds structure, which is defined in the /usr/include/sys/scdisk.h file.

Exclusive Access mode is required.

If DKAUDIO operation is attempted when the device’s audio-supported attribute is

set to No, the subroutine returns a value of -1 and sets the errnoglobal variable to

a value of EINVAL. If the DKAUDIO operation fails, the subroutine returns a value

of -1 and sets the errno global variable to a nonzero value. In this case, the caller

should evaluate the returned status bytes to determine why the operation failed and

what recovery actions should be taken.

278 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

DK_CD_MODE Determines or changes the CD-ROM data mode for the specified device. The

CD-ROM data mode specifies what block size and special file are used for data

read across the SCSI bus from the device. The DK_CD_MODE operation supports

the following CD-ROM data modes:

CD-ROM Data Mode 1

512-byte block size through both raw (dev/rcd*) and block special

(/dev/cd*) files

CD-ROM Data Mode 2 Form 1

2048-byte block size through both raw (dev/rcd*) and block special

(/dev/cd*) files

CD-ROM Data Mode 2 Form 2

2336-byte block size through the raw (dev/rcd*) special file only

CD-DA (Compact Disc Digital Audio)

2352-byte block size through the raw (dev/rcd*) special file only

DVD-ROM

2048-byte block size through both raw (/dev/rcd*) and block special

(/dev/cd*) files

DVD-RAM

2048-byte block size through both raw (/dev/rcd*) and block special

(/dev/cd*) files

DVD-RW

2048-byte block size through both raw (/dev/rcd*) and block special

(/dev/cd*) files

The DK_CD_MODE arg parameter contains the address of the mode_form_op

structure defined in the /usr/include/sys/scdisk.h file. To have the DK_CD_MODE

operation determine or change the CD-ROM data mode, set the action field of the

change_mode_form structure to one of the following values:

CD_GET_MODE

Returns the current CD-ROM data mode in the cd_mode_form field of the

mode_form_op structure, when the device has been successfully opened.

CD_CHG_MODE

Changes the CD-ROM data mode to the mode specified in the

cd_mode_form field of the mode_form_op structure, when the device has

been successfully opened in the Exclusive Access mode.

If a CD-ROM has not been configured for different data modes (via mode-select

density codes), and an attempt is made to change the CD-ROM data mode (by

setting the action field of the change_mode_formstructure set to

CD_CHG_MODE), the subroutine returns a value of -1 and sets the errno global

variable to a value of EINVAL. Attempts to change the CD-ROM mode to any of the

DVD modes will also result in a return value of -1 and the errno global variable set

to EINVAL.

If the DK_CD_MODE operation for CD_CHG_MODE is attempted when the device

is not in Exclusive Access mode, the subroutine returns a value of -1 and sets the

errno global variable to a value of EACCES. For any other failure of this operation,

the subroutine returns a value of -1 and sets the errno global variable to a value of

EIO.

Chapter 5. SCSI Subsystem 279

DK_PASSTHRU When the device has been successfully opened, DK_PASSTHRU provides the

means for issuing any SCSI command to the specified device. The device driver

will perform limited error recovery if this operation fails. The DK_PASSTHRU

operation differs from the DKIOCMD operation in that it does not require an openx

command with the ext argument of SC_DIAGNOSTIC. Because of this,

DK_PASSTHRU can be issued to devices that are in use by other operations.

The SCSI status byte and the adapter status bytes are returned through the arg

parameter, which contains the address of a sc_passthru structure (defined in the

/usr/include/sys/scsi.h file). If the DK_PASSTHRU operation fails, the subroutine

returns a value of -1 and sets the errno global variable to a nonzero value. If this

happens the caller should evaluate the returned status bytes to determine why the

operation was unsuccessful and what recovery actions should be taken.

If a DK_PASSTHRU operation fails because a field in the sc_passthru structure

has an invalid value, the subroutine will return a value of -1 and set the errno global

variable to EINVAL. The einval_arg field will be set to the field number (starting

with 1 for the version field) of the field that had an invalid value. A value of 0 for the

einval_arg field indicates no additional information on the failure is available.

DK_PASSTHRU operations are further subdivided into requests which quiesce

other I/O prior to issuing the request and requests that do not quiesce I/O. These

subdivisions are based on the devflags field of the sc_passthru structure. When

the devflags field of the sc_passthru structure has a value of SC_MIX_IO, the

DK_PASSTHRU operation will be mixed with other I/O requests. SC_MIX_IO

requests that write data to devices are prohibited and will fail. When this happens

-1 is returned, and the errno global variable is set to EINVAL. When the devflags

field of the sc_passthru structure has a value of SC_QUIESCE_IO, all other I/O

requests will be quiesced before the DK_PASSTHRU request is issued to the

device. If an SC_QUIESCE_IO request has its timeout_value field set to 0, the

DK_PASSTHRU request fails with a return code of -1, the errno global variable is

set to EINVAL, and the einval_arg field is set to a value of

SC_PASSTHRU_INV_TO (defined in the /usr/include/sys/scsi.h file). If an

SC_QUIESCE_IO request has a nonzero timeout value that is too large for the

device, the DK_PASSTHRU request fails with a return code of -1, the errno global

variable is set to EINVAL, the einval_arg field is set to a value of

SC_PASSTHRU_INV_TO (defined in the /usr/include/sys/scsi.h file), and the

timeout_value is set to the largest allowed value.

Note: The following two paragraphs pertain only to AIX 5.2 with 5200-03 and

later.The version field of the sc_passthru structure can be set to the value of

SCSI_VERSION_2, and the user can provide the following fields:

v variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.

v variable_cdb_length determines the length of the cdb variable to which the

variable_cdb_ptr field points.

On completion of the DK_PASSTHRU ioctl request, the residual field will indicate

the leftover data that device did not fully satify for this request. On a successful

completion, the residual field would indicate the device does not have the all data

that is requested or the device has less then the amount of data that is requested.

On a failure completion, the user needs to check the status_validity field to

determine if a valid SCSI bus problem exists. In this case, the residual field would

indicate the number bytes that the device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command. If an

attempt is made to transfer more than the maximum transfer size, the subroutine

returns a value of -1, sets the errno global variable to a value of EINVAL, and sets

the einval_arg field to a value of SC_PASSTHRU_INV_D_LEN (defined in the

/usr/include/sys/scsi.h file). Refer to the Small Computer System Interface (SCSI)

Specification for the format of the request-sense data for a particular device.

280 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

DKPRES_READKEYS When the device is successfully opened, the DKPRES_READKEYS operation

provides a means to read the Persistent Reserve Registration Keys on the device.

The arg parameter to the DKPRES_READKEYS contains the address of the

dk_pres_in structure. This structure is defined in /usr/include/sys/scdisk.h. The

user must provide a buffer area and size for the registered keys to be returned. The

returned_length variable sets the number of bytes returned.

In a shared-access or clustered environment, this operation identifies all registered

keys for a particular lun.

Note: For the DKPRES_READKEYS operation and following Persistent Reserve

related operation, the interpretation of the returned value and scsi status is as

follows:

v On successful attempt of the call, a 0 is returned.

v After a call fails, a -1 is returned and the errno global variable is set. For a

specific description of the errno value, refer to /usr/include/erno.h. In addition,

the SCSI status, along with the Sense Code, ASC and ASCQ, will be set to

provide further information on why the command failed. Refer to SCSI

Specification on the interpretation of the SCSI status failure code.

DKPRES_READRES When the device is successfully opened, the DKPRES_READRES operation

provides a means to read the Persistent Reserve Reservation Keys on the device.

The arg parameter to the DKPRES_READKEYS contains the address of the

dk_pres_in structure. This structure is defined in /usr/include/sys/scdisk.h. The

user must provide a buffer area and size for the reservation information to be

returned. The returned_length variable sets the number of bytes returned. In a

shared-access or clustered environment, this operation identifies the primary

initiator that holds the reservation.

DKPRES_CLEAR When the device is successfully opened, the DKPRES_CLEAR operation provides

a means to clear all Persistent Reserve Reservation Keys and Registration Keys on

the device. The arg parameter to DKPRES_CLEAR contains the address of the

dk_pres_clear structure. This structure is defined in /usr/include/sys/scdisk.h.

Attention: Exercise care when issuing the DKPRES_CLEAR operation. This

operation leaves the device unreserved, which could allow a foreign initiator to

access the device.

DKPRES_PREEMPT When the device is successfully opened, the DKPRES_PREEMPT operation

provides a means to preempt a Persistent Reserve Reservation Key or Registration

Key on the device. The arg parameter to the DKPRES_PREEMPT contains the

address of the dk_pres_preempt structure. This structure is defined in

/usr/include/sys/scdisk.h. The user must provide the second party initiator key on

the device to be preempted. If the second party initiator holds the reservation to the

device, then the initiator that issues the preemption becomes the owner of the

reservation. Otherwise, the second party initiator access is revoked.

In order for this operation to succeed, the initiator must be registered with the

device first before any preemption can occur. In a shared-access or clustered

environment, this operation is used to preempt any operative or inoperative initiator,

or any initiator that is not recognized to be part of the shared group.

DKPRES_PREEMPT_ABORT This operation is the same as the DKPRES_PREEMPT, except the device follows

the SCSI Primary Command Specification in aborting tasks that belong to the

preempted initiator.

DKPRES_REGISTER When the device is successfully opened, the DKPRES_REGISTER operation

provides a means to register a Key with the device. The Key is extracted from ODM

Customize Attribute and passed to the device driver during configuration. The arg

parameter to the DKPRES_REGISTER contains the address of the

dk_pres_register structure. This structure is defined in /usr/include/sys/scdisk.h.

In a shared-access or clustered environment, this operation attempts a registration

with the device, then follows with a read reservation to determine whether the

device has been reserved. If the device is not reserved, then a reservation is

placed with the device.

Chapter 5. SCSI Subsystem 281

DK_RWBUFFER When the device has been successfully opened, the DK_RWBUFFER operation

provides the means for issuing one or more SCSI Write Buffer commands to the

specified device. The device driver will perform full error recovery upon failures of

this operation. The DK_RWBUFFER operation differs from the DKIOCMD operation

in that it does not require an exclusive open of the device (for example, openx with

the ext argument of SC_DIAGNOSTIC). Thus, a DK_RWBUFFER operation can be

issued to devices that are in use by others. It can be used in conjunction with the

DK_PASSTHRU ioctl, which (like DK_RWBUFFER) does not require an exclusive

open of the device.

The arg parameter contains the address of a sc_rwbuffer structure (defined in the

/usr/include/sys/scsi.h file). Before the DK_RWBUFFER ioctl is invoked, the fields

of this structure should be set according to the desired behavior. The mode field

corresponds to the mode field of the SCSI Command Descriptor Block (CDB) as

defined in the SCSI Primary Commands (SPC) Specification. Supported modes are

listed in the header file /usr/include/sys/scsi.h.

The device driver will quiesce all other I/O from the initiator issuing the Write Buffer

ioctl until the entire operation completes. Once the Write Buffer ioctl completes, all

quiesced I/O will be resumed.

The SCSI status byte and the adapter status bytes are returned through the arg

parameter, which contains the address of a sc_rwbuffer structure (defined in the

/usr/include/sys/scsi.h file). If the DK_RWBUFFER operation fails, the subroutine

returns a value of -1 and sets the errno global variable to a nonzero value. In this

case, the caller should evaluate the returned status bytes to determine why the

operation was unsuccessful and what recovery actions should be taken.

If a DK_RWBUFFER operation fails because a field in the sc_rwbuffer structure

has an invalid value, the subroutine will return a value of -1 and set the errno

global variable to EINVAL.

The DK_RWBUFFER ioctl allows the user to issue multiple SCSI Write Buffer

commands (CDBs) to the device through a single ioctl invocation. This is useful for

applications such as microcode download where the user provides a pointer to the

entire microcode image, but, due to size restrictions of the device buffer(s), desires

that the images be sent in fragments until the entire download is complete.

If the DK_RWBUFFER ioctl is invoked with the fragment_size member of the

sc_rwbuffer struct equal to data_length, a single Write Buffer command will be

issued to the device with the buffer_offset and buffer_ID of the SCSI CDB set to

the values provided in the sc_rwbuffer struct.

If data_length is greater than fragment_size and fragment_size is a nonzero

value, multiple Write Buffer commands will be issued to the device. The number of

Write Buffer commands (SCSI CDBs) issued will be calculated by dividing the

data_length by the desired fragment_size. This value will be incremented by 1 if

the data_length is not an even multiple of fragment_size, and the final data

transfer will be the size of this residual amount. For each Write Buffer command

issued, the buffer_offset will be set to the value provided in the sc_rwbuffer struct

(microcode downloads to SCSD devices requires this to be set to 0). For the first

command issued, the buffer_ID will be set to the value provided in the

sc_rwbuffer struct. For each subsequent Write Buffer command issued, the

buffer_ID will be incremented by 1 until all fragments have been sent. Writing to

noncontiguous buffer_IDs through a single DK_RWBUFFER ioctl is not supported.

If this functionality is desired, multiple DK_RWBUFFER ioctls must be issued with

the buffer_ID set appropriately for each invocation.

Note: No I/O is quiesced between ioctl invocations.

282 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

DK_RWBUFFER continued If fragment_size is set to zero, an errno of EINVAL will be returned. If the desire is

to send the entire buffer with one SCSI Write buffer command, this field should be

set equal to data_length. An error of EINVAL will also be returned if the

fragment_size is greater than the data_length.

The Parameter List Length (fragment_size) plus the Buffer Offset can not exceed

the capacity of the specified buffer of the device. It is the responsibility of the caller

of the Write Buffer ioctl to ensure that the fragment_size setting satisfies this

requirement. A fragment_size larger than the device can accommodate will result

in a SCSI error at the device, and the Write Buffer ioctl will simply report this error

but take no action to recover.

The devinfo structure defines the maximum transfer size for the command. If an

attempt is made to transfer more than the maximum transfer size, the subroutine

returns a value of -1 and sets the errno global variable to a value of EINVAL. Refer

to the Small Computer System Interface (SCSI) Specification for the format of the

request sense data for a particular device.

DKPATHIOLCMD This command is only available for MPIO capable devices. The DKPATHIOLCMD

command takes as input a pointer argument which points to a single

scsidisk_pathiocmd structure. The DKPATHIOLCMD command behaves exactly

like theDKIOLCMD command, except that the input path is used instead of the

normal path selection. The DKPATHIOLCMD path is used for the DKIOLCMD

command regardless of any path specified by a DKPATHFORCE ioctl command. A

path cannot be unconfigured while it is being forced.

DKPATHFORCE This command is only available for MPIO capable devices. The DKPATHFORCE

command takes as input a ushort path id. The path id should correspond to one of

the path ids in CuPath ODM. The path id specifies a path to be used for all

subsequent I/O commands, overriding any previous DKPATHFORCE path. A zero

argument specifies that path forcing is terminated and that normal MPIO path

selection is to be resumed. The PCM KE keeps track of the forcing of I/O on a

path. The Device Driver is unaware of this state except.I/O commands sent in with

the DKPATHIOLCMD command will override the DKPATHFORCE option and send

the I/O down the path specified in scsidisk_pathiocmd structure

DKPATHRWBUFFER This command is only available for MPIO capable devices. The

DKPATHRWBUFFER command takes as input a pointer argument which points to

a single scsidisk_pathiocmd structure. The DKPATHRWBUFFER command

behaves exactly like the DKRWBUFFER command, except that the input path is

used rather than normal path selection. The DKPATHRWBUFFER path is used for

the DKRWBUFFER command regardless of any path specified by a

DKPATHFORCE ioctl command.

DKPATHPASSTHRU This command is only available for MPIO capable devices. The

DKPATHPASSTHRU command takes as input a pointer argument which points to a

single scsidisk_pathiocmd structure. The DKPATHPASSTHRU command behaves

exactly like the DKPASSTHRU command, except that the input path is used rather

than normal path selection. The DKPATHPASSTHRU path is used for the

DKPASSTHRU command regardless of any path specified by a DKPATHFORCE

ioctl command.

DKPCMPASSTHRU This command is only available for MPIO capable devices. The

DKPCMPASSTHRU command takes as input a structure which is PCM specific, it

is not defined by AIX. The PCM specific structure is passed to the PCM directly.

This structure can be used to move information to or from a PCM.

Device Requirements

SCSI architectural model fixed disk, CD-ROM, and read/write optical drives have the following hardware

requirements:

v SAM fixed disks and read/write optical drives must support a block size of 512 bytes per block.

v If mode sense is supported, the write-protection (WP) bit must also be supported for SAM fixed disks

and read/write optical drives.

Chapter 5. SCSI Subsystem 283

v SAM fixed disks and read/write optical drives must report the hardware retry count in bytes 16 and 17 of

the request sense data for recovered errors. If the fixed disk or read/write optical drive does not support

this, the system error log may indicate premature drive failure.

v SAM CD-ROM and read/write optical drives must support the 10-byte SCSI read command.

v SAM fixed disks and read/write optical drives must support the SCSI write and verify command and the

6-byte SCSI write command.

v To use the format command operation on read/write optical media, the drive must support setting the

format options valid (FOV) bit to 0 for the defect list header of the SCSI format unit command. If the

drive does not support this, the user can write an application for the drive so that it formats media using

the DKFORMAT operation.

v If a SAM CD-ROM drive uses CD_ROM Data Mode 1, it must support a block size of 512 bytes per

block.

v If a SAM CD-ROM drive uses CD_ROM data Mode 2 Form 1, it must support a block size of 2048

bytes per block.

v If a SAM CD-ROM drive uses CD_ROM data Mode 2 Form 2, it must support a block size of 2336

bytes per block.

v If a SAM CD-ROM drive uses CD_DA mode, it must support a block size of 2352 bytes per block.

v To control volume using the DKAUDIO (play audio) operation, the device must support SCSI-2 mode

data page 0xE.

v To use the DKAUDIO (play audio) operation, the device must support the following SCSI-2 optional

commands:

– read sub-channel

– pause resume

– play audio MSF

– play audio track index

– read TOC

Error Conditions

Possible errno values for ioctl, open,read, and write subroutines when using the scsidisk device driver

include:

 EACCES Indicates one of the following circumstances:

v An attempt was made to open a device currently open in Diagnostic or Exclusive Access

mode.

v An attempt was made to open a Diagnostic mode session on a device already open.

v The user attempted a subroutine other than an ioctl or close subroutine while in Diagnostic

mode.

v A DKIOLCMD operation was attempted on a device not in Diagnostic mode.

v A DK_CD_MODE ioctl subroutine operation was attempted on a device not in Exclusive

Access mode.

v A DKFORMAT operation was attempted on a device not in Exclusive Access mode.

EBUSY Indicates one of the following circumstances:

v An attempt was made to open a session in Exclusive Access mode on a device already

opened.

v The target device is reserved by another initiator.

EFAULT Indicates an illegal user address.

EFORMAT Indicates the target device has unformatted media or media in an incompatible format.

EINPROGRESS Indicates a CD-ROM drive has a play-audio operation in progress.

284 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

EINVAL Indicates one of the following circumstances:>

v A DKAUDIO (play-audio) operation was attempted for a device that is not configured to use

the SCSI-2 play-audio commands.

v The read or write subroutine supplied an nbyte parameter that is not an even multiple of

the block size.

v A sense data buffer length of greater than 255 bytes is not valid for a DKIOLWRSE, or

DKIOLRDSE ioctl subroutine operation.

v The data buffer length exceeded the maximum defined in the devinfo structure for a

DKIOLRDSE, DKIOLWRSE, or DKIOLCMD ioctl subroutine operation.

v An unsupported ioctl subroutine operation was attempted.

v An attempt was made to configure a device that is still open.

v An illegal configuration command has been given.

v A DKPMR (Prevent Media Removal), DKAMR (Allow Media Removal), or DKEJECT (Eject

Media) command was sent to a device that does not support removable media.

v A DKEJECT (Eject Media) command was sent to a device that currently has its media

locked in the drive.

v The data buffer length exceeded the maximum defined for a strategy operation.

EIO Indicates one of the following circumstances:

v The target device cannot be located or is not responding.

v The target device has indicated an unrecoverable hardware error.

EMEDIA Indicates one of the following circumstances:

v The target device has indicated an unrecoverable media error.

v The media was changed.

EMFILE Indicates an open operation was attempted for an adapter that already has the maximum

permissible number of opened devices.

ENODEV Indicates one of the following circumstances:

v An attempt was made to access an undefined device.

v An attempt was made to close an undefined device.

ENOTREADY Indicates no media is in the drive.

ENXIO Indicates one of the following circumstances:

v The ioctl subroutine supplied an invalid parameter.

v A read or write operation was attempted beyond the end of the fixed disk.

EPERM Indicates the attempted subroutine requires appropriate authority.

ESTALE Indicates a read-only optical disk was ejected (without first being closed by the user) and then

either reinserted or replaced with a second optical disk.

ETIMEDOUT Indicates an I/O operation has exceeded the given timer value.

EWRPROTECT Indicates one of the following circumstances:

v An open operation requesting read/write mode was attempted on read-only media.

v A write operation was attempted to read-only media.

Reliability and Serviceability Information

SCSI fixed disk devices, CD-ROM drives, and read/write optical drives return the following errors:

 ABORTED COMMAND Indicates the device ended the command.

ADAPTER ERRORS Indicates the adapter returned an error.

GOOD COMPLETION Indicates the command completed successfully.

HARDWARE ERROR Indicates an unrecoverable hardware failure occurred during command execution or

during a self-test.

ILLEGAL REQUEST Indicates an illegal command or command parameter.

MEDIUM ERROR Indicates the command ended with an unrecoverable media error condition.

NOT READY Indicates the logical unit is offline or media is missing.

RECOVERED ERROR Indicates the command was successful after some recovery was applied.

Chapter 5. SCSI Subsystem 285

UNIT ATTENTION Indicates the device has been reset or the power has been turned on.

Error Record Values for Media Errors

The fields defined in the error record template for fixed disk, CD-ROM, and read/write optical media errors

are:

 Comment Indicates fixed disk, CD-ROM, or read/write optical media error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report

is generated.

Log Equals a value of True, which indicates an error log entry should be created when this

error occurs.

Alert Equals a value of False, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 5000, which indicates media.

User_Causes Equals a value of 5100, which indicates the media is defective.

User_Actions Equals the following values:

v 1601, which indicates the removable media should be replaced and retried

v 00E1 Perform problem determination procedures

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

v 1601, which indicates the removable media should be replaced and retried

v 00E1 Perform problem determination procedures

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df

structure. The err_recstructure is defined in the /usr/include/sys/errids.h file. The

scsi_error_log_df structure is defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data

Contains the request-sense information from the particular device that had the

error, if it is valid.

dd1 Contains the segment count, which is the number of megabytes read from the

device at the time the error occurred.

dd2 Contains the number of bytes read since the segment count was last increased.

dd3 Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

Error Record Values for Hardware Errors

The fields defined in the error record template for fixed disk, CD-ROM, and read/write optical hardware

errors, as well as hard-aborted command errors are:

 Comment Indicates fixed disk, CD-ROM, or read/write optical hardware error.

Class Equals a value of H, which indicates a hardware error.

286 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Report Equals a value of True, which indicates this error should be included when an error report

is generated.

Log Equals a value of True, which indicates an error log entry should be created when this

error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 6310, which indicates disk drive.

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

v 6310, which indicates a disk drive failure

v 6330, which indicates a disk drive electronics failure

Fail_Actions Equals a value of 00E1, which indicates problem-determination procedures should be

performed.

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df

structure. The err_recstructure is defined in the /usr/include/sys/errids.h file. The

scsi_error_log_df structure is defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data

Contains the request-sense information from the particular device that had the

error, if it is valid.

dd1 Contains the segment count, which is the number of megabytes read from the

device at the time the error occurred.

dd2 Contains the number of bytes read since the segment count was last increased.

dd3 Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

Error Record Values for Adapter-Detected Hardware Failures

The fields defined in the error record template for fixed disk, CD-ROM, and read/write optical media errors

adapter-detected hardware errors are:

 Comment Indicates adapter-detected fixed disk, CD-ROM, or read/write optical hardware failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error-log entry should be created when this error

occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals the following values:

v 3452, which indicates a device cable failure

v 6310, which indicates a disk drive failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Chapter 5. SCSI Subsystem 287

Fail_Causes Equals the following values:

v 3452, which indicates a storage device cable failure

v 6310, which indicates a disk drive failure

v 6330, which indicates a disk-drive electronics failure

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures should be

performed.

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df

structure. The err_recstructure is defined in the /usr/include/sys/errids.h file. The

scsi_error_log_df structure is defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data

Contains the request-sense information from the particular device that had the

error, if it is valid.

dd1 Contains the segment count, which is the number of megabytes read from the

device at the time the error occurred.

dd2 Contains the number of bytes read since the segment count was last increased.

dd3 Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

Error Record Values for Recovered Errors

The fields defined in the error record template for fixed disk, CD-ROM, and read/write optical media errors

recovered errors are:

 Comment Indicates fixed disk, CD-ROM, or read/write optical recovered error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error

occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Temp, which indicates a temporary failure.

Err_Desc Equals a value of 1312, which indicates a physical volume operation failure.

Prob_Causes Equals the following values:

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

User_Causes Equals a value of 5100, which indicates media is defective.

User_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals the following values:

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

v 1601, which indicates the removable media should be replaced and retried

v 00E1 Perform problem determination procedures

288 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df

structure. The err_recstructure is defined in the /usr/include/sys/errids.h file. The

scsi_error_log_df structure is defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data

Contains the request-sense information from the particular device that had the

error, if it is valid.

dd1 Contains the segment count, which is the number of megabytes read from the

device at the time the error occurred.

dd2 Contains the number of bytes read since the segment count was last increased.

dd3 Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

Error Record Values for Unknown Errors

The fields defined in the error record template for fixed disk, CD-ROM, and read/write optical media errors

unknown errors are:

 Comment Indicates fixed disk, CD-ROM, or read/write optical unknown failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error

occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Unkn, which indicates the type of error is unknown.

Err_Desc Equals a value of FE00, which indicates an undetermined error.

Prob_Causes Equals the following values:

v 3300, which indicates an adapter failure

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of FFFF, which indicates the failure causes are unknown.

Fail_Actions Equals the following values:

v 00E1 Perform problem determination procedures

v 1601, which indicates the removable media should be replaced and retried

Chapter 5. SCSI Subsystem 289

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the scsi_error_log_df

structure. The err_recstructure is defined in the /usr/include/sys/errids.h file. The

scsi_error_log_df structure is defined in the /usr/include/sys/scsi_buf.h file.

The scsi_error_log_df structure contains the following fields:

req_sense_data

Contains the request-sense information from the particular device that had the

error, if it is valid.

dd1 Contains the segment count, which is the number of megabytes read from the

device at the time the error occurred.

dd2 Contains the number of bytes read since the segment count was last increased.

dd3 Contains the number of opens since the device was configured.

Refer to the Small Computer System Interface (SCSI) Specification for the format of the request-sense

data for a particular device.

Special Files

The scsidisk SCSI device driver uses raw and block special files in performing its functions.

Attention: Data corruption, loss of data, or loss of system integrity (system crash) will occur if

devices supporting paging, logical volumes, or mounted file systems are accessed using block

special files. Block special files are provided for logical volumes and disk devices and are solely for

system use in managing file systems, paging devices, and logical volumes. These files should not be

used for other purposes.

The special files used by the scsidisk device driver include the following (listed by type of device):

v Fixed disk devices:

 /dev/rhdisk0, /dev/rhdisk1,...,

/dev/rhdiskn

Provide an interface to allow SCSI device drivers character access (raw I/O

access and control functions) to SCSI fixed disks.

/dev/hdisk0, /dev/hdisk1,...,

/dev/hdiskn

Provide an interface to allow SCSI device drivers block I/O access to SCSI

fixed disks.

v CD-ROM devices:

 /dev/rcd0, /dev/rcd1,..., /dev/rcdn Provide an interface to allow SCSI device drivers character access (raw I/O

access and control functions) to SCSI CD-ROM disks.

/dev/cd0, /dev/cd1,..., /dev/cdn Provide an interface to allow SCSI device drivers block I/O access to SCSI

CD-ROM disks.

v Read/write optical devices:

 /dev/romd0, /dev/romd1,..., /dev/romdn Provide an interface to allow SCSI device drivers character access

(raw I/O access and control functions) to SCSI read/write optical

devices.

/dev/omd0, /dev/omd1,..., /dev/omdn Provide an interface to allow SCSI device drivers block I/O access to

SCSI read/write optical devices.

–

Note: The prefix r on a special file name indicates the drive is accessed as a raw device rather than

a block device. Performing raw I/O with a fixed disk, CD-ROM, or read/write optical drive

290 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

requires that all data transfers be in multiples of the device block size. Also, all lseek

subroutines that are made to the raw device driver must result in a file pointer value that is a

multiple of the device block size.

Related Information

Special Files Overview in AIX Version 6.1 Files Reference.

SAM Subsystem Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts.

A Typical Initiator-Mode SAM Driver Transaction Sequence in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

SAM Adapter Device Driver ioctl Commands in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Understanding the Execution of Initiator I/O Requests in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

SAM Error Recovery in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Understanding the scsi_buf Structure in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

SAM Device Driver.

The close subroutine, ioctl or ioctlx subroutine, open, openx, or creat subroutine, read, readx, readv,

or readvx subroutine, write, writex, writev, or writevx subroutine.

The cd Special File, omd Special File, rhdisk Special File.

tape SCSI Device Driver

Purpose

Supports the sequential access bulk storage medium device driver.

Syntax

#include <sys/devinfo.h>

#include <sys/scsi.h>

#include <sys/tape.h>

Note: The /dev/rmt0 through /dev/rmt255 special files provide access to magnetic tapes. Magnetic tapes

are used primarily for backup, file archives, and other offline storage.

Device-Dependent Subroutines

Most tape operations are implemented using the open, read, write, and close subroutines. However, the

openx subroutine must be used if the device is to be opened in Diagnostic mode.

open and close Subroutines

The openx subroutine is intended for use by the diagnostic commands and utilities. Appropriate authority

is required for execution. Attempting to execute this subroutine without the proper authority causes the

subroutine to return a value of -1 and sets the errno global variable to EPERM.

Chapter 5. SCSI Subsystem 291

The openx subroutine allows the device driver to enter Diagnostic mode and disables command-retry

logic. This action allows for execution of ioctl operations that perform special functions associated with

diagnostic processing. Other openx capabilities, such as forced opens and retained reservations, are also

available.

The ext parameter passed to the openx subroutine selects the operation to be used for the target device.

The ext parameter is defined in the /usr/include/sys/scsi.h file. This parameter can contain any

combination of the following flag values logically ORed together:

 Flag Value Description

SC_DIAGNOSTIC Places the selected device in Diagnostic mode. This mode is singularly

entrant. When a device is in Diagnostic mode, SCSI operations are

performed during open or close operations and error logging is disabled. In

Diagnostic mode, only the close and ioctl operations are accepted. All other

device-supported subroutines return a value of -1, with the errno global

variable set to a value of EACCES.

A device can be opened in Diagnostic mode only if the target device is not

currently opened. If an attempt is made to open a device in Diagnostic

mode and the target device is already open, a value of -1 is returned and

the errno global variable is set to EACCES.

SC_FORCED_OPEN Forces a bus device reset (BDR) regardless of whether another initiator has

the device reserved. The SCSI bus device reset is sent to the device before

the open sequence begins. Otherwise, the open operation executes

normally.

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not issuing

the release. This flag prevents other initiators from using the device unless

they break the host machine’s reservation.

″SCSI Options to the openx Subroutine″ in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts gives more specific information on the open operations.

ioctl Subroutine

The STIOCMD ioctl operation provides the means for sending SCSI commands directly to a tape device.

This allows an application to issue specific SCSI commands that are not directly supported by the tape

device driver.

To use the STIOCMD operation, the device must be opened in Diagnostic mode. If this command is

attempted while the device is not in Diagnostic mode, a value of -1 is returned and the errno global

variable is set to a value of EACCES. The STIOCMD operation passes the address of a scsi_iocmd

structure. This structure is defined in the /usr/include/sys/scsi_buf.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for

information on issuing the parameters.

Error Conditions

In addition to those errors listed, ioctl, open, read, and write subroutines against this device are

unsuccessful in the following circumstances:

 Error Description

EACCES Indicates that a diagnostic command was issued to a device not in Diagnostic mode.

EAGAIN Indicates that an attempt was made to open a device that was already open.

EBUSY Indicates that the target device is reserved by another initiator.

EINVAL Indicates that a value of O_APPEND is supplied as the mode in which to open.

292 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Error Description

EINVAL Indicates that the nbyte parameter supplied by a read or write operation is not a multiple of the

block size.

EINVAL Indicates that a parameter to an ioctl operation is not valid.

EINVAL Indicates that the requested ioctl operation is not supported on the current device.

EIO Indicates that the tape drive has been reset or that the tape has been changed. This error is

returned on open if the previous operation to tape left the tape positioned beyond beginning of

tape upon closing.

EIO Indicates that the device could not space forward or reverse the number of records specified by

the st_count field before encountering an EOM (end of media) or a file mark.

EMEDIA Indicates that the tape device has encountered an unrecoverable media error.

EMFILE Indicates that an open operation was attempted for a SCSI adapter that already has the

maximum permissible number of open devices.

ENOTREADY Indicates that there is no tape in the drive or the drive is not ready.

ENXIO Indicates that there was an attempt to write to a tape that is at EOM.

EPERM Indicates that this subroutine requires appropriate authority.

ETIMEDOUT Indicates a command has timed out.

EWRPROTECT Indicates an open operation requesting read/write mode was attempted on a read-only tape.

EWRPROTECT Indicates that an ioctl operation that affects the media was attempted on a read-only tape.

Reliability and Serviceability Information

Errors returned from tape devices are as follows:

 Error Description

ABORTED COMMAND Indicates the device ended the command.

BLANK CHECK Indicates that a read command encountered a blank tape.

DATA PROTECT Indicates that a write was attempted on a write-protected tape.

GOOD COMPLETION Indicates that the command completed successfully.

HARDWARE ERROR Indicates that an unrecoverable hardware failure occurred during command execution

or during a self-test.

ILLEGAL REQUEST Indicates an illegal command or command parameter.

MEDIUM ERROR Indicates that the command terminated with a unrecovered media error condition. This

condition may be caused by a tape flaw or a dirty head.

NOT READY Indicates that the logical unit is offline.

RECOVERED ERROR Indicates that the command was successful after some recovery was applied.

UNIT ATTENTION Indicates the device has been reset or powered on.

Medium, hardware, and aborted command errors from the above list are to be logged every time they

occur. The ABORTED COMMAND error may be recoverable, but the error is logged if recovery fails. For

the RECOVERED ERROR and recovered ABORTED COMMAND error types, thresholds are maintained;

when they are exceeded, an error is logged. The thresholds are then cleared.

Note: There are device-related adapter errors that are logged every time they occur.

Error Record Values for Tape Device Media Errors

The fields defined in the error record template for tape-device media errors are:

 Field Description

Comment Equal to tape media error.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is generated.

Log Equal to TRUE, indicating an error log entry should be created when this error occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Chapter 5. SCSI Subsystem 293

Field Description

Err_Desc Equal to 1332, indicating a tape operation failure.

Prob_Causes Equal to 5003, indicating tape media.

User_Causes Equal to 5100 and 7401, indicating a cause originating with the tape and defective media,

respectively.

User_Actions Equal to 1601 and 0000, indicating respectively that the removable media should be replaced

and the operation retried, and that problem determination procedures should be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 5003, indicating tape media.

Fail_Actions Equal to 1601 and 0000, indicating respectively that the removable media should be replaced

and the operation retried and that problem determination procedures should be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense

information from the particular device in error. The Detail_Data field is contained in the err_rec structure.

This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure, which

describes information contained in the Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format

of the particular request-sense information.

Error-Record Values for Tape or Hardware Aborted Command Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for hardware errors and

aborted command errors, are:

 Field Description

Comment Equal to a tape hardware or aborted command error.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is generated.

Log Equal to TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to 1331, indicating a tape drive failure.

Prob_Causes Equal to 6314, indicating a tape drive error.

User_Causes None.

User_Actions Equal to 0000, indicating that problem determination procedures should be performed.

Inst_Actions None.

Fail_Causes Equal to 5003 and 6314, indicating the failure cause is the tape and the tape drive,

respectively.

Fail_Actions Equal to 0000 to perform problem determination procedures.

The Detail_Data field contains the command type, device and adapter status, and the request-sense

information from the particular device in error. The Detail_Data field is contained in the err_rec structure.

This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure, which

describes information contained in the Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format

of the particular request-sense information.

Error-Record Values for Tape-Recovered Error Threshold Exceeded

The fields defined in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for recovered

errors that have exceeded the threshold counter, are:

 Field Description

Comment Indicates the tape-recovered error threshold has been exceeded.

294 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is generated.

Log Equal to TRUE, indicating an error log entry should be created when this error occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to 1331, indicating a tape drive failure.

Prob_Causes Equal to 5003 and 6314, indicating the probable cause is the tape and tape drive,

respectively.

User_Causes Equal to 5100 and 7401, indicating that the media is defective and the read/write head is

dirty, respectively.

User_Actions Equal to 1601 and 0000, indicating that removable media should be replaced and the

operation retried and that problem-determination procedures should be performed,

respectively.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 5003 and 6314, indicating the cause is the tape and tape drive, respectively.

Fail_Actions Equal to 0000, to perform problem determination procedures.

The Detail_Data field contains the command type, device and adapter status, and the request-sense

information from the particular device in error. This field is contained in the err_rec structure. The err_rec

structure is defined in the /usr/include/sys/errids.h file. The Detail_Data field also specifies the error type

of the threshold exceeded. The sc_error_log_df structure, which describes information contained in the

Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format

of the particular request-sense information.

Error Record Values for Tape SCSI Adapter-Detected Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for adapter-detected

errors, are:

 Field Description

Comment Equal to a tape SCSI adapter-detected error.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating this error should be included when an error report is generated.

Log Equal to TRUE, indicating an error log entry should be created when this error occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to 1331, indicating a tape drive failure.

Prob_Causes Equal to 3300 and 6314, indicating an adapter and tape drive failure, respectively.

User_Causes None.

User_Actions Equal to 0000, indicating that problem determination procedures should be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 3300 and 6314, indicating an adapter and tape drive failure, respectively.

Fail_Actions Equal to 0000, to perform problem-determination procedures.

The Detail_Data field contains the command type and adapter status. This field is contained in the

err_rec structure, which is defined by the /usr/include/sys/err_rec.h file. Request-sense information is not

available with this type of error. The sc_error_log_df structure describes information contained in the

Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format

of the particular request-sense information.

Chapter 5. SCSI Subsystem 295

Error-Record Values for Tape Drive Cleaning Errors

Some tape drives return errors when they need cleaning. Errors that occur when the drive needs cleaning

are grouped under this class.

 Field Description

Comment Indicates that the tape drive needs cleaning.

Class Equal to H, indicating a hardware error.

Report Equal to TRUE, indicating that this error should be included when an error report is

generated.

Log Equal to TRUE, indicating that an error-log entry should be created when this error occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to TEMP, indicating a temporary failure.

Err_Desc Equal to 1332, indicating a tape operation error.

Prob_Causes Equal to 6314, indicating that the probable cause is the tape drive.

User_Causes Equal to 7401, indicating a dirty read/write head.

User_Actions Equal to 0000, indicating that problem determination procedures should be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 6314, indicating that the cause is the tape drive.

Fail_Actions Equal to 0000, indicating to perform problem-determination procedures.

The Detail_Data field contains the command type and adapter status and also the request-sense

information from the particular device in error. This field is contained in the err_rec structure, which is

defined by the /usr/include/sys/errids.h file. The sc_error_log_df structure describes information

contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format

of the particular request-sense information.

Error-Record Values for Unknown Errors

Errors that occur for unknown reasons are grouped in this class. Data-protect errors fall into this class.

These errors, detected by the tape device driver, are never seen at the tape drive.

The err_hdr structure for unknown errors describes the following fields:

 Field Description

Comment Equal to tape unknown error.

Class Equal to all error classes.

Report Equal to TRUE, indicating this error should be included when an error report is generated.

Log Equal to TRUE, indicating an error-log entry should be created when this error occurs.

Alert Equal to FALSE, indicating this error is not alertable.

Err_Type Equal to UNKN, indicating the error type is unknown.

Err_Desc Equal to 0xFE00, indicating the error description is unknown.

Prob_Causes None.

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 0xFFFF, indicating the failure cause is unknown.

Fail_Actions Equal to 0000, indicating that problem-determination procedures should be performed.

The Detail_Data field contains the command type and adapter status, and the request- sense information

from the particular device in error. The Detail_Data field is contained in the err_rec structure. This field is

contained in the /usr/include/sys/errids.h file. The sc_error_log_df structure describes information

contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

296 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Refer to the Small Computer System Interface (SCSI) Specification for the applicable device for the format

of the particular request-sense information.

Files

/dev/rmt0, /dev/rmt0.1, /dev/rmt0.2, ..., /dev/rmt0.7,

/dev/rmt1, /dev/rmt1.1, /dev/rmt1.2, ..., /dev/rmt1.7,...,

 /dev/rmt255, /dev/rmt255.1, /dev/rmt255.2, ...,

/dev/rmt255.7

Provide an interface to allow SCSI device drivers to

access SCSI tape drives.

Related Information

The rhdisk special file, rmt special file.

The close subroutine, ioctl subroutine, open subroutine, openx subroutine, read subroutine, write

subroutine.

A Typical Initiator-Mode SCSI Driver Transaction Sequence in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Required SCSI Adapter Device Driver ioctl Commands in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

Understanding the Execution of Initiator I/O Requests in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

SCSI Error Recovery in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Understanding the sc_buf Structure in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

SCSI Adapter Device Driver.

sctape FC Device Driver

Purpose

Supports the Fibre Channel Protocol for SCSI (FCP) for sequential access bulk storage medium device

driver.

Syntax

#include <sys/devinfo.h>

#include <sys/scsi.h>

#include <sys/tape.h>

#include <sys/pcm.h>

#include <sys/mpio.h>

Note: The /dev/rmt0 through /dev/rmt255 special files provide access to magnetic tapes. Magnetic tapes

are used primarily for backup, file archives, and other offline storage.

Device-Dependent Subroutines

Most tape operations are implemented using the open, read, write, and close subroutines. However, the

openx subroutine must be used if the device is to be opened in Diagnostic mode.

Chapter 5. SCSI Subsystem 297

open and close Subroutines

The openx subroutine is intended for use by the diagnostic commands and utilities. Appropriate authority

is required for execution. Attempting to execute this subroutine without the proper authority causes the

subroutine to return a value of -1 and sets the errno global variable to EPERM.

The openx subroutine allows the device driver to enter Diagnostic mode and disables command-retry

logic. This action allows for execution of ioctl operations that perform special functions associated with

diagnostic processing. Other openx capabilities, such as forced opens and retained reservations, are also

available.

The open subroutine applies a reservation policy based on the ODM reserve_policy attribute.

The ext parameter passed to the openx subroutine selects the operation to be used for the target device.

The ext parameter is defined in the /usr/include/sys/scsi.h file. This parameter can contain any

combination of the following flag values logically ORed together:

 SC_DIAGNOSTIC Places the selected device in Diagnostic mode. This mode is singularly entrant.

When a device is in Diagnostic mode, SCSI operations are performed during

open or close operations, and error logging is disabled. In Diagnostic mode,

only the close and ioctl operations are accepted. All other device-supported

subroutines return a value of -1 and set the errno global variable to a value of

EACCES.

A device can be opened in Diagnostic mode only if the target device is not

currently opened. If an attempt is made to open a device in Diagnostic mode

and the target device is already open, the subroutine returns a value of -1 and

sets the errno global variable to a value of EACCES.

SC_FORCED_OPEN Forces a bus device reset (BDR) regardless of whether another initiator has

the device reserved. The SCSI bus device reset is sent to the device before

the open sequence begins. Otherwise, the open operation executes normally.

SC_RETAIN_RESERVATION Retains the reservation of the device after a close operation by not issuing the

release. This flag prevents other initiators from using the device unless they

break the host machine’s reservation.

FCP Options to the openx Subroutine in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts gives more specific information on the open operations.

ioctl Subroutine

The STIOCMD ioctl operation provides the means for sending SCSI commands directly to a tape device.

This allows an application to issue specific SCSI commands that are not directly supported by the tape

device driver.

To use the STIOCMD operation, the device must be opened in Diagnostic mode. If this command is

attempted while the device is not in Diagnostic mode, a value of -1 is returned and the errno global

variable is set to a value of EACCES. The STIOCMD operation passes the address of a sc_iocmd

structure. This structure is defined in the /usr/include/sys/scsi.h file.

The following ioctl operations are only available for MPIO capable FC tape devices:

 STPATHIOCMD The STPATHIOCMD command will take as input a pointer argument which points to a single

sctape_pathiocmd structure. The STPATHIOCMD command will behave exactly like the

STIOCMD command, except that the input path is used rather than normal path selection

performed by the PCM. The STPATHIOCMD path is used for the STIOCMD command

regardless of any path specified by a STPATHFORCE ioctl command. A path cannot be

unconfigured while it is being forced.

298 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

STPATHFORCE The STPATHFORCE command takes as input a ushort path ID. The path ID should

correspond to one of the path IDs in the CuPath ODM. The path ID specifies a path to be

used for all subsequent I/O commands, overriding any previous STPATHFORCE paths. A

zero (0) argument specifies that path forcing is terminated and that normal MPIO path

selection is to be resumed. The PCM KE keeps track of the forcing of I/O on a path. The

Device Driver is unaware of this state. I/O commands sent in with STPATHIOCMD will

override the STPATHFORCE option and send the I/O down the path specified in the

st_pathiocmd structure.

STPATHPASSTHRU The STPATHPASSTHRU command takes as input a pointer argument that points to a single

sctape_pathiocmd structure. The STPATHPASSTHRU command will behave exactly like

STIOCMD, except that the input path is used rather than normal path selection.

STPCMPASSTHRU The STPCMPASSTHRU command takes as input a structure that is PCM-specific; it is not

defined by AIX. The PCM-specific structure is passed to the PCM directly. This structure can

be used to move information to or from a PCM.

Error Conditions

In addition to those errors listed, ioctl, open, read, and write subroutines against this device are

unsuccessful in the following circumstances:

 EAGAIN Indicates that an attempt was made to open a device that was already open.

EBUSY Indicates that the target device is reserved by another initiator.

EINVAL Indicates that a value of O_APPEND is supplied as the mode in which to open.

EINVAL Indicates that the nbyte parameter supplied by a read or write operation is not

a multiple of the block size.

EINVAL Indicates that a parameter to an ioctl operation is not valid.

EINVAL Indicates that the requested ioctl operation is not supported on the current

device.

EIO Indicates that the tape drive has been reset or that the tape has been changed.

This error is returned on open if the previous operation to tape left the tape

positioned beyond the beginning of the tape upon closing.

EIO Indicates that the device could not space forward or reverse the number of

records specified by the st_count field before encountering an EOM (end of

media) or a file mark.

EMEDIA Indicates an open operation was attempted for an adapter that already has the

maximum permissible number of opened devices.

ENOTREADY Indicates that there is no tape in the drive or the drive is not ready.

ENXIO Indicates that there was an attempt to write to a tape that is at EOM.

EPERM Indicates that this subroutine requires appropriate authority.

ETIMEDOUT Indicates a command has timed out.

EWRPROTECT Indicates an open operation requesting read/write mode was attempted on a

read-only tape.

EWRPROTECT Indicates that an ioctl operation that affects the media was attempted on a

read-only tape.

Reliability and Serviceability Information

Errors returned from tape devices are as follows:

 ABORTED COMMAND Indicates the device ended the command.

BLANK CHECK Indicates that a read command encountered a blank tape.

DATA PROTECT Indicates that a write was attempted on a write-protected tape.

GOOD COMPLETION Indicates the command completed successfully.

HARDWARE ERROR Indicates an unrecoverable hardware failure occurred during command

execution or during a self-test.

ILLEGAL REQUEST Indicates an illegal command or command parameter.

Chapter 5. SCSI Subsystem 299

MEDIUM ERROR Indicates the command ended with an unrecoverable media error condition.

This condition may be caused by a tape flaw or a dirty head.

NOT READY Indicates the logical unit is offline.

RECOVERED ERROR Indicates the command was successful after some recovery was applied.

UNIT ATTENTION Indicates the device has been reset or the power has been turned on.

Medium, hardware, and aborted command errors from the preceding list are to be logged every time they

occur. The ABORTED COMMAND error might be recoverable, but the error is logged if recovery fails. For

the RECOVERED ERROR and recovered ABORTED COMMAND error types, thresholds are maintained;

when they are exceeded, an error is logged. The thresholds are then cleared.

Note: There are device-related adapter errors that are logged every time they occur.

Error Record Values for Tape Device Media Errors

The fields defined in the error record template for tape-device media errors are:

 Comment Equal to tape media error.

Class Equal to H, indicating a hardware error.

Report Equals a value of True, which indicates this error should be included when an

error report is generated.

Log Equals a value of True, which indicates an error log entry should be created

when this error occurs.

Alert Equals a value of False, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1332, which indicates a tape operation failure.

Prob_Causes Equals a value of 5003, which indicates tape media.

User_Causes Equals a value of 5100 and 7401, which indicates a cause originating with the

tape and defective media, respectively.

User_Actions Equal to 1601 and 0000, which indicates, respectively, that the removable

media should be replaced and the operation retried, and that problem

determination procedures should be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 5003, which indicates tape media.

Fail_Actions Equal to 1601 and 0000, which indicates, respectively, that the removable

media should be replaced and the operation retried and that problem

determination procedures should be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense

information from the particular device in error. The Detail_Data field is contained in the err_rec structure.

This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure, which

describes information contained in the Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Tape or Hardware Aborted Command Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for hardware errors and

aborted command errors, are:

 Comment Equal to a tape hardware or aborted command error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an

error report is generated.

Log Equals a value of True, which indicates an error log entry should be created

when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

300 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Err_Desc Equals a value of 1331, which indicates a tape drive failure.

Prob_Causes Equals a value of 6314, which indicates a tape drive error.

User_Causes None.

User_Actions Equal to 0000, indicating that problem determination procedures should be

performed.

Inst_Actions None.

Fail_Causes Equal to 5003 and 6314, indicating the failure cause is the tape and the tape

drive, respectively.

Fail_Actions Equal to 0000 to perform problem determination procedures.

The Detail_Data field contains the command type, device and adapter status, and the request-sense

information from the particular device in error. The Detail_Data field is contained in the err_rec structure.

This structure is defined in the /usr/include/sys/errids.h file. The sc_error_log_df structure, which

describes information contained in the Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Tape-Recovered Error Threshold Exceeded

The fields defined in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for recovered

errors that have exceeded the threshold counter, are:

 Comment Indicates the tape-recovered error threshold has been exceeded.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an

error report is generated.

Log Equals a value of True, which indicates an error-log entry should be created

when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of TEMP, which indicates a temporary failure.

Err_Desc Equals a value of 1331, which indicates a tape drive failure.

Prob_Causes Equal to 6314, which indicates the probable cause is the tape drive.

User_Causes Equal to 5100 and 7401, which indicates that the media is defective and the

read/write head is dirty, respectively.

User_Actions Equal to 1601 and 0000, which indicates that removable media should be

replaced and the operation retried and that problem-determination procedures

should be performed, respectively.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equal to 5003 and 6314, which indicates the cause is the tape and tape drive,

respectively.

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures

should be performed.

The Detail_Data field contains the command type, device and adapter status, and the request-sense

information from the particular device in error. This field is contained in the err_rec structure. The err_rec

structure is defined in the /usr/include/sys/errids.h file. The Detail_Data field also specifies the error type

of the threshold exceeded. The sc_error_log_df structure, which describes information contained in the

Detail_Data field, is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Tape SCSI Adapter-Detected Errors

The fields in the err_hdr structure, as defined in the /usr/include/sys/erec.h file for adapter-detected

errors, are:

 Comment Equal to a tape FC adapter-detected error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an

error report is generated.

Chapter 5. SCSI Subsystem 301

Log Equals a value of True, which indicates an error log entry should be created

when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of PERM, which indicates a permanent failure.

Err_Desc Equals a value of 1331, which indicates a tape drive failure.

Prob_Causes Equals values of 3300 and 6314, which indicates an adapter and tape drive

failure, respectively.

User_Causes None.

User_Actions Equals a value of 0000, which indicates that problem determination

procedures should be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals values of 3300 and 6314, which indicates an adapter and tape drive

failure, respectively.

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures

should be performed.

The Detail_Data field contains the command type and adapter status. This field is contained in the

err_rec structure, which is defined by the /usr/include/sys/err_rec.h file. Request-sense information is not

available with this type of error. The sc_error_log_df structure describes information contained in the

Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Tape Drive Cleaning Errors

Some tape drives return errors when they need cleaning. Errors that occur when the drive needs cleaning

are grouped under this class.

 Comment Indicates that the tape drive needs cleaning.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an

error report is generated.

Log Equals a value of True, which indicates an error log entry should be created

when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of TEMP, which indicates a temporary failure.

Err_Desc Equals a value of 1332, which indicates a tape operation error.

Prob_Causes Equals a value of 6314, which indicates that the probable cause is the tape

drive.

User_Causes Equal to 7401, which indicates a dirty read/write head.

User_Actions Equals a value of 0000, which indicates that problem determination

procedures should be performed.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of 6314, which indicates that the cause is the tape drive.

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures

should be performed.

The Detail_Data field contains the command type and adapter status, and also the request-sense

information from the particular device in error. This field is contained in the err_rec structure, which is

defined by the /usr/include/sys/errids.h file. The sc_error_log_df structure describes information

contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Error Record Values for Unknown Errors

Errors that occur for unknown reasons are grouped in this class. Data-protect errors fall into this class.

These errors, detected by the tape device driver, are never seen at the tape drive.

302 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The err_hdr structure for unknown errors describes the following fields:

 Comment Equal to a tape unknown error.

Class Equal to all error classes.

Report Equals a value of True, which indicates this error should be included when an

error report is generated.

Log Equals a value of True, which indicates an error log entry should be created

when this error occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of UNKN, which indicates the type of error is unknown.

Err_Desc Equals a value of 0xFE00, which indicates the error description is unknown.

Prob_Causes Equals the following values:

v 3300, which indicates a tape drive failure

v 5003, which indicates a tape failure

v 6314, which indicates an adapter failure

User_Causes None.

User_Actions None.

Inst_Causes None.

Inst_Actions None.

Fail_Causes Equals a value of 0xFFFF, which indicates the failure causes are unknown.

Fail_Actions Equals 0000, which indicates that problem-determination procedures should be

performed.

The Detail_Data field contains the command type and adapter status, and the request-sense information

from the particular device in error. The Detail_Data field is contained in the err_rec structure. This field is

contained in the /usr/include/sys/errids.h file. The sc_error_log_df structure describes information

contained in the Detail_Data field and is defined in the /usr/include/sys/scsi.h file.

Refer to the Fibre Channel (FC) Specification for the applicable device for the format of the particular

request-sense information.

Related Information

Special Files Overview in AIX Version 6.1 Files Reference.

FCP Subsystem Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts.

A Typical Initiator-Mode FCP Driver Transaction Sequence in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Required FCP Adapter Device Driver ioctl Commands in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

Understanding the Execution of Initiator I/O Requests in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

FCP Error Recovery in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

FCP Device Driver.

The close subroutine, ioctl or ioctlx subroutine, open, openx, or creat subroutine, read, readx, readv,

or readvx subroutine, write, writex, writev, or writevx subroutine.

Chapter 5. SCSI Subsystem 303

scsesdd SCSI Device Driver

Purpose

Device driver supporting the SCSI Enclosure Services device.

Syntax

#include <sys/devinfo.h>

#include <sys/scsi.h>

#include <sys/scses.h>

Description

The special files /dev/ses0, /dev/ses1, ..., provide I/O access and control functions to the SCSI enclosure

devices.

Typical SCSI enclosure services operations are implemented using the open, ioctl, and close

subroutines.

Open places the selected device in Exclusive Access mode. This mode is singularly entrant; that is, only

one process at a time can open it.

A device can be opened only if the device is not currently opened. If an attempt is made to open a device

and the device is already open, a value of -1 is returned and the errno global variable is set to a value of

EBUSY.

ioctl Subroutine

The following ioctl operations are available for SCSI Enclosure Services devices:

 Operation Description

IOCINFO Returns the devinfo structure defined in the /usr/include/sys/devinfo.h file.

SESIOCMD When the device has been successfully opened, this operation provides the means for issuing any

SCSI command to the specified enclosure. The device driver performs no error recovery or

logging-on failures of this ioctl operation.

The SCSI status byte and the adapter status bytes are returned via the arg parameter, which

contains the address of a sc_iocmd structure (defined in the /usr/include/sys/scsi.h file). If the

SESIOCMD operation returns a value of -1 and the errno global variable is set to a nonzero value,

the requested operation has failed. In this case, the caller should evaluate the returned status bytes

to determine why the operation failed and what recovery actions should be taken.

The devinfo structure defines the maximum transfer size for the command. If an attempt is made to

transfer more than the maximum, a value of -1 is returned and the errno global variable set to a

value of EINVAL. Refer to the Small Computer System Interface (SCSI) Specification for the

applicable device to get request sense information.

Device Requirements

The following hardware requirements exist for SCSI enclosure services devices:

v The device must support the SCSI-3 Enclosure Services Specification Revision 4 or later.

v The device can be addressed from a SCSI id different from the SCSI ids of the the SCSI devices inside

the enclosure.

v The device must be ″well behaved″, when receiving SCSI inquiries to page code 0xC7. This means that

if the device fails the inquiry to page code C7 with a check condition, then the check condition will be

cleared by the next SCSI command. An explicit request sense is not required.

304 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

v If the device reports its ANSI version to be 3 (SCSI-3) in the standard inquiry data, then it must correctly

reject all invalid requests for luns 8-31 (that is,the device cannot ignore the upper bits in Lun id and thus

cannot treat Lun 8 as being Lun 0, etc).

Error Conditions

Ioctl and open subroutines against this device fail in the following circumstances:

 Error Description

EBUSY An attempt was made to open a device already opened.

EFAULT An illegal user address was entered.

EINVAL The data buffer length exceeded the maximum defined in the devinfo structure for a SESIOCMD

ioctl operation.

EINVAL An unsupported ioctl operation was attempted.

EINVAL An attempt was made to configure a device that is still open.

EINVAL An illegal configuration command has been given.

EIO The target device cannot be located or is not responding.

EIO The target device has indicated an unrecovered hardware error.

EMFILE An open was attempted for an adapter that already has the maximum permissible number of

opened devices.

ENODEV An attempt was made to access a device that is not defined.

ENODEV An attempt was made to close a device that has not been defined.

ENXIO The ioctl subroutine supplied an invalid parameter.

EPERM The attempted subroutine requires appropriate authority.

ETIMEDOUT An I/O operation has exceeded the given timer value.

Reliability and Serviceability Information

The following errors are returned from SCSI enclosure services devices:

 Error Description

ABORTED COMMAN The device cancelled the command.

ADAPTER ERRORS The adapter returned an error.

GOOD COMPLETION The command completed successfully.

HARDWARE ERROR An unrecoverable hardware failure occurred during command execution or during a self

test.

ILLEGAL REQUEST An illegal command or command parameter.

MEDIUM ERROR The command terminated with a unrecovered media error condition.

NOT READY The logical unit is off-line or media is missing.

RECOVERED ERROR The command was successful after some recovery applied.

UNIT ATTENTION The device has been reset or the power has been turned on.

Files

 /dev/ses0,/dev/ses1...,/dev/sesn Provides an interface to allow SCSI device drivers

access to SCSI enclosure services devices.

Related Information

SCSI Subsystem Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts.

A Typical Initiator-Mode SCSI Driver Transaction Sequence in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

Chapter 5. SCSI Subsystem 305

Required SCSI Adapter Device Driver ioctl Commands in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

Understanding the Execution of Initiator I/O Requests in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

SCSI Error Recovery in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Understanding the sc_buf Structure in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

SCSI Adapter Device Driver.

scsisesdd SAM Device Driver

Purpose

Supports the Serial Attached SCSI Enclosure Services device.

Syntax

#include <sys/devinfo.h>

#include <sys/scsi.h>

#include <sys/scses.h>

Description

The special files /dev/ses0, /dev/ses1 ... provide I/O access and control functions to the SCSI enclosure

devices.

Typical SCSI enclosure services operations are implemented using the open, ioctl, and close

subroutines.

The open subroutine places the selected device in Exclusive Access mode. This mode is singularly

entrant; that is, only one process at a time can open it. A device can be opened only if it is not currently

opened. If an attempt is made to open a device that is already open, a value of -1 is returned and the

errno global variable is set to a value of EBUSY.

ioctl Subroutine

The following ioctl operations are available for SCSI Enclosure Services devices:

 Operation Description

IOCINFO Returns the devinfo structure defined in the /usr/include/sys/devinfo.h file.

306 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

SESPASSTHRU When a device has been successfully opened, this operation provides the means for

issuing any SCSI command to the specified enclosure. The device driver performs

no error recovery or logging-on failures of this ioctl operation.

The SCSI status byte and the adapter status bytes are returned through the arg

parameter, which contains the address of an sc_passthru structure (defined in the

/usr/include/sys/scsi.h file). If the SESPASSTHRU operation returns a value of -1

and the errno global variable is set to a nonzero value, the requested operation has

failed. In this case, the caller must evaluate the returned status bytes to determine

why the operation failed and what recovery actions must be taken.

The version field of the sc_passthru structure should be set to the value of

SCSI_VERSION_1, and SES does not support Variable length CDBs.

On completion of the SESPASSTHRU ioctl request, the residual field indicates the

leftover data that the device did not fully satisfy for this request. Upon successful

completion, the residual field indicates that the device does not have all the data

that was requested or the device has less than the amount of data that was

requested. Upon failure, the user needs to check the status_validity field to

determine if a valid SCSI bus problem exists. In this case, the residual field

indicates the number bytes that the device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command. If an

attempt is made to transfer more than the maximum transfer size, the subroutine

returns a value of -1, sets the errno global variable to a value of EINVAL, and sets

the einval_arg field to a value of SC_PASSTHRU_INV_D_LEN (defined in the

/usr/include/sys/scsi.h file). Refer to the Small Computer System Interface (SCSI)

Specification for the format of the request-sense data for a particular device.

Device Requirements

The following hardware requirements exist for SCSI enclosure services devices:

v The device must support the SCSI-3 Enclosure Services Specification Revision 4 or later.

v The device can be addressed from an SCSI ID different from the SCSI IDs of the SCSI devices inside

the enclosure.

v The device must be ″well behaved″, when receiving SCSI inquiries to page code 0xC7. This means that

if the device fails the inquiry to page code C7 with a check condition, then the check condition is

cleared by the next SCSI command. An explicit request sense is not required.

v If the device reports its ANSI version to be 3 (SCSI-3) in the standard inquiry data, then it must correctly

reject all requests that are not valid for luns 8-31 (that is, the device cannot ignore the upper bits in Lun

ID and thus cannot treat Lun 8 as being Lun 0, and so on).

Examples

This is the example code for filling the sc_passthru structure for the SESPASSTHRU ioctl to issue

Standard Inquiry SCSI CDB:

 struct sc_passthru passthru;

 passthru.version = SCSI_VERSION_1;

 passthru.timeout_value = 30;

 passthru.command_length = 6;

 passthru.q_tag_msg = SC_SIMPLE_Q;

 passthru.flags = B_READ;

 passthru.autosense_length = SENSE_LEN;

 passthru.autosense_buffer_ptr = &sense_data[0]; /* Buffer for Auto Sense Data */

 passthru.data_length = 0xFF;

 passthru.buffer = data; /* Data buffer address to store inquiry data */

 passthru.scsi_cdb[0] = SCSI_INQUIRY;

 passthru.scsi_cdb[1] = 0x00;

Chapter 5. SCSI Subsystem 307

passthru.scsi_cdb[2] = 00; /* Page Code */

 passthru.scsi_cdb[3] = 00;

 passthru.scsi_cdb[4] = 0xFF;

 passthru.scsi_cdb[5] = 0x00;

Error Conditions

ioctl and open subroutines against this device fail in the following circumstances:

 Error Description

EBUSY An attempt was made to open a device already opened.

EEXIST Device already exists in the device table.

ENOMEM Memory allocation failed.

EFAULT An illegal user address was entered.

EINVAL The data buffer length exceeded the maximum defined in the devinfo structure for a

SESPASSTHRU ioctl operation.

EINVAL An unsupported ioctl operation was attempted.

EINVAL An attempt was made to configure a device that is still open.

EINVAL An illegal configuration command was given.

EINVAL The variable_cdb_ptr or variable_cdb_length fields are set in the sc_passthru struct.

EIO The target device cannot be located or is not responding.

EIO The target device has indicated an unrecovered hardware error.

EMFILE An open operation was attempted for an adapter that already has the maximum

permissible number of opened devices.

ENODEV An attempt was made to access a device that was not defined.

ENODEV An attempt was made to close a device that was not defined.

ENXIO The parameter or device number supplied by the ioctl subroutine is not valid, or the

device is not configured.

EPERM The attempted subroutine requires appropriate authority.

ETIMEDOUT An I/O operation has exceeded the given timer value.

Files

 /dev/ses0, /dev/ses1... /dev/sesn Provides an interface to allow SCSI device drivers access to SCSI enclosure

services devices.

Related Information

SAM Subsystem Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts.

A Typical Initiator-Mode SAM Driver Transaction Sequence in AIX Version 6.1 Kernel Extensions and

Device Support Programming Concepts.

SAM Adapter Device Driver ioctl Commands in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Understanding the Execution of Initiator I/O Requests in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

SAM Error Recovery in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

308 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Understanding the scsi_buf Structure in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Parallel SCSI Adapter Device Driver

Purpose

Supports the SCSI adapter.

Syntax

<#include /usr/include/sys/scsi.h>

<#include /usr/include/sys/devinfo.h>

Description

The /dev/scsin and /dev/vscsin special files provide interfaces to allow SCSI device drivers to access

SCSI devices. These files manage the adapter resources so that multiple SCSI device drivers can access

devices on the same SCSI adapter simultaneously. The /dev/vscsin special file provides the interface for

the SCSI-2 Fast/Wide Adapter/A and SCSI-2 Differential Fast/Wide Adapter/A, while the /dev/scsin special

file provides the interface for the other SCSI adapters. SCSI adapters are accessed through the special

files /dev/scsi0, /dev/scsi1, and /dev/vscsi0, /dev/vscsi1,

The /dev/scsin and /dev/vscsin special files provide interfaces for access for both initiator and target

mode device instances. The host adapter is an initiator for access to devices such as disks, tapes, and

CD-ROMs. The adapter is a target when accessed from devices such as computer systems, or other

devices that can act as SCSI initiators.

Device-Dependent Subroutines

The SCSI adapter device driver supports only the open, close, and ioctl subroutines. The read and write

subroutines are not supported.

open and close Subroutines

The openx subroutine provides an adapter diagnostic capability. The openx subroutine provides an ext

parameter. This parameter selects the adapter mode and accepts the SC_DIAGNOSTIC value. This value

is defined in the /usr/include/sys/scsi.h file and places the adapter in Diagnostic mode.

Note: Some of the SCSI adapter device driver’s open and close subroutines do not support the diagnostic

mode ext parameter. (SC_DIAGNOSTIC). If such an open is attempted, the subroutine returns a

value of -1 and the errno global value is set to EINVAL. The standalone diagnostic package

provides all diagnostic capability.

In Diagnostic mode, only the close subroutine and ioctl operations are accepted. All other valid

subroutines to the adapter return a value of -1 and set the errno global variable to a value of EACCES. In

Diagnostic mode, the SCSI adapter device driver can accept the following requests:

v Run various adapter diagnostic tests.

v Download adapter microcode.

The openx subroutine requires appropriate authority to run. Attempting to run this subroutine without the

proper authority causes the subroutine to return a value of -1, and set the errno global variable value to

EPERM. Attempting to open a device already opened for normal operation, or when another openx

subroutine is in progress, causes the subroutine to return a value of -1, and set the errno global variable

to a value of EACCES.

Chapter 5. SCSI Subsystem 309

Any kernel process can open the SCSI adapter device driver in Normal mode. For Normal mode the ext

parameter is set to 0. However, a non-kernel process must have at least dev_config authority to open the

SCSI adapter device driver in Normal mode. Attempting to execute a normal open subroutine without the

proper authority causes the subroutine to return a value of -1, and set the errno global variable to a value

of EPERM.

ioctl Subroutine

Along with the IOCINFO operation, the SCSI device driver defines specific operations for devices in

non-diagnostic and diagnostic mode.

The IOCINFO operation is defined for all device drivers that use the ioctl subroutine, as follows:

v The operation returns a devinfo structure. This structure is defined in the /usr/include/sys/devinfo.h

file. The device type in this structure is DD_BUS, and the subtype is DS_SCSI. The flags field is not

used and is set to 0. Diagnostic mode is not required for this operation.

v The devinfo structure includes unique data such as the card SCSI ID and the maximum initiator mode

data transfer size allowed (in bytes). A calling SCSI device driver uses this information to learn the

maximum transfer size allowed for a device it controls on the SCSI adapter. In this way, the SCSI

device driver can control devices across various SCSI adapters, with each device possibly having a

different maximum initiator mode transfer size.

SCSI ioctl Operations for Adapters in Non-Diagnostic mode: The non-diagnostic operations are SCSI

adapter device driver functions, rather than general device driver facilities. SCSI adapter device driver ioctl

operations require that the adapter device driver is not in diagnostic mode. If these operations are

attempted while the adapter is in diagnostic mode, a value of -1 is returned and the errno global variable

is set to a value of EACCES.

The following SCSI operations are for adapters in non-diagnostic mode:

 Operation Description

SCIODNLD Provides the means to download microcode to the adapter. The IBM SCSI-2 Fast/Wide

Adapter/A device driver does not support this operation. Microcode download for the

Fast/Wide adapter is supported in the standalone diagnostics package only.

SCIOEVENT Registers the selected SCSI device instance to receive asynchronous event notification.

SCIOGTHW Allows the caller to verify SCSI adapter device driver support for gathered writes.

SCIOHALT Aborts the current command (if there is one), clears the queue of any pending commands,

and places the device queue in a halted state for a particular device.

SCIOINQU Provides the means to issue an inquire command to a SCSI device.

SCIOREAD Sends a single block read command to the selected SCSI device.

SCIORESET Allows the caller to force a SCSI device to release all current reservations, clear all current

commands, and return to an initial state.

SCIOSTART Opens a logical path to a SCSI target device. The host SCSI adapter acts as an initiator.

SCIOSTARTTGT Opens a logical path to a SCSI initiator device. The host SCSI adapter acts as a target.

SCIOSTOP Closes the logical path to a SCSI target device, where the SCSI adapter acts as an initiator.

SCIOSTOPTGT Closes the logical path to a SCSI initiator device, where the host SCSI adapter was acting as

a target.

SCIOSTUNIT Provides the means to issue a SCSI Start Unit command to a selected SCSI device.

SCIOTUR Sends a Test Unit Ready command to the selected SCSI device.

SCSI ioctl Operations for Adapters in Diagnostic Mode: The following operations for the ioctl

subroutine are allowed only when the adapter has been successfully opened in Diagnostic mode. If these

commands are attempted for an adapter not in Diagnostic mode, a value of -1 is returned and the errno

global variable is set to a value of EACCES.

 Operation Description

SCIODIAG Provides the means to issue adapter diagnostic commands.

310 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

SCIODNLD Provides the means to download microcode to the adapter.

SCIOTRAM Provides the means to issue various adapter commands to test the card DMA interface and buffer

RAM.

Note: Some of the SCSI adapter device drivers do not support the diagnostic mode ioctl operations.

To allow these operations to be run on multiple SCSI adapter card interfaces, a special return value is

defined. A return value of -1 with an errno value of ENXIO indicates that the requested ioctl subroutine is

not applicable to the current adapter card. This return value should not be considered an error for

commands that require Diagnostic mode for execution.

Summary of SCSI Error Conditions

Possible errno values for the adapter device driver are:

 Value Description

EACCES Indicates that an openx subroutine was attempted while the adapter had one or more devices

in use.

EACCES Indicates that a subroutine other than ioctl or close was attempted while the adapter was in

Diagnostic mode.

EACCES Indicates that a call to the SCIODIAG command was attempted while the adapter was not in

Diagnostic mode.

EBUSY Indicates that a delete operation was unsuccessful. The adapter is still open.

EFAULT Indicates that the adapter is registering a diagnostic error in response to the SCIODIAG

command. The SCIODIAG resume option must be issued to continue processing.

EFAULT Indicates that a severe I/O error has occurred during an SCIODNLD command. Discontinue

operations to this card.

EFAULT Indicates that a copy between kernel and user space failed.

EINVAL Indicates an invalid parameter or that the device has not been opened.

EIO Indicates an invalid command. A SCIOSTART operation must be executed prior to this

command, or an invalid SCSI ID and LUN combination must be passed in.

EIO Indicates that the command has failed due to an error detected on the adapter or the SCSI

bus.

EIO Indicates that the device driver was unable to pin code.

EIO Indicates that a kernel service failed, or that an unrecoverable I/O error occurred.

ENOCONNECT Indicates that a SCSI bus fault occurred.

ENODEV Indicates that the target device cannot be selected or is not responding.

ENOMEM Indicates that the command could not be completed due to an insufficient amount of memory.

ENXIO Indicates that the requested ioctl is not supported by this adapter.

EPERM Indicates that the caller did not have the required authority.

ETIMEDOUT Indicates that a SCSI command or adapter command has exceeded the time-out value.

Reliability and Serviceability Information

Errors detected by the adapter device driver may be one of the following:

v Permanent adapter or system hardware errors

v Temporary adapter or system hardware errors

v Permanent unknown adapter microcode errors

v Temporary unknown adapter microcode errors

v Permanent unknown adapter device driver errors

v Temporary unknown adapter device driver errors

v Permanent unknown system errors

Chapter 5. SCSI Subsystem 311

v Temporary unknown system errors

v Temporary SCSI bus errors

Permanent errors are either errors that cannot be retried or errors not recovered before a prescribed

number of retries has been exhausted. Temporary errors are either noncatastrophic errors that cannot be

retried or retriable errors that are successfully recovered before a prescribed number of retries has been

exhausted.

Error-Record Values for Permanent Hardware Errors

The error record template for permanent hardware errors detected by the SCSI adapter device driver is

described below. Refer to the rc structure for the actual definition of the detail data. The rc structure is

defined in the /usr/include/sys/scsi.h file:

 SCSI_ERR1:

Field Description

Comment Permanent SCSI adapter hardware error.

Class H, indicating a hardware error.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type PERM, indicating a permanent failure.

Err_Desc 0x1010, indicating an adapter error.

Prob_Causes The following:

0x3330 Adapter hardware

0x3400 Cable

0x3461 Cable terminator

0x6000 Device

Fail_Causes The following:

0x3300 Adapter

0x3400 Cable loose or defective

0x6000 Device

Fail_Actions The following:

0x000 Perform problem determination procedures.

0x0301 Check the cable and its connections.

Detail_Data1 108, 11, and HEX

Error-Record Values for Temporary Hardware Errors

The error record template for temporary hardware errors detected by the SCSI adapter device driver

follows:

 SCSI_ERR2:

Field Description

Comment Temporary SCSI adapter hardware error.

Class H, indicating a hardware error.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error-log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type TEMP, indicating a temporary failure.

Err_Desc 0x1010, indicating an adapter error.

312 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

SCSI_ERR2:

Field Description

Prob_Causes The following:

0x3330 Adapter hardware

0x3400 Cable

0x3461 Cable terminator

0x6000 Device

Fail_Causes The following:

0x3300 Adapter

0x3400 Cable loose or defective

0x6000 Device

Fail_Actions The following:

0x000 Perform problem-determination procedures.

0x0301 Check the cable and its connections.

Detail_Data1 108, 11, and HEX

Error-Record Values for Permanent Unknown Adapter Microcode Errors

The error-record template for permanent unknown SCSI adapter microcode errors detected by the SCSI

adapter device driver follows:

 SCSI_ERR3:

Field Description

Comment Permanent SCSI adapter software error.

Class H, indicating a hardware error.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type PERM, indicating a permanent failure.

Err_Desc 0x6100, indicating an adapter error.

Prob_Causes 0x3331, indicating an adapter microcode.

Fail_Causes 0x3300, indicating the adapter.

Fail_Actions The following:

0x000 Perform problem determination procedures.

0x3301 If the problem persists (0x3000) contact the appropriate service representatives.

Detail_Data1 108, 11 and HEX

Error-Record Values for Temporary Unknown Adapter Microcode Errors

The error-record template for temporary unknown SCSI adapter microcode errors detected by the SCSI

adapter device driver follows:

 SCSI_ERR4:

Field Description

Comment Temporary unknown SCSI adapter software error.

Class H.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type TEMP, indicating a temporary failure.

Err_Desc Equal to 0x6100, indicating a microcode program error.

Prob_Causes 3331, indicating adapter microcode.

Chapter 5. SCSI Subsystem 313

SCSI_ERR4:

Field Description

Fail_Causes 3300, indicating the adapter.

Fail_Actions The following:

0x000 Perform problem determination procedures.

0x3301 If the problem persists then (0x3000) contact the appropriate service

representatives.

Detail_Data1 108, 11, and HEX

Error-Record Values for Permanent Unknown Adapter Device Driver Errors

The error-record template for permanent unknown SCSI adapter device driver errors detected by the SCSI

adapter device driver follows:

 SCSI_ERR5:

Field Description

Comment Permanent unknown driver error.

Class S.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type PERM, indicating a permanent failure.

Err_Desc 0x2100, indicating a software program error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x3301, indicating that if the problem persists, then (0x3000) contact the appropriate service

representatives.

Detail_Data1 108, 11, and HEX

Error-Record Values for Temporary Unknown Adapter Device Driver Errors

The error-record template for temporary unknown SCSI adapter device driver errors detected by the SCSI

adapter device driver follows:

 SCSI_ERR6:

Field Description

Comment Temporary unknown driver error.

Class S.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type TEMP, indicating a temporary failure.

Err_Desc 0x2100, indicating a software program error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x3301, indicating that if the problem persists then (0x3000) contact the appropriate service

representatives.

Detail_Data1 108, 11, and HEX

Error-Record Values for Permanent Unknown System Errors

The error-record template for permanent unknown system errors detected by the SCSI adapter device

driver follows:

 SCSI_ERR7:

Field Description

Comment Permanent unknown system error.

314 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

SCSI_ERR7:

Field Description

Class H.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type UNKN, indicating an unknown error.

Err_Desc 0xFE00, indicating an undetermined error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x0000 and 0x3301, indicating that problem-determination procedures should be performed; if

the problem persists, then (0x3000) contact the appropriate service representatives.

Detail_Data1 108, 11, and HEX

Error-Record Values for Temporary Unknown System Errors

The error-record template for temporary unknown system errors detected by the SCSI adapter device

driver follows:

 SCSI_ERR8:

Field Description

Comment Temporary unknown system error.

Class H.

Report TRUE, indicating this error should be included when an error report is generated.

Log TRUE, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type UNKN, indicating an unknown error.

Err_Desc 0xFE00, indicating an undetermined error.

Prob_Causes 0X1000, indicating a software program.

Fail_Causes 0X1000, indicating a software program.

Fail_Actions 0x0000 and 0x3301, indicating that problem-determination procedures should be performed; if

the problem persists, then (0x3000) contact the appropriate service representatives.

Detail_Data1 108, 11, and HEX

Error-Record Values for Temporary SCSI Bus Errors

The error-record template for temporary SCSI bus errors by the SCSI adapter device driver follows:

 SCSI_ERR10:

Field Description

Comment Temporary SCSI bus error.

Class H, indicating a hardware error.

Report True, indicating an error log entry should be created when this error occurs.

Alert FALSE, indicating this error is not alertable.

Err_Type TEMP, indicating a termporary failure.

Err_Desc 0x942, indicating a SCSI bus error.

Prob_Causes The following:

0x3400 Cable

0x3461 Cable terminator

0x6000 Device

0x3300 Adapter Hardware

Chapter 5. SCSI Subsystem 315

SCSI_ERR10:

Field Description

Fail_Causes The following:

0x3400 Cable loose or defective

0x6000 Device

0x3300 Adapter

Fail_Actions The following:

0x000 Perform problem determination procedures.

0x0301 Check the cable and its connections.

Detail_Data 108, 11, and HEX.

Managing Dumps

The SCSI adapter device driver is a target for the system dump facility. The DUMPINIT and DUMPSTART

options to the dddump entry point support multiple or redundant calls.

The DUMPQUERY option returns a minimum transfer size of 0 bytes and a maximum transfer size equal

to the maximum transfer size supported by the SCSI adapter device driver.

To be processed, calls to the SCSI adapter device driver DUMPWRITE option should use the arg

parameter as a pointer to the sc_buf structure. Using this interface, a SCSI write command can be run on

a previously started (opened) target device. The uiop parameter is ignored by the SCSI adapter device

driver. Spanned, or consolidated, commands are not supported using DUMPWRITE.

Note: The various sc_buf status fields, including the b_error field, are not set at completion of the

DUMPWRITE. Error logging is, of necessity, not supported during the dump.

Successful completion of the dddump entry point is indicated by a 0. If unsuccessful, the entry point

returns one of the following:

 Value Description

EINVAL Indicates that the adapter device driver was passed a request that was not valid, such as

attempting a DUMPSTART option before successfully executing a DUMPINIT option.

EIO Indicates that the adapter device driver was unable to complete the command due to a lack of

required resources or due to an I/O error.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed command time-out value

expired.

Files

 /dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The scdisk SCSI device driver, rmt SCSI device driver, tmscsi SCSI device driver.

316 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

SCIOCMD SCSI Adapter Device Driver ioctl Operation

Purpose

Provides a means to issue any SCSI command to a SCSI device.

Description

The SCIOCMD operation allows the caller to issue a SCSI command to a selected adapter. This command

can be used by system management routines to aid in the configuration of SCSI devices.

The arg parameter for the SCIOCMD operation is the address of a sc_passthru structure, which is

defined in the /usr/include/sys/scsi.h field. The sc_passthru parameter allows the caller to select which

SCSI and LUN IDS to send the command.

The SCSI status byte and the adapter status bytes are returned through the sc_passthru structure. If the

SCIOCMD operation returns a value of -1 and the errno global variable is set to a nonzero value, the

requested operation has failed. If this happens, the caller should evaluate the returned status bytes to

determine why the operation failed and what recovery actions should be taken.

If the SCIOCMD operation fails because a field in the sc_passthru structure has an invalid value, the

subroutine will return a value of -1, the errno global variable will be set to EINVAL, and the einval_arg

field will be set to the field number (starting with 1 for the version field) of the field that had an invalid

value. A value of 0 for the einval_arg field indicates no additional information is available.

Note: The following two paragraphs pertain only to AIX 5.2 with 5200-03 and later.
The version field of the sc_passthru structure can be set to the value of SC_VERSION_2 in the

/usr/include/sys/scsi.h file, and the user can provide the following fields:

v variable_cdb_ptr is a pointer to a buffer that contains the Variable SCSI cdb.

v variable_cdb_length determines the length of the cdb variable to which the variable_cdb_ptr field

points.

On completion of the SCIOCMD ioctl request, the residual field will indicate the leftover data that device

did not fully satify for this request. On a successful completion, the residual field would indicate the device

does not have the all data that is requested or the device has less then the amount of data that is

requested. On a failure completion, the user needs to check the status_validity field to determine if a

valid SCSI bus problem exists. In this case, the residual field would indicate the number bytes that the

device failed to complete for this request.

The devinfo structure defines the maximum transfer size for the command. If an attempt is made to

transfer more than the maximum transfer size, the subroutine returns a value of -1, sets the errno global

variable to a value of EINVAL, and sets the einval_arg field to a value of 18.

Refer to the Small Computer System Interface (SCSI) Specification to find out the format of the

request-sense data for a particular device.

Return Values

The SCIOCMD operation returns a value of 0 when successfully completed. If unsuccessful, a value of -1

is returned, and the errno global variable is set to one of the following values:

Chapter 5. SCSI Subsystem 317

EIO A system error has occurred. Consider retrying the

operation several (three) times, because another attempt

may be successful. If an EIO error occurs and the

status_validity field is set to SC_SCSI_ERROR, the

scsi_status field has a valid value and should be

inspected.

If the status_validity field is zero and remains so on

successive retries, an unrecoverable error has occurred.

If the status_validity field is SC_SCSI_ERROR and the

scsi_status field contains a Check Condition status, a

SCSI request sense should be issued using the

SCIOCMD ioctl to recover the sense data.

EFAULT A user process copy has failed.

EINVAL The device is not opened, or the caller has set a field in

the sc_passthru structure to an invalid value.

EACCES The adapter is in diagnostics mode.

ENOMEM A memory request has failed.

ETIMEDOUT The command has timed out. Consider retrying the

operation several times, because another attempt may be

successful.

ENODEV The device is not responding.

ETIMEDOUT The operation did not complete before the timeout value

was exceeded.

Files

 /dev/scsi0, /dev/scsi1, ... /dev/scsin Provides an interface for all SCSI device drivers to

access SCSI devices or adapters.

Related Information

“Parallel SCSI Adapter Device Driver” on page 309.

SCIODIAG (Diagnostic) SCSI Adapter Device Driver ioctl Operation

Purpose

Provides the means to issue adapter diagnostic commands.

Description

The SCIODIAG operation allows the caller to issue various adapter diagnostic commands to the selected

SCSI adapter. These diagnostic command options are:

v Run the card Internal Diagnostics test

v Run the card SCSI Wrap test

v Run the card Read/Write Register test

v Run the card POS Register test

v Run the card SCSI Bus Reset test

318 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

An additional option allows the caller to resume the card Internal Diagnostics test from the point of a

failure, which is indicated by the return value. The arg parameter for the SCIODIAG operation specifies the

address of a sc_card_diag structure. This structure is defined in the /usr/include/sys/scsi.h file.

The actual adapter error-status information from each error reported by the card diagnostics is passed as

returned parameters to the caller. Refer to the sc_card_diag structure defined in the /usr/include/sys/
scsi.h file for the format of the returned data.

When the card diagnostics have completed (with previous errors), a value of ENOMSG is returned. At this

point, no further SCIODIAG resume options are required, as the card internal diagnostics test has

completed.

Adapter error status is always returned when a SCIODIAG operation results in an errno value of EFAULT.

Because this error information is returned for each such volume, the final ENOMSG value returned for the

card Internal Diagnostics test includes no error status information. Also, because this is a diagnostic

command, these errors are not logged in the system error log.

Note: The SCSI adapter device driver performs no internal retries or other error-recovery procedures

during execution of this operation. Error logging is also inhibited when running this command.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to one of the following values:

 Value Description

EFAULT Indicates that a bad copy between user and kernel space occurred.

EFAULT For the integrated SCSI adapter on the 7008 and 7011 system models, this return value also

indicates that the SCSI adapter device driver detected an error while attempting to run the

SCIODIAG operation. In this case, the returned adapter status information must be analyzed to

discover the cause of the error. Because this is a diagnostic command, this error is not logged in

the system error log.

For all other SCSI adapters, this value indicates that the card internal diagnostics have detected an

error and paused. To continue, the caller must issue another SCIODIAG operation with the resume

option. In response to this option, the card continues the diagnostics until either the end is reached

or another error is detected. The caller must continue to issue SCIODIAG operations until the

EFAULT error no longer returns.

EINVAL Indicates a bad input parameter.

EIO Indicates that the SCSI adapter device driver detected an error while attempting to run the

SCIODIAG operation. In this case, the returned adapter status information must be analyzed to

discover the cause of the error. Because this is a diagnostic command, this error is not logged in

the system error log.

ENOMSG Indicates that the card Internal Diagnostics test has completed.

ENXIO Indicates that the operation or suboption selected is not supported on this adapter. This should not

be treated as an error. The caller must check for this return value first (before checking for other

errno values) to avoid mistaking this for a failing command.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed command time-out value

expired. The SCIODIAG operation is a diagnostic command, so its errors are not logged in the

system error log.

Files

 /dev/scsi0, /dev/scsi1,..., /dev/scsin

 Provide an interface to allow SCSI device

drivers to access SCSI devices/adapters.

Chapter 5. SCSI Subsystem 319

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

SCIODNLD (Download) SCSI Adapter Device Driver ioctl Operation

Purpose

Provides the means to download microcode to the adapter.

Description

The SCIODNLD operation provides for downloading microcode to the selected adapter. This operation can

be used by system management routines to prepare the adapter for operation. The adapter can be

opened in Normal or Diagnostic mode when the SCIODNLD operation is run.

There are two options for executing the SCIODNLD operation. The caller can either download microcode

to the adapter or query the version of the currently downloaded microcode.

If the download microcode option is selected, a pointer to a download buffer and its length must be

supplied in the caller’s memory space. The maximum length of this microcode is adapter-dependent. If the

adapter requires transfer of complete blocks, the microcode to be sent must be padded to the next largest

block boundary. The block size, if any, is adapter-dependent. Refer to the reference manual for the

particular SCSI adapter to find the adapter-specific requirements of the microcode buffer to be

downloaded.

The SCSI adapter device driver validates the parameter values for such things as maximum length and

block boundaries, as required. The arg parameter for the SCIODNLD operation specifies the address of a

sc_download structure. This structure is defined in the /usr/include/sys/scsi.h file.

If the query version option is selected, the pointer and length fields in the passed parameter block are

ignored. On successful completion of the SCIODNLD operation, the microcode version is contained in the

version_number field.

The SCSI adapter device driver performs normal error-recovery procedures during execution of the

SCIODNLD operation.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to one of the following values:

 Value Description

EFAULT Indicates that a severe I/O error has occurred, preventing completion of the download. In this case,

further operations are not possible on the card, and the caller should discontinue commands to the

card. The adapter error-status information is logged in the system error log.

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that the adapter device driver was unable to run the command due to incorrect input

parameters. Check microcode length and block boundary for errors.

EIO Indicates that the adapter device driver was unable to complete the command due to an

unrecoverable I/O error or microcode cyclical redundancy check (CRC) error. If the card has

on-board microcode, it may be able to continue running, and further commands may still be

possible on this adapter. The adapter error-status information is logged in the system error log.

ENOMEM Indicates insufficient memory is available to complete the command.

ENXIO Indicates that the operation or suboption selected is not supported on this adapter and should not

be treated as an error. The caller must check for this return value first (before checking for other

errno values) to avoid mistaking this for a failing command.

320 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Value Description

ETIMEDOUT Indicates that the adapter did not respond with status before the passed command time-out value

expired. Since the download operation may not have completed, further operations on the card

may not be possible. The caller should discontinue sending commands to the card. This error is

also logged in the system error log.

Files

 /dev/scsi0, /dev/scsi1,..., /dev/scsin

 Provide an interface to allow SCSI device

drivers to access SCSI devices and

adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

SCSI Subsystem Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts.

SCIOEVENT (Event) SCSI Adapter Device Driver ioctl Operation

Purpose

Registers the selected SCSI device instance to receive asynchronous event notification.

Description

The SCIOEVENT operation registers the selected initiator or target-mode device for receiving

asynchronous event notification. Only kernel mode processes or device drivers can call this function. If a

user-mode process attempts an SCIOEVENT operation, the ioctl command is unsuccessful and the errno

global value is set to EPERM.

The arg parameter to the SCIOEVENT operation should be set to the address of an sc_event_struct

structure, which is in the /usr/include/sys/scsi.h file. If this is a target-mode instance, the

SCIOSTARTTGT operation was used to open the device session; the caller then fills in the ID field with

the SCSI ID of the SCSI initiator and sets the logical unit number (LUN) field to a value of 0. If this is an

initiator-mode instance, the SCIOSTART operation was used to open the device session; the ID field is

then set to the SCSI ID of the SCSI target, and the LUN is set to the LUN ID of the SCSI target. The

device must have been previously opened using one of the start ioctls for this operation to succeed. If the

device session is not opened, the ioctl command is unsuccessful and the returned errno global value is

set to EINVAL.

The event registration performed by this ioctl is only allowed once per device session; only the first

SCIOEVENT operation is accepted after the device is opened. Succeeding SCIOEVENT operations are

unsuccessful, and the errno global value is set to EINVAL. The event registration is cancelled

automatically when the device session is closed.

The caller fills in the mode field with one of the following values, which are defined in the

/usr/include/sys/scsi.h file:

#define SC_IM_MODE /* this is an initiator mode device */

#define SC_TM_MODE /* this is a target mode device */

Chapter 5. SCSI Subsystem 321

The async_func field is filled in with the address of a pinned routine (in the calling program) that should be

called by the SCSI adapter device driver whenever asynchronous event status is available for a registered

device. The struct sc_event_info structure, defined in the /usr/include/sys/scsi.h file, is passed by

address to the caller’s async_func routine.

The async_correlator field can optionally be used by the caller to provide an efficient means of

associating event information with the appropriate device. This field is saved by the SCSI adapter device

driver and is returned, unchanged, with information passed back to the caller’s async_func routine.

Reserved fields must be set to 0 by the caller.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to one of the following values:

 Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Either an SCIOSTART or SCIOSTARTTGT operator has not been issued to this device instance, or this

device is already registered for async events.

EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to execute this

operation.

Files

 /dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

SCIOGTHW (Gathered Write) SCSI Adapter Device Driver ioctl

Operation

Purpose

Allows the caller to verify that the SCSI adapter device driver to which this device instance is attached

supports gathered writes.

Description

This operation allows the caller to verify that the gathered write function is supported by the SCSI adapter

device driver before the caller attempts such an operation. The SCIOGTHW operation fails if a SCSI

adapter device driver does not support gathered writes.

The arg parameter to the SCIOGTHW operation is set to null by the caller to indicate no input parameter

is passed.

Note: This operation is not supported by all SCSI I/O Controllers. If not supported, errno is set to EINVAL

and a value of -1 is returned.

322 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

When completed successfully, the SCIOGTHW operation returns a value of 0, meaning gathered writes

are supported. Otherwise, a value of -1 is returned and errno global variable is set to EINVAL.

Files

 /dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

SCSI Adapter device driver.

SCIOHALT (Halt) SCSI Adapter Device Driver ioctl Operation

Purpose

Ends the current command (if there is one), clears the queue of any pending commands, and places the

device queue in a halted state.

Description

The SCIOHALT operation allows the caller to end the current command (if there is one) to a selected

device, clear the queue of any pending commands, and place the device queue in a halted state. The

command causes the attached SCSI adapter to execute a SCSI abort message to the selected target

device. This command is used by an upper-level SCSI device driver to end a running operation instead of

waiting for the operation to complete or time out.

Once the SCIOHALT operation is sent, the calling device driver must set the SC_RESUME flag. This bit is

located in the flags field of the next sc_buf structure to be processed by the SCSI adapter device driver.

Any sc_buf structure sent without the SC_RESUME flag, after the device queue is in the halted state, is

rejected.

The arg parameter to the SCIOHALT operation allows the caller to specify the SCSI identifier of the device

to be reset. The least significant byte in the arg parameter is the LUN ID (logical unit number identifier) of

the LUN on the SCSI controller to be halted. The next least significant byte is the SCSI ID. The remaining

two bytes are reserved and must be set to a value of 0.

The SCSI adapter device driver performs normal error-recovery procedures during execution of this

command. For example, if the abort message causes the SCSI bus to hang, a SCSI bus reset is initiated

to clear the condition.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned, and

the errno global variable is set to one of the following values:

 Value Description

EINVAL Indicates a SCIOSTART operation was not issued prior to this operation.

EIO Indicates an unrecoverable I/O error occurred. In this case, the adapter error-status information

is logged in the system error log.

EIO Indicates either the device is already stopping or the device driver was unable to pin code.

ENOCONNECT Indicates a SCSI bus fault occurred.

Chapter 5. SCSI Subsystem 323

Value Description

ENODEV Indicates the target SCSI ID could not be selected or is not responding. This condition is not

necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with status before the internal command time-out value

expired. This error is logged in the system error log.

Files

 /dev/scsi0, /dev/scsi1, ..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices and adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

SCIOINQU (Inquiry) SCSI Adapter Device Driver ioctl Operation

Purpose

Provides the means to issue an inquiry command to a SCSI device.

Description

The SCIOINQU operation allows the caller to issue a SCSI device inquiry command to a selected adapter.

This command can be used by system management routines to aid in configuration of SCSI devices.

The arg parameter for the SCIOINQU operation is the address of an sc_inquiry structure. This structure is

defined in the /usr/include/sys/scsi.h file. The sc_inquiry parameter block allows the caller to select the

SCSI and LUN IDs to be queried.

The SC_ASYNC flag byte of the parameter block must not be set on the initial call to this operation. This

flag is only set if a bus fault occurs and the caller intends to attempt more than one retry.

If successful, the returned inquiry data can be found at the address specified by the caller in the

sc_inquiry structure. Successful completion occurs if a device responds at the requested SCSI ID, but the

returned inquiry data must be examined to see if the requested LUN exists. Refer to the Small Computer

System Interface (SCSI) Specification for the applicable device for the format of the returned data.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of this

command.

Return Values

When completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to one of the following values:

 Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that a SCIOSTART command was not issued prior to this command.

324 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Value Description

EIO Indicates that an unrecoverable I/O error has occurred. If EIO is returned, the caller should

retry the SCIOINQU operation since the first command may have cleared an error condition

with the device. In case of an unrecovered error, the adapter error-status information is logged

in the system error log.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with the

SC_ASYNC flag set in the flag byte of the passed parameters. If more than one retry is

attempted, only the last retry should be made with the SC_ASYNC flag set. Generally the SCSI

adapter device driver cannot determine which device caused the SCSI bus fault, so this error is

not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID. This return value implies

that no LUNs exist on the requested SCSI ID. Therefore, when the ENODEV return value is

encountered, the caller can skip this SCSI ID (and all LUNs on it) and go on to the next SCSI

ID. This condition is not necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates that the adapter did not respond with a status before the internal command time-out

value expired. On receiving the ETIMEDOUT return value, the caller should retry this command

at least once, since the first command may have cleared an error condition with the device.

This error is logged in the system error log.

Files

 /dev/scsi0, /dev/scsi1, ..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices/adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

SCIOREAD (Read) SCSI Adapter Device Driver ioctl Operation

Purpose

Issues a single block SCSI read command to a selected SCSI device.

Description

The SCIOREAD operation allows the caller to issue a SCSI device read command to a selected adapter.

System management routines use this command for configuring SCSI devices.

The arg parameter of the SCIOREAD operation is the address of an sc_readblk structure. This structure

is defined in the /usr/include/sys/scsi.h header file.

This command results in the SCSI adapter device driver issuing a 6-byte format ANSI SCSI-1 read

command. The command is set up to read only a single block. The caller supplies:

v Target device SCSI and LUN ID

v Logical block number to be read

v Length (in bytes) of the block on the device

v Time-out value (in seconds) for the command

v Pointer to the application buffer where the returned data is to be placed

v Flags parameter

Chapter 5. SCSI Subsystem 325

The maximum block length for this command is 4096 bytes. The command will be rejected if the length is

found to be larger than this value.

The SC_ASYNC flag of the flag parameter must not be set on the initial call to this operation. This flag is

set only if a bus fault occurs and only if this is the caller’s last retry attempt after this error occurs.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of this

command.

Return Values

When completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to one of the following values:

 Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that an SCIOSTART command was not issued prior to this command. If the

SCIOSTART command was issued, then this indicates the block length field value is too large.

EIO Indicates that an I/O error has occurred. If an EIO value is returned, the caller should retry the

SCIOREAD operation since the first command may have cleared an error condition with the

device. In the case of an adapter error, the system error log records the adapter error status

information.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with the

SC_ASYNC flag set in the flag byte of the passed parameters. If more than one retry is

attempted, only the last retry should be made with the SC_ASYNC flag set. Generally, the

SCSI adapter device driver cannot determine which device caused the bus fault, so this error is

not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID. This return value implies

that no logical unit numbers (LUNs) exist on the specified SCSI ID. This condition is not

necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with status before the internal time-out value expired. The

caller should retry this command at least once, since the first command may have cleared an

error condition with the device. The system error log records this error.

Files

 /dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices/adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

SCIORESET (Reset) SCSI Adapter Device Driver ioctl Operation

Purpose

Allows the caller to force a SCSI device to release all current reservations, clear all current commands,

and return to an initial state.

326 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Description

The SCIORESET operation allows the caller to force a SCSI device to release all current reservations,

clear all current commands, and return to an initial state. This operation is used by system management

routines to force a SCSI controller to release a competing SCSI initiator’s reservation in a multi-initiator

environment.

This operation actually executes a SCSI bus device reset (BDR) message to the selected SCSI controller

on the selected adapter. The BDR message is directed to a SCSI ID. Therefore, all logical unit numbers

(LUNs) associated with that SCSI ID are affected by the execution of the BDR.

For the operation to work effectively, a SCSI Reserve command should be issued after the SCIORESET

operation through the appropriate SCSI device driver. Typically, the SCSI device driver open logic issues a

SCSI Reserve command. This prevents another initiator from claiming the device.

There is a finite amount of time between the release of all reservations (by a SCIORESET operation) and

the time the device is again reserved (by a SCSI Reserve command from the host). During this interval,

another SCSI initiator can reserve the device instead. If this occurs, the SCSI Reserve command from this

host fails and the device remains reserved by a competing initiator. The capability needed to prevent or

recover from this event is beyond the SCSI adapter device driver and SCSI device driver components.

The arg parameter to the SCIORESET operation allows the caller to specify the SCSI ID of the device to

be reset. The least significant byte in the arg parameter is the LUN ID of the LUN on the SCSI controller.

The device indicated by the LUN ID should have been successfully started by a call to the SCIOSTART

operation. The next least significant byte is the SCSI ID. The remaining two bytes are reserved and must

be set to a value of 0.

Examples

1. The following example demonstrates actual use of this command. A SCSI ID of 1 is assumed, and an

LUN of 0 exists on this SCSI controller.

open SCSI adapter device driver

SCIOSTART SCSI ID=1, LUN=0

SCIORESET SCSI ID=1, LUN=0 (to free any reservations)

SCIOSTOP SCSI ID=1, LUN=0

close SCSI adapter device driver

open SCSI device driver (normal open) for SCSI ID=1, LUN=0

...

Use device as normal

...

2. To make use of the SC_FORCED_OPEN flag of the SCSI device driver:

open SCSI device driver (with SC_FORCED_OPEN flag)

for SCSI ID=1, LUN=0

...

Use the device as normal.

Both examples assume that the SCSI device driver open call executes a SCSI Reserve command on the

selected device.

The SCSI adapter device driver performs normal error-recovery procedures during execution of this

command. For example, if the BDR message causes the SCSI bus to hang, a SCSI bus reset will be

initiated to clear the condition.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to one of the following values:

Chapter 5. SCSI Subsystem 327

Value Description

EINVAL Indicates an SCIOSTART command was not issued prior to this command.

EIO Indicates an unrecoverable I/O error occurred. In this case, the adapter error-status information

is logged in the system error log.

EIO Indicates either the device is already stopping or the device driver is unable to pin code.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with the

SC_ASYNC flag set in the flag byte of the passed parameters. If more than one retry is

attempted, only the last retry should be made with the SC_ASYNC flag set. Generally, the

SCSI adapter device driver cannot determine which device caused the bus fault, so this error is

not logged in the system error log.

ENODEV Indicates the target SCSI ID could not be selected or is not responding. This condition is not

necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with status before the internal command time-out value

expired. This error is logged.

Files

 /dev/scsi0, /dev/scsi1, ..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

SCIOSTART (Start SCSI) Adapter Device Driver ioctl Operation

Purpose

Opens a logical path to a SCSI target device.

Description

The SCIOSTART operation opens a logical path to a SCSI device. The host SCSI adapter acts as an

initiator device. This operation causes the adapter device driver to allocate and initialize the data areas

needed to manage commands to a particular SCSI target.

The SCIOSTART operation must be issued prior to any of the other non-diagnostic mode operations, such

as SCIOINQU and SCIORESET. However, the SCIOSTART operation is not required prior to calling the

IOCINFO operation. Finally, when the caller is finished issuing commands to the SCSI target, the

SCIOSTOP operation must be issued to release allocated data areas and close the path to the device.

The arg parameter to SCIOSTART allows the caller to specify the SCSI and LUN (logical unit number)

identifier of the device to be started. The least significant byte in the arg parameter is the LUN, and the

next least significant byte is the SCSI ID. The remaining two bytes are reserved and must be set to a

value of 0.

Return Values

If completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and the

errno global variable set to one of the following values:

328 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Value Description

EIO Indicates either an unrecoverable I/O error, or the device driver is unable to pin code.

EINVAL Indicates either that the SCSI ID and LUN combination was incorrect (the combination may already be in

use) or that the passed SCSI ID is the same as that of the adapter.

If the SCIOSTART operation is unsuccessful, the caller must not attempt other operations to this SCSI ID

and LUN combination, since it is either already in use or was never successfully started.

Files

 /dev/scsi0, /dev/scsi1, ..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

SCIOSTARTTGT (Start Target) SCSI Adapter Device Driver ioctl

Operation

Purpose

Opens a logical path to a SCSI initiator device.

Description

The SCIOSTARTTGT operation opens a logical path to a SCSI initiator device. The host SCSI adapter

acts as a target. This operation causes the adapter device driver to allocate and initialize

device-dependent information areas needed to manage data received from the initiator. It also makes the

adapter device driver allocate system buffer areas to hold data received from the initiator. Finally, it makes

the host adapter ready to receive data from the initiator.

This operation may only be called from a kernel process or device driver, as it requires that both the caller

and the SCSI adapter device driver be able to directly access each other’s code in memory.

Note: This operation is not supported by all SCSI I/O controllers. If not supported, errno is set to ENXIO

and a value of -1 is returned.

The arg parameter to the SCIOSTARTTGT ioctl operation should be set to the address of an sc_strt_tgt

structure, which is defined in the /usr/include/sys/scsi.h file. The caller fills in the ID field with the SCSI

ID of the SCSI initiator and sets the logical unit number (LUN) field to 0, as the initiator LUN is ignored

for received data.

The caller sets the buf_size field to the desired size for all receive buffers allocated for this host target

instance. This is an adapter-dependent parameter, which should be set to 4096 bytes for the SCSI I/O

Controller. The num_bufs field is set to indicate how many buffers the caller wishes to have allocated for

the device. This is also an adapter-dependent parameter. For the SCSI I/O Controller, it should be set to

16 or greater.

The caller fills in the recv_func field with the address of a pinned routine from its module, which the

adapter device driver calls to pass received-data information structures. These structures tell the caller

where the data is located and if any errors occurred.

Chapter 5. SCSI Subsystem 329

The tm_correlator field can optionally be used by the caller to provide an efficient means of associating

received data with the appropriate device. This field is saved by the SCSI adapter device driver and is

returned, with information passed back to the caller’s recv_func routine.

The free_func field is an output parameter for this operation. The SCSI adapter device driver fills this field

with the address of a pinned routine in its module, which the caller calls to pass processed received-data

information structures.

Currently, the host SCSI adapter acts only as LUN 0 when accessed from other SCSI initiators. This

means the remotely-attached SCSI initiator can only direct data at one logical connection per host SCSI

adapter. At most, only one calling process can open the logical path from the host SCSI adapter to a

remote SCSI initiator. This does not prevent a single process from having multiple target devices opened

simultaneously.

Note: Two or more SCSI target devices can have the same SCSI ID if they are physically attached to

separate SCSI adapters.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to one of the following values:

 Value Description

EINVAL An SCIOSTARTTGT command has already been issued to this SCSI ID, the passed SCSI ID is the

same as that of the adapter, the LUN field is not set to 0, the buf_size field is greater than 4096 bytes,

the num_bufs field is less than 16, or the recv_func field is set to null.

EIO Indicates an I/O error or kernel service failure occurred, preventing the device driver from enabling the

selected SCSI ID.

ENOMEM Indicates that a memory allocation error has occurred.

EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to execute this

operation.

Files

 /dev/scsi0, /dev/scsi1,...,/dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

SCIOSTOP (Stop) Device SCSI Adapter Device Driver ioctl Operation

Purpose

Closes the logical path to a SCSI target device.

Description

The SCIOSTOP operation closes the logical path to a SCSI device. The host SCSI adapter acts as an

initiator. The SCIOSTOP operation causes the adapter device driver to deallocate data areas allocated in

response to a SCIOSTART operation. This command must be issued when the caller wishes to cease

330 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

communications to a particular SCSI target. The SCIOSTOP operation should only be issued for a device

successfully opened by a previous call to an SCIOSTART operation.

The SCIOSTOP operation passes the arg parameter. This parameter allows the caller to specify the SCSI

and logical unit number (LUN) IDs of the device to be stopped. The least significant byte in the arg

parameter is the LUN, and the next least significant byte is the SCSI ID. The remaining two bytes are

reserved and must be set to 0.

Return Values

When completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to one of the following values:

 Value Description

EINVAL Indicates that the device has not been opened. An SCIOSTART operation should be issued prior to

calling the SCIOSTOP operation.

EIO Indicates that the device drive was unable to pin code.

Files

 /dev/scsi0, /dev/scsi1, ..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

SCIOSTOPTGT (Stop Target) SCSI Adapter Device Driver ioctl

Operation

Purpose

Closes a logical path to a SCSI initiator device.

Description

The SCIOSTOPTGT operation closes a logical path to a SCSI initiator device, where the host SCSI

adapter acts as a target. This operation causes the adapter device driver to deallocate device-dependent

information areas allocated in response to the SCIOSTARTTGT operation. It also causes the adapter

device driver to deallocate system buffer areas used to hold data received from the initiator. Finally, it

disables the host adapter’s ability to receive data from the selected initiator.

This operation may only be called from a kernel process or device driver.

Note: This operation is not supported by all SCSI I/O Controllers. If not supported, errno is set to ENXIO

and a value of -1 is returned.

The arg parameter to the SCIOSTOPTGT operation should be set to the address of an sc_stop_tgt

structure, which is defined in the /usr/include/sys/scsi.h file. The caller fills in the id field with the SCSI

ID of the initiator and sets the logical unit number (LUN) field to 0 as the initiator LUN is ignored for

received data.

Chapter 5. SCSI Subsystem 331

Note: The calling device driver should have previously freed any received-data areas by passing their

information structures to the SCSI adapter device driver’s free_func routine. All buffers allocated for

this device are deallocated by the SCIOSTOPTGT operation regardless of whether the calling

device driver has finished processing those buffers and has called the free_func routine.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to one of the following values:

 EINVAL An SCIOSTOPTGT command has not been previously issued to this SCSI ID.

EPERM Indicates the caller is not running in kernel mode, which is the only mode allowed to execute this

operation.

Files

 /dev/scsi0, /dev/scsi1, ... Provide an interface to allow SCSI device drivers to

access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1, ...,/dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

SCIOSTUNIT (Start Unit) SCSI Adapter Device Driver ioctl Operation

Purpose

Provides the means to issue a SCSI Start Unit command to a selected SCSI device.

Description

The SCIOSTUNIT operation allows the caller to issue a SCSI Start Unit command to a selected SCSI

adapter. This command can be used by system management routines to aid in configuration of SCSI

devices. For the SCIOSTUNIT operation, the arg parameter operation is the address of an sc_startunit

structure. This structure is defined in the /usr/include/sys/scsi.h file.

The sc_startunit structure allows the caller to specify the SCSI and logical unit number (LUN) IDs of the

device on the SCSI adapter that is to be started. The SC_ASYNC flag (in the flag byte of the passed

parameter block) must not be set on the initial attempt of this command.

The start_flag field in the parameter block allows the caller to indicate the start option to the

SCIOSTUNIT operation. When the start_flag field is set to TRUE, the logical unit is to be made ready for

use. When FALSE, the logical unit is to be stopped.

Attention: When the immed_flag field is set to TRUE, the SCSI adapter device driver allows

simultaneous SCIOSTUNIT operations to any or all attached devices. It is important that when

executing simultaneous SCSI Start Unit commands, the caller should allow a delay of at least 10

seconds between succeeding SCSI Start Unit command operations. The delay ensures that adequate

power is available to devices sharing a common power supply. Failure to delay in this manner can

cause damage to the system unit or to attached devices. Consult the technical specifications manual

for the particular device and the appropriate hardware technical reference for your system.

332 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The immed_flag field allows the caller to indicate the immediate option to the SCIOSTUNIT operation.

When the immed_flag field is set to TRUE, status is to be returned as soon as the command is received

by the device. When the field is set to FALSE, the status is to be returned after the operation is completed.

The caller should set the immed_flag field to TRUE to allow overlapping SCIOSTUNIT operations to

multiple devices on the SCSI bus. In this case, the SCIOTUR operation can be used to determine when

the SCIOSTUNIT has actually completed.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of the

SCIOSTUNIT operation.

Return Values

When completed successfully, the SCIOSTUNIT operation returns a value of 0. Otherwise, a value of -1 is

returned and the errno global variable is set to one of the following values:

 Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that an SCIOSTART command was not issued prior to this command.

EIO Indicates that an unrecoverable I/O error has occurred. If EIO is received, the caller should

retry this command at least once, as the first command may have cleared an error condition

with the device. In case of an unrecovered error, the adapter error-status information is logged

in the system error log.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by retrying with the

SC_ASYNC flag set in the flag byte of the passed parameters. If more than one retry is

attempted, only the last retry should be made with the SC_ASYNC flag set. Generally the SCSI

adapter device driver cannot determine which device caused the SCSI bus fault, so this error is

not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID. This condition is not

necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates that the adapter did not respond with status before the internal command time-out

value expired. If ETIMEDOUT is received, the caller should retry this command at least once,

as the first command may have cleared an error condition with the device. This error is logged

in the system error log.

Files

 /dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsin Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

SCIOTRAM (Diagnostic) SCSI Adapter Device Driver ioctl Operation

Purpose

Provides the means to issue various adapter commands to test the card DMA interface and buffer RAM.

Chapter 5. SCSI Subsystem 333

Description

The SCIOTRAM operation allows the caller to issue various adapter commands to test the card DMA

interface and buffer RAM. The arg parameter block to the SCIOTRAM operation is the sc_ram_test

structure. This structure is defined in the /usr/include/sys/scsi.h file and contains the following

information:

v A pointer to a read or write test pattern buffer

v The length of the buffer

v An option field indicating whether a read or write operation is requested

Note: The SCSI adapter device driver is not responsible for comparing read data with previously written

data. After successful completion of write or read operations, the caller is responsible for

performing a comparison test to determine the final success or failure of this test.

The SCSI adapter device driver performs no internal retries or other error recovery procedures during

execution of this operation. Error logging is inhibited when running this command.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to one of the following values:

 Value Description

EIO Indicates that the adapter device driver detected an error. The specific adapter status is returned in

the sc_ram_test parameter block. The SCIOTRAM operation is a diagnostic command and, as a

result, this error is not logged in the system error log.

ENXIO Indicates that the operation or suboption selected is not supported on this adapter. This should not

be treated as an error. The caller must check for this return value first (before other errno values)

to avoid mistaking this for a failing command.

ETIMEDOUT Indicates the adapter did not respond with status before the passed command time-out value

expired. The SCIOTRAM operation is a diagnostic command, so this error is not logged in the

system error log.

Files

 /dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device

drivers to access SCSI devices or

adapters.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

SCIOTUR (Test Unit Ready) SCSI Adapter Device Driver ioctl Operation

Purpose

Sends a Test Unit Ready command to the selected SCSI device.

Description

The SCIOTUR operation allows the caller to issue a SCSI Test Unit Read (SCIOSTUNIT) command to a

selected SCSI adapter. This command is used by system management routines to help configure SCSI

devices.

334 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The sc_ready structure allows the caller to specify the SCSI and the logical unit number (LUN) ID of the

device on the SCSI adapter that is to receive the SCIOTUR operation. The SC_ASYNC flag (in the flag

byte of the arg parameter block) must not be set during the initial attempt of this command. The sc_ready

structure provides two output fields: status_validity and scsi_status. Using these two fields, the

SCIOTUR operation returns the status to the caller. The arg parameter for the SCIOTUR operation

specifies the address of the sc_ready structure, defined in the /usr/include/sys/scsi.h file.

When an errno value of EIO is received, the caller should evaluate the returned status in the

status_validity and scsi_status fields. The status_validity field is set to the value SC_SCSI_ERROR

to indicate that the scsi_status field has a valid SCSI bus status in it. The /usr/include/sys/scsi.h file

contains typical values for the scsi_status field.

Following an SCIOSTUNIT operation, a calling program can tell by the SCSI bus status whether the

device is ready. If an errno value of EIO is returned and the status_validity field is set to 0, an

unrecovered error has occurred. If, on retry, the same result is obtained, the device should be skipped. If

the status_validity field is set to SC_SCSI_ERROR and the scsi_status field indicates a Check

Condition status, then another SCIOTUR command should be sent after a delay of several seconds.

After one or more attempts, the SCIOTUR operation should return a successful completion, indicating that

the device was successfully started. If, after several seconds, the SCIOTUR operation still returns a

scsi_status field set to a Check Condition status, the device should be skipped.

Note: The SCSI adapter device driver performs normal error-recovery procedures during execution of this

command.

Return Values

When completed successfully, this operation returns a value of 0. For the SCIOTUR operation, this means

the target device has been successfully started and is ready for data access. If unsuccessful, this

operation returns a value of -1 and the errno global variable is set to one of the following values:

 Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates the SCIOSTART operation was not issued prior to this command.

EIO Indicates the adapter device driver was unable to complete the command due to an

unrecoverable I/O error. If EIO is received, the caller should retry this command at least once,

as the first command may have cleared an error condition with the device. Following an

unrecovered I/O error, the adapter error status information is logged in the system error log.

ENOCONNECT Indicates a bus fault has occurred. The caller should retry after setting the SC_ASYNC flag in

the flag byte of the passed parameters. If more than one retry is attempted, only the last retry

should be made with the SC_ASYNC flag set. In general, the SCSI adapter device driver

cannot determine which device caused the SCSI bus fault, so this error is not logged.

ENODEV Indicates no SCSI controller responded to the requested SCSI ID. This condition is not

necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the adapter did not respond with a status before the internal command time-out value

expired. If this return value is received, the caller should retry this command at least once, as

the first command may have cleared an error condition with the device. This error is logged in

the system error log.

Files

 /dev/scsi0, /dev/scsi1,..., /dev/scsin Provide an interface to allow SCSI device drivers to

access SCSI devices or adapters.

/dev/vscsi0, /dev/vscsi1,..., /dev/vscsim Provide an interface to allow SCSI-2 Fast/Wide Adapter/A

and SCSI-2 Differential Fast/Wide Adapter/A device

drivers to access SCSI devices or adapters.

Chapter 5. SCSI Subsystem 335

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

tmscsi SCSI Device Driver

Purpose

Supports processor-to-processor communications through the SCSI target-mode device driver.

Note: This operation is not supported by all SCSI I/O controllers.

Syntax

#include </usr/include/sys/devinfo.h>

#include </usr/include/sys/tmscsi.h>

#include </usr/include/sys/scsi.h>

Description

The Small Computer Systems Interface (SCSI) target-mode device driver provides an interface to allow

processor-to-processor data transfer using the SCSI send command. This single device driver handles

both SCSI initiator and SCSI target mode roles.

The user accesses the data transfer functions through the special files /dev/tmscsi0.xx, /dev/tmscsi1.xx,

... . These are all character special files. The xx can be either im, initiator-mode interface, or tm,

target-mode interface. The initiator-mode interface is used by the caller to transmit data, and the

target-mode interface is used to receive data.

The least significant bit of the minor device number indicates to the device driver which mode interface is

selected by the caller. When the least significant bit of the minor device number is set to a value of 1, the

target-mode interface is selected. When the least significant bit is set to a value of 0, the initiator-mode

interface is selected. For example, tmscsi0.im should be defined as an even-numbered minor device

number to select the initiator-mode interface, and tmscsi0.tm should be defined as an odd-numbered

minor device number to select the target-mode interface.

When the caller opens the initiator-mode special file a logical path is established, allowing data to be

transmitted. The user-mode caller issues a write, writev, writex, or writevx system call to initiate data

transmission. The kernel-mode user issues an fp_write or fp_rwuio service call to initiate data

transmission. The SCSI target-mode device driver then builds a SCSI send command to describe the

transfer, and the data is sent to the device. Once the write entry point returns, the calling program can

access the transmit buffer.

When the caller opens the target-mode special file a logical path is established, allowing data to be

received. The user-mode caller issues a read, readv, readx, or readvx system call to initiate data

reception. The kernel-mode caller issues an fp_read or fp_rwuio service call to initiate data reception.

The SCSI target-mode device driver then returns data received for the application.

The SCSI target mode device driver allows access as an initiator mode device through the write entry

point. Target mode device access is made through the read entry point. Simultaneous access to the read

and write entry points is possible by using two separate processes, one running read subroutines and the

other running write subroutines.

The SCSI target mode device driver does not implement any protocol to manage the sending and

receiving of data, with the exception of attempting to prevent an application from excessive received-data

buffer usage. Any protocol required to maintain or otherwise manage the communications of data must be

336 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

implemented in the calling program. The only delays in sending or receiving data through the target mode

device driver are those inherent to the hardware and software driver environment.

Configuration Information

When the tmscsi0 special file is configured, both the tmscsi0.im and tmscsi0.tm special files are

created. An initiator-mode/target-mode pair for each device instance should exist, even if only one of the

modes is being used. The target-mode SCSI ID for an attached device should be the same as the

initiator-mode SCSI ID, but the logical unit number (LUN) is ignored in target mode, because the host

SCSI adapter can only respond as LUN 0.

If multiple LUNs are supported on the attached initiator device, a pair of tmscsin special files (where n is

the device instance) are generated for each SCSI ID/LUN combination. The initiator-mode special files

allow simultaneous access to the associated SCSI ID/LUN combinations. However, only one of the

target-mode special files for this SCSI ID can be opened at one time. This is because only one LUN 0 is

supported on the host adapter and only one logical connection can be actively using this ID at one time. If

a target-mode special file is open for a given SCSI ID, attempts to open other target-mode special files for

the same ID will fail.

The target-mode device driver configuration entry point must be called only for the initiator-mode device

number. The driver configuration routine automatically creates the configuration data for the target-mode

device minor number based on the initiator-mode data.

Device-Dependent Subroutines

The target-mode device driver supports the open, close, read, write, select, and ioctl subroutines.

open Subroutine

The open subroutine allocates and initializes target or initiator device-dependent structures. No SCSI

commands are sent to the device as a result of running the open subroutine.

The SCSI initiator or target-mode device must be configured and not already opened for that mode for the

open subroutine to work. For the initiator-mode device to be successfully opened, its special file must be

opened for writing only. For the target-mode device to be successfully opened, its special file must be

opened for reading only.

Possible return values for the errno global variable include:

 Value Description

EAGAIN Lock kernel service failed.

EBUSY Attempted to execute an open for a device instance that is already open.

EINVAL Attempted to execute an open for a device instance using an incorrect open flag, or device is not yet

configured .

EIO An I/O error occurred.

ENOMEM The SCSI device is lacking memory resources.

close Subroutine

The close subroutine deallocates resources local to the target device driver for the target or initiator

device. No SCSI commands are sent to the device as a result of running the close subroutine. Possible

return values for the errno global variable include:

 Value Description

EINVAL Attempted to execute a close for a device instance that is not configured.

Chapter 5. SCSI Subsystem 337

Value Description

EIO An I/O error occurred.

read Subroutine

The read subroutine is supported only for the target-mode device. Data scattering is supported through the

user-mode readv or readvx subroutine, or the kernel-mode fp_rwuio service call. If the read subroutine is

unsuccessful, the return value is set to a return value of -1, and the errno global variable is set to the

return value from the device driver. If the return value is something other than -1, then the read was

successful and the return code indicates the number of bytes read. This should be validated by the caller.

File offsets are not applicable and are therefore ignored for target-mode reads.

SCSI send commands provide the boundary for satisfying read requests. If more data is received in the

send command than is requested in the current read operation, the requested data is passed to the caller,

and the remaining data is retained and returned for the next read operation for this target device. If less

data is received in the send command than is requested, the received data is passed for the read request,

and the return value indicates how many bytes were read.

If a send command has not been completely received when a read request is made, the request blocks

and waits for data. However, if the target device is opened with the O_NDELAY flag set, then the read

does not block; it returns immediately. If no data is available for the read request, the read is unsuccessful

and the errno global variable is set to EAGAIN. If data is available, it is returned and the return value

indicates the number of bytes received. This is true even if the send command for this data has not

ended.

Note: Without the O_NDELAY flag set, the read subroutine can block indefinitely, waiting for data. Since

the read data can come at any time, the device driver does not maintain an internal timer to

interrupt the read. Therefore, if a time-out function is desired, it must be implemented by the calling

program.

If the calling program wishes to break a blocked read subroutine, the program can generate a signal. The

target-mode device driver receives the signal and ends the current read subroutine with failure. The errno

global variable is then set to EINTR. The read returns with whatever data has been received, even if the

send command has not completed. If and when the remaining data for the send command is received, it

is queued, waiting for either another read request or a close. When the target receives the signal and the

current read is returned, another read can be initiated or the target can be closed. If the read request that

the calling program wishes to break completes before the signal is generated, the read completes normally

and the signal is ignored.

The target-mode device driver attempts to queue received data ahead of requests from the application. A

read-ahead buffer area (whose length is determined by the product of 4096 and the num_bufs attribute

value in the configuration database) is used to store the queued data. As the application program executes

read subroutines, the queued data is copied to the application data buffer and the read-ahead buffer

space is again made available for received data. If an error occurs while copying the data to the caller’s

data buffer, the read fails and the errno global variable is set to EFAULT. If the read subroutines are not

executed quickly enough, so that almost all the read-ahead buffers for the device are filled, data reception

will be delayed until the application runs a read subroutine again. When enough area is freed, data

reception is restored from the device. Data may be delayed, but it is not lost or ignored. If almost all the

read-ahead buffers are filled, status information is saved indicating this condition. The application may

optionally query this status through the TMIOEVNT operation. If the application uses the optional

select/poll operation, it can receive asynchronous notification of this and other events affecting the

target-mode instance.

338 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The target-mode device driver handles only received data in its read entry point. All other initiator-sent

SCSI commands are handled without intervention by the target-mode device driver. This also means the

target-mode device driver does not directly generate any SCSI sense data or SCSI status.

The read entry point may optionally be used in conjunction with the select entry point to provide a means

of asynchronous notification of received data on one or more target devices.

Possible return values for the errno global variable include:

 Value Description

EAGAIN Indicates a non-blocking read request would have blocked, because no data is available.

EFAULT An error occurred while copying data to the caller’s buffer.

EINTR Interrupted by a signal.

EINVAL Attempted to execute a read for a device instance that is not configured, not open, or is not a

target-mode minor device number.

EIO I/O error occurred.

write Subroutine

The write entry point is supported only for the initiator-mode device driver. The write entry point generates

a single SCSI send command in response to a calling program’s write request. If the write request is for a

length larger than the host SCSI adapter’s maximum transfer length or if the request cannot be pinned as

a single request, then the write request fails with the errno global variable set to EINVAL. The maximum

transfer size for this device is discovered by issuing an IOCINFO ioctl call to the target-mode device

driver.

Some target mode capable adapters support data gathering of writes through the user_mode writev or

writevx subroutine or the kernel-mode fp_wruio service call. The write buffers are gathered so that they

are transferred, in order, as a single send command. The target-mode device driver passes information to

the SCSI adapter device driver to allow it to perform the gathered write. Since the SCSI adapter device

driver can be performing the gather function in software (when the hardware does not directly support data

gathering), it is possible for the function to be unsuccessful because of a lack of memory or a copy error.

The returned errno global variable is set to ENOMEM or EFAULT. Due to how gathered writes are

handled, it is not possible for the target-mode device driver to perform retries. When an error does occur,

the caller must retry or otherwise recover the operation.

If the write operation is unsuccessful, the return value is set to -1 and the errno global variable is set to

the value of the return value from the device driver. If the return value is a value other than -1, the write

operation was successful and the return value indicates the number of bytes written. The caller should

validate the number of bytes sent to check for any errors. Since the entire data transfer length is sent in a

single send command, a return code not equal to the expected total length should be considered an error.

File offsets are not applicable and are ignored for target-mode writes.

If the calling program needs to break a blocked write operation, a signal should be generated. The

target-mode device driver receives the signal and ends the current write operation. A write operation in

progress fails, and the errno global variable is set to EINTR. The calling program may then continue by

issuing another write operation, an ioctl operation, or may close the device. If the write operation the

caller attempts to break completes before the signal is generated, the write completes normally and the

signal is ignored.

The target-mode device driver automatically retries (up to the number of attempts specified by the value

TM_MAXRETRY defined in the /usr/include/sys/tmscsi.h file) the send command if either a SCSI Busy

response or no device response status is received for the command. By default, the target mode device

driver delays each retry attempt by approximately two seconds to allow the target device to respond

successfully. The caller can change the amount of time delayed through the TMCHGIMPARM operation. If

retries are exhausted and the command is still unsuccessful, the write fails. The calling program can retry

Chapter 5. SCSI Subsystem 339

the write operation or perform other appropriate error recovery. All other error conditions are not retried

but are returned with the appropriate errno global variable.

The target-mode device driver, by default, generates a time-out value, which is the amount of time allowed

for the send command to complete. If the send command does not complete before the time-out value

expires, the write fails. The time-out value is based on the length of the requested transfer, in bytes, and

calculated as follows:

timeout_value = ((transfer_length / 65536) +1) *

10

In the calculation, 10 is the default scaling factor used to generate the time-out value. The caller can

customize the time-out value through the TMCHGIMPARM operation.

One of the errors that can occur during a write is a SCSI status of check condition. A check-condition error

requires a SCSI request sense command to be issued to the device. This returns the device’s SCSI

sense data, which must be examined to discover the exact cause of the check condition. To allow the

target-mode device driver to work with a variety of target devices when in initiator mode, the device driver

does not evaluate device sense data on check conditions. Therefore, the caller is responsible for

evaluating the sense data to determine the appropriate error recovery. The TMGETSENS operation is

provided to allow the caller to get the sense data. A unique errno global variable, ENXIO, is used to

identify check conditions so that the caller knows when to issue the TMGETSENS operation. This error is

not logged in the system error log by the SCSI device driver. The writer of the calling program must be

aware that according to SCSI standards, the request sense command must be the next command

received by the device following a check-condition error. If any other command is sent to the device by this

initiator, the sense data is cleared and the error information lost.

After each write subroutine, the target-mode device driver generates the appropriate return value and

errno global variable. The device driver also updates a status area that is kept for the last command to

each device. On certain errors, as well as successful completions, the caller may optionally read this

status area to get more detailed error status for the command. The TMIOSTAT operation can be used for

this purpose. The errno global variables covered by this status include EIO, EBUSY, ENXIO, and

ETIMEDOUT.

Other possible return values for the errno global variable include:

 Value Description

EBUSY SCSI reservation conflict detected. Try again later or make sure device reservation is ended

before proceeding.

EFAULT This is applicable only during data gathering. The write operation was unsuccessful due to a

kernel service error.

EINTR Interrupted by signal.

EINVAL Attempted to execute a write operation for a device instance that is not configured, not open,

or is not an initiator-mode minor device number.

Transfer length too long, or could not pin entire transfer. Try command again with a smaller

transfer length.

EIO I/O error occurred. Either an unreproducible error occurred or retries were exhausted without

success on an unreproducible error. Perform appropriate error recovery.

ENOCONNECT Indicates a SCSI bus fault has occurred. The caller should respond by retrying with

asynchronous data transfer allowed. This is accomplished by issuing a TMIOASYNC operation

to this device prior to the retry. If more than one retry is attempted, the TMIOASYNC operation

should be performed only before the last retry.

ENOMEM This is applicable only during data gathering. The write operation was unsuccessful due to lack

of system memory.

ENXIO SCSI check condition occurred. Execute a TMGETSENS operation to get the device sense

data and then perform required error recovery.

ETIMEDOUT The command has timed out. Perform appropriate error recovery.

340 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

ioctl Subroutine

The following ioctl operations are provided by the target-mode device driver. Some are specific to either

the target-mode device or the initiator-mode device. All require the respective device instance be open for

the operation run.

 Operation Description

IOCINFO Returns a structure defined in the /usr/include/sys/devinfo.h file.

TMCHGIMPARM Allows the caller to change certain parameters used by the target mode device driver for a

particular device instance.

TMGETSENS Runs a SCSI request sense command and returns the sense data to the user.

TMIOASYNC Allows succeeding initiator-mode commands to a particular target-mode device to use

asynchronous data transfer.

TMIOCMD Sends SCSI commands directly to the attached device.

TMIOEVNT Allows the caller to query the device driver for status on certain events.

TMIORESET Sends a Bus Device Reset message to an attached target-mode device.

TMIOSTAT Allows the caller to get detailed status information about the previously-run write or

TMGETSENS ioctl operation.

select Entry Point

The select entry point allows the caller to know when a specified event has occurred on one or more

target-mode devices. The events input parameter allows the caller to specify which of one or more

conditions it wants to be notified of by a bitwise OR of one or more flags. The target-mode device driver

supports the following select events:

 Event Description

POLLIN Check if received data is available.

POLLPRI Check if status is available.

POLLSYNC Return only events that are currently pending. No asynchronous notification occurs.

An additional event, POLLOUT, is not applicable and therefore is not supported by the target-mode device

driver.

The reventp output parameter points to the result of the conditional checks. A bitwise OR of the following

flags can be returned by the device driver:

 Flag Description

POLLIN Received data is available.

POLLPRI Status is available.

The chan input parameter is used for specifying a channel number. This is not applicable for

non-multiplexed device drivers and should be set to a value of 0 for the target-mode device driver.

The POLLIN event is indicated by the device driver when any data is received for this target instance. A

non-blocking read subroutine, if subsequently issued by the caller, returns data. For a blocking read

subroutine, the read does not return until either the requested length is received or the send command

completes, whichever comes first.

The POLLPRI event is indicated by the device driver when an exceptional event occurs. To determine the

cause of the exceptional event, the caller must issue a TMIOEVNT operation to the device reporting the

POLLPRI event.

Chapter 5. SCSI Subsystem 341

The possible return value for the errno global variable includes:

 Value Description

EINVAL A specified event is not supported, or the device instance is either not configured or not open.

Error Logging

Errors detected by the target-mode device driver can be one of the following:

v Unreproducible hardware error while receiving data

v Unreproducible hardware error during initiator command

v Unrecovered hardware error

v Recovered hardware error

v Device driver-detected software error

The target-mode device driver passes error-recovery responsibility for most detected errors to the caller.

For these errors, the target-mode device driver does not know if this type of error is permanent or

temporary. These types of errors are logged as temporary errors.

Only errors the target-mode device driver can itself recover through retries can be determined to be either

temporary or permanent. The error is logged as temporary if it succeeds during retry (a recovered error) or

as permanent if retries are unsuccessful (an unrecovered error). The return code to the caller indicates

success if a recovered error occurs or failure if an unrecovered error occurs. The caller can elect to retry

the command or operation, but the probability of retry success is low for unrecovered errors.

Related Information

The tmscsi special file.

The errpt command.

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver.

Error Logging OverviewMessages Guide and Reference.

IOCINFO (Device Information) tmscsi Device Driver ioctl Operation

Purpose

Returns a structure defined in the /usr/include/sys/devinfo.h file.

Note: This operation is not supported by all SCSI I/O controllers.

Description

The IOCINFO ioctl operation returns a structure defined in the /usr/include/sys/devinfo.h header file.

The caller supplies the address to an area of type struct devinfo in the arg parameter to the IOCINFO

operation. The device-type field for this component is DD_TMSCSI; the subtype is DS_TM. The

information returned includes the device’s device dependent structure (DDS) information and the host

SCSI adapter maximum transfer size for initiator-mode requests. The IOCINFO ioctl operation is allowed

for both target and initiator modes. This command is not required for the caller, but it is useful for

programs that need to know what the maximum transfer length is for write subroutines. It is also useful for

calling programs that need the SCSI ID or logical unit number (LUN) of the device instance in use.

342 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Files

 /dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications through

the SCSI target-mode device driver.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

TMCHGIMPARM (Change Parameters) tmscsi Device Driver ioctl

Operation

Purpose

Allows the caller to change parameters used by the target-mode device driver.

Note: This operation is not supported by all SCSI I/O controllers.

Description

The TMCHGIMPARM ioctl operation allows the caller to change certain parameters used by the

target-mode device driver for a particular device instance. This operation is allowed only for the

initiator-mode device. The arg parameter to the TMCHGIMPARM operation specifies the address of the

tm_chg_im_parm structure defined in /usr/include/sys/tmscsi.h file.

Default values used by the device driver for these parameters usually do not require change. However, for

certain calling programs, default values can be changed to fine-tune timing parameters related to error

recovery.

The initiator-mode device must be open for this command to succeed. Once a parameter is changed

through the TMCHGIMPARM operation, it remains changed until another TMCHGIMPARM operation is

received or until the device is closed. At open time, these parameters are set to the default values.

Parameters that can be changed with this operation are the amount of delay (in seconds) between device

driver-initiated retries of SCSI send commands and the amount of time allowed before the running of any

send command times out. To indicate which of the possible parameters are being changed, the caller sets

the appropriate bit in the chg_option field. Values of 0, 1, or multiple flags can be set in this field to

indicate which parameters are being changed.

To change the delay between send command retries, the caller sets the TM_CHG_RETRY_DELAY flag in

the chg_option field and places the desired delay value (in seconds) in the new_delay field of the structure.

The retry delay can be changed with this command to any value between 0 and 255, inclusive, where 0

instructs the device driver to use as little delay as possible between retries. The default value is

approximately 2 seconds.

To change the send command time-out value, the caller sets the TM_CHG_SEND_TIMEOUT flag in the

chg_option field, sets the desired flag in the timeout_type field, and places the desired time-out value in

the new_timeout field of the structure. A single flag must be set in the time_out field to indicate the desired

form of the timeout. If the TM_FIXED_TIMEOUT flag is set in the timeout_type field, then the value placed

in the new_timeout field is a fixed time-out value for all send commands. If the TM_SCALED_TIMEOUT

flag is set in the timeout_type field, then the value placed in the new_timeout field is a scaling-factor used

in the calculation for timeouts as shown under the description of the write entry point. The default send

command time-out value is a scaled time-out with scaling factor of 10.

Chapter 5. SCSI Subsystem 343

Regardless of the value of the timeout_type field, if the new_timeout field is set to a value of 0, the caller

specifies ″no time out″ for the send command, allowing the command to take an indefinite amount of time.

If the calling program wants to end a write operation, it generates a signal.

Files

 /dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications through

the SCSI target-mode device driver.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, tmscsi SCSI device driver, SCSI Adapter device

driver.

TMGETSENS (Request Sense) tmscsi Device Driver ioctl Operation

Purpose

Runs a SCSI request sense command and returns the sense data to the user.

Note: This operation is not supported by all SCSI I/O controllers.

Description

The TMGETSENS ioctl operation runs a SCSI request sense command and returns the sense data to the

user. This operation is allowed only for the initiator-mode device. It is issued by the caller in response to a

write subroutine errno global variable set to a value of ENXIO. This operation must be the next command

issued to the device for this initiator or the sense data is lost. The arg parameter to the ioctl operation is

the address of the tm_get_sens structure defined in the /usr/include/sys/tmscsi.h file. The caller must

supply the address and length of a buffer used for holding the returned device-sense data in this structure.

The maximum length for request-sense data is 255 bytes. The caller should refer to the SCSI specification

for the target device to determine the correct length for the device’s request-sense data. The lesser of

either the sense data length requested or the actual sense data length is returned in the buffer passed by

the caller. For the definition of the returned data, refer to the detailed SCSI specification for the device in

use.

After each TMGETSENS operation, the target-mode device driver generates the appropriate errno global

variable. If an error occurs, the return value is set to a value of -1 and the errno global variable is set to

the value generated by the target-mode device driver. The device driver also updates a status area that is

kept for the last command to each device. For certain errors, and upon successful completion, the caller

can read this status area to get more detailed error status for the command. The TMIOSTAT operation can

be used for this purpose. The errno global variables covered by this status include EIO, EBUSY, ENXIO,

and ETIMEDOUT.

Files

 /dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications through

the SCSI target-mode device driver.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

344 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

TMIOASYNC (Async) tmscsi Device Driver ioctl Operation

Purpose

Allows future initiator-mode commands for an attached target device to use asynchronous data transfer.

Note: This operation is not supported by all SCSI I/O controllers.

Description

The TMIOASYNC ioctl operation enables asynchronous data transfer for future initiator-mode commands

on attached target devices. Only an initiator-mode device may use this operation. The arg parameter of

the TMIOASYNC operation is set to a null value by the caller.

This operation is required when the caller is intending to retry a previous initiator SCSI command (other

than those sent through the TMIOCMD operation) that was unsuccessful with a SC_SCSI_BUS_FAULT

status in the general_card_status field in the status structure returned by the TMIOSTAT operation. If

more than one retry is attempted, this operation should be issued only before the last retry attempt.

This operation allows the device to run in asynchronous mode if the device does not negotiate for

synchronous transfers. This operation affects all future initiator commands for this device. However, a

SCSI reset or power-on to the device results in an attempt to again run synchronous data transfers. At

open time, synchronous data transfers are attempted.

Files

 /dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications through

the SCSI target-mode device driver.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

TMIOCMD (Direct) tmscsi Device Driver ioctl Operation

Purpose

Sends SCSI commands directly to the attached device.

Note: This operation is not supported by all SCSI I/O controllers.

Description

Attention: The TMIOCMD operation is a very powerful operation. Extreme care must be taken by the

caller before issuing any general SCSI command, as this may adversely affect the attached device,

other SCSI devices on the SCSI bus, or even general system availability. It should only be used

when no other means are available to run the required function or functions on the attached device.

This operation requires at least dev_config authority to run.

The TMIOCMD operation provides a means of sending SCSI commands directly to the attached device.

This operation is only allowed for the initiator-mode device. It enables a caller to issue specific SCSI

commands that are not directly supported by the device driver. The caller is responsible for any and all

error recovery associated with the sending of the SCSI command. No error recovery is performed by the

device driver when the command is issued. The device driver does not log errors that occur while running

the command.

Chapter 5. SCSI Subsystem 345

The arg parameter to this command specifies the address of the sc_iocmd structure defined in the

/usr/include/sys/scsi.h file. The caller fills in the SCSI command descriptor block area, command length

(SCSI command block length), the time-out value for the command, and a flags field. If a data transfer is

involved, the data length and buffer pointer areas, as well as the B_READ flag in the flags field, must be

filled in. The B_READ is set to a value of 1 to indicate the command’s data transfer is incoming, and

B_READ is set to a value of 0 to indicate the data is outgoing. If there is no data transfer, these fields and

flags are set to 0 values.

The target-mode device driver builds the appropriate command block to execute this operation, including

ORing in the 3-bit logical unit number (LUN) identifier in the SCSI command based on the configuration

information for this device instance. The returned errno global variable is generated and the status

validity, SCSI bus status, and adapter status fields are updated to reflect the completion status for the

command. These status areas are defined in the /usr/include/sys/scsi.h file.

Files

 /dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications through

the SCSI target-mode device driver.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

TMIOEVNT (Event) tmscsi Device Driver ioctl Operation

Purpose

Allows the caller to query the device driver for event status.

Note: This operation is not supported by all SCSI I/O controllers.

Description

The TMIOEVNT ioctl operation allows the caller to query the device driver for status on certain events.

The arg parameter to the TMIOEVNT operation specifies the address of the tm_event_info structure

defined in the /usr/include/sys/tmscsi.h file. This operation conveys status that is generally not tied to a

specific application program subroutine and would not otherwise be known to the application. For example,

failure of an adapter function not associated directly with a SCSI command is reported through this facility.

Although this operation can be used independently of other commands to the target-mode device driver, it

is most effective when issued in conjunction with the select entry point POLLPRI option. For this device

driver, the POLLPRI option indicates an event has occurred that is reported through the TMIOEVNT

operation. This allows the caller to be asynchronously notified of events occurring to the device instance,

which means the TMIOEVNT operation need only be issued when an event occurs. Without the select

entry point, it would be necessary for the caller to issue the TMIOEVNT operation after every read or

write subroutine to know when an event has occurred. The select entry point allows the caller to monitor

events on one or more target or initiator devices.

Because the caller is not generally aware of which adapter a particular device is attached to, event

information in the TMIOEVNT operation is maintained for each device instance. Application programs

should not view any information from one device’s TMIOEVNT operation as necessarily affecting other

devices opened through this device driver. Rather, the application must base its error recovery for each

device on that device’s particular TMIOEVNT information.

346 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Event information is reported through the events field of the tm_event_info structure and can have the

following values:

 Value Description

TM_FATAL_HDW_ERR Adapter fatal hardware failure

TM_ADAP_CMD_FAILED Unrecoverable adapter command failure

TM_SCSI_BUS_RESET SCSI Bus Reset detected

TM_BUFS_EXHAUSTED Maximum buffer usage detected

Some of the events that can be reported apply to any SCSI device, whether they are initiator-mode or

target-mode devices. These events include adapter fatal hardware failure, unrecoverable adapter

command failure, and SCSI BUS Reset detected. The maximum buffer usage detected event applies

only to the target mode device and is never reported for an initiator-mode device instance.

The adapter fatal hardware failure event is intended to indicate a fatal condition. This means no further

commands are likely to complete successfully to or from this SCSI device, as the adapter it is attached to

has failed. In this case, the application should end the session with the device.

The unrecoverable adapter command failure event is not necessarily a fatal condition but can indicate

that the adapter is not functioning properly. The application program has these possible actions:

v End the session with the device in the near future.

v End the session after multiple (two or more) such events.

v Attempt to continue the session indefinitely.

The SCSI Bus Reset detection event is mainly intended as information only but can be used by the

application to perform further actions, if necessary. The Reset information can also be conveyed to the

application during command execution, but the Reset must occur during the SCSI command for this to

occur.

The maximum buffer usage detected event only applies to a given target-mode device; it is not be

reported for an initiator device. This event indicates to the application that this particular target-mode

device instance has filled its maximum allotted buffer space. The application should perform read

subroutines fast enough to prevent this condition. If this event occurs, data is not lost, but it is delayed to

prevent further buffer usage. Data reception is restored when the application empties enough buffers to

continue reasonable operations. The num_bufs attribute may need to be increased from the default value

to help minimize this problem.

Return Values

 EFAULT Operation failed due to a kernel service error.

EINVAL Attempted to execute an ioctl operation for a device instance that is not configured, not open, or is

not in the proper mode (initiator versus target) for this operation.

EIO An I/O error occurred during the operation.

EPERM For the TMIOCMD operation, the caller did not have dev_config authority.

ETIMEDOUT The operation did not complete before the timeout expired.

Files

 /dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications through

the SCSI target-mode device driver.

Chapter 5. SCSI Subsystem 347

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

TMIORESET (Reset Device) tmscsi Device Driver ioctl Operation

Purpose

Sends a Bus Device Reset (BDR) message to an attached target device.

Note: This operation is not supported by all SCSI I/O controllers.

Description

The TMIORESET ioctl operation allows the caller to send a Bus Device Reset (BDR) message to a

selected target device. Only an initiator-mode device may use this operation. The arg parameter of the

TMIORESET operation is set to a null value by the caller.

The attached target device typically uses this BDR message to reset certain operating characteristics.

Such an action may be needed during severe error recovery between the host initiator and the attached

target device. The specific effects of the BDR message are device dependent. Since the effects of this

operation are potentially adverse to the target device, care should be taken by the caller before issuing

this message. To run this operation requires at least dev_config authority.

Files

 /dev/tmscsi0, /dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications through

the SCSI target-mode device driver.

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

TMIOSTAT (Status) tmscsi Device Driver ioctl Operation

Purpose

Allows the caller to get detailed status about the previous write or TMGETSENS operation.

Note: This operation is not supported by all SCSI I/O controllers.

Description

The TMIOSTAT operation allows the caller to get detailed status about a previous write or TMGETSENS

operation. This operation is allowed only for the initiator-mode device. The arg parameter to this operation

specifies the address of the tm_get_stat structure defined in /usr/include/sys/tmscsi.h file. The status

returned by the TMIOSTAT operation is updated for both successful and unsuccessful completions of

these commands. This status is not valid for all errno global variables.

Files

 /dev/tmscsi0,/dev/tmscsi1,..., /dev/tmscsin Support processor-to-processor communications through

the SCSI target-mode device driver.

348 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

The rmt SCSI device driver, scdisk SCSI device driver, SCSI Adapter device driver, tmscsi SCSI device

driver.

Chapter 5. SCSI Subsystem 349

350 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 6. Integrated Device Electronics (IDE)

IDE Adapter Device Driver

Purpose

Supports the Integrated Device Electronics (IDE) adapter.

Syntax

#include </usr/include/sys/ide.h>

#include </usr/include/sys/devinfo.h>

Description

The /dev/iden special files provide interfaces to allow IDE device drivers to access IDE devices. These

files manage the adapter resources so that multiple IDE device drivers can access devices on the same

IDE adapter simultaneously. IDE adapters are accessed through the special files /dev/ide0, /dev/ide1, and

similarly named files.

The /dev/iden special files provide interfaces for access to the IDE adapter. The host adapter is an initiator

for access to devices such as disks, tapes, and CD-ROMs.

Device-Dependent Subroutines

The IDE adapter device driver supports only the open, close, and ioctl subroutines. The read and write

subroutines are not supported.

open and close Subroutines

Note: The IDE Adapter device driver’s open and close subroutines do not support diagnostic open.

If such an open is attempted, the subroutine returns a value of -1 and the errno global value is set to

EINVAL.

Any kernel process can open the IDE adapter device driver in normal mode. For normal mode the ext

parameter is set to 0. However, a non-kernel process must have at least dev_config authority to open the

IDE adapter device driver in normal mode. Attempting to execute a normal open subroutine without the

proper authority causes the subroutine to return a value of -1, and set the errno global variable to a value

of EPERM.

ioctl Subroutine

Along with the IOCINFO operation, the IDE device driver defines specific operations for devices.

The IOCINFO operation is defined for all device drivers that use the ioctl subroutine, as follows:

v The operation returns a devinfo structure. This structure is defined in the /usr/include/sys/devinfo.h

file. The device type in this structure is DD_BUS, and the subtype is DS_IDE. The flags field is not used

and is set to 0.

v The devinfo structure includes unique data such as the maximum data transfer size allowed (in bytes).

A calling IDE device driver uses this information to learn the maximum transfer size allowed for a device

it controls on the IDE adapter. In this way, the IDE device driver can control devices across various IDE

adapters, with each device possibly having a different maximum transfer size.

IDE ioctl Operations for Adapters

The operations are IDE adapter device driver functions, rather than general device driver facilities.

© Copyright IBM Corp. 1997, 2007 351

The following IDE operations are for adapters:

 Operation Description

IDEIOGTHW Allows the caller to verify IDE adapter device driver support for gathered writes.

IDEIOINQU Provides the means to issue an inquire command to an ATAPI IDE device.

IDEIOIDENT Provides the means to issue an identify device command to an IDE device. An indicator is

returned which identifies if the device is an ATA or ATAPI type device.

IDEIOREAD Sends a single block read command to the selected ATA IDE device, this is not supported for

ATAPI type devices.

IDEIORESET Allows the caller to force an IDE device to clear all current commands and return to an initial

state.

IDEIOSTART Opens a logical path to an IDE target device.

IDEIOSTOP Closes the logical path to an IDE target device.

IDEIOSTUNIT Provides the means to issue an IDE Start Unit command to a selected ATAPI IDE device.

IDEIOTUR Sends a Test Unit Ready command to the selected ATAPI IDE device.

Summary of IDE Error Conditions

Possible errno values for the adapter device driver are:

 Value Description

EACCES Indicates that an openx subroutine was attempted while the adapter had one or more devices in

use.

EBUSY Indicates that a delete operation was unsuccessful. The adapter is still open.

EFAULT Indicates that a copy between kernel and user space failed.

EINVAL Indicates an invalid parameter or that the device has not been opened.

EIO Indicates an invalid command. A IDEIOSTART operation must be executed prior to this

command, or an invalid IDE master or slave was passed in.

EIO Indicates that the command has failed due to an error detected on the adapter or the IDE bus.

EIO Indicates that the device driver was unable to pin code.

EIO Indicates that a kernel service failed, or that an unrecoverable I/O error occurred.

ENOCONNECT Indicates that an IDE bus fault occurred.

ENODEV Indicates that the target device cannot be selected or is not responding.

ENOMEM Indicates that the command could not be completed due to an insufficient amount of memory.

ENXIO Indicates that the requested ioctl is not supported by this adapter.

EPERM Indicates that the caller did not have the required authority.

ETIMEDOUT Indicates that an IDE command has exceeded the time-out value.

Reliability and Serviceability Information

Errors detected by the adapter device driver may be one of the following:

v Permanent adapter or system hardware errors

v Temporary DMA error

v Temporary unknown adapter device driver errors

v Temporary error for command timeout

Permanent errors are either errors that cannot be retried or errors not recovered before a prescribed

number of retries has been exhausted. Temporary errors are either noncatastrophic errors that cannot be

retried or retriable errors that are successfully recovered before a prescribed number of retries has been

exhausted.

Error Record Values for Permanent Hardware Errors

The error record template for permanent hardware errors detected by the IDE adapter device driver is

described below. Refer to the ataide_rc structure for the actual definition of the detail data. The ataide_rc

structure is defined in the /usr/include/sys/ide.h file:

352 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

Comment Indicates ATA/IDE controller reset failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of TRUE, which indicates this error should be included when an error report is

generated.

Log Equals a value of TRUE, which indicates an error log entry should be created when this error

occurs.

Alert Equals a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of PERM, which indicates a permanent failure.

Err_Desc Equals a value of 0xE98A, which indicates an adapter reset failure.

Prob_Causes The following:

v 0xE901, which indicates a configuration error

v 0x3452, which indicates a storage device cable

v 0x6310, which indicates a DASD device

v 0xEA01, which indicates an adapter failure

Fail_Causes The following:

v 0x3400, which indicates a cable loose or defective

v 0x3303, which indicates a DASD adapter

Fail_Actions The following:

v 0x0301, which indicates to check the cables and its connections.

v 0x0000, which indicates to perform a problem determination procedure.

Detail_Data1 Equals a value of 56, EC35, and HEX

The error record template for DMA errors detected by the IDE adapter device driver follows:

 Field Description

Comment Indicates IDE DMA transfer error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of TRUE, which indicates this error should be included when an error report is

generated.

Log Equals a value of TRUE, which indicates an error-log entry should be created when this error

occurs.

Alert Equals a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of TEMP, which indicates a temporary failure.

Err_Desc Equals a value of 0xEB75, which indicates DMA error.

Prob_Causes The following:

v 0xE901, which indicates a configuration error

v 0x3452, which indicates a storage device cable

v 0x6310, which indicates a DASD device

v 0xEA01, which indicates an adapter failure

Fail_Causes The following:

v 0x3400, which indicates a cable loose or defective

v 0x3303, which indicates a DASD adapter

Fail_Actions The following:

v 0x0301, which indicates to check the cable and its connections.

v 0x0000, which indicates to perform problem-determination procedure.

Detail_Data1 Equals a value of 56, EC35, HEX

Error Record Values for Temporary Unknown IDE Device Errors

The error-record template for unknown IDE adapter errors detected by the IDE adapter device driver

follows:

Chapter 6. Integrated Device Electronics (IDE) 353

Field Description

Comment Indicates IDE Device error

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of TRUE, which indicates this error should be included when an error report is

generated.

Log Equals a value of TRUE, which indicates an error log entry should be created when this error

occurs.

Alert Equals a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of TEMP, which indicates a temporary failure.

Err_Desc Equals a value of 0x1002, which indicates device error.

Prob_Causes The following:

v 0xE901, which indicates configuration error

v 0x3452, which indicates storage device cable

v 0x6310, which indicates DASD device

v 0xEA03, which indicates adapter error

Fail_Causes The following:

v 0x3400, which indicates a cable loose or defective

v 0x3303, which indicates DASD adapter

Fail_Actions The following:

v 0x0301, which indicates to check the cable and its connections.

v 0x0000, which indicates to perform problem-determination procedure.

Detail_Data1 Equals a value of 56, EC35, HEX.

Error Record Values for IDE Command Timeout Errors

The error-record template for IDE Command Timeout errors detected by the IDE adapter device driver

follows:

 Field Description

Comment Indicates IDE Interrupt timeout error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of TRUE, which indicates this error should be included when an error report is

generated.

Log Equals a value of TRUE, which indicates an error log entry should be created when this error

occurs.

Alert Equals a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of TEMP, which indicates a temporary failure.

Err_Desc Equals a value of 0xE96B, which indicates interrupt timed out.

Prob_Causes The following:

v 0xE901, which indicates a configuration error

v 0x3452, which indicates a storage device cable

v 0x6310, which indicates a DASD device

v 0xEA01, which indicates an adapter failure

Fail_Causes The following:

v 0x3400, which indicates a cable loose or defective

v 0x3303, which indicates DASD adapter

Fail_Actions The following:

v 0x0301, which indicates to check the cable and its connections.

v 0x0000, which indicates to perform problem-determination procedures.

Detail_Data1 Equals a value of 56, EC35, HEX.

354 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Managing Dumps

The IDE adapter device driver is a target for the system dump facility. The DUMPINIT and DUMPSTART

options to the dddump entry point support multiple or redundant calls. The DUMPQUERY option returns a

minimum transfer size of 0 bytes and a maximum transfer size equal to the maximum transfer size

supported by the IDE adapter device driver.

To be processed, calls to the IDE adapter device driver DUMPWRITE option should use the arg parameter

as a pointer to the ataide_buf structure. Using this interface, a IDE write command can be run on a

previously started (opened) target device. The uiop parameter is ignored by the IDE adapter device driver.

Spanned or consolidated commands are not supported using DUMPWRITE.

Note: The various ataide_buf status fields, including the b_error field, are not set at completion of

the DUMPWRITE. Error logging is, of necessity, not supported during the dump.

Successful completion of the dddump entry point is indicated by a 0. If unsuccessful, the entry point

returns one of the following:

 Return Description

EINVAL Indicates that the adapter device driver was passed as a request that was invalid, such as

attempting a DUMPSTART option before successfully executing a DUMPINIT option.

EIO Indicates that the adapter device driver was unable to complete the command due to a lack of

required resources or an I/O error.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed command time-out value

expired.

Special Files

 /dev/ide0, /dev/ide1,..., /dev/iden Provides an interface to allow IDE device drivers

to access IDE devices or adapters.

Related Information

idedisk IDE device driver or idecdrom IDE device driver.

idecdrom IDE Device Driver

Purpose

Supports the Integrate Device Electronics (IDE) CD-ROM devices.

Syntax

#include <sys/devinfo.h>

#include <sys/ide.h>

#include <sys/idecdrom.h>

Device-Dependent Subroutines

Typical CD-ROM drive operations are implemented using the open, close, read, and ioctl subroutines.

open and close Subroutines

The openx subroutine is intended primarily for use by the utilities.

The ext parameter passed to the openx subroutine selects the operation to be used for the target device.

The /usr/include/sys/idecdrom.h file defines possible values for the ext parameter.

Chapter 6. Integrated Device Electronics (IDE) 355

The ext parameter can contain any combination of the following flag values logically ORed together:

 Flag Value Description

IDE_SINGLE Places the selected device in exclusive access mode. Only one process at a time can open a

device in exclusive access mode.

A device can be opened in exclusive access mode only if the device is not currently open. If an attempt is

made to open a device in exclusive access mode and the device is already open, the subroutine returns a

value of -1 and sets the errno global variable to a value of EBUSY.

ioctl Subroutine

ioctl subroutine operations that are used for the idecdrom device driver are:

 Operation Description

IOCINFO Returns the devinfo structure defined in the /usr/include/sys/devinfo.h file. The IOCINFO

operation is the only operation defined for all device drivers that use the ioctl subroutine. The

remaining operations discussed in this article are all specific to CD-ROM devices.

IDE_CDIORDSE Provides a means for issuing a read command to the device and obtaining the target-device

sense data when an error occurs. If the IDE_CDIORDSE operation returns a value of -1 and

the status_validity field has the ATA_ERROR bit set, valid sense data is returned.

Otherwise, target sense data is omitted.

The IDE_CDIORDSE operation is provided for diagnostic use. It allows the limited use of the target device

while operating in an active system environment. The arg parameter to the IDE_CDIOROSE operation

contains the address of an sc_rdwrt structure. This structure is defined in the /usr/include/sys/scsi.h file.

The devinfo structure defines the maximum transfer size for a read operation. If an attempt is made to

transfer more than the maximum, the subroutine returns a value of -1 and sets the errno global variable to

a value of EINVAL. Refer to the ATA Packet Interface for CD-ROMS Specification for the format of the

request-sense data for a particular device.

Note: The IDE_CDIORDSE operation can be substituted for the DKIORDSE operation when issuing a

read command to obtain sense data from a CD-ROM device.

 Operation Description

IDE_CDPMR Issues an IDE prevent media removal command when the device has been successfully

opened. This command prevents media from being ejected until the device is closed, powered

off and then back on, or until a IDE_CDAMR operation is issued. The arg parameter for the

IDE_CDPMR operation is null. If the IDE_CDPMR operation is successful, the subroutine

returns a value of 0. If the IDE_CDPMR operation fails for any reason, the subroutine returns a

value of -1 and sets the errno global variable to a value of EIO.

IDE_CDAMR Issues an allow media removal command when the device has been successfully opened. As a

result media can be ejected using either the drive’s eject button or the IDE_CDEJECT

operation. The arg parameter for this ioctl is null. If the IDE_CDAMR operation is successful,

the subroutine returns a value of 0. For any failure of this operation, the subroutine returns a

value of -1 and sets the errno global variable to a value of EIO.

IDE_CDEJECT Issues an eject media command to the drive when the device has been successfully opened.

The arg parameter for this operation is null. If the IDE_CDEJECT operation is successful, the

subroutine returns a value of 0. For any failure of this operation, the subroutine returns a value

of -1 and sets the errno variable to a value of EIO.

356 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

IDE_CDAUDIO Issues play-audio commands to the specified device and controls the volume on the device’s

output ports. Play audio commands include: play audio MSF (play audio track index is not

supported), pause, resume, stop, determine the number of tracks, and determine the status of

a current audio operation. The IDE_CDAUDIO operation plays audio only through the CD-ROM

drive’s output ports. The arg parameter of this operation is the address of a cd_audio_cmd

structure, which is defined in the /usr/include/sys/scdisk.h file. Exclusive access mode is

required.

If IDE_CDAUDIO operation is attempted when the device’s audio-supported attribute is set to

no, the subroutine returns a value of -1 and sets the errno global variable to a value of

EINVAL. If the IDE_CDAUDIO operation fails, the subroutine returns a value of -1 and sets the

errno global variable to a nonzero value. In this case, the caller should evaluate the returned

status bytes to determine why the operation failed and what recovery actions should be taken.

IDE_CDMODE Determines or changes the CD-ROM data mode for the specified device. The CD-ROM data

mode specifies what block size and special file are used for data read across the IDE bus from

the device.The IDE_CDMODE operation supports the following CD-ROM data modes:

CD_ROM Data Mode 1

2048-byte block size through both raw (dev/rcd*) and block special (/dev/cd*) files

CD_ROM Data Mode 2 Form 1

2048-byte block size through both raw (dev/rcd*) and block special (/dev/cd*) files

CD_ROM Data Mode 2 Form 2

2336-byte block size through the raw (dev/rcd*) special file only

CD_DA (Compact Disc Digital Audio)

2352-byte block size through the raw (dev/rcd*) special file only

The IDE_CDMODE arg parameter contains the address of the mode_form_op structure

defined in the /usr/include/sys/scdisk.h file. To have the IDE_CDMODE operation determine

or change the CD-ROM data mode, set the action field of the change_mode_form structure to

one of the following values:

CD_GET_MODE

Returns the current CD-ROM data mode in the cd_mode_form field of the

mode_form_op structure, when the device has been successfully opened.

CD_CHG_MODE

Changes the CD-ROM data mode to the mode specified in the cd_mode_form field of

the mode_form_op structure, when the device has been successfully opened in the

exclusive access mode.

If a CD-ROM has not been configured for different data modes, and an attempt is made to change the

CD-ROM data mode (by setting the action field of the change_mode_form structure set to

CD_CHG_MODE), the subroutine returns a value of -1 and sets the errno global variable to a value of

EINVAL.

If the IDE_CDMODE operation for CD_CHG_MODE is attempted when the device is not in exclusive

access mode, the subroutine returns a value of -1 and sets the errno global variable to a value of

EACCES. For any other failure of this operation, the subroutine returns a value of -1 and sets the errno

global variable to a value of EIO.

 Operation Description

IDEPASSTHRU Issues any ATAPI command to the specified device when the device is successfully opened.

The IDEPASSTHRU operation does not require an openx command with the ext parameter

value set to SC_DIAGNOSTIC. Because of this, an IDEPASSTHRU operation can be issued to

devices that are in use by other operations.

Chapter 6. Integrated Device Electronics (IDE) 357

The ATA status bytes and the ATA error bytes are returned through the arg parameter, which contains the

address of an ide_atapi_passthru structure (defined in the /usr/include/sys/ide.h file). If the

IDEPASSTHRU operation fails, the subroutine returns a value of -1 and sets the errno global variable to a

nonzero value. If this happens, the caller evaluates the returned status bytes to determine why the

operation was unsuccessful and what recovery actions should be taken.

The device driver will perform limited error recovery if the IDEPASSTHRU operation fails. If this operation

fails because a field in the ide_atapi_passthru structure has an invalid value, the subroutine will return a

value of -1 and set the errno global variable to EINVAL. The rsv0 field of the ide_atapi_passthru

structure is used as the version field. The rsv0 field of the ide_atapi_passthru structure can be set to the

value of IDE_PASSTHRU_VERSION01, and you can provide the following fields:

 Field Description

sense_data_length Determines the length (in bytes) of the sense data buffer provided by the user.

ense_data Pointer to buffer where sense data will be transferred. Sense data will only be transferred

when a check condition occurs and valid sense data is obtained from the device.

Refer to the Small Computer System Interface (SCSI) for the format of the request-sense data for a

particular device.

Device Requirements

IDE CD-ROM drives have the following hardware requirements:

v IDE CD-ROM drive must support the IDE ATAPI_READ_CD command.

v If a IDE CD-ROM drive uses CD_ROM Data Mode 1, it must support a block size of 2048 bytes per

block.

v If an IDE CD-ROM drive uses CD_ROM Data Mode 2 Form 1, it must support a block size of 2048

bytes per block.

v If an IDE CD-ROM drive uses CD_ROM Data Mode 2 Form 2, it must support a block size of 2336

bytes per block.

v If an IDE CD-ROM drive uses CD_DA mode, it must support a block size of 2352 bytes per block.

v To control volume using the IDE_CDAUDIO (play-audio) operation, the device must support mode data

page 0xE.

v To use the IDE_CDAUDIO (play-audio) operation, the device must support the following optional

commands:

– read sub-channel

– pause resume

– play audio MSF

– read TOC

Error Conditions

Possible errno values for ioctl, open, read, and write subroutines when using the idecdrom device driver

include:

 Value Description

EACCES Indicates one of the following circumstances:

v An attempt was made to open a device currently open exclusive access mode.

v An IDE_CDMODE ioctl subroutine operation was attempted on a device not in exclusive

access mode.

EBUSY An attempt was made to open a session in exclusive access mode on a device already

opened.

EFAULT Indicates an illegal user address.

358 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Value Description

EFORMAT Indicates the target device has unformatted media or media in an incompatible format.

EINPROGRESS Indicates a CD-ROM drive has a play-audio operation in progress.

EINVAL Indicates one of the following circumstances:

v An IDE_CDAUDIO (play-audio) operation was attempted for a device that is not configured

to use the IDE play-audio commands.

v The read subroutine supplied an nbyte parameter that is not an even multiple of the block

size.

v A sense data buffer length of greater than 255 bytes is not valid for a IDE_CDIORDSE ioctl

subroutine operation.

v The data buffer length exceeded the maximum defined in the devinfo structure for a

IDE_CDIORDSE ioctl subroutine operation.

v An unsupported ioctl subroutine operation was attempted.

v An attempt was made to configure a device that is still open.

v An illegal configuration command has been given.

v An IDE_CDPMR (Prevent Media Removal), IDE_CDAMR (Allow Media Removal), or

IDE_CDEJECT (Eject Media) command was sent to a device that does not support

removable media.

v An IDE_CDEJECT (Eject Media) command was sent to a device that currently has its media

locked in the drive.

v The data buffer length exceeded the maximum defined for a strategy operation.

EIO Indicates one of the following circumstances:

v The target device cannot be located or is not responding.

v The target device has indicated an unrecovered hardware error.

EMEDIA Indicates one of the following circumstances:

v The target device has indicated an unrecovered media error.

v The media was changed.

EMFILE Indicates an open operation was attempted for an adapter that already has the maximum

permissible number of opened devices.

ENODEV Indicates one of the following circumstances:

v An attempt was made to access an undefined device.

v An attempt was made to close an undefined device.

ENOTREADY Indicates no media is in the drive.

ENXIO Indicates one of the following circumstances:

v The ioctl subroutine supplied an invalid parameter.

EPERM Indicates the attempted subroutine requires appropriate authority.

ESTALE Indicates a read-only disk was ejected (without first being closed by the user) and then either

reinserted or replaced with a second disk.

ETIMEDOUT Indicates an I/O operation has exceeded the given timer value.

EWRPROTECT Indicates one of the following circumstances:

v An open operation requesting read/write mode was attempted on read-only media.

v A write operation was attempted to read-only media.

Reliability and Serviceability Information

IDE CD-ROM drives return the following errors:

 Error Description

ABORTED COMMAND Indicates the device ended the command.

GOOD COMPLETION Indicates the command completed successfully.

HARDWARE ERROR Indicates an unrecoverable hardware failure occurred during command execution or

during a self-test.

ILLEGAL REQUEST Indicates an illegal command or command parameter.

Chapter 6. Integrated Device Electronics (IDE) 359

Error Description

MEDIUM ERROR Indicates the command ended with an unrecovered media error condition.

NOT READY Indicates the logical unit is offline or media is missing.

RECOVERED ERROR Indicates the command was successful after some recovery was applied.

UNIT ATTENTION Indicates the device has been reset or the power has been turned on.

Error Record Values for Media Errors

The fields defined in the error record template for CD-ROM media errors are:

 Field Description

Comment Indicates CD-ROM read media error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error

occurs.

Alert Equals a value of False, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 5000, which indicates media.

User_Causes Equals a value of 5100, which indicates the media is defective.

User_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

Fail_Causes Equals the following values:

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the idecdrom_error_rec structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The idecdrom_error_rec structure

is defined in the /usr/include/sys/ide.h file.

The idecdrom_error_rec structure contains the following fields:

 Field Description

req_sense_data Contains the request-sense information from the particular device that had the error, if it

is valid.

reserved2 Contains the segment count, which is the number of megabytes read from the device at

the time the error occurred.

reserved3 Contains the number of bytes read since the segment count was last increased.

Refer to the ATA Packet Interface for CD-ROMs Specification for the format of the request-sense data for

a particular device.

Error Record Values for Hardware Errors

The fields defined in the error record template for CD-ROM hardware errors, as well as hard-aborted

command errors are:

360 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

Comment Indicates CD-ROM hardware error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error

occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals a value of 6310, which indicates disk drive.

Fail_Causes Equals the following values:

v 6310, which indicates a disk drive failure

v 6330, which indicates a disk drive electronics failure

Fail_Actions Equals a value of 0000, which indicates problem-determination procedures should be

performed.

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: he Detail_Data field in the err_rec structure contains the idecdrom_error_rec structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The idecdrom_error_rec structure

is defined in the /usr/include/sys/ide.h file.

The idecdrom_error_rec structure contains the following fields:

 Field Description

req_sense_data Contains the request-sense information from the particular device that had the error, if it

is valid.

reserved2 Contains the segment count, which is the number of megabytes read from the device at

the time the error occurred.

reserved3 Contains the number of bytes read since the segment count was last increased.

Refer to the ATA Packet Interface for CD-ROMs Specification for the format of the request-sense data for

a particular device.

Error Record Values for Recovered Errors

The fields defined in the error record template for CD-ROM media errors recovered errors are:

 Field Description

Comment Indicates CD-ROM recovered error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error

occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Temp, which indicates a temporary failure.

Err_Desc Equals a value of 1312, which indicates a physical volume operation failure.

Prob_Causes Equals the following values:

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

User_Causes Equals a value of 5100, which indicates media is defective.

User_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

Chapter 6. Integrated Device Electronics (IDE) 361

Field Description

Fail_Causes Equals the following values:

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

Fail_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the idecdrom_error_rec structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The idecdrom_error_rec structure

is defined in the /usr/include/sys/ide.h file.

The idecdrom_error_rec structure contains the following fields:

 Field Description

req_sense_data Contains the request-sense information from the particular device that had the error, if it

is valid.

reserved2 Contains the segment count, which is the number of megabytes read from the device at

the time the error occurred.

reserved3 Contains the number of bytes read since the segment count was last increased.

Refer to the ATA Packet Interface for CD-ROMs Specification for the format of the request-sense data for

a particular device.

Error Record Values for Unknown Errors

The fields defined in the error record template for CD-ROM media errors unknown errors are:

 Field Description

Comment Indicates CD-ROM unknown failure.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error

occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Unkn, which indicates the type of error is unknown.

Err_Desc Equals a value of FE00, which indicates an undetermined error.

Prob_Causes Equals the following values:

v 3300, which indicates an adapter failure

v 5000, which indicates a media failure

v 6310, which indicates a disk drive failure

Fail_Causes Equals a value of FFFF, which indicates the failure causes are unknown.

Fail_Actions Equals the following values:

v 0000, which indicates problem-determination procedures should be performed

v 1601, which indicates the removable media should be replaced and retried

Detail_Data Equals a value of 156, 11, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the idecdrom_error_rec structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The idecdrom_error_rec structure

is defined in the /usr/include/sys/ide.h file.

362 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The idecdrom_error_rec structure contains the following fields:

 Field Description

req_sense_data Contains the request-sense information from the particular device that had the error, if it

is valid.

reserved2 Contains the segment count, which is the number of megabytes read from the device at

the time the error occurred.

reserved3 Contains the number of bytes read since the segment count was last increased.

Refer to the ATA Packet Interface for CD-ROMs Specification for the format of the request-sense data for

a particular device.

Special Files

The idecdrom IDE device driver uses raw and block special files in performing its functions.

Attention: Data corruption, loss of data, or loss of system integrity (system crash) will occur if

devices supporting paging, logical volumes, or mounted file systems are accessed using block

special files. Block special files are provided for logical volumes and disk devices and are solely for

system use in managing file systems, paging devices, and logical volumes. These files should not be

used for other purposes.

The special files used by the idecdrom, device driver include the following:

 File Description

/dev/rcd0, /dev/rcd1,..., /dev/rcdn Provide an interface to allow IDE device drivers

character access (raw I/O access and control

functions) to IDE CD-ROM disks.

/dev/cd0, /dev/cd1,..., /dev/cdn Provide an interface to allow IDE device drivers

block I/O access to IDE CD-ROM disks.

The prefix r on a special file name indicates the drive is accessed as a raw device rather than a block

device. Performing raw I/O with a CD-ROM drive requires that all data transfers be in multiples of the

device block size. Also, all lseek subroutines that are made to the raw device driver must result in a file

pointer value that is a multiple of the device block size.

Related Information

“IDE Adapter Device Driver” on page 351.

Special Files, and cd Special File in AIX Version 6.1 Files Reference.

Integrated Device Electronics (IDE) Subsystem, A Typical IDE Driver Transaction Sequence, Required IDE

Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, IDE Error

Recovery, and ataide_buf Structure in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

close Subroutine, ioctl, ioctlx, ioctl32, or ioctl32x Subroutine, and open, openx, open64, creat, or creat64

Subroutine in AIX Version 6.1 Technical Reference: Base Operating System and Extensions Volume 1.

read, readx, readv, readvx, or pread Subroutine, and write, writex, writev, writevx or pwrite Subroutines in

AIX Version 6.1 Technical Reference: Base Operating System and Extensions Volume 2

Chapter 6. Integrated Device Electronics (IDE) 363

idedisk IDE Device Driver

Purpose

Supports the Integrated Device Electronics (IDE) fixed disk devices.

Syntax

#include <sys/devinfo.h>

#include <sys/ide.h>

Device-Dependent Subroutines

Typical fixed disk operations are implemented using the open, close, read, write, and ioctl subroutines.

open and close Subroutines

The standard open and close operations are supported by the idedisk device driver. The openx operation

is not supported.

readx and writex Subroutines

The readx and writex subroutines provide additional parameters affecting the raw data transfer. These

subroutines pass the ext parameter, which specifies request options. The options are constructed by

logically ORing zero or more of the following values:

 WRITEV Indicates a request for write verification.

ioctl Subroutine

ioctl subroutine operations that are used for the idedisk device driver are:

 Operation Description

DKFORMAT The IDE disk device driver does not support low level formatting of an IDE disk. IDE disks are

preformatted at the factory and should not be reformatted. Attempting to format an IDE disk will

result in a -1 return code and errno set to EINVAL.

IDEPASSTHRU Issues any ATAPI command to the specified device when the device has been successfully

opened. The IDEPASSTHRU operation does not require an openx command with the ext

argument of SC_DIAGNOSTIC. Because of this, an IDEPASSTHRU operation can be issued to

devices that are in use by other operations.

The ATA status bytes and the ATA error bytes are returned through the arg parameter, which

contains the address of an ide_ata_passthru structure (defined in the /usr/include/sys/ide.h

file). If the IDEPASSTHRU operation fails, the subroutine returns a value of -1 and sets the errno

global variable to a nonzero value. If this happens, the caller evaluates the returned status bytes

to determine why the operation was unsuccessful and what recovery actions should be taken.

The device driver will perform limited error recovery if the IDEPASSTHRU operation fails. If this

operation fails because a field in the ide_ata_passthru structure has an invalid value, the

subroutine will return a value of -1 and set the errno global variable to EINVAL.

On completion of the IDEPASSTHRU ioctl request, the residual field indicates the leftover data

that the device does not fully satisfy this request. On a successful completion, the residual field

indicates that the device does not have all of the data that is requested, or the device has less

than the amount of data that is requested. On a failure completion, the residual field indicates the

number bytes that the device failed to complete for this request.

IOCINFO Returns the devinfo structure defined in the /usr/include/sys/devinfo.h file. The IOCINFO

operation is the only operation defined for all device drivers that use the ioctl subroutine. The

remaining operations discussed in this article are all specific to IDE fixed disk devices.

364 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Device Requirements

IDE fixed disks must support the following ATA commands. The commands’ hexadecimal opcodes are

specified in the parenthesis:

v Identify Device (EC)

v Set Features (EF)

v Initialize Drive Parameters (91)

v Read Sector(s) without retry (21)

v Read Sector(s) with retry (20)

v Write Sector(s) with retry (30)

v Read DMA with retry (C8)

v Write DMA with retry (CA)

v Read Verify with retry (40)

v Idle Immediate (95)

v Standby Immediate (94)

Error Conditions

Possible errno values for ioctl, open, read, and write subroutines when using the idedisk device driver

include:

 Value Description

EFAULT Indicates an illegal user address.

EINVAL Indicates one of the following circumstances:

v The read or write subroutine supplied an nbyte parameter that is not an even multiple of the

block size.

v An unsupported ioctl subroutine operation was attempted.

v An attempt was made to configure a device that is still open.

v An illegal configuration command was requested.

v The data buffer length exceeded the maximum defined for a strategy operation.

v The HWRELOC or UNSAFEREL bits of the writex ext parameter were set.

EIO Indicates one of the following circumstances:

v The target device cannot be located or is not responding.

v The target device has indicated an unrecovered hardware error.

ENFILE Indicates the system file table was full.

ENODEV The specified fixed disk was not configured or does not exist.

ENXIO Indicates one of the following circumstances:

v The specified fixed disk was not opened.

v The ioctl subroutine supplied an invalid parameter.

v A read or write operation was attempted beyond the end of the fixed disk.

EPERM Indicates the attempted subroutine requires appropriate authority.

ETIMEDOUT Indicates an I/O operation exceeded the given time-out value.

EWRPROTECT Indicates one of the following circumstances:

v An open operation requesting read/write mode was attempted on read-only media.

v A write operation was attempted to read-only media.

Reliability and Serviceability Information

The following classes of errors are reported by the IDE disk device driver:

 Class Description

SOFTWARE ACCESS ERROR Indicates that the fixed disk was not ready to receive a command or that an

unsupported command was requested.

Chapter 6. Integrated Device Electronics (IDE) 365

Class Description

HARDWARE ERROR Indicates an unrecoverable hardware failure occurred during command

execution.

MEDIA ERROR Indicates an unrecoverable media error was encountered during command

execution. This class of error includes bad blocks, missing sector IDs,

missing address marks, recalibration failures, and uncorrectable data errors.

RECOVERED ERROR Indicates the command succeeded due to fixed disk or disk device driver

retries.

Error Record Values for Media Errors

The fields defined in the error record template for fixed disk media errors are:

 Field Description

Comment Indicates fixed disk media error.

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error

occurs.

Alert Equals a value of False, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1312, which indicates a disk operation failure.

Prob_Causes Equals the following values:

v E855, which indicates a disk problem

v 6330, which indicates a disk drive electronics

Fail_Causes Equals the following values:

v EA77, which indicates a bad block detected

v EA78, which indicates an uncorrectable data error

v EA79, which indicates a requested secotr’s id or address mark not found

v EA7A, which indicates a track 0 not found

Fail_Actions Equals the following values:

v EC1B, which indicates verify disk’s master and slave jumpers are properly set

v 0301, which indicates check cables ant its connections

v 0000, which indicates problem-determination procedures should be performed

Detail_Data Equals a value of 72, EC35, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the idedisk_error_rec structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The idedisk_error_rec structure is

defined in the /usr/include/sys/ide.h file.

The idedisk_error_rec structure contains the following fields:

 Field Description

status_validity Contains bit flags indicating validity of status and error fields.

b_error Contains error value from buf structure.

b_flags Contains flag value from buf structure.

b_addr Contains buffer address from buf structure.

b_resid Contains residual byte count from buf structure.

ata Contains the IDE command that was sent to the IDE device. Also may contain

command completion status.

366 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Error Record Values for Physical Volume Software Access

The fields defined in the error record template for fixed disk physical volume software access are:

 Field Description

Comment Indicates fixed disk encountered a physical volume software error.

Class Equals a value of S, which indicates a software error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error

occurs.

Alert Equal to a value of FALSE, which indicates this error is notIDe alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 210F, which indicates a software error

Prob_Causes Equals the following:

v EA00, which indicates a software error

v 6330, which indicates a disk drive electronics failure

Fail_Causes Equals the following values:

v 109B, which indicates an invalid memory request size

v EA7B, which indicates an ATA status error

Fail_Actions Equals the following values:

v EC1B, which indicates verify disk’s master and slave jumpers are properly set

v 0301, which indicates check cables and its connections

v 0000, which indicates problem-determination procedures should be performed

Detail_Data Equals a value of 72, EC35, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the idedisk_error_rec structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The idedisk_error_rec structure is

defined in the /usr/include/sys/ide.h file.

The idedisk_error_rec structure contains the following fields:

 Field Description

status_validity Contains bit flags indicating validity of status and error fields.

b_error Contains error value from buf structure.

b_flags Contains flag value from buf structure.

b_addr Contains buffer address from buf structure.

b_resid Contains residual byte count from buf structure.

ata Contains the IDE command that was sent to the IDE device. Also may contain

command completion status.

Error Record Values for Physical Volume Hardware Error

The fields defined in the error record template for fixed disk physical volume hardware errors recovered

errors are:

 Field Description

Comment Indicates fixed disk physical volume hardware error

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error

occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Perm, which indicates a permanent failure.

Err_Desc Equals a value of 1311, which indicates a physical volume operation failure

Chapter 6. Integrated Device Electronics (IDE) 367

Field Description

Prob_Causes Equals a value of 6330, which indicates a disk drive electronics failure

Fail_Causes Equals a value of EA7C, which indicates an invalid media-change status

Fail_Actions Equals the following values:

v EC1B, which indicates verify disk’s master and slave jumpers are properly set

v 0301, which indicates check cables and its connections

v 0000, which indicates problem-determination procedures should be performed

v 1804, which indicates replace device

Detail_Data Equals a value of 72, EC35, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the idedisk_error_rec structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The idedisk_error_rec structure is

defined in the /usr/include/sys/ide.h file.

The idedisk_error_rec structure contains the following fields:

 Field Description

b_error Contains error value from buf structure.

b_flags Contains flag value from buf structure.

b_addr Contains buffer address from buf structure.

b_resid Contains residual byte count from buf structure.

ata Contains the IDE command that was sent to the IDE device. Also may contain command

completion status.

Error Record Values for Physical Volume Recovered Error

The fields defined in the error record template for fixed disk physical volume recovered errors are:

 Field Description

Comment Indicates fixed disk physical volume recovered error

Class Equals a value of H, which indicates a hardware error.

Report Equals a value of True, which indicates this error should be included when an error report is

generated.

Log Equals a value of True, which indicates an error log entry should be created when this error

occurs.

Alert Equal to a value of FALSE, which indicates this error is not alertable.

Err_Type Equals a value of Temp, which indicates the type of error is temporary.

Err_Desc Equals a value of EC64, which indicates a disk failure recovered during retry.

Prob_Causes Equals the following values:

v E855, which indicates an adapter failure

v 6330, which indicates a disk drive electronics failure

v EA00, which indicates a media failure

Fail_Causes Equals the following values:

v 5000, which indicates a media failure

v EA7B, which indicates an IDE command error

v EA7C, which indicates an invalid media change

Fail_Actions Equals a value of 0700, which indicates no action necessary

Detail_Data Equals a value of 72, EC35, HEX. This value indicates hexadecimal format.

Note: The Detail_Data field in the err_rec structure contains the idedisk_error_rec structure. The

err_rec structure is defined in the /usr/include/sys/errids.h file. The idedisk_error_rec structure is

defined in the /usr/include/sys/ide.h file.

368 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The idedisk_error_rec structure contains the following fields:

 Field Description

b_error Contains error value from buf structure.

b_flags Contains flag value from buf structure.

b_addr Contains buffer address from buf structure.

b_resid Contains residual byte count from buf structure.

ata Contains the IDE command that was sent to the IDE device. Also may contain command completion

status.

Special Files

The idedisk IDE device driver uses raw and block special files in performing its functions.

Attention: Data corruption, loss of data, or loss of system integrity (system crash) will occur if

devices supporting paging, logical volumes, or mounted file systems are accessed using block

special files. Block special files are provided for logical volumes and disk devices and are solely for

system use in managing file systems, paging devices, and logical volumes. These files should not be

used for other purposes.

The special files used to access the idedisk device driver include these fixed disk devices:

 Device Description

/dev/rhdisk0, /dev/rhdisk1,..., /dev/rhdiskn Provide an interface to allow character access (raw I/O

access and control functions) to IDE fixed disks.

/dev/hdisk0, /dev/hdisk1,..., /dev/hdiskn Provide an interface to allow block I/O access to IDE fixed

disks.

Note: The prefix r on a special file name indicates the drive is accessed as a raw device rather than a

block device. Performing raw I/O with a fixed disk drive requires that all data transfers be in

multiples of the device block size. Also, all lseek subroutines that are made to the raw device driver

must result in a file pointer value that is a multiple of the device block size.

Related Information

Special Files Overview in AIX Version 6.1 Files Reference.

IDE Subsystem Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming

Concepts.

A Typical IDE Driver Transaction Sequence in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

Required IDE Adapter Device Driver ioctl Commands in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

Understanding the Execution of Initiator I/O Requests in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

IDE Error Recovery in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

ataide_buf Structure in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

IDE Adapter Device Driver.

Chapter 6. Integrated Device Electronics (IDE) 369

The close subroutine, ioctl or ioctlx subroutine, open, openx, create subroutine, read, readx, readv, or

readvx subroutine, write, writex, writev, or writevx subroutine.

rhdisk Special File.

IDEIOIDENT (Identify Device) IDE Adapter Device Driver ioctl Operation

Purpose

Provides the means to issue an identify device command to an Integrated Device Electronics (IDE) ATA or

ATAPI device.

Description

The IDEIOIDENT operation allows the caller to issue an IDE identify device command to a selected

device. This command can be used by system management routines to aid in configuration of IDE

devices.

The arg parameter for the IDEIOIDENT operation is the address of an identify_device structure. This

structure is defined in the /usr/include/sys/ide.h file. The identify_device parameter block allows the caller

to select the IDE device ID to be queried.

If successful, the returned device data can be found at the address specified by the caller in the

identify_device structure. Successful completion occurs if a device responds at the requested IDE deivce

ID. Refer to the ATA Specification or the ATA Packet Interface for CD-ROMs Specification or the ATA

Packet Interface for Streaming Tapes Specification for the applicable device for the format of the returned

data. The data within the identify_deivce structure is in little endian format; it normally will need to be

byte swapped in order to correctly interpret the data. Each 16-bit word, at 16-bit offsets, will need to swap

the most significant 8-bit byte with the least significant 8-bit byte.

Note: The IDE adapter device driver performs normal error-recovery procedures during execution of this

command.

Return Values

When completed successfully this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to 1 of the following values:

 Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that an IDEIOSTART command was not issued prior to this command.

EIO Indicates that an unrecoverable I/O error has occurred. In the case of an unrecovered error, the

adapter error-status information is logged in the system error log.

ENOCONNECT Indicates that a bus fault has occurred. Generally the IDE adapter device driver cannot determine

which device caused the IDE bus fault, so this error is not logged.

ENODEV Indicates that no IDE device responded to the requested IDE device ID. This return value implies

that no device exists on the requested IDE device ID. Therefore, when the ENODEV return value

is encountered, the caller can skip this IDE device ID and go on to the next IDE device ID. This

condition is not necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates that the device did not respond with a status before the internal command time-out

value expired.

370 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Files

 /dev/ide0, /dev/ide1, ..., /dev/iden Provide an interface to allow IDE device

drivers to access IDE devices or adapters.

Related Information

idedisk IDE device driver or idecdrom IDE device driver.

IDEIOINQU (Inquiry) IDE Adapter Device Driver ioctl Operation

Purpose

Provides the means to issue an inquiry command to an Integrated Device Electronics (IDE) ATAPI device.

Description

The IDEIOINQU operation allows the caller to issue an IDE device inquiry command to a selected device.

This command can be used by system management routines to aid in configuration of IDE devices.

The arg parameter for the IDEIOINQU operation is the address of an ide_inquiry structure. This structure

is defined in the /usr/include/sys/ide.h file. The ide_inquiry parameter block allows the caller to select the

IDE device ID to be queried.

If successful, the returned inquiry data can be found at the address specified by the caller in the

ide_inquiry structure. Successful completion occurs if a device responds at the requested IDE device ID.

Refer to the ATA Packet Interface for CD-ROMs Specification or ATA Packet Interface for Streaming Tapes

Specification for the applicable device for the format of the returned data.

Note: The IDE adapter device driver performs normal error-recovery procedures during execution of this

command.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to 1 of the following values:

 Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that a IDEIOSTART command was not issued prior to this command.

EIO Indicates that an unrecoverable I/O error has occurred. If EIO is returned, the caller should retry

the IDEIOINQU operation since the first command may have cleared an error condition with the

device. In case of an unrecovered error, the adapter error-status information is logged in the

system error log.

ENOCONNECT Indicates that a bus fault has occurred. Generally the IDE adapter device driver cannot determine

which device caused the IDE bus fault, so this error is not logged.

ENODEV Indicates that no IDE device responded to the requested IDE device ID. This return value implies

that no device exists on the requested IDE device ID. Therefore, when the ENODEV return value

is encountered, the caller can skip this IDE device ID and go on to the next IDE device ID. This

condition is not necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates that the device did not respond with a status before the internal command time-out

value expired. On receiving the ETIMEDOUT return value, the caller should retry this command

at least once, since the first command may have cleared an error condition with the device. This

error is logged in the system error log.

Chapter 6. Integrated Device Electronics (IDE) 371

Files

 /dev/ide0, /dev/ide1, ..., /dev/iden Provide an interface to allow IDE device

drivers to access IDE devices or adapters.

Related Information

idedisk IDE device driver or idecdrom IDE device driver.

IDEIOREAD (Read) IDE Adapter Device Driver ioctl Operation

Purpose

Issues a single block Integrated Device Electronics (IDE) read command to a selected IDE ATA device.

Description

The IDEIOREAD operation allows the caller to issue an IDE device read command to a selected device.

System management routines use this command for configuring IDE devices.

The arg parameter of the IDEIOREAD operation is the address of an ide_readblk structure. This structure

is defined in the /usr/include/sys/ide.h header file.

This command results in the IDE adapter device driver issuing an ATA READ SECTOR read command.

The command is set up to read only a single block. The caller supplies:

v Target device IDE device ID

v Logical block number or cylinder-head-sector block number to be read

v Length (in bytes) of the block on the device

v Time-out value (in seconds) for the command

v Pointer to the application buffer where the returned data is to be placed

v Flags parameter

The maximum block length for this command is 512 bytes. The command will be rejected if the length is

found to be larger than this value.

Note: The IDE adapter device driver performs normal error-recovery procedures during execution of this

command.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to 1 of the following values:

 Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that an IDEIOSTART command was not issued prior to this command. If the

IDEIOSTART command was issued, then this indicates the block length field value is too large.

EIO Indicates that an I/O error has occurred. If an EIO value is returned, the caller should retry the

IDEIOREAD operation since the first command may have cleared an error condition with the

device. In the case of an adapter error, the system error log records the adapter error status

information.

ENOCONNECT Indicates that a bus fault has occurred. Generally, the IDE adapter device driver cannot

determine which device caused the bus fault, so this error is not logged.

372 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Value Description

ENODEV Indicates that no IDE device responded to the requested IDE device ID. This return value implies

that no device exists at the specified IDE device ID. This condition is not necessarily an error and

is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the device did not respond with status before the internal time-out value expired. The

caller should retry this command at least once, since the first command may have cleared an

error condition with the device. The system error log records this error.

Files

 /dev/ide0, /dev/ide1,..., /dev/iden Provide an interface to allow IDE device drivers

to access IDE devices or adapters.

Related Information

idedisk IDE device driver or idecdrom IDE device driver.

IDEIOSTART (Start IDE) IDE Adapter Device Driver ioctl Operation

Purpose

Opens a logical path to an Integrated Device Electronics (IDE) device.

Description

The IDEIOSTART operation opens a logical path to an IDE device. This operation causes the adapter

device driver to allocate and initialize the data areas needed to manage commands to a particular IDE

device.

The IDEIOSTART operation must be issued prior to any of the other operations, such as IDEIOINQU and

IDEIORESET. However, the IDEIOSTART operation is not required prior to calling the IOCINFO operation.

Finally, when the caller is finished issuing commands to the IDE device, the IDEIOSTOP operation must

be issued to release allocated data areas and close the path to the device.

The arg parameter to IDEIOSTART allows the caller to specify the IDE device ID identifier of the device to

be started. The least significant byte in the arg parameter is the IDE device ID (master=0, slave=1). The

remaining bytes are reserved and must be set to a value of 0.

Return Values

If completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and the

errno global variable set to 1 of the following values:

 Value Description

EIO Indicates either an unrecoverable I/O error, or the device driver is unable to pin code.

EINVAL Indicates that the IDE device ID was incorrect.

If the IDEIOSTART operation is unsuccessful, the caller must not attempt other operations to this IDE

device ID, since it is either already in use or was never successfully started.

Files

 /dev/ide0, /dev/ide1, ..., /dev/iden Provide an interface to allow IDE device

drivers to access IDE devices or adapters.

Chapter 6. Integrated Device Electronics (IDE) 373

Related Information

idedisk IDE device driver or idecdrom IDE device driver.

IDEIOSTOP (Stop) IDE Adapter Device Driver ioctl Operation

Purpose

Closes the logical path to an Integrated Device Electronics (IDE) device.

Description

The IDEIOSTOP operation closes the logical path to an IDE device. The IDEIOSTOP operation causes the

adapter device driver to deallocate data areas allocated in response to an IDEIOSTART operation. This

command must be issued when the caller wishes to cease communications to a particular IDE device. The

IDEIOSTOP operation should only be issued for a device successfully opened by a previous call to an

IDEIOSTART operation.

The IDEIOSTOP operation passes the arg parameter. This parameter allows the caller to specify the IDE

device ID of the device to be stopped. The least significant byte in the arg parameter is the IDE device ID.

The remaining bytes are reserved and must be set to 0.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to 1 of the following values:

 Value Description

EINVAL Indicates that the device has not been opened. An IDEIOSTART operation should be issued prior to

calling the IDEIOSTOP operation.

EIO Indicates that the device drive was unable to pin code.

Files

 /dev/ide0, /dev/ide1, ..., /dev/iden Provide an interface to allow IDE device

drivers to access IDE devices or adapters.

Related Information

idedisk IDE device driver or idecdrom IDE device driver.

IDEIOSTUNIT (Start Unit) IDE Adapter Device Driver ioctl Operation

Purpose

Provides the means to issue an Integrated Device Electronics (IDE) IDE Start Unit command to a

selected IDE ATAPI device.

Description

The IDEIOSTUNIT operation allows the caller to issue an IDE Start Unit command to a selected IDE

device. This command can be used by system management routines to aid in configuration of IDE

devices. For the IDEIOSTUNIT operation, the arg parameter operation is the address of an ide_startunit

structure. This structure is defined in the /usr/include/sys/ide.h file.

374 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The ide_startunit structure allows the caller to specify the IDE device ID of the device on the IDE adapter

that is to be started.

The start_flag field in the parameter block allows the caller to indicate the start option to the

IDEIOSTUNIT operation. When the start_flag field is set to TRUE, the logical unit is to be made ready

for use. When FALSE, the logical unit is to be stopped.

Note: The IDE adapter device driver performs normal error-recovery procedures during execution of

the IDEIOSTUNIT operation.

Return Values

When completed successfully, the IDEIOSTUNIT operation returns a value of 0. Otherwise, a value of -1 is

returned and the errno global variable is set to 1 of the following values:

 Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates that an IDEIOSTART command was not issued prior to this command.

EIO Indicates that an unrecoverable I/O error has occurred. If EIO is received, the caller should retry

this command at least once, as the first command may have cleared an error condition with the

device. In case of an unrecovered error, the adapter error-status information is logged in the

system error log.

ENOCONNECT Indicates that a bus fault has occurred. Generally the IDE adapter device driver cannot determine

which device caused the IDE bus fault, so this error is not logged.

ENODEV Indicates that no IDE device responded to the requested IDE device ID. This condition is not

necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates that the device did not respond with status before the internal command time-out value

expired. If ETIMEDOUT is received, the caller should retry this command at least once, as the

first command may have cleared an error condition with the device. This error is logged in the

system error log.

Files

 /dev/ide0, /dev/ide1,..., /dev/iden Provide an interface to allow IDE device drivers

to access IDE devices or adapters.

Related Information

idedisk IDE device driver or idecdrom IDE device driver.

IDEIOTUR (Test Unit Ready) IDE Adapter Device Driver ioctl Operation

Purpose

Sends a Test Unit Ready command to the selected Integrated Device Electronics (IDE) ATAPI device.

Description

The IDEIOTUR operation allows the caller to issue an IDE Test Unit Ready command to a selected IDE

device. This command is used by system management routines to help configure IDE devices.

The ide_ready structure allows the caller to specify the IDE device ID of the device on the IDE adapter

that is to receive the IDEIOTUR operation. The ide_ready structure provides two output

fields:status_validity and ata_status. Using these two fields, the IDEIOTUR operation returns the status

to the caller. The arg parameter for the IDEIOTUR operation specifies the address of the ide_ready

structure, defined in the /usr/include/sys/ide.h file.

Chapter 6. Integrated Device Electronics (IDE) 375

When an errno value of EIO is received, the caller should evaluate the returned status in the

status_validity field. The status_validity field will have the ATA_ERROR_STATUS bit set to indicate

that the ata_status field is valid. The status_validity field will also have the ATA_ERROR_VALID bit set

to indicate that the ata_errval field contains a valid error code.

After one or more attempts, the IDEIOTUR operation should return a successful completion, indicating that

the device was successfully started. If, after several seconds, the IDEIOTUR operation still returns an

ata_status field set to a check condition status, the device should be skipped.

Note: The IDE adapter device driver performs normal error-recovery procedures during execution of this

command.

Return Values

When completed successfully, this operation returns a value of 0. For the IDEIOTUR operation, this means

the target device has been successfully started and is ready for data access. If unsuccessful, this

operation returns a value of -1 and the errno global variable is set to 1 of the following values:

 Value Description

EFAULT Indicates that a bad copy between kernel and user space occurred.

EINVAL Indicates the IDEIOSTART operation was not issued prior to this command.

EIO Indicates the adapter device driver was unable to complete the command due to an

unrecoverable I/O error. If EIO is received, the caller should retry this command at least once,

as the first command may have cleared an error condition with the device. Following an

unrecovered I/O error, the adapter error status information is logged in the system error log.

ENOCONNECT Indicates a bus fault has occurred. In general, the IDE adapter device driver cannot determine

which device caused the IDE bus fault, so this error is not logged.

ENODEV Indicates no IDE device responded to the requested IDE device ID. This condition is not

necessarily an error and is not logged.

ENOMEM Indicates insufficient memory is available to complete the command.

ETIMEDOUT Indicates the device did not respond with a status before the internal command time-out value

expired. If this return value is received, the caller should retry this command at least once, as

the first command may have cleared an error condition with the device. This error is logged in

the system error log.

Files

 /dev/ide0, /dev/ide1,..., /dev/iden Provide an interface to allow IDE device drivers

to access IDE devices or adapters.

Related Information

idedisk IDE device driver or idecdrom IDE device driver.

376 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 7. SSA Subsystem

SSA Subsystem Overview

Device Drivers

Two types of device driver provide support for all SSA subsystems:

v The SSA adapter device driver, which deals with the SSA adapter.

v The SSA head device drivers, which deal with devices that are attached to the SSA adapter. The SSA

disk device driver is an example of an SSA head device driver.

For subsytems that use Micro Channel SSA Multi-Initiator/RAID EL Adapters or PCI SSA

Multi-Initiator/RAID EL Adapters, the Target-Mode SSA (TMSSA) device driver is also available. This

device driver provides support for communications from using system to using system. For information

about SSA Target Mode and the TMSSA device driver, see SSA Target Mode.

Note: Micro Channel machines will only run AIX 5.1 or earlier.

Responsibilities of the SSA Adapter Device Driver

The SSA adapter device driver provides a consistent interface to all SSA head device drivers, of which the

SSA disk device driver is an example.

The SSA adapter device driver sends commands for SSA devices to the adapter that is related to those

devices. When the SSA adapter device driver detects that the commands have completed, it informs the

originator of the command.

Responsibilities of the SSA Disk Device Driver

The SSA disk device driver provides support for the SSA disk drives that are connected to an SSA

adapter. That support consists of:

v Standard block I/O to SSA logical disks, which are represented as hdisks

v Character mode I/O to SSA logical disks, which are represented as rhdisks

v Error reporting from SSA physical disks, which are represented as pdisks

v Diagnostics and service interface to SSA physical disks that are represented as pdisks

v Re-issue of commands in the event of an adapter reset

Interface between the SSA Adapter Device Driver and Head Device

Driver

To communicate with the SSA adapter device driver, the SSA head device driver:

1. Uses the fp_open kernel service to open the required instance of the SSA adapter device driver.

2. Calls the fp_ioctl kernel service to issue the SSA_GET_ENTRY_POINT operation to the opened

adapter.

3. Calls the function SSA_Ipn_Directive whose address was returned by the ioctl operation. These calls

to SSA_Ipn_Directive are used for all communication with the SSA device.

4. Uses the fp_close kernel service to close the adapter.

Note: When fp_close is called, SSA_Ipn_Directive cannot be called.

Trace Formatting

The SSA adapter device driver and the SSA disk device driver can both make entries in the kernel trace

buffer. The hook ID for the SSA adapter device driver is 45A. The hook ID for the SSA disk device driver is

© Copyright IBM Corp. 1997, 2007 377

45B. For information on how to use the kernel trace feature, refer to the trace command for the kernel

debug program. With the PCI SSA Multi-Initiator/RAID EL Adapter and Micro Channel Enhanced SSA

Multi-Initiator/RAID EL Adapter, the Target-Mode SSA device driver can make entries in the kernel trace

buffer; its hook ID is 3B4.

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver.

Trace Command for the Kernel Debug Program.

SSA Adapter Device Driver

Purpose

Supports the SSA adapter.

Syntax

#include </usr/include/sys/ssa.h>

#include </usr/include/sys/devinfo.h>

Description

The /dev/ssan special files provide an interface that allows client application programs to access SSA

adapters and the SSA devices that are connected to those adapters. Multiple-head device drivers and

application programs can all access a particular SSA adapter and its connected devices at the same time.

Configuring Devices

All the SSA adapters that are connected to the using system are normally configured automatically during

the system boot sequence.

SSA Micro Channel Adapter ODM Attributes

Note: A Micro Channel Machine can only run AIX 5.1 or earlier.

The SSA Micro Channel adapter has a number of object data manager (ODM) attributes that you can

display by using the lsattr command:

 ucode Holds the file name of the microcode package file that supplies the adapter microcode

that is present in an SSA adapter.

bus_intr_level Holds the value of the bus interrupt level that the SSA adapter device driver for this

adapter will use.

dma_lvl Holds the value of the DMA arbitration level that the SSA adapter device driver for this

adapter will use.

bus_io_addr Holds the value of the bus I/O base address of the adapter registers that the SSA

adapter device driver for this adapter will use.

dma_bus_mem Holds the value of the bus I/O base address of the adapter’s DMA address that the SSA

adapter device driver for this adapter will use.

dbmw Holds the size of the DMA area that the SSA adapter device driver for this adapter will

use. You can use the chdev command to change the value of this attribute. The default

value provides a DMA area that is large enough to allow the adapter to perform efficiently,

yet allows other adapters to be configured.

 The default value is practical for normal use. If, however, a particular SSA device that is

attached to the using system needs large quantities of outstanding I/O to get best

performance, a larger DMA area might improve the performance of the adapter.

bus_mem_start Holds the value of the bus-memory start address that the SSA adapter device driver for

this adapter will use.

378 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

intr_priority Holds the value of the interrupt priority that the SSA adapter device driver for this adapter

will use.

daemon Specifies whether to start the SSA adapter daemon. If the attribute is set to TRUE, the

daemon is started when the adapter is configured.

 The daemon holds the adapter device driver open although the operating system might

not be using that adapter device driver at the time. This action allows the adapter device

driver to reset the adapter card if the software that is running on it finds an unrecoverable

problem. It also allows the adapter device driver to log errors against the adapter.

 The ability of the device driver to log errors against the adapter is especially useful if the

adapter is in an SSA loop that is used by another adapter, because failure of this adapter

can affect the availability of the SSA loop to the other adapter.

 You can use the chdev command to change the value of this attribute.

host_address This attribute may be used to specify the TCPIP address used by the SSA network agent

on remote hosts to contact this host. If set, the value is passed to remote hosts via the

SSA network. If this attribute is not set then the value returned by the ″hostname″

command is passed to remote hosts.

This may be useful on systems which have more than one tcpip address and where the

specific TPCIP address used by the SSA network agent is important.

This attribute is only functional for the PCI SSA Multi-Initiator/RAID EL Adapter and the

Micro Channel SSA Multi-Initiator/RAID EL Adapter.

PCI SSA Adapter ODM Attributes

The PCI SSA adapter has a number of object data manager (ODM) attributes that you can display by

using the lsattr command:

 ucode Holds the file name of the microcode package file that supplies the adapter microcode

that is present in an SSA adapter.

bus_intr_level Holds the value of the bus interrupt level that the SSA adapter device driver for this

adapter will use.

bus_io_addr Holds the value of the bus I/O base address of the adapter registers that the SSA

adapter device driver for this adapter will use.

bus_mem_start Holds the value of the bus-memory start address that the SSA adapter device driver for

this adapter will use.

bus_mem_start2 Holds the value of the bus-memory start address that the SSA adapter device driver for

this adapter will use.

intr_priority Holds the value of the interrupt priority that the SSA adapter device driver for this adapter

will use.

daemon Specifies whether to start the SSA adapter daemon. If the attribute is set to TRUE, the

daemon is started when the adapter is configured.

 The daemon holds the adapter device driver open although the operating system might

not be using that adapter device driver at the time. This action allows the adapter device

driver to reset the adapter card if the software that is running on it finds an unrecoverable

problem. It also allows the adapter device driver to log errors against the adapter.

 The ability of the device driver to log errors against the adapter is especially useful if the

adapter is in an SSA loop that is used by another adapter, because failure of this adapter

can affect the availability of the SSA loop to the other adapter.

 You can use the chdev command to change the value of this attribute.

Device-Dependent Subroutines

The SSA adapter device driver provides support only for the open, close, and ioctl subroutines. It does

not provide support for the read and write subroutines.

Chapter 7. SSA Subsystem 379

open and close Subroutines

The open and openx subroutines must be called by any application program that wants to send ioctl calls

to the device driver.

You can use the open or the openx subroutine call to open the SSA adapter device driver. If you use the

openx subroutine call, set the ext parameter to 0, because the call does not use it.

Summary of SSA Error Conditions

If an open or ioctl subroutine that has been issued to an SSA adapter fails, the subroutine returns -1, and

the global variable errno is set to a value from the file /usr/include/sys/errno.h.

Possible errno values for the SSA adapter device driver are:

 EINVAL An unknown ioctl was attempted or the parameters supplied were not valid.

EIO An I/O error occurred.

ENOMEM The command could not be completed because not enough real memory or paging space was available.

ENXIO The requested device does not exist.

Managing Dumps

The SSA adapter device driver is a target for the system dump facility.

The DUMPQUERY option returns a minimum transfer size of 0 bytes and a maximum transfer size that is

appropriate for the SSA adapter.

To be processed, calls to the SSA adapter device driver DUMPWRITE option should use the arg

parameter as a pointer to the SSA_Ioreq_t structure, which is defined in /usr/include/sys/ssa.h. Using

this interface, commands for which the adapter provides support can be run on a previously started

(opened) target device. The SSA adapter device driver ignores the uiop parameter.

Note: Only the SsaMCB.MCB_Result field of the SSA_Ioreq_t structure is set at completion of the

DUMPWRITE. During the dump, no support is provided for error logging.

If the dddump entry point completes successfully, it returns a 0. If the entry point does not complete

successfully, it returns one of the following:

 EINVAL A request that is not valid was sent to the adapter device driver; for example, a request for the

DUMPSTART option was sent before a DUMPINIT option had been run successfully

EIO The adapter device driver was unable to complete the command because the required resources

were not available, or because an I/O error had occurred.

ETIMEDOUT The adapter did not respond with status before the passed command time-out value expired.

Files

 /dev/ssa0, /dev/ssa1,..., /dev/ssan Provide an interface to allow SSA head device

drivers to access SSA devices or adapters.

Related Information

The ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

The chdev command. The lsattr command.

380 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

SSA Adapter Device Driver Direct Call Entry Point

Purpose

This direct call entry point allows another kernel extension to send transactions to the SSA Adapter Device

Driver. This is not valid for a user process. On completion the caller will be notified by an off level interrupt.

See SSA_GET_ENTRY_POINT SSA Adapter ioctl operation.

Description

The entry point address is the address returned in EntryPoint by the SSA_GET_ENTRY_POINT ioctl

operation. The function takes a single parameter of type SSA_Ioreq_t which is defined in

/usr/include/sys/ssa.h.

The fields of the SSA_Ioreq_t structure are used as follows:

 Field Description

SsaDPB An array of size SSA_DPB_SIZE which is used by the SSA Adapter Device Driver and should be

initialized to all NULLs.

SsaNotify The address of the function in the SSA head device driver which the SSA Adapter Device Driver

calls when the directive has completed.

u0 This is the transaction to be executed. Valid transactions are described in the Technical Reference

for the adapter.

Return Values

This function does not return errors. The success or otherwise of the directive can be established by

examining the directive status byte and transaction result fields which are set up in the SSA MCB. For

details see the Technical Reference for tha adapter.

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

IOCINFO (Device Information) SSA Adapter Device Driver ioctl

Operation

Purpose

Returns a structure defined in the /usr/include/sys/devinfo.h file.

Description

The IOCINFO ioctl operation returns a structure that is defined in the /usr/include/sys/devinfo.h header

file. The caller supplies the address to an area that is of the type struct devinfo. This area is in the arg

parameter to the IOCINFO operation. The device-type field for this component is DD_BUS; the subtype is

DS_SDA.

The IOCINFO operation is defined for all device drivers that use the ioctl subroutine, as follows:

The operation returns a devinfo structure. The caller supplies the address of this structure in the argument

to the IOCINFO operation. The device type in this structure is DD_BUS, and the subtype is DS_SDA. The

flags field is set to DF_FIXED.

Files

/dev/ssa0, /dev/ssa1,..., /dev/ssan

Chapter 7. SSA Subsystem 381

Related Information

The SSA Adapter Device Driver, ssadisk SSA disk device driver, SSA Subsystem Overview.

SSA_GET_ENTRY_POINT SSA Adapter Device Driver ioctl Operation

Purpose

The SSA_GET_ENTRY_POINT operation allows another kernel extension, typically a SSA head device

driver, to determine the direct call entry point for the SSA adapter device driver. This operation is the entry

point through which the head device driver communicates with the adapter device driver. The address that

is supplied is valid only while the calling kernel extension holds an open file descriptor for the SSA adapter

device driver. This operation is not valid for a user process.

Description

The arg parameter specifies the address of a SSA_GetEntryPointParms_t structure in kernel address

space. The SSA_GetEntryPointParms_t structure is defined in the /usr/include/sys/ssa.h file.

On completion of the operation, the fields in the SSA_GetEntryPointParms_t structure are modified as

follows:

 Field Description

EntryPoint Address of the direct call entry point for the SSA adapter device driver, which is

used to submit operations from a head device driver.

InterruptPriority The off level interrupt priority at which the calling kernel extension is called back for

completion of commands that are started by calling the direct call entry point.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned and

the errno global variable is set to the following value:

 Value Description

EINVAL Indicates that the caller was not in kernel mode.

Files

/dev/ssa0, /dev/ssa1,..., /dev/ssan

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

SSA_TRANSACTION SSA Adapter Device Driver ioctl Operation

Purpose

Sends an SSA transaction to an SSA adapter.

Description

The SSA_TRANSACTION operation allows the caller to issue an IPN (Independent Packet Network)

transaction to a selected SSA adapter. IPN is the language that is used to communicate with the SSA

adapter. The caller must be root, or have an effective user ID of root, to issue this operation.

382 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

IPN is described in the Technical Reference for the adapter.

The arg parameter for the SSA_TRANSACTION operation specifies the address of a

SSA_TransactionParms_t structure. This structure is defined in the /usr/include/sys/ssa.h file.

The SSA_TRANSACTION operation uses the following fields of the SSA_TransactionParms_t structure:

 Field Description

DestinationNode Contains the target node for the transaction.

DestinationService Contains the target service on that node.

MajorNumber Major number of the transaction.

MinorNumber Minor number of the transaction.

DirectiveStatusByte Contains the directive status byte for the transaction. This contains a value that

is defined in the /usr/include/ipn/ipndef.h file. A non-zero value indicates an

error.

TransactionResult Contains the IPN result word that is returned by IPN for the transaction. This

contains values that are defined in the /usr/include/ipn/ipntra.h file. A non-zero

value indicates an error.

ParameterDDR Set by the caller to indicate the buffer for parameter data.

TransmitDDR Set by the caller to indicate the buffer for transmit data.

ReceiveDDR Set by the caller to indicate the buffer for received data.

StatusDDR Set by the caller to indicate the buffer for status data.

TimeOutPeriod Number of seconds after which the transaction is considered to have failed. A

value of 0 indicates no time limit.

Note: If an operation takes longer to complete than the specified timeout, the

adapter is reset to purge the command.

Attention: This is a very low-level interface. It is for use only by configuration methods and diagnostics

software. Use of this interface might result in system hangs, system crashes, system corruption, or

undetected data loss.

Return Values

When completed successfully, this operation returns a value of 0. Otherwise, a value of -1 is returned, and

the errno global variable is set to one of the following values:

 Value Description

EIO Indicates an unrecoverable I/O error.

ENXIO Indicates an unknown device.

EINVAL Indicates an unknown command. Indicates a bad buffer type.

EACCES Indicates user does not have root privilege.

ENOMEM Indicates not enough memory.

ENOSPC Indicates not enough file blocks.

EFAULT Indicates bad user address.

Files

/dev/ssa0, /dev/ssa1,..., /dev/ssan

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

Chapter 7. SSA Subsystem 383

ssadisk SSA Disk Device Driver

Purpose

Provides support for Serial Storage Architecture (SSA) disk drives.

Syntax

#include <sys/devinfo.h>

#include <sys/ssa.h>

#include <sys/ssadisk.h>

Configuration Issues

SSA Logical disks, SSA Physical disks, and SSA RAID Arrays

Serial Storage Architecture (SSA) disk drives are represented as SSA logical disks (hdisk0,

hdisk1.....hdiskN) and SSA physical disks (pdisk0,pdisk1.....pdiskN). SSA RAID arrays are represented

as SSA logical disks (hdisk0, hdisk1.....hdiskN). SSA logical disks represent the logical properties of the

disk drive or array, and can have volume groups and file systems mounted on them. SSA physical disks

represent the physical properties of the disk drive.

By default:

v One pdisk is always configured for each physical disk drive.

v One hdisk is configured either for each disk drive that is connected to the using system, or for each

array.

By default, all disk drives are configured as system disk drives. The array management software deletes

hdisks to create arrays.

SSA physical disks have the following properties:

v configured as pdisk0, pdisk1.....pdiskN

v Have errors logged against them in the system error log.

v Support a character special file (/dev/pdisk0, /dev/pdisk1..../dev/pdiskN)

v Support the ioctl subroutine for servicing and diagnostics functions.

v Did not accept read or write subroutine calls for the character special file.

SSA logical disks have the following properties:

v configured as hdisk0, hdisk1.....hdiskN

v Support a character special file (/dev/rhdisk0, /dev/rhdisk1..../dev/rhdiskN)

v Support a block special file (/dev/hdisk0, /dev/hdisk1..../dev/hdiskN)

v Support the ioctl subroutine call for non service and diagnostics functions only.

v Accept the read and write subroutine call to the special files.

v Can be members of volume groups and have filesystems mounted upon them.

Multiple Adapters

Some SSA subsystems allow a disk drive to be controlled by up to two adapters in a particular using

system. The disk drive has, therefore, two paths to each using system, and the SSA subsystem can

continue to function if an adapter fails. If an adapter fails or the disk drive becomes inaccessible from the

original adapter, the SSA disk device driver switches to the alternative adapter without returning an error to

any working application.

384 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Once a disk drive has been successfully opened, takeover by the alternative adapter does not occur

simply because a drive becomes reserved or fenced out. However, during an open of a ssa logical disk,

the device driver does attempt to access the disk drive through the alternative adapter if the path through

the original adapter experiences reservation conflict or fenced-out status.

Takeover does not occur because of a medium error on the disk drive.

Takeover occurs only after extensive error-recovery activity within the adapter and several retries by the

device driver. Intermittent errors that last for only approximately one second usually do not cause adapter

takeover.

Once takeover has successfully occurred and the device driver has accessed the disk drive through the

alternative adapter, the original adapter becomes the standby adapter. Takeover can, therefore, occur

repeatedly from one adapter to another so long as one takeover event is completed before the next one

starts. Completion of a takeover event is considered to have occurred when the device driver successfully

accesses the disk drive through the alternative adapter.

Once takeover has occurred, the device driver continues to use the alternative adapter to access the disk

drive until either the system is rebooted, or takeover occurs back to the original adapter.

Each time the SSA disks are configured, the SSA disk device driver is informed which path or paths are

available to each disk drive, and which adapter is to be used as the primary path. By default, primary

paths to disk drives are shared equally among the adapters to balance the load. This static load balancing

is performed once, when the devices are configured for the first time. You can use the chdev command to

modify the primary path.

Because of the dynamic nature of the relationship between SSA adapters and disk drives, SSA pdisks and

hdisks are not children of an adapter but of an SSA router. This router is called ssar. It does not represent

any actual hardware, but exists only to be the parent device for the SSA logical disks and SSA physical

disks.

Note: When the SSA disk device driver switches from using one adapter to using the other adapter to

communicate with a disk, it issues a command that breaks any SSA-SCSI reserve condition that

might exist on that disk. The reservation break is only performed if this host had successfully

reserved the disk drive through the original adapter. This check is to prevent adapter takeover from

breaking reservations held by other using systems. If multiple using systems are connected to the

SSA disks, SSA-SCSI reserve should not, therefore, be used as the only method for controlling

access to the SSA disks. Fencing is provided as an alternative method for controlling access to

disks that are connected to multiple using systems.

PCI SSA Multi-Initiator/RAID EL Adapters and Micro Channel SSA Multi-Initiator/RAID EL Adapters are

capable of reserving to a node number rather than reserving to an adapter. It is highly recommended that

you make use of this ability by setting the SSA router node_number attribute if multiple adapters are to be

configured as described here.

Configuring SSA disk drive devices.

SSA disk drives are represented as SSA Logical disks (hdisk0, hdisk1.....hdiskN) and SSA physical disks

(pdisk0,pdisk1.....pdiskn). The properties of each are described in the SSA Subsystem Overview.

Normally, all the disk drives connected to the system will be configured automatically by the system boot

process and the user will need to take no action to configure them.

Since some SSA devices may be connected to the SSA network while the system is running without taking

the system off line it may be necessary to configure SSA disks after the boot process has completed. In

this case the devices should be configured by running the configuration manager with the cfgmgr

command.

Chapter 7. SSA Subsystem 385

An exception is to configure a specific device with a specific name. This may be achieved using the

mkdev command.

Using mkdev to Configure a Physical Disk: To use mkdev to configure a SSA physical disk it will be

necessary to specify the following information:

 Parent ssar

Class pdisk

Subclass ssar

Type You can list the types by typing: lsdev -P -c pdisk -s ssar

ConnectionLocation 15-character unique identity of the disk drive. You can determine the unique

identifier in three ways:

v If the disk drive has already been defined the unique identity may be

determined using the lsdev command as follows:

1. Enter lsdev -Ccpdisk -r connwhere.

2. Select the 15-character unique identifier for which characters 5 to 12 match

those on the front of the disk drive.

v Otherwise the 15-character unique identifier can be constructed from the

12-character SSA UID on the label on the side of the disk drive suffixed by the

3 characters ″00D″.

v Run the ssacand command, and specify the adapter to which the physical disk

is connected. For example:

ssacand -a ssaO -P

Using mkdev to Configure a Logical Disk: In order to use mkdev to configure a SSA logical disk it will

be necessary to specify the following information:

 Parent ssar

Class disk

Subclass ssar

Type hdisk

386 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

ConnectionLocation 15-character unique identity of the disk drive.

If the logical disk is a system disk, you can determine the unique identifier in

three ways:

v If the disk drive has already been defined the unique identity may be

determined using the lsdev command as follows:

1. Enter lsdev -Ccdisk -r connwhere and press Enter.

2. Select the 15-character unique identifier for which characters 5 to 12 match

the serial number that is on the front of the disk drive.

v Construct 15-character unique identifier can be constructed from the

12-character SSA UID on the label on the side of the disk drive suffixed by the

3 characters ″00D″.

v Run the ssacand command, and specify the adapter to which the logical disk

is connected. For example:

ssacand -a ssaO -L

If the logical disk is an array, you can determine the unique identifier in two ways:

v If the logical disk has already been defined, you can use the lsdev command

to determine the unique identifier, as follows:

1. Type lsdev -Ccdisk -r connwhere and press Enter.

2. Select the 15-character unique identifier that was given by the RAID

configuration program when the array was created.

v Run the ssacand command, and specify the adapter to which the logical disk

is connected. For example:

ssacand -a ssaO -L

Device Attributes

SSA logical disks and SSA physical disks and the ssar router, have several attributes.You can use the

lsattr command to display these attributes.

Attributes of the SSA Router, ssar.

 node_number This must be set on systems which are using SSA Fencing or the SSA Disk Concurrent Mode

of Operation Interface.

Both of these features of the SSA disk device driver are used only in configurations which have

more than one host system connected to the same SSA disk drives. In configurations where

only one host system is connected to the SSA disk drives this attribute has no effect.

For configurations using SSA Fencing or the SSA Disk Concurrent Mode of Operation Interface

this attribute should be set to a different value on each host in the configuration.

Note: After this attribute has been modified it is necessary to reboot the system for it to take

effect.

Attributes which are common to SSA logical and SSA physical disks.

 adapter_a Specifies the name of one adapter connected to the device or none if no adapter is

currently connected as adapter_a.

adapter_b Specifies the name of one adapter connected to the device or none if no adapter is

currently connected as adapter_b.

Chapter 7. SSA Subsystem 387

primary_adapter Specifies whether adapter_a or adapter_b is to be the primary adapter for this device.

This attribute may be modified using the chdev command to one of the values

adapter_a, adapter_b or assign. If the value is set to assign, static load balancing will

be performed when this device is made available and the system will set the value to

either adapter_a or adapter_b.

connwhere_shad Holds a copy of the value of the connwhere parameter for this disk drive. SSA disks

drives cannot be identified by the location field given by lsdev. This is because they are

connected in a loop and do not have hardware-selectable addresses like SCSI devices.

The only means of identification of SSA devices is their serial number and this is written

in the connwhere field of the CuDv entry for the device. Providing this

connwhere_shad attribute, which shadows the connwhere value, means the user can

display the connwhere value for an SSA device for a pdisk or hdisk.

location Describes, in text, the descriptions of the disk drives and their locations (for example,

drawer number 1, slot number 1). The information for this attribute is entered by the

user.

Attributes for SSA Logical Disks Only

 pvid Holds the ODM copy of the PVID for this disk drive for an hdisk.

queue_depth Specifies the maximum number of commands that the SSA disk device driver

dispatches for a single disk drive for an hdisk. You can use the chdev

command to modify this attribute. The default value is correct for normal

operating conditions

reserve_lock Specifies whether the SSA disk device driver locks the device with a

reservation when it is opened for an hdisk.

size_in_mb Specifies the size of the logical disk in megabytes.

max_coalesce This is the maximum number of bytes which the SSA disk device driver

attempts to transfer to or from an SSA logical disk in a single operation. The

default value is appropriate for most environments. For applications that

perform very long sequential write operations, there are performance benefits

in writing data in blocks of 64KB times the number of disks in the array minus

one (these are known as full-stride writes times the number of disks in the

array minus one, or to some multiple of this number.

write_queue_mod Alters the way in which write commands are queued to SSA logical disks. The

default value is 0 for all SSA logical disks that do not use the fast-write cache;

with this setting the SSA disk device driver maintains a single seek-ordered

queue of queue_depth operations on the disk. Reads and writes are queued

together in this mode.

If write_queue_mod is set to a non-zero value, the SSA disk device driver

maintains two separate seek-ordered queues, one for reads and one for

writes. In this mode, the device driver issues up to queue_depth read

commands and up to write_queue_mod write commands to the logical disk.

This facility is provided because in some environments it may be beneficial to

hold back write commands in the device driver so that they may be coalesced

into larger operations which may be handled as full-stride writes by the RAID

software within the adapter.

This facility is unlikely to be useful unless a large percentage of the workload

to a RAID-5 device is composed of sequential write operations.

Device-Dependent Subroutines

The open, read, write, and close subroutines start typical physical volume operations.

388 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

open, read, write and close Subroutines

The open subroutine is intended primarily for use by the diagnostic commands and utilities. Appropriate

authority is required for execution. If an attempt is made to run the open subroutine without the proper

authority, the subroutine returns a value of -1 and sets the errno global variable to a value of EPERM.

The ext parameter passed to the openx subroutine selects the operation to be used for the target device.

The /usr/include/sys/ssadisk.h file defines possible values for the ext parameter.

The ext parameter can contain any combination of the following flag values logically ORed together:

 SSADISK_PRIMARY Opens the device using the primary adapter as the path to the

device. As a result of hardware errors the device driver may

automatically switch to the secondary path if one exists. This can

be prevented by additionally specifying the

SSADISK_NOSWITCH flag.

This flag is supported for both SSA logical disks and SSA physical

disk drives.This flag cannot be specified together with

SSADISK_SECONDARY.

SSADISK_SECONDARY Opens the device using the secondary adapter as the path to the

device. As a result of hardware errors the device driver may

automatically switch to the primary path if one exists. This can be

prevented by additionally specifying the SSADISK_NOSWITCH

flag.

This flag is supported for both SSA logical disks and SSA physical

disk drives.This flag cannot be specified together with

SSADISK_PRIMARY.

SSADISK_NOSWITCH If more than one adapter provides a path to the device, the device

driver normally switches from one adapter to the other as part of

its error recovery. This flag prevents this from happening.

This flag is supported for both SSA logical disks and SSA physical

disk drives.

SSADISK_FORCED_OPEN Forces the open regardless of whether another initiator has the

device reserved. If another initiator has the device reserved, the

reservation is broken. In other respects, the open operation runs

normally.

This flag is supported only for SSA logical disks. This flag cannot

be specified together with SSADISK_FENCEMODE.

SSADISK_RETAIN_RESERVATION Retains the reservation of the device after a close operation by

not issuing the release. This flag prevents other initiators from

using the device unless they break the host machine’s

reservation.

Note: This does not cause the device to be explicitly reserved

during the close if it was not reserved while it was open.

This flag is supported only for SSA logical disk drives. This flag

cannot be specified together with SSADISK_FENCEMODE.

SSADISK_NO_RESERVE Prevents the reservation of a device during an openx subroutine

call to that device. This operation is provided so a device can be

controlled by two processors that synchronize their activity by their

own software means.

This flag overrides the setting of the attribute reserve_lock if the

value of the attribute is yes. This flag is supported only for SSA

logical disk drives. This flag cannot be specified together with

SSADISK_FENCEMODE.

Chapter 7. SSA Subsystem 389

SSADISK_SERVICEMODE Opens an SSA physical disk in service mode. This wraps the SSA

links either size of the indicated physical disk allowing it to be

removed from the loop for service without causing errors on the

loops.

This flag is supported only for SSA physical disk drives. This flag

cannot be specified together with SSADISK_SCSIMODE.

SSADISK_SCSIMODE Opens an SSA physical disk in SCSI passthrough mode. This

allows SSADISK_IOCTL_SCSI ioctls to be issued to the physical

disk.

This flag is supported only for SSA physical disk drives. This flag

cannot be specified together with SSADISK_SERVICEMODE.

SSADISK_NORETRY Opens a device in no-retry mode.

When a device is opened in this mode, commands are not retried

if an error occurs.

SSADISK_FENCEMODE Opens an SSA logical disk drive in fence mode. The open

succeeds even if the host is fenced out from access to the disk

drive. Only ioctls can be issued to the device while it is open in

this mode. Any attempt to read from or write to a device opened

in this mode will be rejected with an error.

This flag is supported only for SSA logical disk drives. This flag

cannot be specified together with SSADISK_NO_RESERVE,

SSADISK_FORCED_OPEN or

SSADISK_RETAIN_RESERVATION.

″SSA Options to the openx Subroutine″ in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts gives more specific information on the open operations.

readx and writex Subroutines

The readx and writex subroutines provide additional parameters affecting the raw data transfer. These

subroutines pass the ext parameter, which specifies request options. The options are constructed by

logically ORing zero or more of the following values:

 HWRELOC Indicates a request for hardware relocation (safe relocation only).

UNSAFEREL Indicates a request for unsafe hardware relocation.

WRITEV Indicates a request for write verification.

Error Conditions

Possible errno values for ioctl, open, read, and write subroutines when the SSA device driver is used,

include:

 EBUSY Indicates one of the following circumstances:

v An attempt was made to open an SSA physical device which is already opened by another

process.

v The target device is reserved by another initiator.

EFAULT Indicates an illegal user address.

390 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

EINVAL Indicates one of the following circumstances:

v The read or write subroutine supplied an nbyte parameter that is not an even multiple of the

block size.

v The data buffer length exceeded the maximum defined in the devinfo structure for an ioctl

subroutine operation.

v The openext subroutine supplied an unsupported combination of extension flags.

v An unsupported ioctl subroutine operation was attempted.

v An attempt was made to configure a device that is still open.

v An illegal configuration command has been given.

v The data buffer length exceeded the maximum defined for a strategy operation.

EIO Indicates one of the following circumstances:

v The target device cannot be located or is not responding.

v The target device has indicated an unrecovered hardware error.

ESOFT Indicates that the target device has reported a recoverable media error.

EMEDIA Indicates that the target device has encountered an unrecovered media error.

ENODEV Indicates one of the following circumstances:

v An attempt was made to access an undefined device.

v An attempt was made to close an undefined device.

ENOTREADY Indicates that an attempt was made to open a SSA physical device in service mode whilst a

SSA logical device which uses it was in use.

ENXIO Indicates one of the following circumstances:

v The ioctl subroutine supplied an invalid parameter.

v The openext subroutine supplied extension flags which selected a non-existent or

non-functional adapter path.

v A read or write operation was attempted beyond the end of the fixed disk drive.

EPERM Indicates the attempted subroutine requires appropriate authority.

ENOCONNECT Indicates that the host has been fenced out from access to this device.

ENOMEM Indicates that the system has insufficient real memory or insufficient paging space to complete

the operation.

ENOLCK Indicates that an attempt was made to open a device in service mode which is in an SSA

network which is not a loop.

Special Files

The ssadisk device driver uses raw and block special files in performing its functions.

Attention: Data corruption, loss of data, or loss of system integrity (system crash) will occur if

devices supporting paging, logical volumes, or mounted file systems are accessed using block

special files. Block special files are provided for logical volumes and disk devices and are solely for

system use in managing file systems, paging devices, and logical volumes. These files should not be

used for other purposes.

The special files used by the ssadisk device driver include the following (listed by type of device):

v SSA logical disk drives:

 /dev/hdisk0, /dev/hdisk1,..., /dev/hdiskn Provide an interface to allow SSA device drivers block I/O

access to logical SSA disk drives.

/dev/rhdisk0, /dev/rhdisk1,..., /dev/rhdiskn Provide an interface to allow SSA device drivers character

access (raw I/O access and control functions) to logical

SSA disk drives.

v SSA physical disk drives:

Chapter 7. SSA Subsystem 391

/dev/pdisk0, /dev/pdisk1, ..., /dev/pdiskn Provide an interface to allow SSA device drivers character

access (control functions only) to physical SSA disks

drives.

Note: The prefix r on a special file name indicates the drive is accessed as a raw device rather than a

block device. Performing raw I/O with an SSA logical disk requires that all data transfers be in

multiples of the device block size. Also, all lseek subroutines that are made to the raw device

driver must result in a file pointer value that is a multiple of the device block size.

Related Information

Special Files Overview in AIX Version 6.1 Files Reference.

Understanding the Execution of Initiator I/O Requests in AIX Version 6.1 Kernel Extensions and Device

Support Programming Concepts.

SCSI Error Recovery in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Understanding the sc_buf Structure in AIX Version 6.1 Kernel Extensions and Device Support

Programming Concepts.

The rmdev command. The mkdev command. The cfgmgr command. The chdev command. The lsdev

command. The lsattr command.

The close subroutine, ioctl or ioctlx subroutine, open, openx, or creat subroutine, read, readx, readv,

or readvx subroutine,write, writex, writev, or writevx subroutine.

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

IOCINFO (Device Information) SSA Disk Device Driver ioctl Operation

Purpose

Returns a structure defined in the /usr/include/sys/devinfo.h file.

Description

The IOCINFO operation returns a structure defined in the /usr/include/sys/devinfo.h header file. The

caller supplies the address to an area of type struct devinfo in the arg parameter to the IOCINFO

operation. The device-type field for this component is DD_SCDISK; the subtype is DS_PV. The

information returned includes the block size in bytes and the total number of blocks on the disk drive.

Files

 /dev/pdisk0, /dev/pdisk1, ..., /dev/pdiskn Provide an interface to allow SSA device drivers to access

SSA physical disks drives.

/dev/hdisk0, /dev/hdisk1, ..., /dev/hdiskn Provide an interface to allow SSA device drivers to access

SSA logical disks drives.

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

392 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

SSADISK_ISALMgr_CMD (ISAL Manager Command) SSA Disk Device

Driver ioctl Operation

Purpose

Provides a means to send Independent Network Storage Access Language (ISAL) Manager commands to

an SSA physical or logical disk drive. ISAL comprises a set of commands which allow a program to control

and access a storage device. The ISAL Command set is described in the Technical Reference for the

adapter.

Description

The SSADISK_ISALMgr_CMD operation allows the caller to issue an ISAL command to a selected logical

or physical disk. The caller must be root or have an effective user ID of root to issue this ioctl.

The following ISAL commands (minor function codes), defined in /usr/include/ipn/ipnsal.h can be issued:

FN_ISALMgr_Inquiry

FN_ISALMgr_GetPhysicalResourceIDs

FN_ISALMgr_Characteristics

FN_ISALMgr_FlashIndicator

FN_ISALMgr_HardwareInquiry

FN_ISALMgrVPDInquiry

FN_ISALMgr_Statistics

The arg parameter for the SSADISK_ISALMgr_CMD ioctl is the address of an ssadisk_ioctl_parms

structure. This structure is defined in the /usr/include/sys/ssadisk.h file.

The SSADISK_ISALMgr_CMD ioctl uses the following fields of the ssadisk_ioctl_parms structure:

 Field Description

dsb Contains the directive status byte returned for the command.

This contains a value from /usr/include/ipn/ipndef.h. A non

zero value indicates an error.

result Contains the IPN result word returned by IPN for the

command. This contains values from /usr/include/ipn/
ipntra.h. A non zero value indicates an error.

u0.isal.parameter_descriptor Set by the caller to indicate the buffer for parameter data.

u0.isal.transmit_descriptor Set by the caller to indicate the buffer for transmit data.

u0.isal.receive_descriptor Set by the caller to indicate the buffer for received data.

u0.isal.status_descriptor Set by the caller to indicate the buffer for status data.

u0.isal.minor_function Set by the caller to one of the ISAL Manager Commands

defined in /usr/include/ipn/ipnsal.h and listed above.

Note: Structures are provided in /usr/include/ipn/ipnsal.h this can be used to format the contents of the

parameter buffer for the various commands. In all cases, the resource ID which is located in the

first four bytes of the parameter buffer will be overwritten by the device driver with the correct

Resource ID for the device.

Return Values

If the command was successfully sent to the adapter card, this operation returns a value of 0. Otherwise, a

value of -1 is returned and the errno global variable set to one of the following values:

 Value Description

EIO Indicates an unrecoverable I/O error.

Chapter 7. SSA Subsystem 393

Value Description

EINVAL Indicates that the caller has specified an ISAL manager command that is not in the list of supported ISAL

manager commands above.

EPERM Indicates that caller did not have an effective user ID (EUID) of 0.

ENOMEM Indicates that the device driver was unable to allocate or pin enough memory to complete the operation.

If the return code is 0, the result field of the ssadisk_ioctl_parms structure is valid. This indicates whether

the adapter was able to process the command successfully.

Files

 /dev/pdisk0, /dev/pdisk1,..., /dev/pdiskn Provide an interface to allow SSA device drivers to access

physical SSA disks.

/dev/hdisk0, /dev/hdisk1,..., /dev/hdiskn Provide an interface to allow SSA device drivers to access

logical SSA disks.

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

SSADISK_ISAL_CMD (ISAL Command) SSA Disk Device Driver ioctl

Operation

Purpose

Provides a means to send Independent Network Storage Access Language (ISAL) commands to an SSA

physical or logical disk drive. ISAL comprises a set of commands which allow a program to control and

access a storage device. The ISAL Command set is described in the Technical Reference for the adapter.

Description

The SSADISK_ISAL_CMD operation allows the caller to issue an ISAL command to a selected logical or

physical disk drive. The caller must be root or have an effective user ID of root to issue this ioctl.

The following ISAL commands (minor function codes), defined in /usr/include/ipn/ipnsal.h may be issued:

FN_ISAL_Read

FN_ISALWrite

FN_ISAL_Format

FN_ISAL_Progress

FN_ISAL_Lock

FN_ISAL_Unlock

FN_ISAL_Test

FN_ISAL_SCSI

FN_ISAL_Download

FN_ISAL_Fence

Note:

1. Some of these commands are not valid for one or other of SSA hdisks or SSA pdisks. This is

not checked by the device driver but by the adapter card. If the caller attempts to send a

command to a device for which it is not valid, the result returned by the adapter will be

non-zero. The exception to this is that the device driver will reject with EINVAL any attempt to

send a FN_ISAL_Fence command to a SSA physical disk.

394 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

2. The FN_ISAL_SCSI command is rejected by the adapter with a non-zero result if it is sent to a

device that has not been opened with the SSADISK_SCSIMODE extension parameter.

The arg parameter for the SSADISK_ISAL_CMD ioctl is the address of an ssadisk_ioctl_parms

structure. This structure is defined in the /usr/include/sys/ssadisk.h file.

The SSADISK_ISAL_CMD ioctl uses the following fields of the ssadisk_ioctl_parms structure:

 Field Description

dsb Contains the directive status byte returned for the command.

This contains a value from /usr/include/ipn/ipndef.h. A non

zero value indicates an error.

result Contains the Independent Packet Network (IPN) result word

returned by IPN for the command. This contains values from

/usr/include/ipn/ipntra.h. A non-zero value indicates an error.

u0.isal.parameter_descriptor Set by the caller to indicate the buffer for parameter data.

u0.isal.transmit_descriptor Set by the caller to indicate the buffer for transmit data.

u0.isal.receive_descriptor Set by the caller to indicate the buffer for received data.

u0.isal.status_descriptor Set by the caller to indicate the buffer for status data.

u0.isal.minor_function Set by the caller to one of the ISAL commands defined in

/usr/include/ipn/ipnsal.h and listed above.

Note: Structures are provided in /usr/include/ipn/ipnsal.h that can be used to format the contents of the

parameter buffer for the various commands. In all cases, the handle which is located in the first four

bytes of the parameter buffer will be overwritten by the device driver with the correct handle for the

device.

Return Values

If the command was successfully sent to the adapter card this operation returns a value of 0. Otherwise, a

value of -1 is returned and the errno global variable set to one of the following values:

 Value Description

EIO Indicates an unrecoverable I/O error.

EINVAL Indicates either that the caller has specified an ISAL command that is not in the list of supported ISAL

commands, or that the caller has attempted to send a FN_ISAL_FENCE command to an SSA physical

disk.

EPERM Indicates that caller did not have an effective user ID (EUID) of 0.

ENOMEM Indicates that the device driver was unable to allocate or pin enough memory to complete the operation.

If the return code is 0, the result field of the ssadisk_ioctl_parms structure is valid. This indicates whether

the adapter was able to process the command successfully.

Files

 /dev/pdisk0, /dev/pdisk1,..., /dev/pdiskn Provide an interface to allow SSA device drivers to access

SSA physical disk drives.

/dev/hdisk0, /dev/hdisk1,..., /dev/hdiskn Provide an interface to allow SSA device drivers to access

SSA logical disk drives.

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

Chapter 7. SSA Subsystem 395

SSADISK_SCSI_CMD (SCSI Command) SSA Disk Device Driver ioctl

Operation

Purpose

Provides a means to send SSA-SCSI Serial Storage Architecture-Small Computer Systems Interface

(SSA-SCSI) commands to an SSA physical disk drive that has been opened with the

SSADISK_SCSIMODE extension flag.

Description

The SSADISK_SCSI_CMD operation allows the caller to issue a SSA-SCSI command to a selected

physical disk. The caller must be root or have an effective user ID of root to issue this ioctl.

The arg parameter for the SSADISK_ISALMgr_CMD operation is the address of an ssadisk_ioctl_parms

structure. This structure is defined in the /usr/include/sys/ssadisk.h file.

The SSADISK_SCSI_CMD operation uses the following fields of the ssadisk_ioctl_parms structure:

 Field Description

dsb Contains the directive status byte returned for the command. This

contains value from /usr/include/ipn/ipndef.h. A non zero value

indicates an error.

result Contains the IPN result word returned by IPN for the command. This

contains values from /usr/include/ipn/ipntra.h. A non zero value

indicates an error.

u0.scsi.data_descriptor Set by the caller to describe the buffer for any data transferred by the

scsi command. If no data is transferred then the length of the buffer

should be set to 0.

u0.scsi.direction Set by the caller to indicate the direction of the transfer. Valid values

are:

SSADISK_SCSI_DIRECTION_NONE

No data transfer is involved for the command.

SSADISK_SCSI_DIRECTION_READ

Data is transferred from the subsystem into host memory.

SSADISK_SCSI_DIRECTION_WRITE

Data is transferred from host memory into the subsystem.

u0.scsi.identifier Identifies the SSA-SCSI logical unit number to which the command

should be sent. The format of this field is as defined for SSA_SCSI (bit

7=1 identifies the Target routine, bits 6-0 identify the Logical Unit

routine).

u0.scsi.cdb Set by the caller to define the SCSI Command Descriptor Block (CDB)

for the command.

u0.scsi.cdb_length Set by the caller to indicate the length of the CDB.

u0.scsi.scsi_status Contains the SCSI status returned for the command.

The device driver has no knowledge of the contents of the CDB, simply passing it on to the hardware. The

user should consult the relevant hardware documentation to determine what CDBs are valid for a

particular SSA physical disk.

Return Values

If the command was successfully sent to the adapter card then this operation returns a value of 0.

Otherwise, a value of -1 is returned and the errno global variable set to one of the following values:

396 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Value Description

EIO Indicates either an unrecoverable I/O error or that the scsi command was not recognized as valid by the

hardware.

EINVAL The u0.scsi.cdb_length field in the ssadisk_ioctl_parms structure was set to an invalid length or the

u0.scsi.direction field in the ssadisk_ioctl_parms structure was set to an invalid value.

EPERM Indicates that caller did not have an effective user ID (EUID) of 0.

ENOMEM Indicates that the device driver was unable to allocate or pin enough memory to complete the operation.

If the return code is 0, the result field of the ssadisk_ioctl_parms structure is valid. This indicates whether

the adapter was able to process the command successfully.

Files

 /dev/pdisk0, /dev/pdisk1,..., /dev/pdiskn Provide an interface to allow SSA device drivers to access

physical SSA disks.

/dev/hdisk0, /dev/hdisk1,..., /dev/hdiskn Provide an interface to allow SSA device drivers to access

logical SSA disks.

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

SSADISK_LIST_PDISKS SSA Disk Device Driver ioctl Operation

Purpose

Provides a means to determine which SSA physical disk drives make up a SSA logical disk drive.

Description

The SSADISK_LIST_PDISKS operation may be issued by any user to a SSA logical disk (hdisk). It

returns a list of the SSA physical disks (pdisks) which make up the specified logical disk drive.

The arg parameter for the SSADISK_LIST_PDISKS operation is the address of an ssadisk_ioctl_parms

structure. This structure is defined in the /usr/include/sys/ssadisk.h file.

The SSADISK_LIST_PDISKS operation uses the following fields of the ssadisk_ioctl_parms structure:

 Field Description

u0.list_pdisks.name_array Pointer to array of ssadisk_name_desc_t

structures in the caller’s memory. It is this array

which is filled in with the names of the hdisks on

return from the ioctl.

u0.list_pdisks.name_array_elements Set by the caller to indicate the number of

elements in the array pointed at by the

u0.list_pdisks.name_array parameter.

u0.list_pdisks.name_count On return from the ioctl, this indicates the number

of names in the name array pointed at by

u0.list_pdisks.name_array.

Chapter 7. SSA Subsystem 397

Field Description

u0.list_pdisks.resource_count On return from the ioctl this indicates the number

of physical disk drives which make up the logical

disk drive. This may be less than

u0.list_pdisks.name_count if not enough

elements were allocated in the name array in the

user’s memory to hold all the pdisk names, or one

or more of the physical disks which make up the

logical disk have not been configured as operating

system physical disk drives.

Return Values

If the command was successfully sent to the adapter card, this operation returns a value of 0. Otherwise, a

value of -1 is returned and the errno global variable set to one of the following values:

 Value Description

EIO Indicates an unrecoverable I/O error.

ENOMEM Indicates that the device driver was unable to allocate or pin enough memory to complete the operation.

Files

 /dev/pdisk0, /dev/pdisk1,..., /dev/pdiskn Provide an interface to allow SSA device drivers to access

SSA physical disks.

/dev/hdisk0, /dev/hdisk1,..., /dev/hdiskn Provide an interface to allow SSA device drivers to access

SSA logical disks.

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

SSA Disk Concurrent Mode of Operation Interface

The SSA subsystem supports the ability to broadcast one-byte message codes from one host to all other

hosts connected to the same disk drive. This message-passing capability can be used to synchronize

access to the disk drive. The operating system has a concurrent mode interface to use this hardware

functionality.

The concurrent mode of operation requires that a top kernel extension runs on all hosts sharing a disk

drive. The top kernel extensions communicate with each other via the SSA subsystem using the

concurrent mode interface of the SSA disk device driver. This interface allows a top kernel extension to

send and receive messages between hosts.

The concurrent mode interface consists of an entry point in both the SSA disk device driver and the top

kernel extension. Two ioctls register and unregister the top kernel extension with the SSA disk device

driver. The SSA disk device driver’s entry point provides the means to send messages as well as lock,

unlock, and test disk drive. The top kernel extension entry point processes interrupts, including receiving

messages from other hosts.

Note: In order for the concurrent mode interface to work, the node_number attribute of the ssar router

must be set to a different, non zero, value on each of the hosts sharing a disk drive. After the

node_number has been assigned, the host must be rebooted for it to take effect.

398 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Device Driver Entry Point

The SSA disk device driver concurrent mode entry point sends commands from the top kernel extension

for a specified SSA Disk. The top kernel extension calls this entry point directly. The

DD_CONC_REGISTER ioctl operation registers entry points.

This entry point function takes one argument, which is a pointer to a conc_cmd structure, that is defined

in the /usr/include/sys/ddconc.h file. The conc_cmd structures must be allocated by the top kernel

extension. The concurrent mode command operation is specified by the cmd_op field in the conc_cmd

structure and can have the following values. For each operation, the devno field of the conc_cmd structure

specifies the appropriate SSA disk drive. The concurrent mode command operation can have the following

values:

 Value Description

DD_CONC_SEND_REFRESH Broadcasts the one-byte message code specified by the message field of the

conc_cmd structure. The code is sent to all hosts connected to the SSA disk

drive.

DD_CONC_LOCK Locks the specified SSA disk drive for this host only. No other hosts will be

able to modify data on the disk drive.

DD_CONC_UNLOCK Unlocks the SSA disk drive. Other hosts can lock and modify data on the disk

drive.

DD_CONC_TEST Issues a test disk command to verify that the SSA disk drive is still accessible

to this host.

The concurrent mode entry point returns a value of EINVAL if any of the following are true:

v The top kernel extension did not perform a DD_CONC_REGISTER operation.

v The conc_cmd pointer is null.

v The devno field in the conc_cmd structure is invalid.

v The cmd_op field in the conc_cmd structure is not one of the four valid values previously listed.

If the concurrent mode entry point accepts the conc_cmd structure, the entry point returns a value of 0. If

the SSA disk device driver does not have resources to issue the command, the driver queues the

command until resources are available. The concurrent commands queued in the SSA disk device driver

are issued before any read or write operations queued by the driver’s strategy entry point.

The completion status of the concurrent mode commands are returned to the top kernel extension’s

concurrent mode interrupt handler entry point.

Top Kernel Extension Entry Point

The top kernel extension must have a concurrent mode command interrupt handler entry point, which is

called directly from the SSA disk device driver’s interrupt handler. This function can take four arguments:

the conc_cmd pointer, and the cmd_op, message_code, and devno fields. The conc_cmd pointer points to a

conc_cmd structure. These arguments must be of the same type specified by the conc_intr_addr function

pointer field in the dd_conc_register structure.

The following valid concurrent mode commands are defined in the /usr/include/sys/ddcon.h file. For

each, the devno field specifies the appropriate SSA disk drive.

 Command Description

DD_CONC_SEND_REFRESH Indicates the DD_CONC_SEND_REFRESH Device Driver entry point

completed. The error field in the conc_cmd structure contains the return code

necessary for the completion of this command. The possible values are

defined in the /usr/include/sys/errno.h file. The conc_cmd pointer argument

to the top kernel extension’s special interrupt handler entry point is non-null.

The cmd_op, message_code, and devno fields are 0.

Chapter 7. SSA Subsystem 399

Command Description

DD_CONC_LOCK Indicates the DD_CONC_SEND_LOCK device driver entry point completed.

The error field in the conc_cmd structure contains the return code necessary

for the completion of this command. The possible values are defined in the

/usr/include/sys/errno.h file. The conc_cmd pointer argument to the top

kernel extension’s special interrupt handler entry point is non-null. The cmd_op,

message_code, and devno fields are zero.

DD_CONC_UNLOCK Indicates the DD_CONC_UNLOCK device driver entry point completed. The

error field in the conc_cmd structure contains the return code necessary for

the completion of this command. The possible values are defined in the

/usr/include/sys/errno.h file. The conc_cmd pointer argument to the top

kernel extension’s special interrupt handler entry point is non-null. The cmd_op,

message_code, and devno fields are zero.

DD_CONC_TEST Indicates the DD_CONC_TEST device driver entry point completed. The error

field in the conc_cmd structure contains the return code necessary for the

completion of this command. The possible values are defined in the

/usr/include/sys/errno.h file. The conc_cmd pointer argument to the top

kernel extension’s special interrupt handler entry point is non-null. The cmd_op,

message_code, and devno fields are zero.

DD_CONC_RECV_REFRESH Indicates a message with message_code was received for the SSA disk

drive specified by the devno argument. The conc_cmd argument is null for

this operation.

DD_CONC_RESET Indicates the SSA disk drive specified by the devno argument was reset, and

all pending messages or commands have been flushed. The argument

conc_cmd is null for this operation.

v The concurrent command interrupt handler routine must have a short path length because it runs on the

SSA disk device driver interrupt level. If substantial command processing is needed, then this routine

should schedule an off-level interrupt to its own off-level interrupt handler.

v The top kernel extension must have an interrupt priority no higher than the SSA disk device driver’s

interrupt priority.

v The concurrent command interrupt handler routine might need to disable interrupts at INTCLASS0 if it is

expected to use concurrent mode on SSA disk drive and some disks of different types. The other type

of disk needs its own device driver to support the concurrent mode.

v A kernel extension that uses the DD_CONC_REGISTER ioctl must issue a DD_CONC_UNREGISTER

ioctl before closing the SSA disk drive.

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

SSA Disk Fencing

SSA disk fencing is a facility which is provided in the SSA subsystem to allow multiple hosts to control

access to a common set of disks.

Using the fencing commands provided by the hardware it is possible to exclude individual hosts from

accessing a particular disk. The access list for different disks are independent of one another.

Fencing is essentially a function provided by the hardware and manipulated using the hardware

commands, but the device driver does have some involvement.

The SSA disk device driver supports fencing by allowing the FN_ISAL_FENCE command, which is defined

in the Technical Reference for the adapter, to be issued to SSA logical disks using the

SSADISK_ISALCMD ioctl operation.

400 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

In order to use fencing, the node_number attribute of the ssar router must be set to a different value on

each host which is participating in fencing. Note that after setting node_number the host must be

rebooted for the new value to take effect.

By default, the value of node_number is 0. This value has particular significance because it is not

possible to exclude a host with node number 0 from access to the disk. Thus if a disk is moved from a

machine which has been using fencing to a machine which is not involved in fencing, the new machine will

be able to communicate with the disk.

If a host attempts to open a disk from which it has been denied access using the open subroutine, the

return code will be -1 and the global variable errno will be set to the value ENOCONNECT. Likewise, if an

application already has a SSA Logical disk open but since the open, it has been fenced out then calls to

the read or write subroutine will fail, with errno set to ENOCONNECT.

The hardware fencing commands provide for a facility, to forcibly break through a fence. This command

can be issued using the SSADISK_ISALCMD ioctl operation but it is necessary first to open the disk. A

disk from which the host has been excluded can be opened by using the openx subroutine and specifying

the SSADISK_FENCEMODE extension flag as described in SSA disk device driver device-dependent

subroutines. While open in this mode no read or write operations will be permitted.

If a host has been excluded from access to a disk using fencing but that disk is also reserved to another

host the reservation takes precedence. The return code from the open subroutine will be -1 and the global

variable errno will be set to EBUSY. If the host attempts to break through the reservation by passing the

ext parameter SSADISK_FORCED_OPEN to the openx subroutine, the reservation will be broken but the

open will fail with errno set to ENOCONNECT. In order to break through the fence, the SSA logical disk

must be opened in SSADISK_FENCEMODE and the SSADISK_ISALCMD ioctl operation used to issue

the appropriate hardware command to break the fence condition.

Related Information

The SSA Adapter Device Driver, ssadisk SSA Disk Device Driver, SSA Subsystem Overview.

SSA Target Mode

The SSA Target-Mode interface (TMSSA) provides node-to-node communication through the SSA

interface. The interface uses two special files that provide a logical connection to another node. One of the

special files (the initiator-mode device) is used for write operations; the other (the target-mode device) is

used for read operations. Data that is sent to a node is written to the initiator. Data that is read from a

node is read from the target. The special files are:

/dev/tmssaXX.im

The initiator-mode device, which has an even, minor device number, and is write only.

/dev/tmssaXX.tm

The target-mode device, which has an odd, minor device number, and is read only.

 The device is tmssaXX, where XX is the node number of the using system with which these files

communicate. You are not aware of which path connects the two nodes. The path can change if, for

example, SSA loops are changed, nodes are switched off, or any other physical changes is made to the

connected SSA loops. The TMSSA device driver can use any available path to the other node, but does

not tell you which path is being used. Each node must have in its device configuration database a unique

node number that is defined by the node_number attribute of the ssar device.

For example, in Node-to-Node Communication configuration, tmssa is, at first, using adapter ssa0 on node

1 and adapter ssa5 on node 2. Suddenly, the link between the adapters fails. The tmssa device driver

automatically switches to using adapters ssa1 and ssa3 or adapters ssa1 and ssa4. The connections

between nodes can be modified while they are in use, and the target-mode interface tries to recover.

Chapter 7. SSA Subsystem 401

The TMSSA uses either of two methods to read and write data:

v The blocking method, which waits until the I/O is complete or an error occurs before it returns control to

you.

v The nonblocking method, which returns control to you immediately. With this method, the write operation

occurs at a later time. The read, operation returns the amount of data that is available at the time of the

operation. The amount of returned data is not necessarily the same as the amount that you requested.

The TMSSA device driver provides support for multiple concurrent read and write operations for different

devices. It does not provide support for multiple read or write operations on the same device. The device

driver blocks the operation until the device is free. Read and write operations can run concurrently on a

particular device.

If a working path exists between two nodes, communication works. The path must be stable long enough

for the driver to transmit the data. The maximum time taken to fail a write operation is (A * R * T), where A

is the number of adapters in the host, R is the number of retries as defined by TM_MAXRETRY in the

/usr/include/sys/tmscsi.h file, and T is the time-out before each retry. The minimum time taken to fail a

write operation is the write time-out period. You can adjust the write time-out period and the retry-time out

period; see ″TMCHGIMPARM (Change Parameters) tmssa Device Driver ioctl Operation″.

You can use the select and poll routines to check for read and write capability and can also be notified of

a read or write being possible.

The amount of data that can be sent by one write operation in blocking mode has no limit, but the driver

and adapter interface has been optimized for transfers of 512 bytes or less. In nonblocking mode, enough

buffer space must be available for the write operation.

Each separate write is treated separately by the target, so, when reading, each separate write requires a

separate read.

Configuring the SSA Target Mode

Each using system requires its own unique node number. The SSA adapter software specifies this node

number, which is used by Target Mode SSA. The configuration database contains the ssar device. The

node_number attribute sets the number for the node. Failure to have unique node numbers in the SSA

loops causes unpredictable results with the target-mode interface. Node numbers that are not unique

cause error logs. You can use the ssavfynn command to check for duplicate node numbers.

When the node is configured, it automatically inspects the existing SSA loops. It detects all nodes that are

using the target mode SSA interface now. Each detected node is then added to the configuration

database, if it is not already part of it. For each node that is added, tmssaXX is created, where XX is the

node number of the detected node.

When configuration is complete, special files exist in the /dev directory. These files allow you to use the

target mode interface with each node that is defined in the configuration database. Configuration does not

need communication to be actually possible between the relevant using systems. Communication is

needed only for the write operation.

Buffer Management

You can set the buffer sizes that are used by each device:

v To set the transmit buffer sizes, use the chdev command to adjust the XmitBuffers and

XmitBufferSize attributes in the configuration database.

v To set the receive buffer size, use the chdev command to adjust the RecvBuffers and RecvBufferSize

attributes in the configuration database.

402 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The buffer sizes must be multiples of 128 bytes. The maximum buffer size is 512 bytes. A device can have

as many buffers as it needs.

Data can be written into the buffers for the initiator-mode device at any time, even if nonblocked write

operations are also transferring data from these buffers. The buffers for the target-mode device can be

read at any time, even if a write operation to those buffers is occurring at the same time. It is not important

if the sizes of the initiator-mode device buffers are different from the sizes of the target-mode device

buffers to which the data is being sent. The total buffer space for the target-mode device, however, must

be equal to, or greater than, the size of the initiator-mode device buffer size.

The SSA interface for target-mode transfers has been tuned for 512-byte transfers. Each write operation

can send as much data as is required, unless that write operation is nonblocking. In a nonblocking write

operation, the data being that is being written must be completely transferred to the device buffers.

Therefore, the maximum amount of data that can be written during a nonblocked write operation is

determined by the size of the device buffers.

Understanding Target-Mode Data Pacing

An initiator-mode device can send data faster than the associated target-mode device application can read

it. This condition occurs when:

v The previous write operation is complete, but all the device buffers are in use, and no space is available

for the next write operation.

v The write operation is not yet completed, and the device has no available buffers.

In both these instances, the target-mode device driver stops the write operation temporarily, and uses the

retry mechanism to try again later. These actions can cause the write operation to fail. As a result, the

initiator-mode device is unable to send any data to the target-mode device for the whole of the retry

period. Alternatively, the write operation might time out.

Think about these possibilities when you set the buffer sizes and the number of buffers for the devices.

Determine carefully the retry period, total write time-out period, and the amount of data that is being sent.

For example, to write 64 KB of data with no retry operations, you need 64 KB read and write buffers. If

you allow one retry operation, you need only 32 KB buffers.

Using SSA Target Mode

SSA Target Mode does not attempt to manage the data transfer between devices. It does, however,take

action if buffers become full, and it ensures that read operations can read data from one write operation

only. Any protocol that is needed to manage the communication of data must be implemented in

user-supplied programs. The only delays that can occur when data is being received are delays that are

characteristics of the SSA system and of the environment in which it operates, and delays that are caused

by full buffers.

SSA Target Mode can concurrently send data to, and receive data from, all attached nodes. Blocking read

and write operations do nothing until data is available to be read, or until the write operation is complete.

Execution of Target Mode Requests

The write operation transfers the data into the device buffers. When a buffer is full, the SSA adapter starts

to transfer the data to the remote using system. At the same time, the user’s application program

continues to fill the device buffer with the remaining data that is being transferred. If the amount of data

that is being written is larger than the available buffer space, the application program waits until more

space becomes available in the device buffers. As each buffer is sent, the TMSSA device driver checks

whether any more data is to be sent. If more data is to be sent, the device driver continues to send that

data. If no more data is to be sent, and the write operation is in blocking mode, the device driver starts the

waiting application program. If the write operation is in nonblocking mode, the write status is updated. If an

unrecoverable error occurs, the write operation is ended, and the remaining buffers are discarded.

Chapter 7. SSA Subsystem 403

The read operation transfers received data from the device buffers to your application program. When the

read operation ends, or the write operation stops sending data, the read operation returns the number of

bytes read.

SSA tmssa Device Driver

Purpose

To provide support for using-system to using-system communications through the SSA target-mode device

driver.

Syntax

 #include </usr/include/sys/devinfo.h>

 #include </usr/include/sys/tmscsi.h>

 #include </usr/include/sys/scsi.h>

 #include </usr/include/sys/tmssa.h>

Description

The Serial Storage Architecture (SSA) target-mode device driver provides an interface to allow

using-system to using-system data transfer by using an SSA interface.

You can access the data transfer functions through character special files that are named

dev/tmssann.xx, where nn is the node number of the node with which you are communicating. The xx

can be either im (initiator-mode interface), or tm (target-mode interface). The caller uses the initiator-mode

to transmit data, and the target-mode interface to receive data.

When the caller opens the initiator-mode special file, a logical path is set up. This path allows data to be

transmitted. The user-mode caller issues a write, writev, writex, or writevx system call to start sending

data. The kernel-mode user issues an fp_write or fp_rwuio service call to start sending data. The SSA

target-mode device driver then builds a send command to describe the transfer, and the data is sent to

the device. The data can be sent as a blocking write operation, or as a nonblocking write operation. When

the write entry point returns, the calling program can access the transmit buffer.

When the caller opens the target-mode special file, a logical path is set up. This path allows data to be

received. The user-mode caller issues a read, readv, readx, or readvx system call to start receiving data.

The kernel-mode caller issues an fp_read or fp_rwuio service call to start receiving data. The SSA

target-mode device driver then returns data that has been received for the application program.

The SSA target mode device driver allows an initiator-mode device to get access to the data transfer

functions through the write entry point; it allows a target-mode device to get access through the read entry

point.

The only rules that the SSA target mode device driver observes to manage the sending and receiving of

data are:

v Separate write operations need separate read operations.

v Receive buffers that are full, delay the send operation when it tries to resend after a delay.

404 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

The calling program must observe any other rules that are needed to maintain, or otherwise manage, the

communication of data. Delays that occur when data is received or sent through the target mode device

driver are that are characteristics of the hardware and software driver environment.

Configuration Information

When tmssan is configured (where n is the remote node number), the tmssan.im and tmssan.tm special

files are both created. An initiator-mode pair, or a target-mode pair, must exist for each device, whether

either or both modes are being used. The target-mode node number for an attached device must be the

same as the initiator-mode node number.

Each time that you use the cfgmgr command to configure the node, the target-mode device driver finds

the remote nodes that are already connected, and automatically configures them. Each node is expected

to be identified by a unique node number.

The target-mode device driver configuration entry point must be called only for the initiator-mode device

number. The device driver configuration routine automatically creates the configuration data for the

target-mode device minor number. This data is related to the initiator-mode data.

Device-Dependent Subroutines

The target-mode device driver provides support for the following subroutines:

v open

v close

v read

v write

v ioctl

v select

open Subroutine

The open subroutine allocates and initializes target, or initiator, device-dependent structures. No

commands are sent to the device as a result of running the open subroutine.

The initiator-mode device or target-mode device must be configured but not already opened for that mode;

otherwise, the open subroutine does not work. Before the initiator-mode device can be successfully

opened, its special file must be opened for write operations only. Before the target-mode device can be

successfully opened, its special file must be opened for read operations only.

Possible return values for the errno global variable include:

 Value Description

EBUSY Attempted to run an open subroutine for a device instance that is already open.

EINVAL Attempted to run an open subroutine for a device instance, but either a wrong open flag was used, or

the device is not yet configured.

EIO An I/O error occurred.

ENOMEM The SSA device does not have enough memory resources.

close Subroutine

The close subroutine deallocates resources that are local to the target device driver for the target or

initiator device. No commands are sent to the device as a result of running the close subroutine.

Possible return values for the errno global variable include:

 Value Description

EINVAL Attempted to run a close subroutine for a device instance that is not configured or not opened.

Chapter 7. SSA Subsystem 405

Value Description

EIO An I/O error occurred.

EBUSY The device is busy.

read Subroutine

Support for the read subroutine is provided only for the target-mode device. Support for data scattering is

provided through the user-mode readv or readvx subroutine, or through the kernel-mode fp_rwuio service

call. If the read subroutine is not successful, the return value is set to -1, and the errno global variable is

set to the return value from the device driver. If the return value is something other than -1, the read

operation was successful, and the return code indicates the number of bytes that were read. The caller

should verify the number of bytes that were read. File offsets are not applicable and are ignored for

target-mode read operations.

The adapter write operations provide the boundary that determines how read requests are controlled. If

more data is received than is requested in the current read operation, the requested data is passed to the

caller, and the remaining data is retained and returned for the next read operation for this target device. If

less data is received in the send command than is requested, the received data is passed for the read

request, and the return value indicates how many bytes were read.

If a write operation has not been completely received when a read request is made, the request blocks

and waits for data. However, if the target device is opened with the O_NDELAY flag set, the read does not

block; it returns immediately. If no data is available for the read request, the read is not successful, and

the errno global variable is set to EAGAIN. If data is available, it is returned. The return value indicates

the number of bytes that were received, whether the write operation for this data has ended or not.

Note: If the O_NDELAY flag is not set, the read subroutine can for an undefined time while it waits for

data. Because, in a read operation, the data can come at any time, the device driver does not

maintain an internal timer to interrupt the read. Therefore, if a time-out function is required, it must

be started by the calling program.

If the calling program wants to break a blocked read subroutine, the program can generate a signal. The

target-mode device driver receives the signal and ends the current read subroutine. If no bytes were read,

the errno global variable is set to EINTR; otherwise, the return value indicates the amount of data that

was read before the interrupt occurred. The read operation returns with whatever data has been received,

whether the write operation has completed or not. If the remaining data for the write operation is received,

it is put into a queue, where it waits for either another read request or a close command. When the target

receives the signal and the current read is returned, another read operation can be started, or the target

can be closed. If the read request that the calling program wants to break ends before the signal is

generated, the read operation ends normally, and the signal is ignored.

The target-mode device driver attempts to queue received data in front of requests from the application

program. A read-ahead buffer area is used to store the queued data. The length of this read-ahead buffer

is determined by multiplying the value of the RecvBufferSize attribute by the value of the RecvBuffers

attribute. These values are in the configuration database. While the application program runs read

subroutines, the queued data is copied to the application data buffer, and the read-ahead buffer space is

again made available for received data. If an error occurs while he data is being copied to the caller data

buffer, the read operation fails, and the errno global variable is set to EFAULT. If the read subroutines are

not run quickly enough to fill almost all the read-ahead buffers for the device, data reception is delayed

until the application program runs a read subroutine again. When enough area is freed, data reception

capability is restored from the device. Data might be delayed, but it is not lost or ignored.

The target-mode device driver controls only received data into its read entry point. The read entry point

can optionally be used with the select entry point to provide a means of asynchronous notification of

received data on one or more target devices.

406 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Possible return values for the errno global variable include:

 Value Description

EAGAIN Indicates that a nonblocking read request would have blocked, because data is available.

EFAULT An error occurred while copying data to the caller buffer.

EINTR Interrupted by a signal.

EINVAL Attempted to run a read operation for a device instance that is not configured, not open, or is not a

target-mode minor device number.

EIO An I/O error occurred.

write subroutine

Support for the write entry point is provided only for the initiator-mode device driver. The write entry point

generates one write operation in response to a calling program write request. If the device is opened with

the O_NDELAY flag set, and the write request is for a length that is greater than the total buffer size of the

device, the write request fails . The errno global variable is set to EINVAL. The total buffer size for the

device is determined by multiplying the value of the XmitBufferSize attribute by the value of the

XmitBuffers attribute. These values are in the configuration database.

Support for data gathering is through the user-mode writev or writevx subroutine, or through the

kernel-mode fp_rwuio service call. The write buffers are gathered so that they are transferred, in

sequence, as one write operation. The returned errno global variable is set to EFAULT if an error occurs

while the caller data is being copied to the device buffers.

If the write operation is unsuccessful, the return value is set to -1 and the errno global variable is set to

the value of the return value from the device driver. If the return value is other than -1, the write operation

was successful and the return value indicates the number of bytes that were written. The caller should

validate the number of bytes that are sent to check for any errors. Because the whole data transfer length

is sent in a single write operation, you should suspect that a return code that is not equal to the expected

total length is an error. File offsets are not applicable, and are ignored for target-mode write operations.

If the calling program needs to break a blocked write operation, a signal is generated. The target-mode

device driver receives that signal, and ends the current write operation. The write operation that is in

progress fails, and the errno global variable is set to EINTR. The write operation returns the number of

bytes that were already sent, before the signal was generated. The calling program can then continue by

issuing another write operation or an ioctl operation, or it can close the device. If the write operation that

the caller attempts to break completes before the signal is generated, the write operation ends normally,

and the signal is ignored.

If the buffers of remote using systems are full, or no device response status is received for the write

operation, the target-mode device driver automatically retries the write operation. It retries the operation up

to the number of times that is specified by the value TM_MAXRETRY. This value is defined in the

/usr/include/sys/tmscsi.h file. By default, the target mode device driver delays each retry attempt by

approximately two seconds to allow the target device to respond successfully. The caller can change the

time delayed through the TMCHGIMPARM operation. If the write operation is still unsuccessful after the

specified number of retries, it tries another SSA adapter. If this write operation has already tried all the

SSA adapters, it fails. The calling program can retry the write operation, or perform other appropriate error

recovery. No other error conditions are retried, but are returned with the appropriate errno global variable.

The target-mode device driver, by default, generates a time-out value, which is the amount of time allowed

for the write operation to end. If the write operation does not end before the time-out value expires, the

write operation fails. The time-out value is related to the length of the requested transfer, in bytes, and is

calculated as follows:

timeout_value = ((transfer_length / 65536) + 1) * 20

Chapter 7. SSA Subsystem 407

In the calculation, 20 is the default scaling factor that generates the time-out value. The caller can

customize the time-out value through the TMCHGIMPARM operation. The actual period that elapses

before a timeout occurs can be up to 10 seconds longer than the calculated value, because it is related to

the operation of the hardware at the time of the write operation. A time-out value of zero means that no

time-out occurs. A value of zero is not allowed when the write operation is nonblocking, because a

deadlock might occur. Under this condition, EINVAL is returned for the write operation.

If the caller opened the initiator-mode device with the O_NDELAY flag set, the write operation is

nonblocking. In this mode, the device checks whether enough buffer space is available for the write

operation. If enough buffer space is not available, the write operation fails, and the errno global variable is

set to EAGAIN. If enough buffer space is available, the write operation immediately ends with all the data

written successfully. The write operation now occurs asynchronously. If you want to track the progress of

this write operation, use the TMIOSTAT operation. The driver keeps the status of the last write operation,

which is then reported by the TMIOSTAT operation.

Possible return values for the errno global variable include:

 Value Description

EFAULT The write operation was unsuccessful because of a kernel service error. This value is applicable

only during data gathering.

EINTR Interrupted by signal.

EINVAL Attempted to execute a write operation for a device instance that is not configured, not open, or is

not an initiator-mode minor device number. If a nonblocked write operation, the transfer length is

too long, or the time-out period is zero. If the transfer length is too long, try the operation again with

a smaller transfer length. If the time-out period is zero, use TMCHGIMPARM to set the time-out

value to another value.

EAGAIN A nonblocked write operation could not proceed because not enough buffer space was available.

Try the operation again later.

EIO One of the following I/O errors occurred:

v An error that cannot be produced again.

v The number or retried operations reached the limit that is specified in TM_MAXRETRY without

success on an error that cannot be reproduced.

v The target-mode device of the remote node is not initialized or open.

Do the appropriate error recovery routine.

ETIMEDOUT The command has timed out. Do the appropriate error recovery routine.

ioctl Subroutine

The following ioctl operations are provided by the target-mode device driver. Some are specific to either

the target-mode device or the initiator-mode device. All require the respective device instance be open for

the operation run.

 Operation Description

IOCINFO Returns a structure defined in the /usr/include/sys/devinfo.h file.

TMCHGIMPARM Allows the caller to change some parameters that are used by the target mode device driver for

a particular device instance.

TMIOSTAT Allows the caller to get status information about the previously run write operation.

Possible return values for the errno global variable include:

 Value Description

EFAULT The kernel service failed when it tried to access the caller buffers.

EINVAL The device not open or not configured. The operation is not applicable to mode of this device. A

parameter that is not valid was passed to the device driver.

408 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

select Entry Point

The select entry point allows the caller to know when a specified event has occurred on one or more

target-mode devices. The event input parameter allows the caller to specify about which of one or more

conditions it wants to be notified by a bitwise OR of one or more flags. The target-mode device driver

provides support for the following select events:

 Event Description

POLLIN Check whether received data is available.

POLLSYNC Return only events that are currently pending. No asynchronous notification occurs.

The additional events, POLLOUT and POLLPRI, are not applicable. The target-mode device driver does

not, therefore, provide support for them.

The reventp output parameter points to the result of the conditional checks. The device driver can return a

bitwise OR of the following flags:

 POLLIN Received data is available.

The chan input parameter is used for specifying a channel number. This parameter is not applicable for

nonmultiplexed device drivers. It should be set to 0 for the target-mode device driver.

The POLLIN event is indicated by the device driver when any data is received for this target instance. A

nonblocking read subroutine, if subsequently issued by the caller, returns data. For a blocking read

subroutine, the read does not return until either the requested length is received, or the write operation

ends, whichever comes first.

Asynchronous notification of the POLLIN event occurs when received data is available. This notification

occurs only if the select event POLLSYNC was not set.

The initiator-mode device driver provides support for the following select events:

 Event Description

POLLOUT Check whether output is possible.

POLLPRI Check whether an error occurred with the write operation.

POLLSYNC Return only events that are currently pending. No asynchronousnotification occurs.

An additional event POLLIN is not applicable and has no support from the initiator-mode device driver.

The reventp output parameter points to the result of the conditional checks. The device driver can return a

bitwise OR of the following flags:

 Flag Description

POLLOUT If the initiator device is opened with the O_NDELAY flag, some buffer space is not being used now.

Otherwise, this event is always set for the initiator-mode device.

POLLPRI An error occurred with the latest write operation.

Asynchronous notification of the POLLOUT event occurs when buffer space is made available for further

write operations.

Asynchronous notification of the POLLPRI event occurs if an error occurs with a write operation. Note that

the error might be recovered successfully by the device driver.

Chapter 7. SSA Subsystem 409

Possible return values for the errno global variable include:

 Value Description

EINVAL A specified event has no support, or the device instance is not configured or not open.

Errors

Errors that are detected by the target-mode device driver can be one of the following:

v A hardware error that occurred while receiving data, and cannot be reproduced

v A hardware error that occurred during an adapter command, and cannot be reproduced

v A hardware error that has not been recovered

v A software error that has been detected by the device driver

The target-mode device driver passes error-recovery responsibility for all detected errors to the caller. For

these errors, the target-mode device driver does not know if this type of error is permanent or temporary.

These types of errors are handled as temporary errors.

Only errors that the target-mode device driver can itself recover through retry operations can be

determined to be either temporary or permanent. The error is ignored if it succeeds during retry (a

recovered error). The return code to the caller indicates success if a recovered error occurs, or failure if an

unrecovered error occurs. The caller can retry the command or operation, but success is probably low for

unrecovered errors.

TMSSA does no error logging. If an error occurs, that error might be logged by the adapter device driver.

tmssa Special File

Purpose

To provide access to the SSA tmssa device driver.

Description

The Serial Storage Architecture (SSA) target-mode device driver provides an interface that allows the SSA

interface to be used for data transfer from using system to using system.

You can access the data transfer functions through character special files that are named

dev/tmssann.xx, where nn is the node number of the node with which you are communicating. The xx

can be either im (initiator-mode interface), or tm (target-mode interface). The caller uses the initiator-mode

to transmit data, and the target-mode interface to receive data.

The least significant bit of the minor device number indicates to the device driver which mode interface is

selected by the caller. When the least significant bit of the minor device number is set to 1, the

target-mode interface is selected. When the least significant bit is set to 0, the initiator-mode interface is

selected. For example, tmssa1.im should be defined as an even-numbered minor device number to select

the initiator-mode interface. tmssa1.tm should be defined as an odd-numbered minor device number to

select the target-mode interface.

When the caller opens the initiator-mode special file, a logical path is set up. This path allows data to be

transmitted. The user-mode caller issues a write, writev, writex, or writevx system call to start data

transmission. The kernel-mode user issues an fp_write or fp_rwuio service call to start data transmission.

The SSA target-mode device driver then builds a send command to describe the transfer, and the data is

sent to the device. The transfer can be done as a blocking write operation or as a nonblocking write

operation. When the write entry point returns, the calling program can access the transmit buffer.

410 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

When the caller opens the target-mode special file, a logical path is set up. This path allows data to be

received. The user-mode caller issues a read, readv, readx, or readvx system call to start the receiving

of data. The kernel-mode caller issues an fp_read or fp_rwuio service call to start the receiving of data.

The SSA target-mode device driver then returns data that was received for the application program.

Related Information

The close subroutine, open subroutine, read or readx subroutine, write or writex subroutine.

IOCINFO (Device Information) tmssa Device Driver ioctl Operation

Purpose

To return information about the device in a structure that is defined in the /usr/include/sys/devinfo.h file.

Description

This operation allows you to supply a pointer to the address of an area of type struct devinfo in the arg

parameter to the IOCINFO operation. This structure is defined in the /usr/include/sys/devinfo.h file. The

SCSI target-mode union is used for this as follows:

Initiator-Device

 buf_size Size of transmit buffer.

num_bufs Number of transmit buffers.

max_transfer Unused. Set to zero.

adap_devno Major or Minor devno of SSA adapter to be used for the next transmit operation.

Use TM_GetDevinfoNodeNum() to read the node number to which the data is sent.

Target-Device

 buf_size Size of receive buffer.

num_bufs Number of receive buffers.

max_transfer Unused. Set to zero.

adap_devno Major or Minor devno of SSA adapter initially used by the paired initiator-mode device.

Use TM_GetDevinfoNodeNum() to read the node number from which the data is received.

The remainder of the structure is filled as follows:

 devtype DD_TMSCSI.

flags Set to zero.

devsubtype DS_TM.

TMIOSTAT (Status) tmssa Device Driver ioctl Operation

Purpose

To allow the caller to put the status information for the current or previous write operation into a structure

that is defined in the /usr/include/sys/tmscsi.h file.

Chapter 7. SSA Subsystem 411

Description

This operation returns information about the last write operation. Because a nonblocking write operation

might still be running, you must ensure that the status information applies to a particular write operation.

The tm_get_stat structure in the /usr/include/sys/tmscsi.h file is used to indicate the status, as follows:

status_validity

Bit 0 set, scsi_status valid

scsi_status

 SC_BUSY_STATUS Write operation in progress

SC_GOOD_STATUS Write operation completed successfully

SC_CHECK_CONDITION Write operation failed

general_card_status

Unused. Set to zero.

b_error

errno for a failed write operation, or zero.

b_resid

Updated uio_resid for the write operation.

resvd1

Unused. Set to zero.

resvd2

Unused. Set to zero.

Note: The tm_get_stat structure works only for the initiator device.

TMCHGIMPARM (Change Parameters) tmssa Device Driver ioctl

Operation

Purpose

To allow the caller to change the parameters that are used by the target-mode device driver.

Description

This operation allows the caller to change the default set up of the device. It is allowed only for the

initiator-mode device. The arg parameter to the TMCHGIMPARM operation contains the address of the

tm_chg_im_parm structure that is defined in the /usr/include/sys/tmscsi.h file.

Default values that are used by the device driver for these parameters usually do not require change. For

some calling programs, however, default values can be changed to fine tune timing parameters that are

related to error recovery.

When a parameter is changed, it remains changed until another TMCHGIMPARM operation occurs, or

until the device is closed. When the device is opened, the parameters are set to the default values.

Parameters that can be changed with this operation are:

v The delay (in seconds) between device-driver-initiated retries of send commands

v The time allowed before the write operation times out.

To indicate which of the possible 0 parameters the caller is changing, the caller sets the appropriate bit in

the chg_option field. The caller can change only the retry parameters, or only the time out parameters, or

both types of parameter.

412 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

To change the delay between send command retries, the caller sets the TM_CHG_RETRY_DELAY flag in

the chg_option field and puts the required delay value (in seconds) into the new_delay field of the

structure. With this command, the retry delay can be changed with this command to any value 0 through

255, where 0 instructs the device driver to use as little delay as possible between retries. The default

value is approximately two seconds.

To change the send command time-out value, the caller sets the TM_CHG_SEND_TIMEOUT flag in the

chg_option field, sets the desired flag in the timeout_type field, and puts the desired time-out value into the

new_timeout field of the structure. One flag must be set in the time_out field to indicate the required form

of the timeout. If the TM_FIXED_TIMEOUT flag is set in the timeout_type field, the value that is put into

the new_timeout field is a fixed time-out value for all send commands. If the TM_SCALED_TIMEOUT flag

is set in the timeout_type field, the value that is put into the new_timeout field is a scaling-factor used in

the calculation for timeouts as shown under the description of the write entry point. The default send

command time-out value is a scaled time-out with a scaling factor of 10.

Regardless of the value of the timeout_type field, if the new_timeout field is set to a value of 0, the caller

specifies “no time out” for the send command, allowing the command to take an indefinite amount of time.

If the calling program wants to end a write operation, it generates a signal. This option is only allowed for

nonblocking write operations.

Chapter 7. SSA Subsystem 413

414 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Dept. LRAS/Bldg. 003

11400 Burnet Road

Austin, TX 78758-3498

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1997, 2007 415

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AIX

 IBM

 Micro Channel

 PowerPC Reference Platform

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

416 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Index

Special characters
/dev/nvram special file

machine device driver and 29

A
adapter cards

device method guidelines for 28

adapters
bus resources 54

PdAt object class
considerations 63

attrval subroutine 1

autodial protocols 116, 142

B
bus resources

allocating 2

bus special file
machine device driver 34

busresolve subroutine 2

C
CCC_GET_VPD operation

entioctl 87

CD-ROM SCSI device driver 255, 384

cfg device method 17

CFG_INIT operation
MPQP 104

PCI MPQP 132

sol_config 155

CFG_QVPD operation
sol_config 156

CFG_TERM operation
MPQP 104

PCI MPQP 132

sol_config 156

Change method 15

handling invalid attributes 15, 17

chg device method 15

CIO_GET_FASTWRT operation
ddioctl 66

entioctl 88

sol_ioctl 159

tokioctl 183

CIO_GET_STAT operation
ddioctl 67

entioctl 89

MPQP 106

PCI MPQP 134

sol_ioctl 160

tokioctl 184

CIO_HALT operation
ddioctl 68

entioctl 90

CIO_HALT operation (continued)
MPQP 110

PCI MPQP 137

sol_ioctl 164

tokioctl 189

CIO_QUERY operation
ddioctl 70

entioctl 91

MPQP 111

PCI MPQP 138

sol_ioctl 165

tokioctl 190

CIO_START operation
ddioctl 71

entioctl 92

MPQP 113

PCI MPQP 140

sol_ioctl 166

tokioctl 191

close subroutine
/dev/bus special file 34

/dev/nvram special file and 29

rmt SCSI device driver and 291

scdisk SCSI device driver and 255, 389

SCSI adapter device driver and 309

tmscsi SCSI device driver and 337

communication I/O subsystem 68

communications device handlers 102, 128, 130, 150,

154, 178

allocating channels
Serial Optical Link 169

checking event status 78

communications device handlers 150

communications sessions
halting 68

opening 71

device statistics
returning 70

entry points
dd_fastwrt 65

ddclose 65

ddopen (kernel mode) 73

ddopen (user mode) 76

ddread 77

ddselect 78

ddwrite 80

fast-write call 66

kopen_ext parameter block 73

query_parms parameter block 70

queuing messages 80

reading data messages 77

session_blk parameter block 72

status blocks
getting 67

system resources
freeing 65

transmitting data 65

MPQP 128

© Copyright IBM Corp. 1997, 2007 417

communications device handlers (continued)
transmitting data (continued)

PCI MPQP 150

Config_Rules object class 37

Configuration Manager
rules

configuration 37

Configure method
and errors 18

and VPD 18

described 17

guidelines 19

counter values
Ethernet

reading 91

CuAt object class
attribute information

updating 11

creating objects 11

deleting objects 11

described 39

descriptors 40

getattr subroutine 7

putattr subroutine 11

querying attributes 7

CuDep object class
descriptors 41

introduction 41

CuDv object class
descriptors 43

generating logical names 6

genminor subroutine 5

subroutines
genseq 6

CuDvDr object class
descriptors 41

genmajor subroutine 4

getminor subroutine 9

major numbers
releasing 12, 13

minor numbers
releasing 12

querying minor numbers 9

reldevno subroutine 12

relmajor subroutine 13

CuVPD object class
descriptors 46

introduction 46

D
DASD device driver

concurrent mode interface 398, 400

data messages
reading 77

data structures
allocating

for communications PDH 76

initializing
for communications PDH 73, 76

dd_fastwrt entry point 65

ddclose entry point 65

ddread entry point
communications PDH 77

ddselect entry point
communications PDH 78

ddwrite entry point
communications PDH 80

def device method 21

Define method 21

device attributes
creating 11

deleting 11

predefined 46

querying class 7

specific 39

updating 11

verifying ranges 1

device configuration methods
guidelines for writing 14

device configuration subroutines
attrval 1

busresolve 2

genmajor 4

genminor 5

genseq 6

getattr 7

getminor 9

loadext 10

putattr 11

reldevno 12

relmajor 13

device driver
loading 36

machine
/dev/bus special file 35

/dev/nvram special file 29, 34

bus special file 34

initialization 29

overview 29

termination 29

major numbers
generating 4

names
obtaining 10

device drivers
sctape FC 297

device methods
adapter card guidelines 28

Change 15

Configure 17

Define 21

returning errors 36

Start 14

Stop 14

Unconfigure 24

Undefine 27

devices
critical resource information

storing 41

defined state
resolving attributes of 2

418 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

devices (continued)
dependencies 41

generating minor numbers 5

intermediate
connection information 57

logical names
generating 6

major numbers
releasing 12

minor numbers
releasing 12

types of 58

E
ent_fastwrt call

parameters 88

ent_fastwrt entry point 81

ENT_SET_MULTI operation 94

entclose entry point 83

entconfig entry point 84

entioctl entry point 85

entmpx entry point 96

entopen entry point 97

entread entry point 98

entselect entry point 99

entwrite entry point 101

Ethernet device handler
channels

allocating 96

deallocating 96

controlling 85

counter values
reading 91

ending sessions 90

entry points
ent_fastwrt 81

entclose 83

entconfig 84

entioctl 85

entmpx 96

entopen 97

entread 98

entselect 99

entwrite 101

Ethernet structure
obtaining 95

events
determining status 99

initializing 84, 97

ioctl operations
CCC_GET_VPD 87

CIO_GET_FASTWRT 88

CIO_GET_STAT 89

CIO_HALT 90

CIO_QUERY 91

CIO_START 92

ENT_SET_MULTI 94

IOCINFO 95

receiving data from 98

resetting to known state 83

Ethernet device handler (continued)
returning status 89

returning system resources 83

sessions
establishing 92

setting multicast addresses 94

status blocks
CIO_HALT_DONE 90

CIO_START_DONE 89

terminating 84

transmitting data 81, 101

write_extension parameter block 80

G
genmajor subroutine 4

genminor subroutine 5

genseq subroutine 6

getattr subroutine 7

getminor subroutine 9

I
IDE Adapter Device Driver 351

IDE Adapter Device Driver ioctl operation
closes the logical path to an IDE device 374

issues a single block IDE read command 372

means to issue an IDE Start Unit command 374

means to issue an inquiry command to an IDE

device 371

opens a logical path to IDE device 373

sends a Test Unit Ready command to IDE 375

IDE Adapter Device Driver ioctl Operation
means to issue an identify device command 370

IDE ioctl operation
IDEIOIDENT 370

IDEIOINQU 371

IDEIOREAD 372

IDEIOSTART 373

IDEIOSTOP 374

IDEIOSTUNIT 374

IDEIOTUR 375

idecdrom IDE device Driver 355

idedisk IDE Device Driver 364

IDEIODENT operation 370

IDEIOINQU operation 371

IDEIOREAD operation 372

IDEIOSTART operation 373

IDEIOSTOP operation 374

IDEIOSTUNIT operation 374

IDEIOTUR operation 375

idscsi 336, 348

intermediate devices
connection information 57

IOCINFO operation
entioctl 95

sol_ioctl 167

tmscsi 342, 381, 392

tokioctl 192

ioctl operations
/dev/nvram special file 31

Index 419

ioctl subroutine
rmt SCSI device driver and 292

scdisk SCSI device driver and 256

SCSI adapter device driver and 310

tmscsi SCSI device driver and 341

ioctl subroutines
/dev/bus special file 35

/dev/nvram special file 30

K
kernel extensions

loading 10

unloading 10

kopen_ext parameter block 73

L
loadext subroutine 10

logical names 6

M
machine device drivers 29

magnetic tape access
tape SCSI device driver and 291

major numbers
generating 4

releasing 12, 13

message queues
messages

queueing for transmission 80

microcode
downloading to SCSI adapter 320, 381, 382

minor numbers
generating 5

getting 9

releasing 12

MP_CHG_PARMS operation 120, 144

MP_START_AR operation 120

MP_STOP_AR operation 120

mpclose entry point 102

mpconfig entry point 104

mpioctl entry point 105

mpmpx entry point 122

mpopen entry point 123

MPQP device handler
allocating channels 122

controlling 105

deallocating channels 122

entry points
mpclose 102

mpconfig 104

mpioctl 105

mpmpx 122

mpopen 123

mpread 125

mpselect 127

mpwrite 128

events
checking for 127

MPQP device handler (continued)
getting status of 106

initializing 104

ioctl operations
CIO_GET_STAT 106

CIO_HALT 110

CIO_QUERY 111

CIO_START 113

MP_CHG_PARMS 120

MP_START_AR 120

MP_STOP_AR 120

mpwrite parameter block 129

opening for transmission 123

read_extension parameter block 126

reading data 125

resetting 102

sessions
ending 110

starting 113

t_auto_data structure 118

t_err_threshold structure 119

t_start_dev structure 114

t_x21_data structure 118

terminating 104

using autodial protocols 116

mpread entry point 125

mpselect entry point 127

mpwrite entry point 128

mpwrite parameter block 129

multicast addresses
setting for Ethernet device 94

Multiprotocol Quad Port device handler 104

O
ODM

object classes 37

open subroutine
/dev/bus special file 34

/dev/nvram special file and 29

rmt SCSI device driver and 291

scdisk SCSI device driver and 255, 389

SCSI adapter device driver and 309

tmscsi SCSI device driver and 337

P
passthru subroutine 250

PCI MPQP device handler
allocating channels 144

controlling 133

deallocating channels 144

entry points
tsclose 130

tsconfig 132

tsioctl 133

tsmpx 144

tsopen 145

tsread 147

tsselect 149

tswrite 150

420 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

PCI MPQP device handler (continued)
events

checking for 149

getting status of 134

initializing 132

ioctl operations
CIO_GET_STAT 134

CIO_HALT 137

CIO_QUERY 138

CIO_START 140

MP_CHG_PARMS 144

opening for transmission 145

read_extension parameter block 147

reading data 147

resetting 130

sessions
ending 137

starting 140

t_err_threshold structure 143

t_start_dev structure 141

terminating 132

tswrite parameter block 151

using autodial protocols 142

PdAt object class
attrval subroutine 1

descriptors 47, 54

getattr subroutine 7

loading devices 36

querying attributes 7

types of attributes 47

PdCn object class 57

PdDv object class
adapter-specific considerations 63

descriptors 59

loadext subroutine 10

loading devices 36

piocmdout subroutine 239

pioexit subroutine 240

piogetopt subroutine 242

piogetstr subroutine 244

piogetvals subroutine 245

piomsgout subroutine 247

predefined attributes 46

print formatters
attribute database

initializing 245

attribute variables 246

attributes
retrieving 244

command-line flags
parsing 242

processing 252

converting attribute strings 246

database
validating input parameters 252

database variables
initializing 252

exiting 240

flag arguments
converting 242

overlaying defaults 242

print formatters (continued)
passing input data stream 250

sending messages from 247

subroutines
list for writing 250

list of 239

passthru 250

piocmdout 239

pioexit 240

piogetopt 242

piogetstr 244

piogetvals 245

piomsgout 247

restore 251

setup 252

printer attribute variables 246

putattr subroutine 11

Q
query_parms parameter block 70

R
read subroutine

/dev/bus special file 35

/dev/nvram special file 30

tmscsi SCSI device driver and 338

read_extension parameter block 126, 147

readx subroutine
scdisk SCSI device driver and 256, 390

reldevno subroutine 12

remajor subroutine 13

restore subroutine 251

rmt SCSI device driver
close subroutine and 291

device-dependent subroutines 291

error conditions 292

error record values 293

ioctl subroutine and 292

open subroutine and 291

reliability and serviceability 293

S
scdisk SCSI device driver

close subroutine and 255, 389

device requirements 266

device-dependent subroutines 255, 388

error conditions 266, 390

error record values 268

ioctl subroutine and 256

open subroutine and 255, 389

physical volume and CD-ROM 255, 384

readx subroutine and 256, 390

reliability and serviceability 268

writex subroutine and 256, 390

SCIOCMD operation 317

SCIODIAG operation 318, 377

SCIODNLD operation 320, 382

SCIOEVENT operation 321, 382

Index 421

SCIOGTHW operation 322

SCIOHALT operation 323

SCIOINQU operation 324

SCIOREAD operation 325

SCIORESET operation 326

SCIOSTART operation 328, 393, 394, 396, 397

SCIOSTARTTGT operation 329

SCIOSTOP operation 330

SCIOSTOPTGT operation 331

SCIOSTUNIT operation 332

SCIOTRAM operation 333

SCIOTUR operation 334

scsesdd SCSI Device Driver 304

SCSI adapter device driver 309, 336, 378

close subroutine and 309

closing logical paths 330, 331

device registration 321, 382

device-dependent subroutines 309

downloading microcode 320, 381, 382

error conditions 311

error-record values 312

halting a device 323

ioctl subroutine and 310

issuing commands 317

issuing diagnostic commands 318, 377

issuing inquiry commands 324

issuing read command 325

managing dumps 316

open subroutine and 309

opening logical paths 328, 329, 393, 394, 396, 397

reliability and serviceability 311

resetting a device 326

starting devices 332

supporting the SCSI adapter 309, 378

testing a unit 334

testing buffer RAM 333

testing card DMA interface 333

verifying gathered write support 322

SCSI ioctl operations
SCIOCMD 317

SCIODIAG 318, 377

SCIODNLD 320, 382

SCIOEVENT 321, 382

SCIOGTHW 322

SCIOHALT 323

SCIOINQU 324

SCIOREAD 325

SCIORESET 326

SCIOSTART 328, 393, 394, 396, 397

SCIOSTARTTGT 329

SCIOSTOP 330

SCIOSTOPTGT 331

SCIOSTUNIT 332

SCIOTRAM 333

SCIOTUR 334

SCSI subsystem 321, 382

sctape FC device driver 297

select entry point
tmscsi SCSI device driver and 341

Serial Optical Link device handler
status blocks 160

session_blk parameter block 69, 72

setup subroutine 252

SOL device handler
configuring 155

controlling input and output 158

entry points
sol_close 154

sol_config 155

sol_fastwrt 156

sol_ioctl 158

initializing 171

initiating sessions 166

ioctl operations
CIO_GET_FASTWRT 159

CIO_GET_STAT 160

CIO_HALT 164

CIO_QUERY 165

CIO_START 166

IOCINFO 167

SOL_CHECK_ID 168

SOL_GET_PRIDS 169

querying devices 165

reading data 172

resetting 154

sense data 152

status 1 register 153

status 2 register 153

status blocks
CIO_ASYNC_STATUS 161

CIO_HALT_DONE 163

CIO_START_DONE 163

CIO_TX_DONE 163

writing data 175

SOL device handler entry points
sol_mpx 169

sol_open 171

sol_read 172

sol_select 174

sol_write 175

SOL_CHECK_PRID operation 168

sol_close entry point 154

sol_config entry point 155

sol_fastwrt entry point 156

SOL_GET_PRIDS operation 169

sol_ioctl entry point 158

sol_open entry point 171

sol_read entry point 172

sol_select entry point 174

sol_write entry point 175

SSA Subsystem Overview 377

Start method 14

status blocks
Ethernet 89

getting 67

serial optical link 160

token-ring device handler 184

Stop method 14

stp device method 14

stt device method 14

supporting
Integrated Device Electronics (IDE) 351

422 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

supports CD-ROM devices
idecdrom IDE device Driver 355

supports fixed disk devices
idedisk IDE Device Driver 364

T
t_auto_data structure 118

t_err_threshold structure 119, 143

t_start_dev structure 114, 141

t_x21_data structure 118

tape device media errors 293

tape SCSI device driver
introduced 291

TIMIORESET operation 348

TMCHGIMPARM operation 343

TMGETSENS operation 344

TMIOASYNC operation 345

TMIOCMD operation 345

TMIOEVNT operation 346

TMIOSTAT operation 348

tmscsi ioctl operations
IOCINFO 342, 381, 392

TMCHGIMPARM 343

TMGETSENS 344

TMIOASYNC 345

TMIOCMD 345

TMIOEVNT 346

TMIORESET 348

TMIOSTAT 348

tmscsi SCSI device driver
changing parameters 343

close subroutine and 337

configuring 337

device-dependent subroutines 337

error logging 342

getting device information 342, 381, 392

getting device status 348

ioctl subroutine and 341

open subroutine and 337

processor-to-processor communications 336

querying event status 346

read subroutine and 338

requesting sense data 344

select entry point and 341

sending bus device resets 348

sending direct commands 345

transferring data asynchronously 345

write subroutine and 339

TOK_FUNC_ADDR operation 193

TOK_GRP_ADDR operation 194

TOK_QVPD operation 195

TOK_RING_INFO operation 196

tokclose entry point 177

tokconfig entry point 178

tokdump entry point 179

tokdumpwrt entry point 180

token-ring device handler 178

token-ring device handler entry points 177, 178, 179,

180, 182, 197, 198, 199, 200, 202

tokfastwrt 181

token-ring device handlers
allocating channels 197

allocating system resources 198

controlling operations 182

deallocating channels 197

ending session with 189

getting status of 184

hardware failure blocks
exceeded network threshold 185

unrecoverable adapter checks 185

unrecoverable PIO errors 185

initializing 198

initiating sessions of 191

network dump
performing 179

transmitting data 180

obtaining device information of 192

passing write packets 181

performing direct-access writes 181

querying devices of 196

querying for events 200

querying statistics 190

receiving data 199

resetting 177

setting group addresses of 194

specifying functional addresses of 193

status blocks
CIO_ASYNC_STATUS 185

CIO_HALT_DONE 187

CIO_START_DONE 187

CIO_TX_DONE 188

entered network recovery mode 186

exited network recovery mode 186

ring beaconing 186

ring reserved 186

transmitting data of 202

VPD
returning 195

token-ring ioctl operations 183, 184, 189, 190, 191,

192, 194, 195, 196

TOK_FUNC_ADDR 193

tokfastwrt entry point 181

tokioctl entry point 182

tokmpx entry point 197

tokopen entry point 198

tokread entry point 199

tokselect entry point 200

tokwrite entry point 202

tsclose entry point 130

tsconfig entry point 132

tsioctl entry point 133

tsmpx entry point 144

tsopen entry point 145

tsread entry point 147

tsselect entry point 149

tswrite entry point 150

tswrite parameter block 151

Index 423

U
ucfg device method 24

udef device method 27

Unconfigure method 25

Undefine method 27

V
vital product data 18

VPD 46, 178

Ethernet
querying 84

Ethernet adapter
returning 87

handling 18

W
write subroutine

/dev/bus special file 35

/dev/nvram special file 30

tmscsi SCSI device driver and 339

write_extension parameter block 80, 101

writex subroutine
scdisk SCSI device driver and 256, 390

424 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 2

Readers’ Comments — We’d Like to Hear from You

AIX Version 6.1

Technical Reference: Kernel and Subsystems, Volume 2

 Publication No. SC23-6613-00

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: aix6koub@austin.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-6613-00

SC23-6613-00

���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department 04XA-905-6C006

11501 Burnet Road

Austin, TX 78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U.S.A.

SC23-6613-00

	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	32-Bit and 64-Bit Support for the Single UNIX Specification
	Related Publications

	Chapter 1. Configuration Subsystem
	attrval Device Configuration Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Files
	Related Information

	busresolve Device Configuration Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Files
	Related Information

	genmajor Device Configuration Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Files
	Related Information

	genminor Device Configuration Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Files
	Related Information

	genseq Device Configuration Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Files
	Related Information

	getattr Device Configuration Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Files
	Related Information

	getminor Device Configuration Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Files
	Related Information

	loadext Device Configuration Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Files
	Return Values
	Related Information

	putattr Device Configuration Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Files
	Related Information

	reldevno Device Configuration Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Files
	Related Information

	relmajor Device Configuration Subroutine
	Purpose
	Syntax
	Parameter
	Description
	Return Values
	Files
	Related Information

	Writing Optional Start and Stop Methods
	Syntax
	Description
	Flags
	Related Information

	Writing a Change Method
	Syntax
	Description
	Flags
	Guidelines for Writing a Change Method
	Handling Invalid Attributes
	Related Information

	Writing a Configure Method
	Syntax
	Description
	Flags
	Files
	Related Information

	Writing a Define Method
	Syntax
	Description
	Flags
	Guidelines for Writing a Define Method
	Related Information

	Writing an Unconfigure Method
	Syntax
	Description
	Flags
	Guidelines for Writing an Unconfigure Method
	Files
	Related Information

	Writing an Undefine Method
	Syntax
	Description
	Flags
	Guidelines for Writing an Undefine Method
	Files
	Related Information

	Device Methods for Adapter Cards: Guidelines
	Related Information

	Machine Device Driver
	Driver Initialization and Termination
	/dev/nvram Special File Support
	Bus Special File Support
	Files
	Related Information

	Loading a Device Driver
	Files
	Related Information

	How Device Methods Return Errors
	Related Information

	ODM Device Configuration Object Classes
	Related Information

	Configuration Rules (Config_Rules) Object Class
	Description
	Descriptors
	Related Information

	Customized Attribute (CuAt) Object Class
	Description
	Descriptors
	Related Information

	Customized Dependency (CuDep) Object Class
	Description
	Descriptors
	Related Information

	Customized Device Driver (CuDvDr) Object Class
	Description
	Descriptors
	Related Information

	Customized Devices (CuDv) Object Class
	Description
	Descriptors
	Related Information

	Customized VPD (CuVPD) Object Class
	Description
	Descriptors
	Related Information

	Predefined Attribute (PdAt) Object Class
	Description
	Predefined Attribute Object Class Descriptors
	Related Information

	Predefined Attribute Extended (PdAtXtd) Object Class
	Description
	Predefined Attribute Extended Object Class Descriptors

	Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class
	Description
	Related Information

	Predefined Connection (PdCn) Object Class
	Description
	Descriptors
	Related Information

	Predefined Devices (PdDv) Object Class
	Description
	Descriptors
	Files
	Related Information

	Adapter-Specific Considerations for the Predefined Devices (PdDv) Object Class
	Description
	Related Information

	Chapter 2. Communications Subsystem
	ddclose Communications PDH Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Value
	Related Information

	dd_fastwrt Communications PDH Entry Point
	Purpose
	Description
	Related Information

	CIO_GET_FASTWRT ddioctl Communications PDH Operation
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	CIO_GET_STAT ddioctl Communications PDH Operation
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_HALT ddioctl Communications PDH Operation
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_QUERY ddioctl Communications PDH Operation
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_START ddioctl Communications PDH Operation
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddopen (Kernel Mode) Communications PDH Entry Point
	Purpose
	Syntax
	Parameters for Kernel-Mode Processes
	Description
	Execution Environment
	Return Values
	Related Information

	ddopen (User Mode) Communications PDH Entry Point
	Purpose
	Syntax
	Parameters for User-Mode Processes
	Description
	Execution Environment
	Return Values
	Related Information

	ddread Communications PDH Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddselect Communications PDH Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddwrite Communications PDH Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ent_fastwrt Ethernet Device Handler Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	entclose Ethernet Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	entconfig Ethernet Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	entioctl Ethernet Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	CCC_GET_VPD (Query Vital Product Data) entioctl Ethernet Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_GET_FASTWRT (Get Fast Write) entioctl Ethernet Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_GET_STAT (Get Status) entioctl Ethernet Device Handler Operation
	Purpose
	Description
	Status Blocks for the Ethernet Device Handler
	Execution Environment
	Return Values
	Related Information

	CIO_HALT (Halt Device) entioctl Ethernet Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_QUERY (Query Statistics) entioctl Ethernet Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_START (Start Device) entioctl Ethernet Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	ENT_SET_MULTI (Set Multicast Address) entioctl Ethernet Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	IOCINFO (Describe Device) entioctl Ethernet Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	entmpx Ethernet Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	entopen Ethernet Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	entread Ethernet Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	entselect Ethernet Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	entwrite Ethernet Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	mpclose Multiprotocol (MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	mpconfig Multiprotocol (MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	mpioctl Multiprotocol (MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_GET_STAT (Get Status) mpioctl MPQP Device Handler Operation
	Purpose
	Description
	Status Blocks for the Multiprotocol Device Handler
	Execution Environment
	Return Values
	Related Information

	CIO_HALT (Halt Device) mpioctl MPQP Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Files
	Related Information

	CIO_QUERY (Query Statistics) mpioctl MPQP Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_START (Start Device) mpioctl MPQP Device Handler Operation
	Purpose
	Description
	t_start_dev Fields
	Flag Fields for Autodial Protocols
	t_auto_data Fields
	t_x21_data Fields
	t_err_threshold Fields
	Execution Environment
	Return Values
	Related Information

	MP_CHG_PARMS (Change Parameters) mpioctl MPQP Device Handler Operation
	Purpose
	Description
	Related Information

	MP_START_AR (Start Autoresponse) and MP_STOP_AR (Stop Autoresponse) mpioctl MPQP Device Handler Operations
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	mpmpx Multiprotocol (MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	mpopen Multiprotocol (MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	mpread Multiprotocol (MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	mpselect Multiprotocol (MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	mpwrite Multiprotocol (MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tsclose Multiprotocol (PCI MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	tsconfig Multiprotocol (PCI MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Related Information

	tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler Operation
	Purpose
	Description
	Status Blocks for the Multiprotocol Device Handler
	Execution Environment
	Return Values
	Related Information

	CIO_HALT (Halt Device) tsioctl PCI MPQP Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Files
	Related Information

	CIO_QUERY (Query Statistics) tsioctl PCI MPQP Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_START (Start Device) tsioctl PCI MPQP Device Handler Operation
	Purpose
	Description
	t_start_dev Fields
	Flag Fields for Protocols
	t_err_threshold Fields
	Execution Environment
	Return Values
	Related Information

	MP_CHG_PARMS (Change Parameters) tsioctl PCI MPQP Device Handler Operation
	Purpose
	Description
	Related Information

	tsmpx Multiprotocol (PCI MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	tsopen Multiprotocol (PCI MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	tsread Multiprotocol (PCI MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	tsselect Multiprotocol (PCI MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	tswrite Multiprotocol (PCI MPQP) Device Handler Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	Sense Data for the Serial Optical Link Device Driver
	Status 1 Register
	Status 2 Register
	Related Information

	sol_close Serial Optical Link Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	sol_config Serial Optical Link Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values for the CFG_INIT Operation
	Return Values for the CFG_TERM Operation
	Return Values for the CFG_QVPD Operation
	Related Information

	sol_fastwrt Serial Optical Link Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	sol_ioctl Serial Optical Link Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	CIO_GET_FASTWRT (Get Fast Write) sol_ioctl Serial Optical Link Device Handler Operation
	Purpose
	Description
	Return Values
	Related Information

	CIO_GET_STAT (Get Status) sol_ioctl Serial Optical Link Device Handler Operation
	Purpose
	Description
	Status Blocks for the Serial Optical Link Device Driver
	Execution Environment
	Return Values
	Related Information

	CIO_HALT (Halt Device) sol_ioctl Serial Optical Link Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_QUERY (Query Statistics) sol_ioctl Serial Optical Link Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_START (Start Device) sol_ioctl Serial Optical Link Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	IOCINFO (Describe Device) sol_ioctl Serial Optical Link Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	SOL_CHECK_PRID (Check Processor ID) sol_ioctl Serial Optical Link Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	SOL_GET_PRIDS (Get Processor IDs) sol_ioctl Serial Optical Link Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	sol_mpx Serial Optical Link Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	sol_open Serial Optical Link Device Handler Entry Point
	Purpose
	Kernel-Mode Syntax
	User-Mode Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	sol_read Serial Optical Link Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	sol_select Serial Optical Link Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	sol_write Serial Optical Link Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tokclose Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tokconfig Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tokdump Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Description
	Execution Environment
	Related Information

	tokdumpwrt Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tokfastwrt Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tokioctl Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	CIO_GET_FASTWRT (Get Fast Write) tokioctl Token-Ring Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_GET_STAT (Get Status) tokioctl Token-Ring Device Handler Operation
	Purpose
	Description
	Status Blocks for the Token-Ring Device Handler
	Return Values
	Execution Environment
	Related Information

	CIO_HALT (Halt Device) tokioctl Token-Ring Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_QUERY (Query Statistics) tokioctl Token-Ring Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	CIO_START (Start Device) tokioctl Token-Ring Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	IOCINFO (Describe Device) tokioctl Token-Ring Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	TOK_FUNC_ADDR (Set Functional Address) tokioctl Token-Ring Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	TOK_GRP_ADDR (Set Group Address) tokioctl Token-Ring Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	TOK_QVPD (Query Vital Product Data) tokioctl Token-Ring Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	TOK_RING_INFO (Query Token-Ring) tokioctl Token-Ring Device Handler Operation
	Purpose
	Description
	Execution Environment
	Return Values
	Related Information

	tokmpx Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tokopen Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tokread Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tokselect Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tokwrite Token-Ring Device Handler Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	Chapter 3. LFT Subsystem
	lft_t Structure
	Related Information

	lft_dds_t Structure
	phys_displays Structure
	Related Information

	vtmstruct Structure
	Virtual Display Driver (VDD) Interface (lftvi)
	Purpose
	Syntax
	Description
	Parameters

	Input Device Driver ioctl Operations
	IOCINFO (Return devinfo Structure) ioctl Input Device Driver
	Purpose
	Syntax
	Description
	Parameters

	KSQUERYID (Query Keyboard Device Identifier)
	Purpose
	Syntax
	Description
	Parameters

	KSQUERYSV (Query Keyboard Service Vector)
	Purpose
	Syntax
	Description
	Parameters

	KSREGRING (Register Input Ring)
	Purpose
	Syntax
	Description
	Parameters

	KSRFLUSH (Flush Input Ring)
	Purpose
	Syntax
	Description
	Parameter

	KSLED (Illuminate/Darken Keyboard LEDs)
	Purpose
	Syntax
	Description
	Parameters

	KSCFGCLICK (Enable/Disable Keyboard Clicker)
	Purpose
	Syntax
	Description
	Parameters

	KSVOLUME (Set Alarm Volume) ioctl
	Purpose
	Syntax
	Description
	Parameters

	KSALARM (Sound Alarm)
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	KSTRATE (Set Typematic Rate)
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	KSTDELAY (Set Typematic Delay)
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	KSKAP (Enable/Disable Keep Alive Poll)
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	KSKAPACK (Acknowledge Keep Alive Poll)
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	KSDIAGMODE (Enable/Disable Diagnostics Mode)
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	MQUERYID (Query Mouse Device Identifier)
	Purpose
	Syntax
	Description
	Parameters

	MREGRING (Register Input Ring)
	Purpose
	Syntax
	Description
	Parameters

	MRFLUSH (Flush Input Ring)
	Purpose
	Syntax
	Description
	Parameters

	MTHRESHOLD (Set Mouse Reporting Threshold)
	Purpose
	Syntax
	Description
	Parameters

	MRESOLUTION (Set Mouse Resolution)
	Purpose
	Syntax
	Description
	Parameters

	MSCALE (Set Mouse Scale Factor)
	Purpose
	Syntax
	Description
	Parameters

	MSAMPLERATE (Set Mouse Sample Rate)
	Purpose
	Syntax
	Description
	Parameters

	TABQUERYID (Query Tablet Device Identifier) ioctl Tablet Device Driver Operation
	Purpose
	Syntax
	Description
	Parameters

	TABREGRING (Register Input Ring)
	Purpose
	Syntax
	Description
	Parameters

	TABRFLUSH (Flush Input Ring
	Purpose
	Syntax
	Description
	Parameters

	TABCONVERSION (Set Tablet Conversion Mode)
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	TABRESOLUTION (Set Tablet Resolution)
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	TABORIGIN (Set Tablet Origin)
	Purpose
	Syntax
	Description
	Parameters

	TABSAMPLERATE (Set Tablet Sample Rate) ioctl Tablet Device Driver Operation
	Purpose
	Syntax
	Description
	Parameters

	TABDEADZONE (Set Tablet Dead Zone)
	Purpose
	Syntax
	Description
	Parameters

	GIOQUERYID (Query Attached Devices)
	Purpose
	Syntax
	Description
	Parameters

	DIALREGRING (Register Input Ring)
	Purpose
	Syntax
	Description
	Parameters

	DIALRFLUSH (Flush Input Ring)
	Purpose
	Syntax
	Description
	Parameters

	DIALSETGRAND (Set Dial Granularity)
	Purpose
	Syntax
	Description
	Parameters

	LPFKREGRING (Register Input Ring)
	Purpose
	Syntax
	Description
	Parameters

	LPFKRFLUSH (Flush Input Ring)
	Purpose
	Syntax
	Description
	Parameters

	LPFKLIGHT (Set/Reset Key Lights)
	Purpose
	Syntax
	Description
	Parameters

	dd_open LFT Device Driver Interface
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	dd_close LFT Device Driver Interface
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	dd_ioctl LFT Device Driver Interface
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	Chapter 4. Printer Subsystems
	Subroutines for Print Formatters
	piocmdout Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pioexit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	piogetattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples

	piogetopt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	piogetstatus Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	piogetstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	piogetvals Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	piomsgout Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pioputattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples

	pioputstatus Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	Subroutines for Writing a Print Formatter
	passthru Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	restore Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	setup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Chapter 5. SCSI Subsystem
	scdisk SCSI Device Driver
	Purpose
	Syntax
	Device-Dependent Subroutines
	Device Requirements
	Error Conditions
	Reliability and Serviceability Information
	Special Files
	Related Information

	scsidisk SAM Device Driver
	Purpose
	Syntax
	Device-Dependent Subroutines
	Device Requirements
	Error Conditions
	Reliability and Serviceability Information
	Special Files
	Related Information

	tape SCSI Device Driver
	Purpose
	Syntax
	Device-Dependent Subroutines
	Files
	Related Information

	sctape FC Device Driver
	Purpose
	Syntax
	Device-Dependent Subroutines
	Error Conditions
	Reliability and Serviceability Information
	Related Information

	scsesdd SCSI Device Driver
	Purpose
	Syntax
	Description
	ioctl Subroutine
	Device Requirements
	Error Conditions
	Reliability and Serviceability Information
	Files
	Related Information

	scsisesdd SAM Device Driver
	Purpose
	Syntax
	Description
	Device Requirements
	Examples
	Error Conditions
	Files
	Related Information

	Parallel SCSI Adapter Device Driver
	Purpose
	Syntax
	Description
	Device-Dependent Subroutines
	Summary of SCSI Error Conditions
	Reliability and Serviceability Information
	Managing Dumps
	Files
	Related Information

	SCIOCMD SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIODIAG (Diagnostic) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIODNLD (Download) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOEVENT (Event) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOGTHW (Gathered Write) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOHALT (Halt) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOINQU (Inquiry) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOREAD (Read) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIORESET (Reset) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Examples
	Return Values
	Files
	Related Information

	SCIOSTART (Start SCSI) Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOSTARTTGT (Start Target) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOSTOP (Stop) Device SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOSTOPTGT (Stop Target) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOSTUNIT (Start Unit) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOTRAM (Diagnostic) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SCIOTUR (Test Unit Ready) SCSI Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	tmscsi SCSI Device Driver
	Purpose
	Syntax
	Description
	Configuration Information
	Device-Dependent Subroutines
	Related Information

	IOCINFO (Device Information) tmscsi Device Driver ioctl Operation
	Purpose
	Description
	Files
	Related Information

	TMCHGIMPARM (Change Parameters) tmscsi Device Driver ioctl Operation
	Purpose
	Description
	Files
	Related Information

	TMGETSENS (Request Sense) tmscsi Device Driver ioctl Operation
	Purpose
	Description
	Files
	Related Information

	TMIOASYNC (Async) tmscsi Device Driver ioctl Operation
	Purpose
	Description
	Files
	Related Information

	TMIOCMD (Direct) tmscsi Device Driver ioctl Operation
	Purpose
	Description
	Files
	Related Information

	TMIOEVNT (Event) tmscsi Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	TMIORESET (Reset Device) tmscsi Device Driver ioctl Operation
	Purpose
	Description
	Files
	Related Information

	TMIOSTAT (Status) tmscsi Device Driver ioctl Operation
	Purpose
	Description
	Files
	Related Information

	Chapter 6. Integrated Device Electronics (IDE)
	IDE Adapter Device Driver
	Purpose
	Syntax
	Description
	Device-Dependent Subroutines
	Summary of IDE Error Conditions
	Reliability and Serviceability Information
	Managing Dumps
	Special Files
	Related Information

	idecdrom IDE Device Driver
	Purpose
	Syntax
	Device-Dependent Subroutines
	Device Requirements
	Error Conditions
	Reliability and Serviceability Information
	Special Files
	Related Information

	idedisk IDE Device Driver
	Purpose
	Syntax
	Device-Dependent Subroutines
	Device Requirements
	Error Conditions
	Special Files
	Related Information

	IDEIOIDENT (Identify Device) IDE Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	IDEIOINQU (Inquiry) IDE Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	IDEIOREAD (Read) IDE Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	IDEIOSTART (Start IDE) IDE Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	IDEIOSTOP (Stop) IDE Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	IDEIOSTUNIT (Start Unit) IDE Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	IDEIOTUR (Test Unit Ready) IDE Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	Chapter 7. SSA Subsystem
	SSA Subsystem Overview
	Device Drivers
	Interface between the SSA Adapter Device Driver and Head Device Driver
	Trace Formatting

	SSA Adapter Device Driver
	Purpose
	Syntax
	Description
	SSA Micro Channel Adapter ODM Attributes
	PCI SSA Adapter ODM Attributes
	Device-Dependent Subroutines
	Summary of SSA Error Conditions
	Managing Dumps
	Files
	Related Information

	SSA Adapter Device Driver Direct Call Entry Point
	Purpose
	Description
	Return Values
	Related Information

	IOCINFO (Device Information) SSA Adapter Device Driver ioctl Operation
	Purpose
	Description
	Files
	Related Information

	SSA_GET_ENTRY_POINT SSA Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SSA_TRANSACTION SSA Adapter Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	ssadisk SSA Disk Device Driver
	Purpose
	Syntax
	Configuration Issues
	Device Attributes
	Device-Dependent Subroutines
	Error Conditions
	Special Files
	Related Information

	IOCINFO (Device Information) SSA Disk Device Driver ioctl Operation
	Purpose
	Description
	Files
	Related Information

	SSADISK_ISALMgr_CMD (ISAL Manager Command) SSA Disk Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SSADISK_ISAL_CMD (ISAL Command) SSA Disk Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SSADISK_SCSI_CMD (SCSI Command) SSA Disk Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SSADISK_LIST_PDISKS SSA Disk Device Driver ioctl Operation
	Purpose
	Description
	Return Values
	Files
	Related Information

	SSA Disk Concurrent Mode of Operation Interface
	Device Driver Entry Point
	Top Kernel Extension Entry Point
	Related Information

	SSA Disk Fencing
	Related Information

	SSA Target Mode
	Configuring the SSA Target Mode
	Buffer Management
	Understanding Target-Mode Data Pacing
	Using SSA Target Mode
	Execution of Target Mode Requests

	SSA tmssa Device Driver
	Purpose
	Syntax
	Description
	Configuration Information
	Device-Dependent Subroutines
	Errors

	tmssa Special File
	Purpose
	Description
	Related Information

	IOCINFO (Device Information) tmssa Device Driver ioctl Operation
	Purpose
	Description

	TMIOSTAT (Status) tmssa Device Driver ioctl Operation
	Purpose
	Description

	TMCHGIMPARM (Change Parameters) tmssa Device Driver ioctl Operation
	Purpose
	Description

	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

