
AIX 5L Version  5.3

Communications Programming Concepts 

SC23-4894-04  

���





AIX 5L Version  5.3

Communications Programming Concepts 

SC23-4894-04  

���



Note 

Before using this information and the product it supports, read the information in “Notices,” on page 327.

Fifth  Edition  (November  2007)  

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in 

new editions. 

A reader’s comment form is provided at the back of this publication. If the form has been removed, address 

comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas 

78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any 

information that you supply may be used without incurring any obligation to you. 

(c) Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved. 

Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved. 

The Network File System (NFS) was developed by Sun Microsystems, Inc. 

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from 

The Regents of the University of California. We acknowledge the following institutions for their role in its 

development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.
The Rand MH Message Handling System was developed by the Rand Corporation and the University of California.
Portions of the code and documentation described in this book were derived from code and documentation 

developed under the auspices of the Regents of the University of California and have been acquired and modified 

under the provisions that the following copyright notice and permission notice appear:
Copyright Regents of the University of California, 1986, 1987, 1988, 1989. All rights reserved.
Redistribution and use in source and binary forms are permitted provided that this notice is preserved and that due 

credit is given to the University of California at Berkeley. The name of the University may not be used to endorse or 

promote products derived from this software without specific prior written permission. This software is provided "as 

is" without express or implied warranty. 

(c) Copyright Apollo Computer, Inc., 1987. All rights reserved. 

(c) Copyright TITN, Inc., 1984, 1989. All rights reserved. 

© Copyright  International  Business  Machines  Corporation  1994,  2007.  All rights  reserved.  

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract 

with IBM Corp.

 



Contents  

About  This  Book   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Highlighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Case-Sensitivity in AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

ISO 9000  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Related Publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Chapter  1.  Data  Link  Control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

Generic Data Link Control Environment Overview  . . . . . . . . . . . . . . . . . . . . . 2 

Implementing GDLC Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

GDLC Interface ioctl Entry Point Operations  . . . . . . . . . . . . . . . . . . . . . . . 5 

GDLC Special Kernel Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

GDLC Problem Determination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Data Link Control Programming and Reference Information  . . . . . . . . . . . . . . . . . 11 

Token-Ring Data Link Control Overview  . . . . . . . . . . . . . . . . . . . . . . . . 12 

DLCTOKEN Device Manager Nodes  . . . . . . . . . . . . . . . . . . . . . . . . . 13 

DLCTOKEN Device Manager Functions  . . . . . . . . . . . . . . . . . . . . . . . . 14 

DLCTOKEN Protocol Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

DLCTOKEN Name-Discovery Service  . . . . . . . . . . . . . . . . . . . . . . . . . 16 

DLCTOKEN Direct Network Services  . . . . . . . . . . . . . . . . . . . . . . . . . 19 

DLCTOKEN Connection Contention . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

Initiating DLCTOKEN Link Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

Stopping DLCTOKEN Link Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . 20 

DLCTOKEN Programming Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . 20 

IEEE 802.3 Ethernet Data Link Control Overview . . . . . . . . . . . . . . . . . . . . . 24 

DLC8023 Device Manager Nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

DLC8023 Device Manager Functions  . . . . . . . . . . . . . . . . . . . . . . . . . 25 

DLC8023 Protocol Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

DLC8023 Name-Discovery Services  . . . . . . . . . . . . . . . . . . . . . . . . . 27 

DLC8023 Direct Network Services  . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

DLC8023 Connection Contention . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

DLC8023 Link Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

DLC8023 Programming Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Standard Ethernet Data Link Control Overview . . . . . . . . . . . . . . . . . . . . . . 34 

DLCETHER Device Manager Nodes  . . . . . . . . . . . . . . . . . . . . . . . . . 35 

DLCETHER Device Manager Functions  . . . . . . . . . . . . . . . . . . . . . . . . 35 

DLCETHER Protocol Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

DLCETHER Name-Discovery Services  . . . . . . . . . . . . . . . . . . . . . . . . 37 

DLCETHER Direct Network Services  . . . . . . . . . . . . . . . . . . . . . . . . . 40 

DLCETHER Connection Contention . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

DLCETHER Link Session Initiation  . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

DLCETHER Link Session Termination  . . . . . . . . . . . . . . . . . . . . . . . . . 41 

DLCETHER Programming Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . 41 

Synchronous Data Link Control Overview  . . . . . . . . . . . . . . . . . . . . . . . 44 

DLCSDLC Device Manager Functions  . . . . . . . . . . . . . . . . . . . . . . . . . 45 

DLCSDLC Protocol Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

DLCSDLC Programming Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

DLCSDLC Asynchronous Function Subroutine Calls . . . . . . . . . . . . . . . . . . . . 51 

Qualified Logical Link Control (DLCQLLC) Overview  . . . . . . . . . . . . . . . . . . . 51 

Data Link Control FDDI (DLC FDDI) Overview . . . . . . . . . . . . . . . . . . . . . . 57 

DLC FDDI Device Manager Nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

DLC FDDI Device Manager Functions  . . . . . . . . . . . . . . . . . . . . . . . . . 58 

DLC FDDI Protocol Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

DLC FDDI Name-Discovery Services  . . . . . . . . . . . . . . . . . . . . . . . . . 60 

 

© Copyright IBM Corp. 1994, 2007 iii



DLC FDDI Direct Network Services  . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

DLC FDDI Connection Contention  . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

DLC FDDI Link Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

DLC FDDI Programming Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

Chapter  2.  Data  Link  Provider  Interface  Implementation   . . . . . . . . . . . . . . . . . 69 

Primitive Implementation Specifics  . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

Packet Format Registration Specifics  . . . . . . . . . . . . . . . . . . . . . . . . . 69 

Address Resolution Routine Registration Specifics  . . . . . . . . . . . . . . . . . . . . 70 

ioctl Specifics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

Dynamic Route Discovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

DRD Configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

Connectionless Mode Only DLPI Driver versus Connectionless/Connection-Oriented DLPI Driver  . . . 73 

DLPI Primitives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

Obtaining Copies of the DLPI Specifications  . . . . . . . . . . . . . . . . . . . . . . 76 

Chapter  3.  New  Database  Manager   . . . . . . . . . . . . . . . . . . . . . . . . . 77 

Using NDBM Subroutines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

Diagnosing NDBM Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

List of NDBM and DBM Programming References  . . . . . . . . . . . . . . . . . . . . 77 

Chapter  4.  eXternal  Data  Representation   . . . . . . . . . . . . . . . . . . . . . . . 79 

eXternal Data Representation Overview for Programming . . . . . . . . . . . . . . . . . . 79 

XDR Subroutine Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

XDR Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

XDR Language Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

XDR Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

List of XDR Programming References  . . . . . . . . . . . . . . . . . . . . . . . . . 94 

XDR Library Filter Primitives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

XDR Non-Filter Primitives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

Passing Linked Lists Using XDR Example  . . . . . . . . . . . . . . . . . . . . . . . 100 

Using an XDR Data Description Example  . . . . . . . . . . . . . . . . . . . . . . . 102 

Showing the Justification for Using XDR Example  . . . . . . . . . . . . . . . . . . . . 103 

Using XDR Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 

Using XDR Array Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 

Using an XDR Discriminated Union Example  . . . . . . . . . . . . . . . . . . . . . . 107 

Showing the Use of Pointers in XDR Example  . . . . . . . . . . . . . . . . . . . . . 108 

Chapter  5.  Network  Computing  System   . . . . . . . . . . . . . . . . . . . . . . . 109 

Remote Procedure Call Runtime Library  . . . . . . . . . . . . . . . . . . . . . . . 109 

The Location Broker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 

Chapter  6.  Network  Information  Services  (NIS  and  NIS+)   . . . . . . . . . . . . . . . . 115 

List of NIS and NIS+ Programming References  . . . . . . . . . . . . . . . . . . . . . 115 

Chapter  7.  Network  Management   . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Simple Network Management Protocol  . . . . . . . . . . . . . . . . . . . . . . . . 119 

Management Information Base  . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

Terminology Related to Management Information Base Variables  . . . . . . . . . . . . . . 122 

Working with Management Information Base Variables  . . . . . . . . . . . . . . . . . . 123 

Management Information Base Database  . . . . . . . . . . . . . . . . . . . . . . . 123 

How a Manager Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

How an Agent Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 

List of SNMP Agent Programming References  . . . . . . . . . . . . . . . . . . . . . 127 

SMUX Error Logging Subroutines Examples  . . . . . . . . . . . . . . . . . . . . . . 128 

 

iv Communications Programming Concepts



Chapter  8.  Remote  Procedure  Call   . . . . . . . . . . . . . . . . . . . . . . . . . 131 

RPC Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

RPC Message Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 

RPC Authentication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 

RPC Port Mapper Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

Programming in RPC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 

RPC Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 

RPC Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 

rpcgen Protocol Compiler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 

List of RPC Programming References  . . . . . . . . . . . . . . . . . . . . . . . . 162 

Using UNIX Authentication Example  . . . . . . . . . . . . . . . . . . . . . . . . . 166 

DES Authentication Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 

Using the Highest Layer of RPC Example  . . . . . . . . . . . . . . . . . . . . . . . 170 

Using the Intermediate Layer of RPC Example  . . . . . . . . . . . . . . . . . . . . . 170 

Using the Lowest Layer of RPC Example  . . . . . . . . . . . . . . . . . . . . . . . 171 

Showing How RPC Passes Arbitrary Data Types Example  . . . . . . . . . . . . . . . . . 175 

Using Multiple Program Versions Example . . . . . . . . . . . . . . . . . . . . . . . 176 

Broadcasting a Remote Procedure Call Example  . . . . . . . . . . . . . . . . . . . . 177 

Using the select Subroutine Example . . . . . . . . . . . . . . . . . . . . . . . . . 178 

rcp Process on TCP Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 

RPC Callback Procedures Example  . . . . . . . . . . . . . . . . . . . . . . . . . 180 

RPC Language ping Program Example  . . . . . . . . . . . . . . . . . . . . . . . . 183 

Converting Local Procedures into Remote Procedures Example  . . . . . . . . . . . . . . . 184 

Generating XDR Routines Example  . . . . . . . . . . . . . . . . . . . . . . . . . 187 

Chapter  9.  Sockets   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 

Sockets Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 

Sockets Interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 

Socket Subroutines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 

Socket Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 

Socket Communication Domains  . . . . . . . . . . . . . . . . . . . . . . . . . . 196 

Socket Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 

Socket Types and Protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 

Socket Creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 

Binding Names to Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 

Socket Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 

Socket Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 

Socket Data Transfer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 

Socket Shutdown  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 

IP Multicasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 

Network Address Translation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 

Domain Name Resolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 

Socket Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 

Socketpair Communication Example  . . . . . . . . . . . . . . . . . . . . . . . . . 219 

Reading Internet Datagrams Example Program  . . . . . . . . . . . . . . . . . . . . . 220 

Sending Internet Datagrams Example Program  . . . . . . . . . . . . . . . . . . . . . 221 

Reading UNIX Datagrams Example Program . . . . . . . . . . . . . . . . . . . . . . 222 

Sending UNIX Datagrams Example Program  . . . . . . . . . . . . . . . . . . . . . . 222 

Initiating Internet Stream Connections Example Program  . . . . . . . . . . . . . . . . . 223 

Accepting Internet Stream Connections Example Program  . . . . . . . . . . . . . . . . . 224 

Checking for Pending Connections Example Program  . . . . . . . . . . . . . . . . . . 225 

Initiating UNIX Stream Connections Example Program  . . . . . . . . . . . . . . . . . . 226 

Accepting UNIX Stream Connections Example Program . . . . . . . . . . . . . . . . . . 227 

Sending Data on an ATM Socket PVC Client Example Program  . . . . . . . . . . . . . . . 228 

Receiving Data on an ATM Socket PVC Server Example Program  . . . . . . . . . . . . . . 229 

Sending Data on an ATM Socket Rate-Enforced SVC Client Example Program  . . . . . . . . . 230 

 

Contents v



Receiving Data on an ATM Socket Rate-Enforced SVC Server Example Program  . . . . . . . . 234 

Sending Data on an ATM Socket SVC Client Example Program  . . . . . . . . . . . . . . . 236 

Receiving Data on an ATM Socket SVC Server Example Program  . . . . . . . . . . . . . . 239 

Receiving Packets Over Ethernet Example Program  . . . . . . . . . . . . . . . . . . . 242 

Sending Packets Over Ethernet Example Program . . . . . . . . . . . . . . . . . . . . 244 

Analyzing Packets Over the Network Example Program  . . . . . . . . . . . . . . . . . . 246 

List of Socket Programming References . . . . . . . . . . . . . . . . . . . . . . . . 247 

Chapter  10.  STREAMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 

STREAMS Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 

Benefits and Features of STREAMS  . . . . . . . . . . . . . . . . . . . . . . . . . 254 

STREAMS Flow Control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 

STREAMS Synchronization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 

Using STREAMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 

STREAMS Tunable Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 

streamio (STREAMS ioctl) Operations  . . . . . . . . . . . . . . . . . . . . . . . . 267 

Building STREAMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 

STREAMS Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 

Put and Service Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 

STREAMS Drivers and Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . 274 

log Device Driver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 

Configuring Drivers and Modules in the Portable Streams Environment  . . . . . . . . . . . . 279 

An Asynchronous Protocol STREAMS Example  . . . . . . . . . . . . . . . . . . . . . 282 

Differences Between Portable Streams Environment and V.4 STREAMS . . . . . . . . . . . . 287 

List of Streams Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 

List of STREAMS Programming References  . . . . . . . . . . . . . . . . . . . . . . 289 

Transport Service Library Interface Overview  . . . . . . . . . . . . . . . . . . . . . . 291 

Chapter  11. Transmission  Control  Protocol/Internet  Protocol   . . . . . . . . . . . . . . 295 

DHCP Server API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 

Dynamic Load API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 

Service Location Protocol (SLP) APIs  . . . . . . . . . . . . . . . . . . . . . . . . 305 

Lists of Programming References  . . . . . . . . . . . . . . . . . . . . . . . . . . 309 

Chapter  12.  Packet  Capture  Library   . . . . . . . . . . . . . . . . . . . . . . . . 313 

Packet Capture Library Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . 313 

Packet Capture Library Subroutines  . . . . . . . . . . . . . . . . . . . . . . . . . 314 

Packet Capture Library Header Files  . . . . . . . . . . . . . . . . . . . . . . . . . 314 

Packet Capture Library Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 314 

Packet Capture Library Filter Expressions  . . . . . . . . . . . . . . . . . . . . . . . 315 

Sample 1: Capturing Packet Data and Printing It in Binary Form to the Screen  . . . . . . . . . 317 

Sample 2: Capturing Packet Data and Saving It to a File for Processing Later  . . . . . . . . . 320 

Sample 3: Reading Previously Captured Packet Data from a Savefile and Processing It  . . . . . . 324 

Appendix.  Notices   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 

Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 

Index   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

 

vi Communications Programming Concepts



About  This  Book  

This book provides programmers with complete information about creating and implementing 

communications programs for the AIX® operating system. Users of this book need to be familiar with the C 

programming language. Programmers can use this book to gain knowledge of DLCs (Data Link Controls), 

DLPI (Data Link Provider Interface), NDBM (new Database Manager), XDR (eXternal Data 

Representation), NCS (Network Computing System), NIS (Network Information Services), SNMP (Simple 

Network Management Protocol), RPC (Remote Procedure Call), Sockets, STREAMS, and TCP/IP 

(Transmission Control Protocol/Internet Protocol). 

Highlighting 

The following highlighting conventions are used in this book: 

 Bold  Identifies commands, subroutines, keywords, files, 

structures, directories, and other items whose names are 

predefined by the system. Also identifies graphical objects 

such as buttons, labels, and icons that the user selects. 

Italics  Identifies parameters whose actual names or values are to 

be supplied by the user. 

Monospace  Identifies examples of specific data values, examples of 

text similar to what you might see displayed, examples of 

portions of program code similar to what you might write 

as a programmer, messages from the system, or 

information you should actually type.
  

Case-Sensitivity in AIX 

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between 

uppercase and lowercase letters. For example, you can use the ls  command to list files. If you type LS, the 

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea  are three distinct file 

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed, 

always ensure that you use the correct case. 

ISO 9000 

ISO 9000 registered quality systems were used in the development and manufacturing of this product. 

Related Publications 

The following books contain information about or related to communications: 

v   Networks  and  communication  management  

v   AIX  5L  Version  5.3  Technical  Reference:  Communications  Volume  1 

v   AIX  5L  Version  5.3  Technical  Reference:  Communications  Volume  2 

v   AIX  5L  Version  5.3  General  Programming  Concepts:  Writing  and  Debugging  Programs  

v   AIX  5L  Version  5.3  Kernel  Extensions  and  Device  Support  Programming  Concepts  

v   AIX  5L  Version  5.3  Technical  Reference:  Base  Operating  System  and  Extensions  Volume  1 

v   AIX  5L  Version  5.3  Technical  Reference:  Base  Operating  System  and  Extensions  Volume  2

 

© Copyright IBM Corp. 1994, 2007 vii



viii Communications Programming Concepts



Chapter  1.  Data  Link  Control  

Generic data link control (GDLC) defines a generic interface with a common set of commands that allows 

application and kernel users to control DLC device managers within the operating system. 

This chapter discusses the following topics: 

v   “Generic Data Link Control Environment Overview” on page 2 

v   “Implementing GDLC Interface” on page 4 

v   “GDLC Interface ioctl Entry Point Operations” on page 5 

v   “GDLC Special Kernel Services” on page 7 

v   “GDLC Problem Determination” on page 8 

v   “Data Link Control Programming and Reference Information” on page 11 

v   “Token-Ring Data Link Control Overview” on page 12 

v   “DLCTOKEN Device Manager Nodes” on page 13 

v   “DLCTOKEN Device Manager Functions” on page 14 

v   “DLCTOKEN Protocol Support” on page 15 

v   “DLCTOKEN Name-Discovery Service” on page 16 

v   “DLCTOKEN Direct Network Services” on page 19 

v   “DLCTOKEN Connection Contention” on page 19 

v   “Initiating DLCTOKEN Link Sessions” on page 19 

v   “Stopping DLCTOKEN Link Sessions” on page 20 

v   “DLCTOKEN Programming Interfaces” on page 20 

v   “IEEE 802.3 Ethernet Data Link Control Overview” on page 24 

v   “DLC8023 Device Manager Nodes” on page 25 

v   “DLC8023 Device Manager Functions” on page 25 

v   “DLC8023 Protocol Support” on page 26 

v   “DLC8023 Name-Discovery Services” on page 27 

v   “DLC8023 Direct Network Services” on page 30 

v   “DLC8023 Connection Contention” on page 30 

v   “DLC8023 Link Sessions” on page 30 

v   “DLC8023 Programming Interfaces” on page 31 

v   “Standard Ethernet Data Link Control Overview” on page 34 

v   “DLCETHER Device Manager Nodes” on page 35 

v   “DLCETHER Device Manager Functions” on page 35 

v   “DLCETHER Protocol Support” on page 36 

v   “DLCETHER Name-Discovery Services” on page 37 

v   “DLCETHER Direct Network Services” on page 40 

v   “DLCETHER Connection Contention” on page 40 

v   “DLCETHER Link Session Initiation” on page 40 

v   “DLCETHER Link Session Termination” on page 41 

v   “DLCETHER Programming Interfaces” on page 41 

v   “Synchronous Data Link Control Overview” on page 44 

v   “DLCSDLC Device Manager Functions” on page 45 

v   “DLCSDLC Protocol Support” on page 45 

v   “DLCSDLC Programming Interfaces” on page 48 

 

© Copyright IBM Corp. 1994, 2007 1



v   “DLCSDLC Asynchronous Function Subroutine Calls” on page 51 

v   “Qualified Logical Link Control (DLCQLLC) Overview” on page 51 

v   “Data Link Control FDDI (DLC FDDI) Overview” on page 57 

v   “DLC FDDI Device Manager Nodes” on page 58 

v   “DLC FDDI Device Manager Functions” on page 58 

v   “DLC FDDI Protocol Support” on page 59 

v   “DLC FDDI Name-Discovery Services” on page 60 

v   “DLC FDDI Direct Network Services” on page 63 

v   “DLC FDDI Connection Contention” on page 63 

v   “DLC FDDI Link Sessions” on page 63 

v   “DLC FDDI Programming Interfaces” on page 64

Generic Data Link Control Environment Overview 

Generic data link control (GDLC) defines a generic interface with a common set of commands that allows 

application and kernel users to control DLC device managers within the operating system. 

The GDLC interface specifies requirements for entry point definitions, functions provided, and data 

structures for all DLC device managers. DLCs that conform to the GDLC interface include: 

v   “Token-Ring Data Link Control Overview” on page 12 

v   “IEEE 802.3 Ethernet Data Link Control Overview” on page 24 

v   “Standard Ethernet Data Link Control Overview” on page 34 

v   “Synchronous Data Link Control Overview” on page 44 

v   “Qualified Logical Link Control (DLCQLLC) Overview” on page 51 

v   “Data Link Control FDDI (DLC FDDI) Overview” on page 57 

DLC device managers perform higher layer protocols and functions beyond the scope of a kernel device 

driver. However, the managers reside within the kernel for maximum performance and use a kernel device 

driver for their I/O requests to the adapter. A DLC user is located above or within the kernel. 

SDLC and IEEE 802.2 data link control are examples of DLC device managers. Each DLC device 

manager operates with a specific device driver or set of device drivers. SDLC, for example, operates with 

the Multiprotocol device driver for the system’s product and its associated adapter. 

For more information about the GDLC environment, see: 

v   “Implementing GDLC Interface” on page 4 

v   “GDLC Interface ioctl Entry Point Operations” on page 5 

v   “GDLC Special Kernel Services” on page 7 

v   “GDLC Problem Determination” on page 8 

v   “Data Link Control Programming and Reference Information” on page 11 

The DLC Device Manager Environment figure (Figure 1 on page 3) illustrates the basic structure of a DLC 

environment. Users within the kernel have access to the Communications memory buffers (mbufs) and call 

the dd  entry points by way of the fp  kernel services. Users above the kernel access the standard 

interface-to-kernel device drivers, and the file system calls the dd  entry points. Data transfers require data 

movements between user and kernel space. 

 

 

2 Communications Programming Concepts



The components of the DLC device manager environment are as follows: 

 application  user  Resides above the kernel as an application or access method. 

kernel  user  Resides within the kernel as a kernel process or device manager. 

file  I/O  subsystem  Converts the file-descriptor and file-pointer subroutines to file-pointer 

accesses of the switch table. 

buffer  pool  Provides data-buffer services for the communications subsystem. 

comm  I/O device  driver  Controls hardware adapter input/output (I/O) and direct memory access 

(DMA) registers, and routes receive packets to multiple DLCs. 

adapter  Attaches to the communications media.
  

A device manager written in accordance with GDLC specifications runs on all the operating system 

hardware configurations containing a communications device driver and its target adapter. Each device 

manager supports multiple users above and below the kernel. In general, users operate concurrently over 

a single adapter, or each user operates over multiple adapters. DLC device managers vary based on their 

protocol constraints. 

The Multiple User and Multiple Adapter Configuration figure (Figure 2 on page 4) illustrates a multiple user 

configuration. 

 

Application User

Kernel User

File I/O Subsystem

DLC Device  Manager

Comm I/O Device Driver

Adapter

Buffer
Pool

Hardware

DLC Device Manager Environment

Kernel

  

Figure  1. DLC  Device  Manager  Environment.  This  diagram  shows  the  application  user  accessing  the file  I/O  

subsystem.  The  kernel  user  accesses  both  the  file  I/O  subsystem  and  the  buffer  pool.  The  file  I/O  subsystem  

accesses  the  DLC  device  manager  which  accesses  the  buffer  pool  and  the  comm  I/O  device  manager.  The  comm  I/O  

device  driver  accesses  the  buffer  pool  and  the  adapter  which  is below  the kernel  in the hardware.

 

Chapter 1. Data Link Control 3



Meeting the GDLC Criteria 

A GDLC interface must meet the following criteria: 

v   Be flexible and accessible to both application and kernel users. 

v   Have multiple user and multiple adapter capability, allowing protocols to take advantage of multiple 

sessions and ports. 

v   Support connection-oriented and connectionless DLC device managers. 

v   For special requirements beyond the scope of the DLC device manager in use, must allow transparent 

data transfer.

Implementing GDLC Interface 

Each data link control (DLC) device manager operates in the kernel as a standard /dev  entry of a 

multiplexed device manager for a specified protocol. For an adapter not in use by DLC, each open  

subroutine to a DLC device manager creates a kernel process. An open  subroutine is also issued to the 

target adapter’s device handler. If needed, issue additional open  subroutines for multiple DLC adapter 

ports of the same protocol. Any open  subroutine targeting the same port does not create additional kernel 

processes, but links the open  subroutine with the existing process. Each active port always uses one 

kernel process. 

The internal structure of a DLC device manager has the same basic structure as a kernel device handler, 

except that a kernel process replaces the interrupt handler in asynchronous events. The Read, Write, I/O 

Application User

Kernel User

Adapter

Kernel

Application DLC

Other DLCDLC Device Manager

Communication I/O Device Drivers

Hardware

Multiple User and Multiple Adapter Configuration

  

Figure  2. Multiple  User  and  Multiple  Adapter  Configuration.  This  diagram  shows  multiple  application  users  and  an 

application  DLC  above  the  kernel.  The  application  users  access  the  DLC  device  manager  while  the  application  DLC  

accesses  multiple  communication  I/O  device  drivers.  Multiple  kernel  users  also  access  the  DLC  device  manager.  The  

other  DLC  also  accesses  multiple  communication  I/O  device  drivers.  Multiple  adapters,  below  the  kernel  in hardware,  

access  the  communication  I/O device  drivers.

 

4 Communications Programming Concepts



Control, and Select blocks function as set forth in the Standard Kernel Device Manager (Figure 3) figure. 

 

 Use the information in the following table to add an installed DLC. 

Note:   A data link control (DLC) must be installed before adding it to the system.

 Adding  an Installed  DLC  Task 

Web-based System 

Manager 

wsm, then select network  

-OR- 

Task SMIT  Fast  Path  Command  or File  

Adding an Installed DLC Choose one (depending on type): 

   smit  cmddlc_sdlc  

   smit  cmddlc_token  

   smit  cmddlc_qllc  

   smit  cmddlc_ether(see note) 

   smit  cmddlc_fddi  

mkdev

  

Note:   The SMIT fast path to add an Ethernet device manager includes both Standard Ethernet and IEEE 

802.3 Ethernet device managers. 

GDLC Interface ioctl Entry Point Operations 

The generic data link control (GDLC) interface supports the following ioctl subroutine operations: 

 DLC_ENABLE_SAP  Enables a service access point (SAP). See “Service Access Points” on page 6. 

DLC_DISABLE_SAP  Disables a SAP. See “Service Access Points” on page 6. 

DLC_START_LS  Starts a link station (LS) on a particular SAP as a caller or listener. See “Link 

Stations” on page 6. 

DLC_HALT_LS  Halts an LS. See “Link Stations” on page 6. 

DLC_TRACE  Traces a link station’s activity for short or long activities. See “Testing and 

Tracing Links” on page 7. 

DLC_CONTACT  Contacts a remote station for a particular local link station. 

DLC_TEST  Tests the link to a remote for a particular local link station. “Testing and Tracing 

Links” on page 7. 

dlcwrite        dlcioctl         dlcread       dlcselect

Write I/O
Control

To the Device Handler From the Device Handler

From the User

Read Interrupt
Handler

Select

Standard Kernel Device Manager

  

Figure  3. Standard  Kernel  Device  Manager.  This  diagram  shows  the  dlcwrite,  dlcioctl,  dlcread,  and  dlcselect  (from  the  

user)  traveling  to write,  I/O control,  read  and  select,  respectively  (in  the  standard  kernel  device  manager).  The  interrupt  

handler  gets  input  from  the device  handler  and  its output  is directed  to select,  read,  and  I/O  control.  The  output  of I/O 

control  and  write  goes  to the device  handler.

 

Chapter 1. Data Link Control 5



DLC_ALTER  Alters a link station’s configuration parameters. 

DLC_QUERY_SAP  Queries statistics of a particular SAP. 

DLC_QUERY_LS  Queries statistics of a particular link station. 

DLC_ENTER_LBUSY  Enters local-busy mode on a particular link station. See “Local-Busy Mode” on 

page 7. 

DLC_EXIT_LBUSY  Exits local-busy mode on a particular link station. See “Local-Busy Mode” on 

page 7. 

DLC_ENTER_SHOLD  Enters short-hold mode on a particular link station. See “Short-Hold Mode” on 

page 7. 

DLC_EXIT_SHOLD  Exits short-hold mode on a particular link station. See “Short-Hold Mode” on 

page 7. 

DLC_GET_EXCEP  Returns asynchronous exception notifications to the application user. 

Note:  This ioctl subroutine operation is not used by the kernel user since all 

exception conditions are passed to the kernel user by way of their exception 

handler. 

DLC_ADD_GRP  Adds a group or multicast receive address to a port. 

DLC_ADD_FUNC_ADDR  Adds a group or multicast receive functional address to a port. 

DLC_DEL_FUNC_ADDR  Removes a group or multicast receive functional address from a port. 

DLC_DEL_GRP  Removes a group or multicast address from a port. 

IOCINFO  Returns a structure that describes the GDLC device manager. See the 

/usr/include/sys/devinfo.h  file format for more information.
  

Service Access Points 

A service  access  point  (SAP) identifies a particular user service that sends and receives a specific class of 

data. This user service allows different classes of data to be routed separately to their corresponding 

service handlers. Those DLCs that support multiple concurrent SAPs have addresses known as 

destination  SAP and source  SAP embedded in their packet headers. DLCs that can only support a single 

SAP do not need or use SAP addressing, but still have the concept of enabling the one SAP. In general, 

SAP is enabled for each DLC user on each port. 

Most SAP address values are defined by IEEE standardized network-management entities or user-defined 

values as specified in the Token-Ring  Network  Architecture  Reference. Some of the common SAP 

addresses are: 

 null  SAP  (0x00)  Provides some ability to respond to remote nodes even when no SAP has 

been enabled. This SAP supports only connectionless service and responds 

only to exchange identification (XID) and TEST Link Protocol Data Units 

(LPDU). 

SNA  path  control  (0x04)  Denotes the default individual SAP address used by Systems Network 

Architecture (SNA) nodes. 

PC  network  NETBIOS  (0xF0)  Used for all DLC communication that is driven by Network Basic I/O System 

(NetBIOS) emulation. 

discovery  SAP  (0xFC)  Used by the local area network (LAN) name-discovery services. 

global  SAP  (0xFF)  Identifies all active SAPs.
  

Note:   See Request for Comment (RFC) 1060 for examples of IEEE 802 Local SAP values. RFCs are 

available from the Network Information Center at SRI International, Menlo Park, California. 

Link Stations 

A link  station  (LS) identifies an attachment between two nodes for a particular SAP pair. This attachment 

can operate as a connectionless service (datagram) or connection-oriented service (fully sequenced data 

transfer with error recovery). In general, one LS is started for each remote attachment. 

 

6 Communications Programming Concepts



Local-Busy Mode 

When an LS operates in a connection-oriented mode, it needs to stop the remote station’s sending of 

information packets for reasons such as resource outage. Notification can then be sent to the remote 

station to cause the local station to enter local-busy mode. Once resources are available, the local station 

notifies the remote that it is no longer busy and that information packets can flow again. Only sequenced 

information packets are halted with local-busy mode. All other types of data are unaffected. 

Short-Hold Mode 

Use the short-hold mode of operation when operating over data networks with the following characteristics: 

v   Short call-setup time 

v   Tariff structure that specifies a relatively small fee for the call setup compared to the charge for connect 

time 

During short-hold mode, an attachment between two stations is maintained only to transfer data available 

between the two stations. When no data is sent, the attachment is cleared after a specified time-out period 

and is only reestablished to transfer new data. 

Testing  and Tracing Links 

To test an attachment between two stations, instruct an LS to send a test packet from the local station. 

This packet is echoed back from the remote station if the attachment is operating correctly. 

Some data links are limited in their support of this function due to protocol constraints. Synchronous data 

link control (SDLC), for example, only generates the test packet from the host or primary station. Most 

other protocols, however, allow test packets to be initiated from either station. 

To trace a link, line data and special events (such as station activation, termination, and time outs) can be 

logged in the generic trace facility for each LS. This function helps determine the cause of certain 

communications attachment problems. The GDLC user can select either short or long entries to be traced. 

Short entries consist of up to 80 bytes of line data, while long entries allow full packets of data to be 

traced. 

Tracing can be activated when an LS is started, or it can be dynamically activated or terminated at any 

time afterward. 

Statistics 

Both SAP and LS statistics can be queried by a GDLC user. The statistics for a SAP consist of the current 

SAP state and information about the device handler. LS statistics consist of the current station states and 

various reliability, availability, and serviceability counters that monitor the activity of the station from the 

time it is started. 

GDLC Special Kernel Services 

Generic data link control (GDLC) provides special services for a kernel user. However, a trusted 

environment must exist within the kernel. Instead of the DLC device manager copying asynchronous event 

data into user space, the kernel user must specify function pointers to special routines called function  

handlers. Function handlers are called by DLC at the time of execution. This process allows maximum 

performance between the kernel user and the DLC layers. Each kernel user is required to restrict the 

number of function handlers to a minimum path length and use the communications memory buffer (mbuf) 

scheme. 

Note:   A function handler must never call another DLC entry directly. Direct calls made under lock cause a 

fatal sleep. The only exception to this rule is when a kernel user may call the dlcwritex entry point 

 

Chapter 1. Data Link Control 7



during its service of any of the four receive data functions. Calling the dlcwritex entry point allows 

immediate responses to be generated without an intermediate task switch. Special logic is required 

within the DLC device manager to check the process identification of the user calling a write 

operation. If it is a DLC process and the internal queuing capability of the DLC has been exceeded, 

the write is sent back with an error code (EAGAIN  value) instead of putting the calling process 

(DLC) to sleep. It is then up to the calling user subroutine to return a special notification to the DLC 

from its receive-data function to ensure a retry of the receive buffer at a later time. 

The user-provided function handlers are: 

 datagram  data  received  Called any time a datagram packet is received for the kernel user. 

exception  condition  Called any time an asynchronous event occurs that must notify the kernel 

user, such as SAP  Closed  or Station  Contacted. 

I-frame  data  received  Called each time a normal sequenced data packet is received for the kernel 

user. 

network  data  received  Called any time network-specific data is received for the kernel user. 

XID  data  received  Called any time an exchange identification (XID) packet is received for the 

kernel user.
  

The dlcread and dlcselect entry points for DLC are not called by the kernel user because the 

asynchronous functional entries are called directly by the DLC device manager. Generally, any queuing of 

these events must occur in the user’s function handler. If, however, the kernel user cannot handle a 

particular receive packet, the DLC device manager may hold the last receive buffer and enter one of two 

special user-busy modes: 

 user-terminated  busy  mode (I-frame 

only) 

If the kernel user cannot handle a received I-frame (due to problems such as 

queue blockage), a DLC_FUNC_BUSY  return code is given back, and DLC 

holds the buffer pointer and enters local-busy mode to stop the remote 

station’s I-frame transmissions. The kernel user must call the exit local-busy 

function to reset local-busy mode and start the reception of I-frames again. 

Only normal sequenced I-frames can be stopped. XID, datagram, and 

network data are not affected by local-busy mode. 

timer-terminated  busy  mode (all 

frame types) 

If the kernel user cannot handle a particular receive packet and wants DLC to 

hold the receive buffer for a short period and then recall the user’s receive 

function, a DLC_FUNC_RETRY  return code is sent back to DLC. If the 

receive packet is a sequenced I-frame, the station enters local-busy mode for 

that period. In all cases, a timer is started; when the timer expires, the 

receive-data functional entry is called again.
  

GDLC Problem Determination 

Each generic data link control (GDLC) provides problem determination data that can be used to isolate 

network problems. Four types of diagnostic information are provided: 

v   “DLC Status Information” 

v   “DLC Error Log” on page 9 

v   “DLC Link Station Trace Facility” on page 10 

v   “LAN Monitor Trace” on page 10

DLC Status Information 

Status information can be obtained for a service access point (SAP) or a link station (LS) using the 

DLC_QUERY_SAP  and DLC_QUERY_LS  ioctl subroutines to call the specific DLC kernel device manager 

in use. 

The DLC_QUERY_SAP  ioctl subroutine obtains individual device driver statistics from various devices: 

 

8 Communications Programming Concepts



v   Token ring (See “Token-Ring Data Link Control Overview” on page 12) 

v   Ethernet (See “IEEE 802.3 Ethernet Data Link Control Overview” on page 24) 

v   Multiprotocol (See Multiprotocol in AIX  5L  Version  5.3  Kernel  Extensions  and  Device  Support  

Programming  Concepts) 

The DLC_QUERY_LS  ioctl subroutine obtains LS statistics from various DLCs. These statistics include 

data link protocol counters. Each counter is reset by the DLC during the DLC_START_LS  ioctl subroutine 

and generally runs continuously until the LS is terminated and its storage is freed. If a counter reaches the 

maximum count, the count is frozen and no wraparound occurs. 

The suggested counters provided by a DLC device manager are listed as follows. Some DLCs can modify 

this set of counters based on the specific protocols supported. For example, the number of rejects or 

receive-not-ready packets received might be meaningful. 

 test  commands  sent  Contains a binary count of the test  commands sent to the remote station by 

GDLC, in response to test  commands issued by the user. 

test  command  failures  Contains a binary count of the test  commands that did not complete properly 

due to problems such as: 

v   Incorrect response 

v   Bad data comparison 

v   Inactivity 

test  commands  received  Contains a binary count of valid test  commands received, regardless of 

whether the response is completed correctly. 

sequenced  data  packets  transmitted  Contains a binary count of the total number of normal sequenced data 

packets transmitted to the remote LS. 

sequenced  data  packets  

retransmitted  

Contains a binary count of the total number of normal sequenced data 

packets retransmitted to the remote LS. 

maximum  contiguous  

retransmissions  

Contains a binary count of the maximum number of times a single data 

packet has been retransmitted to the remote LS before acknowledgment. This 

counter is reset each time a valid acknowledgment is received. 

sequenced  data  packets  received  Contains a binary count of the total number of normal sequenced data 

packets correctly received. 

invalid  packets  received  Contains a binary count of the number of invalid commands or responses 

received, including invalid control bytes, incorrect I-fields, and overflowed 

I-fields. 

adapter-detected  receive  errors  Contains a binary count of the number of receive errors reported back from 

the device driver. 

adapter-detected  transmit  errors  Contains a binary count of the number of transmit errors reported back from 

the device driver. 

receive  inactivity  timeouts  Contains a binary count of the number of receive time outs that have 

occurred. 

command  polls  sent  Contains a binary count of the number of command packets sent that 

requested a response from the remote LS. 

command  repolls  sent  Contains a binary count of the total number of command packets 

retransmitted to the remote LS due to a lack of response. 

command  contiguous  repolls  Contains a binary count of the number of times a single command packet was 

retransmitted to the remote LS due to a lack of response. This counter is 

reset each time a valid response is received.
  

DLC Error Log 

Each DLC provides entries to the system error log whenever errors are encountered. To call the kernel 

error collector, use the errsave  kernel service. 

The error conditions are reported by the system-product error log using the error log daemon (errdemon). 

 

Chapter 1. Data Link Control 9



The user can obtain formatted error-log data by issuing the errpt  command. When used with the -N  

DLCName  flag, the errpt  command produces a summary report of all the error log entries for the resource 

name indicated by the DLCName  parameter. Valid values for the DLCName  parameter include: 

 SYSXDLCE  Indicates a Standard Ethernet datalink. 

SYSXDLCI  Indicates an IEEE 802.3 Ethernet datalink. 

SYSXDLCT  Indicates a token-ring datalink. 

SYSXDLCS  Indicates an synchronous data link control (SDLC) datalink.
  

For more information on the error log facility, refer to Error Logging Overview in AIX  5L  Version  5.3  

General  Programming  Concepts:  Writing  and  Debugging  Programs. 

DLC Link Station Trace Facility 

GDLC provides optional entries to a generic system trace channel as required by the system product 

Reliability/Availability/Serviceability (RAS). The default is trace-disabled, provides maximum performance, 

and reduces the number of system resources used. For information on additional trace facilities, see “LAN 

Monitor Trace.” 

Trace Channels 

The operating system supports up to seven generic trace channels in operation at the same time. Before 

starting an LS trace, a user must allocate a channel with the DLC_START_LS  ioctl operation or the 

DLC_TRACE  ioctl operation. Begin the trace sessions with the trcstart  and trcon  subroutines. 

Trace activity in the LS must be stopped either by halting the LS or by issuing an ioctl (DLC_TRACE, 

flags=0) operation to that station. When the LS stops tracing, the channel is disabled with the trcoff  

subroutine and returned to the system with the trcstop  subroutine. 

Trace Entry Size 

The GDLC user can select either short or long entries to be traced. 

Short entries consist of up to 80 bytes of line data, while long entries allow full packets of data to be 

traced. 

Tracing can be activated when an LS is started via configuration, or it can be dynamically activated or 

terminated via ioctl at any time afterward. 

Trace Reports 

The user can obtain formatted trace log data by issuing the trcrpt  command with the appropriate file 

name, such as: 

trcrpt  /tmp/link1.log  

This example produces a detailed report of all link trace entries in the /tmp/link1.log  file, provided a prior 

trcstart  subroutine specified the /tmp/link1.log  file as the -o  name for the trace log. 

Trace Entries 

For each trace entry, GDLC generates the trcgenkt  kernel service to the kernel generic trace. 

LAN Monitor Trace 

Each of the local area network data link controls (DLCETHER, DLC8023, DLCFDDI, and DLCTOKEN) 

provides an internal monitor trace capability that can be used to identify the execution sequence of 

pertinent entry points within the code. This is useful if the network is having problems that indicate the 

data link is not operating properly, and the sequence of events may indicate the cause of the problems. 

This trace is shared among the LAN data link controls, and inactive is the default. 

The LAN monitor trace can be enabled by issuing the following command: 

 

10 Communications Programming Concepts



trace  -j 246  

where 246  is the hook ID to be traced. 

Tracing can be stopped with the trcstop  command and a report can be obtained with the following 

command: 

trcrpt  -d 246  

where 246  is the hook ID of the trace for which you want a report. 

Note:  Exercise caution when enabling the monitor trace, since it directly affects the performance of 

the DLCs and their associates.

For information on additional ways to use trace facilities, see DLC device driver management in Networks  

and  communication  management. 

Data Link Control Programming and Reference Information 

You can use several procedures, as well as the data link control (DLC) reference information, to manage 

DLC. 

DLC Reference Information 

The following sections list available DLC reference information: 

v   “DLC Entry Points” 

v   “Kernel Services for DLC” 

v   “Kernel Routines for DLC” on page 12 

v   “DLC Extended Parameters for Subroutines and Kernel Services” on page 12 

v   “Application Subroutines” on page 12 

v   “DLC Operations” on page 12 

For more information on DLC reference items, see AIX  5L  Version  5.3  Technical  Reference. 

DLC Entry Points 

 dlcclose  Closes a generic data link control (GDLC) channel. 

dlcconfig  Issues specific commands to GDLC. 

dlcioctl  Issues specific commands to GDLC. 

dlcmpx  Decodes the device handler’s special file name appended to the opened call. 

dlcopen  Opens a GDLC channel. 

dlcread  Reads receive data from GDLC. 

dlcselect  Selects for asynchronous criteria from GDLC, such as receive data completion and exception 

conditions. 

dlcwrite  Writes transmit data to GDLC.
  

Kernel Services for DLC 

 fp_close  Allows kernel to close the GDLC device manager using a file pointer. 

fp_ioctl  Transfers special commands from the kernel to GDLC. 

fp_open  Allows kernel to open the GDLC device manager by its device name. 

fp_write  Allows kernel data to be sent using a file pointer.
 

 

Chapter 1. Data Link Control 11



Kernel Routines for DLC 

Following are kernel routines for DLC. Descriptions for each are in AIX  5L  Version  5.3  Technical  

Reference:  Communications  Volume  1. 

v   Datagram Data Received Routine for DLC 

v   Exception Condition Routine for DLC 

v   I-Frame Data Received Routine for DLC 

v   Network Data Received Routine for DLC 

v   XID Data Received Routine for DLC

DLC Extended Parameters for Subroutines and Kernel Services 

Following are DLC extended parameters for subroutines and kernel services. Descriptions for each are in 

AIX  5L  Version  5.3  Technical  Reference:  Communications  Volume  1 

open Subroutine Extended Parameters for DLC 

read Subroutine Extended Parameters for DLC 

write Subroutine Extended Parameters for DLC 

Application Subroutines 

 close  Subroutine Interface for Data Link Control Manager 

ioctl  Subroutine Interface for Data Link Control Manager 

open  Subroutine Interface for Data Link Control Manager 

readx  Subroutine Interface for Data Link Control Manager 

select  Subroutine Interface for Data Link Control Manager 

writex  Subroutine Interface for Data Link Control Manager
  

DLC Operations 

ioctl  Operations (op) for DLC 

Parameter Blocks by ioctl  Operation for DLC 

DLC Programming Procedures 

Adding an Installed DLC in Implementing GDLC Interface (See “Implementing GDLC Interface” on page 4). 

Listing, changing or removing DLC Attributes in DLC device driver management in Networks  and  

communication  management. 

Token-Ring  Data Link Control Overview 

The token-ring data link control (DLCTOKEN) is a device manager that follows the generic data link control 

(GDLC) interface definition. This DLC device manager provides an access procedure to transfer four types 

of data over a token ring: 

v   Datagrams 

v   Sequenced data 

v   Identification data 

v   Logical link controls 

This DLC device manager also provides a pass-through capability that allows transparent data flow. 

The token-ring device handler and the Token-Ring High Performance Network Adapter transfer the data, 

with address checking, token generation, or frame-check sequences. 

 

12 Communications Programming Concepts



For more information on DLCTOKEN, see: 

v   “DLCTOKEN Device Manager Nodes” 

v   “DLCTOKEN Device Manager Functions” on page 14 

v   “DLCTOKEN Protocol Support” on page 15 

v   “DLCTOKEN Name-Discovery Service” on page 16 

v   “DLCTOKEN Direct Network Services” on page 19 

v   “DLCTOKEN Connection Contention” on page 19 

v   “Initiating DLCTOKEN Link Sessions” on page 19 

v   “Stopping DLCTOKEN Link Sessions” on page 20 

v   “DLCTOKEN Programming Interfaces” on page 20

DLCTOKEN  Device Manager Nodes 

The token-ring data link control (DLCTOKEN) device manager operates between two or more nodes on 

the token-ring local area network (LAN) using IEEE 802.2 procedures and control information as defined in 

the Token-Ring  Network  Architecture  Reference. Protocol support includes: 

v   Asynchronous disconnected mode (ADM) and asynchronous balanced mode extended (ABME) 

v   Two-way simultaneous (full-duplex) data flow 

v   Multiple point-to-point logical attachments on the LAN using network and service access point 

addresses 

v   Peer-to-peer relationship with remote station 

v   Both name-discovery and address-resolve services 

v   Source-routing generation for up to eight bridge hops. 

DLCTOKEN provides full-duplex, peer-data transfer capabilities over a token-ring LAN. The token-ring LAN 

must use the token-ring IEEE 802.5 medium access control (MAC) procedure and a superset of the IEEE 

802.2 logical link control (LLC) protocol, as described in the Token-Ring  Network  Architecture  Reference. 

Multiple token-ring adapters are supported with a maximum of 254 service access point (SAP) users per 

adapter. A total of 255 link stations (LS) per adapter are supported and are distributed among active SAP 

users. Multiple ring segments can be accessed using token-ring network bridge facilities, with up to eight 

consecutive ring segments supported between any two nodes. 

LLC refers to the manager, access-channel, and LS subcomponents of a generic data link control (GDLC) 

component, such as DLCTOKEN device manager, as illustrated in the DLC[TOKEN, 8032, ETHER, or 

FDDI] Component Structure (Figure 4 on page 14) figure. 

 

 

Chapter 1. Data Link Control 13



Each LS controls the transfer of data on a single logical link. The access channel performs multiplexing 

and demultiplexing for message units flowing from each LS and manager to the MAC. The DLC manager 

performs the following actions: 

v   Establishes and stops connections 

v   Creates and deletes an LS 

v   Routes commands to the proper station

DLCTOKEN  Device Manager Functions 

The token-ring data link control (DLCTOKEN) device manager and transport medium-use two-functional 

layers, medium access control (MAC) and logical link control (LLC), to maintain reliable link-level 

connections, guarantee data integrity, and negotiate exchanges of identification. Both connectionless (Type 

1) and connection-oriented (Type 2) services are supported. 

The token-ring adapter and the DLCTOKEN device handler perform the following MAC functions: 

v   Handling ring-insertion protocol 

v   Handling token detection and creation 

v   Encoding and decoding the serial bit-stream data 

v   Checking received network, group, and functional addresses 

Link Station

Access Channel Control
DLC
Mgr

User
Physical
Unit
Services

LLC

MAC

1

1

Medium Access Control

2

2

n

1

2

k

DLC[TOKEN, 8032, ETHER, or FDDI] Component

User Data Services

DLC[TOKEN, 8032, ETHER, or FDDI] Component Structure

  

Figure  4. DLC[TOKEN,  8032,  ETHER,  or FDDI]  Component  Structure.  This  diagram  shows  the component  structure  of 

the following  four  DLC  device  managers:  DLCTOKEN,  DLC8032,  DLCETHER,  and  DLC  FDDI.  Each  device  manager  

has  the  same  component  structure  with  one  exception:  the  DLC  Component  is named  for the  device  manager  it 

illustrates.  The  diagram  has  two  parts:  the  components  outside  the  DCL[TOKEN,  8032,  ETHER,  or FDDI]  Component,  

and  the  components  inside  of it. Outside,  the  User  Physical  Unit  Services  connects  to the  DLC  Manager  on the  inside  

and  to the User  Data  Services  on  the outside.  The  diagram  shows  multiple  (numbered  from  one  to k) User  Data  

Services,  with  the  first  connecting  to the  last.  Each  User  Data  Service  connects  to a corresponding  Link  Station,  which  

connects  to the DLC  Manager.  The  diagram  shows  multiple  (numbered  from  one  to n) Link  Stations,  with  the  first  

connecting  to the  last.  Each  Link  Station  connects  to a single  Access  Channel  Control,  which  connects  to the  DLC  

Manager.  The  connection  for Access  Channel  Control  crosses  the  line  from  LLC  to MAC  to connect  with  two  Medium  

Access  Controls.  The  two  Medium  Access  Controls  connect  with  each  other,  then  with  the  DLC  Manager.

 

14 Communications Programming Concepts



v   Routing of received frames based on the LLC or MAC indicator and using the destination service 

access point (SAP) address if an LLC frame was received 

v   Generating cyclic redundancy checks (CRC) 

v   Handling frame delimiters, such as start or end delimiters and frame status fields. 

v   Handling fail-safe time outs. 

DLCTOKEN performs additional MAC functions, such as: 

v   Framing control fields on transmit frames 

v   Network-addressing on transmit frames 

v   Routing information on transmit frames. 

DLCTOKEN is also responsible for all LLC functions: 

v   Handling remote connection services and bridge routing, using the address-resolve and name-discovery 

procedures 

v   Sequencing of link stations on a given port 

v   Generating SAP addresses on transmit frames 

v   Generating IEEE 802.2 LLC commands and responses on transmit frames 

v   Recognizing and routing of received frames to the proper SAP 

v   Servicing IEEE 802.2 LLC commands and responses on receive frames 

v   Handling frame sequencing and retries 

v   Handling fail-safe and inactivity time outs 

v   Handling reliability/availability/serviceability (RAS) counters, error logs, and link traces.

DLCTOKEN  Protocol Support 

The token-ring data link control (DLCTOKEN) supports the logical link control (LLC) protocol and state 

tables described in the Token-Ring  Network  Architecture  Reference, which also contains the local area 

network (LAN) IEEE 802.2 LCC standard. Both address-resolve services and name-discovery services are 

supported for establishing remote connections. DLCTOKEN supports a direct network interface to allow a 

user to transmit and receive unnumbered information packets directly through DLCTOKEN without the 

data link layer performing any protocol handling. 

Station Types  

A combined station is supported for a balanced (peer-to-peer) configuration on a logical point-to-point 

connection. That allows either station to initiate asynchronously the transmission of commands at any 

response opportunity. The sender in each combined station controls the receiver in the other station. Data 

transmissions then flow as primary commands, and acknowledgments and status flow as secondary 

responses. 

Response Modes 

Both asynchronous disconnect mode (ADM) and asynchronous balanced mode extended (ABME) are 

supported. ADM is entered by default whenever a link session is initiated, and is switched to ABME only 

after the set asynchronous balanced mode extended (SABME) command sequence is complete. Once 

operating in ABME, information frames containing user data can be transferred. ABME then remains active 

until the LLC session terminates, which occurs because of a disconnect (DISC) command packet 

sequence or a major link error. 

Token-Ring  Data Packet 

All communication between a local and remote station is accomplished by the transmission of a packet 

that contains token-ring headers and trailers as well as an encapsulated LLC Link Protocol Data Unit 

(LPDU). The DLCTOKEN Frame Encapsulation figure (Figure 5 on page 16) illustrates the token-ring data 

 

Chapter 1. Data Link Control 15



packet. 

 

 The token-ring data packet consists of the following fields: 

 SD  Starting delimiter 

AC  Access control field 

FC  Frame control field 

LPDU  LLC Link Protocol Data Unit 

DSAP  Destination service access point (SAP) address field 

SSAP  Source SAP address field 

CRC  Cyclic redundancy check or frame-check sequence 

ED  Ending delimiter 

FS  Frame status field 

m bytes  Integer value greater than or equal to 0 and less than or equal to 18 

n bytes  Integer value greater than or equal to 3 and less than or equal to 4064 

p bytes  Integer value greater than or equal to 0 and less than or equal to 4060
  

Note:   SD, CRC, ED, and FS headers are added and deleted by the hardware adapter. 

DLCTOKEN  Name-Discovery Service 

In addition to the standard IEEE 802.2 Common Logical Link Protocol support and address resolution 

services, token-ring data link control (DLCTOKEN) also provides a name-discovery service that allows the 

operator to identify local and remote stations by name instead of by 6-byte physical addresses. Each port 

must have a unique name of up to 20 characters on the network. The character set used varies depending 

on the user’s protocol. Systems Network Architecture (SNA), for example, requires character set A. 

Additionally, each new service access point (SAP) supported on a particular port can have a unique name 

if desired. 

Each name is added to the network by broadcasting a find (local name) request when the new name is 

being introduced to a given network port. If no response other than an echo results from the find (local 

name) request after it is sent the specified number of times, the physical link is declared opened. The 

name is then assigned to the local port and SAP. If another port on the network has already added the 

name, a name-found response is sent to the station that issued the find request. A result code 

(DLC_NAME_IN_USE) indicates that the new attachment was unsuccessful and a different name must be 

chosen. Calls are established by broadcasting a find (remote name) request to the network and waiting for 

DSAP
Addr.

SSAP
Addr.

Control
Field

Information
Field

2 bytes p bytes1 (2) byte

Destination
Address

Source
Address

Routing
Information LPDU CRC

6 bytes 6 bytes m bytes

S
D

A
C

F
C

4 2

E
D

F
S

n bytes3

DLCTOKEN Frame Encapsulation

  

Figure  5. DLCTOKEN  Frame  Encapsulation.  This  diagram  shows  the  DLCTOKEN  data  packet  containing  the following:  

SD,  AC,  and  FC (together  with  SD  and  AC  consist  of 3 bytes),  destination  address  (6 bytes),  and  source  address  (6 

bytes),  routing  information  (m  bytes),  LPDU  length  (n bytes),  CRC  (4 bytes),  ED  and  FS (together  with  ED consist  of 2 

bytes).  A second  line  shows  that  LPDU  consists  of the  following:  DSAP  address,  SSAP  address  (together  with  DSAP  

address  consist  of 2 bytes),  control  field  [1 (2)  byte],  and  the  information  field  (p bytes).

 

16 Communications Programming Concepts



a response from the port with the specified name. Only ports that have listen attachments pending, receive 

colliding find requests, or are already attached to the requesting remote station answer a find request. 

LAN Find Data Format 

Find  Header  

 0-1  Byte length of the find packet including the length field 

2-3  Key 0x0001 

4-n  Remaining control vectors
  

Target  Name  

 0-1  Vector length = 0x000F to 0x0022 

2-3  Key 0x0004 

4-9  Name structure architecture ID: 

4-5 Subvector length = 0x0006 

6-7 Key 0x4011 

8-9 Identifier = 0x8000 (locally administered) 

10-m  Object name: 

10-11  Subvector length = 0x0005 to 0x000C 

12-13  Key 0x4010 

14-m  Target’s name (1 to 20 bytes)

  

Source  Name  

 0-1  Vector length = 0x000F to 0x0022 

2-3  Key 0x000D 

4-9  Name structure architecture ID: 

4-5 Subvector length = 0x0006 

6-7 Key 0x4011 

8-9 Identifier = 0x8000 (locally administered) 

10-p  Object name: 

10-11  Subvector length = 0x0005 to 0x000C 

12-13  Key 0x4010 

14-p  Source’s name (1 to 20 bytes)

  

Correlator  

 0-1  Vector length = 0x0008 

2-3  Key 0x4003 

 

Chapter 1. Data Link Control 17



4-7  Correlator value: 

Byte  4 Bit  0 

1 means this is a SAP correlator for a find (self) 

Byte  4 Bit  0 

0 means this is an LS correlator for a find (remote)
  

Source  Medium  Access  Control  (MAC)  Address  

 0-1  Vector length = 0x000A 

2-3  Key 0x4006 

4-9  Source’s MAC address (6 bytes)
  

Source  SAP  

 0-1  Vector length = 0x0005 

2-3  Key 0x4007 

4 Source’s SAP address
  

LAN Found Data Format 

Found  Header  

 0-1  Byte length of the found packet including the length field 

2-3  Key 0x0002 

4-n  Remaining control vectors
  

Correlator  

 0-1  Vector length = 0x0008 

2-3  Key 0x4003 

4-7  Correlator value: 

Byte  4 Bit  0 

1 means this is a SAP correlator for a find (self). 

Byte  4 Bit  0  

0 means this is an LS correlator for a find (remote).
  

Source  MAC  Address  

 0-1  Vector length = 0x000A 

2-3  Key 0x4006 

4-9  Source’s MAC address (6 bytes)
  

Source  SAP  

 0-1  Vector length = 0x0005 

2-3  Key 0x4007 

4 Source’s SAP address
 

 

18 Communications Programming Concepts



Response  Code  

 0-1  Vector length = 0x0005 

2-3  Key 0x400B 

4 Response code: 

B’0xxx  xxxx’  

Positive response 

B’0000  0001’  

Resources available 

B’1xxx  xxxx’  

Negative response 

B’1000  0001’  

Insufficient resources
  

Bridge Route Discovery 

DLCTOKEN caches any returned bridge-routing information from a remote station for each command or 

datagram packet received and generates send-packet headers with the reverse route. This operation 

allows dynamic alteration of the bridge route taken throughout the link station attachment. There is also a 

provision to alter the cached routing field with the DLC_ALT_RTE  ioctl operation. This ioctl operation 

allows the user to dynamically change the bridge route taken by link station send packets. Once the 

DLC_ALT_RTE  ioctl operation is issued and accepted by the link station, dynamic caching of the received 

route is stopped, and subsequent send packets carry the ioctl operation’s routing value. 

Network data packets are not associated with a link station attachment, so any bridge routing field has to 

come from the user sending the packet. DLCTOKEN has no involvement in the bridge routing of network 

data packets. 

DLCTOKEN  Direct Network Services 

Some users wish to handle their own unnumbered information packets on the network without the aid of 

the data link layer within the token-ring data link control (DLCTOKEN). A direct network interface allows an 

entire packet to be generated and sent by a user after the user service access point (SAP) has been 

opened. The interface allows full control of every field in the data link header for each write call issued. 

Also provided is the ability to view the entire packet contents on received frames. The criteria for a direct 

network write are: 

v   The local SAP must be valid and opened. 

v   The data link control byte must indicate unnumbered information (0x03).

DLCTOKEN  Connection Contention 

Dual paths to the same nodes are detected by the token-ring device manager in one of two ways. First, 

when a call is in progress to a remote node that is also trying to call the local node, the incoming find 

(remote name) request is treated as if a local listen were outstanding. Second, when a pending local listen 

is acquired by a call from a remote node and the local user issues a call to the active remote node, a 

result code (DLC_REMOTE_CONN) is returned with the link station correlator of the active attachment, 

allowing the user to relink attachment pointers. 

Initiating DLCTOKEN  Link Sessions 

When a link station (LS) is opened, the token-ring data link control (DLCTOKEN) is initialized at the open 

LS as a combined station in asynchronous disconnect mode (ADM). As a secondary or combined station, 

DLCTOKEN is in a receive state waiting for a command frame from the primary or combined station. The 

following command frames are accepted by the secondary or combined station at this time: 

 

Chapter 1. Data Link Control 19



SABME  Set asynchronous balanced mode extended 

XID  Exchange station identification 

TEST  Test link 

UI Unnumbered information - datagram 

DISC  Disconnect
  

Any other command frame is ignored. Once a SABME is received, the station is ready for normal data 

transfer and the following frames are also accepted: 

 I Information 

RR  Receive ready 

RNR  Receive not ready 

REJ  Reject
  

As a primary or combined station, DLCTOKEN can perform ADM XID, ADM TEST exchanges, send 

datagrams, or connect the remote to the asynchronous balanced mode extended (ABME). XID exchanges 

allow the primary or combined station to send out its station-specific identification to the secondary or 

combined station and obtain a response. Once an XID response is received, any attached information field 

is passed to the user for further action. 

TEST exchanges allow the primary or combined station to send out a buffer of information that will be 

echoed by the secondary or combined station in order to test the integrity of the link. 

Initiation of the normal data exchange mode, ABME, causes the primary or combined station to send an 

SABME to the secondary or combined station. Once sent successfully, the connection is said to be 

contacted and the user is notified. Information frames can now be sent and received between the linked 

stations. 

Stopping DLCTOKEN  Link Sessions 

The user or the remote station can be stopped by the token-ring data link control (DLCTOKEN): 

v   Issue a DLC_HALT_LS  command. This command will cause the primary or combined station to initiate 

a disconnect (DISC) packet sequence. 

v   Sending a DISC command packet as a primary or combined station. 

v   Receiving an inactivity timeout can stop a DLCTOKEN link session. This action is useful in detecting a 

loss of connection in the middle of a session.

Note:   Abnormal stopping is caused by certain protocol violations or by resource outages. 

DLCTOKEN  Programming Interfaces 

The token-ring data link control (DLCTOKEN) conforms to the generic data link control (GDLC) guidelines 

except where noted below. Additional structures and definitions for DLCTOKEN can be found in the 

/usr/include/sys/trlextcb.h  file. 

Note:   The dlc  prefix is replaced with the trl  prefix for DLCTOKEN.

 trlclose  DLCTOKEN is fully compatible with the dlcclose  GDLC interface. 

trlconfig  DLCTOKEN is fully compatible with the dlcconfig  GDLC interface. No initialization parameters are 

required. 

trlmpx  DLCTOKEN is fully compatible with the dlcmpx  GDLC interface. 

trlopen  DLCTOKEN is fully compatible with the dlcopen  GDLC interface. 

 

20 Communications Programming Concepts



trlread  DLCTOKEN is compatible with the dlcread  GDLC interface with the following conditions: 

v   The readx  subroutines can have DLCTOKEN data link header information prefixed to the I-field 

being passed to the application. This is optional based on the readx  subroutine data  link  header  

length  extension parameter in the gdl_io_ext  structure. 

v   If this field is nonzero, DLCTOKEN copies the data link header and the I-field to user space and 

sets the actual length of the data link header into the length field. 

v   If the field is 0, no data link header information is copied to user space. See the DLCTOKEN 

Frame Encapsulation figure (Figure 5 on page 16) for more details.
  

The following kernel receive  packet  function handlers always have the DLCTOKEN data link header 

information within the communications memory buffer (mbuf) and can locate it by subtracting the length 

passed (in the gdl_io_ext  structure) from the data offset field of the mbuf structure. 

 trlselect  DLCTOKEN is fully compatible with the dlcselect  GDLC interface. 

trlwrite  DLCTOKEN is compatible with the dlcwrite  GDLC interface, with the exception that network data 

can only be written as an unnumbered information (UI) packet and must have the complete data 

link header prefixed to the data. DLCTOKEN verifies that the local (source) service access point 

(SAP) is enabled and that the control byte is UI (0x03). See the DLCTOKEN Frame Encapsulation 

figure (Figure 5 on page 16) for more details. 

trlioctl  DLCTOKEN is compatible with the dlcioctl  GDLC interface, with conditions on the following 

operations: 

v   DLC_ENABLE_SAP  

v   DLC_START_LS  

v   DLC_ALTER  

v   DLC_QUERY_SAP  

v   DLC_QUERY_LS  

v   DLC_ENTER_SHOLD  

v   DLC_EXIT_SHOLD  

v   DLC_ADD_GROUP  

v   DLC_ADD_FUNC_ADDR  

v   DLC_DEL_FUNC_ADDR  

v   DLC_DEL  GRP  

v   IOCINFO

The following sections describe these conditions in detail.
  

DLC_ENABLE_SAP 

The ioctl  subroutine argument structure for enabling a SAP (dlc_esap_arg) has the following specifics: 

v   The grp_addr (group address) field for the token ring contains the four least significant bytes of the 

desired six-byte group address. Only bits 1 through 31 are valid. Bit 0 is ignored. The most significant 

two bytes are automatically compared for 0xC000 by the adapter. 

v   The func_addr_mask (functional address mask) field must be the logical OR operation with the 

functional address on the adapter, which allows packets that are destined for specified functions to be 

received by the local adapter. Only bits 1 through 29 are valid. Bits 0, 30, and 31 are ignored. The most 

significant two bytes of the full six-byte functional address are automatically compared for 0xC000 by 

the adapter. 

The following is an example of a Network Basic Input/Output System (NetBIOS) functional address: 

To select  the  NETBIOS  functional  address  of 0xC000_0000_0080,  

the  functional  address  mask  is set  to 0x0000_0080.  

Note:   DLCTOKEN does not check to determine whether a received packet was accepted by the 

adapter due to a preset network address, group address, or functional address.

 

Chapter 1. Data Link Control 21



v   The max_ls (maximum link stations) field cannot exceed a value of 255. 

v   The following common SAP flags are not supported: 

 ENCD  Specifies a synchronous data link control (SDLC) serial encoding. 

NTWK  Indicates a teleprocessing network type. 

LINK  Indicates a teleprocessing link type. 

PHYC  Indicates a physical network call (teleprocessing). 

ANSW  Indicates a teleprocessing autocall and autoanswer.
  

v   Group SAPs are not supported, so the num_grp_saps (number of group SAPs) field must be set to 0. 

v   The laddr_name (local address and name) field and its associated length are only used for name 

discovery when the common SAP flag ADDR  is set to 0. When resolve procedures are used (that is, 

the ADDR  flag is set to 1), DLCTOKEN obtains the local network address from the device handler and 

not from the dlc_esap_arg  structure. 

v   The local_sap (local service access point) field can be set to any value except null SAP (0x00) or 

discovery SAP (0xFC). Also, the low-order bit must be set to 0 (B`nnnnnnn0’) to indicate an individual 

address. 

v   No protocol-specific data area is required for DLCTOKEN to enable a SAP.

DLC_START_LS  

The ioctl  subroutine argument structure for starting a link station (dlc_sls_arg) has the following specifics: 

v   The following common link station (LS) flags are not supported: 

 STAT Specifies a station type for SDLC. 

NEGO  Specifies a negotiable station type for SDLC.
  

v   The raddr_name (remote address and name) field is only used for outgoing calls when the 

DLC_SLS_LSVC  common LS flag is active. 

v   The maxif (maximum I-field length) field can be set to any value greater than 0. See the DLCTOKEN 

Frame Encapsulation figure (Figure 5 on page 16) for more details. DLCTOKEN adjusts this value to a 

maximum of 4060 bytes if set too large. 

v   The rcv_wind (receive window) field can be set to any value between 1 and 127 inclusive. The 

recommended value is 127. 

v   The xmit_wind (transmit window) field can be set to any value between 1 and 127 inclusive. The 

recommended value is 26. 

v   The rsap (remote SAP) field can be set to any value except null SAP (0x00) or name-discovery SAP 

(0xFC). Also, the low-order bit must be set to 0 (B`nnnnnnn0’) to indicate an individual address. 

v   The max_repoll field can be set to any value from 1 to 255. The recommended value is 8. 

v   The repoll_time field is defined in increments of 0.5 seconds and can be set to any value from 1 to 255, 

inclusive. The recommended value is 2, giving a time-out duration of 1 to 1.5 seconds. 

v   The ack_time (acknowledgment time) field is defined in increments of 0.5 seconds, and can be set to 

any value between 1 and 255, inclusive. The recommended value is 1, giving a time-out duration of 0.5 

to 1 second. 

v   The inact_time (inactivity time) field is defined in increments of 1 second and can be set to any value 

between 1 and 255 inclusive. The recommended value is 48, giving a time-out duration of 48 to 48.5 

seconds. 

v   The force_time (force halt time) field is defined in increments of 1 second and can be set to any value 

between 1 and 16383, inclusive. The recommended value is 120, giving a time-out duration of 

approximately 2 minutes. 

v   A protocol-specific data area must be appended to the generic start  link  station  argument (dlc_sls_arg). 

This structure provides DLCTOKEN with additional protocol-specific configuration parameters: 

 

22 Communications Programming Concepts



struct  trl_start_psd  

{ 

   uchar_t     pkt_prty;   /* ring  access  packet  priority    */ 

   uchar_t     dyna_wnd;   /* dynamic  window  increment       */ 

   ushort_t    reserved;    /* currently  not  used             */ 

}; 

The protocol-specific parameters are as follows: 

 pkt_prty  Specifies the ring access priority that the user wishes to reserve on transmit packets. Values of 0 to 3 

are supported, where 0 is the lowest priority and 3 is the highest priority. 

dyna_wnd  Specifies the number of consecutive sequenced packets that must be acknowledged by the remote 

station before the local transmit window count can be incremented. Network congestion causes the 

local transmit window count to drop automatically to a value of 1. The dynamic window increment 

allows a gradual increase in network traffic after a period of congestion. This field can be set to any 

value between 1 and 255, inclusive. The recommended value is 1.
  

DLC_ALTER  

The ioctl  subroutine argument structure for altering an LS (dlc_alter_arg) has the following specifics: 

v   The following alter flags are not supported: 

 SM1, SM2  Sets SDLC control mode.
  

v   A protocol-specific data area must be appended to the generic alter  link  station  argument structure 

(dlc_alter_arg). This structure provides DLCTOKEN with additional protocol-specific alter parameters. 

#define  TRL_ALTER_PRTY  0x80000000  /* alter  packet  priority      */ 

#define  TRL_ALTER_DYNA  0x40000000  /* alter  dynamic  window  incr.*/  

   struct  trl_start_psd  

{ 

   ulong_t    flags;      /* specific  alter  flags                */ 

   uchar_t    pkt_prty;   /* ring  access  packet  priority  value   */ 

   uchar_t    dyna_wnd;   /* dynamic  window  increment  value      */  

   ushort_t   reserved;    /* currently  not  used                  */ 

}; 

#define  TRL_ALTER_PRTY  0x80000000  /* alter  packet  priority      */ 

#define  TRL_ALTER_DYNA  0x40000000  /* alter  dynamic  window  incr.*/  

   struct  trl_start_psd  

{ 

   __ulong32_t    flags;      /*  specific  alter  flags                */ 

   uchar_t        pkt_prty;   /*  ring  access  packet  priority  value   */ 

   uchar_t        dyna_wnd;   /*  dynamic  window  increment  value      */ 

   ushort_t       reserved;    /*  currently  not  used                  */ 

}; 

Specific alter flags are as follows: 

 TRL_ALTER_PRTY  Specifies alter priority. If this flag is set to 1, the pkt_prty  value field replaces the current 

priority value being used by the LS. The LS must be started for this alter command to be 

valid. 

TRL_ALTER_DYNA  Specifies alter dynamic window. If this flag is set to 1, the dyna_wnd  value field replaces 

the current dynamic window value being used by the LS. The LS must be started for this 

alter command to be valid.
  

The protocol-specific parameters are as follows: 

 pkt_prty  Specifies the new priority reservation value for transmit packets. 

dyna_wnd  Specifies the new dynamic window value to control network congestion.
 

 

Chapter 1. Data Link Control 23



DLC_QUERY_SAP 

The device driver-dependent data returned from DLCTOKEN for this ioctl operation is the 

tok_ndd_stats_t  structure defined in the /usr/include/sys/cdli_tokuser.h  file. 

DLC_QUERY_LS 

There is no protocol-specific data area supported by DLCTOKEN for this ioctl operation. 

DLC_ENTER_SHOLD 

The enter_short_hold  option is not supported by DLCTOKEN. 

DLC_EXIT_SHOLD 

The exit_short_hold  option is not supported by DLCTOKEN. 

DLC_ADD_GROUP 

The add_group, or multicast address, option is supported by the DLCTOKEN device manager. This ioctl 

operation is a four-byte value as described in the DLC_ENABLE_SAP  ioctl operation definition. 

DLC_ADD_FUNC_ADDR 

The len_func_addr_mask (functional address mask length) field must be set to 4, and the func_addr_mask 

(functional address mask) field must be the logical OR operation with the functional address on the 

adapter. Only bits 1 through 29 are valid. Bits 0, 30, and 31 are ignored. The most significant two bytes of 

the full six-byte functional address are automatically compared for 0xC000 by the adapter and cannot be 

added. 

DLC_DEL_FUNC_ADDR 

The len_func_addr_mask (functional address mask length) field must be set to 4, and the func_addr_mask 

(functional address mask) field must have each bit that you wish to reset set to 1 within the functional 

address on the adapter. Only bits 1 through 29 are valid. Bits 0, 30, and 31 are ignored. The most 

significant two bytes of the full six-byte functional address are automatically compared for 0xC000 by the 

adapter and cannot be deleted. 

DLC_DEL_GRP 

The delete group or multicast option is supported by the DLCTOKEN device manager. The address being 

removed must match an address that was added with a DLC_ENABLE_SAP  or DLC_ADD_GRP  ioctl 

operation. 

IOCINFO 

The ioctype  variable returned is defined as a DD_DLC  definition, and the subtype returned is 

DS_DLCTOKEN. 

IEEE 802.3 Ethernet Data Link Control Overview 

IEEE 802.3 Ethernet data link control (DLC8023) is a device manager that follows the generic data link 

control (GDLC) interface definition. This DLC device manager provides a passthrough capability that 

allows transparent data flow and provides an access procedure to transfer four types of data over an 

Ethernet local area network (LAN): 

v   Datagrams 

v   Sequenced data 

v   Identification data 

v   Logical link controls.

 

24 Communications Programming Concepts



The Ethernet device handler and the Ethernet high performance LAN adapter transfer data. 

For more information about DLC8023, see: 

v   “DLC8023 Device Manager Nodes” 

v   “DLC8023 Device Manager Functions” 

v   “DLC8023 Protocol Support” on page 26 

v   “DLC8023 Name-Discovery Services” on page 27 

v   “DLC8023 Direct Network Services” on page 30 

v   “DLC8023 Connection Contention” on page 30 

v   “DLC8023 Link Sessions” on page 30 

v   “DLC8023 Programming Interfaces” on page 31

DLC8023 Device Manager Nodes 

The DLC8023 device manager on an Ethernet local area network (LAN) operates between two or more 

nodes using medium access control (MAC) procedures and IEEE 802.2 logical link control (LLC) 

procedures. MAC and LLC procedures are defined in the IEEE Project 802 Local Area Network Standards. 

Specific state tables used are found in the Token-Ring  Network  Architecture  Reference. The DLC8023 

device manager supports: 

v   Asynchronous disconnected mode (ADM) and asynchronous balanced mode extended (ABME) 

v   Two-way, simultaneous (full-duplex) data flow 

v   Multiple point-to-point logical attachments on the LAN, using the network address and service access 

point (SAP) address 

v   Peer-to-peer relationship with remote stations 

v   Both name-discovery and address-resolve services. 

The DLC8023 device manager provides full-duplex, peer-data transfer capabilities over an Ethernet LAN. 

The Ethernet LAN must use the IEEE 802.3 carrier sense multiple access with collision detection 

(CSMA/CD) medium access control protocol and a superset of the IEEE 802.2 LLC protocol. 

Note:   Multiple adapters are supported with a maximum of 255 logical attachments per adapter. 

LLC refers to the DLC manager, access-channel, and link station (LS) subcomponents of a GDLC 

component, such as the DLC8023 device manager, as illustrated in the DLC[TOKEN, 8032, ETHER, or 

FDDI] Component Structure figure (Figure 4 on page 14). 

Each LS controls the transfer of data on a single logical link. The access channel performs multiplexing 

and demultiplexing for message units flowing from the link stations and DLC manager to MAC. The DLC 

manager performs the following actions: 

v   Establishes and terminates connections 

v   Creates and deletes LSs 

v   Routes commands to the proper station.

DLC8023 Device Manager Functions 

The IEEE 802.3 Ethernet data link control (DLC8023) device manager and transport medium use two 

functional layers, medium access control (MAC) and logical link control (LLC), to maintain reliable link-level 

connections, guarantee data integrity, and negotiate exchanges of identification. Both connectionless (Type 

1) and connection-oriented (Type 2) services are supported. 

The Ethernet adapter and DLC8023 device handler can perform the following MAC functions: 

v   Managing the carrier-sense multiple access with collision detection (CSMA/CD) LLC algorithm 

 

Chapter 1. Data Link Control 25



v   Encoding and decoding the serial-bit stream data 

v   Receiving network-address checking 

v   Routing received frames based on the LLC Link Protocol Data Unit (LPDU) destination service access 

point (SAP) field 

v   Generating preamble 

v   Generating cyclic redundancy checks (CRC) 

v   Handling fail-safe time outs 

The DLC8023 device manager can also perform the following LLC functions: 

v   Remote connection services 

v   Sequencing each link station on a given port 

v   Creating the network addresses on transmit frames 

v   Creating service access points addresses on transmit frames 

v   Creating IEEE 802.2 LLC commands and responses on transmit frames 

v   Recognizing and routing received frames to the proper SAP 

v   Servicing IEEE 802.2 LLC commands and responses on receive frames 

v   Handling frame sequencing and retries 

v   Handling fail-safe and inactivity time outs 

v   Handling reliability counters, availability counters, serviceability counters, error logs, and link traces

DLC8023 Protocol Support 

IEEE 802.3 Ethernet data link control (DLC8023) supports the system network architecture (SNA) logical 

link control (LLC) protocol and state tables as described in the Token-Ring  Network  Architecture  

Reference, which contains the local area network (LAN) IEEE 802.2 LLC standard. Additional 

name-discovery services have been added for establishing remote connections. 

Station Types  

A combined station supports a balanced (peer-to-peer) configuration on a logical point-to-point connection 

and allows either station to initiate asynchronously the transmission of commands at any response 

opportunity. The data source in each combined station controls the data sink in the other station. Data 

transmissions flow as primary commands; acknowledgments and status flow as secondary responses. 

Response Modes 

Both asynchronous disconnect mode (ADM) and asynchronous balanced mode extended (ABME) are 

supported. ADM is the default whenever a link session is initiated and is switched to ABME only after the 

set asynchronous balanced mode extended (SABME) command sequence is complete. Once operating in 

the ABME command mode, information frames containing user data can be transferred. The ABME 

command mode then remains active until the LLC session terminates, which occurs due to either the 

disconnect (DISC) command packet sequence or a major link error. 

IEEE 802.3 Data Packet 

All communication between a local and a remote station is accomplished by the transmission of a packet 

that contains the IEEE 802.3 headers and trailers as well as an encapsulated LLC link protocol data unit 

(LPDU). 

The DLC8023 Frame Encapsulation figure (Figure 6 on page 27) illustrates the DLC8023 data packet: 

 

 

26 Communications Programming Concepts



The IEEE 802.3 data packet consists of the following fields: 

 LPDU  LLC Link Protocol Data Unit 

DSAP  Destination Service Access Point (SAP) address field 

SSAP  Source SAP Address Field 

CRC  Cyclic Redundancy Check or frame1-check sequence 

m bytes  Integer value greater than or equal to 46 and less than or equal to 1500 

p bytes  Integer value greater than or equal to 0 and less than or equal to 1496
  

Note:   Preamble and CRC are added and deleted by the hardware adapter. 

DLC8023 Name-Discovery Services 

In addition to the standard IEEE 802.2 common logical link protocol (CLLP) support and the address 

resolution services, IEEE 802.3 Ethernet data link control (DLC8023) also provides a name-discovery 

service that allows the operator to identify local and remote stations by name instead of by six-byte 

physical addresses. Each port must have a unique name of up to 20 characters on the network. The 

character set used depends on the user’s protocol. For example, systems network architecture (SNA) 

requires character set A. Each new service access point (SAP) supported on a particular port may have a 

unique name, if desired. 

Each name is added to the network by broadcasting a find (local name) request. After the find (local 

name) request is sent the required number of times, if no response is returned, the physical link is 

declared opened. The name is then assigned to the local port and SAP. If another port on the network has 

already added the name, a name-found response is sent to the station that issued the find request, and 

the new attachment fails with a result code (DLC_NAME_IN_USE). This code indicates that a different 

name must be selected. Calls are established by broadcasting a find (remote name) request to the 

network and waiting for a response from the port with the specified name. Ports with attachments pending, 

colliding find requests, or an attachment to the requesting remote station will answer a find request. 

LAN Find Data Format 

Find  Header  

 0-1  Byte length of the find packet including the length field 

2-3  Key 0x0001 

DSAP
Addr.

SSAP
Addr.

Control
Field

Information
Field

2 bytes p bytes1 (2) byte

LPDU
Length

Destination
Address

Source
AddressPreamble Pad CRC

8 bytes 6 bytes 6 bytes m bytes

LPDU

2 4

DLC8023 Frame Encapsulation

  

Figure  6. DLC8023  Frame  Encapsulation.  This  diagram  shows  the  DLC8023  data  packet  containing  the  following:  

preamble  (8 bytes),  destination  address  (6 bytes),  source  address  (6 bytes),  LPDU  length  (2 bytes),  LPDU,  Pad  

(together  with  LPDU  consist  of m bytes),  and  CRC  (4 bytes).  A second  line  shows  that  LPDU  consists  of the  following:  

DSAP  address,  SSAP  address  (together  with  DSAP  address  consist  of 2 bytes),  control  field  [1 (2)  byte],  and  the  

information  field  (p bytes).

 

Chapter 1. Data Link Control 27



4-n  Remaining control vectors
  

Target  Name  

 0-1  Vector length = 0x000F to 0x0022 

2-3  Key 0x0004 

4-9  Name structure architecture ID: 

4-5  Subvector length = 0x0006 

6-7  Key 0x4011 

8-9  Identifier = 0x8000 (locally administered) 

10-m  Object name: 

10-11  Subvector length = 0x0005 to 0x000C 

12-13  Key 0x4010 

14-m  Target name (1 to 20 bytes)

  

Source  Name  

 0-1  Vector length = 0x000F to 0x0022 

2-3  Key 0x000D 

4-9  Name structure architecture ID: 

4-5  Subvector length = 0x0006 

6-7  Key 0x4011 

8-9  Identifier = 0x8000 (locally administered) 

10-p  Object name: 

10-11  Subvector length = 0x0005 to 0x000C 

12-13  Key 0x4010 

14-p  Source name (1 to 20 bytes)

  

Correlator  

 0-1  Vector length = 0x0008 

2-3  Key 0x4003 

4-7  Correlator value: 

Byte  4 Bit  0 

1 represents a SAP correlator for a find (self) 

Byte  4 Bit  0 

0 represents a link station (LS) correlator for a find (remote)
  

Source  Medium  Access  Control  (MAC)  Address  

 0-1  Vector length = 0x000A 

2-3  Key 0x4006 

4-9  Source MAC address (6 bytes)

 

28 Communications Programming Concepts



Source  SAP  

 0-1  Vector length = 0x0005 

2-3  Key 0x4007 

4 Source SAP address
  

LAN Found Data Format 

Found  Header  

 0-1  Byte length of the found packet including the length field 

2-3  Key 0x0002 

4-n  Remaining control vectors
  

Correlator  

 0-1  Vector length = 0x0008 

2-3  Key 0x4003 

4-7  Correlator value: 

Byte  4 Bit 0 

1 represents a SAP correlator for a find (self) 

Byte  4 Bit 0 

0 represents an LS correlator for a find (remote)
  

Source  MAC  Address  

 0-1  Vector length = 0x000A 

2-3  Key 0x4006 

4-9  Source MAC address (6 bytes)
  

Source  SAP  

 0-1  Vector length = 0x0005 

2-3  Key 0x4007 

4 Source SAP address
  

Response  Code  

 0-1  Vector length = 0x0005 

2-3  Key 0x400B 

4 Response code: 

B’0xxx  xxxx’  

Positive response 

B’0000  0001’  

Resources available 

B’1xxx  xxxx’  

Negative response 

B’1000  0001’  

Insufficient resources
 

 

Chapter 1. Data Link Control 29



DLC8023 Direct Network Services 

Some users wish to handle their own unnumbered information packets on the network without the aid of 

the data link layer within IEEE 802.3 Ethernet data link control (DLC8023). Once a service access point 

(SAP) is opened, a direct network interface allows an entire packet to be generated and sent. This action 

allows full control of every field in the data link header for each write issued. Also provided is the ability to 

view the entire packet contents on received frames. The criteria for a direct network write are: 

v   The local SAP must be valid and open. 

v   The data link control byte must indicate unnumbered information (0x03).

DLC8023 Connection Contention 

Dual paths to the same nodes are detected by the IEEE 802.3 Etheret data link control (DLC8023) device 

manager in one of two ways. First, when a call in progress to a remote node also tries to call the local 

node, the incoming find (remote name) request is treated as if a local listen were outstanding. Second, 

when a pending local listen is acquired by a call from a remote node and the local user issues a call to the 

active remote node, a result code (DLC_REMOTE_CONN)  is returned with the link station correlator of the 

active attachment, allowing the user to relink attachment pointers. 

DLC8023 Link Sessions 

The IEEE 802.3 Etheret data link control (DLC8023) device manager is initialized at an open link station 

(LS) as a combined station in asynchronous disconnect mode (ADM). As a secondary or combined station, 

DLC8023 is in a receive state, waiting for a command frame from the primary or combined station. 

Command frames accepted by the secondary or combined station at this time are: 

 SABME  Set asynchronous balanced mode extended. 

XID  Exchange station identifications. 

TEST  Test links. 

UI Unnumbered information - datagram. 

DISC  Disconnect.
  

Any other command frame is ignored. Once a SABME command is received, the station is ready for 

normal data transfer, and the following frames are also accepted: 

 I Provides information. 

RR  Indicates a receive ready. 

RNR  Indicates a receive not ready. 

REJ  Indicates a reject.
  

As a primary or combined station, the DLC8023 device manager can perform ADM XID or ADM TEST 

exchanges, send datagrams, or connect the remote to asynchronous balanced mode extended (ABME). 

XID exchanges allow the primary or combined station to send out its station-specific identification to the 

secondary or combined station and accept a response. Once an XID response is received, attached 

information fields are then sent to the user for further action. 

TEST exchanges allow the primary or combined station to send out a buffer of information to be echoed 

by the secondary or combined station. This transfer of information tests the integrity of the link. 

Initiation of the normal data exchange mode, ABME, prompts the primary or combined station to send a 

SABME command to the secondary or combined station. Upon successful delivery, the connection is said 

to be contacted; the user is notified. Information frames can now be sent and received between the linked 

stations. 

 

30 Communications Programming Concepts



Link Session Termination  

The IEEE 802.3 Etheret data link control (DLC8023) device manager is stopped by the user or by the 

remote station in the following ways: 

v   The user issues a close  link  station  command to the DLC8023 device manager. The command 

initiates a disconnect (DISC) packet sequence to the primary or combined station. 

v   The user directs the link to stop automatically after a specified period of inactivity. This is useful in 

detecting a loss of connection in the middle of a session. 

v   The remote station terminates the link by sending a DISC command packet as a primary combined 

station.

Note:   Abnormal termination is a result of certain protocol violations or resource outages. 

DLC8023 Programming Interfaces 

The IEEE 802.3 Ethernet data link control (DLC8023) device manager conforms to generic data link 

control (GDLC) guidelines, except as follows: 

Note:   The dlc  prefix is replaced with the e3l  prefix for the DLC8023 device manager.

 e3lclose  DLC8023 is fully compatible with the dlcclose  GDLC interface. 

e3lconfig  DLC8023 is fully compatible with the dlcconfig  GDLC interface. No initialization parameters are 

required. 

e3lmpx  DLC8023 is fully compatible with the dlcmpx  GDLC interface. 

e3lopen  DLC8023 is fully compatible with the dlcopen  GDLC interface. 

e3lread  DLC8023 is compatible with the dlcread  GDLC interface, under the following conditions: 

v   The readx  subroutines can have DLC8023 data link header information prefixed to the I-field. 

The data can be passed to the application in the user-defined readx  subroutine data  link  header  

length  extension parameter in the gdl_io_ext  structure. 

v   If this field has a nonzero value, DLC8023 copies the data link header and the I-field to user 

space and sets the actual length of the data link header in the length field. 

v   If the field has a value of 0, no data link header information is copied. See the DLC8023 Frame 

Encapsulation figure (Figure 6 on page 27) for more details.
  

The following kernel receive  packet  function handlers always have the DLC8023 data link header 

information in the communications memory buffer (mbuf), and can locate this information by subtracting 

the length passed in the gdl_io_ext  structure from the data offset field. 

 e3lselect  DLC8023 is fully compatible with the dlcselect  GDLC interface. 

e3lwrite  DLC8023 is compatible with the dlcwrite  GDLC interface. The exceptions are that network data 

can only be written as an unnumbered information (UI) packet and must have the complete data 

link header prefixed. DLC8023 verifies that the local, or source, service access point (SAP) is 

enabled and that the control byte is UI (0x03). See the DLC8023 Frame Encapsulation figure 

(Figure 6 on page 27) for more details. 

 

Chapter 1. Data Link Control 31



e3lioctl  DLC8023 is compatible with the dlcioctl  GDLC interface, with conditions on the following 

operations: 

v   DLC_ENABLE_SAP  

v   DLC_START_LS  

v   DLC_ALTER  

v   DLC_QUERY_SAP  

v   DLC_QUERY_LS  

v   DLC_ENTER_SHOLD  

v   DLC_EXIT_SHOLD  

v   DLC_ADD_GROUP  

v   DLC_ADD_FUNC_ADDR  

v   DLC_DEL_FUNC_ADDR  

v   DLC_DEL_GRP  

v   IOCINFO

The following sections describe these conditions.
  

DLC_ENABLE_SAP 

The ioctl  subroutine argument structure to enable a SAP (dlc_esap_arg) has the following specifics: 

v   The grp_addr field is a 6-byte value as specified in the draft IEEE Standard 802.3 specifications. Octet 

grp_addr[0] specifies the most significant byte and octet grp_addr[5] specifies the least significant byte. 

Each octet of the address field is transmitted, least significant bit first. Group addresses sometimes are 

called multicast addresses. 

An example of a group address follows: 

0x0900_2B00_0004  

Note:   The DLC8023 device manager does not check whether a received packet was accepted by the 

adapter due to a preset network address or group address. 

v   The max_ls (maximum link station) field cannot exceed a value of 255. 

v   The following common SAP flags are not supported: 

 ENCD  Indicates synchronous data link control (SDLC) serial encoding. 

NTWK  Indicates a teleprocessing network type. 

LINK  Indicates teleprocessing link type. 

PHYC  Indicates a physical network call (teleprocessing). 

ANSW  Indicates a teleprocessing autocall and autoanswer.
  

v   Group SAPs are not supported. Therefore the num_grp_saps (number of group SAPs) field must be set 

to 0. 

v   The laddr_name (local address name) field and its associated length are used for name-discovery when 

the common SAP flag ADDR  is set to 0. When resolve procedures are used (that is, the ADDR  flag is 

set to 1), the DLC8023 device manager obtains the local network address from the device handler and 

not from the dlc_esap_arg  structure. 

v   The local_sap (local service access point) field can be set to any value except null SAP (0x00) or the 

name-discovery SAP (0xFC). Also, the low-order bit must be set to 0 (B`nnnnnnn0’) to indicate an 

individual address. 

v   No protocol-specific data area is required for the DLC8023 device manager to enable a SAP.

DLC_START_LS  

The ioctl  subroutine argument structure specifics to start a link station (dlc_sls_arg) are as follows: 

 

32 Communications Programming Concepts



v   These common link station flags are not supported: 

 STAT Indicates a station type for an SDLC. 

NEGO  Indicates a negotiable station type for an SDLC.
  

v   The raddr_name (remote address and name) field is used for outgoing calls when the DLC_SLS_LSVC  

common link station flag is active. 

v   The maxif (maximum information field length) field can be set to any value greater than 0. See the 

DLC8023 Frame Encapsulation figure (Figure 6 on page 27) for the supported byte lengths. If a byte is 

set too large, DLC8023 adjusts it to a maximum of 1496 bytes. 

v   The rcv_wind (receive window) field can be set to any value between 1 and 127 inclusive. The 

recommended value is 127. 

v   The xmit_wind (transmit window) field can be set to any value between 1 and 127 inclusive. The 

recommended value is 26. 

v   The rsap (remote SAP) field can be set to any value except null SAP (0x00) or the name-discovery SAP 

(0xFC). The low-order bit must be set to 0 (B`nnnnnnn0’) to indicate an individual address. 

v   The max_repoll field can be set to any value between 1 and 255 inclusive. The recommended value is 

8. 

v   The repoll_time field is defined in increments of 0.5 seconds and can be set to any value between 1 

and 255, inclusive. The recommended value is 2, giving a time-out duration of 1 to 1.5 seconds. 

v   The ack_time (acknowledgment time) field is defined in increments of 0.5 seconds and can be set to 

any value between 1 and 255, inclusive. The recommended value is 1, giving a time-out duration of 0.5 

to 1 second. 

v   The inact_time (inactivity time) field is defined in increments of 1 second and can be set to any value 

between 1 and 255, inclusive. The recommended value is 48, giving a time-out duration of 48 to 48.5 

seconds. 

v   The force_time (force halt time) field is defined in increments of 1 second and can be set to any value 

between 1 and 16383, inclusive. The recommended value is 120, giving a time-out duration of 

approximately 2 minutes. 

v   No protocol-specific data area is required for the DLC8023 device manager to start a link station.

DLC_ALTER  

The ioctl  subroutine argument structure for altering a link station (dlc_alter_arg) has the following 

specifics: 

v   These alter flags are not supported: 

 RTE  Alter routing. 

SM1, SM2  Set SDLC control mode.
  

v   A protocol-specific data area is not required for DLC8023 to alter a link station.

DLC_QUERY_SAP 

The device driver-dependent data returned from DLC8023 for this ioctl operation is the ent_ndd_stats_t  

structure defined in the /usr/include/sys/cdli_entuser.h  file. 

DLC_QUERY_LS 

No protocol-specific data area is supported by DLC8023 for this ioctl operation. 

DLC_ENTER_SHOLD 

The enter_short_hold  option is not supported by the DLC8023 device manager. 

 

Chapter 1. Data Link Control 33



DLC_EXIT_SHOLD 

The exit_short_hold  option is not supported by the DLC8023 device manager. 

DLC_ADD_GROUP 

The add_group, or multicast address, option is supported by the DLC8023 device manager. It is a 

six-byte value as described previously in the DLC_ENABLE_SAP  (group address) ioctl operation. 

DLC_ADD_FUNC_ADDR 

The add_functional_address  option is not supported by DLC8023. 

DLC_DEL_FUNC_ADDR 

The delete_functional_address  option is not supported by DLC8023. 

DLC_DEL_GRP 

The delete group or multicast option is supported by the DLC8023 device manager. The address being 

removed must match an address that was added with a DLC_ENABLE_SAP  or DLC_ADD_GRP  ioctl 

operation. 

IOCINFO 

The returned ioctype  variable is defined as a DD_DLC  definition, and the subtype returned is 

DS_DLC8023. 

Standard Ethernet Data Link Control Overview 

Standard Ethernet data link control (DLCETHER) is a device manager that follows the generic data link 

control (GDLC) interface definition. This DLC device manager provides a passthrough capability that 

allows transparent data flow and provides an access procedure to transfer four types of data over a 

Standard Ethernet: 

v   Datagrams 

v   Sequenced data 

v   Identification data 

v   Logical link controls 

The Ethernet device handler and Ethernet high performance LAN adapter transfer the data. 

For more information about DLCETHER see the following: 

v   “DLCETHER Device Manager Nodes” on page 35 

v   “DLCETHER Device Manager Functions” on page 35 

v   “DLCETHER Protocol Support” on page 36 

v   “DLCETHER Name-Discovery Services” on page 37 

v   “DLCETHER Direct Network Services” on page 40 

v   “DLCETHER Connection Contention” on page 40 

v   “DLCETHER Link Session Initiation” on page 40 

v   “DLCETHER Link Session Termination” on page 41 

v   “DLCETHER Programming Interfaces” on page 41

 

34 Communications Programming Concepts



DLCETHER Device Manager Nodes 

The Standard Ethernet data link control (DLCETHER) device manager on an Ethernet local area network 

(LAN) operates between two or more nodes using medium access control (MAC) procedures and IEEE 

802.2 logical link control (LLC) procedures, as defined in IEEE Project 802 Local Area Network Standards. 

The specific state tables implemented can be found in the Token-Ring  Network  Architecture  Reference. 

The DLCETHER device manager supports: 

v   Asynchronous disconnected mode (ADM) and asynchronous balanced mode extended (ABME) 

v   Two-way simultaneous (full-duplex) data flow 

v   Multiple point-to-point logical attachments on the LAN using network and service access point (SAP) 

addresses 

v   Peer-to-peer relationship with remote station 

v   Both name-discovery and address-resolve services. 

The Ethernet data link control provides full-duplex, peer data-transfer capabilities over an Ethernet Version 

2 local area network, using the Ethernet Version 2 MAC protocol and a superset of the IEEE 802.2 LLC. 

Note:   Multiple adapters are supported with a maximum of 255 logical attachments per adapter. 

LLC refers to the collection of manager, access channel, and link station subcomponents of a GDLC 

component such as DLCETHER device manager, as illustrated in the DLC[TOKEN, 8032, ETHER, or 

FDDI] Component Structure figure (Figure 4 on page 14). 

Each link station (LS) controls the transfer of data on a single logical link. The access channel performs 

multiplexing and demultiplexing for message units flowing from the link stations and manager to the MAC. 

The DLC manager performs these actions: 

v   Establishes and terminates connections 

v   Creates and deletes link stations 

v   Routes commands to the proper station.

DLCETHER Device Manager Functions 

The Standard Ethernet data link control (DLCETHER) device manager and transport medium use two 

functional layers, medium access control (MAC) and logical link control (LLC) to maintain reliable link-level 

connections, guarantee data integrity, and negotiate exchanges of identification. Both connectionless (Type 

1) and connection-oriented (Type 2) services are supported. 

The Ethernet adapter and the DLCETHER device handler perform the following MAC functions: 

v   Managing the carrier sense multiple access with collision detection (CSMA/CD) algorithm 

v   Encoding and decoding the serial bit stream data 

v   Receiving network address checking 

v   Routing received frames based on the LLC type field 

v   Generating cyclic redundancy check (CRC) 

v   Handling fail-safe time outs. 

The DLCETHER device manager also performs the following LLC functions: 

v   Remote connection services 

v   Sequencing each link station (LS) on a given port 

v   Creating network addresses on transmit frames 

v   Creating service access point (SAP) addresses on transmit frames 

v   Creating IEEE 802.2 LLC commands and responses on transmit frames 

 

Chapter 1. Data Link Control 35



v   Recognizing and routing received frames to the proper SAP 

v   Servicing IEEE 802.2 LLC commands and responses on receive frames 

v   Sequencing frames and retries 

v   Handling fail-safe and inactivity time outs 

v   Handling reliability counters, availability counters, serviceability counters, error logs, and link traces.

DLCETHER Protocol Support 

The Standard Ethernet data link control (DLCETHER) supports the systems network architecture (SNA) 

logical link control (LLC) protocol and state tables as described in the Token-Ring  Network  Architecture  

Reference, which also contains the local area network (LAN) IEEE 802.2 LLC standard. Additional 

direct-name services have been added for establishing remote connections. 

Station Type  

A combined station is supported for a balanced (peer-to-peer) configuration on a logical point-to-point 

connection. Either station can asynchronously initiate the transmission of commands at any response 

opportunity. The data source in each combined station controls the data sink in the other station. Data 

transmissions then flow as primary commands, and acknowledgments and status flow as secondary 

responses. 

Response Modes 

Both asynchronous disconnect mode (ADM) and asynchronous balanced mode extended (ABME) are 

supported. ADM is entered by default whenever a link session is initiated, and is switched to ABME only 

after the set asynchronous balanced mode extended (SABME) command sequence is complete. Once 

operating in ABME, information frames containing user data can be transferred. ABME then remains active 

until the LLC session ends, which occurs because of a disconnect (DISC) command sequence or a major 

link error. 

Ethernet Data Packet 

All communication between a local and remote station is accomplished by the transmission of a packet 

that contains the Ethernet headers and trailers and an encapsulated LLC protocol data unit (LPDU). This 

packet format is specifically designed for the SNA protocol, but other protocols can use this format as well. 

The The DLCETHER Frame Encapsulation figure (Figure 7 on page 37) illustrates the Ethernet data 

packet. 

 

 

36 Communications Programming Concepts



The Ethernet data packet consists of the following: 

 LPDU  LLC protocol data unit 

DSAP  Destination service access point (SAP) address field 

SSAP  Source SAP address field 

CRC  Cyclic redundancy check or frame-check sequence 

m bytes  Integer value greater than or equal to 46 and less than or equal to 1500 

n bytes  Integer value greater than or equal to 43 and less than or equal to 1497 

p bytes  Integer value greater than or equal to 0 and less than or equal to 1493
  

Note:   The Preamble and CRC identify both of these as something that is added and deleted by the 

hardware adapter. 

DLCETHER Name-Discovery Services 

In addition to the standard IEEE 802.2 Common Logical Link Protocol support and address resolution 

services, Standard Ethernet data link control (DLCETHER) also provides a name-discovery service that 

allows the operator to identify local and remote stations by name instead of by six-byte physical 

addresses. Each port must have a unique name on the network of up to 20 characters. The character set 

used varies depending on the user’s protocol. Systems network architecture (SNA), for example, requires 

character set A. Additionally, each new service access point (SAP) supported on a particular port can have 

a unique name if desired. 

Each name is added to the network by broadcasting a find local_name  request when the new name is 

being introduced to a given network port. If no response other than an echo results from the request, the 

physical link is declared opened, and the name is assigned to the local port and SAP. If another port on 

the network has already added the name, a ″name found″ response is returned. The 

DLC_NAME_IN_USE  result code indicates that the new attachment was unsuccessful and that a different 

DSAP
Addr.

SSAP
Addr.

Control
Field

Information
Field

2 bytes p bytes1 (2) byte

Leading
Pad

Trailing
PadLPDU

LPDU
Length

2 bytes n bytes

Destination
Address

Source
Address

Type
FieldPreamble Data CRC

8 bytes 6 bytes 6 bytes m bytes2 4

1

DLCETHER Frame Encapsulation

  

Figure  7. DLCETHER  Frame  Encapsulation.  This  diagram  shows  the  Ethernet  data  packet.  The  first  line  contains  the 

following:  preamble  (8 bytes),  destination  address  (6 bytes),  source  address  (6 bytes),  and  type  field  (2 bytes),  data  (m 

bytes),  CRC  (4 bytes).  The  second  line  defines  data  as including  the  following:  LPDU  length  (2 bytes),  leading  pad  (1 

byte),  LPDU,  and  the  trailing  pad  (which  together  with  the LPDU  equal  n bytes).  The  third  line  shows  that  LPDU  

consists  of the following:  DSAP  address,  SSAP  address  (together  with  DSAP  address  consist  of 2 bytes),  control  field  

[1 (2)  byte],  and  the  information  field  (p bytes).

 

Chapter 1. Data Link Control 37



name must be chosen. Calls are established by broadcasting a find remote_name  request to the network 

and waiting for a response from the port with the specified name. The only respondants to a find request 

are those ports that have listen attachments pending, receive colliding find requests, or are already 

attached to the requesting remote station. 

LAN Find Data Format 

Find  Header  

 0-1  Byte length of the find packet including the length field 

2-3  Key 0x0001 

4-n  Remaining control vectors
  

Target  Name  

 0-1  Vector length = 0x000F to 0x0022 

2-3  Key 0x0004 

4-9  Name structure architecture ID: 

4-5  Subvector length = 0x0006 

6-7  Key 0x4011 

8-9  Identifier = 0x8000 (locally administered) 

10-m  Object name: 

10-11  Subvector length = 0x0005 to 0x000C 

12-13  Key 0x4010 

14-m  Target name (1 to 20 bytes)

  

Source  Name  

 0-1  Vector length = 0x000F to 0x0022 

2-3  Key 0x000D 

4-9  Name structure architecture ID: 

4-5  Subvector length = 0x0006 

6-7  Key 0x4011 

8-9  Identifier = 0x8000 (locally administered) 

10-p  Object name: 

10-11  Subvector length = 0x0005 to 0x000C 

12-13  Key 0x4010 

14-p  Source name (1 to 20 bytes)

  

Correlator  

 0-1  Vector length = 0x0008 

2-3  Key 0x4003 

 

38 Communications Programming Concepts



4-7  Correlator value: 

Byte  4 Bit 0 

1 represents a SAP correlator for a find (self) 

Byte  4 Bit 0 

0 represents a link station (LS) correlator for a find (remote)
  

Source  Medium  Access  Control  (MAC)  Address  

 0-1  Vector length = 0x000A 

2-3  Key 0x4006 

4-9  Source MAC address (6 bytes).
  

Source  SAP  

 0-1  Vector length = 0x0005 

2-3  Key 0x4007 

4 Source SAP address
  

LAN Found Data Format 

Found  Header  

 0-1  Byte length of the found packet including the length field 

2-3  Key 0x0002 

4-n  Remaining control vectors
  

Correlator  

 0-1  Vector length = 0x0008 

2-3  Key 0x4003 

4-7  Correlator value: 

Byte  4 Bit 0 

1 represents a SAP correlator for a find (self) 

Byte  4 Bit 0 

0 represents an LS correlator for a find (remote)
  

Source  MAC  Address  

 0-1  Vector length = 0x000A 

2-3  Key 0x4006 

4-9  Source MAC address (6 bytes)
  

Source  SAP  

 0-1  Vector length = 0x0005 

2-3  Key 0x4007 

4 Source SAP address
 

 

Chapter 1. Data Link Control 39



Response  Code  

 0-1  Vector length = 0x0005 

2-3  Key 0x400B 

4 Response code: 

B’0xxx  xxxx’  

Positive response 

B’0000  0001’  

Resources available 

B’1xxx  xxxx’  

Negative response 

B’1000  0001’  

Insufficient resources
  

DLCETHER Direct Network Services 

Some users wish to handle their own unnumbered information packets on the network without the aid of 

the data link layer within the Standard Ethernet Data Link Control (DLCETHER). This decision results in 

protocol constraints from their individual service access points (SAPs). A direct network interface is 

provided that allows an entire packet to be generated and sent by a user after the user SAP has been 

opened. This provision allows full control of every field in the data link header for each write issued. Also 

provided is the ability to view the entire packet contents on received frames. 

The criteria for a direct network write require that: 

v   The local SAP must be valid and open. 

v   The data link control byte must indicate unnumbered information (0x03).

DLCETHER Connection Contention 

Dual paths to the same nodes are detected by the Standard Ethernet Data Link Control (DLCETHER) 

device manager in one of two ways. First, if a call is in progress to a remote node that is also trying to call 

the local node, the incoming find (remote name) request is treated as if a local listen were outstanding. 

Second, if a pending local listen has been acquired by a remote node call and the local user issues a call 

to that remote node after the link session is already active, a result code (DLC_REMOTE_CONN) is 

returned to the user along with the link station correlator of the attachment already active. This allows the 

user to relink attachment pointers. 

DLCETHER Link Session Initiation 

Standard Ethernet data link control (DLCETHER) is initialized at the open link station as a combined 

station in asynchronous disconnect mode (ADM). As a secondary or combined station, DLCETHER is in a 

receive state waiting for a command frame from the primary or combined station. The following command 

frames are accepted by the secondary or combined station at this time: 

 SABME  Set asynchronous balanced mode extended 

XID  Exchange station identification 

TEST  Test link 

UI Unnumbered information - datagram 

DISC  Disconnect
  

Any other command frame is ignored. Once a SABME command frame is received, the station is ready for 

normal data transfer, and the following frames are also accepted: 

 

40 Communications Programming Concepts



I Information 

RR  Receive ready 

RNR  Receive not ready 

REJ  Reject
  

As a primary or combined station, DLCETHER can perform ADM XID, ADM TEST exchanges, send 

datagrams, or connect the remote into the asynchronous balanced mode extended (ABME) command 

frame. XID exchanges allow the primary or combined station to send out its station-specific identification to 

the secondary or combined station and obtain a response. Once an XID response is received, any 

attached information field is passed to the user for further action. 

The TEST exchanges allow the primary or combined station to send out a buffer of information that is 

echoed by the secondary or combined station to test the integrity of the link. 

Initiation of the normal data exchange mode, ABME, causes the primary or combined station to send a 

SABME command frame to the secondary or combined station. Once sent successfully, the connection is 

said to be contacted, and the user is notified. I-frames can now be sent and received between the linked 

stations. 

DLCETHER Link Session Termination  

The Standard Ethernet data link control (DLCETHER) device manager can be terminated by the user or by 

the remote station in the following ways: 

v   Issuing a DLC_HALT_LS  command operation to the DLCETHER device manager will cause the 

primary/combined station to initiate a disconnect (DISC) command packet sequence. 

v   Receiving an inactivity time out can terminate a DLCETHER link session. This action is useful in 

detecting a loss of connection in the middle of a session. 

v   Sending a DISC command packet as a primary combined station will terminate a DLCETHER link 

session. 

Note:   Abnormal termination is caused by certain protocol violations or by resource outages.

DLCETHER Programming Interfaces 

The Standard Ethernet data link control (DLCETHER) conforms to the generic data link control (GDLC) 

guidelines except as follows: 

Note:   The dlc  prefix is replaced with the edl  prefix for the DLCETHER device manager.

 edlclose  DLCETHER is fully compatible with the dlcclose  GDLC interface. 

edlconfig  DLCETHER is fully compatible with the dlcconfig  GDLC interface. No initialization parameters are 

required. 

edlmpx  DLCETHER is fully compatible with the dlcmpx  GDLC interface. 

edlopen  DLCETHER is fully compatible with the dlcopen  GDLC interface. 

edlread  DLCETHER is compatible with the dlcread  GDLC interface with the following conditions: 

v   The readx  subroutines can have DLCETHER data link header information prefixed to the I-field 

being passed to the application. This is optional based on the readx  subroutine data  link  header  

length  extension parameter in the gdl_io_ext  structure. 

v   If this field is nonzero, DLCETHER copies the data link header and the I-field to user space and 

sets the actual length of the data link header into the length field. 

v   If the field is 0, no data link header information is copied to user space. See the DLCETHER 

Frame Encapsulation figure (Figure 7 on page 37) for more details.
 

 

Chapter 1. Data Link Control 41



The following kernel receive  packet  subroutines always have the DLCETHER data link header information 

within the communications memory buffer (mbuf) and can locate it by subtracting the length passed (in the 

gdl_io_ext  structure) from the data offset field of the mbuf structure. 

 edlselect  DLCETHER is fully compatible with the dlcselect  GDLC interface. 

edlwrite  DLCETHER is compatible with the dlcwrite  GDLC interface with the exception that network data 

can only be written as an unnumbered information (UI) packet and must have the complete data 

link header prefixed to the data. DLCETHER verifies that the local (source) service access point 

(SAP) is enabled and that the control byte is UI (0x03). See the DLCETHER Frame Encapsulation 

figure (Figure 7 on page 37). 

edlioctl  DLCETHER is compatible with the dlcioctl  GDLC interface with conditions on these operations 

(described in the following sections): 

v   “DLC_ENABLE_SAP” 

v   “DLC_START_LS” on page 43 

v   “DLC_ALTER” on page 43 

v   “DLC_QUERY_SAP” on page 43 

v   “DLC_QUERY_LS” on page 43 

v   “DLC_ENTER_SHOLD” on page 44 

v   “DLC_EXIT_SHOLD” on page 44 

v   “DLC_ADD_GRP” on page 44 

v   “DLC_ADD_FUNC_ADDR” on page 44 

v   “DLC_DEL_FUNC_ADDR” on page 44 

v   “DLC_DEL_GRP” on page 44 

v   “IOCINFO” on page 44
  

DLC_ENABLE_SAP 

The ioctl  subroutine argument structure for enabling a SAP (dlc_esap_arg) has the following specifics: 

v   The grp_addr field is a 6-byte value as specified in the draft IEEE Standard 802.3 specifications. Octet 

grp_addr[0] specifies the most significant byte and octet grp_addr[5] specifies the least significant byte. 

Each octet of the address field is transmitted, least significant bit first. Group addresses sometimes are 

called multicast addresses. An example of an group address follows: 

0x0900_2B00_0004  

Note:   No checks are made by the DLCETHER device manager as to whether a received packet was 

accepted by the adapter due to a preset network address or group address. 

v   The max_ls (maximum link station) field cannot exceed a value of 255. 

v   The following common SAP flags are not supported: 

 ENCD  Indicates a synchronous data link control (SDLC) serial encoding. 

NTWK  Indicates a teleprocessing network type. 

LINK  Indicates a teleprocessing link type. 

PHYC  Indicates a physical network call (teleprocessing). 

ANSW  Indicates a teleprocessing autocall and autoanswer.
  

v   Group SAPs are not supported, so the num_grp_saps (number of group SAPs) field must be set to 0. 

v   The laddr_name (local address and name) field and its associated length are only used for name 

discovery when the common SAP flag ADDR  field is set to 0. When resolve procedures are used (that 

is, the ADDR  flag is set to 1), DLCETHER obtains the local network address from the device handler 

and not from the dlc_esap_arg  structure. 

v   The local_sap (local service access point) field can be set to any value except the null SAP (0x00) or 

the name-discovery SAP (0xFC). Also, the low-order bit must be set to 0 (B`nnnnnnn0’) to indicate an 

individual address. 

 

42 Communications Programming Concepts



v   No protocol-specific data area is required for the DLCETHER device manager to enable a SAP.

DLC_START_LS  

The ioctl  subroutine argument structure for starting a link station (dlc_sls_arg) has the following specifics: 

v   These common link station flags are not supported: 

 STAT Indicates a station type for SDLC. 

NEGO  Indicates a negotiable station type for SDLC.
  

v   The raddr_name (remote address or name) field is used only for outgoing calls when the 

DLC_SLS_LSVC  common link station flag is active. 

v   The maxif (maximum I-field) length can be set to any value greater than 0. See the DLCETHER Frame 

Encapsulation figure (Figure 7 on page 37) for supported byte lengths. The DLCETHER device manager 

adjusts this value to a maximum of 1493 bytes if set too large. 

v   The rcv_wind (receive window) field can be set to any value between 1 and 127, inclusive. The 

recommended value is 127. 

v   The xmit_wind (transmit window) field can be set to any value between 1 and 127, inclusive. The 

recommended value is 26. 

v   The rsap (remote SAP) field can be set to any value except null SAP (0x00) or the name-discovery SAP 

(0xFC). Also, the low-order bit must be set to 0 (B`nnnnnnn0’) to indicate an individual address. 

v   The max_repoll field can be set to any value between 1 and 255, inclusive. The recommended value is 

8. 

v   The repoll_time field is defined in increments of 0.5 seconds and can be set to any value between 1 

and 255, inclusive. The recommended value is 2, giving a time-out duration of 1 to 1.5 seconds. 

v   The ack_time (acknowledgment time) field is defined in increments of 0.5 seconds and can be set to 

any value between 1 and 255, inclusive. The recommended value is 1, giving a time-out duration of 0.5 

to 1 second. 

v   The inact_time (inactivity time) field is defined in increments of 1 second, and can be set to any value 

between 1 and 255, inclusive. The recommended value is 48, giving a time-out duration of 48 to 48.5 

seconds. 

v   The force_time (force halt time) field is defined in increments of 1 second, and can be set to any value 

between 1 and 16383, inclusive. The recommended value is 120, giving a time-out duration of 

approximately 2 minutes. 

v   No protocol-specific data area is required for the DLCETHER device manager to start a link station.

DLC_ALTER  

The ioctl  subroutine argument structure for altering a link station (dlc_alter_arg) has the following 

specifics: 

v   These alter flags are not supported: 

 RTE  Alters routing. 

SM1, SM2  Sets synchronous data link control (SDLC) control mode.
  

v   No protocol-specific data area is required for the DLCETHER device manager to alter a link station.

DLC_QUERY_SAP 

The device driver-dependent data returned from DLCETHER for this ioctl operation is the ent_ndd_stats_t  

structure defined in the /usr/include/sys/cdli_entuser.h  file. 

DLC_QUERY_LS 

No protocol-specific data area is supported by DLCETHER for this ioctl operation. 

 

Chapter 1. Data Link Control 43



DLC_ENTER_SHOLD 

The enter_short_hold  option is not supported by the DLCETHER device manager. 

DLC_EXIT_SHOLD 

The exit_short_hold  option is not supported by the DLCETHER device manager. 

DLC_ADD_GRP 

The add_group  or multicast address option is supported by the DLCETHER device manager as a six-byte 

value as described above in DLC_ENABLE_SAP  (group address) ioctl operation. 

DLC_ADD_FUNC_ADDR 

The add_functional_address  option is not supported by DLCETHER. 

DLC_DEL_FUNC_ADDR 

The delete_functional_address  option is not supported by DLCETHER. 

DLC_DEL_GRP 

The delete group or multicast option is supported by the DLCETHER device manager. The address being 

removed must match an address that was added with a DLC_ENABLE_SAP  or DLC_ADD_GRP  ioctl 

operation. 

IOCINFO 

The ioctype  variable returned is defined as DD_DLC  definition and the subtype returned is 

DS_DLCETHER. 

Synchronous Data Link Control Overview 

Synchronous data link control (DLCSDLC) is one of the generic data link controls. It provides an access 

procedure for transparent and code-independent information interchange across teleprocessing and data 

networks, as defined in the SDLC  Concepts  document. 

The list of architecture supported by DLCSDLC includes: 

v   Normal disconnected mode (NDM) and normal response mode (NRM) 

v   Two-way alternate (half-duplex) data flow 

v   Secondary station point-to-point, multipoint, and multi-multipoint configurations 

v   Primary station point-to-point and multipoint configurations 

v   Modulo 8 transmit-and-receive sequence counts 

v   Nonextended (single-byte) station address. 

For more information about DLCSDLC controls, see: 

v   “DLCSDLC Device Manager Functions” on page 45 

v   “DLCSDLC Protocol Support” on page 45 

v   “DLCSDLC Programming Interfaces” on page 48 

v   “DLCSDLC Asynchronous Function Subroutine Calls” on page 51

 

44 Communications Programming Concepts



DLCSDLC Device Manager Functions 

Synchronous data link control (SDLC) is split between a physical adapter with its associated device 

handler and a data link control (DLC) component. The synchronous data link control (DLCSDLC) device 

manager is responsible for functions that include: 

v   Sequencing information frames 

v   Creating address and control for transmit frames 

v   Servicing control for receive frames 

v   Handling repoll and inactivity time outs 

v   Generating frame-rejects 

v   Handling transmit windows 

v   Handling reliability counters, availability counters, serviceability counters, error logs, and link traces. 

The device handler and adapter are jointly responsible for the remaining SDLC functions: 

v   Recognizing station addresses 

v   Encoding and decoding non-return-to-zero (inverted) recording (NRZI) and non-return-to-zero (NRZ) 

v   Inserting and deleting 0 bits 

v   Generating and checking frame-check sequences 

v   Generating and checking flags and pads 

v   Filling interframe time 

v   Handling line-attachment protocols, such as RS-232C, X.21, and Smartmodem 

v   Handling fail-safe time outs 

v   Handling autoresponse for nonproductive supervisory command frames.

DLCSDLC Protocol Support 

The synchronous data link control (SDLC) device manager (DLCSDLC) supports SDLC protocol and state 

tables. 

Station Types  

DLCSDLC supports two station types: 

v   Primary stations responsible for control of data interchange on the link 

v   Secondary, or subordinate, stations on the link

Operation Modes 

DLCSDLC supports two modes of operation: 

v   Single-physical unit (PU) mode 

v   Multiple-PU mode 

Single-PU mode allows a single open per port. In this mode, only one DLC_ENABLE_SAP  ioctl operation 

is allowed per port. All additional DLC_ENABLE_SAP  ioctl operations are rejected with an errno  value of 

EINVAL. In addition, only one file descriptor can be used to issue read, write, and ioctl operations. When 

multiple applications wish to use the same port, only one application can obtain the file descriptor, making 

it difficult to share the port. 

SDLC multiple-PU secondary support allows multiple secondary stations (up to 254) to occupy a single 

physical port, and operate concurrently by multiplexing on the single-byte link-station address field found in 

each receive packet. Multiple-PU support also allows multiple applications to issue opens and 

DLC_ENABLE_SAP  and DLC_START_LS  ioctl operations on the same physical port, independent of 

other applications on that port. 

 

Chapter 1. Data Link Control 45



For migration purposes, multiple-PU support is activated only if the first open per port to the /dev/dlcsdlc  

file is extended with the dlc_open_ext  structure and the maxsaps (maximum service access points) field 

is set to a value between 2 and 127, inclusive. This type of open operation allows DLCSDLC to switch 

from the original single-PU operation to multiple-PU operation. Only secondary link stations are allowed to 

be started in multiple-PU mode. 

One channel owns the service access point (SAP) on a single port since a single network configuration is 

supported for each port. However, subsequent DCL_ENABLE_SAP  ioctl operations issued when the port 

is already activated fail with an errno  value of EBUSY  instead of EINVAL. The current SAP correlator 

value (gdlc_sap_corr) is returned on these EBUSY  conditions, enabling subsequent commands to be 

issued to DLCSDLC, even though a different user process may own the SAP. 

Any address between 0x01 and 0xFE may be specified as the local secondary link station address. 

Secondary station address 0x00 is not valid. Station address 0xFF is reserved for broadcast 

communication. Any packets received with address 0xFF are passed to a single active link station for 

subsequent response on a port. Any additional active link stations on that port do not receive the packet. 

Transmission Frames 

All communication between the local and remote stations is accomplished by the transmission of frames. 

The SDLC frame format consists of: 

 Unique  flag  sequence  (B`01111110’) 1 byte 

Station  link  address  field  1 byte 

Control  field  1 byte 

Information  field  n bytes 

Frame  check  sequence  2 bytes 

Unique  flag  sequence  (B`01111110’) 1 byte
  

Three kinds of SDLC frames exist: information, supervisory, and unnumbered. Information frames transport 

sequenced user data between the local and remote stations. Supervisory frames carry control parameters 

relative to the sequenced data transfer. Unnumbered frames transport the controls relative to 

nonsequenced transfers. 

Response Modes 

Both normal disconnect mode (NDM) and normal response mode (NRM) are supported. NDM is entered 

by default whenever a session is initiated, and is switched to NRM only after completion of the set normal 

response mode/unnumbered acknowledge (SNRM/UA) command sequence. Once operating in NRM, 

information frames containing user data can be transferred. NRM then remains active until termination of 

the SDLC session, which occurs due to the disconnect/unnumbered acknowledge (DISC/UA) command 

sequence or a major link error. Once termination is complete, SDLC activity halts, and the NDM/NRM 

modes are not re-entered until another session is initiated. 

Station Link Address Field 

The supported station link address field is nonextended and consists of either the all-stations (broadcast) 

address or a single unique 8-bit value other than the all-zeros (null) address. The secondary station’s 

address can be any value from 1 through 254. Address value 255 (broadcast) is only used by the primary 

station for initial contact of a point-to-point secondary station type, where the secondary’s address is 

unknown. Once contact has been made, the secondary station’s returned address is used exclusively for 

the remainder of the session. 

Control Field (Commands Supported) 

All commands are generated by the primary station for the secondary station. Each command carries the 

poll indicator to request immediate response, except when sending multiple information frames. 

 

46 Communications Programming Concepts



Information frames that are concatenated have the poll indicator turned on in the last frame of the burst. 

The commands supported are: 

 Information  Sends sequenced user data from the primary station to the secondary 

station, and acknowledges any received information frames. 

Receive  Ready  Indicates that receive storage is available and acknowledges any 

received information frames. This receive  ready  command is a 

supervisory command. 

Receive  Not  Ready  Indicates receive storage is not available and acknowledges any 

received information frames. The receive  not ready  command is a 

supervisory command. 

Disconnect  Requests the logical and physical disconnection of the link. The 

disconnect  command is an unnumbered command. 

Set  Normal  Response  Mode  Requests entry into normal response mode and resets the information 

sequence counts. The setnormal  response  mode  command is an 

unnumbered command. 

Test Solicits an echoed TEST response from the secondary station and can 

carry an optional information field. The test  command is an 

unnumbered command. 

Exchange  Station  Identification  Solicits an exchange identification (XID) response that contains either 

the station identification of the secondary station or link negotiation 

information that allows the alteration of the primary or secondary 

relationship by the user. The exchange  station  identification  

command is an unnumbered command.
  

Control Field (Responses Supported) 

All responses are generated by the secondary station for the primary station. Each response carries the 

final indicator to specify send completion, except when sending multiple information frames. Information 

frames that are concatenated have the final indicator on in the last frame of the burst. The responses 

supported are: 

 Information  Sends sequenced user data from the secondary station to the primary 

station. It also acknowledges any received information frames. 

Receive  Ready  Indicates receive storage is available and acknowledges any received 

information frames. The receive  ready  response is a supervisory 

response. 

Receive  Not  Ready  Indicates receive storage is not available and acknowledges any 

received information frames. The receive  not ready  response is a 

supervisory response. 

Frame  Reject  Indicates that the secondary station detects a problem in a command 

frame that otherwise had a valid frame check sequence in normal 

response mode. The frame  reject  response is an unnumbered 

response. The types of frame  reject  supported are: 

0x01  Incorrect or nonimplemented command received. 

0x03  Incorrect information field attached to command received. 

0x04  I-field exceeded buffer capacity (this value is not supported by 

DLCSDLC). Each overflowed receive buffer is passed to the 

user with an indication of overflow. 

0x08  Number received (NR) sequence count is out of range. 

Disconnected  Mode  Indicates that the secondary station is in normal disconnect mode. The 

disconnected mode response is an unnumbered response. 

Unnumbered  Acknowledge  Acknowledges receipt of the set normal response mode or disconnect 

commands that were sent by the primary station. The unnumbered 

acknowledge response is an unnumbered response. 

 

Chapter 1. Data Link Control 47



Test Echoes the TEST command frame sent by the primary station, and 

carries the information field received only if sufficient storage is 

available. The test  response is an unnumbered response. 

Exchange  Station  Identification  Contains the station identification of the secondary station. The 

exchange  station  identification  response is an unnumbered response.
  

DLCSDLC Programming Interfaces 

The synchronous data link control (SDLC) device manager (DLCSDLC) conforms to the generic data link 

control (GDLC) guidelines except where noted in the following list. Additional structures and definitions for 

DLCSDLC can be found in the /usr/include/sys/sdlextcb.h  file. 

Note:   The GDLC entry-point prefix dlc  is replaced with the sdl  prefix to denote DLCSDLC device 

manager operation.

 sdlclose  DLCSDLC is fully compatible with the dlcclose  GDLC interface. 

sdlconfig  DLCSDLC is fully compatible with the dlcconfig  GDLC interface. No initialization parameters are 

required. 

sdlmpx  DLCSDLC is fully compatible with the dlcmpx  GDLC interface. 

sdlopen  DLCSDLC is fully compatible with the dlcopen  GDLC interface with the following conditions: 

v   Single-physical unit (PU) mode allows only one open per port. The open can come from either 

an application or kernel user, but multiple users cannot share the same port. Single-PU mode is 

entered by issuing the open without an extension, or by issuing an extended open with the 

maxsaps (maximum service access points) field set to a value of 0 or 1. Single-PU mode is the 

default. 

v   Multiple-PU mode allows multiple processes to open a secondary port. Multiple-PU mode is 

entered by issuing an extended open with the maxsaps field set to a value greater than 1.

Note:  Only one user process is allowed to open a primary port. 

sdlread  DLCSDLC is compatible with the dlcread  GDLC interface, with the following conditions: 

v   Network data is defined as any data received from data communication equipment (DCE) that is 

not specific to the SDLC session protocol. Examples are X.21 call-progress signals or 

Smartmodem call-establishment messages. This data must be interpreted differently, depending 

on the physical attachment in use. 

v   Datagram receive data is not supported. 

sdlselect  DLCSDLC is fully compatible with the dlcselect  GDLC interface. 

sdlwrite  DLCSDLC is compatible with the dlcwrite  GDLC interface, with the exception that network data 

and datagram data are not supported in the send direction. Network data such as X.21 or 

Smartmodem call-establishment data is sent using the DLC_ENABLE_SAP  ioctl operation. 

sdlioctl  DLCSDLC is compatible with the dlcioctl  GDLC interface, with conditions on the following 

operations: 

v   “DLC_ENABLE_SAP” on page 49 

v   “DLC_START_LS” on page 49 

v   “DLC_ALTER” on page 51 

v   “DLC_QUERY_SAP” on page 51 

v   “DLC_QUERY_LS” on page 51 

v   “DLC_ENTER_SHOLD” on page 51 

v   “DLC_EXIT_SHOLD” on page 51 

v   “DLC_ADD_GRP” on page 51 

v   “DLC_ADD_FUNC_ADDR” on page 51 

v   “DLC_DEL_FUNC_ADDR” on page 51 

v   “IOCINFO” on page 51

The following sections describe these conditions.
 

 

48 Communications Programming Concepts



DLC_ENABLE_SAP 

DLCSDLC supports two modes of operation: 

v   Single-PU mode is entered through the open to DLCSDLC. In this mode, only one DLC_ENABLE_SAP  

ioctl operation is allowed per port. All additional DLC_ENABLE_SAP  ioctl operations are rejected with 

an errno  value of EINVAL. 

v   Multiple-PU mode is also entered through the open to DLCSDLC. In this mode, up to 254 

DLC_ENABLE_SAP  ioctl operations can be issued. The first DLC_ENABLE_SAP  ioctl operation 

establishes the physical connection. All subsequent DLC_ENABLE_SAP  ioctls return an errno  value of 

EBUSY, but pass back the gdlc_sap_corr value of the first successful DLC_ENABLE_SAP  so that link 

stations can be started. 

The ioctl  subroutine argument structure for enabling a service access point (SAP) (dlc_esap_arg) has the 

following specifics: 

v   The func_addr_mask (function address mask) field is not supported. 

v   The grp_addr (group address) field is not supported. 

v   The max_ls (maximum link stations) field cannot exceed a value of 254 on a multidrop primary link or a 

multiple-PU secondary link, and cannot exceed 1 on a point-to-point link. 

v   The following common SAP flag is not supported: 

 ADDR  Specifies local address or name indicator.
  

v   The laddr_name (local address or name) field is not supported, so the length of the local address/name 

field is ignored. 

v   Group SAPs are not supported, so the num_grp_saps (number of group SAPs) and grp_sap (group 

SAP - n) fields are ignored. 

v   The local_sap (local service access point) field is not supported and is ignored. 

v   The protocol specific data area is identical to the start device structure required by the multiprotocol 

device handler. See the /usr/include/sys/mpqp.h  file and the t_start_dev  structure for more details.

DLC_START_LS  

DLCSDLC supports up to 254 concurrent link stations (LSs) on a single port when it operates as a 

multidrop primary node or a multiple-PU secondary node. Only one LS can be started when DLCSDLC 

operates on a point-to-point connection, or when it is a single-PU secondary node on a multidrop 

connection. 

v   The following common link station flags are not supported: 

 LSVC  LS virtual call is ignored. 

ADDR  Address indicator must be set to 1 to indicate that no name-discovery services are provided.
  

v   The len_raddr_name (length of remote address or name) field must be set to 1. 

v   The raddr_name (remote address or name) field is the one-byte station address of the remote node in 

hexadecimal. 

v   The maxif (maximum I-field length) field can be set to any value greater than 0. DLCSDLC adjusts this 

value to a maximum of 4094 bytes if set too large. 

v   The rcv_wind (maximum receive window) field can be set to any value from 1 to 7. The recommended 

value is 7. 

v   The xmit_wind (maximum transmit window) field can be set to any value from 1 to 7. The recommended 

value is 7. 

v   The rsap (remote SAP) field is ignored. 

v   The rsap_low (remote SAP low range) field is ignored. 

v   The rsap_high (remote SAP high range) field is ignored. 

 

Chapter 1. Data Link Control 49



v   The max_repoll field can be set to any value from 1 to 255, inclusive. The recommended value is 15. 

v   The repoll_time field is defined in increments of 0.1 second and can be set to any value from 1 to 255. 

The recommended value is 30, giving a time-out duration of approximately 30 seconds. 

v   The ack_time (acknowledgment time) field is ignored. 

v   The inact_time (inactivity time) field is defined in increments of 1 second and can be set to any value 

from 1 to 255, inclusive. The recommended value is 30, giving a time-out duration of approximately 30 

seconds. 

v   The force_time (force halt time) field is defined in increments of 1 second and can be set to any value 

from 1 to 16383, inclusive. The recommended value is 120, giving a time-out duration of approximately 

2 minutes. 

v   The following protocol-specific data area must be appended to the generic start LS argument structure 

(dlc_sls_arg). This structure provides DLCSDLC with additional protocol-specific configuration 

parameters: 

struct    sdl_start_psd  

} 

  uchar_t     duplex;    /*link  station  xmit/receive  capability  */ 

  uchar_t     secladd;   /* secondary  station  local  address  */ 

  uchar_t     prirpth;   /* primary  repoll  timeout  threshold  */ 

  uchar_t     priilto;   /* primary  idle  list  timeout  */ 

  uchar_t     prislto;   /* primary  slow  list  timeout  */ 

  uchar_t     retxct;    /*  retransmit  count  ceiling  */  

  uchar_t     retxth;    /*  retransmit  count  threshold  */ 

  uchar_t     reserved;   /* currently  not  used  */  

{; 

The protocol-specific parameters are as follows: 

 duplex  Specifies LS transmit-receive capability. This field must be set to 0, indicating two-way alternating 

capability. 

secladd  Specifies the secondary station link address of the local station. If the local station is negotiable, this 

address is used only if the local station becomes a secondary station from role negotiation. This field 

overlays the mpioctl  (CIO_START) poll address variable, poll_addr. 

prirpth  Specifies primary repoll threshold. This field specifies the number of contiguous repolls that cause the 

local primary to log a temporary error. Any value from 1 to 100 can be specified. The recommended 

value is 10. 

priilto  Specifies primary idle list time out. If the primary station has specified the Hold  Link  on Inactivity  

parameter and then discovers that a secondary station is not responding, the primary station places 

that secondary station on an idle  list. The primary station polls a station on the idle list less frequently 

than the other secondary stations to avoid tying up the network with useless polls. This field sets the 

amount of time (in seconds) that the primary station should wait between polls to stations on the idle 

list. Any value from 1 to 255, inclusive, may be specified. The recommended value is 60, giving a 

time-out duration of approximately 60 seconds. 

prislto  Specifies primary slow list time out. When the primary station discovers that communication with a 

secondary station is not productive, it places that station on a slow  list. The primary station polls a 

station on the slow list less frequently than the other secondary stations to avoid tying up the network 

with useless polls. This field sets the amount of time (in seconds) that the primary station should wait 

between polls to stations on the slow list. Any value from 1 to 255, inclusive, can be specified. The 

recommended value is 20, giving a time-out duration of approximately 20 seconds. 

retxct  Indicates retransmit count. This field specifies the number of contiguous information frame bursts 

containing the same data that the local station retransmits before it declares a permanent transmission 

error. Any value from 1 to 255, inclusive, can be specified. The recommended value is 10. 

retxth  Indicates retransmit threshold. This field specifies the maximum number of information frame 

retransmissions allowed as a percentage of total information frame transmission (sampled only after a 

block of information frames has been sent). If the number of retransmissions exceeds the specified 

percentage, the system declares a temporary error. Any value from 1 to 100% can be specified. The 

recommended value is 10%.
 

 

50 Communications Programming Concepts



DLC_ALTER  

Specifics for the ioctl  subroutine argument structure to alter a link station (dlc_alter_arg) include: 

v   These alter flags are not supported: 

 AKT  Alter acknowledgment time out. 

RTE  Alter routing.
  

v   The act_time (acknowledge time out) field is ignored. 

v   The routing data field is ignored. 

v   No protocol-specific data area is required for DLCSDLC to alter its configuration.

DLC_QUERY_SAP 

No device driver-dependent data area is supported by DLCSDLC for the query  sap  ioctl operation. 

DLC_QUERY_LS 

No protocol-specific data area is supported by DLCSDLC for the query  link  station  ioctl operation. 

DLC_ENTER_SHOLD 

DLCSDLC does not currently support the enter_short_hold  option. 

DLC_EXIT_SHOLD 

DLCSDLC does not currently support the exit_short_hold  option. 

DLC_ADD_GRP 

The add_group  or multicast address option is not supported by DLCSDLC. 

DLC_ADD_FUNC_ADDR 

The add_functional_address  option is not supported by DLCSDLC. 

DLC_DEL_FUNC_ADDR 

The delete_functional_address  option is not supported by DLCSDLC. 

IOCINFO 

The ioctype  variable is defined as a DD_DLC  definition and the subtype returned is DS_DLCSDLC. 

DLCSDLC Asynchronous Function Subroutine Calls 

Datagram data received is not supported, and the synchronous data link control (SDLC) device manager 

(DLCSDLC) never calls the rcvd_fa  function. 

DLCSDLC is compatible with each of the other asynchronous function subroutines for the kernel user. 

Qualified Logical Link Control (DLCQLLC) Overview 

Qualified logical link control (QLLC) data link control (DLCQLLC) is one of the generic data link controls. It 

provides an access procedure to attach to X.25 packet-switching networks. 

DLCQLLC fully supports the 1980 and 1984 versions of the CCITT recommendation relevant to Systems 

Network Architecture (SNA)-to-SNA connections. It allows point-to-point connections over an X.25 network 

between a pair of primary and secondary link stations. 

 

Chapter 1. Data Link Control 51



DLCQLLC provides two-way alternate (half-duplex) data flow over switched or permanent virtual circuits. 

For more information about the DLCQLLC controls, see: 

v   “DLCQLLC Device Manager Functions” 

v   “DLCQLLC Programming Interfaces” 

v   “DLCQLLC Asynchronous Function Subroutine Calls” on page 57 

DLCQLLC supports the following X.25 optional facilities: 

v   Modulo 8/128 packet sequence numbering 

v   Closed user groups 

v   Recognized private operating agencies 

v   Network user identification 

v   Reverse charging 

v   Packet-size negotiation 

v   Window-size negotiation 

v   Throughput class negotiation

DLCQLLC Device Manager Functions 

DLCQLLC, as described in the X.25  Interface  for  Attaching  SNA  Nodes  to Packet-Switch  Data  Networks  

and X.25  1984  Interface  Architectural  Reference, is split between a physical adapter with its associated 

device handler and a data link control component. The DLC component is responsible for the following 

QLLC functions: 

v   Creation of address and control for transmit frames 

v   Service of control for receive frames 

v   Repoll and inactivity time outs 

v   Frame-reject generation 

v   Facility negotiation 

The data link control and device handler components are jointly responsible for: 

v   Establishment of an X.25 virtual circuit 

v   Clearing of an X.25 virtual circuit 

v   Notification of exceptional conditions to higher levels 

v   Reliability/availability/serviceability (RAS) counters, error logs, and link traces 

The device handler and adapter are jointly responsible for: 

v   Packetization of I-frames 

v   Packet sequencing 

v   Link access protocol balance (LAPB) procedures as defined by CCITT recommendation X.25 

v   Physical-line attachment protocols

DLCQLLC Programming Interfaces 

QLLC data link control (DLCQLLC) conforms to the GDLC guidelines except where noted below. 

Note:   The dlc  prefix is replaced with qlc  prefix for DLCQLLC device manager.

 qlcclose  DLCQLLC is fully compatible with the dlcclose  GDLC interface. 

qlcconfig  DLCQLLC is fully compatible with the dlcconfig  GDLC interface. No initialization parameters are 

required. 

qlcmpx  DLCQLLC is fully compatible with the dlcmpx  GDLC interface. 

 

52 Communications Programming Concepts



qlcopen  DLCQLLC is fully compatible with the dlcopen  GDLC interface. 

qlcread  DLCQLLC is compatible with the dlcread  GDLC interface, except that network data and datagram 

receive data are not supported. 

qlcselect  DLCQLLC is fully compatible with the dlcselect  GDLC interface. 

qlcwrite  DLCQLLC is compatible with the dlcwrite  GDLC interface with the exception that network data and 

datagram data are not supported. 

qlcioctl  DLCQLLC is compatible with the dlcioctl  GDLC interface with conditions on the following 

operations: 

v   “DLC_ENABLE_SAP” 

v   “DLC_START_LS” 

v   “DLC_ALTER” on page 56 

v   “DLC_QUERY_SAP” on page 56 

v   “DLC_QUERY_LS” on page 56 

v   “DLC_ENTER_SHOLD” on page 57 

v   “DLC_EXIT_SHOLD” on page 57 

v   “DLC_ADD_GRP” on page 57 

v   “DLC_ADD_FUNC_ADDR” on page 57 

v   “DLC_DEL_FUNC_ADDR” on page 57 

v   “IOCINFO” on page 57

The following sections describe these conditions.
  

DLC_ENABLE_SAP 

The ioctl  subroutine argument structure for enabling a service access point (SAP), dlc_esap_arg, has the 

following specifics: 

v   The function address mask field is not supported. 

v   The group address field is not supported. 

v   The max_ls field cannot exceed a value of 255. 

v   The common SAP flags are not supported. 

v   Group SAPs are not supported, so the number of group SAPs and group SAP-n fields are ignored. 

v   The local SAP field is not supported and is ignored. 

v   The protocol-specific data area is not required.

DLC_START_LS  

DLCQLLC supports up to 255 concurrent link stations (LS) on a single SAP. Each active link station 

becomes a virtual circuit to the X.25 device. The actual number of possible link stations may be less than 

255, based on the number of virtual circuits available from the X.25 device. 

The ioctl  subroutine argument structure for starting an LS, dlc_sls_arg, has the following specifics: 

v   The following common link station flag is not supported: 

 ADDR  The address indicator flag is ignored.
  

v   The raddr_name (remote address) field is used only for outgoing calls when the DLC_SLS_LSVC  

common link station flag is active. Two formats are supported: 

–   For an X.25 switched virtual circuit, the raddr_name field is the remote’s X.25 network user address 

(NUA), encoded as a string of ASCII digits. 

–   For an X.25 permanent virtual circuit, the raddr_name field is the logical channel number, encoded 

as a string of ASCII digits prefaced by the lowercase letter p or an uppercase P.

 

Chapter 1. Data Link Control 53



Examples of valid remote addresses are: 

 Switched Virtual Circuit 23422560010502  

Permanent Virtual Circuit P13
  

v   If the CCITT attribute is set to 1980 when configuring the X.25 adapter, the rcv_window (maximum 

receive window) field can be set to any value from 1 to 7. If the CCITT configuration attribute is set to 

1984, the rcv_window field can be set to any value from 1 to 128. 

v   If the CCITT attribute is set to 1980 when configuring the X.25 adapter, the xmit_wind (maximum 

transmit window) field can be set to any value from 1 to 7. If the CCITT configuration attribute is set to 

1984, the xmit_wind field can be set to any value from 1 to 128. 

v   The RSAP (remote SAP) field is ignored. 

v   The RSAP low (remote SAP low range) field is ignored. 

v   The RSAP high (remote SAP high range) field is ignored. 

v   The repoll time field is defined in increments of 1 second. 

v   The ack_time (acknowledgment time) field is ignored. 

v   A protocol-specific data area must be appended to the generic start  link  station  argument (dlc_sls_arg).

Example of Protocol-Specific Configuration Parameters 

The following is an example of a structure that provides DLCQLLC with additional protocol-specific 

configuration parameters: 

struct  qlc_start_psd  

{ 

  char      listen_name[8]; 

  unsigned  short  support_level; 

  struct    sna_facilities_type  facilities;  

}; 

The protocol-specific parameters are: 

 listen_name  The name of the entry in the X.25 routing list that specifies the characteristics of incoming 

calls. This field is used only when a station is listening; that is, when the LSVC  flag in the 

dlc_sls_arg  argument structure is 0. 

support_level  The version of CCITT recommendation X.25 to support. It must be the same as or earlier 

than the CCITT attribute specified for the X.25 adapter. 

facilities  A structure that contains the X.25 facilities required for use on the virtual circuit for the 

duration of this attachment (See “Facilities Structure”).
  

Facilities Structure 

The following is an example of a structure that provides DLCQLLC with facilities parameters: 

struct  sna_facilities_type  

{ 

  unsigned        facs:1;  

  unsigned        rpoa:1;  

  unsigned        psiz:1;  

  unsigned        wsiz:1;  

  unsigned        tcls:1;  

  unsigned        cug  :1;  

  unsigned        cugo:1;  

  unsigned        res1:1;  

  unsigned        res2:1;  

  unsigned        nui  :1;  

  unsigned            :21;  

  unsigned  char   recipient_tx_psiz; 

  unsigned  char   originator_tx_psiz; 

  unsigned  char   recipient_tx_wsiz; 

  unsigned  char   originator_tx_wsiz; 

  unsigned  char   recipient_tx_tcls;

 

54 Communications Programming Concepts



unsigned  char   originator_tx_tcls; 

  unsigned  short  reserved;  

  unsigned  short  cug_index; 

  unsigned  short  rpoa_id_count; 

  unsigned  short  rpoa_id[30];  

  unsigned  int    nui_length; 

  char            nui_data[109];  

};  

In the following list of fields, bits with a value of 0 indicate False and with a value of 1 indicate True. 

 facs Indicates whether there are any facilities being requested. If this field is set to 0, all the remaining facilities 

structure is ignored. 

rpoa Indicates whether to use a recognized private operating agency. 

psiz Indicates whether to use a packet size other than the default. 

wsiz Indicates whether to use a window size other than the default. 

tcls Indicates whether to use a throughput class other than the default. 

cug Indicates whether to supply an index to a closed user group. 

cugo Indicates whether to supply an index to a closed user group with outgoing access. 

res1 Reserved. 

res2 Reserved. 

nui Indicates whether network user identification (NUI) is supplied to the network.
  

The remaining fields provide the values or data associated with each of the above facilities bits that are 

set to 1. If the corresponding facilities bit is set to 0, each of these fields is ignored: 

 recipient_tx_psiz Indicates the coded value of packet size to use when sending data to the node that initiated 

the call. The values are coded as follows: 

0x06 = 64 octets 

0x07 = 128 octets 

0x08 = 256 octets 

0x09 = 512 octets 

0x0A = 1024 octets 

0x0B = 2048 octets 

0x0C = 4096 octets 

Note:  4096-octet packets are allowed only in the 1984 CCITT recommendation. For the 

call to be valid, the value of the X.25 CCITT attribute and the corresponding QLLC attribute 

must be set to 1984. 

originator_tx_psiz Indicates the coded value of packet size to use when sending data from the node that 

initiated the call. The values are coded as for the recipient_tx_psiz field. See 55. 

recipient_tx_wsiz Reserved for QLLC use. 

originator_tx_wsiz Reserved for QLLC use. 

 

Chapter 1. Data Link Control 55



recipient_tx_tcls Indicates the coded values of the throughput class requested for this virtual circuit when 

sending data to the node that initiated the call. The values are coded as follows: 

0x07 = 1200 bits per second 

0x08 = 2400 bits per second 

0x09 = 4800 bits per second 

0x0A = 9600 bits per second 

0x0B = 19200 bits per second 

0x0C = 48000 bits per second 

originator_tx_tcls Indicates the coded values of the throughput class requested for this virtual circuit when 

sending data from the node that initiated the call. The values are coded as for the 

recipient_tx_tcls field. See 56. 

cug_index Indicates the decimal value of the index of the closed user group (CUG) within which this 

call is to be placed. This field is used for either CUG or CUG with outgoing access (CUGO) 

facilities. 

rpoa_id_count Indicates the number of recognized private operating agency (RPOA) identifiers to supply in 

the rpoa_id field. See 56. 

rpoa_id Indicates an array of RPOA identifiers that contains the number of identifiers specified in 

the rpoa_id_count field. The RPOA identifiers appear in the order in which they will be 

traversed when the call is initiated. The content of each array element is the decimal value 

of an RPOA identifier. See 56. 

nui_length The length, in bytes, of the nui_data field. See 56. 

nui_data Network user identification (NUI) data. The contents of this array are defined by the user in 

conjunction with the network provider. Note that the maximum allowable X.25 facilities 

string is 109 bytes. Even if NUI is the only facility requested, the facility code occupies one 

byte, so it is impossible to send more than 108 bytes of NUI data. Each additional facility 

requested reduces the space available for NUI data.
  

DLC_ALTER  

The ioctl  subroutine argument structure for altering a link station, dlc_alter_arg, has the following 

specifics: 

v   The following alter flags are not supported: 

 AKT  Alter acknowledgment time out. 

RTE  Alter routing. 

XWIN  Alter transmit window size.
  

v   The acknowledge time out field is ignored. 

v   The routing data field is ignored. 

v   The transmit window size field is ignored. 

v   No protocol-specific data area is required for DLCQLLC to alter its configuration.

DLC_QUERY_SAP 

The device driver dependent data returned from DLCQLLC for this ioctl operation is the cio_stats_t  

structure defined in the /usr/include/sys/comio.h  file. 

DLC_QUERY_LS 

There is no protocol specific data area supported by DLCQLLC for the query  link  station  ioctl operation. 

 

56 Communications Programming Concepts



DLC_ENTER_SHOLD 

The enter_short_hold  option is not supported by DLCQLLC. 

DLC_EXIT_SHOLD 

The exit_short_hold  option is not supported by DLCQLLC. 

DLC_ADD_GRP 

The add_group  or multicast address option is not supported by DLCQLLC. 

DLC_ADD_FUNC_ADDR 

The add_functional_address  option is not supported by DLCQLLC. 

DLC_DEL_FUNC_ADDR 

The delete_functional_address  option is not supported by DLCQLLC. 

IOCINFO 

The ioctype  variable is defined as a DD_DLC  definition and the subtype is DS_DLCQLLC. 

DLCQLLC Asynchronous Function Subroutine Calls 

Network and datagram data are not supported, so the rcvn_fa  and rcvd_fa  data functions are never 

called by DLCQLLC. 

DLCQLLC is compatible with each of the other asynchronous function subroutine calls for the kernel user. 

Data Link Control FDDI (DLC FDDI) Overview 

Fiber distributed data interface (FDDI) data link control (DLC FDDI) is a device manager that follows the 

generic interface definition (GDLC). This data link control (DLC) device manager provides a passthrough 

capability that allows transparent data flow as well as an access procedure to transfer four types of data 

over a FDDI network: 

v   Datagrams 

v   Sequenced data 

v   Identification data 

v   Logical link controls 

The access procedure relies on functions provided by the FDDI Device Handler and the FDDI Network 

Bus Master adapter to transfer data with address checking, token generation, or frame check sequences. 

The DLC FDDI device manager provides the following functions and services: 

v   “DLC FDDI Device Manager Functions” on page 58 

v   “DLC FDDI Protocol Support” on page 59 

v   “DLC FDDI Name-Discovery Services” on page 60 

v   “DLC FDDI Direct Network Services” on page 63 

v   “DLC FDDI Connection Contention” on page 63 

v   “DLC FDDI Link Sessions” on page 63 

v   “DLC FDDI Programming Interfaces” on page 64

 

Chapter 1. Data Link Control 57



DLC FDDI Device Manager Nodes 

The DLC FDDI device manager operates between two nodes on a fiber distributed data interface (FDDI) 

local area network (LAN), using IEEE 802.2 logical link control (LLC) procedures and control information 

as defined in the Token-Ring  Network  Architecture  Reference  and media access control procedures as 

defined in the ANSI standard publication Fiber  Distributed  Data  Interface-Token  Ring  Media  Access  

Control. The DLC FDDI device manager supports: 

v   Asynchronous disconnected mode (ADM) and asynchronous balanced mode extended (ABME) 

v   Two-way simultaneous (full-duplex) data flow 

v   Multiple point-to-point logical attachments on the LAN using network and service access point (SAP) 

addresses 

v   Peer-to-peer relationship with remote station 

v   Full six-byte addressing 

v   Both name-discovery and address-resolve services 

v   Source-routing generation for up to 14 bridge hops 

v   Asynchronous transmission with eight possible priority levels. 

The DLC FDDI provides full-duplex, peer-data transfer capabilities over a FDDI LAN. The FDDI LAN must 

use the ANSI X3.139 medium access control (MAC) procedure and a superset of the IEEE 802.2 LLC 

protocol as described in the Token-Ring  Network  Architecture  Reference. 

Multiple FDDI adapters are supported, with a maximum of 126 SAP users per adapter. A total of 255 link 

stations per adapter are supported, which are distributed among the active SAP users. 

The term logical  link  control  (LLC) is used to describe the collection of manager, access channel, and link 

station subcomponents of a generic data link control GDLC component such as DLC FDDI device 

manager, as illustrated in the DLC[TOKEN, 8032, ETHER, or FDDI] Component Structure figure (Figure 4 

on page 14). 

Each link station (LS) controls the transfer of data on a single logical link. The access channel performs 

multiplexing and demultiplexing for message units flowing from the link stations and manager to MAC. The 

DLC manager: 

v   Establishes and terminates connections 

v   Creates and deletes an LS 

v   Routes commands to the proper link station.

DLC FDDI Device Manager Functions 

The data link control (DLC) fiber distributed data interface (FDDI) device manager and transport medium 

use two functional layers, medium access control (MAC) and logical link control (LLC), to maintain reliable 

link-level attachments, guarantee data integrity, negotiate exchanges of identification, and support both 

connection and non-connection oriented services. 

The FDDI adapter and device handler are responsible for the following MAC functions: 

v   Handling ring-insertion protocol 

v   Detecting and creating tokens 

v   Encoding and decoding the serial bit-stream data 

v   Checking received network and group addresses 

v   Routing of received frames based on the LLC/MAC/SMT indicator and using the destination service 

access point (SAP) address if an LLC frame was received 

v   Generating frame-check sequences (FCS) 

 

58 Communications Programming Concepts



v   Handling frame delimiters, such as start or end delimiters and frame-status field 

v   Handling fail-safe time outs 

v   Handling network recovery. 

The FDDI Device Manager is responsible for additional MAC functions, such as: 

v   Framing control fields on transmit frames 

v   Network addressing on transmit frames 

v   Routing information on transmit frames 

v   Handling network recovery. 

The FDDI Device Manager is also responsible for all LLC functions: 

v   Handling remote connection services using the address-resolve and name-discovery procedures 

v   Sequencing of link stations on a given port 

v   Generating SAP addresses on transmit frames 

v   Generating IEEE 802.2 LLC commands and responses on transmit frames 

v   Recognizing and routing received frames to the proper service access point 

v   Servicing of IEEE 802.2 LLC commands and responses on receive frames 

v   Handling frame sequencing and retries 

v   Handling fail-safe and inactivity time outs 

v   Handling reliability counters, availability counters, serviceability counters, error logs, and link trace.

DLC FDDI Protocol Support 

The data link control (DLC) fiber distributed data interface (FDDI) device manager supports the logical link 

control (LLC) protocol and state tables described in the Token-Ring  Network  Architecture  Reference, which 

also contains the local area network (LAN) IEEE 802.2 LLC standard. Both address-resolve services and 

name-discovery services are supported for establishing remote attachments. A direct network interface is 

also supported to allow users to transmit and receive unnumbered information packets through DLC FDDI 

without any protocol handling by the data link layer. 

Station Type  

A combined station is supported for a balanced (peer-to-peer) configuration on a logical point-to-point 

connection. This allows either station to initiate asynchronously the transmission of commands at any 

response opportunity. The sender in each combined station controls the receiver in the other station. Data 

transmissions then flow as primary commands, and acknowledgments and status flow as secondary 

responses. 

Response Modes 

Both asynchronous disconnect mode (ADM) and asynchronous balanced mode extended (ABME) are 

supported. ADM is entered by default whenever a link session is initiated. It switches to ABME only after 

the set asynchronous balanced mode extended (SABME) packet sequence is complete by way of the 

DLC_CONTACT  command or a remote-initiated SABME packet. Once operating in ABME, information 

frames containing user data can be transferred. ABME then remains active until the LLC session ends, 

which occurs because of a disconnect (DISC) packet sequence or a major link error. 

FDDI Data Packet 

All communication between a local and remote station is accomplished by the transmission of a packet 

that contains FDDI headers and trailers, as well as an encapsulated LLC link protocol data unit (LPDU). 

The DLC FDDI Frame Encapsulation figure (Figure 8 on page 60) describes the FDDI data packet. 

 

 

Chapter 1. Data Link Control 59



The FDDI data packet consists of the following: 

 SFS  Start-of-frame sequence, including the preamble and starting delimiter 

FC  Frame control field 

LPDU  LLC protocol data unit 

DSAP  Destination service access point (SAP) address field 

SSAP  Source SAP address field 

FCS  Frame-check sequence or cyclic redundancy check 

EFS  End-of-frame sequence, including the ending delimiter and frame status 

m bytes  Integer value greater than or equal to 0 and less than or equal to 30 

n bytes  Integer value greater than or equal to 3 and less than or equal to 4080 

p bytes  Integer value greater than or equal to 0 and less than or equal to 4077
  

Notes:   

1.   SFS, FCS, and EFS are added and deleted by the hardware adapter. Three bytes of alignment always 

precede the FC field when located in memory buffers. 

2.   The maximum byte length of a transfer unit has been set to 4096 bytes to align to the size of an mbuf 

cluster (where a transfer unit is defined as fields FC through LPDU, plus a three-byte front alignment 

pad).

DLC FDDI Name-Discovery Services 

In addition to the standard IEEE 802.2 Common Logical Link Protocol support and address resolution 

services, the data link control (DLC) fiber distributed data interface (FDDI) also provides a name-discovery 

service that allows the operator to identify local and remote stations by name instead of by six-byte 

physical addresses. Each port must have a unique name on the network of up to 20 characters. The 

character set used varies depending on the user’s protocol. Systems Network Architecture (SNA), for 

example, requires character set A. Additionally, each new service access point (SAP) supported on a 

particular port can have a unique name if desired. 

Each name is added to the network by broadcasting a find (local name) request when the new name is 

being introduced to a given network port. If no response other than an echo results from the find (local 

<4096 bytes in memory

DSAP
Addr.

SSAP
Addr.

Control
Field

Information
Field

2 bytes p bytes1 (2) byte

Destination
Address

Source
Address LPDU

6 bytes

F
C

n bytes

DLC FDDI Frame Encapsulation

m bytes

on media

SFS

3 1

FCS EFSRouting
Information

6 bytes

  

Figure  8. DLC  FDDI  Frame  Encapsulation.  This  diagram  shows  the  FDDI  data  packet  containing  the  following:  SFS  (3 

bytes),  FC  (1 byte),  destination  address  (6 bytes),  and  source  address  (6 bytes),  routing  information  (m bytes),  LPDU  

length  (n bytes),  FCS,  and  EFS.  Another  line  shows  that  LPDU  consists  of the  following:  DSAP  address,  SSAP  

address  (together  with  DSAP  address  consist  of 2 bytes),  control  field  [1 (2) byte],  and  the  information  field  (p bytes).

 

60 Communications Programming Concepts



name) request after sending it the number of times specified, the physical link is declared opened. The 

name is then assigned to the local port and SAP. If another port on the network has already added the 

name or is in the process of adding a name, a name-found response is sent to the station that issued the 

find request, and the new attachment fails with a result code (DLC_NAME_IN_USE). The code indicates a 

different name must be chosen. Calls are established by broadcasting a find (remote name) request to the 

network and waiting for a response from the port with the specified name. Only those ports that have listen 

attachments pending, receive colliding find requests, or are already attached to the requesting remote 

station answer a find request. 

LAN Find Data Format 

Find  Header  

 0-1  Byte length of the find packet including the length field 

2-3  Key 0x0001 

4-n  Remaining control vectors
  

Target  Name  

 0-1  Vector length = 0x000F to 0x0022 

2-3  Key 0x0004 

4-9  Name structure architecture ID: 

4-5 Subvector length = 0x0006 

6-7 Key 0x4011 

8-9 Identifier = 0x8000 (locally administered) 

10-m  Object name: 

10-11  Subvector length = 0x0005 to 0x000C 

12-13  Key 0x4010 

14-m  Target name (1 to 20 bytes)

  

Source  Name  

 0-1  Vector length = 0x000F to 0x0022 

2-3  Key 0x000D 

4-9  Name structure architecture ID: 

4-5 Subvector Length = 0x0006 

6-7 Key 0x4011 

8-9 Identifier = 0x8000 (locally administered) 

10-p  Object name: 

10-11  Subvector length = 0x0005 to 0x000C 

12-13  Key 0x4010 

14-p  Source name (1 to 20 bytes)

 

 

Chapter 1. Data Link Control 61



Correlator  

 0-1  Vector length = 0x0008 

2-3  Key 0x4003 

4-7  Correlator value: 

Byte  4, bit  0 

1 means this is a SAP correlator for a find (self) 

Byte  4, bit  0 

0 means this is an LS correlator for a find (remote)
  

Source  Medium  Access  Control  (MAC)  Address  

 0-1  Vector length = 0x000A 

2-3  Key 0x4006 

4-9  Source MAC address (6 bytes)
  

Source  SAP  

 0-1  Vector length = 0x0005 

2-3  Key 0x4007 

4 Source SAP address
  

LAN Found Data Format 

Found  Header  

 0-1  Byte length of the found packet including the length field 

2-3  Key 0x0002 

4-n  Remaining control vectors
  

Correlator  

 0-1  Vector length = 0x0008 

2-3  Key 0x4003 

4-7  Correlator value: 

Byte  4, bit  0 

1 means this is a SAP correlator for a find (self) 

Byte  4, bit  0 

0 means this is a link station correlator for a find (remote)
  

Source  MAC  Address  

 0-1  Vector length = 0x000A 

2-3  Key 0x4006 

4-9  Source MAC address (6 bytes)
  

Source  SAP  

 0-1  Vector length = 0x0005 

2-3  Key 0x4007 

4 Source SAP address
 

 

62 Communications Programming Concepts



Response  Code  

 0-1  Vector length = 0x0005 

2-3  Key 0x400B 

4 Response code: 

B’0xxx  xxxx’  

Positive response 

B’0000  0001’  

Resources available 

B’1xxx  xxxx’  

Negative response 

B’1000  0001’  

Insufficient resources
  

Bridge Route Discovery 

DLCFDDI caches any returned bridge-routing information from a remote station for each command or 

datagram packet received and generates send-packet headers with the reverse route. This operation 

allows dynamic alteration of the bridge route taken throughout the link station attachment. There is also a 

provision to alter the cached routing field with the DLC_ALT_RTE  ioctl operation. This ioctl operation 

allows the user to dynamically change the bridge route taken by link station send packets. Once the 

DLC_ALT_RTE  ioctl operation is issued and accepted by the link station, dynamic caching of the received 

route is stopped, and subsequent send packets carry the ioctl operation’s routing value. 

Network data packets are not associated with a link station attachment, so any bridge routing field has to 

come from the user sending the packet. DLCFDDI has no involvement in the bridge routing of network 

data packets. 

DLC FDDI Direct Network Services 

Some users wish to handle their own unnumbered information packets on the network without the aid of 

the data link layer within the fiber distributed data interface (FDDI). A direct network interface allows an 

entire packet to be generated and sent by users once their service access point (SAP) has been opened. 

This allows full control of every field in the data link header for each write issued. Also provided is the 

ability to view the entire packet contents on received frames. The criteria for a direct network write are: 

v   The local SAP must be valid and opened 

v   The data link control byte must indicate unnumbered information (0x03).

DLC FDDI Connection Contention 

Dual paths to the same nodes are detected by the data link control (DLC) fiber distributed data interface 

(FDDI) in one of two ways. If a call is in progress to a remote node, which is also trying to call a local 

node, the incoming find (remote name) request is treated as if a local listen was outstanding. If a pending 

local listen has been acquired by a remote node’s call, and the local user issues a call to that remote node 

after the link station is already active, a result code (DLC_REMOTE_CONN) is returned to the user along 

with the link station correlator of the attachment already active, so that the user can relink attachment 

pointers. 

DLC FDDI Link Sessions 

A link session is initialized by issuing a DLC_START_LS  command to the fiber distributed data interface 

(FDDI) device manager. This creates a combined station and sets it to asynchronous disconnect mode 

(ADM). As a secondary or combined station, data link control (DLC) FDDI is in receive state waiting for a 

command frame from the primary or combined station. 

 

Chapter 1. Data Link Control 63



The command frames currently accepted are: 

 SABME  Set asynchronous balanced mode extended 

XID  Exchange identification 

TEST  Test link 

UI Unnumbered information or datagram 

DISC  Disconnect
  

Any other command frame is ignored. Once a SABME is received, the contact sequence is complete and 

the station is ready for normal data transfer and the following frames are also accepted as valid packet 

types in this asynchronous balanced mode extended (ABME) mode: 

 I Information 

RR  Receive ready 

RNR  Receive not ready 

REJ  Reject
  

As a primary or combined station, DLC FDDI can perform ADM XID and ADM TEST exchanges, send 

datagrams, or connect the remote into ABME. XID exchanges allow the primary or combined station to 

send out its station-specific identification to the secondary or combined station and obtain a response. 

Once an XID response is received, any attached information field is passed to the user for further action. 

TEST exchanges allow the primary or combined station to send out an information buffer that is echoed by 

the secondary or combined station to test the integrity of the link. 

Initiation of the normal data exchange mode, ABME, causes the primary or combined station to send a 

SABME to the secondary or combined station. Once sent successfully, the attachment is said to be 

contacted and the user is notified. I-frames can now be sent and received between the linked stations. 

Link Session Termination  

The user or the remote station can end DLC FDDI in the following ways: 

v   The user can cause normal termination by issuing a DLC_HALT_LS  command to the DLC FDDI device 

manager. The DLC_HALT_LS  command causes the primary or combined station to initiate a disconnect 

(DISC) packet sequence. 

v   Receive inactivity can be optioned to cause termination. This is useful in detecting a loss of attachment 

in the middle of a session. 

v   The remote station can cause termination by sending a DISC command packet as a primary or 

combined station.

Note:   Protocol violations and resource outages can cause abnormal termination. 

DLC FDDI Programming Interfaces 

The data link control (DLC) fiber distributed data interface (FDDI) conforms to generic data link control 

(GDLC) guidelines except where noted below. Additional structures and definitions for DLC FDDI are found 

in the /usr/include/sys/fdlextcb.h  file. 

The following entry points are supported by DLC FDDI: 

Note:   The dlc  prefix is replaced with the fdl  prefix for the DLC FDDI device manager.

 fdlclose  Fully compatible with the dlcclose  GDLC interface. 

fdlconfig  Fully compatible with the dlcconfig  GDLC interface. No initialization parameters are required. 

 

64 Communications Programming Concepts



fdlmpx  Fully compatible with the dlcmpx  GDLC interface. 

fdlopen  Fully compatible with the dlcopen  GDLC interface. 

fdlread  Compatible with the dlcread  GDLC interface with the following conditions: 

v   The readx  subroutines may have DLC FDDI data link header information prefixed to the 

information field (I-field) being passed to the application. This is optional based on the readx  

subroutine data  link  header  length  extension parameter in the gdl_io_ext  structure. 

v   If this field is nonzero, DLC FDDI copies the data link header and the I-field to user space, and 

sets the actual length of the data link header into the length field. 

v   If the field is 0, no data link header information is copied to user space. See the DLC FDDI 

Frame Encapsulation (Figure 8 on page 60) figure for more details.

Kernel receive  packet  function handlers always have the DLC FDDI data link header information 

within the communications memory buffer (mbuf), and can locate it by subtracting the length 

passed (in the gdl_io_ext  structure) from the data offset field of the mbuf structure. 

fdlselect  Fully compatible with the dlcselect  GDLC interface. 

fdlwrite  Compatible with the dlcwrite  GDLC interface, with the exception that network data can only be 

written as an unnumbered information (UI) packet and must have the complete data link header 

prefixed to the data. DLC FDDI verifies that the local (source) service access point (SAP) is 

enabled and that the control byte is UI (0x03). See the DLC FDDI Frame Encapsulation figure 

(Figure 8 on page 60) for more details. 

fdlioctl  Compatible with the dlcioctl  GDLC interface. The following ioctl operations contain FDDI-specific 

conditions on GDLC operations: 

v   “DLC_ENABLE_SAP” 

v   “DLC_START_LS” on page 66 

v   “DLC_ALTER” on page 67 

v   “DLC_ENTER_SHOLD” on page 67 

v   “DLC_EXIT_SHOLD” on page 67 

v   “DLC_ADD_GROUP” on page 68 

v   “DLC_ADD_FUNC_ADDR” on page 68 

v   “DLC_DEL_FUNC_ADDR” on page 68 

v   “DLC_DEL_GRP” on page 68 

v   “DLC_QUERY_SAP” on page 68 

v   “DLC_QUERY_LS” on page 68 

v   “IOCINFO” on page 68

The following sections describe these conditions.
  

DLC_ENABLE_SAP 

The ioctl  subroutine argument structure for enabling a SAP, dlc_esap_arg, has the following specifics: 

v   The grp_addr (group address) field contains the full six-byte group address with the individual control 

bits, group control bits, universal control bits, and local control bits located in the most significant bit 

positions of the first (leftmost) byte. 

v   The func_addr_mask (functional address mask) field is not supported. 

v   The max_ls (maximum link stations) field cannot exceed a value of 255. 

v   The following common SAP flags are not supported: 

 NTWK  Indicates a teleprocessing network type. 

LINK  Indicates a teleprocessing link type. 

PHYC  Represents a physical network call (teleprocessing). 

ANSW  Indicates a teleprocessing autocall and autoanswer.
  

v   Group SAPs are not supported, so the num_grp_saps (number of group SAPs) field must be set to 0. 

 

Chapter 1. Data Link Control 65



v   The laddr_name (local address or name) field and its associated length are only used for name 

discovery when the common SAP flag ADDR  is set to 0. When resolve procedures are used (the ADDR  

flag set to 1), DLC FDDI obtains the local network address from the device handler and not from the 

dlc_esap_arg  structure. 

v   The local_sap (local service access point) field can be set to any value except the null SAP (0x00) or 

the name-discovery SAP (0xFC). Also, the low-order bit must be set to 0 (B`nnnnnnn0’) to indicate an 

individual address. 

v   No protocol-specific data area is required for DLC FDDI to enable an SAP.

DLC_START_LS  

The ioctl  subroutine argument structure for starting a link station, dlc_sls_arg, has the following specifics: 

v   The following common link station flags are not supported: 

 STAT Indicates a station type for SDLC. 

NEGO  Indicates a negotiable station type for SDLC.
  

v   The raddr_name (remote address or name) field is used only for outgoing calls when the 

DLC_SLS_LSVC  common link station flag is active. 

v   The maxif (maximum I-field length) field can be set to any value greater than 0. The DLC FDDI device 

manager adjusts this value to a maximum of 4077 bytes if set too large. See the DLC FDDI frame 

encapsulation figure (“FDDI Data Packet” on page 59) for more details. 

v   The rcv_wind (receive window) field can be set to any value from 1 to 127, inclusive. The recommended 

value is 127. 

v   The xmit_wind (transmit window) field can be set to any value from 1 to 127, inclusive. The 

recommended value is 26. 

v   The rsap (remote SAP) field can be set to any value except the null SAP (0x00) or the name-discovery 

SAP (0xFC). Also, the low-order bit must be set to 0 (B`nnnnnnn0’) to indicate an individual address. 

v   The max_repoll field can be set to any value from 1 to 255, inclusive. The recommended value is 8. 

v   The repoll_time field is defined in increments of 0.5 seconds and can be set to any value from 1 to 255, 

inclusive. The recommended value is 2, giving a time-out duration of 1 to 1.5 seconds. 

v   The ack_time (acknowledgment time) field is defined in increments of 0.5 seconds, and can be set to 

any value from 1 to 255, inclusive. The recommended value is 1, giving a time-out duration of 0.5 to 1 

second. 

v   The inact_time (inactivity time) field is defined in increments of 1 second and can be set to any value 

from 1 to 255, inclusive. The recommended value is 48, giving a time-out duration of 48 to 48.5 

seconds. 

v   The force_time (force halt time) field is defined in increments of 1 second and can be set to any value 

from 1 to 16383, inclusive. The recommended value is 120, giving a time-out duration of approximately 

2 minutes. 

v   A protocol-specific data area must be appended to the generic start link station (LS) argument 

(dlc_sls_arg). This structure provides DLC FDDI with additional protocol-specific configuration 

parameters: 

struct  fdl_start_psd  

{ 

 uchar_t        pkt_prty;        /* ring  access  packet  priority  */ 

 uchar_t        dyna_wnd;        /* dynamic  window  increment     */ 

 ushort_t       reserved;         /* currently  not  used           */ 

}; 

The protocol-specific parameters are: 

 pkt_prty  Specifies the ring-access priority that the user wishes to reserve on transmit packets. Values of 0 to 7 

are supported, where 0 is the lowest priority and 7 is the highest priority. 

 

66 Communications Programming Concepts



dyna_wnd  Network congestion causes the local transmit window count to automatically drop to a value of 1. The 

dynamic window increment specifies the number of consecutive sequenced packets that must be 

acknowledged by the remote station before the local transmit window count can be increment. This 

allows a gradual increase in network traffic after a period of congestion. This field can be set to any 

value from 1 to 255; the recommended value is 1.
  

DLC_ALTER  

The ioctl  subroutine argument structure for altering a link station, dlc_alter_arg, has the following 

specifics: 

v   The following common alter flags are not supported: 

 SM1, SM2  Sets SDLC control mode.
  

v   A protocol-specific data area must be appended to the generic alter link station argument structure 

(dlc_alter_arg). This structure provides DLC FDDI with additional protocol-specific alter parameters. 

#define  FDL_ALTER_PRTY  0x80000000  /* alter  packet  priority    */ 

#define  FDL_ALTER_DYNA  0x40000000  /* alter  dynamic  window  incr*/  

struct  fdl_alter_psd  

{ 

ulong_t         flags;      /*  specific  alter  flags            */ 

uchar_t         pkt_prty;  /* ring  access  packet  priority  value  */ 

uchar_t         dyna_wnd;  /* dynamic  window  increment  value  */ 

ushort_t        reserved;   /* currently  not  used      */ 

}; 

#define  FDL_ALTER_PRTY  0x80000000  /* alter  packet  priority    */ 

#define  FDL_ALTER_DYNA  0x40000000  /* alter  dynamic  window  incr*/  

struct  fdl_alter_psd  

{ 

__ulong32_t     flags;      /* specific  alter  flags            */ 

uchar_t         pkt_prty;  /* ring  access  packet  priority  value  */ 

uchar_t         dyna_wnd;  /* dynamic  window  increment  value  */ 

ushort_t        reserved;   /* currently  not  used      */ 

}; 

v   Specific alter flags include: 

 FDL_ALTER_PRTY  Specifies alter priority. If set to 1, the pkt_prty  value field replaces the current priority 

value being used by the link station. The link station must be started for this alter 

command to be valid. 

FDL_ALTER_DYNA  Specifies alter dynamic window. If set to 1, the dyna_wnd  value field replaces the current 

dynamic window value being used by the link station. The link station must be started for 

this alter command to be valid.
  

The protocol-specific parameters are: 

 pkt_prty  Specifies the new priority reservation value for transmit packets. 

dyna_wnd  Specifies the new dynamic window value to control network congestion.
  

DLC_ENTER_SHOLD 

The enter_short_hold  option is not supported. 

DLC_EXIT_SHOLD 

The exit_short_hold  option is not supported. 

 

Chapter 1. Data Link Control 67



DLC_ADD_GROUP 

The add_group, or multicast address, option is supported by DLC FDDI as a six-byte value as described 

above in DLC_ENABLE_SAP  (group address). 

The grp_addr (group address) field for FDDI contains the full six-byte group address with the 

individual/group and universal/local control bits located in the most significant bit positions of the first 

(leftmost) byte. 

DLC_ADD_FUNC_ADDR 

The add_functional_address  option is not supported. 

DLC_DEL_FUNC_ADDR 

The delete_functional_address  option is not supported. 

DLC_DEL_GRP 

The delete group or multicast option is supported by the DLC FDDI device manager. The address being 

removed must match an address that was added with a DLC_ENABLE_SAP  or DLC_ADD_GRP  ioctl 

operation. 

DLC_QUERY_SAP 

The device driver-dependent data returned from DLC FDDI for this ioctl operation is the fddi_ndd_stats_t  

structure defined in the /usr/include/sys/cdli_fddiuser.h  file. 

DLC_QUERY_LS 

There is no protocol-specific data area supported by DLC FDDI for this ioctl operation. 

IOCINFO 

The ioctype  variable returned is defined as a DD_DLC  definition and the subtype returned is 

DS_DLCFDDI. 

Asynchronous Function Calls 

DLC FDDI is fully compatible with the GDLC interface concerning asynchronous function calls to the kernel 

mode user. 

 

68 Communications Programming Concepts



Chapter  2.  Data  Link  Provider  Interface  Implementation  

The Data Link Provider Interface (DLPI) implementation of the operating system is designed to follow 

AT&T’s ″UNIX® International OSI Work Group Data Link Provider Interface″  Version 2 (DRAFT) 

specification. You can obtain a copy electronically if you have Internet access. For information about 

obtaining the DLPI specification, see “Obtaining Copies of the DLPI Specifications” on page 76. 

It is assumed that you are familiar with the DLPI Version 2 specification published by UNIX International, 

RFC1042, and the various IEEE 802.x documents. 

Note:   In the text below, the term dlpi  refers to the driver, while DLPI  refers to the specification. 

The dlpi driver is implemented as a style 2 provider and supports both the connectionless and 

connection-oriented modes of communication. For a list of the primitives supported by the dlpi driver, see 

“DLPI Primitives” on page 74. 

Primitive Implementation Specifics 

Information pertinent to specific primitives implemented in the dlpi driver is documented in the man page 

for that primitive. 

Packet Format Registration Specifics 

The dlpi driver supports generic Common Data Link Interface (CDLI) network interfaces by allowing the 

user to specify the particular packet format necessary for the transmission media over which the stream is 

created. Using the M_IOCTL  or M_CTL  streams message, the user can specify the packet format. If no 

packet format is specified, the default is NS_PROTO. 

The DLPI user specifies the packet format through the STREAMS  I_STR  ioctl. The DLPI user is allowed 

one packet format specification per stream. This packet format must be specified after the attach and 

before the bind. Otherwise, an error is generated. 

The packet formats defined in /usr/include/sys/cdli.h  follow: 

 NS_PROTO  Remove all link-level headers. Sub-Network Access Protocol (SNAP) is not used. 

NS_PROTO_SNAP  Remove all link-level headers including SNAP. 

NS_INCLUDE_LLC  Leave LLC headers in place. 

NS_INCLUDE_MAC  Do not remove any headers.
  

The packet formats defined in the /usr/include/sys/dlpi_aix.h  file are: 

 NS_PROTO_DL_COMPAT  Use the AIX 3.2.5 DLPI address format. 

NS_PROTO_DL_DONTCARE  No addresses present in DL_UNITDATA_IND. For the 

DL_UNITDATA_IND  primitive, DLPI provides the header information in 

the dl_unitdata_ind_t  structure.
  

All packet formats except NS_INCLUDE_MAC  accept downstream addresses in the following form: 

mac_addr.dsap[.snap].  

 

© Copyright IBM Corp. 1994, 2007 69



Individually, packet formats have the following requirements: 

 NS_PROTO  or NS_PROTO_SNAP  Medium access control (MAC) and logical link control (LLC) are included in 

the DLPI header, and the data portion of the message contains only data. The 

NS_PROTO  header does not include SNAP; the NS_PROTO_SNAP  header 

does. Both packet formats present destination addresses as mac_addr  and 

source addresses as mac_addr.ssap.dsap.ctrl[.snap]. 

For the DL_UNITDATA_REQ  primitive, the DLPI user must provide the 

destination address and an optional destination service access point (DSAP) 

in the DLPI header. If the DLPI user does not specify the DSAP, the DSAP 

specified at bind time is used. 

NS_PROTO_DONTCARE  The dlpi driver places no addresses in the upstream DL_UNITDATA_IND. 

Addresses are still required on the DL_UNITDATA_REQ. 

NS_PROTO_DL_COMPAT  The dlpi driver uses the address format used in the AIX 3.2.5 dlpi driver, which 

is identical both upstream and downstream. The source and destination 

addresses are presented as mac_addr.dsap[.snap]. 

NS_INCLUDE_LLC  The DLPI header contains only the destination and source addresses. Only 

the LLC is placed in the M_DATA portion of the DL_UNITDATA_IND  

message. Both the source and destination addresses are presented as 

mac_addr. 

For the DL_UNITDATA_REQ  primitive, the DLPI user must provide the 

destination address and an optional DSAP in the DLPI header. If the DLPI 

user does not specify the DSAP, the DSAP specified at bind time is used. 

NS_INCLUDE_MAC  The MAC and LLC are both placed in the data portion of the message. Thus, 

the DLPI user must have knowledge of the MAC header and LLC architecture 

for a specific interface to retrieve the MAC header and LLC from the data 

portion of the message. This format sets the stream to raw mode, which does 

not process incoming or outgoing messages. 

For the DL_UNITDATA_REQ  primitive, the DLPI user must provide the 

destination address and an optional DSAP in the DLPI header. If the DLPI 

user does not specify the DSAP, the DSAP specified at bind time is used. 

Downstream messages do not require the DL_UNITDATA_REQ  header and 

must be received as M_DATA messages. Downstream messages must 

contain a completed MAC header, which will be copied to the medium without 

further translation.
  

Address Resolution Routine Registration Specifics 

The dlpi driver can support all generic interface types. DLPI is implemented to allow the user to specify 

address resolution routines for input and output using the STREAMS  I_STR  ioctl or to rely on the system 

default routines. The operating system provides default address resolution routines (stored in the 

/usr/include/sys/ndd.h  file) that are interface specific. 

The default input address resolution routine is as follows: 

ndd->ndd_demuxer->nd_address_input  

The dlpi driver calls the input address resolution routine with a pointer to the MAC header (and, optionally, 

the LLC header) and a pointer to a memory buffer (mbuf) structure containing data. The actual contents of 

the data area depend on which type of packet format was specified. (See “Packet Format Registration 

Specifics” on page 69.) 

The default output address resolution routine is: 

ndd->ndd_demuxer->nd_address_resolve  

 

70 Communications Programming Concepts



The dlpi driver calls the output address resolution routine with a pointer to an output_bundle structure 

(described in /usr/include/net/nd_lan.h), an mbuf structure, and an ndd structure. The driver assigns the 

destination address to key_to_find  and copies the pkt_format  and bind time llc  into helpers. If the user 

has provided a different DSAP than what was set at bind time, the driver also copies the DSAP values into 

helpers.The output resolution routine completes the MAC header and calls the ndd_output  subroutine. 

If you choose to specify an input or output address resolution routine or both, use the following sample 

code: 

noinres(int  fd)  { 

       return  istr(fd,  DL_INPUT_RESOLVE,  0);  

} 

ioctl Specifics 

The dlpi driver supports the following ioctl operations: 

v   DL_ROUTE  

v   DL_TUNE_LLC  

v   DL_ZERO_STATS  

v   DL_SET_REMADDR  

These commands and their associated data structures are described in the /usr/include/sys/dlpi_aix.h  

header file. 

Note:   The ioctl commands that require an argument longer than one long word, or that specify a pointer 

for either reading or writing, must use the I_STR  format, as in the following example: 

int  

istr(int  fd,  int  cmd,  char  *data,  int len)  { 

       struct  strioctl   ic;  

       ic.cmd  = cmd;  

       ic.timout  = -1;  

       ic.dp  = data;  

       ic.dp  = data;  

       ic.len  = len;  

       return  ioctl(fd,  I_STR,  &ic);  

} 

 DL_ROUTE  Disables the source routing on the current stream, queries the “Dynamic Route 

Discovery” on page 73 for a source route, or statically assigns a source route to this 

stream. It is only accepted when the stream is idle (DL_IDLE). 

v   If the argument length is 0, no source route is used on outgoing frames. 

v   If the argument length is equal to the length of the MAC address for the current 

medium (for example, 6 for most 802.x providers), the DRD algorithm is used to obtain 

the source route for the address specified in the argument. The MAC address is 

replaced with the source route on return from the ioctl. 

v   Otherwise, the argument is assumed to contain an address of the form 

mac_addr.source_route, and the source_route  portion is used as the source route for 

this stream in all communications.

As an example, the following code can be used to discover the source route for an 

arbitrary address: 

char  * 

getroute(int  fd,  char  *addr,  int  len)  { 

        static  char  route[MAXROUTE_LEN];  

        bcopy(addr,  route,  len);  

        if (istr(fd,  DL_ROUTE,  route,  len))  

                return  0; 

        return  route;  

} 

 

Chapter 2. Data Link Provider Interface Implementation 71



DL_TUNE_LLC  Allows the DLS user to alter the default LLC tunable parameters. The argument must 

point to an llctune_t  data structure. 

The flags field is examined to determine which, if any, parameters should be changed. 

Each bit in the flags field corresponds to a similarly named field in the llctune_t; if the bit 

is set, the corresponding parameter is set to the value in llctune_t. Only the current 

stream is affected, and changes are discarded when the stream is closed. 

If the F_LLC_SET  flag is set and the user has root authority, the altered parameters are 

saved as the new default parameters for all new streams. 

This command returns as its argument an update of the current tunable parameters. 

For example, to double the t1 value, the following code might be used: 

int  

more_t1(int  fd)  { 

        llctune_t  t; 

        t.flags  = 0; 

        if (istr(fd,  DL_TUNE_LLC,  &t,  sizeof(t)))  

           return  -1;  

        t.flags  = F_LLC_T1;  

        t.t1  *= 2; 

        return  istr(fd,  DL_TUNE_LLC,  &t, sizeof(t));  

} 

To query the tunables, issue DL_TUNE_LLC  with the flags field set to zero. This will alter 

no parameters and return the current tunable values. 

DL_ZERO_STATS  Resets the statistics counters to zero. The driver maintains two independent sets of 

statistics, one for each stream (local), and another that is the cumulative statistics for all 

streams (global). 

This command accepts a simple boolean argument. If the argument is True (nonzero), 

the global statistics are zeroed. Otherwise, only the current stream’s statistics are zeroed. 

For example, to zero the statistics counters on the current stream, the following code 

might be used: 

int  

zero_stats(int  fd)  { 

        return  ioctl(fd,  DL_ZERO_STATS,  0);  

} 

DL_SET_REMADDR  Allows XID/TEST exchange on connection-oriented streams while still in the DL_IDLE  

state. 

The dlpi driver uses both the source (remote) address and the dl_sap to determine where 

to route incoming messages for connection-oriented streams. The remote address is 

ordinarily specified in DL_CONNECT_REQ. If the DLS user needs to exchange XID or 

TEST messages before connecting to the remote station, DL_SET_REMADDR  must be 

used. 

Note:  Note that this command is not  necessary if XID and TEST messages are to be 

exchanged only when the state is DL_DATAXFER. 

The argument to this command is the remote MAC address. One possible code fragment 

might be: 

int  

setaddr(int  fd,  char  *addr,  int len)  { 

        return  istr(fd,  DL_SET_REMADDR,  addr,  len);  

} 

 

 

72 Communications Programming Concepts



Dynamic Route Discovery 

Dynamic Route Discovery (DRD) is an algorithm used to automatically discover the proper source route 

that reaches a remote station on either a token ring or a Fiber Distributed Data Interface (FDDI) network. It 

relieves the DLS user from discovering and maintaining source routes. The algorithm implements the 

spanning tree, as recommended by 802.5. 

When the DLS user issues a transmission request (for example, DL_CONNECT_REQ  or 

DL_UNITDATA_REQ) on a medium supporting source routing, the DRD algorithm consults a local cache 

of source routes. If there is a hit, the cached source route is used immediately. Otherwise, the DRD 

queues the transmission request and starts the discovery algorithm. If the algorithm finds a source route, 

the new route is cached, and the queued requests are transmitted using this new route. If the algorithm 

times out with no replies (approximately 10 seconds), the queued requests are rejected. 

The cache is periodically flushed of stale entries. An entry becomes stale after 5 minutes of no new 

requests. 

Note:   After a connection is established, the source route discovered during the connection setup is used 

to the exclusion of the DRD. This has two effects: 

v   If the source route changes during a connection, the connection continues to use the original 

source route. 

v   If the original source route becomes invalid, the connection breaks, and no rediscovery is 

attempted until a new connection is started.

DRD Configuration 

The DRD is selectable on a per-media basis when the dlpi driver is first loaded into the kernel. By default, 

the DRD is disabled for all media types. It can be enabled by appending the string ″,r″  (uses routing) to 

the argument field in /etc/dlpi.conf. Once selected, it is used by all physical points of attachment (PPAs) 

for that media type. The following example configurations both show token ring and FDDI configured, first 

in a default configuration and then with DRD enabled. 

Default configuration: 

d+       dlpi     tr       /dev/dlpi/tr  

d+       dlpi     fi       /dev/dlpi/fi  

DRD-enabled configuration: 

d+       dlpi     tr,r        /dev/dlpi/tr  

d+       dlpi     fi,r        /dev/dlpi/fi  

Connectionless Mode Only DLPI Driver versus Connectionless/
Connection-Oriented DLPI Driver 

Notes:   

1.   For binary compatibility purposes, there are no new statistics added for the connection-oriented 

functions. Statistics for the connection-oriented functions will be provided in a future release of the 

operating system. 

2.   For binary compatibility purposes, a DL_UNITDATA_IND  header is provided in the messages for 

promiscuous mode and raw mode. Be aware that this header will be removed in a future release of the 

operating system. 

The following sample code fragment works with the 4.1 and later versions of DLPI: 

if (raw_mode)  { 

        if (mp->b_datap->db_type  == M_PROTO)  { 

                union  DL_primitives  *p;

 

Chapter 2. Data Link Provider Interface Implementation 73



p = (union  DL_primitives  *)mp->b_rptr;  

                if (p->dl_primitive  == DL_UNITDATA_IND)  { 

                        mblk_t  *mpl  = mp->b_cont;  

                        freeb(mp);  

                        mp = mpl;  

                } 

        } 

} 

The above code fragment discards the DL_UNITDATA_IND  header. For compatibility with future 

releases, it is recommended that you parse the frame yourself. The MAC and LLC headers are 

presented in the M_DATA message for both promiscuous mode and raw mode. 

Raw mode currently accepts, but does not require, a DL_UNITDATA_REQ. In a future release of the 

operating system, raw mode will not accept a DL_UNITDATA_REQ; only M_DATA will be accepted. 

The dlpi driver supports the 802.2 connection-oriented service over the CDLI-based media 802.3, token 

ring, and FDDI. Other CDLI-based media can be supported provided the media implementation follows the 

IEEE 802.x recommendations. 

The DL_BIND_REQ  primitive accepts values for some fields (refer to the DL_BIND_REQ  primitive in AIX  

5L  Version  5.3  Technical  Reference:  Communications  Volume  1). 

The DL_OUTPUT_RESOLVE  and DL_INPUT_RESOLVE  ioctl commands replace the default address 

resolution routines for the current stream. They are no longer accepted from user space; the message 

type must be M_CTL  (not M_IOCTL), and they are only accepted before the stream is bound. 

DL_INPUT_RESOLVE  is accepted as an M_IOCTL  message only if its argument is zero; this allows the 

user to disable input address resolution. Output address resolution cannot be disabled—use the raw mode 

if transparent access to the medium is required. 

The DL_PKT_FORMAT  ioctl command now recognizes and handles the following packet formats: 

NS_PROTO, NS_PROTO_SNAP, NS_PROTO_DL_DONTCARE, NS_PROTO_DL_COMPAT, 

NS_INCLUDE_LLC, and NS_INCLUDE_MAC. 

New ioctl commands are now supported: DL_ROUTE, DL_TUNE_LLC, DL_ZERO_STATS, and 

DL_SET_REMADDR. Refer to “ioctl Specifics” on page 71. 

DLPI Primitives 

The following primitives are supported by DLPI: 

v   DL_ATTACH_REQ  

v   DL_BIND_ACK  

v   DL_BIND_REQ  

v   DL_DETACH_REQ  

v   DL_DISABMULTI_REQ  

v   DL_ENABMULTI_REQ  

v   DL_ERROR_ACK  

v   DL_GET_STATISTICS_REQ  

v   DL_GET_STATISTICS_ACK  

v   DL_INFO_ACK  

v   DL_INFO_REQ  

v   DL_OK_ACK  

v   DL_PHYS_ADDR_REQ  

v   DL_PHYS_ADDR_ACK  

v   DL_PROMISCOFF_REQ  

 

74 Communications Programming Concepts



v   DL_PROMISCON_REQ  

v   DL_SUBS_BIND_ACK  

v   DL_SUBS_BIND_REQ  

v   DL_SUBS_UNBIND_REQ  

v   DL_TEST_CON  

v   DL_TEST_IND  

v   DL_TEST_REQ  

v   DL_TEST_RES  

v   DL_UDERROR_IND  

v   DL_UNBIND_REQ  

v   DL_UNITDATA_IND  

v   DL_UNITDATA_REQ  

v   DL_XID_CON  

v   DL_XID_IND  

v   DL_XID_REQ  

v   DL_XID_RES  

The following connection-oriented service primitives are supported: 

v   DL_CONNECT_REQ  

v   DL_CONNECT_IND  

v   DL_CONNECT_RES  

v   DL_CONNECT_CON  

v   DL_TOKEN_REQ  

v   DL_TOKEN_ACK  

v   DL_DATA_REQ  

v   DL_DATA_IND  

v   DL_DISCONNECT_REQ  

v   DL_DISCONNECT_IND  

v   DL_RESET_REQ  

v   DL_RESET_IND  

v   DL_RESET_RES  

v   DL_RESET_CON  

The following primitives are not  supported: 

v   DL_UDQOS_REQ  

v   DL_SET_PHYS_ADDR_REQ  

The following acknowledged connectionless-mode primitives are not  supported: 

v   DL_DATA_ACK_REQ  

v   DL_DATA_ACK_IND  

v   DL_DATA_ACK_STATUS_IND  

v   DL_REPLY_REQ  

v   DL_REPLY_IND  

v   DL_REPLY_STATUS_IND  

v   DL_REPLY_UPDATE_REQ  

v   DL_REPLY_UPDATE_STATUS_IND

 

Chapter 2. Data Link Provider Interface Implementation 75



Note:   If any unsupported primitive is issued to the provider, the provider will return the 

DL_ERROR_ACK  primitive with the DL_NOTSUPPORTED  error code.

Obtaining Copies of the DLPI Specifications 

You can obtain copies of the Data Link Provider Interface (DLPI) specifications electronically using File 

Transfer Protocol (FTP) commands. A postscript version of the DLPI specifications may be retrieved 

electronically by anonymous ftp  from any of the following list of Internet hosts. 

 Hosts  IP Address  Pathname  

liasun3.epfl.ch 128.178.155.12 /pub/sun/dlpi 

marsh.cs.curtin.edu.au 134.7.1.1 /pub/netman/dlpi 

ftp.eu.net 192.16.202.2 /network/netman/dlpi 

opcom.sun.ca 142.77.1.61 /pub/drivers/dlpi 

ftp.cac.psu.edu 128.118.2.23 /pub/unix/netman/dlpi
  

To retrieve the postscript DLPI specifications through anonymous ftp, use the following example: 

ftp  ftp.eu.net  

Connected  to eunet.EU.net.  

220-  

220-Welcome  to the  central  EUnet  Archive,  

220-  

220  eunet.EU.net  FTP  server  (Version  wu-2.4(2)  Jul  09  1993)  ready.  

Name  (ftp.eu.net:jhaug):anonymous  

ftp>  user  anonymous  

331  Guest  login  ok,  send  your  complete  e-mail  address  as password.  

Password:  

ftp>  cd /network/netman/dlpi  

250  CWD  command  successful.  

ftp>  bin  

200  Type  set  to I. 

ftp>  get  dlpi.ps.Z  

200  PORT  command  successful.  

150  Opening  BINARY  mode  data  connection  for  dlpi.ps.Z  (479345  bytes).  

226  Transfer  complete.  

1476915  bytes  received  in 39.12  seconds  (11.97  Kbyte/s)  

ftp>  quit  

221  Goodbye.  

There is no guarantee that a public Internet server will always be available. If the above public Internet 

server host is not available, you might try using one of the Internet archive server listing services, such as 

Archie, to search for a public server that has the DLPI specifications. 

 

76 Communications Programming Concepts



Chapter  3.  New  Database  Manager  

The New Database Manager (NDBM) subroutines maintain key and content pairs in a database. The 

NDBM subroutines handle large databases and access keyed items in one or two file system accesses. 

Keyed items are consecutive characters, taken from a data record, that identify the record and establish its 

order with respect to other records. 

NDBM databases are stored in two files. One file is a directory containing a bit map and it has the 

extension .dir. The second file contains only data and has the extension .pag. 

For example, Network Information Service (NIS) maps maintain database information in NDBM format. NIS 

maps are created using the makedbm  command. The makedbm  command converts input into NDBM 

format files. An NIS map consists of two files: map.key.pag  and map.key.dir. The file with the .dir  

extension serves as an index for the .pag  files. The file with the .pag  extension contains the key and value 

pairs. 

Note:   The NDBM library replaces the earlier Database Manager (DBM) library, which managed a single 

database. 

Using NDBM Subroutines 

To access a database, issue the dbm_open  subroutine. The dbm_open  subroutine opens or creates the 

file.dir  and file.pag  files, depending on the flags parameter. To close a database, issue the dbm_close  

subroutine. Close one database before opening another database. 

Other NDBM subroutines include the following: 

 dbm_delete  Deletes a key and its associated contents. 

dbm_fetch  Accesses data stored under a key. 

dbm_firstkey  Returns the first key in the database. 

dbm_nextkey  Returns the next key in the database. 

dbm_store  Stores data under a key.
  

Diagnosing NDBM Problems 

A return value of 0 indicates no error. Subroutines that return a negative value indicate an error has 

occurred. A positive integer return indicates the status of the return. For example, if the dbm_store  

subroutine, issued with an insert flag, finds an existing entry with the same key, it returns a 1. 

The dbm_fetch, dbm_firstkey, and dbm_nextkey  subroutines return a datum  structure containing the 

value returned for the specified key. If the subroutine is unsuccessful, a null value is indicated in the dptr 

field of the datum  structure. 

List of NDBM and DBM Programming References 

This list includes both New Database Manager (NDBM) subroutines and their equivalent Database 

Manager (DBM) subroutines. 

NDBM Subroutines 

 dbm_close  Closes a database. 

dbm_delete  Deletes a key and its associated contents. 

dbm_fetch  Accesses data stored under a key. 

 

© Copyright IBM Corp. 1994, 2007 77



dbm_firstkey  Returns the first key in the database. 

dbm_nextkey  Returns the next key in the database. 

dbm_open  Opens a database for access. 

dbm_store  Stores data under a key.
  

DBM Subroutines 

 dbmclose  Closes a database. 

dbminit  Opens a database. 

delete  Deletes a key and its associated contents. 

fetch  Accesses the data stored under a key. 

firstkey  Returns the first key that matches the specification. 

nextkey  Returns the next key in the database. 

store  Stores data under a key.

 

78 Communications Programming Concepts



Chapter  4.  eXternal  Data  Representation  

The eXternal Data Representation (XDR) is a standard for the description and encoding of data. XDR uses 

a language to describe data formats, but the language is used only for describing data and is not a 

programming language. Protocols such as Remote Procedure Call (RPC) and the Network File System 

(NFS) use XDR to describe their data formats. 

This chapter discusses the following topics: 

v   “eXternal Data Representation Overview for Programming” 

v   “XDR Subroutine Format” on page 81 

v   “XDR Library” on page 81 

v   “XDR Language Specification” on page 82 

v   “XDR Data Types” on page 84 

v   “List of XDR Programming References” on page 94 

v   “XDR Library Filter Primitives” on page 95 

v   “XDR Non-Filter Primitives” on page 98 

v   “Passing Linked Lists Using XDR Example” on page 100 

v   “Using an XDR Data Description Example” on page 102 

v   “Showing the Justification for Using XDR Example” on page 103 

v   “Using XDR Example” on page 105 

v   “Using XDR Array Examples” on page 106 

v   “Using an XDR Discriminated Union Example” on page 107 

v   “Showing the Use of Pointers in XDR Example” on page 108

eXternal Data Representation Overview for Programming 

This overview provides the following information about programming XDR: 

v   “XDR Subroutine Format” on page 81 

v   “XDR Library” on page 81 

v   “XDR Language Specification” on page 82 

v   “XDR Data Types” on page 84 

v   “XDR Library Filter Primitives” on page 95 

v   “XDR Non-Filter Primitives” on page 98 

v   “List of XDR Programming References” on page 94 

XDR not only solves data portability problems, it also permits the reading and writing of arbitrary C 

language constructs in a consistent and well-documented manner. Therefore, it makes sense to use the 

XDR library routines even when the data is not shared among machines on a network. 

The XDR standard does not depend on machine languages, manufacturers, operating systems, or 

architectures. This condition enables networked computers to share data regardless of the machine on 

which the data is produced or consumed. The XDR language permits transfer of data between different 

computer architectures and has been used to communicate data between such diverse machines as the 

VAX, IBM®, and Cray. 

Remote Procedure Call (RPC) uses XDR to establish uniform representations for data types in order to 

transfer message data between machines. For basic data types, such as integers and strings, XDR 

provides filter primitives that serialize, or translate, information from the local host’s representation to 

XDR’s representation. Likewise, XDR filter primitives deserialize XDR’s data representation to the local 

 

© Copyright IBM Corp. 1994, 2007 79



host’s data representation. XDR constructor primitives allow the use of the basic data types to create more 

complex data types such as arrays and discriminated unions. 

The XDR routines that are called directly by remote procedure call routines can be found in “List of XDR 

Programming References” on page 94. 

A Canonical Standard 

The XDR approach to standardizing data representations is canonical. That is, XDR defines 

representations for a single byte (most significant bit first), a single floating-point representation (IEEE), 

and so on. Any program running on any machine can use XDR to create portable data by translating its 

local representation to the XDR standards. Similarly, any program running on any machine can read 

portable data by translating the XDR standard representations to its local equivalents. The canonical 

standard completely decouples programs that create or send portable data from those that use or receive 

portable data. 

The advent of a new machine or new language has no effect upon the community of existing portable data 

creators and users. A new machine can be programmed to convert both the standard representations and 

its local representations regardless of the local representations of other machines. Conversely, the local 

representations of the new machine are also irrelevant to existing programs running on other machines. 

These existing programs can immediately read portable data produced by the new machine, because such 

data conforms to canonical standards. 

Strong precedents exist for XDR’s canonical approach. All protocols below layer five of the ISO model, 

including Transmission Control Protocol (TCP), Internet Protocol (IP), User Datagram Protocol (UDP), and 

Ethernet, are canonical protocols. The advantage of any canonical approach is simplicity. XDR fits into the 

ISO presentation layer and is roughly analogous in purpose to X.409, ISO Abstract Syntax Notation. The 

major difference here is that XDR uses implicit typing, while X.409 uses explicit typing. With XDR, a single 

set of conversion routines need only be written once. 

The time spent converting to and from a canonical representation is insignificant, especially in networking 

applications. When preparing a data structure for transfer, traversing the elements of the structure requires 

more time than converting the data. In networking applications, additional time is required to move the 

data down through the sender’s protocol layers, across the network, and up through the receiver’s protocol 

layers. Every machine must traverse and copy data structures, regardless of whether conversion is 

required. 

Basic Block Size 

The XDR language is based on the assumption that bytes (eight bits of data or an octet) can be ported to 

and encoded on media that preserve the meaning of the bytes across the hardware boundaries of data. 

XDR does not represent bit fields or bit maps. It represents data in blocks of multiples of four bytes (32 

bits). The bytes are numbered from 0 to the value of n - 1, where the value (n mod 4)  equals 0. They 

are read from or written to a byte stream in order, such that byte m precedes byte m + 1. 

Bytes are ported and encoded from low order to high order in local area networks. Representing data in 

standardized formats resolves situations that occur when different byte-ordering formats exist on 

networked machines. This also enables machines with different structure-alignment algorithms to 

communicate with each other. 

See the A Block figure (Figure 9 on page 81) for a representation of a block. 

 

 

80 Communications Programming Concepts



In a graphics box illustration, each box is delimited by a + (plus sign) at the four corners and by vertical 

bars and dashes. Each box depicts a byte. The three sets of . . . (ellipsis) between boxes indicate 0 or 

more additional bytes, where required. 

Unsupported Representations 

The XDR standard currently lacks representations for bit fields and bit maps because the standard is 

based on bytes. Packed, or binary-coded, decimals are also missing. 

The XDR standard describes only the most commonly used data types of high-level languages, such as C 

or Pascal. This standard enables applications that are written in these languages to communicate easily. 

XDR Subroutine Format 

An eXternal Data Representation (XDR) subroutine is associated with each data type. XDR subroutines 

have the following format: 

xdr_XXX  (XDRS, FP)  

       XDR  *XDRS;  

       XXX  *FP;  

{ 

} 

The parameters are described as follows: 

 XXX  Requires an XDR data type. 

XDRS  Specifies an opaque handle that points to an XDR stream. The opaque handle pointer is passed to the 

primitive XDR routines. 

FP  Specifies an address of the data value that provides data to the stream or receives data from it.
  

The XDR subroutines usually return a value of 1 if successful. If unsuccessful, the return value is 0. 

Return values other than these are noted within the description of the appropriate subroutine. 

XDR Library 

The eXternal Data Representation (XDR) library includes subroutines that permit programmers not only to 

read and write C language constructs, but also to write XDR subroutines that define other data types. 

The XDR library includes the following: 

v   Library primitives for basic data types and constructed data types. The basic data types include number 

filters for integers, floating-point and double-precision numbers, enumeration filters, and a subroutine for 

passing no data. Constructed data types include the filters for strings, arrays, unions, pointers, and 

opaque data. 

  

Figure  9. A Block.  The  first  line  of the  diagram  shows  the  following:  byte  0, byte  1, dots  signifying  the  bytes  between  

byte  1 and  byte  n-1,  and  then  byte  n-1.  After  byte  n-1 are  two  residual  bytes  labeled  zero;  between  these  bytes  are  

dots  signifying  any  additional  residual  bytes  would  be  included.  The  second  line  of the  diagram  shows  the  byte  values  

of the  first  line.  Byte  0 to byte  n-1  is equal  to n bytes  and  the  residual  zero  bytes  have  a length  of r bytes.  The  last  line  

of the  diagram  shows  an equation  that  spans  the  length  of the  diagram,  the  equation  follows:  n+r  (where  (n+r)  mod  4 

= 0) identifies  the  length.

 

Chapter 4. eXternal Data Representation 81



v   Data stream creation routines that call streams for serializing and deserializing data to or from standard 

I/O file streams, Transmission Control Protocol (TCP), Internet Protocol (IP) connections, and memory. 

v   Subroutines for the implementation of new XDR streams. 

v   Subroutines for passing linked lists. 

See “Showing the Justification for Using XDR Example” on page 103. 

XDR with RPC 

The XDR subroutines and macros may be called explicitly or by a Remote Procedure Call (RPC) 

subroutine. When using XDR with RPC, clients do not create data streams. Instead, the RPC interface 

creates the streams. The RPC interface passes the information about a data stream as opaque data in the 

form of handles. This opaque data handle is referred to in subroutines as the xdrs  parameter. 

Programmers who use C language programs with XDR subroutines must include the rpc/xdr.h  file, which 

contains the necessary XDR interfaces. 

XDR Operation Directions 

The XDR subroutines are not dependent on direction. The operation direction represented by xdrs->xop  

can have an XDR_ENCODE, XDR_DECODE, or XDR_FREE  value. These operation values are handled 

internally by the XDR subroutines, which means the same XDR subroutine can be called to serialize or 

deserialize data. To achieve this independence, XDR passes the address of the object instead of passing 

the object itself. 

XDR Language Specification 

The eXternal Data Representation (XDR) language specification uses an extended Backus Naur form 

notation for describing the XDR language. The following is a brief description of the notation: 

v   The following characters are special characters: 

 | A vertical bar separates alternative items. 

( ) Parentheses enclose items that are grouped together. 

[ ] Brackets enclose optional items. 

, A comma separates more than one variable. 

* An asterisk following an item means 0 or more occurrences of the item.
  

v   Terminal symbols are strings of special and nonspecial characters surrounded by ″ ″ (double quotation 

marks). 

v   Nonterminal symbols are strings of nonspecial characters. 

The following specification illustrates the XDR notation: 

"a"  "very"  (","  "very")*  ["cold"  "and"]  "rainy"  ("day"  | "night")  

An infinite number of strings match this pattern, including the following examples: 

v   ″a  very  rainy  day″ 

v   ″a  very,  very  rainy  day″ 

v   ″a  very,  cold  and  rainy  day″ 

v   ″a  very,  very,  very  cold  and  rainy  night″

Lexical Notes 

The following lexical notes apply to XDR language specification: 

v   Comments begin with a /* (backslash, asterisk) and terminate with an */ (asterisk, backslash). 

v   White space is used to separate items and is otherwise ignored. 

 

82 Communications Programming Concepts



v   An identifier is a letter followed by an optional sequence of letters, digits, or an _ (underscore). 

Identifiers are case-sensitive. 

v   A constant is a sequence of one or more decimal digits, optionally preceded by a - (minus sign).

Declarations, Enumerations, Structures, and Unions 

The following XDR syntax describes declarations, enumerations, structures, and unions: 

declaration:type-specifier  identifier  

| type-specifier  identifier  "["  value  "]"  

| type-specifier  identifier  "<"  [ value  ] "<"  

| "opaque"  identifier  "["  value  "]"  

| "string"  identifier  "["  value  "]"  

| type-specifier  "*"  identifier  

|"void"  

value:  

constant  

 | identifier  

type-specifier:  

[ "unsigned"  ] "int"  

| [ "unsigned"  ] "hyper"  

| "float"  

| "double"  

| "bool"  

| enum-type-spec  

| struct-type-spec  

| union-type-spec  

| identifier  

enum-type-spec:  

"enum"  enum-body  

enum-body:  

"{"  

( identifier  "="  value  ) 

(","  identifier  "="  value  )* 

"}"  

struct-type-spec:  

"struct"  struct-body  

struct-body:  

"{"  

( declaration  ";"  ) 

( declaration  ";"  )* 

"}"  

union-type-spec:  

"union"  union-body  

union-body:  

"switch"  "("  declaration  ")"  "{"  

( "case"  value  ":"  declaration  ";"  ) 

( "case"  value  ":"  declaration  ";"  )* 

[ "default"  ":"  declaration  ";"  ] 

"}"  

 

Chapter 4. eXternal Data Representation 83



constant-def:  

"const"  identifier  "="  constant  ";"  

type-def  

"typedef"  declaration  ";"  

| "enum"  identifier  enum-body  ";"  

| "struct"  identifier  struct-body  ";"  

| "union"  identifier  union-body  ";"  

definition:  

type-def  

| constant-def  

specification:  

definition  * 

Syntax Notes 

The following considerations pertain to XDR language syntax: 

v   The following keywords cannot be used as identifiers: 

–   bool  

–   case  

–   const  

–   default  

–   double  

–   enum  

–   float  

–   hyper  

–   opaque  

–   string  

–   struct  

–   switch  

–   typedef  

–   union  

–   unsigned  

–   void

v    Only unsigned constants can be used as size specifications for arrays. If an identifier is used, it must be 

declared previously as an unsigned constant in a const  definition. 

v   In the scope of a specification, constant and type identifiers are in the same name space and must be 

declared uniquely. 

v   Variable names must be unique in the scope of struct  and union  declarations. Nested struct  and 

union  declarations create new scopes.

XDR Data Types  

The following basic and constructed data types are defined in the eXternal Data Representation (XDR) 

standard: 

v   “Integer Data Types” on page 85 

v   “Enumeration Data Types” on page 86 

v   “Boolean Data Types” on page 86 

v   “Floating-Point Data Types” on page 86 

 

84 Communications Programming Concepts



v   “Opaque Data Types” on page 88 

v   “Array Data Types” on page 89 

v   “Strings” on page 90 

v   “Structures” on page 91 

v   “Discriminated Unions” on page 91 

v   “Voids” on page 92 

v   “Constants” on page 92 

v   “Type Definitions” on page 92 

v   “Optional Data” on page 93 

A general paradigm declaration is shown for each type. The < and > (angle brackets) denote 

variable-length sequences of data, while the [ and ] (square brackets) denote fixed-length sequences of 

data. The letters n, m,  and r denote integers. See “Using an XDR Data Description Example” on page 102 

for an extensive example of the data types. 

Integer Data Types  

XDR defines two integer data types. The first type is signed and unsigned integers. The second type is 

signed and unsigned hyperintegers. 

Signed and Unsigned Integers 

The XDR standard defines signed integers as integer. A signed integer is a 32-bit datum that encodes an 

integer in the range [-2147483648 to 2147483647]. The signed integer is represented in twos complement 

notation. The most significant byte is 0 and the least significant is 3. 

An unsigned integer is a 32-bit datum that encodes a nonnegative integer in the range [0 to 4294967295]. 

The unsigned integer is represented by an unsigned binary number whose most significant byte is 0; the 

least significant is 3. See the Signed Integer and Unsigned Integer figure (Figure 10). 

   

Signed and Unsigned Hyperintegers 

The XDR standard also defines 64-bit (8-byte) numbers called signed and unsigned hyperinteger. Their 

representations are extensions of signed integers and unsigned integers. Hyperintegers are represented in 

twos complement notation. The most significant byte is 0 and the least significant is 7. See the Signed 

Hyperinteger and Unsigned Hyperinteger figure (Figure 11 on page 86). 

 

byte 0 byte 1 byte 2 byte 3

32 bits

(MSB) (LSB)

Signed Integer and Unsigned Integer

  

Figure  10.  Signed  Integer  and  Unsigned  Integer.  This  diagram  shows  the  most  significant  byte  on the left,  which  is 

byte  0. To the right  of byte  0, is byte  1, followed  by byte  2, and  then  byte  3 (the  least  significant  byte).  The  length  of 

the  4 bytes  is 32 bits.

 

Chapter 4. eXternal Data Representation 85



Enumeration Data Types  

The XDR standard provides enumerations for describing subsets of integers. XDR defines enumerations 

as enum. Enumerations have the same representation as signed integers and are declared as follows: 

enum  { name-identifier  = constant,  ...  } identifier;  

Encoding any integers as enum, besides those assigned in the enum  declaration, causes an error 

condition. 

Boolean Data Types  

Booleans occur frequently enough to warrant an explicit data type in the XDR standard. 

Booleans are declared as follows: 

bool  identifier;  

This declaration is equivalent to: 

enum  { FALSE  = 0,  TRUE  = 1 } identifier;  

Floating-Point Data Types  

The XDR standard defines two floating-point data types: single-precision and double-precision floating 

points. 

Single-Precision Floating Point 

XDR defines the single-precision floating-point data type as a float. The length of a float is 32 bits, or 4 

bytes. Floats are encoded using the IEEE standard for normalized single-precision floating-point numbers. 

The single-precision floating-point number is declared as follows: 

(-1)**S  * 2**(E-Bias)  * 1.F  

 S Sign of the number. This 1-bit field specifies either 0 for positive or 1 for negative. 

E Exponent of the number in base 2. This field contains 8 bits. The exponent is biased by 127. 

F Fractional part of the number’s mantissa in base 2. This field contains 23 bits.
  

See the Single-Precision Floating-Point figure (Figure 12 on page 87). 

 

byte 0 byte 1 byte 2 byte 3

64 bits

(MSB) (LSB)

Signed Hyperinteger and Unsigned Hyperinteger

byte 4 byte 5 byte 6 byte 7

  

Figure  11. Signed  Hyperinteger  and  Unsigned  Hyperinteger.  This  diagram  shows  the  most  significant  byte  on the left 

which  is byte  0. To the  right  of byte  0, is byte  1, followed  by byte  2, and  byte  3 continued  up to byte  7 (the  least  

significant  byte).  The  length  of the 8 bytes  is 64  bits.

 

86 Communications Programming Concepts



The most and least significant bytes of an integer are 0 and 3. The most and least significant bits of a 

single-precision floating-point number are 0 and 31. The beginning (and most significant) bit offsets of S, 

E, and F are 0, 1, and 9, respectively. These numbers refer to the mathematical positions of the bits but 

not  to their physical locations, which vary from medium to medium. 

The IEEE specifications should be considered when encoding signed zero, signed infinity (overflow), and 

denormalized numbers (underflow). According to IEEE specifications, the NaN (not-a-number) is 

system-dependent and should not be used externally. 

Double-Precision Floating Point 

The XDR standard defines the encoding for the double-precision floating-point data type as a double. The 

length of a double is 64 bits or 8 bytes. Doubles are encoded using the IEEE standard for normalized 

double-precision floating-point numbers. 

The double-precision floating-point data type is declared as follows: 

(-1)**S  * 2**(E-Bias)  * 1.F  

 S Sign of the number. This one-bit field specifies either 0 for positive or 1 for negative. 

E Exponent of the number in base 2. This field contains 11 bits. The exponent is biased by 1023. 

F Fractional part of the number’s mantissa in base 2. This field contains 52 bits.
  

See the Double-Precision Floating Point figure (Figure 13). 

 

 The most and least significant bytes of a number are 0 and 3. The most and least significant bits of a 

double-precision floating-point number are 0 and 63. The beginning (and most significant) bit offsets of S, 

E, and F are 0, 1, and 12, respectively. These numbers refer to the mathematical positions of the bits but 

not  to their physical locations, which vary from medium to medium. 

byte 0 byte 1 byte 2 byte 3

32 bits

Single-Precision Floating Point

S E F

1  23 bits 8

  

Figure  12.  Single-Precision  Floating-Point.  The  first  line  of this  diagram  lists  bytes  0 through  3, with  the  most  

significant  byte  0 first,  and  the least  significant  byte  3 last.  The  second  line  of the  diagram  shows  the corresponding  

fields  and  their  respective  lengths:  S (1 bit) and  E (8 bits)  extend  under  byte  0 and  byte  1, while  F (23  bits)  extends  

from  byte  1 to byte  3. The  third  line  shows  the  total  length  of bytes  0 through  3, which  is 32 bits.

byte 0 byte 1 byte 2 byte 3

64 bits

Double-Precision Floating Point

S E F

1  52 bits 11 bits

byte 4 byte 5 byte 6 byte 7
  

Figure  13.  Double-Precision  Floating-Point.  The  first  line  of this  diagram  lists  bytes  0 through  7. The  second  line  of the  

diagram  shows  the corresponding  fields  and  their  respective  lengths:  S (1 bit)  and  E (11 bits)  extend  under  byte  0 

through  byte  2, while  F (52  bits)  extends  from  byte  3 to byte  7. The  third  line  shows  the  total  length  of bytes  0 through  

7, which  is 64 bits.

 

Chapter 4. eXternal Data Representation 87



The IEEE specifications should be consulted when encoding signed zero, signed infinity (overflow), and 

denormalized numbers (underflow). According to IEEE specifications, the NaN (not-a-number) is 

system-dependent and should not be used externally. 

Opaque Data Types  

The XDR standard defines two types of opaque data: fixed-length and variable-length opaque data. 

Fixed-Length Opaque Data 

XDR defines fixed-length uninterpreted data as opaque. Fixed-length opaque data is declared as follows: 

opaque  identifier[n]; 

The constant n is the static number of bytes necessary to contain the opaque data. If n is not a multiple of 

4, then the n bytes are followed by enough (0 to 3) residual 0 bytes, r, to make the total byte count of the 

opaque object a multiple of 4. See the Fixed-Length Opaque figure (Figure 14). 

   

Variable-Length Opaque Data 

XDR also defines variable-length uninterpreted data as opaque. Variable-length (counted) opaque data is 

defined as a sequence of n arbitrary bytes, numbered 0 through n-1. Opaque data is encoded as an 

unsigned integer and followed by the n bytes of the sequence. 

Byte m of the sequence always precedes byte m+1, and byte 0 of the sequence always follows the 

sequence length (count). Enough (0 to 3) residual 0 bytes, r, are added to make the total byte count a 

multiple of 4. 

Variable-length opaque data is declared in one of the following forms: 

opaque  identifier<m>; 

OR 

opaque  identifier<>;  

The constant m denotes an upper bound for the number of bytes that the sequence can contain. If m is not 

specified, as in the second declaration, it is assumed to be (2**32) - 1, which is the maximum length. The 

constant m would normally be found in a protocol specification. See the Variable-Length Opaque figure 

(Figure 15 on page 89). 

 

  

Figure  14.  Fixed-Length  Opaque.  This  diagram  contains  4 lines  of information.  The  second  line  of the diagram  is the  

main  line,  listing  bytes  as  follows:  byte  0, byte  1, dots  signifying  the  bytes  between  byte  1 and  byte  n-1.  The  next  byte  

is labeled:  byte  n-1,  and  is followed  by residual  byte  0. Dots  signify  more  residual  bytes  that  end  in a final  byte  0. The  

remaining  lines  of the diagram  describe  this  main  line  of bytes.  The  first  line  assigns  numbers  to the bytes  as follows:  

number  0 for byte  0, number  1 for  byte  1, and  dots  signifying  a continuing  sequence.  The  third  line  assigns  byte  

values  to the  bytes  in the main  line  as follows:  byte  0 through  byte  n-1 yield  n bytes.  All the residual  bytes  together  

equal  r bytes.  The  fourth  line,  which  spans  the entire  diagram,  shows  the  following  equation:n+r  (where  (n+r)  mod  4 = 

0).

 

88 Communications Programming Concepts



Note:   Encoding a length n that is greater than the maximum described in the protocol specification causes 

an error. 

Array Data Types  

The XDR standard defines two type of arrays: fixed-length and variable-length. 

Fixed-Length Array 

Fixed-length arrays of homogeneous elements are declared as follows: 

type-name  identifier[n]; 

Fixed-length arrays of elements are encoded by individually coding the elements of the array in their 

natural order, 0 through n-1. Each element size is a multiple of 4 bytes. Although the elements are of the 

same type, they may have different sizes. For example, in a fixed-length array of strings, all elements are 

of the string type, yet each element varies in length. See the Fixed-Length Array figure (Figure 16). 

   

Variable-Length Array 

The XDR standard provides counted byte arrays for encoding variable-length arrays of homogeneous 

elements. The array is encoded as the element count n (an unsigned integer) followed by the encoding of 

each of the array’s elements, starting with element 0 and progressing through element n-1.  

Variable-length arrays are declared as follows: 

type-name  identifier<m>; 

OR 

type-name  identifier<>;  

The constant m specifies the maximum acceptable element count of an array. If m is not specified, it is 

assumed to be (2**32) - 1. See the Variable-Length Array figure (Figure 17 on page 90). 

 

  

Figure  15.  Variable-Length  Opaque.  This  diagram  contains  4 lines  of information.  The  second  line  of the  diagram  is 

the  main  line,  listing  segments  as follows:  length  n, byte  0, byte  1, and  then  dots  signifying  the  bytes  between  byte  1 

and  byte  n-1.  The  next  byte  is labeled:n-1,  followed  by residual  byte  0. Dots  signify  more  residual  bytes  that  end  in a 

final  byte  0. The  remaining  lines  of the diagram  describe  this  main  line.  The  first  line  assigns  numbers  as follows:  

numbers  0 through  3 for length  n, number  4 for byte  0, number  5 for byte  1, and  dots  signifying  a continuing  

sequence.  The  third  line  assigns  byte  values  to the  main  line  as follows:  length  n is 4 bytes,  byte  0 through  byte  n-1 

yield  n bytes.  All the  residual  bytes  together  equal  r bytes.  The  fourth  line,  which  spans  the  entire  diagram,  shows  the  

following  equation:n+r  (where  (n+r)  mod  4 = 0).

  

Figure  16.  Fixed-Length  Array.  This  diagram  shows  from  the left,  element  0, element  1, a series  of dots  to signify  the 

elements  between  element  1 and  element  n-1.  The  length  is equal  to n elements.

 

Chapter 4. eXternal Data Representation 89



Note:   Encoding a length n greater than the maximum described in the protocol specification causes an 

error. 

Strings 

The XDR standard defines a string of n (numbered 0 through n-1) ASCII bytes to be the number n 

encoded as an unsigned integer and followed by the n bytes of the string. Byte m of the string always 

precedes byte m+1, and byte 0 of the string always follows the string length. If n is not a multiple of 4, then 

the n bytes  are followed by enough (0 to 3) residual zero bytes, r, to make the total byte count a multiple 

of 4. 

Counted byte strings are declared as one of the following: 

string  object<m>; 

OR 

string  object<>;  

The constant m denotes an upper bound of the number of bytes that a string may contain. If m is not 

specified, as in the second declaration, it is assumed to be (2**32) - 1, which is the maximum length. The 

constant m would normally be found in a protocol specification. For example, a filing protocol may state 

that a file name can be no longer than 255 bytes, as follows: 

string  filename<255>;  

See the Counted Byte String figure (Figure 18). 

 

Note:   Encoding a length n greater than the maximum described in the protocol specification causes an 

error.

  

Figure  17.  Variable-Length  Array.  This  diagram  contains  3 lines  of information.  The  second  line  of the  diagram  is the  

main  line,  listing  the  following:  n, element  0, element  1, and  a series  of dots  to signify  a continuing  sequence  ending  in 

element  n-1.  The  first  line  of the diagram  contains  the numbers  0 through  4, with  0 on  the  first  border  of n and  4 on 

the shared  border  of n an element  0. The  third  line  assigns  values  to parts  of the  main  line  as follows:  n equals  4 

bytes,  and  element  0 through  element  n-1  equal  n elements.

  

Figure  18.  Counted  Byte  String.  This  diagram  contains  4 lines  of information.  The  second  line  of the  diagram  is the 

main  line,  listing  as  follows:  length  n, byte  0, byte  1, dots  signifying  the bytes  between  byte  1 and  byte  n-1.  The  next  

byte  is labeled:n-1,  followed  by residual  byte  0. Dots  signify  more  residual  bytes  that  end  in a final  byte  0. The  

remaining  lines  of the diagram  describe  this  main  line.  The  first  line  assigns  numbers  as follows:  numbers  0 through  3 

for length  n, number  4 for byte  0, number  5 for byte  1, and  dots  signifying  a continuing  sequence.  The  third  line  

assigns  byte  values  to the  main  line  as follows:  length  n is 4 bytes,  byte  0 through  byte  n-1  equal  n bytes.  All the  

residual  bytes  together  equal  r bytes.  The  fourth  line,  which  spans  the  entire  diagram,  shows  the following  

equation:n+r  (where  (n+r)  mod  4 = 0).

 

90 Communications Programming Concepts



Structures 

Using the primitive routines, the programmer can write unique XDR routines to describe arbitrary data 

structures such as elements of arrays, arms of unions, or objects pointed to from other structures. The 

structures themselves may contain arrays of arbitrary elements or pointers to other structures. 

Structures are declared as follows: 

struct  { 

    component-declaration-A;  

    component-declaration-B;  

    ...  

} identifier;  

In a structure, the components are encoded in the order of their declaration in the structure. Each 

component size is a multiple of four bytes, although the components may have different sizes. See the 

Structure figure (Figure 19). 

   

Discriminated Unions 

A discriminated  union  is a union data structure that holds various objects, with one of the objects identified 

directly by a discriminant. The discriminant is the first item to be serialized or deserialized. A discriminated 

union includes both a discriminant and a component. The type of discriminant is either integer, unsigned 

integer, or an enumerated type, such as bool. The component is selected from a set of types that are 

prearranged according to the value of the discriminant. The component types are called arms  of the union. 

The arms of a discriminated union are preceded by the value of the discriminant that implies their 

encoding. See “Using an XDR Discriminated Union Example” on page 107. 

Discriminated unions are declared as follows: 

union  switch  (discriminant-declaration)  { 

    case  discriminant-value-A:  

    arm-declaration-A;  

    case  discriminant-value-B:  

    arm-declaration-B;  

    ...  

    default:  default-declaration;  

} identifier;  

Each case  keyword is followed by a legal value of the discriminant. The default arm is optional. If an arm 

is not specified, a valid encoding of the union cannot take on unspecified discriminant values. The size of 

the implied arm is always a multiple of four bytes. 

The discriminated union is encoded as the discriminant, followed by the encoding of the implied arm. 

See the Discriminated Union figure (Figure 20 on page 92). 

 

Structure

. . .

. . .

. . .component A component B

  

Figure  19.  Structure.  This  diagram  shows  a line  of components  side  by side  as follows:  component  A, component  B, 

and  dots  signifying  a continuing  sequence.

 

Chapter 4. eXternal Data Representation 91



Voids  

An XDR void  is a zero-byte quantity. Voids are used for describing operations that take no data as input or 

output. Voids are also useful in unions, where some arms contain data and others do not. 

The declaration for a void follows: 

void;  

Voids are illustrated as follows: 

 ++ 

   | | 

 ++ 

 --><--  0 bytes  

Constants 

A constant  is used to define a symbolic name for a constant, and it does not declare any data. The 

symbolic constant can be used anywhere a regular constant is used. 

The data declaration for a constant follows this form: 

const  name-identifier  = n; 

The following example defines a symbolic constant, DOZEN, that is equal to 12: 

const  DOZEN  = 12;  

Type  Definitions 

A type definition (a typedef  statement) does not declare any data, but serves to define new identifiers for 

declaring data. 

The syntax for a type definition is: 

typedef  declaration;  

The new type name is the variable name in the declaration part of the type definition. For example, the 

following defines a new type called eggbox, using an existing type called egg: 

typedef  egg  eggbox[DOZEN];  

Variables declared using the new type name are equivalent to variables declared using the existing type. 

For example, the following two declarations for the variable fresheggs  are equivalent: 

eggbox  fresheggs;  

egg     fresheggs[DOZEN];  

A type definition can also have the following form: 

typedef  <<struct,  union,  or enum  definition>>  identifier;  

Discriminated Union

discriminant implied arm

 4 bytes

0 1 2 3
  

Figure  20.  Discriminated  Union.  This  diagram  shows  a discriminant  (which  is 4 bytes)  and  an implied  arm  side  by side.

 

92 Communications Programming Concepts



An alternative type definition form is preferred for structures, unions, and enumerations. The type definition 

form can be converted to the alternative form by removing the typedef  keyword and placing the identifier 

after the struct, union, or enum  keyword, instead of at the end. For example, here are the two ways to 

define the type bool: 

enum  bool  {       /*  preferred  alternative   */ 

FALSE  = 0, 

TRUE  = 1 

};  

OR 

typedef  enum  {F=0,  T=1}  bool;  

The first syntax is preferred because the programmer does not have to wait until the end of a declaration 

to determine the name of the new type. 

Optional Data 

Optional data is a type of union that occurs so frequently it has its own syntax. The optional data type is 

closely coordinated to the representation of recursive data structures by the use of pointers in high-level 

languages, such as C or Pascal. The syntax for pointers is the same as that for C language. 

The syntax for optional data is as follows: 

type-name  *identifier;  

The declaration for optional data is equivalent to the following union: 

union  switch  (bool  opted)  { 

    case  TRUE:  

    type-name  element;  

    case  FALSE:  

    void;  

} identifier;  

Because bool  opted  can be interpreted as the length of the array, the declaration for optional data is also 

equivalent to the following variable-length array declaration: 

type-name  identifier<1>;  

Optional data is very useful for describing recursive data structures such as linked lists and trees. For 

example, the following defines a stringlist  type that encodes lists of arbitrary length strings: 

struct  *stringlist  { 

    string  item<>;  

    stringlist  next;  

};  

The example can be equivalently declared as a union, as follows: 

union  stringlist  switch  (bool  opted)  { 

    case  TRUE:  

        struct  { 

            string  item<>;  

            stringlist  next;  

        } element;  

    case  FALSE:  

        void;  

};  

The example can also be declared as a variable-length array, as follows: 

struct  stringlist<1>  { 

    string  item<>;  

    stringlist  next;  

};  

 

Chapter 4. eXternal Data Representation 93



Because both the union and the array declarations obscure the intention of the stringlist  type, the optional 

data declaration is preferred. 

List of XDR Programming References 

The list of eXternal Data Representation (XDR) programming references includes: 

v   “XDR Library Filter Primitives” 

v   “XDR Library Non-Filter Primitives” 

v   “Examples” on page 95

XDR Library Filter Primitives 

 xdr_array  Translates between variable-length arrays and their corresponding external 

representations. 

xdr_bool  Translates between Booleans and their external representations. 

xdr_bytes  Translates between internal counted byte string arrays and their external representations. 

xdr_char  Translates between C language characters and their external representations. 

xdr_double  Translates between C language double-precision numbers and their external 

representations. 

xdr_enum  Translates between C language enumerations and their external representations. 

xdr_float  Translates between C language floats and their external representations. 

xdr_int  Translates between C language integers and their external representations. 

xdr_long  Translates between C language long integers and their external representations. 

xdr_opaque  Translates between opaque data and its external representation. 

xdr_reference  Provides pointer chasing within structures. 

xdr_short  Translates between C language short integers and their external representations. 

xdr_string  Translates between C language strings and their external representations. 

xdr_u_char  Translates between unsigned C language characters and their external representations. 

xdr_u_int  Translates between C language unsigned integers and their external representations. 

xdr_u_long  Translates between C language unsigned long integers and their external 

representations. 

xdr_u_short  Translates between C language unsigned short integers and their external 

representations. 

xdr_union  Translates between discriminated unions and their external representations. 

xdr_vector  Translates between fixed-length arrays and their corresponding external representations. 

xdr_void  Supplies an XDR subroutine to the Remote Procedure Call (RPC) system without 

transmitting data. 

xdr_wrapstring  Calls the xdr_string  subroutine.
  

XDR Library Non-Filter Primitives 

 xdr_destroy  Destroys the XDR stream pointed to by the xdrs  parameter. 

xdr_free  Deallocates or frees memory. 

xdr_getpos  Returns an unsigned integer that describes the current position in the data 

stream. 

xdr_inline  Returns a pointer to an internal piece of the buffer of a stream, pointed to by the 

xdrs  parameter. 

xdr_pointer  Provides pointer chasing within structures and serializes null pointers. 

xdr_setpos  Changes the current position in the XDR stream. 

xdrmem_create  Initializes in local memory the XDR stream pointed to by the xdrs  parameter. 

xdrrec_create  Provides an XDR stream that can contain long sequences of records. 

xdrrec_endofrecord  Causes the current outgoing data to be marked as a record. 

xdrrec_eof  Checks the buffer for an input stream. 

 

94 Communications Programming Concepts



xdrrec_skiprecord  Causes the position of an input stream to move to the beginning of the next 

record. 

xdrstdio_create  Initializes the XDR data stream pointed to by the xdrs  parameter.
  

Examples 

See the following examples: 

v   “Passing Linked Lists Using XDR Example” on page 100 

v   “Using an XDR Data Description Example” on page 102 

v   “Showing the Justification for Using XDR Example” on page 103 

v   “Using XDR Example” on page 105 

v   “Using XDR Array Examples” on page 106 

v   “Using an XDR Discriminated Union Example” on page 107 

v   “Showing the Use of Pointers in XDR Example” on page 108

XDR Library Filter Primitives 

The eXternal Data Representation (XDR) primitives are subroutines that define the basic and constructed 

data types. The XDR language provides programmers with a specification for uniform representations that 

includes filter primitives for basic and constructed data types. The basic data types include integers, 

enumerations, Booleans, hyperintegers, floating points, and void data. The constructed data types include 

strings, structures, byte arrays, arrays, opaque data, unions, and pointers. 

The XDR standard translates both basic and constructed data types. For basic data types, XDR provides 

basic filter primitives (see “XDR Basic Filter Primitives”) that serialize information from the local host’s 

representation to the XDR representation and deserialize information from the XDR representation to the 

local host’s representation. For constructed data types, XDR provides constructed filter primitives (see 

“XDR Constructed Filter Primitives” on page 96) that allow the use of basic data types, such as integers 

and floating-point numbers, to create more complex constructs such as arrays and discriminated unions. 

Remote Procedure Calls (RPCs) use XDR to establish uniform representations for data types to transfer 

the call message data between machines. Although the XDR constructs resemble the C programming 

language, C language constructs define the code for programs. XDR, however, standardizes the 

representation of data types directly in the programming code. 

XDR Basic Filter Primitives 

The XDR primitives are subroutines that define the basic and constructed data types. The basic data type 

filter primitives include the following: 

v   “Number Filter Primitives” 

v   “Floating-Point Filter Primitives” on page 96 

v   “Enumeration Filter Primitives” on page 96 

v   “Passing No Data” on page 96

Number Filter Primitives 

The XDR library provides basic filter primitives that translate between types of numbers and their external 

representations. The XDR number filters cover signed and unsigned integers, as well as signed and 

unsigned short and long integers. 

The subroutines for the XDR number filters are: 

 xdr_int  Translates between C language integers and their external representations. 

xdr_u_int  Translates between C language unsigned integers and their external representations. 

 

Chapter 4. eXternal Data Representation 95



xdr_long  Translates between C language long integers and their external representations. 

xdr_u_long  Translates between C language unsigned long integers and their external representations. 

xdr_short  Translates between C language short integers and their external representations. 

xdr_u_short  Translates between C language unsigned short integers and their external representations.
  

Floating-Point Filter Primitives 

The XDR library provides primitives that translate between floating-point data and their external 

representations. Floating-point data encodes an integer with an exponent. Floats and double-precision 

numbers compose floating-point data. 

Note:   Numbers are represented as IEEE standard floating points. Subroutines may fail when decoding 

IEEE representations into machine-specific representations, or vice versa. 

The subroutines for the XDR floating-point filters are: 

 xdr_double  Translates between C language double-precision numbers and their external representations. 

xdr_float  Translates between C language floats and their external representations.
  

Enumeration Filter Primitives 

The XDR library provides a primitive for generic enumerations based on the assumption that a C 

enumeration value (enum) has the same representation. There is a special enumeration in XDR known as 

the Boolean. 

The subroutines for the XDR library enumeration filters are: 

 xdr_bool  Translates between Booleans and their external representations. 

xdr_enum  Translates between C language enumerations and their external representations.
  

Passing No Data 

Sometimes an XDR subroutine must be supplied to the RPC system, but no data is required or passed. 

The XDR library provides the following primitive for this function: 

 xdr_void  Supplies an XDR subroutine to the RPC system without transmitting data.
  

XDR Constructed Filter Primitives 

The XDR filter primitives are subroutines that define the basic and constructed data types. Constructed 

data type filters allow complex data types to be created from basic data types. Constructed data types 

require more parameters to perform more complicated functions than do basic data types. Memory 

management is an example of a more complicated function that can be performed with the constructed 

primitives. Memory is allocated when deserializing data with the xdr_decode  subroutine. Memory is 

deallocated through the xdr_free  subroutine. 

The constructed data-type filter primitives include the following: 

v   “String Filter Primitives” on page 97 

v   “Array Filter Primitives” on page 97 

v   “Opaque-Data Filter Primitives” on page 97 

v   “Primitive for Pointers to Structures” on page 97 

v   “Primitive for Discriminated Unions” on page 98

 

96 Communications Programming Concepts



String Filter Primitives 

A string  is a constructed filter primitive that consists of a sequence of bytes terminated by a null byte. The 

null byte does not figure into the length of the string. Externally, strings are represented by a sequence of 

ASCII characters. Internally, XDR uses the char  * designation to represent pointers to strings. 

The XDR library includes primitives for the following string routines: 

 xdr_string  Translates between C language strings and their external representations. 

xdr_wrapstring  Calls the xdr_string  subroutine.
  

Array Filter Primitives 

Arrays  are constructed filter primitives and can be either generic arrays or byte arrays. The XDR library 

provides filter primitives for handling both types of arrays. 

Generic  Arrays:    Generic arrays consist of arbitrary elements. Generic arrays are handled in much the 

same way as byte arrays, which handle a subset of generic arrays where the size of the arbitrary elements 

is 1, and their external descriptions are predetermined. The primitive for generic arrays requires an 

additional parameter to define the size of the element in the array and to call an XDR subroutine to 

encode or decode each element in the array. 

The XDR library includes the following subroutines for generic arrays: 

 xdr_array  Translates between variable-length arrays and their corresponding external representations. 

xdr_vector  Translates between fixed-length arrays and their corresponding external representations.
  

Byte  Arrays:    The XDR library provides a primitive for byte arrays. Although similar to strings, byte arrays 

differ by having a byte count. That is, the length of the array is set by an unsigned integer. They also differ 

in that byte arrays are not terminated with a null character. External and internal representations of byte 

arrays are the same. 

The XDR library includes the following subroutine for byte arrays: 

 xdr_bytes  Translates between counted byte string arrays and their external representations.
  

Opaque-Data Filter Primitives 

Opaque data is composed of bytes of a fixed size that are not interpreted as they pass through the data 

streams. Opaque data bytes, such as handles, are passed between server and client without being 

inspected by the client. The client uses the data as it is and then returns it to the server. By definition, the 

actual data contained in the opaque object is not portable between computers. 

The XDR library includes the following subroutine for opaque data: 

 xdr_opaque  Translates between opaque data and its external representation.
  

Primitive for Pointers to Structures 

The XDR library provides a primitive for pointers so that structures referenced within other structures can 

be easily serialized, deserialized, and freed. The XDR library includes the following subroutine for pointers 

to structures: 

 xdr_reference  Provides pointer chasing within structures.
 

 

Chapter 4. eXternal Data Representation 97



Primitive for Discriminated Unions 

A discriminated union is a C language union, which is an object that holds several data types. One arm of 

the union is an enumeration value, or discriminant, that holds a specific object to be processed over the 

system first. The discriminant is an enumeration value (enum_t). 

The XDR library includes the following subroutine for discriminated unions: 

 xdr_union  Translates between discriminated unions and their external representations.
  

XDR Non-Filter Primitives 

The eXternal Data Representation (XDR) nonfilter primitives are used to create, manipulate, implement, 

and destroy XDR data streams. These primitives allow programmers to destroy a data stream (freeing its 

private structure) for example, or change a data stream position. 

The following sections are discussed in this section: 

v   “Creating and Using XDR Data Streams” 

v   “Manipulating an XDR Data Stream” on page 99 

v   “Implementing an XDR Data Stream” on page 99 

v   “Destroying an XDR Data Stream” on page 100

Creating and Using XDR Data Streams 

XDR data streams are obtained by calling creation subroutines that take arguments specifically designed 

to the properties of the stream. There are existing XDR data streams for serializing or deserializing data in 

standard input and output streams, memory streams, and record streams. 

Note:   Remote Procedure Call (RPC) clients do not have to create XDR streams because the RPC system 

creates and passes these streams to the client. 

The types of data streams include standard I/O streams, memory streams, and record streams. 

Standard I/O Streams 

XDR data streams serialize and deserialize standard input and output by calling the standard I/O creation 

subroutine to initialize the XDR data stream pointed to by the xdrs  parameter. 

The XDR library includes the following subroutine for standard I/O data streams: 

 xdrstdio_create  Initializes the XDR data stream pointed to by the xdrs  parameter.
  

Memory Streams 

XDR data streams serialize and deserialize data from memory by calling the XDR memory creation 

subroutine to initialize in local memory the XDR stream pointed to by the xdrs  parameter. In RPC, the User 

Datagram Protocol (UDP) Internet Protocol (IP) implementation uses this subroutine to build entire 

call-and-reply messages in memory before sending a message to the recipient. 

The XDR library includes the following subroutine for memory data streams: 

 xdrmem_create  Initializes in local memory the XDR stream pointed to by the xdrs  parameter.
  

Record Streams 

Record streams are XDR streams built on top of record fragments, which are built on TCP/IP streams. 

TCP/IP is a connection protocol for transporting large streams of data at one time, instead of transporting 

a single data packet at a time. 

 

98 Communications Programming Concepts



Record streams are primarily used to make connections between remote procedure calls and TCP. They 

can also be used to stream data into or out of normal files. 

XDR provides the following subroutines for use with record streams: 

 xdrrec_create  Provides an XDR stream that can contain long sequences of records. 

xdrrec_endofrecord  Causes the current outgoing data to be marked as a record. 

xdrrec_eof  Checks the buffer for an input stream that identifies the end of file (EOF). 

xdrrec_skiprecord  Causes the position of an input stream to move to the beginning of the next 

record.
  

Manipulating an XDR Data Stream 

XDR provides the following subroutines for describing and changing data stream position: 

 xdr_getpos  Returns an unsigned integer that describes the current position of the data stream. 

xdr_setpos  Changes the current position of the data stream.
  

Implementing an XDR Data Stream 

Programmers can create and implement XDR data streams. The following example shows the abstract 

data types (XDR handle) required. The example contains operations being applied to the stream, an 

operation vector for the implementation, and two private fields for use by the implementation. 

enum  xdr_op  { XDR_ENCODE=0,  XDR_DECODE=1,  XDR_FREE=2  }; 

typedef  struct  { 

       enum  xdr_op  x_op;  

       struct  xdr_ops  { 

           bool_t   (*x_getlong)   ();  

           boot_t   (*x_putlong)   ();  

           boot_t   (*x_getbytes)  ();  

           boot_t   (*x_putbytes)  ();  

           u_int    (*x_getpostn)  ();  

           boot_t   (*x_setpostn)  ();  

           caddr_t  (*x_inline)    ();  

           VOID     (*x_destroy)   ();  

       } *XOp;  

       caddr_t  x_public;  

       caddr_t  x_private;  

       caddr_t  x_base;  

       int      x_handy;  

} XDR;  

The following parameters are pointers to XDR stream manipulation subroutines: 

 x_destroy  Frees private data structures. 

x_getbytes  Gets bytes from the data stream. 

x_getlong  Gets long integer values from the data stream. 

x_getpostn  Returns stream offset. 

x_inline  Points to internal data buffer, which can be used for any purpose. 

x_putbytes  Puts bytes into the data stream. 

x_putlong  Puts long integer values into the data stream. 

x_setpostn  Repositions offset. 

XOp  Specifies the current operation being performed on the stream. This field is important to the XDR 

primitives. However, the stream’s implementation does not depend on the value of this parameter.
  

The following fields are specific to a stream’s implementation: 

 x_base  Contains position information in the data stream that is private to the user implementation. 

 

Chapter 4. eXternal Data Representation 99



x_handy  Contains extra information, as necessary. 

x_public  Specifies user data that is private to the stream’s implementation and is not used by the XDR 

primitive. 

x_private  Points to the private data.
  

Destroying an XDR Data Stream 

The following subroutine destroys a specific XDR data stream: 

 xdr_destroy  Destroys the XDR data stream pointed to by the xdrs  parameter, freeing the private data 

structures allocated to the stream.
  

The use of the XDR data stream handle is undefined after it is destroyed. 

Passing Linked Lists Using XDR Example 

Linked lists of arbitrary length can be passed using eXternal Data Representation (XDR). To help illustrate 

the functions of the XDR routine for encoding, decoding, or freeing linked lists, this example creates a data 

structure and defines its associated XDR routine. 

“Using XDR Example” on page 105 presents a C data structure and its associated XDR routines for an 

individual’s gross assets and liabilities. The example is duplicated below: 

struct  gnumbers  { 

       long  g_assets;  

       long  g_liabilities;  

}; 

bool_t  

xdr_gnumbers  (xdrs,  gp)  

       XDR  *xdrs;  

       struct  gnumbers  *gp;  

{ 

       if  (xdr_long  (xdrs,  &(gp->g_assets)))  

           return  (xdr_long  (xdrs,  &( gp->g_liabilities)));  

       return(FALSE);  

} 

 xdrs  Points to the XDR data stream handle. 

gp Points to the address of the structure that provides the data to or from the XDR stream.
  

For implementing a linked list of such information, a data structure could be constructed as follows: 

struct  gnumbers_node  { 

       struct  gnumbers  gn_numbers;  

       struct  gnnumbers_node  *gn_next;  

}; 

typedef  struct  gnumbers_node  *gnumbers_list;  

The head of the linked list can be thought of as the data object; that is, the head is not merely a 

convenient shorthand for a structure. Similarly, the gn_next  field indicates whether or not the object has 

terminated. However, if the object continues, the gn_next  field also specifies the address where it 

continues. The link addresses carry no useful information when the object is serialized. 

The XDR data description of this linked list can be described by the recursive declaration of the 

gnumbers_list  field, as follows: 

struct  gnumbers  { 

       int  g_assets;  

       int  g_liabilities;  

};

 

100 Communications Programming Concepts



struct  gnumbers_node  { 

       gnumbers  gn_numbers;  

       gnumbers_node  *gn_next;  

};  

In the following description, the Boolean indicates if more data follows it. If the Boolean is a False value, it 

is the last data field of the structure. If it is a True value, it is followed by a gnumbers  structure and, 

recursively, by a gnumbers_list. The C declaration has no Boolean explicitly declared in it (though the 

gn_next  field implicitly carries the information), while the XDR data description has no pointer explicitly 

declared in it. 

Hints for writing the XDR routines for a gnumbers_list  structure follow easily from the previous XDR 

description. The following primitive, xdr_pointer, implements the previous XDR union: 

bool_t  

xdr_gnumbers_node  (xdrs, gn)  

       XDR  *xdrs; 

       gnumbers_node  *gn;  

{ 

       return  (xdr_gnumbers  (xdrs, &gn->gn_numbers)   && 

           xdr_gnumbers_list  (xdrs, &gp->gn_next));  

bool_t  

xdr_gnumbers_list  (xdrs, gnp)  

       XDR  *xdrs; 

       gnumbers_list  *gnp;  

{ 

       return  (xdr_pointer  (xdrs, gnp,  

           SizeOf(struct  gnumbers_node),  

           xdr_gnumbers_node));  

As a result of using XDR on a list with these subroutines, the C stack grows linearly with respect to the 

number of nodes in the list. This is due to the recursion. The following subroutine collapses the previous 

two recursive programs into a single, nonrecursive one: 

bool_t  

xdr_gnumbers_list  (xdrs, gnp)  

       XDR  *xdrs; 

       gnumbers_list  *gnp;  

{ 

       bool_t  more_data;  

       gnumbers_list  *nextp; 

       for  (;;)  { 

            more_data  = (*gnp  != NULL);  

            if (!xdr_bool  (xdrs,  &more_data))  { 

                return  (FALSE)  ; 

            } 

            if (!more_data)  { 

                break;  

            } 

            if (xdrs->x_op  == XDR_FREE)  { 

                nextp  = &(*gnp)->gn_next;  

            } 

            if (!xdr_reference  (xdrs,  gnp,  

                   sizeof  (struct  gnumbers_node),  xdr_gnumbers))  { 

            return  (FALSE);  

            } 

            gnp  = xdrs->x_op  == XDR_FREE)  ? 

                nextp  : &(*gnp)->gn_next;  

       } 

       *gnp  = NULL;  

       return  (TRUE)  

} 

 

Chapter 4. eXternal Data Representation 101



The first statement determines whether more data exists, so that this Boolean information can be 

serialized. This statement is unnecessary in the XDR_DECODE  case, because the value of the more_data 

field is not known until the next statement deserializes it. 

The next statement translates the more_data  field of the XDR union. If no more data exists, set this last 

pointer to Null to indicate the end of the list and return True because the operation is done. 

Note:   Setting the pointer to Null is important only in the XDR_ENCODE  case because the pointer is already 

null in the XDR_ENCODE  and XDR_FREE  cases. 

Next, if the direction is XDR_FREE, the value of the nextp field is set to indicate the location of the next 

pointer in the list. This step dereferences the gnp field to find the location of the next item in the list. After 

the next statement, the storage pointed to by gnp is freed and no longer valid. This step is not taken for all 

directions because, in the XDR_DECODE  direction, the value of the gnp field will not be set until the next 

statement. 

The next statement translates the data in the node using the xdr_reference  primitive. The xdr_reference  

subroutine is similar to the xdr_pointer  subroutine, used previously, but it does not send over the Boolean 

indicating whether there is more data. The program uses the xdr_reference  subroutine instead of the 

xdr_pointer  subroutine because the information is already translated by XDR. Notice that the XDR 

subroutine passed is not the same type as an element in the list. The subroutine passed is 

xdr_gnumbers, for translating gnumbers, but each element in the list is actually of the gnumbers_node  

type. The xdr_gnumbers_gnode  subroutine is not passed because it is recursive. The program instead 

uses xdr_gnumbers, which translates all nonrecursive portions. 

Note:   This method works only if the gn_numbers field is the first item in each element, so that their 

addresses are identical when passed to the xdr_reference  primitive. 

Finally, the program updates the gnp field to point to the next item in the list. If the direction is 

XDR_FREE, it is set to the previously saved value. Otherwise, the program dereferences the gnp field to 

get the proper value. Though harder to understand than the recursive version, this nonrecursive subroutine 

is far less likely to cause errors in the C stack. The nonrecursive subroutine also runs more efficiently 

because much procedure call overhead has been removed. For small lists, containing hundreds of items 

or less, the recursive version of the subroutine should be sufficient. 

Using an XDR Data Description Example 

The following short eXternal Data Representation (XDR) data description of a file can be used to transfer 

files from one machine to another: 

const  MAXUSERNAME  = 32;      /*  max  length  of a user  name   */ 

const  MAXFILELEN  = 65535;    /*  max  length  of a file        */ 

const  MAXNAMELEN  = 255;      /*  max  length  of a file  name   */ 

/* 

 * Types  of files:  

 */ 

enum  filekind  { 

    TEXT  = 0,       /*  ascii  data   */ 

    DATA  = 1,       /*  raw  data     */  

    EXEC  = 2        /*  executable   */ 

}; 

/* 

 * File  information,  per  kind  of file:  

 */ 

union  filetype  switch  (filekind  kind)  { 

    case  TEXT:  

        void;                 /*  no extra  information   */ 

    case  DATA:  

        string  creator<MAXNAMELEN>;    /*  data  creator   */ 

    case  EXEC:

 

102 Communications Programming Concepts



string  interpretor<MAXNAMELEN>;  /* program  interpretor  */ 

};  

/*  

 * A complete  file:  

 */ 

struct  file  { 

    string  filename<MAXNAMELEN>;  /*   name  of file   */  

    filetype  type;                /*  info  about  file   */ 

    string  owner<MAXUSERNAME>;    /*  owner  of file     */ 

    opaque  data<MAXFILELEN>;      /*  file  data         */ 

};  

If a user named john  wants to store his sillyprog  LISP program, which contains just the data (quit), his 

file can be encoded as follows: 

 Offset  Hex  Bytes  ASCII  Description  

0 00 00 00 09 ... Length of file name = 9 

4 73 69 6c 6c sill File name characters 

8 79 70 72 6f ypro ... and more characters ... 

12 67 00 00 00 g... ... and 3 zero-bytes of fill 

16 00 00 00 02 ... File type is EXEC = 2 

20 00 00 00 04 ... Length of owner = 4 

24 6c 69 73 70 lisp Interpretor characters 

28 00 00 00 04 ... Length of owner = 4 

32 6a 6f 68 6e john Owner characters 

36 00 00 00 06 ... Length of file data = 6 

40 28 71 75 69 (qui File data bytes ... 

44 74 29 00 00 t).. ... and 2 zero-bytes of fill
  

Showing the Justification for Using XDR Example 

Consider two programs, writer  and reader. The writer  program is written as follows: 

#include  <stdio.h>  

main()          /*  writer.c   */ 

{ 

   long  i; 

   for  (i = 0;  i < 8; i++)  { 

       if (fwrite((char  *)&i,  sizeof(i),  1, stdout)  != 1) { 

          fprintf(stderr,  "failed!\n");  

          exit(1);  

       } 

   } 

   exit(0);  

} 

The reader  program is written as follows: 

#include  <stdio.h>  

main()           /*  reader.c   */ 

{ 

   long  i, j; 

   for  (j = 0;  j < 8; j++)  { 

      if (fread((char  *)&i,  sizeof  (i),  1, stdin)  != 1) { 

         fprintf(stderr,  "failed!\n");  

         exit(1);  

      } 

      printf("%ld  ",  i);

 

Chapter 4. eXternal Data Representation 103



} 

   printf("\n");  

  exit(0);  

} 

The two programs appear to be portable because they pass lint  checking and exhibit the same behavior 

when executed on two different hardware architectures, such as an IBM machine and a VAX machine. 

Piping the output of the writer  program to the reader  program gives identical results on an IBM machine 

or a VAX machine, as follows: 

ibm%    writer  | reader   

0 1 2 3 4 5 6 7 

ibm%  

vax%    writer  | reader   

0 1 2 3 4 5 6 7 

vax%  

The following output results if the first program produces data on an IBM machine and the second 

consumes data on a VAX machine: 

ibm%    writer  | rsh  vax  reader   

0 16777216  33554432  50331648  67108864  83886080  100663296  

117440512  

ibm%  

Executing the writer  program on the VAX machine and the reader  program on the IBM machine produces 

results identical to the previous example. These results occur because the byte ordering of long integers 

differs between the VAX machine and the IBM machine, even though word size is the same. 

Note:   The value 16777216 equals 224 . When 4 bytes are reversed, the 1 winds up in the 24th bit. 

Data must be portable when shared by two or more machine types. Programs can be made data-portable 

by replacing the read  and write  system calls with calls to the xdr_long  subroutine, which is a filter that 

interprets the standard representation of a long integer in its external form. 

Following is the revised version of the writer  program: 

#include  <stdio.h>  

#include  <rpc/rpc.h>       /*  xdr  is a sub-library  of rpc   */ 

main()          /*  writer.c   */ 

{ 

   XDR  xdrs;  

   long  i; 

   xdrstdio_create(&xdrs,  stdout,  XDR_ENCODE);  

   for  (i = 0; i < 8; i++)  { 

      if (!xdr_long(&xdrs,  &i))  { 

         fprintf(stderr,  "failed!\n");  

         exit(1);  

      } 

   } 

   exit(0);  

} 

Following is the result of the reader  program: 

#include  <stdio.h>  

#include  <rpc/rpc.h>     /*  xdr  is a sub-library  of rpc  */ 

main()                   /*  reader.c   */ 

{ 

   XDR  xdrs;  

   long  i, j; 

   xdrstdio_create(&xdrs,  stdin,  XDR_DECODE);  

   for  (j = 0; j < 8; j++)  { 

      if (!xdr_long(&xdrs,  &i))  {

 

104 Communications Programming Concepts



fprintf(stderr,  "failed!\n");  

        exit(1);  

      } 

      printf("%ld  ",  i);  

      } 

   printf("\n");  

   exit(0);  

} 

The new programs, executed on an IBM machine, then on a VAX machine, and then from an IBM to a 

VAX, yield the following results: 

ibm%    writer  | reader  

0 1 2 3 4 5 6 7 

ibm%  

vax%    writer  | reader   

0 1 2 3 4 5 6 7 

vax%  

ibm%    writer  | rsh  vax  reader   

0 1 2 3 4 5 6 7 

ibm%  

Integers are one type of portable data. Arbitrary data structures present portability problems, particularly 

with respect to alignment and pointers. Alignment on word boundaries can cause the size of a structure to 

vary from machine to machine. Pointers, though convenient to use, have meaning only on the machine 

where they are defined. 

Using XDR Example 

Assume that a person’s gross assets and liabilities are to be exchanged among processes. Also, assume 

that these values are important enough to warrant their own data type: 

struct  gnumbers  { 

   long  g_assets;  

   long  g_liabilities;  

};  

The corresponding eXternal Data Representaton (XDR) routine describing this structure would be: 

bool_t       /*  TRUE  is success,  FALSE  is failure   */ 

xdr_gnumbers(xdrs,  gp)  

   XDR  *xdrs;  

   struct  gnumbers  *gp;  

{ 

   if (xdr_long(xdrs,  &gp->g_assets)  && 

      xdr_long(xdrs,  &gp->g_liabilities))  

      return(TRUE);  

   return(FALSE);  

} 

The xdrs  parameter is neither inspected nor modified before being passed to the subcomponent routines. 

However, programs should always inspect the return value of each XDR routine call, and immediately give 

up and return False if the subroutine fails. 

This example also shows that the bool_t  type is declared as an integer whose only values are TRUE  (1)  

and FALSE  (0). This document uses the following definitions: 

#define  bool_t      int  

#define  TRUE        1 

#define  FALSE       0 

Keeping these conventions in mind, the xdr_gnumbers  routine can be rewritten as follows: 

 

Chapter 4. eXternal Data Representation 105



xdr_gnumbers(xdrs,  gp)  

   XDR  *xdrs;  

   struct  gnumbers  *gp;  

{ 

   return(xdr_long(xdrs,  &gp->g_assets)  && 

      xdr_long(xdrs,  &gp->g_liabilities));  

} 

Using XDR Array Examples 

The following four examples illustrate eXternal Data Representation (XDR) arrays. 

Example A 

A user on a networked machine can be identified by the machine name (using the gethostname  

subroutine), the user’s UID (using the geteuid  subroutine), and the numbers of the group to which the 

user belongs (using the getgroups  subroutine). A structure with this information and its associated XDR 

subroutine could be coded as follows: 

struct  netuser  { 

   char     *nu_machinename;  

   int      nu_uid;  

   u_int    nu_glen;  

   int      *nu_gids;  

}; 

#define  NLEN  255     /*  machine  names  < 256  chars   */ 

#define  NGRPS  20    /*  user  can’t  be in > 20 groups   */ 

bool_t  

xdr_netuser(xdrs,  nup)  

   XDR  *xdrs;  

   struct  netuser  *nup;  

{ 

   return(xdr_string(xdrs,  &nup->nu_machinename,  NLEN)  && 

      xdr_int(xdrs,  &nup->nu_uid)  && 

      xdr_array(xdrs,  &nup->nu_gids,  &nup->nu_glen,  

          NGRPS,  sizeof  (int),  xdr_int));  

} 

Example B 

To code a subroutine to use fixed-length arrays, rewrite Example A as follows: 

#define  NLEN  255  

#define  NGRPS  20 

struct  netuser  { 

       char  *NUMachineName;  

       int  nu_uid;  

       int  nu_gids;  

}; 

bool_t  

xdr_netuser  (XDRS,  nup  

       XDR  *xdrs;  

       struct  netuser  *nup;  

{ 

       int  i; 

       if  (!xdr_string(xdrs,&nup->NUMachineName,  NLEN))  

        return  (FALSE);  

       if  (!xdr_int  (xdrs,  &nup->nu_uid))  

        return  (FALSE);  

       for  (i = 0; i < NGRPS;  i+++)  { 

         if (!xdr_int  (xdrs,  &nup->nu_uids[i]))  

             return  (FALSE);  

       } 

       return  (TRUE);  

} 

 

106 Communications Programming Concepts



Example C 

A party of network users can be implemented as an array in the netuser  structure. The declaration and its 

associated XDR routines are as follows: 

struct  party  { 

    u_int  p_len;  

    struct  netuser  *p_nusers;  

};  

#define  PLEN  500     /*  max  number  of users  in a party   */ 

bool_t  

xdr_party(xdrs,  pp)  

    XDR  *xdrs;  

    struct  party  *pp;  

{ 

    return(xdr_array(xdrs,  &pp->p_nusers,  &pp->p_len,  PLEN,  

        sizeof  (struct  netuser),  xdr_netuser));  

} 

Example D 

The main  function’s well-known parameters, argc  and argv, can be combined into a structure. An array of 

these structures can make up a history of commands. The declarations and XDR routines can have the 

following syntax: 

struct  cmd  { 

    u_int  c_argc;  

    char  **c_argv;  

};  

#define  ALEN  1000    /*  args  cannot  be > 1000  chars   */ 

#define  NARGC  100    /*  commands  cannot  have  > 100  args   */ 

struct  history  { 

    u_int  h_len;  

    struct  cmd  *h_cmds;  

};  

#define  NCMDS  75    /*  history  is no more  than  75 commands   */ 

bool_t  

xdr_wrap_string(xdrs,  sp)  

    XDR  *xdrs;  

    char  **sp;  

{ 

    return(xdr_string(xdrs,  sp,  ALEN));  

} 

bool_t  

xdr_cmd(xdrs,  cp)  

    XDR  *xdrs;  

    struct  cmd  *cp;  

{ 

    return(xdr_array(xdrs,  &cp->c_argv,  &cp->c_argc,  NARGC,  

        sizeof  (char  *),  xdr_wrap_string));  

} 

bool_t  

xdr_history(xdrs,  hp)  

    XDR  *xdrs;  

    struct  history  *hp;  

{ 

    return(xdr_array(xdrs,  &hp->h_cmds,  &hp->h_len,  NCMDS,  

        sizeof  (struct  cmd),  xdr_cmd));  

} 

Using an XDR Discriminated Union Example 

If the type of a union can be an integer, string  (a character pointer), or gnumbers  structure, and the 

union and its current type are declared in a structure, the following declaration applies: 

 

Chapter 4. eXternal Data Representation 107



enum  utype  { INTEGER=1,  STRING=2,  GNUMBERS=3  }; 

struct  u_tag  { 

    enum  utype  utype;    /*  the  union’s  discriminant   */ 

    union  { 

        int  ival;  

        char  *pval;  

        struct  gnumbers  gn;  

    } uval;  

}; 

The following constructs and eXternal Data Representation (XDR) procedure serialize and deserialize the 

discriminated union: 

struct  xdr_discrim  u_tag_arms[4]  = { 

    { INTEGER,  xdr_int  }, 

    { GNUMBERS,  xdr_gnumbers  } 

    { STRING,  xdr_wrap_string  }, 

    { __dontcare__,  NULL  } 

    /*  always  terminate  arms  with  a NULL  xdr_proc   */ 

} 

bool_t  

xdr_u_tag(xdrs,  utp)  

    XDR  *xdrs;  

    struct  u_tag  *utp;  

{ 

    return(xdr_union(xdrs,  &utp->utype,  &utp->uval,  

        u_tag_arms,  NULL));  

} 

The xdr_gnumbers  subroutine is presented in the “Passing Linked Lists Using XDR Example” on page 

100. The xdr_wrap_string  subroutine is presented in Example D of “Using XDR Array Examples” on page 

106. The default arms  parameter to the xdr_union  parameter is NULL  in this example. Therefore, the value 

of the union’s discriminant may legally take on only values listed in the u_tag_arms  array. This example 

also demonstrates that the elements of the arms  array do not need to be sorted. 

The values of the discriminant may be sparse (though not in this example). It is good practice assigning 

explicit integer values to each element of the discriminant’s type. This practice documents the external 

representation of the discriminant and guarantees that different C compilers emit identical discriminant 

values. 

Showing the Use of Pointers in XDR Example 

If a structure contains a person’s name and a pointer to a gnumbers  structure, which in turn specifies the 

person’s gross assets and liabilities, the structure can be written as follows: 

struct  pgn  { 

    char  *name;  

    struct  gnumbers  *gnp;  

}; 

The corresponding eXternal Data Representation (XDR) routine for this structure is: 

bool_t  

xdr_pgn(xdrs,  pp)  

    XDR  *xdrs;  

    struct  pgn  *pp;  

{ 

    if (xdr_string(xdrs,  &pp->name,  NLEN)  && 

      xdr_reference(xdrs,  &pp->gnp,  

      sizeof(struct  gnumbers),  xdr_gnumbers))  

        return(TRUE);  

    return(FALSE);  

} 

 

108 Communications Programming Concepts



Chapter  5.  Network  Computing  System  

The Network Computing System (NCS) is an implementation of the Network Computing Architecture that 

distributes computer processing tasks across resources in either a single network or several 

interconnected networks (an internet), which may include a variety of computers and programming 

environments. 

This chapter discusses two key NCS components: 

v   “Remote Procedure Call Runtime Library” 

v   “The Location Broker” on page 110

Remote Procedure Call Runtime Library 

The Remote Procedure Call (RPC) run-time library, included in the /usr/lib/libnck.a  library, contains the 

routines, tables, and data that support the communication of RPCs between clients and servers. 

RPC run-time routines are responsible for transmitting RPC packets between the client and server stubs  

(program modules that transfer RPCs and responses between a client and a server). 

Routines 

The RPC run-time library contains routines that are normally used only by clients (client routines), some 

that are normally used only by servers (server routines), and others that both clients and servers can use 

(conversion routines). 

Client Routines 

The client and its stub use handles  as temporary location identifiers to represent the object and the server 

to the RPC run-time routines. The object or server is linked with its specific location through a process 

called binding. 

Manual  binding  occurs when the client makes the RPC library handle management calls directly. 

Automatic  binding  occurs when the client stub calls a routine (written by the application developer) that 

makes all of the client’s calls to the RPC run-time routines. 

The RPC run-time routines that are called by clients include routines that either create handles or manage 

their binding state. In addition, one routine sends and receives packets. 

Server Routines 

The RPC run-time routines that are called by servers initialize the server, except for one routine that 

identifies the object to which a client has requested access. 

Most of the server routines in the RPC run-time library initialize the server so that it can respond to client 

requests for one or more interfaces. In the server code, routines should be included to do the following: 

v   Create one or more sockets to which clients can send messages. 

v   Register each interface that the server exports. 

v   Begin listening for client requests. 

The RPC run-time library provides two routines that create sockets. One creates a socket with a 

well-known port while the other creates a socket with an opaque port number. 

A single server can support several interfaces. It can also listen on several sockets at a time. Most servers 

use one socket for each address family. A server is not required to use different sockets for different 

interfaces. 

 

© Copyright IBM Corp. 1994, 2007 109



The server must register each interface that it exports with the RPC run-time library so that the run-time 

library can direct client calls to the procedures that implement the requested operations. The library also 

includes a routine to unregister an interface that the server no longer exports. 

When the server creates sockets, registers its interfaces, and begins listening, it is not required to make 

additional calls to the initialization routines. However, a server can register and unregister interfaces while 

it is running. 

Conversion Routines 

The RPC run-time library also provides two routines that convert between names and socket addresses. 

These routines enable programs to use names rather than addresses to identify server hosts. 

The Location Broker 

The Location Broker provides clients with information about the locations of objects and interfaces. Servers 

register their socket addresses and the objects and interfaces to which they provide access with the 

Location Broker. Clients issue requests to the Location Broker for the locations of objects and interfaces 

they wish to access. The broker returns database entries that match an object, type, interface, or 

combination, as specified in the request. 

The Location Broker also implements the Remote Procedure Call (RPC) message-forwarding mechanism. 

If a client sends a request for an interface to the forwarding port on a host, the Location Broker 

automatically forwards the request to the appropriate server on the host. 

Location Broker Components 

The Location Broker consists of these interrelated components: 

 Local  Location  Broker  (LLB) An RPC server that maintains a database of information about 

objects and interfaces located on the local host. The LLB provides 

access to its database for application programs and also provides 

the Location Broker forwarding service. An LLB must run on any 

host that runs RPC servers. The LLB runs as the daemon 

program, llbd. 

Global  Location  Broker  (GLB) An RPC server that maintains information about objects and 

interfaces throughout the network or internet. The GLB can run as 

either the glbd  or nrglbd  daemon program. The glbd  daemon 

supports replicatable GLB databases in the network; the nrglbd  

daemon does not. 

Location  Broker  Client  Agent  A set of library routines that application programs call to access 

LLB and GLB databases. Any client using Location Broker library 

routines is actually making calls to the client agent. The client 

agent interacts with LLBs and GLBs to provide access to their 

databases.
  

The following Location Broker Software figure shows the relationships among application programs, the 

Location Broker components, and the Location Broker databases. 

 

 

110 Communications Programming Concepts



Location Broker Data 

Each entry in a Location Broker database contains information about an object and an interface, and it 

contains the location of a server that exports the interface to the object. The records in a database entry 

are as follows: 

 Object  UUID  Specifies a universally unique identifier (UUID) of the object. 

Type UUID  Identifies a unique identifier that specifies the type of the object. 

Interface  UUID  Indicates a unique identifier of the interface to the object. 

Flag  Specifies a flag that indicates if the object is global (and should be registered in the 

GLB database). 

Annotation  Contains 64 characters of user-defined information. 

Socket  Address  Length  Specifies the length of the socket address field. 

Socket  Address  Indicates the location of the server that exports the interface to the object.
  

Each database entry contains one object UUID, one interface UUID, and one socket address. This means 

a Location Broker database must have an entry for each possible combination of object, interface, and 

socket address. For example, the database must have 10 entries for a server that does the following: 

v   Listens on two sockets, socket_a  and socket_b. 

v   Exports interface_1  for object_x, object_y, and object_z. 

v   Exports interface_2  for object_p  and object_q. 

The server must make a total of 10 calls to the lb_$register  routine to completely register its interfaces 

and objects. 

You can look up Location Broker information by using any combination of the object UUID, type UUID, and 

interface UUID as keys. You can also request the information from the GLB database or from a particular 

LLB Database

Local Host

GLB

GLB Database

Remote Application

Client Agent

Remote Host

GLB HostLLB

Client Agent

Local Application

Location Broker Software

  

Figure  21.  Location  Broker  Software.  This  diagram  shows  the  local  host  contains  the  following  components  which  are  

connected:  local  application,  client  agent,  LLB,  and  LLB  database.  The  GLB  Host  contains  the  following  components  

which  are  connected:  GLB  and  the  GLB  Database.  The  remote  host  contains  the following  components  which  are  

connected:  remote  application  and  the client  agent.  The  client  agent  in the  local  host  is connected  to the GLB.  The  

LLB  in the local  host  is connected  to the  client  agent  of the remote  host.

 

Chapter 5. Network Computing System 111



LLB database. Therefore, you can obtain information about all objects of a specific type, all hosts with a 

specific interface to an object, or even all objects and interfaces at a specific host. For example, you can 

find the addresses of all remotely available array processors by looking up all entries with the arrayproc  

type. 

Location Broker Client Agent 

The Location Broker client agent is a set of library routines that applications use to access and modify the 

LLB and GLB databases. When a program issues any Location Broker call, the call goes to the local 

host’s client agent. The client agent does the work to add, delete, or look up information in the appropriate 

Location Broker database. 

The Client Agent and a Global Location Broker figure (Figure 22) illustrates a typical case in which a client 

requires a particular interface to a particular object, but does not know the location of a server exporting 

the interface to the object. In this figure, an RPC server registers itself with the Location Broker by calling 

the client agent in its host (step 1a). The client agent, through the LLB, adds the registration information to 

the LLB database at the server host (not shown). The client agent also sends the information to the GLB 

(step1b). To locate the server, the client issues a Location Broker lookup call (step 2a). The client agent on 

the client host sends the lookup request to the GLB, which returns the server location through the client 

agent to the client (step 2b). Then the client can use RPC calls to communicate directly with the located 

server (steps 3a and 3b). 

 

 If a client knows the host where the object is located but does not know the port number used by the 

server, the client agent can query the remote host’s LLB directly, as illustrated in the following Client Agent 

Performing a Lookup at a Known Host figure. 

 

1b
Register
Object

Client
Agent

Server

Object

1a
Register
Object

Global Location Broker

3a
Access object

Client
2a
Lookup
ObjectClient

Agent

2b
Lookup
Object

3b

Client Agent and a Global Location Broker

  

Figure  22.  Client  Agent  and  a Global  Location  Broker

 

112 Communications Programming Concepts



Local Location Broker 

The LLB, which runs as the llbd  daemon, maintains a database of the objects and interfaces exported by 

servers running on the host. In addition, it acts as a forwarding agent for requests. 

An llbd  daemon must be running on hosts that run RPC servers. However, it is recommended to run an 

llbd  daemon on every host in the network or internet. 

Local Database 

The database maintained by the LLB provides location information about interfaces on the local host. This 

information is used by both local and remote applications. To look up information in an LLB database, an 

application queries the LLB through a client agent. For applications on a local host, the client agent 

accesses the LLB database directly. For applications on a remote host, the remote client agent accesses 

the LLB database through the LLB process. You can also access the LLB database manually by using the 

lb_admin  command. 

LLB Forwarding Agent 

The LLB’s forwarding facility eliminates the need for a client to know the specific port a server uses. It is 

intended to limit the number of well-known port numbers reserved for specific purposes. 

The forwarding agent listens on one well-known port for each address family. It forwards any messages 

received to the local server that exports the requested object. Forwarding is particularly useful when the 

requester of a service already knows the host on which the server is running. For example, you do not 

need to assign a well-known port to a server that reports load statistics, nor do you need to register the 

server with the GLB. Each such server registers only with its host’s LLB. Remote clients access the server 

by specifying the object, the interface, and the host, but not a specific port, when making a Remote 

Procedure Call. 

Global Location Broker 

The Global Location Broker (GLB), which can run as either the glbd  daemon or the nrglbd  daemon, 

manages information about the objects and interfaces available to users on the network. In an internet, at 

least one GLB must be running on each network. 

The GLB database is accessed manually by using the lb_admin  command. The lb_admin  command is 

useful to manually correct errors in the database. For example, if a server starts while the GLB is not 

2
Access Object

1b
Lookup Object LLB

Requested
Object

1a
Lookup
Object

Client

Client
Agent

Client Agent Performing a Lookup at a Known Host

  

Figure  23.  Client  Agent  Performing  a Lookup  at a Known  Host.  This  diagram  shows  that  after  the  client  agent  queries  

the  remote  host’s  LLB,  the  client  can  use  RPC  calls  to communicate  directly  with  the requested  object.

 

Chapter 5. Network Computing System 113



running, you can manually enter the information for the server in the GLB database. Similarly, if a server 

terminates abnormally without unregistering itself, you can use the lb_admin  command to manually 

remove its entry from the GLB database. 

 

114 Communications Programming Concepts



Chapter  6.  Network  Information  Services  (NIS  and  NIS+)  

The NFS Network Information Services (NIS) is a distributed database system used to distribute system 

information on networked hosts. NIS+ expands the network name service provided by NIS by enabling you 

to store information about workstation addresses, security information, mail information, Ethernet 

interfaces, and network services in central locations where all workstations on a network can access it. 

This chapter lists technical reference sources for programming NIS and NIS+ (See “List of NIS and NIS+ 

Programming References”). See AIX  5L  Version  5.3  Network  Information  Services  (NIS  and  NIS+)  Guide  

for more information. 

List of NIS and NIS+ Programming References 

The list of Network Information Service (NIS and NIS+) references includes: 

v   “Subroutines” 

v   “Files” 

v   “NIS+ Commands” on page 116 

v   “NIS+ Tables” on page 116 

v   “NIS+ APIs” on page 117 

See List of NIS Commands in AIX  5L  Version  5.3  Network  Information  Services  (NIS  and  NIS+)  Guide  for 

information about NIS commands and daemons. 

Subroutines 

 yp_all  Transfers all of the key-value pairs from the NIS server to the client as the entire 

map. 

yp_bind  Calls the ypbind  daemon directly for processes that use backup strategies when 

NIS is not available. 

yp_first  Returns the first key-value pair from the named NIS map in the named domain. 

yp_get_default_domain  Gets the default domain of the node. 

yp_master  Returns the machine name of the NIS master server for a map. 

yp_match  Searches for the value associated with a key. 

yp_next  Returns each subsequent value it finds in the named NIS map until it reaches the 

end of the list. 

yp_order  Returns the order number for an NIS map that identifies when the map was built. 

yp_unbind  Manages socket descriptors for processes that access multiple domains. 

yp_update  Makes changes to the NIS map. 

yperr_string  Returns a pointer to an error message string. 

ypprot_err  Takes an NIS protocol error code as input and returns an error code to be used as 

input to a yperr_string  subroutine.
  

Files 

 ethers  Lists Ethernet addresses of hosts on the network. 

netgroup  Lists the groups of users on the network. 

netmasks  Lists network masks used to implement Internet Protocol standard subnetting. 

publickey  Stores public or secret keys from NIS maps. 

updaters  Contains a makefile for updating NIS maps. 

xtab  Lists directories that are currently exported.
 

 

© Copyright IBM Corp. 1994, 2007 115



NIS+ Commands 

 Command  Description  

nisaddcred  Creates credentials for NIS+ principals and stores them in the cred table. 

nisaddent  Adds information from /etc  files or NIS maps into NIS+ tables. 

niscat  Displays the contents of NIS+ tables. 

nischgrp  Changes the group owner of an NIS+ object. 

nischmod  Changes an object’s access rights. 

nischown  Changes the owner of an NIS+ object. 

nischttl  Changes an NIS+ object’s time-to-live value. 

nisdefaults  Lists an NIS+ object’s default values: domain name, group name, workstation name, NIS+ 

principal name, access rights, directory search path, and time-to-live. 

nisgrep  Searches for entries in an NIS+ table. 

nisgrpadm  Creates or destroys an NIS+ group, or displays a list of its members. Also adds members to a 

group, removes them, or tests them for membership in the group. 

nisinit  Initializes an NIS+ client or server. 

nisln  Creates a symbolic link between two NIS+ objects. 

nisls  Lists the contents of an NIS+ directory. 

nismatch  Searches for entries in an NIS+ table. 

nismkdir  Creates an NIS+ directory and specifies its master and replica servers. 

nismkuser  Creates an NIS+ user. 

nispasswd  Not supported in AIX. Use the passwd  command. 

nisrm  Removes NIS+ objects (except directories) from the namespace. 

nisrmdir  Removes NIS+ directories and replicas from the namespace. 

nisrmuser  Removes an NIS+ user. 

nissetup  Creates org_dir  and groups_dir  directories and a complete set of (unpopulated) NIS+ tables for 

an NIS+ domain. 

nisshowcache  Lists the contents of the NIS+ shared cache maintained by the NIS+ cache manager. 

nistbladm  Creates or deletes NIS+ tables, and adds, modifies or deletes entries in an NIS+ table. 

nisupdkeys  Updates the public keys stored in an NIS+ object. 

passwd  Changes password information stored in the NIS+ passwd  table.
  

NIS+ Tables  

 Table Information  in the  Table 

hosts Network address and host name of every workstation in the domain 

bootparams Location of the root, swap, and dump partition of every diskless client in the domain 

passwd Password information about every user in the domain. 

cred Credentials for principals who belong to the domain 

group The group name, group password, group ID, and members of every UNIX group in the 

domain 

netgroup The netgroups to which workstations and users in the domain may belong 

mail_aliases Information about the mail aliases of users in the domain 

timezone The time zone of every workstation in the domain 

networks The networks in the domain and their canonical names 

netmasks The networks in the domain and their associated netmasks 

ethers The Ethernet address of every workstation in the domain 

services The names of IP services used in the domain and their port numbers 

protocols The list of IP protocols used in the domain 

RPC The RPC program numbers for RPC services available in the domain 

auto_home The location of all user’s home directories in the domain 

auto_master Automounter map information 

sendmailvars The mail domain 

client_info Information about NIS+ clients
 

 

116 Communications Programming Concepts



NIS+ APIs 

The NIS+ application program interface (API) functions include: 

v   nis_add_entry  

v   nis_first_entry  

v   nis_list  

v   nis_local_directory  

v   nis_lookup  

v   nis_modify_entry  

v   nis_next_entry  

v   nis_perror  

v   nis_remove_entry  

v   nis_sperror

 

Chapter 6. Network Information Services (NIS and NIS+) 117



118 Communications Programming Concepts



Chapter  7.  Network  Management  

The Network Management facility meets programming needs by managing system networks through the 

use of Simple Network Management Protocol (SNMP) by network hosts to exchange information. 

The following topics are discussed in this chapter: 

v   “Simple Network Management Protocol” 

v   “Management Information Base” on page 120 

v   “Terminology Related to Management Information Base Variables” on page 122 

v   “Working with Management Information Base Variables” on page 123 

v   “Management Information Base Database” on page 123 

v   “How a Manager Functions” on page 125 

v   “How an Agent Functions” on page 125 

v   “List of SNMP Agent Programming References” on page 127 

v   “SMUX Error Logging Subroutines Examples” on page 128

Simple Network Management Protocol 

The Simple Network Management Protocol (SNMP) is used by network hosts to exchange information in 

the management of networks. SNMP is defined in several Requests for Comments (RFCs) available from 

the Network Information Center at SRI International, Menlo Park, California. 

The following RFCs define SNMP: 

 RFC  1155  Structure and Identification of Management Information for TCP/IP-based Internets 

RFC  1157  A Simple Network Management Protocol (SNMP) 

RFC  1213  Management Information Base for Network Management of TCP/IP-based internets: MIB-II 

RFC  1227  Simple Network Management Protocol (SNMP) single multiplexer (SMUX) protocol and Management 

Information Base (MIB) 

RFC  1229  Extensions to the Generic-Interface Management Information Base (MIB) 

RFC  1231  IEEE 802.5 Token Ring Management Information Base (MIB) 

RFC  1398  Definitions of Managed Objects for the Ethernet-like Interface Types 

RFC  1512  FDDI Management Information Base (MIB) 

RFC  1514  Host Resources Management Information Base (MIB) 

RFC  1592  Simple Network Management Protocol Distributed Protocol Interface Version 2.0 

RFC  1907  Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2) 

RFC  2572  Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) 

RFC  2573  SNMP Applications 

RFC  2574  User-based Security Model (USM) for version 3 of the Simple Network Management Protocol 

(SNMPv3) 

RFC  2575  View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)
  

SNMP network management is based on the familiar client-server model that is widely used in 

Transmission Control Protocol/Internet Protocol (TCP/IP)-based network applications. Each managed host 

runs a process called an agent. The agent is a server process that maintains the MIB database for the 

host. Hosts that are involved in network management decision-making may run a process called a 

manager. A manager is a client application that generates requests for MIB information and processes 

responses. In addition, a manager may send requests to agent servers to modify MIB information. 

 

© Copyright IBM Corp. 1994, 2007 119



Management Information Base 

The Management Information Base (MIB) is a database containing the information pertinent to network 

management. The database is conceptually organized as a tree. The upper structure of this tree is defined 

in Requests for Comments (RFC) 1155 and RFC 1213. The internal nodes of the tree represent 

subdivision by organization or function. MIB variable values are stored in the leaves of this tree. Thus, 

every distinct variable value corresponds to a unique path from the root of the tree. The children of a node 

are numbered sequentially from left to right, starting at 1, so that every node in the tree has a unique 

name, which consists of the sequence of node numbers that comprise the path from the root of the tree to 

the node. The Example Section of an MIB Tree figure (Figure 24) illustrates the relationship of sections of 

the MIB tree. 

 

 Here, the network management data for the Internet is stored in the subtree reached by the path 

1.3.6.1.2.1. This notation is the conventional way of writing the numeric path name, separating node 

numbers by periods. All variables defined in RFC 1213 have numeric names that begin with this prefix. 

Note:   Future versions of the Internet-standard MIB may have higher version numbers with variable names 

distinct from earlier versions. 

A typical variable value is stored as a leaf, as illustrated in the Leaves on an MIB tree figure (Figure 25 on 

page 121). 

 

(.)

ISO (1) CCITT (2) joint-iso-ccitt (3)

org (3)

dod (6)

internet (1)

mgmt (2)

Internet-standard MIB database

version-number (1)

...

...

...

... ...

Example Section of an MIB Tree

  

Figure  24.  Example  Section  of an MIB  Tree. This  diagram  shows  three  roots  coming  off the  MIB  tree.  Their  nodes  are  

labeled  (from  the  left)  as follows:  ISO  (1),  CCITT  (2),  joint-iso-ccitt  (3).  A child  of ISO  is labeled  org  (3),  whose  child  is 

labeled  dod  (6).  Below  dod  (6) is internet  (1)  whose  child  is mgmt  (2).  Below  mgmt  (6) is version-number  (1),  

internet-standard  MIB  tree  is the  last  child.

 

120 Communications Programming Concepts



The MIB manager data associates the values of the variables with each uniquely named instance of a 

variable. For example, 1.3.6.1.2.1.1.1.0 is the unique name of the system description, a text string 

describing the host’s operational environment. Because only one such string exists, the instance of the 

variable name 1.3.6.1.2.1.1.1 (which is denoted by a 0) is reserved for this use only. Many other variables 

have multiple instances, as illustrated in the Multiple Instance Variables figure (Figure 26 on page 122). 

 

1.3.6.1.2.1

system (1)

sysObjectId (2)

sysUpTime (3)

(0)

Variable names:
defined by RFC1155
and RFC1213

Instance values: defined
by the administrator of
the host, in conformance
with RFC1157

sysDescr (1)

...

value

(0)value

(0)value

...

...

sysServices (7)

(0)value

Leaves on an MIB Tree

  

Figure  25.  Leaves  on an MIB  Tree. This  diagram  shows  one  branch  off the path  that  is labeled  system  (1).  The  

variable  names  that  branch  off from  system  (1) are  from  the left:  sysDescr  (1),  sysObjectid  (2),  sysUpTime  (3), and  

sysServices  (7).  These  variable  names  are  defined  by RFC1155  and  RFC1213.  The  instance  values  which  are  below  

the  variable  names  listed  previously  are  value  (0) in all four  cases.  The  instance  values  are  defined  by the 

administrator  of the  host,  in conformance  with  RFC1157.

 

Chapter 7. Network Management 121



Each variable containing information about a route has an instance that is the Internet Protocol (IP) 

address of the route’s destination. Other variables have more complex rules for forming instances. The 

variable name  uniquely identifies a group of related data, while the variable instance  is a unique name for 

a particular item within the group. For example, 1.3.6.1.2.1.4.21.1.10 is the name of the variable whose 

instances are route ages, while 1.3.6.1.2.1.4.21.1.10.127.50.50.50 is the name of the instance that 

contains the age of the route to a host with the IP address of 127.50.50.50. 

For more information on Internet addresses and routing see ″TCP/IP addressing″ and ″TCP/IP routing″ in 

Networks  and  communication  management. 

Terminology  Related to Management Information Base Variables 

Requests for Comments (RFC) 1155 and 1213 define the Management Information Base (MIB) as an 

object-oriented database. Both RFCs refer to the node names as object  identifiers. Most nodes also have 

descriptive textual names called object  descriptors. The object descriptors are convenient aliases, but 

Simple Network Management Protocol (SNMP) request packets refer to variable instances only by object 

identifier. Variable names and variable instances are both denoted by object identifiers or object 

descriptors. To distinguish the four possible combinations unambiguously, the following non-RFC 

terminology is used here: 

 Non-RFC  Terminology  RFC  Terminology  Example  

Text-format variable name 

(denotes the descriptive textual name 

of a variable) 

Object descriptor of a variable sysDescr 

Numeric-format variable name 

(denotes a variable name expressed 

as a sequence of decimal numbers 

separated by periods) 

Object Identifier of a variable 1.3.6.1.2.1.1.1 

Text-format instance ID 

(denotes a text-format variable name 

qualified by an instance) 

Object descriptor of a variable with an 

instance appended 

sysDescr.0 

ipRouteEntry (1.3.6.1.2.1.4.21.1)

ipRouteAge (10)

 (127.50.50.50)  (255.25.50.75)

Variable names:
defined by RFC1155
and RFC1213

Instance values: defined
by the administrator of
the host, in conformance
with RFC1157

...

... valuevalue

Multiple Instance Variables

  

Figure  26.  Multiple  Instance  Variables.  This  diagram  shows  ipRouteEntry  (1.3.5.1.2.1.4.21.1)  at the top of the  tree  and  

a branch  with  the  variable  name  ipRouteAge  (10).  Both  of these  variables  are  defined  by RFC1155  and  RFC1213.  The  

following  instance  values  branch-off  of ipRouteAge  (10):  value  (127.50.50.50)  and  value  (255.25.50.75).  Instance  

values  are  defined  by the administrator  of the  host,  in conformance  with  RFC1157.

 

122 Communications Programming Concepts



Non-RFC  Terminology  RFC  Terminology  Example  

Numeric-format instance ID 

(denotes a numeric-format variable 

name qualified by an instance) 

Object identifier of a variable with an 

instance appended 

1.3.6.1.2.1.1.1.0

  

Instance  IDs  are variable names with an instance appended. A variable  name  refers to a set of related 

data, while an instance ID refers to a specific item from the set. 

For information on the subroutines, see “List of SNMP Agent Programming References” on page 127. 

Working  with Management Information Base Variables 

The clsnmp  command is a simple Simple Network Management Protocol (SNMP) manager application 

tool that makes SNMP requests of SNMP agents. 

You can add object definitions for MIB variables to the /etc/mib.defs  file by using the mosy  command. 

You can also add object definitions for experimental MIB modules or private-enterprise-specific MIB 

modules to the /etc/mib.defs  file. This file is created by the mosy  command. You first must obtain the 

private MIB module from a vendor that supports those MIB variables. 

Updating the /etc/mib.defs  file to incorporate a vendor’s private or experimental MIB object definitions can 

be done two ways. The first approach is to create a subfile and then concatenate that subfile to the 

existing MIB /etc/mib.defs  file. To create the subfile for the private MIBs and update the /etc/mib.defs  file, 

issue the following commands: 

mosy  -o  /tmp/private.obj  /tmp/private.my  

cat  /etc/mib.defs  /tmp/private.obj  > /tmp/mib.defs  

cp  /tmp/mib.defs  /etc/mib.defs  

A second approach re-creates the /etc/mib.defs  file with the mosy  command: 

mosy  -o  /etc/mib.defs  /usr/lpp/snmpd/smi.my  \ 

/usr/lpp/snmpd/mibII.my  /tmp/private.my  

The MIB object groups in the private MIB object definition module may have order dependencies. 

Remember the SNMP agent being queried must have these MIB variables implemented before it can 

return a value for the requested MIB variables. 

Management Information Base Database 

Network management can be passive or active. Passive  network management involves the collection of 

statistical data to profile the network activity of each host. Every variable in the Internet-standard 

Management Information Base (MIB) has a value that can be queried and used for this purpose. 

Active  network management uses a subset of MIB variables that are designated read-write. When an 

Simple Network Management Protocol (SNMP) agent is instructed to modify the value of one of these 

variables, an action is taken on the agent’s host as a side effect. For example, a request to set the 

ifAdminStatus.3  variable to the value of 2 has the side effect of disabling the network adapter card whose 

ifIndex  variable is set to a value of 3. 

Requests to read or change variable values are generated by manager applications. Three kinds of 

requests exist: 

 get  Returns the value of the specified variable instance. 

get-next  Returns the value of the variable instance following the specified instance, a get-next request. 

 

Chapter 7. Network Management 123



set  Modifies the value of the specified variable instance.
  

Requests are encoded according to the ISO ASN.1 CCITT standard for data representation (ISO 

document DIS 8825). Each get request contains a list of pairs of variable instances and variable values 

called the variable  binding  list. The variable values are empty when the request is transmitted. The values 

are filled in by the receiving agent and the entire binding list is copied into a response packet for 

transmission back to the monitor. If the request is a set request, the request packet also contains a list of 

variable values. These values are copied into the binding list when the response is generated. If an error 

occurs, the agent immediately stops processing the request packet, copies the partially processed binding 

list into the response packet, and transmits it with an error code and the index of the binding that caused 

the error. 

get-next Request 

The get-next request deserves special consideration. It is designed to navigate the entire Internet-standard 

MIB subtree. Because all instance IDs are sequences of numbers, they can be ordered. 

The first eight instance IDs are: 

 sysDescr.0  1.3.6.1.2.1.1.1.0 

sysObjectId.0  1.3.6.1.2.1.1.2.0 

sysUpTime.0  1.3.6.1.2.1.1.3.0 

sysContact.0  1.3.6.1.2.1.1.4.0 

sysName.0  1.3.6.1.2.1.1.5.0 

sysLocation.0  1.3.6.1.2.1.1.6.0 

sysServices.0  1.3.6.1.2.1.1.7.0 

ifNumber.0  1.3.6.1.2.1.2.1.0
  

A get-next request for a MIB variable instance returns a binding list containing the next MIB variable 

instance in sequence and its associated value. For example, a get-next request for the sysDescr.0  

variable returns a binding list containing the pair (sysObjectId.0, Value). A get-next request for the 

sysObjectId.0  variable returns a binding list containing the pair (sysUpTime.0, Value), and so forth. 

A get-next request for the sysServices.0  variable in the previous list does not look for the next instance ID 

in sequence (1.3.6.1.2.1.1.8.0) because no such instance ID is defined in the Internet-standard MIB 

subtree. The next MIB variable instance in the Internet-standard MIB subtree is the first instance ID in the 

next MIB group in sequence, the interfaces  group. The first instance ID in the interfaces group is the 

ifNumber.0  variable. 

Thus, a get-next request for the sysServices.0  variable returns a binding list containing the pair 

(ifNumber.0, Value). Instance IDs are similar to decimal number representations, with the digits to the 

right increasing more rapidly than the digits on the left. Unlike decimal numbers, the digits have no real 

base. The possible values for each digit are determined by the RFCs and the instances that are appended 

to the variable names. The get-next request allows traversal of the whole tree, even though instances are 

not known. 

The following example is an illustration of an algorithm, not of actual code: 

struct  binding  { 

  char  instance[length1];  

  char  value[length2];  

}bindlist[maxlistsize];  

bindlist[0]  = get(sysDescr.0);  

for  (i = 1; i < maxlistsize  && bindlist[i-1].instance  != NULL;  i++)  { 

  bindlist[i]  = get_next(bindlist[i-1].instance);  

}  

 

124 Communications Programming Concepts



The fictitious get and get-next functions in this example return a single binding pair, which is stored in an 

array of bindings. Each get-next request uses the instance returned by the previous request. By 

daisy-chaining in this way, the entire MIB database is traversed. 

How a Manager Functions 

Managers, or the clients  in a client and server relationship, are divided into two functional layers: 

application and protocol. 

The protocol layer accepts requests from the application layer, encodes them in ASN.1 format, and 

transmits them on the network. It receives and decodes replies and trap packets, detects erroneous 

packets, and passes the data to the application layer. 

The application layer does the real work of the manager. It decides when to generate requests for variable 

values and what to do with the results. A manager may perform a passive statistics-gathering function, or it 

may attempt to actively manage the network by setting new values in read-write variables on some hosts. 

For example, a network interface may be enabled or disabled by means of the ifAdminStatus  variable. 

The variables in the ipRoute  family can be used to download kernel route tables, using data obtained from 

a router. 

For more information on protocols and routing, see ″TCP/IP protocols″ and ″TCP/IP routing″ in Networks  

and  communication  management. 

How an Agent Functions 

Agents are the servers in the client and server relationship. Agents listen on well-known port 161 for 

request packets from managers. In addition to the protocol and application layers, agents must also 

communicate with the operating system kernel. Most of the information in the Internet-standard MIB is 

maintained by kernel processes. The actions associated with a set request are often implemented as ioctl 

commands. In addition, the kernel may generate asynchronous notifications called traps. Some MIB 

information may be managed by another application, such as the gated  daemon. The Agent Function 

figure (Figure 27 on page 126) outlines the function of an agent. 

 

 

Chapter 7. Network Management 125



One of the tasks of the protocol layer is to authenticate requests. This is optional and not all agents 

implement this task. If the protocol layer authenticates requests, the community name included in every 

request packet is used to determine what access privileges the sender has. The community name might 

be used to reject all requests (if it is an unknown name), restrict the sender’s view of the database, or 

reject set requests from some senders. A manager might belong to many different communities, each of 

which may have a different set of access privileges granted by the agents. A manager might generate or 

forward requests for other processes, using different community names for each. 

Traps 

The agent may generate asynchronous event notifications called traps. For example, if an interface 

adapter fails, the kernel may detect this and cause the agent to generate a trap to indicate the link is down 

(in some implementations, the agent may detect the condition). Also, other applications may generate 

traps. For example, in addition to the gated  request types shown in the Agent Function figure (Figure 27), 

the gated  daemon generates an egpNeighborLoss  trap whenever it puts an Exterior Gateway Protocol 

(EGP) neighbor into the down state. The agent itself generates traps (coldStart,  warmStart) when it 

initializes and when authentication fails (authenticationFailure). Each agent has a list of hosts to which 

traps should be sent. The hosts are assumed to be listening on well-known port 162 for trap packets. 

For more information on EGP, see ″Exterior Gateway Protocol″  in Networks  and  communication  

management. 

Agent

Application

Processes requests.
Creates replies.
Sends trap packets.

Protocol

Decodes requests.
Authenticates.
Encodes replies.

Network

Kernel

Gets and saves values.
Performs set actions.
Generates traps.

gated Daemon

egpInMsgs
egpInErrors
egpOutMsgs
egpOutErrors
egpNeighState
egpNeighAddr
egpNeighAs
egpNeighInMsgs
egpNeighInErrs
egpNeighOutMsgs

egpneighOutErrs
egpNeighInErrMsgs
egpNeighOutErrMsgs
egpNeighStateUps
egpNeighStateDowns
egpNeighIntervalHello
egpNeighIntervalPoll
egpNeighMode
egpNeighEventTrigger
egpAs

ipRouteDest
ipRouteIfIndex
ipRouteMetric1
ipRouteMetric2
ipRouteMetric3
ipRouteMetric4
ipRouteNextHop
ipRouteType
ipRouteProto
ipRouteAge
ipRouteMask
ipRouteMetric5
ipRouteInfo

Agent Function

  

Figure  27.  Agent  Function.  This  diagram  shows  that  the  kernel  within  the  agent  additionally  gets  and  saves  values,  

and  performs  set  actions.  The  agent’s  application  processes  requests,  creates  replies,  and  sends  trap  packets.  Two  of 

the protocol  layer  tasks  are  decoding  requests  and  encoding  replies.  There  is communication  between  the  agent  and  

the network  and  also  the  gated  Daemon  that  contains  community  names.

 

126 Communications Programming Concepts



List of SNMP Agent Programming References 

The list of Simple Network Management Protocol (SNMP) programming references includes: 

v   “Programming Commands” 

v   “Files and File Formats” 

v   “SMUX Subroutines” 

Refer to the AIX  5L  Version  5.3  Commands  Reference  for information about the system commands. 

Programming Commands 

 mosy  Converts the ASN.1 definitions of Structure and Identification of Management Information (SMI) and 

Management Information Base (MIB) modules into an object definition file for the clsnmp  command. 

clsnmp  Requests or modifies values of MIB variables managed by an SNMP agent.
  

Files and File Formats 

 mib.defs  Defines the MIB variables the SNMP agent should recognize and handle. The format of the 

/etc/mib.defs  file is required by the snmpinfo  command. 

mibII.my  Defines the ASN.1 definitions for the MIB variables as defined in RFC 1213. 

smi.my  Defines the ASN.1 definitions by which the SMI is defined as in RFC 1155. 

snmpd.conf  Defines a sample configuration file for the snmpd  agent. 

ethernet.my  Defines the ASN.1 definitions for the MIB variables defined in RFC 1398. 

fddi.my  Defines the ASN.1 definitions for the MIB variables defined in RFC 1512. 

generic.my  Defines the ASN.1 definitions for the MIB variables defined in RFC 1229. 

ibm.my  Defines the ASN.1 definitions for the IBM enterprise section of the MIB tree. 

token-ring.my  Defines the ASN.1 definitions for the MIB variables defined in RFC 1231. 

unix.my  Defines the ASN.1 definitions for a set of MIB variables for memory buffer (mbuf) statistics, 

SNMP multiplexing (SMUX) peer information, and various other information. 

view.my  Defines the ASN.1 definitions for the SNMP access list and view tables. 

snmpd.peers  Defines a sample peers file for the snmpd  agent.
  

SMUX Subroutines 

 getsmuxEntrybyidentity  Retrieves SMUX peers by object identifier. 

getsmuxEntrybyname  Retrieves SMUX peers by name. 

isodetailor  Initializes variables for various logging facilities. 

_ll_log  Reports errors to log files. 

ll_dbinit  Reports errors to log files. 

ll_hdinit  Reports errors to log files. 

ll_log  Reports errors to log files. 

o_generic  Encodes values retrieved from the MIB into the specified variable binding. 

o_igeneric  Encodes values retrieved from the MIB into the specified variable binding. 

o_integer  Encodes values retrieved from the MIB into the specified variable binding. 

o_ipaddr  Encodes values retrieved from the MIB into the specified variable binding. 

o_number  Encodes values retrieved from the MIB into the specified variable binding. 

o_specific  Encodes values retrieved from the MIB into the specified variable binding. 

o_string  Encodes values retrieved from the MIB into the specified variable binding. 

ode2oid  Returns a static pointer to the object identifier. If unsuccessful, the NULLOID  value 

is returned. 

oid2ode  Takes an object identifier and returns its dot-notation description as a string. 

oid2prim  Encodes an object identifier structure into a presentation element. 

oid_cmp  Manipulates the object identifier structure. 

 

Chapter 7. Network Management 127



oid_cpy  Manipulates the object identifier structure. 

oid_extend  Extends the base /usr/lib/libisode.a  library subroutines. 

oid_free  Manipulates the object identifier structure. 

oid_normalize  Extends and adjusts the values of the object identifier structure entries for the base 

/usr/lib/libisode.a  library subroutines. 

prim2oid  Decodes an object identifier from a presentation element. 

readobjects  Allows an SMUX peer to read the MIB variable structure. 

s_generic  Sets the value of the MIB variable in the database. 

smux_close  Ends communication with the SNMP agent. 

smux_error  Creates a readable string from information found in the smux_errno  global 

variable. 

smux_free_tree  Frees the object tree when an SMUX tree is unregistered. 

smux_init  Initiates the Transmission Control Protocol (TCP) socket that the SMUX agent uses 

and clears the basic SMUX data structures. 

smux_register  Registers a section of the MIB tree with the SNMP agent. 

smux_response  Sends a response to a SNMP agent. 

smux_simple_open  Sends the open protocol data unit (PDU) to the SNMP daemon. 

smux_trap  Allows the SMUX peer to send traps to the SNMP agent. 

smux_wait  Waits for a message from the SNMP agent. 

sprintoid  Manipulates the object identifier structure. 

str2oid  Manipulates the object identifier structure. 

text2oid  Converts a text string into an object identifier. 

text2obj  Converts a text string into an object. 

text2inst  Retrieves instances of variables from a character string. 

name2inst  Retreives instances of variables from various forms of data. 

next2inst  Retreives instances of variables from various forms of data. 

nextot2inst  Retreives instances of variables from various forms of data.
  

SMUX Error Logging Subroutines Examples 

The advise  and adios  subroutines are example subroutines created to illustrate how the SNMP 

multiplexing (SMUX) _ll_log  logging subroutine can be used. The adios  and advise  sample subroutines 

are in the unixd.c  and sampled.c  sample programs. 

The adios  subroutine exits on a fatal error. This subroutine sends a fatal message to the log file and exits. 

If needed, other functionality can be added to the subroutine to help the failing program exit cleanly. 

The advise  subroutine sends an advisory message to the log. This subroutine allows the programmer to 

specify the message logging event type. 

adios Sample Subroutine 

/* Function:  adios  

* 

* Inputs:  

* what  - the  thing  that  went  wrong  

* fmt  - the  string  to be printed  in printf  format  (char*)  

* variables  - variable  needed  to fill  in the  fmt.  

* 

* Outputs:  none  

* Returns:  none  

* 

* NOTE:  The  adios  function  calls  the  logging  function  with  the 

* variables  above  and  a LLOG_FATAL  error  code.  The function  then  

* exits  with  a return  code  of  1, thereby  terminating  the  sampled  

* process.  

*/ 

#ifndef  lint

 

128 Communications Programming Concepts



void     adios  (va_list)  

va_dcl  

{ 

   va_list  ap;  

   va_start  (ap);  

   _ll_log  (pgm_log,  LLOG_FATAL,  ap);  /*Prints  to the log*/  

                                  /*specified  by pgm_log.a*/  

                                  /* Fatal  error          */ 

   va_end  (ap);  

   _exit  (1);  

} 

#else  

/*   VARAGS   */ 

void  adios  (what,fmt)  

char  *what,  

     *fmt;  

{ 

   adios  (what,  fmt);  

} 

#endif  

advise Sample Subroutine 

/*  Function:  advise  

* 

* Inputs:  

* code  - the  logging  level  to associate  with  this  error  (int)  

* what  - the  thing  that  went  wrong  

* fmt  - the  string  to be printed  in printf  format  (char*)  

* variables  - variable  needed  to fill  in the  fmt.  

* 

* Outputs:  none  

* Returns:  none  

* 

* NOTE:  The  advise  function  calls  the  logging  function  with  the  

* variables  above.  This  is a usability  front  end to the  logging  

* functions.  

*/  

#ifndef  lint  

void     advise  (va_list)  

va_dcl  

{ 

   int  code;  

   va_list  ap;  

   va_start  (ap);  

   code  = va_arg  (ap,  int);   /*Gets  the  code  variable  */ 

                             /* from  the  list  of parameters  */ 

   _ll_log  (pgm_log,  code,  ap);  

   va_end  (ap);  

} 

#else  

/*   VARAGS   */ 

void  advise  (code,  what,  fmt)  

char  *what,  

     *fmt;  

int    code;  

{ 

   advise  (code,  what,  fmt);  

} 

#endif  

 

Chapter 7. Network Management 129



130 Communications Programming Concepts



Chapter  8.  Remote  Procedure  Call  

Remote Procedure Call (RPC) is a protocol that provides the high-level communications paradigm used in 

the operating system. RPC presumes the existence of a low-level transport protocol, such as Transmission 

Control Protocol/Internet Protocol (TCP/IP) or User Datagram Protocol (UDP), for carrying the message 

data between communicating programs. RPC implements a logical client-to-server communications system 

designed specifically for the support of network applications. 

This chapter provides the following information about programming RPC: 

v   “RPC Model” on page 132 

v   “RPC Message Protocol” on page 133 

v   “RPC Authentication” on page 138 

v   “RPC Port Mapper Program” on page 144 

v   “Programming in RPC” on page 146 

v   “RPC Features” on page 153 

v   “RPC Language” on page 155 

v   “rpcgen Protocol Compiler” on page 160 

v   “List of RPC Programming References” on page 162 

The RPC protocol is built on top of the eXternal Data Representation (XDR) protocol, which standardizes 

the representation of data in remote communications. XDR converts the parameters and results of each 

RPC service provided. 

The RPC protocol enables users to work with remote procedures as if the procedures were local. The 

remote procedure calls are defined through routines contained in the RPC protocol. Each call message is 

matched with a reply message. The RPC protocol is a message-passing protocol that implements other 

non-RPC protocols such as batching and broadcasting remote calls. The RPC protocol also supports 

callback procedures and the select  subroutine on the server side. 

A client  is a computer or process that accesses the services or resources of another process or computer 

on the network. A server  is a computer that provides services and resources, and that implements network 

services. Each network service  is a collection of remote programs. A remote program implements remote 

procedures. The procedures, their parameters, and the results are all documented in the specific 

program’s protocol. 

RPC provides an authentication process that identifies the server and client to each other. RPC includes a 

slot for the authentication parameters on every remote procedure call so that the caller can identify itself to 

the server. The client package generates and returns authentication parameters. RPC supports various 

types of authentication such as the UNIX and Data Encryption Standard (DES) systems. 

In RPC, each server supplies a program that is a set of remote service procedures. The combination of a 

host address, program number, and procedure number specifies one remote service procedure. In the 

RPC model, the client makes a procedure call to send a data packet to the server. When the packet 

arrives, the server calls a dispatch routine, performs whatever service is requested, and sends a reply 

back to the client. The procedure call then returns to the client. 

The RPC interface is generally used to communicate between processes on different workstations in a 

network. However, RPC works just as well for communication between different processes on the same 

workstation. 

The Port Mapper program maps RPC program and version numbers to a transport-specific port number. 

The Port Mapper program makes dynamic binding of remote programs possible. 

 

© Copyright IBM Corp. 1994, 2007 131



To write network applications using RPC, programmers need a working knowledge of network theory. For 

most applications, an understanding of the RPC mechanisms usually hidden by the rpcgen  command’s 

protocol compiler is also helpful. However, use of the rpcgen  command circumvents the need for 

understanding the details of RPC. 

RPC Model 

The remote procedure call (RPC) model is similar to a local procedure call model. In the local model, the 

caller places arguments to a procedure in a specified location such as a result register. Then, the caller 

transfers control to the procedure. The caller eventually regains control, extracts the results of the 

procedure, and continues execution. 

RPC works in a similar manner, in that one thread of control winds logically through two processes: the 

caller process and the server process. First, the caller process sends a call message that includes the 

procedure parameters to the server process. Then, the caller process waits for a reply message (blocks). 

Next, a process on the server side, which is dormant until the arrival of the call message, extracts the 

procedure parameters, computes the results, and sends a reply message. The server waits for the next 

call message. Finally, a process on the caller receives the reply message, extracts the results of the 

procedure, and the caller resumes execution. 

The Remote Procedure Call Flow figure (Figure 28) illustrates the RPC paradigm. 

 

 In the RPC model, only one of the two processes is active at any given time. Furthermore, this model is 

only an example. The RPC protocol makes no restrictions on the concurrency model implemented, and 

others are possible. For example, an implementation can choose asynchronous Remote Procedure Calls 

Manager
ProceduresClient

Server StubClient Stub

RPC Runtime
Library

return

call

RPC Runtime
Library

 Interface

Server processClient process

apparent flow

network
messages

Remote Procedure Call Flow

return returncall call

callreturncall return

  

Figure  28.  Remote  Procedure  Call  Flow.  This  diagram  shows  the  client  process  on the  left  which  contains  (listed  from  

top to bottom)  the  client,  client  stub,  RPC  run-time  library. The  server  process  on the  right  contains  the  following  (listed  

from  top  to bottom):  manager  procedures,  server  stub,  and  the  RPC  run-time  library.  The  calls  can  go from  the client  

to the  manager  procedures  crossing  the  apparent  flow  and  above  the interface.  The  call  from  the  client  can  also  go 

through  the interface  to the  client  stub.  From  the  client  stub,  the  call  can  travel  to the RPC  run-time  library  in the  client  

process.  The  call  can  travel  to the library  in the  server  process  as a network  message.  Calls  in the  server  process  can  

go from  the  RPC  run-time  library  to the  server  stub  and  from  the  server  stub  to the manager  procedures.  Note  that  

there  is a return  in the  opposite  direction  of each  call  mentioned  previously.

 

132 Communications Programming Concepts



so that the client can continue working while waiting for a reply from the server. Additionally, the server can 

create a task to process incoming requests and thereby remain free to receive other requests. 

Transports and Semantics 

The RPC protocol is independent of transport protocols. How a message is passed from one process to 

another makes no difference in RPC operations. The protocol deals only with the specification and 

interpretation of messages. 

RPC does not try to implement any kind of reliability. The application must be aware of the type of 

transport protocol underneath RPC. If the application is running on top of a reliable transport, such as 

Transmission Control Protocol/Internet Protocol (TCP/IP), then most of the work is already done. If the 

application is running on top of a less-reliable transport, such as User Datagram Protocol (UDP), then the 

application must implement a retransmission and time-out policy, because RPC does not provide these 

services. 

Due to transport independence, the RPC protocol does not attach specific semantics to the remote 

procedures or their execution. The semantics can be inferred from (and should be explicitly specified by) 

the underlying transport protocol. For example, consider RPC running on top of a transport such as UDP. 

If an application retransmits RPC messages after short time outs and receives no reply, the application 

infers that the procedure was executed zero or more times. If the application receives a reply, the 

application infers that the procedure was executed at least once. 

A transaction ID is packaged with every RPC request. To ensure some degree of execute-at-most-once 

semantics, RPC allows a server to use the transaction ID to recall a previously granted request. The 

server can then refuse to grant that request again. The server is allowed to examine the transaction ID 

only as a test for equality. The RPC client mainly uses the transaction ID to match replies with requests. 

However, a client application can reuse a transaction ID when transmitting a request. 

When using a reliable transport such as TCP/IP, the application can infer from a reply message that the 

procedure was executed exactly once. If the application receives no reply message, the application cannot 

assume that the remote procedure was not executed. Even if a connection-oriented protocol like TCP/IP is 

used, an application still needs time outs and reconnection to handle server crashes. 

Transports besides datagram or connection-oriented protocols can also be used. For example, a 

request-reply protocol, such as Versatile Message Transaction Protocol (VMTP), is perhaps the most 

natural transport for RPC. 

RPC in the Binding Process 

The act of binding a client to a service is not  part of the Remote Procedure Call specification. This 

important and necessary function is left to higher-level software. However, the higher level software may 

use RPC in the binding process. The RPC port mapper program is an example of software that uses RPC. 

The RPC protocol’s relationship to the binding software is similar to the relationship of the network 

jump-subroutine instruction (JSR) to the loader (binder). The loader uses JSR to accomplish its task. 

Similarly, the network uses RPC to accomplish the bind. 

RPC Message Protocol 

The Remote Procedure Call (RPC) message protocol consists of two distinct structures: the call message 

and the reply message (see “RPC Call Message” on page 134 and “RPC Reply Message” on page 136). 

A client makes a remote procedure call to a network server and receives a reply containing the results of 

the procedure’s execution. By providing a unique specification for the remote procedure, RPC can match a 

reply message to each call (or request) message. 

 

Chapter 8. Remote Procedure Call 133



The RPC message protocol is defined using the eXternal Data Representation (XDR) data description, 

which includes structures, enumerations, and unions. See “RPC Language Descriptions” on page 155 for 

more information. 

When RPC messages are passed using the TCP/IP byte-stream protocol for data transport, it is important 

to identify the end of one message and the start of the next one. 

RPC Protocol Requirements 

The RPC message protocol requires: 

v   Unique specification of a procedure to call 

v   Matching of response messages to request messages 

v   Authentication of caller to service and service to caller 

To help reduce network administration and eliminate protocol roll-over errors, implementation bugs, and 

user errors, features that detect the following conditions are useful: 

v   RPC protocol mismatches 

v   Remote program protocol version mismatches 

v   Protocol errors (such as misspecification of a procedure’s parameters) 

v   Reasons why remote authentication failed 

v   Any other reasons why the desired procedure was not called

RPC Messages 

The initial structure of an RPC message is as follows: 

struct  rpc_msg  { 

     unsigned  int   xid;  

     union  switch  (enum  msg_type  mtype)   { 

          case  CALL:  

               call_body  cbody;  

          case  REPLY;  

               reply_body  rbody;  

     } body;  

}; 

All RPC call and reply messages start with a transaction identifier, xid, which is followed by a two-armed 

discriminated union. The union’s discriminant is msg_type, which switches to one of the following 

message types: CALL or REPLY. The msg_type  has the following enumeration: 

enum  msg_type  { 

     CALL      = 0, 

     REPLY     = 1 

}; 

The xid  parameter is used by clients matching a reply message to a call message or by servers detecting 

retransmissions. The server side does not treat the xid  parameter as a sequence number. 

The initial structure of an RPC message is followed by the body of the message. The body of a call 

message has one form. The body of a reply message, however, takes one of two forms, depending on 

whether a call is accepted or rejected by the server. 

RPC Call Message 

Each remote procedure call message contains the following unsigned integer fields to uniquely identify the 

remote procedure: 

v   Program number 

v   Program version number 

 

134 Communications Programming Concepts



v   Procedure number 

The body of an RPC call message takes the following form: 

struct  call_body  { 

     rpcvers_t  rpcvers; 

     rpcprog_t  prog; 

     rpcvers_t  vers; 

     rpcproc_t  proc; 

     opaque_auth  cred; 

     opaque_auth  verf; 

     1 parameter  

     2 parameter  . . .  

};  

The parameters for this structure are as follows: 

 rpcvers  Specifies the version number of the RPC protocol. The value of this parameter is 2 to indicate 

the second version of RPC. 

prog  Specifies the number that identifies the remote program. This is an assigned number 

represented in a protocol that identifies the program needed to call a remote procedure. 

Program numbers are administered by a central authority and documented in the program’s 

protocol specification. 

vers  Specifies the number that identifies the remote program version. As a remote program’s 

protocols are implemented, they evolve and change. Version numbers are assigned to identify 

different stages of a protocol’s evolution. Servers can service requests for different versions of 

the same protocol simultaneously. 

proc  Specifies the number of the procedure associated with the remote program being called. These 

numbers are documented in the specific program’s protocol specification. For example, a 

protocol’s specification can list the read procedure as procedure number 5 or the write 

procedure as procedure number 12. 

cred  Specifies the credentials-authentication parameter that identifies the caller as having permission 

to call the remote program. This parameter is passed as an opaque data structure, which 

means the data is not interpreted as it is passed from the client to the server. 

verf  Specifies the verifier-authentication parameter that identifies the caller to the server. This 

parameter is passed as an opaque data structure, which means the data is not interpreted as it 

is passed from the client to the server. 

1 parameter  Denotes a procedure-specific parameter. 

2 parameter  Denotes a procedure-specific parameter.
  

The client can send a broadcast packet to the network and wait for numerous replies from various servers. 

The client can also send an arbitrarily large sequence of call messages in a batch to the server. 

Derived Types  

For Itanium-based, the LDT (large data types) feature is turned on for compiling. 

For Itanium-based, the derived types are as follows: 

 Derived  Types in a 64-bit  Environment  

typedef unsigned integer rpcprog_t 

typedef unsigned integer rpcvers_t 

typedef unsigned integer rpcproc_t
 

 

Chapter 8. Remote Procedure Call 135



In a 32-bit environment, the derived types are as follows: 

 Derived  Types in a 32-bit  Environment  

typedef unsigned long rpcprog_t 

typedef unsigned long rpcvers_t 

typedef unsigned long rpcproc_t
  

RPC Reply Message 

The RPC protocol for a reply message varies depending on whether the call message is accepted or 

rejected by the network server. See “The Reply to an Accepted Request” and “The Reply to a Rejected 

Request” on page 137. 

The reply message to a request contains information to distinguish the following conditions: 

v   RPC executed the call message successfully. 

v   The remote implementation of RPC is not protocol version 2. The lowest and highest supported RPC 

version numbers are returned. 

v   The remote program is not available on the remote system. 

v   The remote program does not support the requested version number. The lowest and highest supported 

remote program version numbers are returned. 

v   The requested procedure number does not exist. This is usually a caller-side protocol or programming 

error. 

The RPC reply message takes the following form: 

enum  reply_stat  stat  { 

     MSG_ACCEPTED  = 0, 

     MSG_DENIED    = 1 

}; 

The enum  reply_stat  discriminant acts as a switch to the rejected or accepted reply message forms. 

The Reply to an Accepted Request 

An RPC reply message for a request accepted by the network server has the following structure: 

struct  accepted_reply  areply  { 

     opaque_auth  verf; 

     union  switch  (enum  accept_stat  stat)  { 

          case  SUCCESS:  

               opaque  results  {0};  

               /* procedure  specific  results  start  here  */ 

          case  PROG_MISMATCH:   

               struct  { 

                    unsigned  int  low;  

                    unsigned  int  high;  

               } mismatch_info;  

          default:   

               void;  

     } reply_data;  

}; 

The structures within the accepted reply are: 

 opaque_auth  verf  Authentication verifier generated by the server to identify itself to the caller. 

enum  accept_stat  A discriminant that acts as a switch between SUCCESS, PROG_MISMATCH, 

and other appropriate conditions.
  

The accept_stat  enumeration data type has the following definitions: 

 

136 Communications Programming Concepts



enum  accept_stat   { 

     SUCCESS        = 0,  /* RPC  executed  successfully         */ 

     PROG_UNAVAIL   = 1,  /* remote  has  not  exported  program   */  

     PROG_MISMATCH  = 2,   /* remote  cannot  support  version  #  */ 

     PROC_UNAVAIL   = 3,  /* program  cannot  support  procedure  */ 

     GARBAGE_ARGS   = 4,  /* procedure  cannot  decode  params    */  

};  

The structures within the accept_stat  enumeration data type are defined as follows: 

 SUCCESS  RPC call is successful. 

PROG_UNAVAIL  The remote server has not exported the program. 

PROG_MISMATCH  The remote server cannot support the client’s version number. Returns the lowest and 

highest version numbers of the remote program that are supported by the server. 

PROC_UNAVAIL  The program cannot support the requested procedure. 

GARBAGE_ARGS  The procedure cannot decode the parameters specified in the call.
  

Note:   An error condition can exist even when a call message is accepted by the server. 

The Reply to a Rejected Request 

A call message can be rejected by the server for two reasons: either the server is not running a 

compatible version of the RPC protocol, or there is an authentication failure. 

An RPC reply message for a request rejected by the network server has the following structure: 

struct  rejected_reply  rreply  { 

union  switch  (enum  reject_stat  stat)  { 

     case  RPC_MISMATCH:   

          struct  { 

               unsigned  int  low;  

               unsigned  int  high;  

          } mismatch_info;  

     case  AUTH_ERROR:   

          enum  auth_stat  stat;  

};  

The enum  reject_stat  discriminant acts as a switch between RPC_MISMATCH and AUTH_ERROR. The 

rejected call message returns one of the following status conditions: 

enum  reject_stat  { 

     RPC_MISMATCH    = 0, /* RPC  version  number  is not  2       */ 

     AUTH_ERROR      = 1,  /* remote  cannot  authenticate  caller  */ 

};  

 RPC_MISMATCH  The server is not running a compatible version of the RPC protocol. The server returns the 

lowest and highest version numbers available. 

AUTH_ERROR  The server refuses to authenticate the caller and returns a failure status with the value 

enum  auth_stat. Authentication may fail because of bad or rejected credentials, bad or 

rejected verifier, expired or replayed verifier, or security problems. 

If the server does not authenticate the caller, AUTH_ERROR  returns one of the following 

conditions as the failure status: 

enum  auth_stat  { 

     AUTH_BADCRED       = 1, /* bad  credentials       */ 

     AUTH_REJECTEDCRED  = 2,  /* begin  new  session     */ 

     AUTH_BADVERF       = 3, /* bad  verifier          */ 

     AUTH_REJECTEDVERF  = 4,  /* expired  or replayed   */ 

     AUTH_TOOWEAK       = 5, /* rejected  for  security*/  

}; 

 

 

Chapter 8. Remote Procedure Call 137



Marking Records in RPC Messages 

When RPC messages are passed using the TCP/IP byte-stream protocol for data transport, it is important 

to identify the end of one message and the start of the next one. This is called record  marking  (RM). 

A record  is composed of one or more record fragments. A record  fragment  is a four-byte header, followed 

by 0 to 232 -1 bytes of fragment data. The bytes encode an unsigned binary number, similar to XDR 

integers, in which the order of bytes is from highest to lowest. This binary number encodes a Boolean and 

an unsigned binary value of 31 bits. 

The Boolean value is the highest-order bit of the header. A Boolean value of 1 indicates the last fragment 

of the record. The unsigned binary value is the length, in bytes, of the data fragment. 

Note:   A protocol disagreement between client and server can cause remote procedure parameters to be 

unintelligible to the server. 

RPC Authentication 

The caller may not want to identify itself to the server, and the server may not require an ID from the 

caller. However, some network services, such as the Network File System (NFS), require stronger security. 

Remote Procedure Call (RPC) authentication provides a certain degree of security. 

The following are part of RPC authentication: 

v   “RPC Authentication Protocol” 

v   “NULL Authentication” on page 139 

v   “UNIX Authentication” on page 139 

v   “Data Encryption Standard (DES) Authentication” on page 140 

v   “DES Authentication Protocol” on page 142 

v   “Diffie-Hellman Encryption” on page 143 

RPC deals only with authentication and not with access control of individual services. Each service must 

implement its own access control policy and reflect this policy as return statuses in its protocol. The 

programmer can build additional security and access controls on top of the message authentication. 

The authentication subsystem of the RPC package is open-ended. Different forms of authentication can be 

associated with RPC clients. That is, multiple types of authentication are easily supported at one time. 

Examples of authentication types include UNIX, DES, and NULL. The default authentication type is none 

(AUTH_NULL). 

RPC Authentication Protocol 

The RPC protocol provisions for authentication of the caller to the server, and vice versa, are provided as 

part of the RPC protocol. Every remote procedure call is authenticated by the RPC package on the server. 

Similarly, the RPC client package generates and sends authentication parameters. The call message has 

two authentication fields: credentials and verifier. The reply message has one authentication field: 

response verifier. 

The following RPC protocol specification defines as an opaque data type the credentials of the call 

message and the verifiers of both the call and reply messages: 

enum  auth_flavor  { 

     AUTH_NULL     = 0, 

     AUTH_UNIX     = 1, 

     AUTH_SHORT    = 2, 

     AUTH_DES      = 3 

     /* and  more  to be defined  */ 

};

 

138 Communications Programming Concepts



struct  opaque_auth  { 

     auth_flavor  flavor;  

     opaque  body<400>;  

};  

Any opaque_auth  structure is an auth_flavor  enumeration followed by bytes that are opaque to the RPC 

protocol implementation. The interpretation and semantics of the data contained within the authentication 

fields are specified by individual, independent authentication protocol specifications. 

If authentication parameters are rejected, response messages state the reasons. A server can support 

multiple types of authentication at one time. 

NULL Authentication 

Sometimes, the RPC caller does not know its own identity or the server does not need to know the caller’s 

identity. In these cases, the AUTH_NULL  authentication type can be used in both the call message and 

response messages. The bytes of the opaque_auth  body are undefined. The opaque length should be 0. 

UNIX Authentication 

A process calling a remote procedure might need to identify itself as it is identified on the UNIX system. 

The value of the credential’s discriminant of an RPC call message is AUTH_UNIX. The bytes of the 

credential’s opaque body encode the following structure: 

struct  auth_unix  { 

     unsigned      stamp; 

     string        machinename;  

     unsigned      uid;  

     unsigned      gid;  

     unsigned      gids; 

};  

The parameters in the structure are defined as follows: 

 stamp  Specifies the arbitrary ID generated by the caller’s workstation. 

machinename  Specifies the name of the caller’s workstation. The name must not exceed 255 bytes in length. 

uid  Specifies the caller’s effective user ID. 

gid  Specifies the caller’s effective group ID. 

gids  Specifies the counted array of group IDs that contain the caller as a member. A maximum of 10 

groups is allowed.
  

The verifier accompanying the credentials should be AUTH_NULL. 

The value of the discriminant in the response verifier of the reply message from the server is either 

AUTH_NULL  or AUTH_SHORT. If the value is AUTH_SHORT, the bytes of the response verifier’s string 

encode an opaque structure. The new opaque structure can then be passed to the server in place of the 

original AUTH_UNIX  credentials. The server maintains a cache that maps shorthand opaque structures 

(passed back by way of an AUTH_SHORT-style response verifier) to the original credentials of the caller. 

The caller saves network bandwidth and server CPU time when the shorthand credentials are used. 

Note:   The server can eliminate, or flush, the shorthand opaque structures at any time. If this happens, the 

RPC message will be rejected due to an AUTH_REJECTEDCRED  authentication error. The original 

AUTH_UNIX  credentials can be used when this happens. 

UNIX Authentication on the Client Side 

When a caller creates a new RPC client handle, the authentication handle of the appropriate transport is 

set to the default by the authnone_create  subroutine. The default for an RPC authentication handle is 

NULL. After creating the client handle, the client can select UNIX authentication with the authunix_create  

 

Chapter 8. Remote Procedure Call 139



routine. This routine creates an authentication handle with operating system permissions and causes each 

remote procedure call associated with the handle to carry UNIX credentials. 

Note:   Authentication information can be destroyed with the auth_destroy  subroutine. Authentication 

information should be destroyed if one is attempting to conserve memory. 

For more information, see the “Using UNIX Authentication Example” on page 166. 

UNIX Authentication on the Server Side 

Dealing with authentication issues on the server side is more difficult than dealing with them on the client 

side. The caller’s RPC package passes the service dispatch routine a request that has an arbitrary 

authentication style associated with it. The server must then determine which style of authentication the 

caller used and whether the style is supported by the RPC package. 

If the authentication parameter type is not suitable for the calling service, the service dispatch routine calls 

the svcerr_weakauth  routine to refuse the remote procedure call. It is not  customary for the server to 

check the authentication parameters associated with procedure 0 (NULLPROC). 

If the service does not have the requested protocol, the service dispatch returns a status for access 

denied. The svcerr_systemerr  primitive is called to detect a system error that is not covered by a service 

protocol. 

Data Encryption Standard (DES) Authentication 

DES authentication offers more security features than UNIX authentication. For DES authentication to 

work, the keyserv  daemon must be running on both the server and client machines. The users at these 

workstations need public keys assigned in the public key database by the person administering the 

network. Additionally, each user’s secret key must be decrypted using their keylogin  command password. 

DES authentication can handle the following UNIX problems: 

v   The naming scheme within UNIX authentication is UNIX-system oriented. 

v   UNIX authentication lacks a verifier, thereby allowing falsification of credentials. 

For more information, see the “DES Authentication Example” on page 168. 

DES Authentication Naming Scheme 

DES addresses the caller with a simple string of characters instead of an integer specific to a particular 

operating system. This string of characters is known as the caller’s network name, or net  name. The 

server is allowed to interpret the contents of the net name only to identify the caller. Therefore, net names 

should be unique for each caller in the network. 

Each operating system is responsible for implementing DES authentication to generate unique net names 

for calling on remote servers. Because operating systems can already distinguish local users to their 

systems, extending this mechanism to the network is simple. 

For example, a UNIX user at company xyz with a user ID of 515 might be assigned the following net 

name: unix.515@xyz.com. This net name contains three items that ensure uniqueness. First, only one 

naming domain in the Internet is called xyz.com. In this domain, there is only one UNIX user with user ID 

515. Another user on another operating system, such as VMS, in the same naming domain can have the 

same user ID. However, two users are distinguished by the operating system name. In this example, one 

user is unix.515@xyz.com  and the other is vms.515@xyz.com. 

The first field is actually a naming method rather than an operating system name. Currently, a one-to-one 

correspondence between naming methods and operating systems exists. If a universal naming standard is 

agreed upon, the first field will become the name of that standard instead of an operating system name. 

 

140 Communications Programming Concepts



DES Authentication Verifiers 

Unlike UNIX authentication, DES authentication has a verifier that permits the server to validate the client’s 

credential and the client to validate the server’s credential. The content of this verifier is primarily an 

encrypted time stamp. The time stamp is encrypted by the client and decrypted by the server. If the time 

stamp is close to real time, then the client encrypted it correctly. To encrypt the time stamp correctly, the 

client must have the conversation key of the RPC session. The client with the conversation key is the 

authentic client. 

The conversation  key  is a DES key that the client generates and includes in its first remote procedure call 

to the server. The conversation key is encrypted using a public key scheme in the first transaction. The 

particular public key scheme used in DES authentication is the Diffie-Hellman system with 192-bit keys. 

For more information, see “Diffie-Hellman Encryption” on page 143. 

For successful validation, both the client and the server need the same notion of current time. If network 

time synchronization cannot be guaranteed, the client can synchronize with the server before beginning 

the conversation, perhaps by consulting the Internet Time Server (TIME). 

DES Authentication on the Server Side 

The method for determining the validity of a client’s time stamp depends on which transaction is under 

consideration. For the first transaction, the server checks only that the time stamp has not expired. For 

subsequent transactions, the server verifies that the time stamp is greater than the previous time stamp 

from the same client, and that the time stamp has not expired. A time stamp has expired if the server’s 

time is later than the sum of the client’s time stamp plus the client’s window. The sum of the time stamp 

plus the client’s window can be thought of as the lifetime of the credential. 

DES Authentication on the Client Side 

In the first transaction to the server, the client sends an encrypted item, the window  verifier, that must 

equal the client’s window minus one, as an added check. Otherwise, the client could successfully send 

random data instead of the time stamp. Other values for the credential are rejected by the server. If the 

window verifier is accepted by the server, the server returns to the client a verifier equal to the encrypted 

time stamp, minus one second. If the client receives a different time stamp from the server, the client 

rejects it. 

For subsequent transactions, the client’s time stamp is valid if it is greater than the previous time stamp, 

and has not expired. A time stamp has expired if the server’s time is later than the sum of the client’s time 

stamp plus the client’s window. The sum of the time stamp plus the client window can be thought of as the 

lifetime of the credential. 

To use DES authentication, the programmer must set the client authentication handle using the 

authdes_create  subroutine. This subroutine requires the network name of the owner of the server 

process, a lifetime for the credential, the address of the host with which to synchronize, and the address of 

a DES encryption key to use for encrypting time stamps and data. 

Nicknames 

The server’s DES authentication subsystem returns a nickname  to the client in the verifier response to the 

first transaction. The nickname is an unsigned integer. The nickname is likely to be an index into a table 

on the server that stores each client’s net name, decrypted DES key, and window. The client can use the 

nickname in all subsequent transactions instead of passing its net name, encrypted DES key, and window 

each time. The nickname is not required, but it saves time. 

Clock Synchronization 

Although the client and server clocks are originally synchronized, they can lose this synchronization. When 

this happens, the client RPC subsystem normally receives the RPC_AUTHERROR  error message and 

should resynchronize. 

 

Chapter 8. Remote Procedure Call 141



A client can receive the RPC_AUTHERROR  message even when the clocks are synchronized. The 

message indicates that the server’s nickname table has been flushed either because of the table’s size 

limitations or a server crash. To receive new nicknames, all clients must resend their original credentials to 

the server. 

DES Authentication Protocol 

DES authentication has the following form of eXternal Data Representation (XDR) enumeration: 

enum  authdes_namekind  { 

     ADN_FULLNAME  = 0, 

     ADN_NICKNAME  = 1 

}; 

typedef  opaque  des_block[8];  

const  MAXNETNAMELEN  = 255;  

A credential is either a client’s full network name or its nickname. For the first transaction with the server, 

the client must use its full name. For subsequent transactions, the client can use its nickname. DES 

authentication protocol includes a 64-bit block of encrypted DES data and specifies the maximum length of 

a network user’s name. 

The authdes_cred  union  provides a switch between the full-name and nickname forms, as follows: 

union  authdes_cred  switch  (authdes_namekind  adc_namekind)  { 

     case  ADN_FULLNAME:  

          authdes_fullname  adc_fullname;  

     case  ADN_NICKNAME:  

          unsigned  int  adc_nickname;  

}; 

The full name contains the network name of the client, an encrypted conversation key, and the window. 

The window is actually a lifetime for the credential. The server can terminate a client’s time stamp and not 

grant the request if the time indicated by the verifier time stamp plus the window has expired. In the first 

transaction, the server confirms that the window verifier is one second less than the window. To ensure 

that requests are granted only once, the server can require time stamps in subsequent requests to be 

greater than the client’s previous time stamps. 

The structure for a credential using the client’s full network name follows: 

struct  authdes_fullname  { 

    string  name<MAXNETNAMELEN>;  /* name  of client               */ 

    des_block  key;               /*PK  encrypted  conversation  key*/  

    unsigned  int  window;         /* encrypted  window             */ 

}; 

A time stamp encodes the time since midnight, January 1, 1970. The structure for the time stamp follows: 

struct  timestamp  { 

     unsigned  int  seconds;       /* seconds            */ 

     unsigned  int  useconds;      /* and  microseconds   */ 

The client verifier has the following structure: 

struct  { 

     adv_timestamp;            /* one  DES  block           */ 

     adc_fullname.window;      /* one  half  DES  block      */ 

     adv_winverf;              /* one  half  DES  block      */ 

} 

The window verifier is only used in the first transaction. In conjunction with the fullname  credential, these 

items are packed into the structure shown previously before being encrypted. 

This structure is encrypted using CBC mode encryption with an input vector of 0. All other time stamp 

encryptions use ECB mode encryption. The client’s verifier has the following structure: 

 

142 Communications Programming Concepts



struct  authdes_verf_clnt  { 

     timestamp  adv_timestamp;      /* encrypted  timestamp        */ 

     unsigned  int  adv_winverf;     /* encrypted  window  verifier  */ 

};  

The server returns the client’s time stamp, minus one second, in an encrypted response verifier. This 

verifier also sends the client an unencrypted nickname to be used in future transactions. The verifier from 

the server has the following structure: 

struct  authdes_verf_svr  { 

     timestamp  adv_timeverf;      /* encrypted  verifier       */ 

     unsigned  int  adv_nickname;   /*  new  nickname  for  client  */ 

};  

Diffie-Hellman Encryption 

The public key scheme used in DES authentication is Diffie-Hellman with 192-bit keys. The Diffie-Hellman 

encryption scheme includes two constants: BASE and MODULUS. Their values for these for the DES 

authentication protocol are: 

const  BASE  = 3; 

const  MODULUS  = "d4a0ba0250b6fd2ec626e7efd637df76c716e22d0944b88b";  /* hex */ 

Two programmers, A and B, can send encrypted messages to each other in the following manner. First, 

programmers A and B independently generate secret keys at random, which can be represented as SK(A) 

and SK(B). Both programmers then publish their public keys PK(A) and PK(B) in a public directory. These 

public keys are computed from the secret keys as follows: 

PK(A)  = ( BASE  ** SK(A)  ) mod  MODULUS  

PK(B)  = ( BASE  ** SK(B)  ) mod  MODULUS  

The ** (double asterisk) notation represents exponentiation. Programmers A and B can both arrive at the 

common key, represented here as CK(A, B), without revealing their secret keys. 

Programmer A computes: 

CK(A,  B) = ( PK(B)  ** SK(A))  mod  MODULUS  

while programmer B computes: 

CK(A,  B) = ( PK(A)  ** SK(B))  mod  MODULUS  

These two can be shown to be equivalent: 

(PK(B)  ** SK(A))  mod  MODULUS  = (PK(A)  ** SK(B))  mod  MODULUS  

If the mod  MODULUS  parameter is omitted, modulo arithmetic can simplify things as follows: 

PK(B)  ** SK(A)  = PK(A)  ** SK(B)  

Then, if the result of the previous computation on B replaces PK(B) and the previous computation of A 

replaces PK(A), the equation is: 

((BASE  ** SK(B))  **  SK(A)  = (BASE  ** SK(A))  ** SK(B)  

This equation can be simplified as follows: 

BASE  **  (SK(A)  * SK(B))  = BASE  ** (SK(A)  * SK(B))  

This produces a common key CK(A, B). This common key is not used directly to encrypt the time stamps 

used in the protocol. Instead, it is used to encrypt a conversation key that is then used to encrypt the time 

stamps. In this way, the common key is used as little as possible to prevent it from being broken. Breaking 

the conversation key usually has less serious consequences because conversations are relatively 

shortlived. 

 

Chapter 8. Remote Procedure Call 143



The conversation key is encrypted using 56-bit DES keys, while the common key is 192 bits. To reduce 

the number of bits, 56 bits are selected from the common key as follows. The middle eight bytes are 

selected from the common key and parity is added to the lower order bit of each byte, producing a 56-bit 

key with eight bits of parity. 

RPC Port Mapper Program 

Client programs must find the port numbers of the server programs that they intend to use. Network 

transports do not provide such a service; they merely provide process-to-process message transfer across 

a network. A message typically contains a transport address consisting of a network number, a host 

number, and a port number. 

A port  is a logical communications channel in a host. A server process receives messages from the 

network by waiting on a port. How a process waits on a port varies from one operating system to another, 

but all systems provide mechanisms that suspend processes until a message arrives at a port. Therefore, 

messages are sent to the ports at which receiving processes wait for messages. 

Ports allow message receivers to be specified in a way that is independent of the conventions of the 

receiving operating system. The port mapper protocol defines a network service that permits clients to look 

up the port number of any remote program supported by the server. Because the port mapper program 

can be implemented on any transport that provides the equivalent of ports, it works for all clients, all 

servers, and all networks. 

The port mapper program maps Remote Procedure Call (RPC) program and version numbers to 

transport-specific port numbers. The port mapper program makes dynamic binding of remote programs 

possible. This is desirable because the range of reserved port numbers is small and the number of 

potential remote programs large. When running only the port mapper on a reserved port, the port numbers 

of other remote programs can be determined by querying the port mapper. 

The port mapper also aids in broadcast RPC. A given RPC program usually has different port number 

bindings on different machines, so there is no way to directly broadcast to all of these programs. The port 

mapper, however, has a fixed port number. To broadcast to a given program, the client sends its message 

to the port mapper located at the broadcast address. Each port mapper that picks up the broadcast then 

calls the local service specified by the client. When the port mapper receives a reply from the local 

service, it sends the reply back to the client. 

Registering Ports 

Every port mapper on every host is associated with port number 111. The port mapper is the only network 

service that must have a dedicated port. Other network services can be assigned port numbers either 

statically or dynamically, as long as the services register their ports with their host’s port mapper. Typically, 

a server program based on an RPC library gets a port number at run time by calling an RPC library 

procedure. 

Note:   A service on a host can be associated with a different port every time its server program is started. 

For example, a given network service can be associated with port number 256 on one server and 

port number 885 on another. 

The delegation of port-to-remote program mapping to a port mapper also automates port number 

administration. Statically mapping ports and remote programs in a file duplicated on each client requires 

updating all mapping files whenever a new remote program is introduced to a network. The alternative 

solution, placing the port-to-program mappings in a shared Network File System (NFS) file, would be too 

centralized. If the file server were to go down in this case, the entire network would also. 

The port-to-program mappings, which are maintained by the port mapper server, are called a portmap. The 

port mapper is started automatically whenever a machine is booted. Both the server programs and the 

 

144 Communications Programming Concepts



client programs call port mapper procedures. As part of its initialization, a server program calls its host’s 

port mapper to create a portmap entry. Whereas server programs call port mapper programs to update 

portmap entries, clients call port mapper programs to query portmap entries. To find a remote program’s 

port, a client sends an RPC call message to a server’s port mapper. If the remote program is supported on 

the server, the port mapper returns the relevant port number in an RPC reply message. The client program 

can then send RPC call messages to the remote program’s port. A client program can minimize port 

mapper calls by caching the port numbers of recently called remote programs. 

Note:   The port mapper provides an inherently useful service because a portmap is a set of associations 

between registrants and ports. 

Port Mapper Protocol 

The following is the port mapper protocol specification in RPC language: 

const  PMAP_PORT  = 111;      /*  port  mapper  port  number      */ 

The mapping of program (prog), version (vers), and protocol (prot) to the port number (port) is shown by 

the following structure: 

struct  mapping  { 

     unsigned  int  prog; 

     unsigned  int  vers; 

     unsigned  int  prot; 

     unsigned  int  port; 

};  

The values supported for the prot  parameter are: 

const  IPPROTO_TCP  = 6;      /*  protocol  number  for  TCP/IP      */ 

const  IPPROTO_UDP  = 17;      /* protocol  number  for  UDP         */ 

The list of mappings takes the following structure: 

struct  *pmaplist  { 

     mapping  map;  

     pmaplist  next;  

};  

The structure for arguments to the callit  parameter follows: 

struct  call_args  { 

     unsigned  int  prog; 

     unsigned  int  vers; 

     unsigned  int  proc; 

     opaque  args<>;  

};  

The results of the callit  parameter have the following structure: 

struct  call_result  { 

     unsigned  int  port; 

     opaque  res<>;  

};  

The structure for port mapper procedures follows: 

program  PMAP_PROG  { 

     version  PMAP_VERS  { 

          void  

          PMAPPROC_NULL(void)           = 0; 

     bool  

     PMAPPROC_SET(mapping)              = 1; 

     bool  

     PMAPPROC_UNSET(mapping)            = 2; 

 

Chapter 8. Remote Procedure Call 145



unsigned  int  

     PMAPPROC_GETPORT(mapping)          = 3; 

     pmaplist  

     PMAPPROC_DUMP(void)                = 4; 

          call_result  

          PMAPPROC_CALLIT(call_args)    = 5; 

     } = 2; 

} = 100000;  

Port Mapper Procedures 

The port mapper program currently supports two protocols: User Datagram Protocol (UDP) and 

Transmission Control Protocol/Internet Protocol (TCP/IP). The port mapper is contacted by port number 

111 on both protocols. 

A description of the port mapper procedures follows. 

 PMAPPROC_NULL  This procedure does no work. By convention, procedure 0 of any protocol takes no 

parameters and returns no results. 

PMAPPROC_SET  When a program first becomes available on a machine, it registers itself with the port 

mapper program on that machine. The program passes its program number (prog), 

version number (vers), transport protocol number (prot), and the port (port) on which 

it awaits service request. The procedure returns a Boolean response whose value is 

either True if the procedure successfully established the mapping, or False if 

otherwise. The procedure does not establish a mapping if the values for the prog, 

vers, and prot  parameters indicate a mapping already exists. 

PMAPPROC_UNSET  When a program becomes unavailable, it should unregister itself with the port mapper 

program on the same machine. The parameters and results have meanings identical 

to those of the PMAPPROC_SET procedure. The protocol and port number fields of 

the argument are ignored. 

PMAPPROC_GETPORT  Given a program number (prog), version number (vers), and transport protocol 

number (prot), this procedure returns the port number on which the program is 

awaiting call requests. A port  value of zero means the program has not been 

registered. The port  parameter of the argument is then ignored. 

PMAPPROC_DUMP  This procedure enumerates all entries in the port mapper database. The procedure 

takes no parameters and returns a list of prog, vers, prot, and port  values. 

PMAPPROC_CALLIT  This procedure allows a caller to call another remote procedure on the same machine 

without knowing the remote procedure’s port number. It supports broadcasts to 

arbitrary remote programs through the well-known port mapper port. The prog, vers, 

and proc  parameters, and the bytes of the args  parameter of an RPC call represent 

the program number, version number, procedure number, and arguments, 

respectively. The PMAPPROC_CALLIT procedure sends a response only if the 

procedure is successfully run. The port mapper communicates with the remote 

program using UDP only. The procedure returns the remote program’s port number, 

and the bytes of results are the results of the remote procedure.
  

Programming in RPC 

Remote procedure calls can be made from any language. Remote Procedure Call (RPC) protocol is 

generally used to communicate between processes on different workstations. However, RPC works just as 

well for communication between different processes on the same workstation. 

The RPC interface can be seen as being divided into three layers: highest, intermediate, and lowest. See 

the following: 

v   “Using the Highest Layer of RPC” on page 149 

v   “Using the Intermediate Layer of RPC” on page 149 

v   “Using the Lowest Layer of RPC” on page 151

 

146 Communications Programming Concepts



The highest layer of RPC is totally transparent to the operating system, workstation, and network on which 

it runs. This level is actually a method for using RPC routines, rather than a part of RPC proper. 

The intermediate layer is RPC proper. At the intermediate layer, the programmer need not consider details 

about sockets or other low-level implementation mechanisms. The programmer makes remote procedure 

calls to routines on other workstations. 

The lowest layer of RPC allows the programmer greatest control. Programs written at this level can be 

more efficient. 

Both intermediate and lower-level RPC programming entail assigning program numbers (“Assigning 

Program Numbers”), version numbers (“Assigning Version Numbers”), and procedure numbers (“Assigning 

Procedure Numbers” on page 148). An RPC server can be started from the inetd  daemon (“Starting RPC 

from the inetd Daemon” on page 153). 

Assigning Program Numbers 

A central system authority administers the program number (prog  parameter). A program number permits 

the implementation of a remote program. The first implementation of a program is usually version number 

1. 

A program number is assigned by groups of 0x20000000 (decimal 536870912), according to the following 

list: 

 0-1xxxxxxx  This group of numbers is predefined and administered by the operating system. 

The numbers should be identical for all system customers. 

20000000-3xxxxxxx  The user defines this group of numbers. The numbers are used for new 

applications and for debugging new programs. 

40000000-5xxxxxxx  This group of numbers is transient and is used for applications that generate 

program numbers dynamically. 

60000000-7xxxxxxx  Reserved. 

80000000-9xxxxxxx  Reserved. 

a0000000-bxxxxxxx  Reserved. 

c0000000-dxxxxxxx  Reserved. 

e0000000-fxxxxxxxx  Reserved.
  

The first group of numbers is predefined, and should be identical for all customers. If a customer develops 

an application that might be of general interest, that application can be registered by assigning a number 

in the first range. The second group of numbers is reserved for specific customer applications. This range 

is intended primarily for debugging new programs. The third group is reserved for applications that 

generate program numbers dynamically. The final groups are reserved for future use and should not be 

used. 

Assigning Version Numbers 

Most new protocols evolve into more efficient, stable, and mature protocols. As a program evolves, a new 

version number (vers  parameter) is assigned. The version number identifies which version of the protocol 

the caller is using. The first implementation of a remote program is usually designated as version number 

1 (or a similar form). Version numbers make it possible to use old and new protocols through the same 

server. See “Using Multiple Program Versions Example” on page 176. 

Just as remote program protocols may change over several versions, the actual RPC message protocol 

can also change. Therefore, the call message also contains the RPC version number. In the second 

version of the RPC protocol specification, the version number is always 2. 

 

Chapter 8. Remote Procedure Call 147



Assigning Procedure Numbers 

The procedure number (proc  parameter) identifies the procedure to be called. The procedure number is 

documented in each program’s protocol specification. For example, a file service protocol specification can 

list the read procedure as procedure 5 and the write procedure as procedure 12. 

Using Registered RPC Programs 

The RPC program numbers and protocol specifications of standard RPC services are in the header files in 

the /usr/include/rpcsvc  directory. The /etc/rpc  file describes the RPC program numbers in text so that 

users can identify the number with the name. The names identified in the text can be used in place of 

RPC program numbers. These programs, however, constitute only a small subset of those that have been 

registered. 

The following is a list of registered RPC programs including the program number, program name, and 

program description: 

 Program  number  Program  name  Program  description  

100000 PMAPPROG  Port mapper 

100001 RSTATPROG Remote stats 

100002 RUSERSPROG  Remote users 

100003 NFSPROG  Network File System (NFS) 

100004 YPPROG  Network Information Service (NIS) 

100005 MOUNTPROG  Mount daemon 

100006 DBXPROG  Remote dbx 

100007 YPBINDPROG  NLS binder 

100008 WALLPROG  Shutdown message 

100009 YPPASSWDPROG  yppasswd  server 

100010 ETHERSTATPROG  Ether stats 

100011 RQUOTAPROG  Disk quotas 

100012 SPRAYPROG  Spray packets 

100013 IBM3270PROG  3270 mapper 

100014 IBMRJEPROG  RJE mapper 

100015 SELNSVCPROG  Selection service 

100016 RDATABASEPROG  Remote database access 

100017 REXECPROG  Remote execution 

100018 ALICEPROG  Alice Office Automation 

100019 SCHEDPROG  Scheduling service 

100020 LOCKPROG  Local lock manager 

100021 NETLOCKPROG  Network lock manager 

100023 STATMON1PROG  Status monitor1 

100024 STATMON2PROG  Status monitor2 

100025 SELNLIBPROG  Selection library 

100026 BOOTPARAMPROG  Boot parameters service 

100027 MAZEPROG  Mazewars games 

100028 YPUPDATEPROG  YP update 

100029 KEYSERVEPROG  Key server 

 

148 Communications Programming Concepts



Program  number  Program  name  Program  description  

100030 SECURECMDPROG  Secure login 

100031 NETFWDIPROG  NFS net forwarder init 

100032 NETFWDTPROG  NFS net forwarder trans 

100033 SUNLINKMAP_PROG  Sunlink MAP 

100034 NETMONPROG  Network monitor 

100035 DBASEPROG  Lightweight database 

100036 PWDAUTHPROG  Password authorization 

100037 TFSPROG  Translucent file service 

100038 NSEPROG  NSE server 

100039 NSE_ACTIVATE_PROG  NSE activate daemon 

150001 PCNFSDPROGx  PC password authorization 

200000 PYRAMIDLOCKINGPROG  Pyramid-locking 

200001 PYRAMIDSYS5  Pyramid-sys5 

200002 CADDS_IMAGE  CV cadds_image 

300001 ADT_RFLOCKPROG  ADT file locking
  

Using the Highest Layer of RPC 

Programmers who write remote procedure calls can make the highest layer of RPC available to other 

users through a simple C language front-end routine that entirely hides the networking. To illustrate a call 

at the highest level, a program can call the rnusers  routine, a C routine that returns the number of users 

on a remote workstation. The user need not be explicitly aware of using RPC. 

Other RPC service library routines available to the C programmer are as follows: 

 rusers  Returns information about users on a remote workstation. 

havedisk  Determines whether the remote workstation has a disk. 

rstat  Gets performance data from a remote kernel. 

rwall  Writes to a specified remote workstation. 

yppasswd  Updates a user password in the Network Information Service (NIS).
  

RPC services, such as the mount  and spray  commands, are not available to the C programmer as 

service library routines. Though unavailable, these services have RPC program numbers and can be 

invoked with the callrpc  subroutine. Most of these services have compilable rpcgen  protocol description 

files that simplify the process of developing network applications. 

For more information, see “Using the Highest Layer of RPC Example” on page 170. 

Using the Intermediate Layer of RPC 

The intermediate layer RPC routines are used for most applications. The intermediate layer is sometimes 

overlooked in programming due to its simplicity and lack of flexibility. At this level, RPC does not allow 

time-out specifications, choice of transport, or process control in case of errors. Nor does the intermediate 

layer of RPC support multiple types of call authentication. The programmer often needs these kinds of 

control. 

 

Chapter 8. Remote Procedure Call 149



Remote procedure calls are made with the registerrpc, callrpc, and svc_run  system routines, which 

belong to the intermediate layer of RPC. The registerrpc  and callrpc  routines are the most fundamental. 

The registerrpc  routine obtains a unique system-wide procedure identification number. The callrpc  routine 

executes the remote procedure call. 

Each RPC procedure is uniquely defined by a program number, version number, and procedure number. 

The program number specifies a group of related remote procedures, each of which has a different 

procedure number. Each program also has a version number. Therefore, when a minor change, such as 

adding a new procedure, is made to a remote service, a new program number need not be assigned. 

The RPC interface also handles arbitrary data structures (“Passing Arbitrary Data Types” on page 151), 

regardless of the different byte orders or structure layout conventions at various workstations. For more 

information, see the “Using the Intermediate Layer of RPC Example” on page 170. 

Using the registerrpc Routine 

Only the User Datagram Protocol (UDP) transport mechanism can use the registerrpc  routine. This 

routine is always safe in conjunction with calls generated by the callrpc  routine. The UDP transport 

mechanism can deal only with arguments and results that are less than 8KB in length. 

The RPC registerrpc  routine includes the following parameters: 

v   Program number 

v   Version number 

v   Procedure number to be called 

v   Procedure name 

v   XDR (eXternal Data Representation) subroutine that decodes the procedure parameters 

v   XDR subroutine that encodes the procedure calls 

After registering the local procedure, the server program’s main procedure calls the svc_run  routine, 

which is the RPC library’s remote procedure dispatcher. The svc_run  routine then calls the remote 

procedure in response to RPC messages. The dispatcher uses the XDR data filters that are specified 

when the remote procedure is registered to handle decoding procedure arguments and encoding results. 

Using the callrpc Routine 

The RPC callrpc  routine executes remote procedure calls. See “Using the Intermediate Layer of RPC 

Example” on page 170. 

The callrpc  routine includes the following parameters: 

v   Name of the remote server workstation 

v   Program number 

v   Version number of the program 

v   Procedure number 

v   Input XDR filter primitive 

v   Argument to be encoded and passed to the remote procedure 

v   Output XDR filter for decoding the results returned by the remote procedure 

v   Pointer to the location where the procedure’s results are to be stored 

Multiple arguments and results can be embedded in structures. If the callrpc  routine completes 

successfully, it returns a value of zero. Otherwise, it returns a nonzero value. The return codes are cast in 

integer data-type values in the rpc/clnt.h  file. 

If the callrpc  routine gets no answer after several attempts to deliver a message, it returns with an error 

code. The delivery mechanism is UDP. Adjusting the number of retries or using a different protocol 

requires the use of the lower layer of the RPC library. 

 

150 Communications Programming Concepts



Passing Arbitrary Data Types 

The RPC interface can handle arbitrary data structures, regardless of the different byte orders or structure 

layout conventions on different machines, by converting the structures to a network standard called XDR 

before sending them over the wire. The process of converting from a particular machine representation to 

XDR format is called serializing, and the reverse process is called deserializing. 

The input and output parameters of the callrpc  and registerrpc  routines can be a built-in or user-supplied 

procedure. For more information, see “Showing How RPC Passes Arbitrary Data Types Example” on page 

175. 

The XDR language has the following built-in subroutines: 

v   xdr_bool  

v   xdr_char  

v   xdr_u_char  

v   xdr_enum  

v   xdr_int  

v   xdr_u_int  

v   xdr_long  

v   xdr_u_long  

v   xdr_short  

v   xdr_u_short  

v   xdr_wrapstring  

Although the xdr_string  subroutine exists, it passes three parameters to its XDR routine. The xdr_string  

subroutine cannot be used with the callrpc  and registerrpc  subroutines, which pass only two parameters. 

However, the xdr_string  routine can be called with the xdr_wrapstring  routine, which also has only two 

parameters. 

If completion is successful, XDR subroutines return a nonzero value (that is, a True value in the C 

language). Otherwise, they return a value of zero (False). 

In addition to the built-in primitives are the following prefabricated building blocks: 

v   xdr_array  

v   xdr_bytes  

v   xdr_opaque  

v   xdr_pointer  

v   xdr_reference  

v   xdr_string  

v   xdr_union  

v   xdr_vector

Note:   An RPC client and server system that uses the TCP protocol cannot get or put more than 64 

megabytes (MB) in one RPC call. The constant TCP_MAX_REQUEST_SIZE  limits this. 

In addition to this constant, there is also a user limit on the size, which is 44 bytes less than the 

limit. In addition, security protocols may take an additional 800 bytes off the limit. 

Using the Lowest Layer of RPC 

For the higher layers, RPC takes care of many details automatically. However, the lowest layer of the RPC 

library allows the programmer to change the default values for these details. The lowest layer of RPC 

 

Chapter 8. Remote Procedure Call 151



requires familiarity with sockets and their system calls. For more information, see “Using the Lowest Layer 

of RPC Example” on page 171 and “Using Multiple Program Versions Example” on page 176. 

The lowest layer of RPC may be necessary in the following situations: 

v   The programmer needs to use Transmission Control Protocol/Internet Protocol (TCP/IP). Higher layers 

use UDP, which restricts RPC calls to 8KB of data. TCP/IP permits calls to send long streams of data. 

v   The programmer wants to allocate and free memory while serializing or deserializing messages with 

XDR routines. No system call at the higher levels explicitly permits freeing memory. XDR routines are 

used for memory allocation as well as for input and output. 

v   The programmer needs to perform authentication on the client or server side by supplying credentials or 

verifying them, respectively.

Allocating Memory with XDR 

XDR routines not only do input and output, they also do memory allocation. Consider the following XDR 

routine, xdr_chararr1, which deals with a fixed array of bytes with length SIZE. 

xdr_chararr1  (xdrsp,  chararr)  

     XDR  *xdrsp;  

     char  chararr[];  

{ 

      char  *p;  

      int  len;  

    

      p = chararr;  

      len  = SIZE;  

      return  (xdr_bytes  (xdrsp,  &p,  &len,  SIZE));  

} 

If space has already been allocated in it, chararr  can be called from a server. For example: 

char  chararr  [SIZE];  

svc_getargs  (transp,  xdr_chararr1,  chararr);  

If you want XDR to do the allocation, you need to rewrite this routine in the following way: 

xdr_chararr2  (xdrsp,  chararrp)  

     XDR  *xdrsp;  

     char  **chararrp;  

{ 

      int  len;  

    

      len  = SIZE;  

      return  (xdr_bytes  (xdrsp,  charrarrp,  &len,  SIZE));  

} 

Then the RPC call might look like this: 

char  *arrptr;  

arrptr  = NULL;  

svc_getargs  (transp,  xdr_chararr2,  &arrptr);  

/* 

*Use  the  result  here  

*/ 

svc_freeargs  (transp,  xdr_chararr2,  &arrptr);  

The character array can be freed with the svc_freeargs  macro. This operation does not attempt to free 

any memory in the variable, indicating the variable is null. 

Each XDR routine is responsible for serializing, deserializing, and freeing memory. When an XDR routine 

is called from the callrpc  routine, the serializing part is used. When an XDR routine is called from the 

svc_getargs  routine, the deserializer is used. When an XDR routine is called from the svc_freeargs  

routine, the memory deallocator is used. 

 

152 Communications Programming Concepts



Starting RPC from the inetd Daemon 

An RPC server can be started from the inetd  daemon. The only difference between using the inetd  

daemon and the usual code is that the service creation routine is called. Because the inet  passes a 

socket as file descriptor 0, the following form is used: 

transp  = svcudp_create(0);        /*   For  UDP                    */ 

transp  = svctcp_create(0,0,0);    /*   For  listener  TCP sockets   */ 

transp  = svcfd_create(0,0,0);     /*  For  connected  TCP  sockets  */ 

In addition, call the svc_register  routine as follows: 

svc_register(transp,  PROGNUM,  VERSNUM,  service,  0)  

The final flag is 0 because the program is already registered by the inetd  daemon. To exit from the server 

process and return control to the inet, the user must explicitly exit. The svc_run  routine never returns. 

Entries in the /etc/inetd.conf  file for RPC services take one of the following two forms: 

p_name  sunrpc_udp  udp  wait  user  server  args  version  

p_name  sunrpc_tcp  tcp  wait  user  server  args  version  

where p_name  is the symbolic name of the program as it appears in the RPC routine, server  is the 

program implementing the server, and version  is the version number of the service. 

If the same program handles multiple versions, then the version number can be a range, as in the 

following: 

rstatd  sunrpc_udp  udp  wait  root  /usr/sbin/rpc.rstatd  rstatd  100001  1-2  

Compiling and Linking RPC Programs 

RPC subroutines are part of the libc.a  library. Add the following line to the Makefile  file: 

CFLAGS=-D_BSD  -DBSD_INCLUDES  

RPC Features 

The features of Remote Procedure Call (RPC) include batching calls (“Batching Remote Procedure Calls”), 

broadcasting calls (“Broadcasting Remote Procedure Calls” on page 154), callback procedures (“RPC 

Call-back Procedures” on page 154), and using the select  subroutine (“Using the select Subroutine on the 

Server Side” on page 155). Batching allows a client to send an arbitrarily large sequence of call messages 

to a server. Broadcasting allows a client to send a data packet to the network and wait for numerous 

replies. Callback procedures permit a server to become a client and make an RPC callback to the client’s 

process. The select  subroutine examines the I/O descriptor sets whose addresses are passed in the 

readfds, writefds, and exceptfds  parameters to see if some of their descriptors are ready for reading or 

writing, or have an exceptional condition pending. It then returns the total number of ready descriptors in 

all the sets. 

RPC is also used for the rcp  program on Transmission Control Protocol/Internet Protocol (TCP/IP). See 

“rcp Process on TCP Example” on page 178. 

Batching Remote Procedure Calls 

Batching allows a client to send an arbitrarily large sequence of call messages to a server. Batching 

typically uses reliable byte stream protocols, such as TCP/IP, for its transport. When batching, the client 

never waits for a reply from the server, and the server does not send replies to batched requests. 

Normally, a sequence of batch calls should be terminated by a legitimate, nonbatched RPC to flush the 

pipeline. 

The RPC architecture is designed so that clients send a call message and then wait for servers to reply 

that the call succeeded. This implies that clients do not compute while servers are processing a call. 

 

Chapter 8. Remote Procedure Call 153



However, the client may not want or need an acknowledgment for every message sent. Therefore, clients 

can use RPC batch facilities to continue computing while they wait for a response. 

Batching can be thought of as placing RPC messages in a pipeline of calls to a desired server. Batching 

assumes the following: 

v   Each remote procedure call in the pipeline requires no response from the server, and the server does 

not send a response message. 

v   The pipeline of calls is transported on a reliable byte stream transport such as TCP/IP. 

For a client to use batching, the client must perform remote procedure calls on a TCP/IP-based transport. 

Batched calls must have the following attributes: 

v   The resulting XDR routine must be 0 (null). 

v   The remote procedure call’s time out must be 0. 

Because the server sends no message, the clients are not notified of any failures that occur. Therefore, 

clients must handle their own errors. 

Because the server does not respond to every call, the client can generate new calls that run parallel to 

the server’s execution of previous calls. Furthermore, the TCP/IP implementation can buffer many call 

messages, and send them to the server with one write  subroutine. This overlapped execution decreases 

the interprocess communication overhead of the client and server processes as well as the total elapsed 

time of a series of calls. Batched calls are buffered, so the client should eventually perform a nonbatched 

remote procedure call to flush the pipeline with positive acknowledgment. 

Broadcasting Remote Procedure Calls 

In broadcast RPC-based protocols, the client sends a broadcast packet to the network and waits for 

numerous replies. Broadcast RPC uses only packet-based protocols, such as User Datagram 

Protocol/Internet Protocol (UDP/IP), for its transports. Servers that support broadcast protocols respond 

only when the request is successfully processed and remain silent when errors occur. Broadcast RPC 

requires the RPC port mapper service to achieve its semantics. The portmap  daemon converts RPC 

program numbers into Internet protocol port numbers. See “Broadcasting a Remote Procedure Call 

Example” on page 177. 

The main differences between broadcast RPC and normal RPC are as follows: 

v   Normal RPC expects only one answer, while broadcast RPC expects one or more answers from each 

responding machine. 

v   The implementation of broadcast RPC treats unsuccessful responses as garbage by filtering them out. 

Therefore, if there is a version mismatch between the broadcaster and a remote service, the user of 

broadcast RPC may never know. 

v   All broadcast messages are sent to the port-mapping port. As a result, only services that register 

themselves with their port mapper are accessible through the broadcast RPC mechanism. 

v   Broadcast requests are limited in size to the maximum transfer unit (MTU) of the local network. For the 

Ethernet system, the MTU is 1500 bytes. 

v   Broadcast RPC is supported only by packet-oriented (connectionless) transport protocols such as 

UPD/IP.

RPC Call-back Procedures 

Occasionally, the server may need to become a client by making an RPC callback to the client’s process. 

To make an RPC callback, the user needs a program number on which to make the call. The program 

number is dynamically generated and should be in the transient range, 0x40000000 to 0x5fffffff. See “RPC 

Callback Procedures Example” on page 180 for more information. 

 

154 Communications Programming Concepts



Using the select Subroutine on the Server Side 

The select  subroutine checks the specified file descriptors and message queues to see if they are ready 

for reading (receiving) or writing (sending), or if they have an exceptional condition pending. A select  

procedure allows the server to interrupt an activity, check for data, and then continue processing the 

activity. For example, if the server processes RPC requests while performing another activity that involves 

periodically updating a data structure, the process can set an alarm signal to notify the server before 

calling the svc_run  routine. However, if the current activity is waiting on a file descriptor, the call to the 

svc_run  routine does not work. See “Using the select Subroutine Example” on page 178 for more 

information. 

A programmer can bypass the svc_run  routine and call the svc_getreqset  routine directly. It is necessary 

to know the file descriptors of the sockets associated with the programs being waited on. The programmer 

can have a select  statement that waits on both the RPC socket and specified descriptors. 

Note:   The svc_fds  parameter is a bit mask of all the file descriptors that RPC is using for services. It can 

change each time an RPC library routine is called because descriptors are continually opened and 

closed. TCP/IP connections are an example. 

RPC Language 

The Remote Procedure Call Language (RPCL) is identical to the eXternal Data Representation (XDR) 

language, except for the added program definition. 

RPC Language Descriptions 

Because XDR data types are described in a formal language, procedures that operate on these data types 

must be described in a formal language. The RPCL, an extension to the XDR language, is used for this 

purpose. 

RPC uses RPCL as the input language for its protocol and routines. RPCL specifies data types used by 

RPC and generates XDR routines that standardize representation of the types. To implement service 

protocols and routines, RPCL uses the rpcgen  command to compile input in corresponding C language 

code. 

RPC language descriptions include: 

v   “Definitions” 

v   “Structures” on page 156 

v   “Unions” on page 156 

v   “Enumerations” on page 157 

v   “Type Definitions” on page 157 

v   “Constants” on page 157 

v   “Programs” on page 157 

v   “Declarations” on page 158 

For more information, see “RPC Language ping Program Example” on page 183. For instances where 

these rules do not apply, see “Exceptions to the RPCL Rules” on page 159. 

Definitions 

An RPCL file consists of a series of definitions in the following format: 

definition-list:  

      definition  ";"  

      definition  ";"  definition-list  

RPCL recognizes the following six types of definitions: 

 

Chapter 8. Remote Procedure Call 155



definition:  

      enum-definition  

      struct-definition  

      union-definition  

      typedef-definition  

      const-definition  

      program-definition  

Structures 

The C language structures are usually located in header files in either the /usr/include  or 

/usr/include/sys  directory, but they can be located in any directory in the file system. An XDR structure is 

declared almost exactly like its C language counterpart; for example: 

struct-definition:  

      "struct"  struct-ident  "{"  

      declaration-list  

      "}"  

declaration-list:  

      declaration  ";"  

      declaration  ";"  declaration-list  

Compare the following XDR structure to a two-dimensional coordinate with the C structure that it is 

compiled into in the output header file. 

struct  coord  {          struct  coord  { 

      int  x;      -->           int  x; 

      int  y;                   int  y; 

};                      }; 

                        typedef  struct  coord  coord;  

Here, the output is identical to the input, except for the added typedef  at the end of the output. As a result, 

the programmer can use coord  instead of struct  coord  when declaring items. 

Unions 

XDR unions are discriminated unions and look different from C unions. XDR unions are more analogous to 

Pascal variant records than to C unions. Following is an XDR union definition: 

union-definition:  

      "union"  union-ident  "switch"  "("  declaration  ")"  "{"  

           case-list  

      "}"  

case-list:  

      "case"  value  ":"  declaration  ";"  

      "default"  ":"  declaration  ";"  

      "case"  value  ":"  declaration  ";"  case-list  

Following is an example of a type that might be returned as the result of a read data operation. If there is 

no error, the type returns a block of data; otherwise, it returns nothing. 

union  read_result  switch  (int  errno)  { 

case  0 

     opaque  data[1024];  

default:  

     void;  

}; 

The type is compiled into the following structure: 

struct  read_result  { 

     int  errno;  

     union  {

 

156 Communications Programming Concepts



char  data[1024];  

     }read_result_u;  

};  

typedef  struct  read_result  read_result;  

Note:   The union component of this output structure is identical to the type, except for the trailing _u. 

Enumerations 

XDR enumerations have the same syntax as C enumerations. 

enum-definition:  

      "enum"  enum-ident  "{"  

      enum-value-list  

      "}"   

enum-value-list:  

      enum-value  

      enum-value  ","  enum-value-list  

enum-value:  

      enum-value-ident  

      enum-value-ident  "="  value  

Compare the following example of an XDR enumeration with the C enumeration it is compiled into. 

enum  colortype  {       enum  colortype  { 

     RED  = 0,               RED  = 0, 

     GREEN  = 1,    -->       GREEN  = 1, 

     BLUE  = 2               BLUE  = 2, 

};                      }; 

                       typedef  enum  colortype  colortype;  

Type  Definitions 

XDR type definitions (typedefs) have the same syntax as C typedefs. 

typedef-definition:  

      "typedef"  declaration  

The following example defines an fname_type  used for declaring file-name strings with a maximum length 

of 255 characters. 

typedef  string  fname_type<255>;  -->  typedef  char  *fname_type;  

Constants 

XDR constants can be used wherever an integer constant is required. The definition for a constant is: 

const-definition:  

      "const"  const-ident  "="  integer  

For example, the following defines a constant DOZEN  equal to 12. 

const  DOZEN  = 12;  -->  #define  DOZEN  12 

Programs 

RPC programs are declared using the following syntax: 

program-definition:  

      "program"  program-ident  "{"  

           version-list  

      "}"  "="  value  

version-list:  

      version  ";"  

      version  ";"  version-list  

 

Chapter 8. Remote Procedure Call 157



version:  

      "version"  version-ident  "{"  

           procedure-list  

      "}"  "="  value  

procedure-list:  

      procedure  ";"  

      procedure  ";"  procedure-list  

procedure:  

      type-ident  procedure-ident  "("  type-ident  ")" "="  value  

The time protocol is defined as follows: 

/* 

 * time.x:  Get  or set  the  time.  Time  is represented  as number  

 * of seconds  since  0:00,  January  1, 1970.  

 */ 

program  TIMEPROG  { 

     version  TIMEVERS  { 

          unsigned  int  TIMEGET  (void)  = 1; 

          void  TIMESET  (unsigned)  = 2; 

     } = 1; 

} = 44;  

This file compiles into the following #define  statements in the output header file: 

#define  TIMEPROG  44 

#define  TIMEVERS  1 

#define  TIMEGET  1 

#define  TIMESET  2 

Declarations 

XDR includes four types of declarations: simple declarations, fixed-length array declarations, 

variable-length array declarations, and pointer declarations. These declarations have the following forms: 

declaration:  

      simple-declaration  

      fixed-array-declaration  

      variable-array-declaration  

      pointer-declaration  

Simple Declarations 

Simple XDR declarations are like simple C declarations, as follows: 

simple-declaration:  

      type-ident  variable-ident  

An example of a simple declaration is: 

colortype  color;   -->   colortype  color;  

Fixed-length Array Declarations 

Fixed-length array declarations are like C array declarations, as follows: 

fixed-array-declaration:  

      type-ident  variable-ident  "["  value  "]"  

An example of a fixed-length array declaration is: 

colortype  palette[8];   -->   colortype  palette[8]  

Variable-length Array Declarations 

Variable-length array declarations have no explicit syntax in C, so XDR invents its own syntax using angle 

brackets. The maximum size is specified between the angle brackets. A specific size can be omitted to 

indicate that the array may be of any size. 

 

158 Communications Programming Concepts



variable-array-declaration:  

      type-ident  variable-ident  "<"  value  ">"  

      type-ident  variable-ident  "<"  ">"  

An example of a set of variable-length array declarations is: 

int  heights<12>;           /* at most  12 items      */ 

int  widths<>;              /* any  number  of items   */ 

Note:   The maximum size is specified between the angle brackets. The number, but not the angle 

brackets, may be omitted to indicate that the array can be of any size. 

Because variable-length arrays have no explicit syntax in C, these declarations are actually compiled into 

structure definitions, signified by struct. For example, the heights  declaration is compiled into the 

following structure: 

struct  { 

     u_int  heights_len;    /* # of items  in array  */  

     int  *heights_val;     /* # pointer  to array  */ 

} heights;  

Pointer Declarations 

Pointer declarations are made in XDR exactly as they are in C. The programmer cannot send pointers 

over a network, but can use XDR pointers for sending recursive data types such as lists and trees. In XDR 

language, the type is called optional-data, instead of pointer. Pointer declarations have the following 

form in XDR language: 

pointer-declaration:  

      type-ident  "*"  variable-ident  

An example of a pointer declaration is: 

listitem  *next;   -->   listitem  *next;  

RPCL Syntax Requirements for Program Definition 

The RPCL has the following syntax requirements: 

v   The program  and version  keywords are added and cannot be used as identifiers. 

v   A version name cannot occur more than once within the scope of a program definition. Nor can a 

version number occur more than once within the scope of a program definition. 

v   A procedure name cannot occur more than once within the scope of a version definition. Nor can a 

procedure number occur more than once within the scope of a version definition. 

v   Program identifiers are in the same name space as the constant  and type  identifiers. 

v   Only unsigned constants can be assigned to program, version, and procedure  definitions.

Exceptions to the RPCL Rules 

Exceptions to the RPC language rules include Booleans, strings, opaque data, and voids. 

Booleans 

The C language has no built-in Boolean type. However, the RPC library uses a Boolean type called 

bool_t, which is either True or False. Objects that are declared as type bool  in XDR language are 

compiled into bool_t  in the output header file; for example: 

bool  married;   -->   bool_t  married;  

Strings 

The C language has no built-in string type. Instead, it uses the null-terminated char  * convention. In XDR 

language, strings are declared using the string  keyword, and then compiled into char  * in the output 

 

Chapter 8. Remote Procedure Call 159



header file. The maximum size contained in the angle brackets specifies the maximum number of 

characters allowed in the strings (not counting the null character). The maximum size may be left off, 

indicating a string of arbitrary length. 

Compare the following examples: 

string  name<32>;   -->   char  *name;  

string  longname<>;   -->   char  *longname;  

Opaque Data 

Opaque data is used in RPC and XDR to describe untyped data, which consists of sequences of arbitrary 

bytes. Opaque data may be declared either as a fixed-length or variable-length array, as in the following 

examples: 

opaque  diskblock[512];   -->   char  diskblock[512];  

opaque  filedata<1024>;   -->   struct  { 

                                 u_int  filedata_len;  

                                 char  *filedata_val;  

                              } filedata  

Voids 

In a void declaration, the variable is not named. The declaration is void. Void declarations can occur as 

the argument or result of a remote procedure in only two places: union definitions and program definitions. 

rpcgen Protocol Compiler 

The rpcgen  protocol compiler accepts a remote program interface definition written in the Remote 

Procedure Call language (RPCL), which is similar to the C language. The rpcgen  compiler helps 

programmers write RPC applications in a simple and direct manner. The rpcgen  compiler debugs the 

network interface code, thereby allowing programmers to spend their time debugging the main features of 

their applications. 

The rpcgen  compiler produces a C language output that includes the following: 

v   Stub versions of the client and server routines 

v   Server skeleton 

v   eXternal Data Representation (XDR) filter routines for parameters and results 

v   A header file that contains common definitions of constants and macros 

Client stubs interface with the RPC library to effectively hide the network from its callers. Server stubs 

similarly hide the network from server procedures invoked by remote clients. The rpcgen  output files can 

be compiled and linked in the usual way. Using any language, programmers write server procedures and 

link them with the server skeleton to get an executable server program. 

When application programs use the rpcgen  compiler, there are many details to consider. Of particular 

importance is the writing of XDR routines needed to convert procedure arguments and results into the 

network format, and vice versa. 

Converting Local Procedures into Remote Procedures 

Applications running at a single workstation can be converted to run over the network. A converted 

procedure can be called from anywhere in the network. Generally, it is necessary to identify the types for 

all procedure inputs and outputs. A null procedure (procedure 0) is not necessary because the rpcgen  

compiler generates it automatically. For more information, see “Converting Local Procedures into Remote 

Procedures Example” on page 184. 

 

160 Communications Programming Concepts



Generating XDR Routines 

The rpcgen  compiler can be used to generate the XDR routines necessary to convert local data structures 

into network format, and vice versa. Some types can be defined using the struct, union, and enum  

keywords. However, these keywords should not be used in subsequent declarations of variables of these 

same types. The rpcgen  compiler compiles RPC unions into C structures. It is an error to declare these 

unions using the union  keyword. For more information, see “Generating XDR Routines Example” on page 

187. 

C Preprocessor 

The C language preprocessor is run on all input files before they are compiled, making all preprocessor 

directives within a .x  file legal. Four symbols can be defined, depending upon which output file is 

generated. The symbols and their uses are: 

 RPC_HDR  Represents header file output. 

RPC_XDR  Represents XDR routine output. 

RPC_SVC  Represents server skeleton output. 

RPC_CLNT  Represents client stub output.
  

The rpcgen  compiler also does some preprocessing. Any line that begins with a % (percent sign) is 

passed directly into the output file without an interpretation of the line. Use of the percent feature is not 

generally recommended, since there is no guarantee that the compiler will put the output where it is 

intended. 

Changing Time  Outs 

When using the clnt_create  subroutine, RPC sets a default time out of 25 seconds for remote procedure 

calls. The time-out default can be changed using the clnt_control  subroutine. The following code fragment 

illustrates the use of this routine: 

struct  timeval  tv 

CLIENT  *cl;  

cl=clnt_create("somehost",  SOMEPROG,  SOMEVERS,  "tcp");  

if  (cl=NULL)  { 

  exit(1);  

} 

tv.tv_sec=60;  /* change  timeout  to 1 minute  */ 

tv.tv_usec=0;  

clnt_control(cl,  CLSET_TIMEOUT,  &tv);  

Handling Broadcast on the Server Side 

When a client calls a procedure through broadcast RPC, the server normally replies only if it can provide 

useful information to the client. This prevents flooding the network with useless replies. 

To prevent the server from replying, a remote procedure can return null as its result. The server code 

generated by the rpcgen  compiler detects this and does not send a reply. For example, the following 

procedure replies only if it interprets itself to be a server: 

void  * 

reply_if_nfsserver()  

{ 

   char  notnull;  /* just  here  so we  can  use  its  address  */ 

   if {access("/etc/exports",  F_OK)  < 0) { 

      return  (NULL);  /* prevent  RPC  from  replying  */ 

   } 

   /* 

   *return  non-null  pointer  so RPC  will  send  out  a reply  

   */ 

   return  ((void  *) &notnull);  

} 

 

Chapter 8. Remote Procedure Call 161



If a procedure returns type void, the server must return a nonnull pointer in order for RPC to reply. 

Other Information Passed to Server Procedures 

Server procedures often want more information about a remote procedure call than just its arguments. For 

example, getting authentication information is important to procedures that implement some level of 

security. This additional information is supplied to the server procedure as a second argument. The 

following example program that allows only root users to print a message on the console, demonstrates 

the use of the second argument: 

int  * 

printmessage_1(msg,  rq)  

   char  **msg;  

   struct  svc_req  *rq;  

{ 

   static  in result;   /* Must  be static  */ 

   FILE  *f;  

   struct  authunix_parms  *aup;  

   aup=(struct  authunix_parms  *)rq->rq_clntcred;  

   if (aup->aup_uid  !=0)  { 

      result=0;  

      return  (&result);  

   } 

   /* 

   *Same  code  as before.  

   */ 

} 

List of RPC Programming References 

The list includes: 

v   “Subroutines and Macros” 

v   “Examples” on page 165

Subroutines and Macros 

The list of subroutines and macros is arranged by function: 

v   “Authenticating Remote Procedure Calls” 

v   “Managing the Client” on page 163 

v   “Managing the Server” on page 164 

v   “Using RPC Utilities” on page 165 

v   “Using DES Interface to the keyserv Daemon” on page 165 

v   “Interfacing to the portmap Daemon” on page 165 

v   “Describing and Encoding Remote Procedure Calls” on page 165

Authenticating Remote Procedure Calls 

RPC provides these subroutines and macros for creating and destroying authentication information: 

 authnone_create  Creates null authentication information. 

authunix_create  Creates an authentication handle with operating system permissions. 

authunix_create_default  Sets the authentication to the default. 

authdes_create  Enables the use of DES from the client side. 

authdes_getucred  Maps a DES credential into a UNIX credential. 

auth_destroy  Destroys authentication information.
 

 

162 Communications Programming Concepts



Managing the Client 

RPC provides subroutines and macros for the following client management tasks: 

v   “Creating an RPC Client for a Remote Program” 

v   “Changing or Retrieving Client Information” 

v   “Destroying a Client RPC Handle” 

v   “Broadcasting a Remote Procedure Call” 

v   “Calling a Remote Procedure” 

v   “Freeing Memory Allocated by RPC and XDR” 

v   “Handling Client Errors”

Creating  an  RPC  Client  for  a  Remote  Program:   

 clntraw_create  Creates a sample RPC client handle for simulation. 

clnttcp_create  Creates a Transmission Control Protocol/Internet Protocol (TCP/IP) client transport handle. 

clntudp_create  Creates a User Datagram Protocol/Internet Protocol (UDP/IP) client transport handle. 

clnt_create  Creates a generic client transport handle.
  

Changing  or  Retrieving  Client  Information:   

 clnt_control  Changes or retrieves information about a client object.
  

Destroying  a Client  RPC  Handle:   

 clnt_destroy  Destroys a client’s RPC handle.
  

Broadcasting  a Remote  Procedure  Call:   

 clnt_broadcast  Broadcasts a remote procedure call to all network hosts.
  

Calling  a Remote  Procedure:   

 callrpc  Calls the remote procedure on the machine associated with the host  parameter. 

clnt_call  Calls the remote procedure associated with the clnt  parameter.
  

Freeing  Memory  Allocated  by  RPC  and  XDR:   

 clnt_freeres  Frees memory allocated by RPC and XDR.
  

Handling  Client  Errors:   

 clnt_pcreateerror  Identifies why a client RPC handle was not created. 

clnt_perrno  Specifies the condition of the stat  parameter. 

clnt_perror  Determines why a remote procedure call failed. 

clnt_geterr  Copies error information from a client transport handle. 

clnt_spcreateerror  Identifies why a client RPC handle was not created. 

clnt_sperrno  Specifies the condition of the stat  parameter. 

clnt_sperror  Indicates why a remote procedure call failed.
 

 

Chapter 8. Remote Procedure Call 163



Managing the Server 

RPC provides subroutines and macros for the following server management tasks: 

v   “Creating an RPC Service Transport Handle” 

v   “Destroying an RPC Service Transport Handle” 

v   “Registering and Unregistering RPC Procedures and Handles” 

v   “Handling an RPC Request” 

v   “Handling Server Errors”

Creating  an  RPC  Service  Transport  Handle:   

 svcraw_create  Creates a sample RPC service handle for simulation. 

svctcp_create  Creates a TCP/IP service transport handle. 

svcudp_create  Creates a UDP/IP service transport handle. 

svcfd_create  Creates a service on any open file descriptor.
  

Destroying  an  RPC  Service  Transport  Handle:   

 svc_destroy  Destroys a service transport handle.
  

Registering  and  Unregistering  RPC  Procedures  and  Handles:   

 registerrpc  Registers a procedure with the RPC service. 

xprt_register  Registers an RPC service transport handle. 

xprt_unregister  Removes an RPC service transport handle. 

svc_register  Maps a remote procedure. 

svc_unregister  Removes mappings between procedures and objects.
  

Handling  an  RPC  Request:   

 svc_run  Signals a wait for the arrival of RPC requests. 

svc_getreqset  Services an RPC request. 

svc_getargs  Decodes the arguments of an RPC request. 

svc_sendreply  Sends back the results of a remote procedure call. 

svc_freeargs  Frees data allocated by the RPC and XDR system. 

svc_getcaller  Gets the network address of the caller of a procedure.
  

Handling  Server  Errors:   

 svcerr_auth  Indicates that the remote procedure call cannot be completed due to an authentication 

error. 

svcerr_decode  Indicates that the parameters of a request cannot be decoded. 

svcerr_noproc  Indicates that the remote procedure call cannot be completed because the program cannot 

support the requested procedure. 

svcerr_noprog  Indicates that the remote procedure call cannot be completed because the program is not 

registered. 

svcerr_progvers  Indicates that the remote procedure call cannot be completed because the program version 

is not registered. 

svcerr_systemerr  Indicates that the remote procedure call cannot be completed due to an error not covered 

by any protocol. 

svcerr_weakauth  Indicates that the remote procedure call cannot be completed due to insufficient 

authentication security parameters.
 

 

164 Communications Programming Concepts



Using RPC Utilities 

 host2netname  Converts a host name to a network name. 

netname2host  Converts a network name to a host name. 

netname2user  Converts a network name to a user ID. 

user2netname  Converts a user ID to a network name. 

getnetname  Installs the network name of the caller in the array. 

get_myaddress  Gets the user’s IP address. 

getrpcent, getrpcbyname, 

getrpcbynumber, setrpcent, or 

endrpcent  

Accesses the /etc/rpc  file. 

rtime  Returns the remote time in the timeval  structure.
  

Using DES Interface to the keyserv Daemon 

 key_decryptsession  Decrypts a server network name and a DES key. 

key_encryptsession  Encrypts a server network name and a DES key. 

key_gendes  Requests a secure conversation key from the keyserv  daemon. 

key_setsecret  Sets the key for the user ID of the calling process.
  

Interfacing to the portmap Daemon 

 pmap_getmaps  Returns a list of the current RPC port mappings. 

pmap_getport  Requests the port number on which a service waits. 

pmap_rmtcall  Instructs the portmap  daemon to make an RPC. 

pmap_set  Maps an RPC to a port. 

pmap_unset  Destroys the mapping between the RPC and the port. 

xdr_pmap  Describes parameters for portmap  procedures. 

xdr_pmaplist  Describes a list of port mappings externally.
  

Describing and Encoding Remote Procedure Calls 

RPC provides subroutines for describing and encoding RPC call and reply messages, authentication, and 

port mappings: 

 xdr_accepted_reply  Encodes RPC reply messages. 

xdr_authunix_parms  Describes UNIX-style credentials. 

xdr_callhdr  Describes RPC call header messages. 

xdr_callmsg  Describes RPC call messages. 

xdr_opaque_auth  Describes RPC authentication messages. 

xdr_rejected_reply  Describes RPC message rejection replies. 

xdr_replymsg  Describes RPC message replies.
  

Examples 

v   “Using UNIX Authentication Example” on page 166 

v   “DES Authentication Example” on page 168 

v   “Using the Highest Layer of RPC Example” on page 170 

v   “Using the Intermediate Layer of RPC Example” on page 170 

v   “Using the Lowest Layer of RPC Example” on page 171 

v   “Showing How RPC Passes Arbitrary Data Types Example” on page 175 

v   “Using Multiple Program Versions Example” on page 176 

v   “Broadcasting a Remote Procedure Call Example” on page 177 

v   “Using the select Subroutine Example” on page 178 

 

Chapter 8. Remote Procedure Call 165



v   “rcp Process on TCP Example” on page 178 

v   “RPC Callback Procedures Example” on page 180 

v   “RPC Language ping Program Example” on page 183 

v   “Converting Local Procedures into Remote Procedures Example” on page 184 

v   “Generating XDR Routines Example” on page 187

Using UNIX Authentication Example 

This example shows how UNIX authentication works on both the client and server sides. 

UNIX Authentication on the Client Side 

To use UNIX authentication, the programmer first creates the Remote Procedure Call (RPC) client handle 

and then sets the authentication parameter. 

The RPC client handle is created as follows: 

clnt  = clntudp_create  (address,  prognum,  versnum,  wait,  sockp)  

The UNIX authentication parameter is set as follows: 

clnt->cl_auth  = authunix_create_default();  

Each remote procedure call associated with the client (clnt) then carries the following UNIX-style 

authentication credentials structure: 

/* 

 * UNIX  style  credentials.  

 */ 

struct  authunix_parms  { 

    u_long   aup_time;        /*  credentials  creation  time    */ 

    char     *aup_machname;   /*   host  name  where  client  is   */ 

    int      aup_uid;         /*  client’s  UNIX  effective  uid  */ 

    int      aup_gid;         /*  client’s  current  group  id   */ 

    u_int    aup_len;         /*  element  length  of aup_gids   */ 

    int      *aup_gids;       /*  array  of groups  user  is in   */ 

}; 

The authunix_create_default  subroutine sets these fields by invoking the appropriate subroutines. The 

UNIX-style authentication is valid until destroyed with the following routine: 

auth_destroy(clnt->cl_auth);  

UNIX Authentication on the Server Side 

This example shows how to use UNIX authorization on the server side. 

The following is a structure definition of a request handle passed to a service dispatch routine at the 

server: 

/* 

 * An RPC  Service  request  

 */ 

struct  svc_req  { 

    u_long     rq_prog;           /*  service  program  number      */ 

    u_long     rq_vers;           /*  service  protocol  vers  num   */ 

    u_long     rq_proc;           /*  desired  procedure  number    */ 

   struct  opaque_auth  rq_cred;   /*  raw  credentials  from  wire   */ 

   caddr_t    rq_clntcred;        /*  credentials  (read  only)     */ 

}; 

Except for the style or flavor of authentication credentials, the rq_cred  routine is opaque. 

 

166 Communications Programming Concepts



/*  

 * Authentication  info.  Mostly  opaque  to the  programmer.  

 */ 

struct  opaque_auth  { 

    enum_t   oa_flavor;   /*   style  of credentials   */ 

    caddr_t  oa_base;     /*  address  of more  auth  stuff   */ 

    u_int    oa_length;   /*  not  to exceed  MAX_AUTH_BYTES  */ 

};  

Before passing a request to the service dispatch routine, RPC guarantees: 

v   The request’s rq_cred field is in an acceptable form. Therefore, the service implementor may inspect the 

request’s rq_cred.oa_flavor to determine which style of authentication the caller used. The service 

implementor may also wish to inspect the other rq_cred fields if the authentication style is not one of the 

styles supported by the RPC package. 

v   The request’s rq_clntcred field is either null or points to a well-formed structure that corresponds to a 

supported style of authentication credentials. The rq_clntcred field can currently be set as a pointer to 

an authunix_parms  structure for UNIX-style authentication. If rq_clntcred is null, the service 

implementor can inspect the other opaque fields of the rq_cred credential for any new types of 

authentication that may be unknown to the RPC package.

The following example uses UNIX authentication on the server side. Here, the remote users service 

example is extended so that it computes results for all users except user ID (UID) 16: 

nuser(rqstp,  transp)  

    struct  svc_req  *rqstp;  

    SVCXPRT  *transp;  

{ 

    struct  authunix_parms  *unix_cred;  

    int  uid;  

    unsigned  long  nusers;  

    /* 

     * we don’t  care  about  authentication  for null  proc  

     */ 

    if (rqstp->rq_proc  == NULLPROC)  { 

        if (!svc_sendreply(transp,  xdr_void,  0))  { 

            fprintf(stderr,  "can’t  reply  to RPC  call\n");  

            return  (1);  

         } 

         return;  

    } 

    /* 

     * now  get  the  uid  

     */ 

    switch  (rqstp->rq_cred.oa_flavor)  { 

    case  AUTH_UNIX:  

        unix_cred  =  

            (struct  authunix_parms  *)rqstp->rq_clntcred;  

        uid  = unix_cred->aup_uid;  

        break;  

    case  AUTH_NULL:  

    default:  

        svcerr_weakauth(transp);  

        return;  

    } 

    switch  (rqstp->rq_proc)  { 

    case  RUSERSPROC_NUM:  

        /* 

         * make  sure  caller  is allowed  to call  this  proc  

         */ 

        if (uid  ==  16)  { 

            svcerr_systemerr(transp);  

            return;  

        } 

        /*

 

Chapter 8. Remote Procedure Call 167



* Code  here  to compute  the  number  of users  

         * and  assign  it to the  variable  nusers   

         */ 

        if (!svc_sendreply(transp,  xdr_u_long,  &nusers))  { 

            fprintf(stderr,  "can’t  reply  to RPC  call\n");  

            return  (1);  

        } 

        return;  

    default:  

        svcerr_noproc(transp);  

        return;  

    } 

} 

DES Authentication Example 

This example illustrates how Data Encryption Standard (DES) authentication works on both the client side 

and the server side. 

DES Authentication on the Client Side 

To use DES authentication, the client first sets its authentication handle as follows: 

cl->cl_auth  = 

    authdes_create(servername,  60,  &server_addr,  NULL);  

The first argument (servername) to the authdes_create  routine is the network name, or net name, of the 

owner of the server process. Typically, server processes are root processes. The net name can be derived 

using the following call: 

char  servername[MAXNETNAMELEN];  

host2netname(servername,  rhostname,  NULL);  

The rhostname  parameter is the host name of the machine on which the server process is running. The 

host2netname  routine supplies the servername  that will contain this net name for the root process. If the 

server process is run by a regular user, the user2netname  routine can be called instead. 

The following example illustrates a server process with the same user ID as the client: 

char  servername[MAXNETNAMELEN];  

user2netname(servername,  getuid(),  NULL);  

The user2netname  and host2netname  routines identify the naming domain at the server location. The 

NULL  parameter in this example means that the local domain name should be used. 

The second argument (60) to the authdes_create  routine identifies the lifetime of the credential, which is 

60 seconds. This means the credential has 60 seconds until expiration. The server Remote Procedure Call 

(RPC) subsystem does not grant either a second request within the 60-second lifetime or requests made 

after the credential has expired. 

The third argument (&server_addr) to the authdes_create  routine is the address of the host with which to 

synchronize. DES authentication requires that the server and client agree on the time. The time is 

determined by the server when it receives the address. If the server and client times are already 

synchronized, the argument can be set to null. 

The final argument (NULL) to the authdes_create  routine is the address of a DES encryption key that is 

used to encrypt time stamps and data. Because this argument is null, a random key is chosen. The 

programmer can get the encryption key from the ah_key field of the authentication handle. 

 

168 Communications Programming Concepts



DES Authentication on the Server Side 

The following example illustrates DES authentication on the server side. The server side is simpler than 

the client side. This example uses AUTH_DES  instead of AUTH_UNIX: 

#include  <sys/time.h>  

#include  <rpc/auth_des.h>  

    ...  

    ...  

nuser(rqstp,  transp)  

    struct  svc_req  *rqstp;  

    SVCXPRT  *transp;  

{ 

    struct  authdes_cred  *des_cred;  

    int  uid;  

    int  gid;  

    int  gidlen;  

    int  gidlist[10];  

    /* 

     * we don’t  care  about  authentication  for null  proc  

     */ 

    if (rqstp->rq_proc  == NULLPROC)  {  

        /*  same  as before   */ 

    } 

    /* 

     * now  get  the  uid  

     */ 

    switch  (rqstp->rq_cred.oa_flavor)  { 

    case  AUTH_DES:  

        des_cred  = 

            (struct  authdes_cred  *) rqstp->rq_clntcred;  

        if (!  netname2user(des_cred->adc_fullname.name,  

            &uid,  &gid,  &gidlen,  gidlist))  

        { 

            fprintf(stderr,  "unknown  user:  %s\n",  

                des_cred->adc_fullname.name);  

            svcerr_systemerr(transp);  

            return;  

        } 

        break;  

    case  AUTH_NULL:  

    default:  

        svcerr_weakauth(transp);  

        return;  

    } 

    /* 

     * The  rest  is the  same  as UNIX-style  authentication  

     */ 

    switch  (rqstp->rq_proc)  { 

    case  RUSERSPROC_NUM:  

        /* 

         * make  sure  caller  is allowed  to call  this  proc  

         */ 

        if (uid  ==  16)  { 

            svcerr_systemerr(transp);  

            return;  

        } 

        /* 

         * Code  here  to compute  the  number  of users  

         * and  assign  it to the  variable  nusers   

         */ 

        if (!svc_sendreply(transp,  xdr_u_long,  &nusers))  { 

            fprintf(stderr,  "can’t  reply  to RPC  call\n");  

            return  (1);  

        } 

        return;

 

Chapter 8. Remote Procedure Call 169



default:  

        svcerr_noproc(transp);  

        return;  

    } 

} 

Note:   The netname2user  routine, which is the inverse of the user2netname  routine, converts a network 

ID to a user ID. The netname2user  routine also supplies group IDs, which are not used in this 

example but may be useful in other programs. 

Using the Highest Layer of RPC Example 

The following example shows how a program calls the Remote Procedure Call (RPC) library rnusers  

routine to determine how many users are logged in to a remote workstation: 

#include  <stdio.h>  

main(argc,  argv)  

    int  argc;  

    char  **argv;  

{ 

    int  num;  

           if (argc  != 2) { 

                 fprintf(stderr,  "usage:  rnusers  hostname\n");  

                 exit(1);  

           } 

           if ((num  = rnusers(argv[1]))  < 0) { 

                  fprintf(stderr,  "error:  rnusers\n");  

                  exit(-1);  

           } 

           printf("%d  users  on %s\n",  num,  argv[1]);  

           exit(0);  

} 

/* to compile:  cc -o rnusers  rnusers.c  -lrpcsvc  */ 

Using the Intermediate Layer of RPC Example 

The following example shows a simple interface that makes explicit remote procedure calls using the 

callrpc  routine at the intermediate layer of Remote Procedure Call (RPC). The interface can be used on 

both the client and server sides. 

Intermediate Layer of RPC on the Server Side 

Normally, the server registers each procedure, and then goes into an infinite loop waiting to service 

requests. Because there is only a single procedure to register, the main body of the server message would 

look like the following: 

#include  <stdio.h>  

#include  <rpc/rpc.h>  

#include  <utmp.h>  

#include  <rpcsvc/rusers.h>  

char  *nuser();  

main()  

{ 

    registerrpc(RUSERSPROG,  RUSERSVERS,  RUSERSPROC_NUM,  

        nuser,  xdr_void,  xdr_u_long);  

    svc_run();         /* Never  returns  */ 

    fprintf(stderr,  "Error:  svc_run  returned!\n");  

    exit(1);  

} 

The registerrpc  routine registers a C procedure as corresponding to a given RPC procedure number. The 

first three parameters, RUSERSPROG, RUSERSVERS, and RUSERSPROC_NUM, specify the program, version, and 

procedure numbers of the remote procedure to be registered. The nuser  parameter is the name of the 

 

170 Communications Programming Concepts



local procedure that implements the remote procedure, and the xdr_void  and xdr_u_long  parameters are 

the eXternal Data Representation (XDR) filters for the remote procedure’s arguments and results, 

respectively. 

Intermediate Layer of RPC on the Client Side 

#include  <stdio.h>  

#include  <rpc/rpc.h>  

#include  <utmp.h>  

#include  <rpcsvc/rusers.h>  

main(argc,  argv)  

    int  argc;  

    char  **argv;  

{ 

    unsigned  long  nusers;  

    int  stat;  

    if (argc  != 2) { 

        fprintf(stderr,  "usage:  nusers  hostname\n");  

        exit(-1);  

    } 

    if (stat  = callrpc(argv[1],  

        RUSERSPROG,  RUSERSVERS,  RUSERSPROC_NUM,  

        xdr_void,  0, xdr_u_long,  &nusers)  != 0) { 

            clnt_perrno(stat);  

            exit(1);  

    } 

    printf("%d  users  on %s\n",  nusers,  argv[1]);  

    exit(0);  

} 

The callrpc  subroutine has eight parameters. The first, host, specifies the name of the remote server 

machine. The next three parameters, prognum, versnum, and procnum, specify the program, version, and 

procedure numbers. The fifth and sixth parameters, inproc  and in, are an XDR filter and an argument to 

be encoded and passed to the remote procedure. The final two parameters, outproc  and out, are a filter 

for decoding the results returned by the remote procedure and a pointer to the place where the 

procedure’s results are to be stored. Multiple arguments and results are handled by embedding them in 

structures. If the callrpc  subroutine completes successfully, it returns zero. Otherwise, it returns a nonzero 

value. 

Because data types may be represented differently on different machines, the callrpc  subroutine needs 

both the type of the RPC argument and a pointer to the argument itself. The return value for the 

RUSERSPROC_NUM  parameter is unsigned long, so the callrpc  subroutine has xdr_u_long  as its first return 

parameter. This parameter specifies that the result is of the unsigned long type. The second return 

parameter, &nusers, is a pointer to where the long result is placed. Because the RUSERSPROC_NUM  parameter 

takes no argument, the argument parameter of the callrpc  subroutine is xdr_void. 

Using the Lowest Layer of RPC Example 

The following is an example of the lowest layer of Remote Procedure Call (RPC) on the server and client 

side using the nusers  program. 

The Lowest Layer of RPC from the Server Side 

The server for the nusers  program in the following example does the same thing as a program using the 

registerrpc  subroutine at the highest level of RPC. However, the following is written using the lowest layer 

of the RPC package: 

#include  <stdio.h>  

#include  <rpc/rpc.h>  

#include  <utmp.h>  

#include  <rpcsvc/rusers.h>  

 

Chapter 8. Remote Procedure Call 171



main()  

{ 

    SVCXPRT  *transp;  

    int  nuser();  

    transp  = svcudp_create(RPC_ANYSOCK);  

    if (transp  == NULL){  

        fprintf(stderr,  "can’t  create  an RPC  server\n");  

        exit(1);  

    } 

    pmap_unset(RUSERSPROG,  RUSERSVERS);  

    if (!svc_register(transp,  RUSERSPROG,  RUSERSVERS,  

              nuser,  IPPROTO_UDP))  { 

        fprintf(stderr,  "can’t  register  RUSER  service\n");  

        exit(1);  

    } 

    svc_run();   /*  Never  returns   */ 

    fprintf(stderr,  "should  never  reach  this  point\n");  

} 

    switch  (rqstp->rq_proc)  { 

    case  NULLPROC:  

        if (!svc_sendreply(transp,  xdr_void,  0)) 

            fprintf(stderr,  "can’t  reply  to RPC  call\n");  

        return;  

    case  RUSERSPROC_NUM:  

        /* 

         * Code  here  to compute  the  number  of users  

         * and  assign  it to the  nusers  variable  

         */ 

        if (!svc_sendreply(transp,  xdr_u_long,  &nusers))   

            fprintf(stderr,  "can’t  reply  to RPC  call\n");  

        return;  

    default:  

        svcerr_noproc(transp);  

        return;  

    } 

} 

First, the server gets a transport handle, which is used for receiving and replying to RPC messages. The 

registerrpc  routine calls the svcudp_create  routine to get a User Datagram Protocol (UDP) handle. If a 

more reliable protocol is required, the svctcp_create  routine can be called instead. If the argument to the 

svcudp_create  routine is RPC_ANYSOCK, the RPC library creates a socket on which to receive and reply to 

remote procedure calls. Otherwise, the svcudp_create  routine expects its argument to be a valid socket 

number. If a programmer specifies a socket, it can be bound or unbound. If it is bound to a port by the 

programmer, the port numbers of the svcudp_create  routine and the clnttcp_create  routine (the low-level 

client routine) must match. 

If the programmer specifies the RPC_ANYSOCK  argument, the RPC library routines open sockets. The 

svcudp_create  and clntudp_create  routines cause the RPC library routines to bind the appropriate 

socket, if not already bound. 

A service may register its port number with the local port mapper service. This is done by specifying a 

nonzero protocol number in the svc_register  routine. A programmer at the client machine can discover the 

server port number by consulting the port mapper at the server workstation. This is done automatically by 

specifying a zero port number in the clntudp_create  or clnttcp_create  routines. 

After creating a service transport (SVCXPRT) handle, the next step is to call the pmap_unset  routine. If the 

nusers  server crashed earlier, this routine erases any trace of the crash before restarting. Specifically, the 

pmap_unset  routine erases the entry for RUSERSPROG  from the port mapper’s tables. 

 

172 Communications Programming Concepts



Finally, the program number for nusers  is associated with the nuser  procedure. The final argument to the 

svc_register  routine is normally the protocol being used, in this case IPPROTO_UDP. Registration is 

performed at the program level, rather than the procedure level. 

The nuser  user service routine must call and dispatch the appropriate eXternal Data Representation 

(XDR) routines based on the procedure number. The nuser  routine has two requirements, unlike the 

registerrpc  routine which performs them automatically. The first is that the NULLPROC  procedure 

(currently 0) return with no results. This is a simple test for detecting whether a remote program is running. 

Second, the subroutine checks for invalid procedure numbers. If one is detected, the svcerr_noproc  

routine is called to handle the error. 

The user service routine serializes the results and returns them to the RPC caller through the 

svc_sendreply  routine. The first parameter of this routine is the SVCXPRT  handle, the second is the XDR 

routine that indicates return data type, and the third is a pointer to the data to be returned. 

As an example, a RUSERSPROC_BOOL  procedure can be added, which has an nusers  argument and 

returns a value of True or False, depending on whether there are nusers  logged on. The following example 

shows this addition: 

case  RUSERSPROC_BOOL:  { 

    int  bool;  

    unsigned  nuserquery;  

    if (!svc_getargs(transp,  xdr_u_int,  &nuserquery)  { 

        svcerr_decode(transp);  

        return;  

    } 

    /* 

     * Code  to set  nusers  = number  of users  

     */ 

    if (nuserquery  == nusers)  

        bool  = TRUE;  

    else  

        bool  = FALSE;  

    if (!svc_sendreply(transp,  xdr_bool,  &bool))  { 

         fprintf(stderr,  "can’t  reply  to RPC  call\n");  

        return  (1);  

    } 

    return;  

} 

The svc_getargs  routine takes the following arguments: an SVCXPRT  handle, the XDR routine, and a 

pointer that indicates where to place the input. 

The Lowest Layer of RPC from the Client Side 

A programmer using the callrpc  routine has control over neither the RPC delivery mechanism nor the 

socket used to transport the data. However, the lowest layer of RPC allows the user to adjust these 

parameters. The following code can be used to request the nusers  service: 

#include  <stdio.h>  

#include  <rpc/rpc.h>  

#include  <utmp.h>  

#include  <rpcsvc/rusers.h>  

#include  <sys/socket.h>  

#include  <sys/time.h>  

#include  <netdb.h>  

main(argc,  argv)  

    int  argc;  

    char  **argv;  

{ 

    struct  hostent  *hp;  

    struct  timeval  pertry_timeout,  total_timeout;  

    struct  sockaddr_in  server_addr;

 

Chapter 8. Remote Procedure Call 173



int  sock  = RPC_ANYSOCK;  

    register  CLIENT  *client;  

    enum  clnt_stat  clnt_stat;  

    unsigned  long  nusers;  

    if (argc  != 2) { 

        fprintf(stderr,  "usage:  nusers  hostname\n");  

        exit(-1);  

    } 

    if ((hp  = gethostbyname(argv[1]))  == NULL)  { 

        fprintf(stderr,  "can’t  get  addr  for  %s\n",argv[1]);  

        exit(-1);  

    } 

    pertry_timeout.tv_sec  = 3; 

    pertry_timeout.tv_usec  = 0; 

    bcopy(hp->h_addr,  (caddr_t)&server_addr.sin_addr,  

        hp->h_length);  

    server_addr.sin_family  = AF_INET;  

    server_addr.sin_port  =  0; 

    if ((client  = clntudp_create(&server_addr,  RUSERSPROG,  

     RUSERSVERS,  pertry_timeout,  &sock))  == NULL)  { 

        clnt_pcreateerror("clntudp_create");  

        exit(-1);  

    } 

    total_timeout.tv_sec  = 20;  

    total_timeout.tv_usec  = 0; 

  

          

clnt_stat  = clnt_call(client,  RUSERSPROC_NUM,  xdr_void,  

        0, xdr_u_long,  &nusers,  total_timeout);  

    if (clnt_stat  !=  RPC_SUCCESS)  { 

        clnt_perror(client,  "rpc");  

        exit(-1);  

    } 

    clnt_destroy(client);  

    close(sock);  

    exit(0);  

} 

The low-level version of the callrpc  routine is the clnt_call  macro, which takes a CLIENT pointer rather 

than a host name. The parameters to the clnt_call  macro are a CLIENT pointer, the procedure number, 

the XDR routine for serializing the argument, a pointer to the argument, the XDR routine for deserializing 

the return value, a pointer to where the return value is to be placed, and the total time in seconds to wait 

for a reply. Thus, the number of tries is the time out divided by the clntudp_create  time out. 

The CLIENT pointer is encoded with the transport mechanism. The callrpc  routine uses UDP, thus it calls 

the clntudp_create  routine to get a CLIENT pointer. To get Transmission Control Protocol (TCP), the 

programmer can call the clnttcp_create  routine. 

The parameters to the clntudp_create  routine are the server address, the program number, the version 

number, a time-out value (between tries), and a pointer to a socket. 

The clnt_destroy  call always deallocates the space associated with the client handle. If the RPC library 

opened the socket associated with the client handle, the clnt_destroy  macro closes it. If the socket was 

opened by the programmer, it stays open. In cases where there are multiple client handles using the same 

socket, it is possible to destroy one handle without closing the socket that other handles are using. 

The stream connection is made when the call to the clntudp_create  macro is replaced by a call to the 

clnttcp_create  routine. 

clnttcp_create(&server_addr,  prognum,  versnum,  &sock,  

               inputsize,  outputsize);  

 

174 Communications Programming Concepts



In this example, no time-out argument exists. Instead, the send and receive buffer sizes must be specified. 

When the clnttcp_create  call is made, a TCP connection is established. All remote procedure calls using 

the client handle use the TCP connection. The server side of a remote procedure call using TCP is similar, 

except that the svcudp_create  routine is replaced by the svctcp_create  routine, as follows: 

transp  = svctcp_create(RPC_ANYSOCK,  0, 0);  

The last two arguments to the svctcp_create  routine are send and receive sizes, respectively. If 0 is 

specified for either of these, the system chooses a reasonable default. 

Showing How RPC Passes Arbitrary Data Types  Example 

The first two examples show how Remote Procedure Call (RPC) handles arbitrary data types. 

Passing a Simple User-Defined Structure Example 

struct  simple  { 

        int  a; 

       short  b; 

} simple;  

callrpc(hostname,  PROGNUM,  VERSNUM,  PROCNUM,  

        xdr_simple,  &simple  ...);  

The xdr_simple  function is written as: 

#include  <rpc/rpc.h>  

xdr_simple(xdrsp,  simplep)  

    XDR  *xdrsp;  

    struct  simple  *simplep;  

{ 

    if (!xdr_int(xdrsp,  &simplep->a))  

        return  (0);  

    if (!xdr_short(xdrsp,  &simplep->b))  

        return  (0);  

    return  (1);  

} 

Passing a Variable-Length Array Example 

struct  varintarr  { 

    int  *data;  

    int  arrlnth;  

} arr;  

callrpc(hostname,  PROGNUM,  VERSNUM,  PROCNUM,  

        xdr_varintarr,  &arr...);  

The xdr_varintarr  subroutine is defined as: 

xdr_varintarr(xdrsp,  arrp)  

    XDR  *xdrsp;  

    struct  varintarr  *arrp;  

{ 

    return  (xdr_array(xdrsp,  &arrp->data,  &arrp->arrlnth,   

        MAXLEN,  sizeof(int),  xdr_int));  

} 

This routine’s parameters are the eXternal Data Representation (XDR) handle (xdrsp), a pointer to the 

array (aarp->data), a pointer to the size of the array (aarp->arrlnth), the maximum allowable array size 

(MAXLEN), the size of each array element (sizeof), and an XDR routine for handling each array element 

(xdr_int). 

 

Chapter 8. Remote Procedure Call 175



Passing a Fixed-Length Array Example 

If the size of the array is known in advance, the programmer can call the xdr_vector  subroutine to 

serialize fixed-length arrays, as in the following example: 

int  intarr[SIZE];  

xdr_intarr(xdrsp,  intarr)  

    XDR  *xdrsp;  

    int  intarr[];  

{ 

    int  i; 

    return  (xdr_vector(xdrsp,  intarr,  SIZE,  sizeof(int),  

        xdr_int));  

} 

Passing Structure with Pointers Example 

The following example calls the previously written xdr_simple  routine as well as the built-in xdr_string  

and xdr_reference  functions. The xdr_reference  routine chases pointers. 

struct  finalexample  { 

    char  *string;  

    struct  simple  *simplep;  

} finalexample;  

xdr_finalexample(xdrsp,  finalp)  

    XDR  *xdrsp;  

    struct  finalexample  *finalp;  

{ 

    if (!xdr_string(xdrsp,  &finalp->string,  MAXSTRLEN))  

        return  (0);  

    if (!xdr_reference(xdrsp,  &finalp->simplep,  

     sizeof(struct  simple),  xdr_simple);  

        return  (0);  

    return  (1);  

} 

Using Multiple Program Versions Example 

By convention, the first version number of the PROG  program is referred to as PROGVERS_ORIG, and 

the most recent version is PROGVERS. For example, the programmer can create a new version of the 

user  program that returns an unsigned short value rather than a long value. If the programmer names this 

version RUSERSVERS_SHORT, then the following program permits the server to support both programs: 

if (!svc_register(transp,  RUSERSPROG,  RUSERSVERS_ORIG,  

  nuser,  IPPROTO_TCP))  { 

    fprintf(stderr,  "can’t  register  RUSER  service\n");  

    exit(1);  

} 

if (!svc_register(transp,  RUSERSPROG,  RUSERSVERS_SHORT,  

  nuser,  IPPROTO_TCP))  { 

    fprintf(stderr,  "can’t  register  RUSER  service\n");  

    exit(1);  

} 

Both versions can be handled by the same C procedure, as in the following example using the nusers  

procedure: 

nuser(rqstp,  transp)  

    struct  svc_req  *rqstp;  

    SVCXPRT  *transp;  

{ 

    unsigned  long  nusers;  

    unsigned  short  nusers2;  

 

176 Communications Programming Concepts



switch  (rqstp->rq_proc)  { 

    case  NULLPROC:  

        if (!svc_sendreply(transp,  xdr_void,  0))  { 

            fprintf(stderr,  "can’t  reply  to RPC  call\n");  

                  return  (1);  

        } 

        return;  

    case  RUSERSPROC_NUM:  

        /* 

         * Code  here  to compute  the  number  of users  

         * and  assign  it to the  variable  nusers   

         */ 

        nusers2  = nusers;  

        switch  (rqstp->rq_vers)  { 

        case  RUSERSVERS_ORIG:  

            if (!svc_sendreply(transp,  xdr_u_long,   

            &nusers))  { 

                fprintf(stderr,"can’t  reply  to RPC  call\n");  

            } 

            break;  

        case  RUSERSVERS_SHORT:  

            if (!svc_sendreply(transp,  xdr_u_short,   

            &nusers2))  { 

                fprintf(stderr,"can’t  reply  to RPC  call\n");  

            } 

            break;  

        } 

    default:  

        svcerr_noproc(transp);  

        return;  

    } 

} 

Broadcasting a Remote Procedure Call Example 

The following example illustrates broadcast Remote Procedure Call (RPC): 

#include  <rpc/pmap_clnt.h>  

    ...  

enum  clnt_stat      clnt_stat;  

    ...  

clnt_stat  = clnt_broadcast(prognum,  versnum,  procnum,  

  inproc,  in,  outproc,  out,  eachresult)  

    u_long     prognum;       /* program  number                 */ 

    u_long     versnum;       /*  version  number                */ 

    u_long     procnum;       /*  procedure  number              */ 

    xdrproc_t  inpro          /*  xdr  routine  for  args          */ 

    caddr_t    in;            /*  pointer  to args               */ 

    xdrproc_t  outproc        /*  xdr  routine  for  results       */ 

    caddr_t    out;           /*  pointer  to results            */ 

    bool_t   (*eachresult)();/*   call  with  each  result  gotten  */ 

The eachresult  procedure is called each time a result is obtained. This procedure returns a Boolean value 

that indicates whether the caller wants more responses. 

bool_t  done;  

    ...  

done  = eachresult(resultsp,  raddr)  

    caddr_t  resultsp;  

    struct  sockaddr_in  *raddr;  /*  Addr  of responding  machine   */ 

If the done  parameter returns a value of True, then broadcasting stops and the clnt_broadcast  routine 

returns successfully. Otherwise, the routine waits for another response. The request is rebroadcast after a 

few seconds of waiting. If no response comes back, the routine returns with a value of RPC_TIMEDOUT. 

 

Chapter 8. Remote Procedure Call 177



Using the select Subroutine Example 

The code for the svc_run  routine with the select  subroutine is as follows: 

void  

svc_run()  

{ 

    fd_set  readfds;  

    int  dtbsz  = getdtablesize();  

    for  (;;)  { 

        readfds  = svc_fds;  

        switch  (select(dtbsz,  &readfds,  NULL,NULL,NULL))  { 

        case  -1:  

            if (errno  == EINTR)  

                continue;  

            perror("select");  

            return;  

        case  0: 

            break;  

        default:  

            svc_getreqset(&readfds);  

        } 

    } 

} 

Beginning in AIX 5.2, the maximum number of open file descriptors that an RPC server can use has been 

set to 32767 in order to maintain compatability with RPC-server applications built on earlier releases of 

AIX. The fd_set type passed into the svc_getreqset subroutine needs to have been compiled with 

FD_SETSIZE set to 32767 or larger. Passing in a smaller fd_set variable may result in the passed in 

buffer being overrun by the svc_getreqset subroutine. 

rcp Process on TCP Example 

The following is an example using the rcp  process. This example includes an eXternal Data 

Representation (XDR) procedure that behaves differently on serialization than on deserialization. The 

initiator of the Remote Procedure Call (RPC) snd  call takes its standard input and sends it to the rcv  

process on the server, which prints the data to standard output. The snd  call uses Transmission Control 

Protocol (TCP). 

The routine follows: 

/* 

 * The  xdr  routine:  

 *   on decode,  read  from  wire,  write  onto  fp 

 *   on encode,  read  from  fp,  write  onto  wire  

 */ 

#include  <stdio.h>  

#include  <rpc/rpc.h>  

xdr_rcp(xdrs,  fp)  

     XDR  *xdrs;  

     FILE  *fp;  

{ 

     unsigned  long  size;  

     char  buf[BUFSIZ],  *p;  

     if (xdrs->x_op  == XDR_FREE)      /* nothing  to free  */ 

          return  1; 

     while  (1)  { 

          if (xdrs->x_op  == XDR_ENCODE)  { 

               if ((size  = fread(buf,  sizeof(char),  BUFSIZ,  

                    fp))  == 0 && ferror(fp))  { 

                         fprintf(stderr,  "can’t  fread\n");  

                         return  (1);  

               }

 

178 Communications Programming Concepts



} 

          p = buf;  

          if (!xdr_bytes(xdrs,  &p,  &size,  BUFSIZ))  

               return  0;  

          if (size  == 0) 

               return  1;  

          if (xdrs->x_op  ==  XDR_DECODE)  { 

               if (fwrite(buf,  sizeof(char),size,fp)  != size)  { 

                    fprintf(stderr,  "can’t  fwrite\n");  

                    return  (1);  

               } 

          } 

     } 

} 

/*  

 * The  sender  routines  

 */ 

#include  <stdio.h>  

#include  <netdb.h>  

#include  <rpc/rpc.h>  

#include  <sys/socket.h>  

#include  <sys/time.h>  

main(argc,  argv)  

     int  argc;  

     char  **argv;  

{ 

     int  xdr_rcp();  

     int  err;  

     if (argc  < 2) { 

          fprintf(stderr,  "usage:  %s servername\n",  argv[0]);  

          exit(-1);  

     } 

     if ((err  = callrpctcp(argv[1],  RCPPROG,  RCPPROC,  

       RCPVERS,  xdr_rcp,  stdin,  xdr_void,  0) != 0))  { 

          clnt_perrno(err);  

          fprintf(stderr,  "can’t  make  RPC  call\n");  

          exit(1);  

     } 

     exit(0);  

} 

callrpctcp(host,  prognum,  procnum,  versnum,  inproc,  in, 

          outproc,  out)  

     char  *host,  *in,  *out;  

     xdrproc_t  inproc,  outproc;  

{ 

     struct  sockaddr_in  server_addr;  

     int  socket  = RPC_ANYSOCK;  

     enum  clnt_stat  clnt_stat;  

     struct  hostent  *hp;  

     register  CLIENT  *client;  

     struct  timeval  total_timeout;  

     if ((hp  = gethostbyname(host))  == NULL)  { 

          fprintf(stderr,  "can’t  get  addr  for  ’%s’\n",  host);  

          return  (-1);  

     } 

     bcopy(hp->h_addr,  (caddr_t)&server_addr.sin_addr,  

          hp->h_length);  

     server_addr.sin_family  = AF_INET;  

     server_addr.sin_port  =  0; 

     if ((client  = clnttcp_create(&server_addr,  prognum,  

       versnum,  &socket,  BUFSIZ,  BUFSIZ))  == NULL)  { 

          perror("rpctcp_create");  

          return  (-1);  

     } 

     total_timeout.tv_sec  = 20;

 

Chapter 8. Remote Procedure Call 179



total_timeout.tv_usec  = 0; 

     clnt_stat  = clnt_call(client,  procnum,  

          inproc,  in,  outproc,  out,  total_timeout);  

     clnt_destroy(client);  

     return  (int)clnt_stat;  

} 

/* 

 * The  receiving  routines  

 */ 

#include  <stdio.h>  

#include  <rpc/rpc.h>  

main()  

{ 

     register  SVCXPRT  *transp;  

     int  rcp_service(),  xdr_rcp();   

     if ((transp  = svctcp_create(RPC_ANYSOCK,  

       BUFSIZ,  BUFSIZ))  == NULL)  { 

          fprintf("svctcp_create:  error\n");  

          exit(1);  

     } 

     pmap_unset(RCPPROG,  RCPVERS);  

     if (!svc_register(transp,  

       RCPPROG,  RCPVERS,  rcp_service,  IPPROTO_TCP))  { 

          fprintf(stderr,  "svc_register:  error\n");  

          exit(1);  

     } 

     svc_run();      /* never  returns  */ 

     fprintf(stderr,  "svc_run  should  never  return\n");  

} 

rcp_service(rqstp,  transp)  

     register  struct  svc_req  *rqstp;  

     register  SVCXPRT  *transp;  

{ 

     switch  (rqstp->rq_proc)  { 

     case  NULLPROC:  

          if (svc_sendreply(transp,  xdr_void,  0) == 0) { 

               fprintf(stderr,  "err:  rcp_service");  

               return  (1);  

           } 

           return;  

     case  RCPPROC_FP:  

          if (!svc_getargs(transp,  xdr_rcp,  stdout))  { 

               svcerr_decode(transp);  

               return;  

           } 

           if (!svc_sendreply(transp,  xdr_void,  0))  { 

                fprintf(stderr,  "can’t  reply\n");  

                return;  

          } 

          return  (0);  

     default:  

          svcerr_noproc(transp);  

          return;  

     } 

} 

RPC Callback Procedures Example 

Occasionally, it is useful to have a server become a client and make a Remote Procedure Call (RPC) back 

to the process client. For example, with remote debugging, the client is a window system program and the 

server is a debugger running on the remote machine. Usually, the user clicks a mouse button at the 

debugging window. This step invokes a debugger command that makes a remote procedure call to the 

server (where the debugger is actually running), telling it to execute that command. When the debugger 

 

180 Communications Programming Concepts



hits a breakpoint, however, the roles are reversed. The debugger then makes a remote procedure call to 

the window program to inform the user that a breakpoint has been reached. 

An RPC callback requires a program number to make the remote procedure call on. Because this will be a 

dynamically generated program number, it should be in the transient range, 0x40000000 to 0x5fffffff. The 

gettransient  routine returns a valid program number in the transient range, and registers it with the port 

mapper. This routine only talks to the port mapper running on the same machine as the gettransient  

routine itself. The call to the pmap_set  routine is a test-and-set operation. That is, it indivisibly tests 

whether a program number has already been registered, and reserves the number if it has not. On return, 

the sockp  argument contains a socket that can be used as the argument to an svcudp_create  or 

svctcp_create  routine. 

#include  <stdio.h>  

#include  <rpc/rpc.h>  

#include  <sys/socket.h>  

gettransient(proto,  vers,  sockp)  

      int  proto,  vers,  *sockp;  

{ 

      static  int  prognum  = 0x40000000;  

      int  s, len,  socktype;  

      struct  sockaddr_in  addr;  

      switch(proto)  { 

              case  IPPROTO_UDP:  

                      socktype  = SOCK_DGRAM;  

                      break;  

              case  IPPROTO_TCP:  

                      socktype  = SOCK_STREAM;  

                      break;  

              default:  

                      fprintf(stderr,  "unknown  protocol  type\n");  

                      return  0; 

      } 

      if (*sockp  == RPC_ANYSOCK)  { 

           if ((s  = socket(AF_INET,  socktype,  0)) < 0) { 

                perror("socket");  

                return  (0);  

           } 

           *sockp  = s; 

      } 

      else  

           s = *sockp;  

      addr.sin_addr.s_addr  = 0; 

      addr.sin_family  = AF_INET;  

      addr.sin_port  = 0; 

      len  = sizeof(addr);  

      /* 

       * may  be already  bound,  so don’t  check  for  error  

       */ 

      bind(s,  &addr,  len);  

      if (getsockname(s,  &addr,  &len)<  0) { 

           perror("getsockname");  

           return  (0);  

      } 

      while  (!pmap_set(prognum++,  vers,  proto,   

           ntohs(addr.sin_port)))  continue;  

      return  (prognum-1);  

} 

Note:   The call to the ntohs  subroutine ensures that the port number in addr.sin_port, which is in 

network byte order, is passed in host byte order. The pmap_set  subroutine expects host byte order. 

The following programs illustrate how to use the gettransient  routine. The client makes a remote 

procedure call to the server, passing it a transient program number. Then the client waits around to receive 

a callback from the server at that program number. The server registers the EXAMPLEPROG  program so 

 

Chapter 8. Remote Procedure Call 181



that it can receive the remote procedure call informing it of the callback program number. Then, at some 

randomly selected time (on receiving a SIGALRM  signal in this example), the server sends a callback 

remote procedure call, using the program number it received earlier. 

/* 

 * client  

 */ 

#include  <stdio.h>  

#include  <rpc/rpc.h>  

int  callback();  

char  hostname[256];  

main()  

{ 

      int  x, ans,  s;  

      SVCXPRT  *xprt;  

      gethostname(hostname,  sizeof(hostname));  

      s = RPC_ANYSOCK;  

      x = gettransient(IPPROTO_UDP,  1, &s);  

      fprintf(stderr,  "client  gets  prognum  %d\n",  x);  

      if ((xprt  = svcudp_create(s))  == NULL)  { 

        fprintf(stderr,  "rpc_server:  svcudp_create\n");  

           exit(1);  

      } 

      /* protocol  is 0 - gettransient  does  registering  

       */  

      (void)svc_register(xprt,  x, 1, callback,  0); 

      ans  = callrpc(hostname,  EXAMPLEPROG,  EXAMPLEVERS,  

           EXAMPLEPROC_CALLBACK,  xdr_int,  &x,  xdr_void,  0);  

      if ((enum  clnt_stat)  ans  != RPC_SUCCESS)  { 

           fprintf(stderr,  "call:  ");  

           clnt_perrno(ans);  

           fprintf(stderr,  "\n");  

      } 

      svc_run();  

      fprintf(stderr,  "Error:  svc_run  shouldn’t  return\n");  

} 

callback(rqstp,  transp)  

      register  struct  svc_req  *rqstp;  

      register  SVCXPRT  *transp;  

{ 

      switch  (rqstp->rq_proc)  { 

           case  0: 

                if  (!svc_sendreply(transp,  xdr_void,  0))  { 

                     fprintf(stderr,  "err:  exampleprog\n");  

                     return  (1);  

                } 

                return  (0);  

           case  1: 

                if  (!svc_getargs(transp,  xdr_void,  0))  { 

                     svcerr_decode(transp);  

                     return  (1);  

                } 

                fprintf(stderr,  "client  got  callback\n");  

                if  (!svc_sendreply(transp,  xdr_void,  0))  { 

                     fprintf(stderr,  "err:  exampleprog");  

                     return  (1);  

                } 

      } 

} 

/* 

 * server

 

182 Communications Programming Concepts



*/ 

#include  <stdio.h>  

#include  <rpc/rpc.h>  

#include  <sys/signal.h>  

char  *getnewprog();  

char  hostname[256];  

int  docallback();  

int  pnum;           /*   program  number  for  callback  routine   */ 

main()  

{ 

      gethostname(hostname,  sizeof(hostname));  

      registerrpc(EXAMPLEPROG,  EXAMPLEVERS,  

        EXAMPLEPROC_CALLBACK,  getnewprog,  xdr_int,  xdr_void);  

      fprintf(stderr,  "server  going  into  svc_run\n");  

      signal(SIGALRM,  docallback);  

      alarm(10);  

      svc_run();  

      fprintf(stderr,  "Error:  svc_run  shouldn’t  return\n");  

} 

char  * 

getnewprog(pnump)  

     char  *pnump;  

{ 

     pnum  = *(int  *)pnump;  

     return  NULL;  

} 

docallback()  

{ 

     int  ans;  

     ans  = callrpc(hostname,  pnum,  1, 1,  xdr_void,  0,  

          xdr_void,  0);  

     if (ans  != 0) { 

          fprintf(stderr,  "server:  ");  

          clnt_perrno(ans);  

          fprintf(stderr,  "\n");  

     } 

} 

RPC Language ping Program Example 

The following is an example of the specification of a simple ping  program described in the Remote 

Procedure Call language (RPCL): 

/*  

* Simple  ping  program  

*/  

program  PING_PROG  { 

        /* Latest  and  greatest  version  */ 

        version  PING_VERS_PINGBACK  { 

         void  

        PINGPROC_NULL(void)  = 0; 

      /* 

       * Ping  the  caller,  return  the  round-trip  time  

       * (in  microseconds).   Returns  -1 if the operation  

       * timed  out.  

       */ 

           int  

           PINGPROC_PINGBACK(void)  = 1; 

} = 2; 

/*  

* Original  version  

*/  

version  PING_VERS_ORIG  {

 

Chapter 8. Remote Procedure Call 183



void  

        PINGPROC_NULL(void)  = 0; 

        } = 1; 

} = 1;  

const  PING_VERS  = 2;      /* latest  version  */ 

In this example, the first part of the ping  program, PING_VERS_PINGBACK, consists of two procedures: 

PINGPROC_NULL  and PINGPROC_PINGBACK. The PINGPROC_NULL  procedure takes no arguments and returns no 

results. However, it is useful for computing round-trip times from the client to the server. By convention, 

procedure 0 of an RPC protocol should have the same semantics and require no kind of authentication. 

The second procedure, PINGPROC_PINGBACK, requests a reverse ping  operation from the server. It returns 

the amount of time in microseconds that the operation used. 

The second part, or original version of the ping program, PING_VERS_ORIG, does not contain the 

PINGPROC_PINGBACK  procedure. The original version is useful for compatibility with older client programs. 

When the new ping  program matures, this older version may be dropped from the protocol entirely. 

Converting Local Procedures into Remote Procedures Example 

This example illustrates one way to convert an application that runs on a single machine into one that runs 

over a network. For example, a programmer first creates a program that prints a message to the console, 

as follows: 

/* 

 * printmsg.c:  print  a message  on the  console  

 */ 

#include  <stdio.h>  

main(argc,  argv)  

    int  argc;  

    char  *argv[];  

{ 

    char  *message;  

   if (argc  < 2) { 

       fprintf(stderr,  "usage:  %s <message>\n",  

            argv[0]);  

       exit(1);  

    } 

    message  = argv[1];  

    if (!printmessage(message))  { 

         fprintf(stderr,  "%s:  couldn’t  print  your  

       message\n",  argv[0]);   

         exit(1);  

    } 

    printf("Message  Delivered!\n");  

    exit(0);  

} 

/* 

 * Print  a message  to the  console.  

 * Return  a boolean  indicating  whether  the  

 * message  was  actually  printed.  

 */ 

printmessage(msg)  

    char  *msg;  

{ 

    FILE  *f;  

    f = fopen("/dev/console",  "w");  

    if (f == NULL)  {  

        return  (0);   

    } 

    fprintf(f,  "%s\n",  msg);  

    fclose(f);   

    return(1);  

} 

 

184 Communications Programming Concepts



The reply message follows: 

example%   cc printmsg.c  -o printmsg  

example%   printmsg  "Hello,  there."  

Message  delivered!  

example%  

If the printmessage  program is turned into a remote procedure, it can be called from anywhere in the 

network. Ideally, one would insert a keyword such as remote  in front of a procedure to turn it into a 

remote procedure. Unfortunately the constraints of the C language do not permit this. However, a 

procedure can be made remote without language support. 

To do this, the programmer must know the data types of all procedure inputs and outputs. In this case, the 

printmessage  procedure takes a string as input and returns an integer as output. Knowing this, the 

programmer can write a protocol specification in Remote Procedure Call language (RPCL) that describes 

the remote version of PRINTMESSAGE, as follows: 

/*  

 * msg.x:  Remote  message  printing  protocol  

 */ 

program  MESSAGEPROG  { 

   version  MESSAGEVERS  { 

       int  PRINTMESSAGE(string)  = 1; 

   } = 1;  

} = 99;  

Remote procedures are part of remote programs, so the previous protocol declares a remote program 

containing the single procedure PRINTMESSAGE. This procedure was declared to be in version 1 of the 

remote program. No null procedure (procedure 0) is necessary, because the rpcgen  command generates 

it automatically. 

Conventionally, all declarations are written with uppercase letters. 

The argument type is string  and not char  * because a char  * in C is ambiguous. Programmers usually 

intend it to mean a null-terminated string of characters, but it could also represent a pointer to a single 

character or a pointer to an array of characters. In RPCL, a null-terminated string is unambiguously called 

a string. 

Next, the programmer writes the remote procedure itself. The definition of a remote procedure to 

implement the PRINTMESSAGE  procedure declared previously can be written as follows: 

/*  

 * msg_proc.c:  implementation  of the  remote   

 *procedure  "printmessage"  

 */ 

#include  <stdio.h>   

#include  <rpc/rpc.h>    /*  always  needed   */ 

#include  "msg.h"        /*  msg.h  will  be generated  by rpcgen  */ 

/*  

 * Remote  version  of  "printmessage"  

 */ int  * 

printmessage_1(msg)  

    char  **msg;  

{  

    static  int  result;   /* must  be static!  */ 

    FILE  *f;  

    f = fopen("/dev/console",  "w");  

    if (f  == NULL)  {  

        result  = 0; 

        return  (&result);  

    } 

    fprintf(f,  "%s\en",  *msg);

 

Chapter 8. Remote Procedure Call 185



fclose(f);  

    result  = 1; 

    return  (&result);  

} 

The declaration of the remote procedure printmessage_1  in this step differs from that of the local 

procedure printmessage  in the first step, in three ways: 

v   It takes a pointer to a string instead of the string itself. This is true of all remote procedures, which 

always take pointers to their arguments rather than the arguments themselves. 

v   It returns a pointer to an integer instead of the integer itself. This is also true of remote procedures, 

which generally return a pointer to their results. 

v   It has a _1  appended to its name. Remote procedures called by the rpcgen  command are named by 

the following rule: the name in the program definition (here PRINTMESSAGE) is converted to all lowercase 

letters, and an _ (underscore) and the version number are appended.

Finally, the programmers declare the main client program that will call the remote procedure, as follows: 

/* 

 * rprintmsg.c:  remote  version  of "printmsg.c"  

 */ 

#include  <stdio.h>   

#include  <rpc/rpc.h>      /* always  needed  */  

#include  "msg.h"   /* msg.h  will  be generated  by rpcgen  */ 

main(argc,  argv)   

    int  argc;  

    char  *argv[];  

{ 

    CLIENT  *cl;  

    int  *result;  

    char  *server;  

    char  *message;  

    if (argc  < 3) { 

        fprintf(stderr,  

        "usage:  %s host  message\en",  argv[0]);  

        exit(1);  

    } 

    /* 

     * Save  values  of command  line  arguments  

     */ 

    server  = argv[1];  

    message  = argv[2];  

    /* 

     * Create  client  "handle"  used  for  calling  MESSAGEPROG  on 

     * the  server  designated  on the  command  line.   We tell  

     * the  RPC  package  to use  the  "tcp"  protocol  when  

     * contacting  the  server.  

     */ 

    cl = clnt_create(server,  MESSAGEPROG,  MESSAGEVERS,  "tcp");  

    if (cl  == NULL)  { 

         /* 

          * Couldn’t  establish  connection  with  server.  

          * Print  error  message  and  die.  

          */ 

          clnt_pcreateerror(server);  

          exit(1);  

    } 

   /* 

    * Call  the  remote  procedure  "printmessage"  on the  server  

    */ 

    result  = printmessage_1(&message,  cl);  

    if (result  == NULL)  { 

        /* 

         * An error  occurred  while  calling  the  server.  

         * Print  error  message  and  die.

 

186 Communications Programming Concepts



*/ 

         clnt_perror(cl,  server);  

         exit(1);  

    } 

    /* 

     * Okay,  we successfully  called  the  remote  procedure.  

     */ 

    if (*result  == 0) { 

        /* 

         * Server  was  unable  to print  our  message.   

         * Print  error  message  and  die.  

         */ 

    fprintf(stderr,  "%s:  %s couldn’t  print  your  message\n",  

        argv[0],  server);  

        exit(1);  

    } 

    /* 

     * The  message  got  printed  on  the  server’s  console  

     */ 

     printf("Message  delivered  to %s!\n",  server);  

     exit(0);  

} 

Notes:   

1.   First a client handle is created using the Remote Procedure Call (RPC) library clnt_create  routine. 

This client handle is passed to the stub routines that call the remote procedure. 

2.   The remote procedure printmessage_1  is called exactly the same way as it is declared in the 

msg_proc.c  program, except for the inserted client handle as the first argument.

The client program rprintmsg  and the server program msg_server  are compiled as follows: 

example%   rpcgen  msg.x  

example%   cc rprintmsg.c  msg_clnt.c  -o  rprintmsg  

example%   cc msg_proc.c  msg_svc.c  -o msg_server  

Before compilation, however, the rpcgen  protocol compiler is used to perform the following operations on 

the msg.x  input file: 

v   It creates a header file called msg.h  that contains #define  statements for MESSAGEPROG, MESSAGEVERS, 

and PRINTMESSAGE  for use in the other modules. 

v   It creates a client stub routine in the msg_clnt.c  file. In this case, there is only one stub routine, the 

printmessage_1, which is referred to from the printmsg  client program. The name of the output file for 

client stub routines is always formed in this way. For example, if the name of the input file is FOO.x, the 

client stub’s output file would be called FOO_clnt.c. 

v   It creates the server program that calls printmessage_1  in the msg_proc.c  file. This server program is 

named msg_svc.c. The rule for naming the server output file is similar to the previous one. For 

example, if an input file is called FOO.x, the output server file is named FOO_svc.c.

Generating XDR Routines Example 

The “Converting Local Procedures into Remote Procedures Example” on page 184 demonstrates the 

automatic generation of client and server Remote Procedure Call (RPC) code. The rpcgen  protocol 

compiler may also be used to generate eXternal Data Representation (XDR) routines that convert local 

data structures into network format, and vice versa. The following protocol description file presents a 

complete RPC service that is a remote directory listing service that uses the rpcgen  protocol compiler to 

generate not only stub routines, but also XDR routines. 

/*  

 * dir.x:  Remote  directory  listing  protocol  

 */ 

 const  MAXNAMELEN  = 255;/*  maximum  length  of a directory  entry  */  

 typedef  string  nametype<MAXNAMELEN>;     /* a directory  entry  */  

 typedef  struct  namenode  *namelist;    /* a link  in the  listing  */

 

Chapter 8. Remote Procedure Call 187



/* 

  * A node  in the  directory  listing   

  */ 

 struct  namenode  { 

      nametype  name;       /* name  of directory  entry  */ 

      namelist  next;       /* next  entry  */ 

 }; 

 /* 

  * The  result  of a READDIR  operation.  

  */ 

  union  readdir_res  switch  (int  errno)  {  

  case  0:  

      namelist  list;   /* no error:  return  directory  listing  */  

  default:  

      void;         /* error  occurred:  nothing  else  to return  */ 

 }; 

 /* 

  * The  directory  program  definition  

  */ 

 program  DIRPROG  {  

      version  DIRVERS  {  

              readdir_res   

              READDIR(nametype)  = 1; 

         } = 1; 

 } = 76;  

 

 

Note:   Types (like readdir_res  in the previous example) can be defined using the struct, union  and 

enum  keywords, but do not use these keywords in subsequent declarations of variables of those 

types. For example, if you define a union, foo, declare it using only foo  and not union  foo. In fact, 

the rpcgen  protocol compiler compiles RPC unions into C structures, in which case it is an error to 

declare these unions using the union  keyword. 

Running the rpcgen  protocol compiler on the dir.x  file creates four output files. Three are the same as 

before: header file, client stub routines, and server skeleton. The fourth file contains the XDR routines 

necessary for converting the specified data types into XDR format, and vice versa. These are output in the 

dir_xdr.c  file. 

Following is the implementation of the READDIR procedure: 

/* 

 * dir_proc.c:  remote  readdir  implementation  

 */ 

 #include  <rpc/rpc.h>  

 #include  <sys/dir.h>  

 #include  "dir.h"  

 extern  int  errno;  

 extern  char  *malloc();  

 extern  char  *strdup();  

 readdir_res  * 

 readdir_1(dirname)  

         nametype  *dirname;  

 { 

         DIR  *dirp;  

         struct  direct  *d;  

         namelist  nl;  

         namelist  *nlp;  

         static  readdir_res  res;  /* must  be static  */ 

         /* 

          * Open  directory  

          */ 

         dirp  = opendir(*dirname);  

         if (dirp  == NULL)  { 

                 res.errno  = errno;  

                 return  (&res);

 

188 Communications Programming Concepts



} 

         /*  

          * Free  previous  result  

          */ 

         xdr_free(xdr_readdir_res,  &res);  

         /* 

          * Collect  directory  entries.  

          * Memory  allocated  here  will  be freed  by xdr_free  

          * next  time  readdir_1  is called  

          */  

         nlp  = &res.readdir_res_u.list;  

         while  (d = readdir(dirp))  { 

            nl = *nlp  = (namenode  *) malloc(sizeof(namenode));  

            nl->name  = strdup(d->d_name);  

            nlp  = &nl->next;   

         } 

          *nlp  = NULL;  

        

          /* 

          * Return  the  result  

          */ 

          res.errno  = 0; 

         closedir(dirp);  

         return  (&res);  

 } 

The client side program calls the server as follows: 

/*  

 * rls.c:  Remote  directory  listing  client  

 */ 

 #include  <stdio.h>  

 #include  <rpc/rpc.h>     /* always  need  this  */ 

 #include  "dir.h"         /* will  be generated  by rpcgen  */ 

 extern  int  errno;  

 main(argc,  argv)  

         int  argc;  

         char  *argv[];  

 { 

         CLIENT  *cl;  

         char  *server;  

         char  *dir;  

         readdir_res  *result;  

         namelist  nl;  

         if (argc  !=  3) {  

                fprintf(stderr,  "usage:  %s  host  directory\n",  

                   argv[0]);  

                 exit(1);  

         } 

         /* 

          * Remember  what  our  command  line  arguments  refer  to 

          */ 

         server  = argv[1];  

         dir  = argv[2];  

         /* 

          * Create  client  "handle"  used  for  calling  MESSAGEPROG  

          * on the  server  designated  on the  command  line.  We 

          * tell  the  RPC  package  to use  the  "tcp"  protocol  

          * when  contacting  the  server.  

          */ 

         cl = clnt_create(server,  DIRPROG,  DIRVERS,  "tcp");  

         if (cl  == NULL)  { 

              /* 

               * Could  not  establish  connection  with  server.

 

Chapter 8. Remote Procedure Call 189



* Print  error  message  and  die.  

               */ 

               clnt_pcreateerror(server);  

               exit(1);  

         } 

         /* 

          * Call  the  remote  procedure  readdir  on the  server  

          */ 

         result  = readdir_1(&dir,  cl);  

         if (result  == NULL)  { 

                 /* 

                  * An error  occurred  while  calling  the  server.  

                  * Print  error  message  and  die.  

                  */ 

                 clnt_perror(cl,  server);  

                 exit(1);  

         } 

         /* 

          * Okay,  we  successfully  called  the  remote  procedure.  

          */ 

         if (result->errno  != 0) {  

                /*  

                 * A remote  system  error  occurred.  

                 * Print  error  message  and  die.  

                 */ 

                 errno  = result->errno;  

                 perror(dir);  

                 exit(1);  

         } 

         /* 

          * Successfully  got  a directory  listing.  

          * Print  it  out.  

          */ 

         for  (nl  = result->readdir_res_u.list;  nl != NULL;  

           nl = nl->next)  { 

                 printf("%s\en",  nl->name);  

         } 

         exit(0);  

 }   

Finally, in regard to the rpcgen  protocol compiler, the client program and the server procedure can be 

tested together as a single program by linking them with each other rather than with client and server 

stubs. The procedure calls are executed as ordinary local procedure calls and the program can be 

debugged with a local debugger such as dbx. When the program is working, the client program can be 

linked to the client stub produced by the rpcgen  protocol compiler. The server procedures can be linked to 

the server stub produced by the rpcgen  protocol compiler. 

Note:   If you do this, you might want to comment out calls to RPC library routines and have client-side 

routines call server routines directly.

 

190 Communications Programming Concepts



Chapter  9.  Sockets  

The operating system includes the Berkeley Software Distribution (BSD) interprocess communication (IPC) 

facility known as sockets. Sockets are communication channels that enable unrelated processes to 

exchange data locally and across networks. A single socket is one end point of a two-way communication 

channel. 

This chapter discusses the following topics: 

v   “Sockets Overview” 

v   “Sockets Interface” on page 193 

v   “Socket Subroutines” on page 194 

v   “Socket Header Files” on page 195 

v   “Socket Communication Domains” on page 196 

v   “Socket Addresses” on page 198 

v   “Socket Types and Protocols” on page 201 

v   “Socket Creation” on page 204 

v   “Binding Names to Sockets” on page 204 

v   “Socket Connections” on page 206 

v   “Socket Options” on page 209 

v   “Socket Data Transfer” on page 209 

v   “Socket Shutdown” on page 211 

v   “IP Multicasts” on page 212 

v   “Network Address Translation” on page 213 

v   “Domain Name Resolution” on page 217 

v   “Socket Examples” on page 219 

v   “List of Socket Programming References” on page 247

Sockets Overview 

In the operating system, sockets have the following characteristics: 

v   A socket exists only as long as a process holds a descriptor referring to it. 

v   Sockets are referenced by file descriptors and have qualities similar to those of a character special 

device. Read, write, and select operations can be performed on sockets by using the appropriate 

subroutines. 

v   Sockets can be created in pairs, given names, or used to rendezvous with other sockets in a 

communication domain, accepting connections from these sockets or exchanging messages with them.

Critical Attributes 

Sockets share certain critical attributes that no other IPC mechanisms feature: 

v   Provide a two-way communication path. 

v   Include a socket type and one or more associated processes. 

v   Exist within communication domains. 

v   Do not require a common ancestor to set up the communication.

Application programs request the operating system to create a socket when one is needed. The operating 

system returns an integer that the application program uses to reference the newly created socket. Unlike 

 

© Copyright IBM Corp. 1994, 2007 191



file descriptors, the operating system can create sockets without binding them to a specific destination 

address. The application program can choose to supply a destination address each time it uses the 

socket. 

Sockets Background 

Sockets were developed in response to the need for sophisticated interprocess facilities to meet the 

following goals: 

v   Provide access to communications networks such as the Internet. 

v   Enable communication between unrelated processes residing locally on a single host computer and 

residing remotely on multiple host machines.

Sockets provide a sufficiently general interface to allow network-based applications to be constructed 

independently of the underlying communication facilities. They also support the construction of distributed 

programs built on top of communication primitives. 

Note:   The socket subroutines serve as the application program interface for Transmission Control 

Protocol/Internet Protocol (TCP/IP). 

Socket Facilities 

Socket subroutines and network library subroutines provide the building blocks for IPC. An application 

program must perform the following basic functions to conduct IPC through the socket layer: 

v   Create and name sockets. 

v   Accept and make socket connections. 

v   Send and receive data. 

v   Shut down socket operations. 

v   Translate network addresses.

Creating and Naming Sockets 

A socket is created with the socket  subroutine. This subroutine creates a socket of a specified domain, 

type, and protocol. Sockets have different qualities depending on these specifications. A communication  

domain  indicates the protocol families to be used with the created socket. The socket  type  defines its 

communication properties such as reliability, ordering, and prevention of duplication of messages. Some 

protocol families have multiple protocols that support one type of service. To supply a protocol in the 

creation of a socket, the programmer must understand the protocol family well enough to know the type of 

service each protocol supplies. 

An application can bind a name to a socket. The socket names used by most applications are readable 

strings. However, the name for a socket that is used within a communication domain is usually a low-level 

address. The form and meaning of socket addresses are dependent on the communication domain in 

which the socket is created. The socket name is specified by a sockaddr  structure (see “Socket Address 

Data Structures” on page 195). 

Accepting and Making Socket Connections 

Sockets can be connected or unconnected. Unconnected sockets are produced by the socket  subroutine. 

An unconnected socket can yield a connected socket pair by: 

v   Actively connecting to another socket 

v   Becoming associated with a name in the communication domain and accepting a connection from 

another socket

Other types of sockets, such as datagram sockets, need not establish connections before use. 

 

192 Communications Programming Concepts



Transferring Data 

Sockets include a variety of calls for sending and receiving data. The usual read  and write  subroutines 

can be used on sockets that are in a connected state. Additional socket subroutines permit callers to 

specify or receive the address of the peer socket. These calls are useful for connectionless sockets, in 

which the peer sockets can vary on each message transmitted or received. The sendmsg  and recvmsg  

subroutines support the full interface to the IPC facilities. Besides offering scatter-gather operations, these 

calls allow an address to be specified or received and support flag options. 

Shutting Down Socket Operations 

Once sockets are no longer of use they can be closed or shut down using the shutdown  or close  

subroutine. 

Translating Network Addresses 

Application programs need to locate and construct network addresses when conducting the interprocess 

communication. The socket facilities include subroutines to: 

v   Map addresses to host names and back 

v   Map network names to numbers and back 

v   Extract network, host, service, and protocol names 

v   Convert between varying length byte quantities 

v   Resolve domain names

Sockets Interface 

The kernel structure consists of three layers: the socket layer, the protocol layer, and the device layer. The 

socket  layer  supplies the interface between the subroutines and lower layers, the protocol  layer  contains 

the protocol modules used for communication, and the device  layer  contains the device drivers that control 

the network devices. Protocols and drivers are dynamically loadable. The Socket Label figure (Figure 29) 

illustrates the relationship between the layers. 

 

 Processes communicate using the client and server model. In this model, a server process, one end point 

of a two-way communication path, listens to a socket. The client process, the other end of the 

communication path, communicates to the server process over another socket. The client process can be 

on another machine. The kernel maintains internal connections and routes data from client to server. 

Client Process

Socket Layer

IP

Device Layer Network
Driver

Protocol Layer
TCP

Server Process

IP

Network
Driver

TCP

Socket Layer

Device Layer

Protocol Layer

 Network

Socket Label

  

Figure  29.  Socket  Label.  This  diagram  shows  the  client  process  on the  left  with  the  socket  layer  beneath  it, and  the  

protocol  layer  and  device  layer  below.  The  protocol  layer  is between  the other  two  layers.  Corresponding  layers  are  

below  the server  process  on the  right.  A U-shaped  dashed  line  representing  the  network  runs  through  all six  layers  

and  connects  the server  and  client  processes.  Along  this  line  are  network  drivers  in the  device  layers  and  TCP/IP,  

which  is in the  protocol  layers.

 

Chapter 9. Sockets 193



Within the socket layer, the socket data structure is the focus of activity. The system-call interface 

subroutines manage the activities related to a subroutine, collecting the subroutine parameters and 

converting program data into the format expected by second-level subroutines. 

Most of the socket facilities are implemented within second-level subroutines. These second-level 

subroutines directly manipulate socket data structures and manage the synchronization between 

asynchronous activities. 

Socket Interface to Network Facilities 

The socket interprocess communication (IPC) facilities, illustrated by the Operating System Layer 

Examples figure (Figure 30), are layered on top of networking facilities. Data flows from an application 

program through the socket layer to the networking support. A protocol-related state is maintained in 

auxiliary data structures that are specific to the supporting protocols. The socket level passes responsibility 

for storage associated with transmitted data to the network level. 

 

 Some of the communication domains supported by the socket IPC facility provide access to network 

protocols. These protocols are implemented as a separate software layer logically below the socket 

software in the kernel. The kernel provides ancillary services, such as buffer management, message 

routing, standardized interfaces to the protocols, and interfaces to the network interface drivers for the use 

of the various network protocols. 

User request and control output subroutines serve as the interface from the socket subroutines to the 

communication protocols. 

Note:   Socket error codes issued for network communication errors are defined as codes 57 through 81 

and are in the /usr/include/sys/errno.h  file. 

Socket Subroutines 

Socket subroutines enable interprocess and network interprocess communications (IPC). Some socket 

routines are grouped together as the Socket Kernel Service subroutines (see “Kernel Service Subroutines” 

on page 247). 

Note:   Do not call any Socket Kernel Service subroutines from kernel extensions. 

The socket subroutines still maintained in the libc.a  library are grouped together under the heading of 

Network Library Subroutines (see “Network Library Subroutines” on page 248). Application programs can 

use both types of socket subroutines for IPC. 

10M-bit EthernetNetwork Interfaces

TCP/IP Protocols

Stream Socket

Network Protocols

Socket Layer

Operating System Layer Examples

  

Figure  30.  Operating  System  Layer  Examples.  This  diagram  shows  three  layers  on the  left as  follows  from  the  top:  

socket  layer, network  protocols,  and  network  interfaces.  The  three  layers  on the  right  are  as follows  from  the  top: 

stream  socket,  TCP/IP  protocols,  and  10M-bit  Ethernet.  Data  flows  both  ways  between  layers  of the  same  level  (for 

example,  between  the  socket  layer  and  the  stream  socket).

 

194 Communications Programming Concepts



Socket Header Files 

Socket header files contain data definitions, structures, constants, macros, and options used by socket 

subroutines. An application program must include the appropriate header file to make use of structures or 

other information a particular socket subroutine requires. Commonly used socket header files are: 

 /usr/include/netinet/in.h  Defines Internet constants and structures. 

/usr/include/arpa/nameser.h  Contains Internet name server information. 

/usr/include/netdb.h  Contains data definitions for socket subroutines. 

/usr/include/resolv.h  Contains resolver global definitions and variables. 

/usr/include/sys/socket.h  Contains data definitions and socket structures. 

/usr/include/sys/socketvar.h  Defines the kernel structure per socket and contains buffer 

queues. 

/usr/include/sys/types.h  Contains data type definitions. 

/usr/include/sys/un.h  Defines structures for the UNIX interprocess communication 

domain. 

/usr/include/sys/ndd_var.h  Defines structures for the operating system Network Device 

Driver (NDD) domain. 

/usr/include/sys/atmsock.h  Contains constants and structures for the Asynchronous 

Transfer Mode (ATM) protocol in the operating system NDD 

domain.
  

In addition to commonly used socket header files, Internet address translation subroutines require the 

inclusion of the inet.h  file. The inet.h  file is located in the /usr/include/arpa  directory. 

Socket Address Data Structures 

The socket data structure defines the socket. During a socket subroutine, the system dynamically creates 

the socket data structure. The socket address is specified by a data structure that is defined in a header 

file. See the sockaddr Structure figure (Figure 31) for an illustration of this data structure. 

 

 The /usr/include/sys/socket.h  file contains the sockaddr  structure. The contents of the sa_data  structure 

depend on the protocol in use. 

The types of socket-address data structures are as follows: 

 struct  sockaddr_in  Defines sockets used for machine-to-machine communication across a network 

and interprocess communication (IPC). The /usr/include/netinet/in.h  file 

contains the sockaddr_in  structure. 

struct  sockaddr_un  Defines UNIX domain sockets used for local IPC only. These sockets require 

complete path name specification and do not traverse networks. The 

/usr/include/sys/un.h  file contains the sockaddr_un  structure. 

struct  sockaddr_ndd  Defines the operating system NDD sockets used for machine-to-machine 

communication across a physical network. The /usr/include/sys/ndd_var.h  file 

contains the sockaddr_ndd  structure. Depending upon socket types and 

protocol, other header files may need to be included.

len socket address_data

2 bytes variable size

Family

sockaddr Structure

  

Figure  31.  sockaddr  Structure.  This  diagram  shows  the  sockaddr  structure  containing  the  following  from  the left:  len,  

family, and  socket  address_data.  The  second  line  of the diagram  gives  the size  of the  sections  in the  first  line  as 

follows:  len  and  family  together  equal  2 bytes,  socket  address_data  is a variable  size.

 

Chapter 9. Sockets 195



Socket Communication Domains 

Sockets that share common communication properties, such as naming conventions and protocol address 

formats, are grouped into communication  domains. A communication domain is sometimes referred to as 

name or address space. 

The communication domain includes the following: 

v   Rules for manipulating and interpreting names 

v   Collection of related address formats that comprise an address family 

v   Set of protocols, called the protocol family

Communication domains also consist of two categories, socket types and descriptors. Socket types include 

stream, datagram, sequenced packet, raw, and connection-oriented datagram. 

Address Formats 

An address format indicates what set of rules was used in creating network addresses of a particular 

format. For example, in the Internet communication domain, a host address is a 32-bit value that is 

encoded using one of four rules based on the type of network on which the host resides. 

Each communication domain has different rules for valid socket names and interpretation of names. After a 

socket is created, it can be given a name according to the rules of the communication domain in which it 

was created. For example, in the UNIX communication domain, sockets are named with operating system 

path names. A socket can be named /dev/foo. Sockets normally exchange data only with sockets in the 

same communication domain. 

Address Families 

The socket  subroutine takes an address family as a parameter. Specifying an address family indicates to 

the system how to interpret supplied addresses. The /usr/include/sys/socket.h  and /usr/include/sys/
socketvar.h  files define the address families. 

A socket subroutine that takes an address family (AF) as a parameter can use AF_UNIX  (UNIX), AF_INET  

(Internet), AF_NS  (Xerox Network Systems), or AF_NDD  (Network Device Drivers of the operating sytem) 

protocol. These address families are part of the following communication domains: 

 UNIX  Provides socket communication between processes running on the same operating system when an 

address family of AF_UNIX  is specified. A socket name in the UNIX domain is a string of ASCII 

characters whose maximum length depends on the machine in use. 

Internet  Provides socket communication between a local process and a process running on a remote host 

when an address family of AF_INET  is specified. The Internet domain requires that Transmission 

Control Protocol/Internet Protocol (TCP/IP) be installed on your system. A socket name in the Internet 

domain is an Internet address, made up of a 32-bit IP address and a 16-bit port address. 

NDD  Provides socket communication between a local process and a process running on a remote host 

when an address family of AF_NDD  is specified. The NDD domain enables applications to run 

directly on top of physical networks. This is in contrast to the Internet domain, in which applications 

run on top of transport protocols such as TCP, or User Datagram Protocol (UDP). A socket name in 

the NDD domain consists of operating system NDD name and a second part that is protocol 

dependent.
  

Communication domains are described by a domain data structure that is loadable. Communication 

protocols within a domain are described by a structure that is defined within the system for each protocol 

implementation configured. When a request is made to create a socket, the system uses the name of the 

communication domain to search linearly the list of configured domains. If the domain is found, the 

 

196 Communications Programming Concepts



domain’s table of supported protocols is consulted for a protocol appropriate for the type of socket being 

created or for a specific protocol request. (A wildcard entry may exist for a raw domain.) Should multiple 

protocol entries satisfy the request, the first is selected. 

UNIX Domain Properties 

Characteristics of the UNIX domain are: 

 Types of sockets  In the UNIX domain, the SOCK_STREAM  socket type provides pipe-like facilities, while the 

SOCK_DGRAM  and SOCK_SEQPACKET  socket types usually provide reliable message-style 

communications. 

Naming  Socket names are strings and appear in the file system name space through portals.
  

Passing  File  Descriptors  

In the Unix system it is possible to pass an open file between processes in a couple of ways: 

1.   From a parent to a child by opening it in the parent and then either fork or exec another process. This 

has obvious shortcomings. 

2.   Between any processes using a Unix domain socket, as described below. This is a more general 

technique.

Passing a file descriptor from one process to another means taking an open file in the sending process 

and generating another pointer to the file table entry in the receiving process. To pass a file descriptor 

from any arbitrary process to another, it is necessary for the processes to be connected with a Unix 

domain socket (a socket whose family type is AF_UNIX). Thereafter, one can pass a descriptor from the 

sending process by using the sendmsg() system call to the receiving process, which must perform the 

recvmsg() system call. These two system calls are the only ones supporting the concept of ″access rights″ 

which is how descriptors are passed. 

Basically “access rights” imply that the owning process has acquired the rights to the corresponding 

system resource by opening it. This right is then passed by this process (the sending process) to a 

receiving process using the aforesaid system calls. Typically, file descriptors are passed through the 

access rights mechanism. 

The msghdr  structure in sys/socket.h  contains the following field: 

 caddr_t  msg_accrights  access rights sent/received
  

The file descriptor is passed through this field of the message header, which is used as a parameter in the 

corresponding sendmsg() system call. 

Internet Domain Properties 

Characteristics of the Internet domain are: 

 Socket  types  and  protocols  The SOCK_STREAM  socket type is supported by the Internet TCP protocol; the 

SOCK_DGRAM  socket type, by the UDP protocol. Each is layered atop the 

transport-level IP. The Internet Control Message Protocol (ICMP) is implemented atop 

or beside IP and is accessible through a raw socket. 

Naming  Sockets in the Internet domain have names composed of a 32-bit Internet address 

and a 16-bit port number. Options can be used to provide IP source routing or 

security options. The 32-bit address is composed of network and host parts; the 

network part is variable in size and is frequency encoded. The host part can be 

interpreted optionally as a subnet field plus the host on a subnet; this is enabled by 

setting a network address mask. 

 

Chapter 9. Sockets 197



Raw  access  The Internet domain allows a program with root-user authority access to the raw 

facilities of IP. These interfaces are modeled as SOCK_RAW  sockets. Each raw 

socket is associated with one IP protocol number and receives all traffic for that 

protocol. This allows administrative and debugging functions to occur and enables 

user-level implementations of special-purpose protocols such as inter-gateway routing 

protocols.
  

The Operating System Network Device Driver (NDD) Domain Properties 

Characteristics of the operating system NDD domain are: 

 Socket  types  and  protocols  The SOCK_DGRAM  socket type is supported by the connectionless datagram 

protocols. These include Ethernet, token ring, Fiber Distributed Data Interface (FDDI), 

and FCS protocols. This socket type allows applications to send and receive 

datagrams directly over these media types. The SOCK_CONN_DGRAM  socket type 

is supported by connection-oriented datagram protocols. Currently, Asynchronous 

Transfer Mode (ATM) is the only protocol defined for this socket type. This socket 

type has the property of connection-oriented, unreliable, message delivery service. 

Naming  Sockets in the NDD domain have names composed of the operating system NDD 

name and a second part that is protocol dependent. For example, for ATM, this part 

contains a 20-byte destination address and subaddress.
  

Socket Addresses 

Sockets can be named with an address so that processes can connect to them. The socket layer treats an 

address as an opaque object. Applications supply and receive addresses as tagged, variable-length byte 

strings. Addresses always reside in a memory buffer (mbuf) on entry to the socket layer. A data structure 

called a sockaddr  (see “Socket Address Data Structures” on page 195) can be used as a template for 

referring to the identifying tag of each socket address. 

Each address-family implementation includes subroutines for address family-specific operations. When 

addresses must be manipulated (for example, to compare them for equality) a pointer to the address (a 

sockaddr  structure) is used to extract the address family tag. This tag is then used to identify the 

subroutine to invoke the desired operation. 

Socket Address Storage 

Addresses passed by an application program commonly reside in mbufs only long enough for the socket 

layer to pass them to the supporting protocol for transfer into a fixed-sized address structure. This occurs, 

for example, when a protocol records an address in a protocol control block. The sockaddr  structure is 

the common means by which the socket layer and network-support facilities exchange addresses. The 

size of the generic data array was chosen to be large enough to hold most addresses directly. 

Communications domains that support larger addresses may ignore the array size (see “Socket 

Communication Domains” on page 196). 

v   The UNIX communication domain stores file-system path names in mbufs and allows socket names as 

large as 108 bytes. 

v   The Internet communication domain uses a structure that combines an Internet address and a port 

number. The Internet protocols reserve space for addresses in an Internet control-block data structure 

and free up mbufs that contain addresses after copying their contents.

Socket Addresses in TCP/IP 

Transmission Control Protocol/Internet Protocol (Chapter 11, “Transmission Control Protocol/Internet 

Protocol,” on page 295) provides a set of 16-bit port numbers within each host. Because each host 

assigns port numbers independently, it is possible for ports on different hosts to have the same port 

 

198 Communications Programming Concepts



number. TCP/IP creates the socket  address  as an identifier that is unique throughout all Internet networks. 

TCP/IP concatenates the Internet address of the local host interface with the port number to devise the 

Internet socket address. 

With TCP/IP, sockets are not tied to a destination address. Applications sending messages can specify a 

different destination address for each datagram, if necessary, or they can tie the socket to a specific 

destination address for the duration of the connection (see SOCK_DGRAM in “Socket Types” on page 

201). 

Because the Internet address is always unique to a particular host on a network, the socket address for a 

particular socket on a particular host is unique. Additionally, because each connection is fully specified by 

the pair of sockets it joins, every connection between Internet hosts is also uniquely identified. 

The port numbers up to 255 are reserved for official Internet services. Port numbers in the range of 

256-1023 are reserved for other well-known services that are common on Internet networks. When a client 

process needs one of these well-known services at a particular host, the client process sends a service 

request to the socket address for the well-known port at the host. 

If a process on the host is listening at the well-known port, the server process either services the request 

using the well-known port or transfers the connection to another port that is temporarily assigned for the 

duration of the connection to the client. Using temporarily-assigned (or secondary) ports frees the 

well-known port and allows the host well-known port to handle additional requests concurrently. 

The port numbers for well-known ports are listed in the /etc/services  file. The port numbers above 1023 

are generally used by processes that need a temporary port after an initial service request has been 

received. These port numbers are generated randomly and used on a first-come, first-served basis. 

Socket Addresses in the Operating System Network Device Driver 

(NDD) 

In the operating system NDD domain, socket addresses contain the NDD name, which associates the 

socket with the local device (or adapter). Socket addresses also contain a protocol-dependent part. 

Typically, applications use the bind  subroutine to bind a socket to a particular local device and 802.2 

service access point (SAP). The information used to bind to a particular NDD and packet type are 

specified in the NDD socket address passed into the bind  subroutine. After the socket is bound, it can be 

used to receive packets for the bound SAP addressed to the local host’s medium access control (MAC) 

address (or the broadcast address) for that device. Raw packets can be transmitted using the send, 

sendto, and sendmsg  socket subroutines. 

The protocol-dependent parts of the operating system NDD socket address structure are defined as 

follows: 

 Ethernet  The Ethernet NDD sockaddr  is defined in the sys/ndd_var.h  file. The sockaddr  structure name 

is sockaddr_ndd_8022. This sockaddr  allows you to bind to an Ethernet type number or an 

802.2 SAP number. When bound to a particular type or SAP, a socket can be used to receive 

packets of that type or SAP. Packets to be transmitted must be complete Ethernet packets that 

include the MAC and logical link control (LLC) headers. 

Token Ring  The token-ring NDD sockaddr  is defined in the sys/ndd_var.h  file. The sockaddr  structure 

name is sockaddr_ndd_8022. This sockaddr  allows you to bind to an 802.2 SAP number. When 

bound to a particular type or SAP, a socket can be used to receive packets of that type or SAP. 

Packets to be transmitted must be complete token ring packets that include the MAC and LLC 

headers. 

 

Chapter 9. Sockets 199



FDDI  The Fiber Distributed Data Interface (FDDI) NDD sockaddr  is defined in the sys/ndd_var.h  file. 

The sockaddr  structure name is sockaddr_ndd_8022. This sockaddr  allows you to bind to an 

802.2 SAP number. When bound to a particular type or SAP, a socket can be used to receive 

packets of that type or SAP. Packets to be transmitted must be complete FDDI packets that 

include the MAC and LLC headers. 

FCS  The FCS NDD sockaddr  is defined in the sys/ndd_var.h  file. The sockaddr  structure name is 

sockaddr_ndd_8022. This sockaddr  allows you to bind to an 802.2 SAP number. When bound 

to a type or SAP, a socket can be used to receive packets of that type or SAP. Packets to be 

transmitted must be complete FCS packets that include the MAC and LLC headers. 

ATM Defined in the sockaddr_ndd_atm  structure in the /sys/atmsock.h  file. The sndd_atm_vc_type 

field specifies CONN_PVC  or CONN_SVC, for Asynchronous Transfer Mode (ATM) permanent 

virtual circuit (PVC) and ATM switched virtual circuit (SVC), respectively. For ATM PVCs, the first 

four octets of the sndd_atm_addr field contain the virtual path identifier:virtual channel identifier 

(VPI:VCI) for a virtual circuit. For ATM SVCs, the sndd_atm_addr field contains the 20-octet ATM 

address, and the sndd_atm_subaddr field contains the 20-octet ATM subaddress, if applicable.
  

NDD protocols of the operating system that support 802.2 LLC encapsulation use the 

sockaddr_ndd_8022  structure for defining the NDD and 802.2 SAP to be used for input filtering. 

Currently, the only NDD protocol that does not use this structure is ATM. The sockaddr_ndd_8022  

structure contains the following fields: 

 sndd_8022_len  Contains the socket address length. 

sndd_8022_family  Contains the socket address family (for example, 

AF_NDD). 

sndd_8022_nddname[NDD_MAXNAMELEN]  Contains the NDD device name for the Ethernet 

device (for example, ent0). 

sndd_8022_filterlen  Contains the size of the remaining fields that define 

the input filter. For 802.2 encapsulated protocols, 

this is the size of struct  ns_8022. 

 

200 Communications Programming Concepts



sndd_8022_ns  Contains the filter structure and allows the 

application to specify the types of packets to be 

received by this socket. This structure contains the 

following fields: 

filtertype  

Contains the type of filter. This includes 

802.2 LCC, 802.2 Logical Link 

Control/Sub-Network Access Protocol 

(LLC/SNAP), as well as standard Ethernet. 

A special ″wildcard″ filter type is supported 

that allows ALL packets to be received. 

This type, NS_TAP, and all standard filter 

types are defined in the sys/ndd_var.h  file. 

dsap  For 802.2 LLC filters, this specifies the SAP 

used for filtering incoming packets. The 

application ″binds″ to this SAP and then 

receives packets addressed to this SAP, for 

example, 0xaa  for 802.2 LLC/SNAP 

encapsulations. 

orgcode[3]  

For 802.2 LLC filters, this specifies the 

organization code. 

ethertype  

For 802.2 LLC SNAP and standard 

Ethernet filter types, this field specifies the 

ethertype. An example is 0x800  for IP over 

Ethernet and IP over 802.2 LLC/SNAP 

encapsulations.
  

Socket Types  and Protocols 

Socket subroutines take socket types and socket protocols as parameters. An application program 

specifying a socket type indicates the desired communication style for that socket or socket pair. An 

application program specifying a socket protocol indicates the desired type of service. This service must 

be within the allowable services of the protocol family. 

Socket Types  

Sockets are classified according to communication properties. Processes usually communicate between 

sockets of the same type. However, if the underlying communication protocols support the communication, 

sockets of different types can communicate. 

Each socket has an associated type, which describes the semantics of communications using that socket. 

The socket type determines the socket communication properties such as reliability, ordering, and 

prevention of duplication of messages. The basic set of socket types is defined in the sys/socket.h  file: 

/*Standard  socket  types  */ 

#define   SOCK_STREAM              1 /*virtual  circuit*/  

#define   SOCK_DGRAM               2 /*datagram*/  

#define   SOCK_RAW                 3 /*raw  socket*/  

#define   SOCK_RDM                 4 /*reliably-delivered  message*/  

#define   SOCK_CONN_DGRAM          5 /*connection  datagram*/  

Other socket types can be defined. 

 

Chapter 9. Sockets 201



The operating system supports the following basic set of sockets: 

 SOCK_DGRAM  Provides datagrams, which are connectionless messages of a fixed maximum 

length. This type of socket is generally used for short messages, such as a name 

server or time server, because the order and reliability of message delivery is not 

guaranteed. 

In the UNIX domain, the SOCK_DGRAM  socket type is similar to a message 

queue. In the Internet domain, the SOCK_DGRAM  socket type is implemented on 

the User Datagram Protocol/Internet Protocol (UDP/IP) protocol. 

A datagram  socket supports the bidirectional flow of data, which is not sequenced, 

reliable, or unduplicated. A process receiving messages on a datagram socket may 

find messages duplicated or in an order different than the order sent. Record 

boundaries in data, however, are preserved. Datagram sockets closely model the 

facilities found in many contemporary packet-switched networks. 

SOCK_STREAM  Provides sequenced, two-way byte streams with a transmission mechanism for 

stream data. This socket type transmits data on a reliable basis, in order, and with 

out-of-band capabilities. 

In the UNIX domain, the SOCK_STREAM  socket type works like a pipe. In the 

Internet domain, the SOCK_STREAM  socket type is implemented on the 

Transmission Control Protocol/Internet Protocol (TCP/IP) protocol. 

A stream  socket provides for the bidirectional, reliable, sequenced, and 

unduplicated flow of data without record boundaries. Aside from the bidirectionality 

of data flow, a pair of connected stream sockets provides an interface nearly 

identical to pipes. 

SOCK_RAW  Provides access to internal network protocols and interfaces. This type of socket is 

available only to users with root-user authority, or to non-root users who have the 

CAP_NUMA_ATTACH  capability. (For non-root raw socket access, the chuser 

command assigns the CAP_NUMA_ATTACH  capability, along with 

CAP_PROPAGATE. For further information, refer to the chuser command.) 

Raw sockets allow an application to have direct access to lower-level 

communication protocols. Raw sockets are intended for advanced users who want 

to take advantage of some protocol feature that is not directly accessible through a 

normal interface, or who want to build new protocols on top of existing low-level 

protocols. 

Raw sockets are normally datagram-oriented, though their exact characteristics are 

dependent on the interface provided by the protocol. 

SOCK_SEQPACKET  Provides sequenced, reliable, and unduplicated flow of information. 

SOCK_CONN_DGRAM  Provides connection-oriented datagram service. This type of socket supports the 

bidirectional flow of data, which is sequenced and unduplicated, but is not reliable. 

Because this is a connection-oriented service, the socket must be connected prior 

to data transfer. Currently, only the Asynchronous Transfer Mode (ATM) protocol in 

the Network Device Driver (NDD) domain supports this socket type.
  

The SOCK_DGRAM  and SOCK_RAW  socket types allow an application program to send datagrams to 

correspondents named in send  subroutines. Application programs can receive datagrams through sockets 

using the recv  subroutines. The Protocol  parameter is important when using the SOCK_RAW  socket type 

to communicate with low-level protocols or hardware interfaces. The application program must specify the 

address family in which the communication takes place. 

The SOCK_STREAM  socket types are full-duplex byte streams. A stream socket must be connected 

before any data can be sent or received on it. When using a stream socket for data transfer, an application 

program needs to perform the following sequence: 

1.   Create a connection to another socket with the connect  subroutine. 

 

202 Communications Programming Concepts



2.   Use the read  and write  subroutines or the send  and recv  subroutines to transfer data. 

3.   Use the close  subroutine to finish the session.

An application program can use the send  and recv  subroutines to manage out-of-band data. 

SOCK_STREAM  communication protocols are designed to prevent the loss or duplication of data. If a 

piece of data for which the peer protocol has buffer space cannot be successfully transmitted within a 

reasonable period of time, the connection is broken. When this occurs, the socket  subroutine indicates an 

error with a return value of -1 and the errno  global variable is set to ETIMEDOUT. If a process sends on a 

broken stream, a SIGPIPE  signal is raised. Processes that cannot handle the signal terminate. When 

out-of-band data arrives on a socket, a SIGURG  signal is sent to the process group. 

The process group associated with a socket can be read or set by either the SIOCGPGRP  or 

SIOCSPGRP  ioctl operation. To receive a signal on any data, use both the SIOCSPGRP  and FIOASYNC  

ioctl operations. These operations are defined in the sys/ioctl.h  file. 

Socket Protocols 

A protocol  is a standard set of rules for transferring data, such as UDP/IP and TCP/IP. An application 

program can specify a protocol only if more than one protocol is supported for this particular socket type in 

this domain. 

Each socket can have a specific protocol associated with it. This protocol is used within the domain to 

provide the semantics required by the socket type. Not all socket types are supported by each domain; 

support depends on the existence and implementation of a suitable protocol within the domain. 

The /usr/include/sys/socket.h  file contains a list of socket protocol families. The following list provides 

examples of protocol families (PF) found in the socket  header file: 

 PF_UNIX  Local communication 

PF_INET  Internet (TCP/IP) 

PF_NDD  The operating system NDD
  

These protocols are defined to be the same as their corresponding address families in the socket  header 

file. Before specifying a protocol family, the programmer should check the socket  header file for currently 

supported protocol families. Each protocol family consists of a set of protocols. Major protocols in the suite 

of Internet Network Protocols include: 

v   TCP 

v   UDP 

v   IP 

v   Internet Control Message Protocol (ICMP)

Read more about these protocols in ″Internet Transport-Level Protocols″ in Networks  and  communication  

management. 

Reliable Datagram Sockets over Infiniband 

Reliable Datagram Sockets (RDS) is a connectionless protocol that provides an in-order and no-duplicate 

service over Infiniband. RDS exposes the User Datagram Protocol (UDP) subset of the socket API. 

RDS is part of the AF_BYPASS  domain that is used for protocols that bypass the kernel network. 

Creating an RDS socket 

To create and RDS socket, invoke the socket() system call by adding the following lines to the application 

program: 

 

Chapter 9. Sockets 203



#include  <sys/bypass.h>  

sock  = socket  (AF_BYPASS,  SOCK_SEQPACKET,BYPASSPROTO_RDS);  

If the BYPASSPROTO_RDS  protocol is the only reliable datagram protocol supported in the AF_BYPASS  

family, you can also invoke the socket() system call as follows: 

#include  <sys/bypass.h>  

sock  = socket  (AF_BYPASS,  SOCK_SEQPACKET,0);  

RDS also supports the following system calls: 

v   sendmsg() 

v   recvmsg() 

v   close()

For more information about creating a socket subroutine, see socket Subroutine in AIX  5L  Version  5.3  

Technical  Reference:  Communications  Volume  2. 

Socket Creation 

The basis for communication between processes centers on the socket mechanism. The socket is 

comparable to the operating system file-access mechanism that provides an end point for communication. 

Application programs request the operating system to create a socket through the use of socket 

subroutines. Subroutines used to create sockets are: 

v   socket  

v   socketpair  

When an application program requests the creation of a new socket, the operating system returns an 

integer that the application program uses to reference the newly created socket. The socket descriptor is 

an unsigned integer that is the lowest unused number usable for a descriptor. The descriptor is indexed to 

the kernel descriptor table. A process can obtain a socket descriptor table by creating a socket or inheriting 

one from a parent process. 

To create a socket with the socket  subroutine, the application program must include a communication 

domain and a socket type. Also, it may include a specific communication protocol within the specified 

communication domain. 

For additional information about creating sockets, read the following concepts: 

v   “Socket Header Files” on page 195 

v   “Socket Connections” on page 206

Binding Names to Sockets 

The socket  subroutine creates a socket without a name. An unnamed socket is one without any 

association to local or destination addresses. Until a name is bound to a socket, processes have no way 

to reference it and consequently, no message can be received on it. 

Communicating processes are bound by an association. The bind  subroutine allows a process to specify 

half of an association: local address, local port, or local path name. The connect  and accept  subroutines 

are used to complete a socket’s association. Each domain association can have a different composite of 

addresses. The domain associations are as follows: 

 Internet  domain  Produces an association composed of local and foreign addresses and local and 

foreign ports. 

UNIX  domain  Produces an association composed of local and foreign path names. 

 

204 Communications Programming Concepts



NDD  domain  (Network Device Driver of the operating system) Provides an association composed of 

local device name (operating system NDD name) and foreign addresses, the form of 

which depends on the protocol being used.
  

An application program may not care about the local address it uses and may allow the protocol software 

to select one. This is not true for server processes. Server processes that operate at a well-known port 

need to be able to specify that port to the system. 

In most domains, associations must be unique. Internet domain associations must never include duplicate 

protocol, local address, local port, foreign address, or foreign port tuples. 

UNIX domain sockets need not always be bound to a name, but when bound can never include duplicate 

protocol, local path name, or foreign path name tuples. The path names cannot refer to files already on 

the system. 

The bind  subroutine accepts the Socket, Name, and NameLength  parameters. The Socket  parameter is 

the integer descriptor of the socket to be bound. The Name  parameter specifies the local address, and the 

NameLength  parameter indicates the length of address in bytes. The local address is defined by a data 

structure termed sockaddr  (see “Socket Address Data Structures” on page 195). 

In the Internet domain, a process does not have to bind an address and port number to a socket, because 

the connect  and send  subroutines automatically bind an appropriate address if they are used with an 

unbound socket. 

In the NDD domain, a process must bind a local NDD name to a socket. 

The bound name is a variable-length byte string that is interpreted by the supporting protocols. Its 

interpretation can vary from communication domain to communication domain (this is one of the properties 

of the domain). In the Internet domain, a name contains an Internet address, a length, and a port number. 

In the UNIX domain, a name contains a path name, a length, and an address family, which is always 

AF_UNIX. 

Binding Addresses to Sockets 

Binding addresses to sockets in the Internet domain demands a number of considerations. Port numbers 

are allocated out of separate spaces, one for each system and one for each domain on that system. 

Note:   Because the association is created in two steps, the association uniqueness requirement indicated 

previously could be violated unless care is taken. Further, user programs do not always know 

proper values to use for the local address and local port because a host can reside on multiple 

networks, and the set of allocated port numbers is not directly accessible to a user. 

Wildcard addressing is provided to aid local address binding in the Internet domain. When an address is 

specified as INADDR_ANY  (a constant defined in the netinet/in.h  file), the system interprets the address 

as any valid address. 

Sockets with wildcard local addresses may receive messages directed to the specified port number and 

sent to any of the possible addresses assigned to a host. If a server process wished to connect only hosts 

on a given network, it would bind the address of the hosts on the appropriate network. 

A local port can be specified or left unspecified (denoted by 0), in which case the system selects an 

appropriate port number for it. 

 

Chapter 9. Sockets 205



The restriction on allocating ports was done to allow processes executing in a secure environment to 

perform authentication based on the originating address and port number. For example, the rlogin(1)  

command allows users to log in across a network without being asked for a password, if two conditions 

hold: 

v   The name of the system the user is logging in from is located in the /etc/hosts.equiv  file on the system 

that the user is trying to log in to (or the system name and the user name are in the user’s .rhosts  file 

in the user’s home directory). 

v   The user’s login process is coming from a privileged port on the machine from which the user is logging 

in.

The port number and network address of the machine from which the user is logging in can be determined 

either by the From  parameter result of the accept  subroutine, or from the getpeername  subroutine. 

In certain cases, the algorithm used by the system in selecting port numbers is unsuitable for an 

application program. This is because associations are created in a two-step process. For example, the 

Internet File Transfer Protocol (FTP) specifies that data connections must always originate from the same 

local port. However, duplicate associations are avoided by connecting to different foreign ports. In this 

situation, the system disallows binding the same local address and port number to a socket if a previous 

data connection socket still exists. To override the default port selection algorithm, a setsockopt  

subroutine must be performed before address binding. 

The socket  subroutine creates a socket without any association to local or destination addresses. For the 

Internet protocols, this means no local protocol port number has been assigned. In many cases, 

application programs do not care about the local address they use and are willing to allow the protocol 

software to choose one for them. However, server processes that operate at a well-known port must be 

able to specify that port to the system. Once a socket has been created, a server uses the bind  

subroutine to establish a local address for it. 

Not all possible bindings are valid. For example, the caller might request a local protocol port that is 

already in use by another program, or it might request an invalid local Internet address. In such cases, the 

bind  subroutine is unsuccessful and returns an error message. 

Obtaining Socket Addresses 

New sockets sometimes inherit the set of open sockets that created them. The sockets program interface 

includes subroutines that allow an application to obtain the address of the destination to which a socket 

connects and the local address of a socket. The following socket subroutines allow a program to retrieve 

socket addresses: 

v   getsockname  

v   getpeername  

For additional information that you might need before binding or obtaining socket addresses, read the 

following concepts: 

v   “Socket Header Files” on page 195 

v   “Socket Addresses” on page 198 

v   “Socket Connections”

Socket Connections 

Initially, a socket is created in the unconnected state, meaning the socket is not associated with any 

foreign destination. The connect  subroutine binds a permanent destination to a socket, placing it in the 

connected state. An application program must call the connect  subroutine to establish a connection before 

it can transfer data through a reliable stream socket. Sockets used with connectionless datagram services 

need not be connected before they are used, but connecting sockets makes it possible to transfer data 

without specifying the destination each time. 

 

206 Communications Programming Concepts



The semantics of the connect  subroutine depend on the underlying protocols. An application program 

desiring reliable stream delivery service in the Internet family should select the Transmission Control 

Protocol (TCP). In such cases, the connect  subroutine builds a TCP connection with the destination and 

returns an error if it cannot. In the case of connectionless services, the connect  subroutine does nothing 

more than store the destination address locally. Similarly, application programs desiring 

connection-oriented datagram service in the operating system Network Device Driver (NDD) family should 

select the Asynchronous Transfer Mode (ATM) protocol. Connection in the ATM protocol establishes a 

permanent virtual circuit (PVC) or switched virtual circuit (SVC). For PVCs, the local station is set up, and 

there is no network activity. For SVCs, the virtual circuit is set up end-to-end in the network with the 

remote station. 

Connections are established between a client process and a server process. In a connection-oriented 

network environment, a client  process initiates a connection and a server  process receives, or responds 

to, a connection. The client and server interactions occur as follows: 

v   The server, when willing to offer its advertised services, binds a socket to a well-known address 

associated with the service, and then passively listens on its socket. It is then possible for an unrelated 

process to rendezvous with the server. 

v   The server process socket is marked to indicate incoming connections are to be accepted on it. 

v   The client requests services from the server by initiating a connection to the server’s socket. The client 

process uses a connect  subroutine to initiate a socket connection. 

v   If the client process’ socket is unbound at the time of the connect  call, the system automatically selects 

and binds a name to the socket if necessary. This is the usual way that local addresses are bound to a 

socket. 

v   The system returns an error if the connection fails (any name automatically bound by the system, 

however, remains). Otherwise, the socket is associated with the server and data transfer can begin.

Server Connections 

In the Internet domain, the server process creates a socket, binds it to a well-known protocol port, and 

waits for requests. If the server process uses a reliable stream delivery or the computing response takes a 

significant amount of time, it may be that a new request arrives before the server finishes responding to an 

old request. The listen  subroutine allows server processes to prepare a socket for incoming connections. 

In terms of underlying protocols, the listen  subroutine puts the socket in a passive mode ready to accept 

connections. When the server process starts the listen  subroutine, it also informs the operating system 

that the protocol software should queue multiple simultaneous requests that arrive at a socket. The listen  

subroutine includes a parameter that allows a process to specify the length of the request queue for that 

socket. If the queue is full when a connection request arrives, the operating system refuses the connection 

by discarding the request. The listen  subroutine applies only to sockets that have selected reliable stream 

delivery or connection-oriented datagram service. 

A server process uses the socket, bind, and listen  subroutines to create a socket, bind it to a well-known 

protocol address, and specify a queue length for connection requests. Invoking the bind  subroutine 

associates the socket with a well-known protocol port, but the socket is not connected to a specific foreign 

destination. The server process may specify a wildcard allowing the socket to receive a connection request 

from an arbitrary client. 

All of this applies to the connection-oriented datagram service in the NDD domain, except that the server 

process binds the locally created socket to the operating system NDD name and specifies ATM B-LLI  and 

B-HLI  parameters before calling the listen  subroutine. If only B-LLI  is specified, all incoming calls (or 

connections), regardless of the B-HLI  value, will be passed to this application. 

After a socket has been set up, the server process needs to wait for a connection. The server process 

waits for a connection by using the accept  subroutine. A call to the accept  subroutine blocks until a 

connection request arrives. When a request arrives, the operating system returns the address of the client 

process that has placed the request. The operating system also creates a new socket that has its 

 

Chapter 9. Sockets 207



destination connected to the requesting client process and returns the new socket descriptor to the calling 

server process. The original socket still has a wildcard foreign destination that remains open. 

When a connection arrives, the call to the accept  subroutine returns. The server process can either 

handle requests interactively or concurrently. In the interactive approach, the server handles the request 

itself, closes the new socket, and then starts the accept  subroutine to obtain the next connection request. 

In the concurrent approach, after the call to the accept  subroutine returns, the server process forks a new 

process to handle the request. The new process inherits a copy of the new socket, proceeds to service the 

request, and then exits. The original server process must close its copy of the new socket and then invoke 

the accept  subroutine to obtain the next connection request. 

If a select  call is made on a file descriptor of a socket waiting to perform an accept  subroutine on the 

connection, when the ready message is returned it does not mean that data is there, only that the request 

was successfully completed. Now it is possible to start the select  subroutine on the returned socket 

descriptor to see if data is available for a conversation on the message socket. 

The concurrent design for server processes results in multiple processes using the same local protocol 

port number. In TCP-style communication, a pair of end points define a connection. Thus, it does not 

matter how many processes use a given local protocol port number as long as they connect to different 

destinations. In the case of a concurrent server, there is one process per client and one additional process 

that accepts connections. The main server process has a wildcard for the destination, allowing it to 

connect with an arbitrary foreign site. Each remaining process has a specific foreign destination. When a 

TCP data segment arrives, it is sent to the socket connected to the segment’s source. If no such socket 

exists, the segment is sent to the socket that has a wildcard for its foreign destination. Furthermore, 

because the socket with a wildcard foreign destination does not have an open connection, it only honors 

TCP segments that request a new connection. 

Connectionless Datagram Services 

The operating system provides support for connectionless interactions typical of the datagram facilities 

found in packet-switched networks. A datagram socket provides a symmetric interface to data exchange. 

Although processes are still likely to be client and server, there is no requirement for connection 

establishment. Instead, each message includes the destination address. 

An application program can create datagram sockets using the socket  subroutine. In the Internet domain, 

if a particular local address is needed, a bind  subroutine must precede the first data transmission. 

Otherwise, the operating system sets the local address or port when data is first sent. In the NDD domain, 

bind must precede the first data transmission. The application program uses the sendto  and recvfrom  

subroutines to transmit data; these calls include parameters that allow the client process to specify the 

address of the intended recipient of the data. 

In addition to the sendto  and recvfrom  calls, datagram sockets can also use the connect  subroutine to 

associate a socket with a specific destination address. In this case, any data sent on the socket is 

automatically addressed to the connected peer socket, and only data received from that peer is delivered 

to the client process. Only one connected address is permitted for each socket at one time; a second 

connect  subroutine changes the destination address. 

A connect  subroutine request on a datagram socket results in the operating system recording the peer 

socket’s address (as compared to a stream socket, where a connect request initiates establishment of an 

end-to-end connection). The accept  and listen  subroutines are not used with datagram sockets. 

While a datagram socket is connected, errors from recent send  subroutines can be returned 

asynchronously. These errors can be reported on subsequent operations on the socket, or a special 

socket option, SO_ERROR. This option, when used with the getsockopt  subroutine, can be used to 

interrogate the error status. A select  subroutine for reading or writing returns true when a process receives 

an error indication. The next operation returns the error, and the error status is cleared. 

 

208 Communications Programming Concepts



Read the following concepts for more information that you might need before connecting sockets: 

v   “Socket Header Files” on page 195 

v   “Socket Types and Protocols” on page 201

Socket Options 

In addition to binding a socket to a local address or connecting it to a destination address, application 

programs need a method to control the socket. For example, when using protocols that use time out and 

retransmission, the application program may want to obtain or set the time-out parameters. An application 

program may also want to control the allocation of buffer space, determine if the socket allows 

transmission of broadcast, or control processing of out-of-band data (see “Out-of-Band Data” on page 

210). The ioctl-style getsockopt  and setsockopt  subroutines provide the means to control socket 

operations. The getsockopt  subroutine allows an application program to request information about socket 

options. The setsockopt  subroutine allows an application program to set a socket option using the same 

set of values obtained with the getsockopt  subroutine. Not all socket options apply to all sockets. The 

options that can be set depend on the current state of the socket and the underlying protocol being used. 

For additional information that you might need when obtaining or setting socket options, read the following 

concepts: 

v   “Socket Header Files” on page 195 

v   “Socket Types and Protocols” on page 201 

v   “Out-of-Band Data” on page 210 

v   “IP Multicasts” on page 212

Socket Data Transfer 

Most of the work performed by the socket layer is in sending and receiving data. The socket layer itself 

explicitly refrains from imposing any structure on data transmitted or received through sockets. Any data 

interpretation or structuring is logically isolated in the implementation of the communication domain. 

Once a connection is established between sockets, an application program can send and receive data. 

Sending and receiving data can be done with any one of several subroutines. The subroutines vary 

according to the amount of information to be transmitted and received and the state of the socket being 

used to perform the operation. 

v   The write  subroutine can be used with a socket that is in a connected state, as the destination of the 

data is implicitly specified by the connection. 

v   The sendto  and sendmsg  subroutines allow the process to specify the destination for a message 

explicitly. 

v   The read  subroutine allows a process to receive data on a connected socket without receiving the 

sender’s address. 

v   The recvfrom  and recvmsg  subroutines allow the process to retrieve the incoming message and the 

sender’s address. 

The applicability of the above subroutines varies from domain to domain and from protocol to protocol. 

Although the send  and recv  subroutines are virtually identical to the read  and write  subroutines, the extra 

flags  argument in the send  and recv  subroutines is important. The flags, defined in the sys/socket.h  file, 

can be defined as a nonzero value if the application program requires one or more of the following: 

 MSG_OOB  Sends or receives out-of-band data. 

MSG_PEEK  Looks at data without reading. 

MSG_DONTROUTE  Sends data without routing packets. 

MSG_MPEG2  Sends MPEG2  video data blocks.
 

 

Chapter 9. Sockets 209



Out-of-band data is specific to stream sockets. The option to have data sent without routing applied to the 

outgoing packets is currently used only by the routing table management process, and is unlikely to be of 

interest to the casual user. The ability to preview data is, however, of general interest. When the 

MSG_PEEK  flag is specified with a recv  subroutine, any data present is returned to the user, but treated 

as still unread. That is, the next read  or recv  subroutine applied to the socket returns the data previously 

previewed. 

Out-of-Band Data 

The stream socket abstraction includes the concept of out-of-band  data. Out-of-band (OOB) data is a 

logically independent transmission channel associated with each pair of connected stream sockets. 

Out-of-band data can be delivered to the socket independently of the normal receive queue or within the 

receive queue depending upon the status of the SO_OOBINLINE  socket-level option. The abstraction 

defines that the out-of-band data facilities must support the reliable delivery of at least one out-of-band 

message at a time. This message must contain at least one byte of data, and at least one message can 

be pending delivery to the user at any one time. 

For communication protocols that support only in-band signaling (that is, the urgent data is delivered in 

sequence with the normal data), the operating system normally extracts the data from the normal data 

stream and stores it separately. This allows users to choose between receiving the urgent data in order 

and receiving it out of sequence without having to buffer all the intervening data. 

It is possible to peek at out-of-band data. If the socket has a process group, a SIGURG  signal is 

generated when the protocol is notified of out-of-band data. A process can set the process group or 

process ID to be informed by the SIGURG  signal through a SIOCSPGRP  ioctl call. 

Note:   The /usr/include/sys/ioctl.h  file contains the ioctl definitions and structures for use with socket ioctl 

calls. 

If multiple sockets have out-of-band data awaiting delivery, an application program can use a select  

subroutine for exceptional conditions to determine those sockets with such data pending. Neither the 

signal nor the select indicates the actual arrival of the out-of-band data, but only notification that is 

pending. 

In addition to the information passed, a logical mark is placed in the data stream to indicate the point at 

which the out-of-band data was sent. When a signal flushes any pending output, all data up to the mark in 

the data stream is discarded. 

To send an out-of-band message, the MSG_OOB  flag is supplied to a send  or sendto  subroutine. To 

receive out-of-band data, an application program must set the MSG_OOB  flag when performing a 

recvfrom  or recv  subroutine. 

An application program can determine if the read pointer is currently pointing at the logical mark in the 

data stream, by using the SIOCATMARK  ioctl call. 

A process can also read or peek at the out-of-band data without first reading up to the logical mark. This is 

more difficult when the underlying protocol delivers the urgent data in-band with the normal data, and only 

sends notification of its presence ahead of time (that is, the TCP protocol used to implement streams in 

the Internet domain). With such protocols, the out-of-band byte may not have arrived when a recv  

subroutine is performed with the MSG_OOB  flag. In that case, the call will return an EWOULDBLOCK  

error code. There may be enough in-band data in the input buffer that normal flow control prevents the 

peer from sending the urgent data until the buffer is cleared. The process must then read enough of the 

queued data that the urgent data can be delivered. 

Certain programs that use multiple bytes of urgent data and must handle multiple urgent signals need to 

retain the position of urgent data within the stream. The socket-level option, SO_OOINLINE  provides the 

 

210 Communications Programming Concepts



capability. With this option, the position of the urgent data (the logical mark) is retained. The urgent data 

immediately follows the mark within the normal data stream that is returned without the MSG_OOB  flag. 

Reception of multiple urgent indications causes the mark to move, but no out-of-band data is lost. 

Socket I/O Modes 

Sockets can be set to either blocking or nonblocking I/O mode. The FIONBIO  ioctl operation is used to 

determine this mode. When the FIONBIO  ioctl is set, the socket is marked nonblocking. If a read is tried 

and the desired data is not available, the socket does not wait for the data to become available, but 

returns immediately with the EWOULDBLOCK  error code. 

Note:   The EWOULDBLOCK  error code is defined with the _BSD  define and is equivalent to the EAGAIN  

error code. 

When the FIONBIO  ioctl is not set, the socket is in blocking mode. In this mode, if a read is tried and the 

desired data is not available, the calling process waits for the data. Similarly, when writing, if FIONBIO  is 

set and the output queue is full, an attempt to write causes the process to return immediately with an error 

code of EWOULDBLOCK. 

When performing nonblocking I/O on sockets, a program must check for the EWOULDBLOCK  error code 

(stored in the errno  global variable). This occurs when an operation would normally block, but the socket it 

was performed on is marked as nonblocking. The following socket subroutines return a EWOULDBLOCK  

error code: 

v   accept  

v   send  

v   recv  

v   read  

v   write

Processes using these subroutines should be prepared to deal with the EWOULDBLOCK  error code. For 

a nonblocking socket, the connect  subroutine returns an EINPROGRESS  error code. 

If an operation such as a send  operation cannot be done completely, but partial writes are permissible (for 

example when using a stream socket), the data that can be sent immediately is processed, and the return 

value indicates the amount actually sent. 

Socket Shutdown 

Once a socket is no longer required, the calling program can discard the socket by applying a close  

subroutine to the socket descriptor. If a reliable delivery socket has data associated with it when a close 

takes place, the system continues to attempt data transfer. However, if the data is still undelivered, the 

system discards the data. Should the application program have no use for any pending data, it can use 

the shutdown  subroutine on the socket prior to closing it. 

Closing Sockets 

Closing a socket and reclaiming its resources is not always a straightforward operation. In certain 

situations, such as when a process exits, a close  subroutine is never expected to be unsuccessful. 

However, when a socket promising reliable delivery of data is closed with data still queued for transmission 

or awaiting acknowledgment of reception, the socket must attempt to transmit the data. If the socket 

discards the queued data to allow the close  subroutine to complete successfully, it violates its promise to 

deliver data reliably. Discarding data can cause naive processes, which depend upon the implicit 

semantics of the close  call, to work unreliably in a network environment. However, if sockets block until all 

data has been transmitted successfully, in some communication domains a close  subroutine may never 

complete. 

 

Chapter 9. Sockets 211



The socket layer compromises in an effort to address this problem and maintain the semantics of the 

close  subroutine. In normal operation, closing a socket causes any queued but unaccepted connections to 

be discarded. If the socket is in a connected state, a disconnect is initiated. The socket is marked to 

indicate that a file descriptor is no longer referencing it, and the close operation returns successfully. When 

the disconnect request completes, the network support notifies the socket layer, and the socket resources 

are reclaimed. The network layer may attempt to transmit any data queued in the socket’s send buffer, 

although this is not guaranteed. 

Alternatively, a socket may be marked explicitly to force the application program to linger when closing 

until pending data are flushed and the connection has shutdown. This option is marked in the socket data 

structure using the setsockopt  subroutine with the SO_LINGER  option. The setsockopt  subroutine, using 

the linger  option, takes a linger  structure. When an application program indicates that a socket is to 

linger, it also specifies a duration for the lingering period. If the lingering period expires before the 

disconnect is completed, the socket layer forcibly shuts down the socket, discarding any data still pending. 

IP Multicasts 

The use of IP multicasting enables a message to be transmitted to a group of hosts, instead of having to 

address and send the message to each group member individually. Internet addressing provides for Class 

D addressing that is used for multicasting. 

When a datagram socket is defined, the setsockopt  subroutine can be modified. To join or leave a 

multicast group, use the setsockopt  subroutine with the IP_ADD_MEMBERSHIP  or 

IP_DROP_MEMBERSHIP  flags. The interface that is used and the group used are specified in an 

ip_mreq  structure that contains the following fields: 

struct  ip_mreq{  

   struct  in_addr  imr.imr_interface.s_addr;  

   struct  in_addr  imr.imr_multiaddr.s_addr;  

} 

The in_addr  structure is defined as: 

struct  in_addr{  

  ulong  s_addr;  

} 

In order to send to a multicasting group it is not necessary to join the groups. For receiving transmissions 

sent to a multicasting group, membership is required. For multicast sending, use an IP_MULTICAST_IF  

flag with the setsockopt  subroutine. This specifies the interface to be used. It may be necessary to call 

the setsockopt  subroutine with the IP_MULTICAST_LOOP  flag in order to control the loopback of 

multicast packets. By default, packets are delivered to all members of the multicast group including the 

sender, if it is a member. However, this can be disabled with the setsockopt  subroutine using the 

IP_MULTICAST_LOOP  flag. 

The setsockopt  subroutine flags that are required for multicast communication and used with the 

IPPROTO_IP  protocol level follow: 

 IP_ADD_MEMBERSHIP  Joins a multicast group as specified in the OptionValue  parameter of type struct  

ip_mreq. A maximum of 20 groups may be joined per socket. 

IP_DROP_MEMBERSHIP  Leaves a multicast group as specified in the OptionValue  parameter of type 

struct  ip_mreq. Only allowable for processes with a user ID (UID) value of zero. 

IP_MULTICAST_IF  Permits sending of multicast messages on an interface as specified in the 

OptionValue  parameter of type struct  ip_addr. An address of INADDR_ANY  

(0x000000000) removes the previous selection of an interface in the multicast 

options. If no interface is specified then the interface leading to the default route 

is used. 

 

212 Communications Programming Concepts



IP_MULTICAST_LOOP  Sets multicast loopback, determining whether or not transmitted messages are 

delivered to the sending host. An OptionValue  parameter of type char  is used to 

control loopback being on or off. 

IP_MULTICAST_TTL  Sets the time-to-live (TTL) for multicast packets. An OptionValue  parameter of 

type char  is used to set this value between 0 and 255.
  

The following examples demonstrate the use of the setsockopt  function with the protocol level set to 

Internet Protocol (IPPROTO_IP). 

To mark a socket for sending to a multicast group on a particular interface: 

struct  ip_mreq  imr;  

setsockopt(s,  IPPROTO_IP,  IP_MULTICAST_IF,  &imr.imr_interface.s_addr,  sizeof(struct  in_addr));  

To disable the loopback on a socket: 

char  loop  = 0;  

setsockopt(s,  IPPROTO_IP,  IP_MULTICAST_LOOP,  &loop,  sizeof(char));  

To allow address reuse for binding multiple multicast applications to the same IP group address: 

int  on = 1; 

setsockopt(s,  SOL_SOCKET,  SO_REUSEADDR,  &on,  sizeof(int));  

To join a multicast group for receiving: 

struct  ip_mreq  imr;  

setsockopt(s,  IPPROTO_IP,  IP_ADD_MEMBERSHIP,  &imr,  sizeof(struct  ip_mreq));  

To leave a multicast group: 

struct  ip_mreq  imr;  

setsockopt(s,  IPPROTO_IP,  IP_DROP_MEMBERSHIP,  &imr,  sizeof(struct  ip_mreq));  

The getsockopt  function can also be used with the multicast flags to obtain information about a particular 

socket. 

 IP_MULTICAST_IF  Retrieves the interface’s IP address. 

IP_MULTICAST_LOOP  Retrieves the specified looping mode from the multicast options. 

IP_MULTICAST_TTL  Retrieves the time-to-live in the multicast options.
  

Network Address Translation 

Network library subroutines enable an application program to locate and construct network addresses 

while using interprocess communication facilities in a distributed environment. 

Locating a service on a remote host requires many levels of mapping before client and server can 

communicate. A network service is assigned a name that is intended to be understandable for a user; such 

as ″the login server on host prospero.″ This name and the name of the peer host must then be translated 

into network addresses. Finally, the address must then be used to determine a physical location and route 

to the service. 

Network library subroutines map: 

v   Host names to network addresses 

v   Network names to network numbers 

v   Protocol names to protocol numbers 

v   Service names to port numbers

 

Chapter 9. Sockets 213



Additional network library subroutines exist to simplify the manipulation of names and addresses. 

An application program must include the netdb.h  file when using any of the network library subroutines. 

Note:   All networking services return values in standard network byte order. 

Name Resolution 

The process of obtaining an Internet address from a host name is known as name resolution and is done 

by the gethostbyname  subroutine. The process of translating an Internet address into a host name is 

known as reverse name resolution and is done by the gethostbyaddr  subroutine. 

When a process receives a symbolic host name and needs to resolve it into an address, it calls a resolver 

routine. 

Resolver routines on hosts running TCP/IP attempt to resolve names using the following sources: 

v   BIND/DNS (domain name server, named) 

v   Network Information Service (NIS) 

v   Local /etc/hosts  file

To resolve a name in a domain network, the resolver routine first queries the domain name server 

database, which may be local if the host is a domain name server or may be on a foreign host. Name 

servers translate domain names into Internet addresses. The group of names for which a name server is 

responsible is its zone of authority. If the resolver routine is using a remote name server, the routine uses 

the Domain Name Protocol (DOMAIN) to query for the mapping. To resolve a name in a flat network, the 

resolver routine checks for an entry in the local /etc/hosts  file. When NIS is used, the /etc/hosts  file on 

the master server is checked. 

By default, resolver routines attempt to resolve names using the above resources. BIND/DNS will be tried 

first. If the /etc/resolv.conf  file does not exist or if BIND/DNS could not find the name, NIS is queried if it 

is running. If NIS is not running, then the local /etc/hosts  file is searched. If none of these services could 

find the name then the resolver routines return with HOST_NOT_FOUND. If all of the services were unavailable, 

then the resolver routines return with SERVICE_UNAVAILABLE. 

The default order can be overwritten by creating the configuration file, /etc/netsvc.conf  and specifying the 

desired order. Both the default and /etc/netsvc.conf  can be overwritten with the environment variable 

NSORDER. If either the /etc/netsvc.conf  file or environment variable NSORDER  are defined, then at least 

one value must be specified along with the option. 

To specify host ordering with the /etc/netsvc.conf  file: 

hosts  = value,value,value 

where value  is one of the listed sources. 

To specify host ordering with the NSORDER  environment variable: 

NSORDER=value,value,value 

The order is specifed on one line with values separated by commas. White spaces are permitted between 

the commas and the equal sign. The values specified and their ordering depends on the network 

configuration. For example, if the local network is organized as a flat network, then only the /etc/hosts  file 

is needed. 

The etc/netsvc.conf  file would contain the following line: 

hosts=local  

 

214 Communications Programming Concepts



The NSORDER  environment variable would be set as: 

NSORDER=local  

If the local network is a domain network using a name server for name resolution and an /etc/hosts  file for 

backup, then both services should be specified. 

The etc/netsvc.conf  file would contain the following line: 

hosts=bind,local  

The NSORDER  environment variable would be set as: 

NSORDER=bind,local  

Note:   The values listed must be in lowercase. 

The first source in the list will be tried. The algorithm will try another specified service if the: 

v   current service is not running, therefore, it is unavailable 

v   current service could not find the name and is not authoritative.

If the /etc/resolv.conf  file does not exist, then BIND/DNS is considered to be not set up or running and 

therefore not available. If the subroutines, getdomainname  and yp_bind  fail, then it is assumed that the 

NIS service is not set up or running and therefore not available. If the /etc/hosts  file could not be opened, 

then a local search is impossible and therefore the file and service are unavailable. 

A service listed as authoritative  means that it is the expert of its successors and should have the 

information requested. (The other services may contain only a subset of the information in the authoritative 

service.) Name resolution will end after trying a service listed as authoritative even if it does not find the 

name. If an authoritative service is not available, then the next service specified will be queried, otherwise 

the resolver routine will return with HOST_NOT_FOUND. 

An authoritative service is specified with the string =auth  directly behind a value. The entire word 

authoritative  can be typed in, but only the auth  will be used. For example, the /etc/netsvc.conf  file 

could contain the following line: 

hosts  = nis=auth,bind,local  

If NIS is running, then search is ended after the NIS query regardless of whether the name was found. If 

NIS is not running, then the next source is queried, which is BIND. 

TCP/IP name servers use caching to reduce the cost of searching for names of hosts on remote networks. 

Instead of searching anew for a host name each time a request is made, a name server looks at its cache 

to see if the host name was resolved recently. Because domain and host names do change, each item 

remains in the cache for a limited length of time specified by the record’s time to live (TTL). In this way, 

authorities can specify how long they expect the name resolution to be accurate. 

In a DOMAIN name server environment, the host name set using the hostname  command from the 

command line or in the rc.net  file format must be the official name of the host as returned by the name 

server. Generally, this name is the full domain name of the host in the form: 

host.subdomain.subdomain.rootdomain  

If the host name is not set up as a fully qualified domain name, and if the system is set up to use a 

DOMAIN name server in conjunction with the sendmail  program, the sendmail  configuration file 

(/etc/sendmail.cf) must be edited to reflect this official host name. In addition, the domain name macros in 

this configuration file must be set for the sendmail  program to operate correctly. 

Note:   The domain specified in the /etc/sendmail.cf  file takes precedence over the domain set by the 

hostname  command for all sendmail  functions.

 

Chapter 9. Sockets 215



For a host that is in a domain network but is not a name server, the local domain name and domain name 

server are specified in the /etc/resolv.conf  file. In a domain name server host, the local domain and other 

name servers are defined in files read by the named daemon when it starts. 

Host Names 

The following related network library subroutines map Internet host names to addresses: 

v   gethostbyaddr  

v   gethostbyname  

v   sethostent  

v   endhostent

The official name of the host and its public aliases are returned by the gethostbyaddr  and 

gethostbyname  subroutines, along with the address family and a null-terminated list of variable length 

addresses. The list of variable length addresses is required because it is possible for a host to have many 

addresses with the same name. 

The database for these calls is provided either by the /etc/hosts  file or by use of a named  name server. 

Because of the differences in the databases and their access protocols, the information returned may 

differ. When using the host table version of the gethostbyname  subroutine, only one address is returned, 

but all listed aliases are included. The name server version may return alternate addresses but does not 

provide any aliases other than the one given as a parameter value. 

Network Names 

Related network library subroutines to map network names to numbers and network numbers to names 

are: 

v   getnetbyaddr  

v   getnetbyname  

v   getnetent  

v   setnetent  

v   endnetent

The getnetbyaddr, getnetbyname, and getnetent  subroutines extract their information from the 

/etc/networks  file. 

Protocol Names 

Related network library subroutines to map protocol names are: 

v   getprotobynumber  

v   getprotobyname  

v   getprotoent  

v   setprotoent  

v   endprotoent

The getprotobynumber, getprotobyname, and getprotoent  subroutines extract their information from the 

/etc/protocols  file. 

Service Names 

Related network library subroutines to map service names to port numbers are: 

v   getservbyname  

v   getservbyport  

v   getservent  

 

216 Communications Programming Concepts



v   setservent  

v   endservent

A service is expected to reside at a specific port and employ a particular communication protocol. The 

expectation is consistent within the Internet domain, but inconsistent within other network architectures. 

Further, a service can reside on multiple ports. If a service resides on multiple ports, the higher level 

library subroutines must be bypassed or extended. Services available are contained in the /etc/services  

file. 

Network Byte-Order Translation 

Related network library subroutines to convert network address byte order are: 

v   htonl  

v   htons  

v   ntohl  

v   ntohs

Internet Address Translation 

Related network library subroutines to convert Internet addresses and dotted decimal notation are: 

v   inet_addr  

v   inet_lnaof  

v   inet_makeaddr  

v   inet_netof  

v   inet_network  

v   inet_ntoa

Network Host and Domain Names 

The hostid  parameter is an integer that identifies the host machine. Host IDs fall under the category of 

Internet network addressing because, by convention, the 32-bit Internet address is used. The socket 

subroutines that manage the host ID are: 

v   gethostid  

v   sethostid

Socket subroutines to manage the internal host name are: 

v   gethostname  

v   sethostname

When a site obtains authority for part of the domain name space, it invents a string that identifies its piece 

of the space and uses that string as the name of the domain. To manage the domain name, applications 

can use the following socket subroutines: 

v   getdomainname  

v   setdomainname

Domain Name Resolution 

When a process receives a symbolic name and needs to resolve it into an address, it calls a resolver 

subroutine. The method used by the set of resolver subroutines to resolve names depends on the local 

host configuration. In addition, the organization of the network determines how a resolver subroutine 

communicates with remote name server hosts (the hosts that resolve names for other hosts). See TCP/IP 

name resolution in Networks  and  communication  management  for more information on name resolution. 

 

Chapter 9. Sockets 217



A resolver subroutine determines which type of network it is dealing with by determining whether the 

/etc/resolv.conf  file exists. If the file exists, a resolver subroutine assumes that the local network has a 

name server. Otherwise, it assumes that no name server is present. 

To resolve a name with no name server present, a resolver subroutine checks the /etc/hosts  file for an 

entry that maps the name to an address. 

To resolve a name in a name server network, a resolver subroutine first queries the domain name server 

(DNS) database, which may be local host (if the host is a domain name server) or a foreign host. If the 

subroutine is using a remote name server, the subroutine uses the Domain Name Protocol (DOMAIN) to 

query for the mapping (see Domain Name Protocol in Networks  and  communication  management). If this 

query is unsuccessful, the subroutine then checks for an entry in the local /etc/hosts  file. 

The resolver subroutines are used to make, send, and interpret packets for name servers in the Internet 

domain. Together, the following resolver subroutines form the set of functions that resolve domain names: 

v   res_init  

v   res_mkquery  

v   res_search  

v   res_query  

v   res_send  

v   dn_comp  

v   dn_expand  

v   getshort  

v   getlong  

v   putshort  

v   putlong

Note:   The res_send  subroutine does not perform interactive queries and expects the name server to 

handle recursion. 

Global information used by these resolver subroutines is kept in the _res  structure. This structure is 

defined in the /usr/include/resolv.h  file and contains the following members: 

 Member  Contents  

int  Denotes the retrans field. 

int  Denotes the retry field. 

long  Denotes the options field. 

int  Denotes the nscount field. 

struct  Denotes the sockaddr_in and nsaddr_list [MAXNS] fields. 

ushort  Denotes the ID field. 

char  Denotes the defdname [MAXDNAME] field. 

#define  Denotes the nsaddr nsaddr_list [0] field.
  

The options field of the _res  structure is constructed by logically ORing the following values: 

 RES_INIT  Indicates whether the initial name server and default domain name have been initialized 

(that is, whether the res_init  subroutine has been called). 

RES_DEBUG  Prints debugging messages. 

RES_USEVC  Uses Transmission Control Protocol/Internet Protocol (TCP/IP) connections for queries 

instead of User Datagram Protocol/Internet Protocol (UDP/IP). 

RES_STAYOPEN  Used with the RES_USEVC  value, keeps the TCP/IP connection open between queries. 

Although UDP/IP is the mode normally used, TCP/IP mode and this option are useful for 

programs that regularly perform many queries. 

 

218 Communications Programming Concepts



RES_RECURSE  Sets the Recursion Desired bit for queries. This is the default. 

RES_DEFNAMES  Appends the default domain name to single-label queries. This is the default.
  

Three environment variables affect values related to the _res  structure: 

 LOCALDOMAIN  Overrides the default local domain, which is read from the /etc/resolv.conf  file and stored 

in the defdname field of the _res  structure. 

RES_TIMEOUT  Overrides the default value of the retrans field of the _res  structure, which is the value of 

the RES_TIMEOUT  constant defined in the /usr/include/resolv.h  file. This value is the 

base time-out period in seconds between queries to the name servers. After each failed 

attempt, the time-out period is doubled. The time-out period is divided by the number of 

name servers defined. The minimum time-out period is 1 second. 

RES_RETRY  Overrides the default value for the retry field of the _res  structure, which is 4. This value is 

the number of times the resolver tries to query the name servers before giving up. Setting 

RES_RETRY  to 0 prevents the resolver from querying the name servers.
  

Socket Examples 

The socket examples are programming fragments that illustrate a socket function. They cannot be used in 

an application program without modification. They are intended only for illustrative purposes and are not 

for use within a program. 

v   “Socketpair Communication Example” 

v   “Reading Internet Datagrams Example Program” on page 220 

v   “Sending Internet Datagrams Example Program” on page 221 

v   “Reading UNIX Datagrams Example Program” on page 222 

v   “Sending UNIX Datagrams Example Program” on page 222 

v   “Initiating Internet Stream Connections Example Program” on page 223 

v   “Accepting Internet Stream Connections Example Program” on page 224 

v   “Checking for Pending Connections Example Program” on page 225 

v   “Initiating UNIX Stream Connections Example Program” on page 226 

v   “Accepting UNIX Stream Connections Example Program” on page 227 

v   “Sending Data on an ATM Socket PVC Client Example Program” on page 228 

v   “Receiving Data on an ATM Socket PVC Server Example Program” on page 229 

v   “Sending Data on an ATM Socket Rate-Enforced SVC Client Example Program” on page 230 

v   “Receiving Data on an ATM Socket Rate-Enforced SVC Server Example Program” on page 234 

v   “Sending Data on an ATM Socket SVC Client Example Program” on page 236 

v   “Receiving Data on an ATM Socket SVC Server Example Program” on page 239 

v   “Receiving Packets Over Ethernet Example Program” on page 242 

v   “Sending Packets Over Ethernet Example Program” on page 244 

v   “Analyzing Packets Over the Network Example Program” on page 246

Note:   All socket applications must be compiled with _BSD  set to a specific value. Acceptable values are 

43 and 44. In addition, most applications should probably include the Berkeley Software Distribution 

(BSD) libbsd.a  library. 

Socketpair Communication Example 

/*  This  program  fragment  creates  a pair  of  connected  sockets  then  

 * forks  and  communicates  over  them.   Socket  pairs  have  a two-way  

 * communication  path.   Messages  can  be sent  in both  directions.  

 */ 

 

Chapter 9. Sockets 219



#include  <stdio.h>  

#include  <sys/socket.h>  

#include  <sys/types.h>  

#define  DATA1  "In  Xanadu,  did  Kublai  Khan..."  

#define  DATA2  "A stately  pleasure  dome  decree..."  

main()  

{ 

   int  sockets[2],  child;  

   char  buf[1024];  

   if  (socketpair(AF_UNIX,  SOCK_STREAM,  0,  sockets)  < 0)  { 

      perror(″opening  stream  socket  pair″); 

      exit(1);  

   } 

   if  ((child  = fork())  ==  -1)  

      perror(″fork″);  

   else  if  (child)  {     /*  This  is  the  parent.  */  

      close(sockets[0]);  

      if  (read(sockets[1],  buf,  1024,  0)  < 0)  

         perror(″reading  stream  message″);  

      printf(″-->%s\n″,  buf);  

      if  (write(sockets[1],  DATA2,  sizeof(DATA2))  < 0)  

         perror(″writing  stream  message″);  

      close(sockets[1]);  

   } else  {     /* This  is the  child.  */ 

      close(sockets[1]);  

      if (write(sockets[0],  DATA1,  sizeof(DATA1))  < 0) 

         perror("writing  stream  message");  

      if (read(sockets[0],  buf,  1024,  0) < 0)  

         perror("reading  stream  message");  

      printf("-->%s\n",  buf);  

      close(sockets[0]);  

   } 

} 

Reading Internet Datagrams Example Program 

/* 

 * This  program  creates  a datagram  socket,  binds  a name  to  it,  and  

 * then  reads  from  the  socket.  

 */ 

#include  <sys/types.h>  

#include  <sys/socket.h>  

#include  <netinet/in.h>  

#include  <stdio.h>  

main()  

{ 

   int  sock,  length;  

   struct  sockaddr_in  name;  

   char  buf[1024];  

   /* Create  a socket  from  which  to read.  */ 

   sock  = socket(AF_INET,  SOCK_DGRAM,  0);  

   if (sock  < 0) { 

      perror("opening  datagram  socket");  

      exit(1);  

   } 

   /* Create  name  with  wildcards.  */ 

   name.sin_family  = AF_INET;  

   name.sin_addr.s_addr  = INADDR_ANY;  

   name.sin_port  = 0;

 

220 Communications Programming Concepts



if (bind(sock,  (struct  sockaddr  *)&name,  sizeof(name)))  { 

      perror("binding  datagram  socket");  

      exit(1);  

   }  

   /*  Find  assigned  port  value  and  print  it  out.  */  

   length  = sizeof(name);  

   if  (getsockname(sock,  (struct  sockaddr  *)&name,  &length))  { 

      perror(″getting  socket  name″); 

      exit(1);  

   } 

   printf("Socket  has  port  #%d\n",  ntohs(name.sin_port));  

   /* Read  from  the  socket.  */ 

   if (read(sock,  buf,  1024)  < 0) 

      perror("receiving  datagram  packet");  

   printf("-->%s\n",  buf);  

   close(sock);  

} 

/*  

 * recvfrom()  can  also  be  used  in  place  of  the  read.   recvfrom()  

 * provides  an  extra  field  for  setting  flags.  

 */  

More explanation is available in “Socket Data Transfer” on page 209. 

Sending Internet Datagrams Example Program 

/*  

 * This  program  fragment  sends  a datagram  to a receiver  whose  

 * name  is retrieved  from  the  command  line  arguments.   The  form   

 * of the  command  line  is dgramsend  hostname  portnumber.  

 */ 

#include  <sys/types.h>  

#include  <sys/socket.h>  

#include  <netinet/in.h>  

#include  <netdb.h>  

#include  <stdio.h>  

#define  DATA  "The  sea  is calm  tonight,  the  tide  is full..."  

main(argc,  argv)  

   int  argc;  

   char  *argv[];  

{ 

   int  sock;  

   struct  sockaddr_in  name;  

   struct  hostent  *hp,  *gethostbyname();  

   /* Create  a socket  on which  to send.  */ 

   sock  = socket(AF_INET,  SOCK_DGRAM,  0);  

   if (sock  < 0) { 

      perror("opening  datagram  socket");  

      exit(1);  

   } 

   /* 

    * Construct  name,  with  no  wildcards,  of the  socket  to  send  to.  

    * gethostbyname()  returns  a structure  including  the  network  

    * address  of the  specified  host.   The  port  number  is taken  

    * from  the  command  line.  

    */ 

   hp = gethostbyname(argv[1]);  

   if (hp  == 0) { 

      fprintf(stderr,  "%s:  unknown  host",  argv[1]);  

      exit(2);  

   }

 

Chapter 9. Sockets 221



bcopy(hp->h_addr,  &name.sin_addr,  hp->h_length);  

   name.sin_family  = AF_INET;  

   name.sin_len  = sizeof(name);  

   name.sin_port  = htons(atoi(argv[2]));  

   /* Send  message.  */ 

   if (sendto(sock,  DATA,  sizeof(DATA),  0, 

       (struct  sockaddr  *)&name,  

       sizeof(name))  < 0) 

      perror("sending  datagram  message");  

   close(sock);  

} 

Reading UNIX Datagrams Example Program 

#include  <sys/types.h>  

#include  <sys/socket.h>  

#include  <sys/un.h>  

#include  <stdio.h>  

#define  NAME  "socket"  

/* 

 * This  program  creates  a UNIX  domain  datagram  socket,  binds  a 

 * name  to it,  then  reads  from  the  socket.  

 */ 

main()  

{ 

   int  sock,  length;  

   struct  sockaddr_un  name;  

   char  buf[1024];  

   /* Create  socket  from  which  to read.  */ 

   sock  = socket(AF_UNIX,  SOCK_DGRAM,  0);  

   if (sock  < 0) { 

      perror("opening  datagram  socket");  

      exit(1);  

   } 

  

 

   /* Create  name.  */ 

   name.sun_family  = AF_UNIX;  

   strcpy(name.sun_path,  NAME);  

   name.sun_len  = strlen(name.sun_path);  

   if (bind(sock,  (struct  sockaddr  *)&name,  SUN_LEN(&name)))  { 

      perror("binding  name  to datagram  socket");  

      exit(1);  

   } 

   

 

   printf("socket  -->%s\n",  NAME);  

   /* Read  from  the  socket.  */ 

   if (read(sock,  buf,  1024)  < 0) 

      perror("receiving  datagram  packet");  

   printf("-->%s\n",  buf);  

   close(sock);  

   unlink(NAME);  

} 

Sending UNIX Datagrams Example Program 

/* 

 * This  program  fragment  sends  a datagram  to a receiver  whose  

 * name  is retrieved  from  the  command  line  arguments.   The  form   

 * of the  command  line  is udgramsend  pathname.  

 */ 

#include  <sys/types.h>  

#include  <sys/socket.h>  

#include  <sys/un.h>  

#include  <stdio.h>  

#define  DATA  "The  sea  is calm  tonight,  the  tide  is full..."

 

222 Communications Programming Concepts



main(argc,  argv)  

   int  argc;  

   char  *argv[];  

{ 

   int  sock;  

   struct  sockaddr_un  name;  

   /* Create  socket  on which  to send.  */ 

   sock  = socket(AF_UNIX,  SOCK_DGRAM,  0);  

   if (sock  < 0) { 

      perror("opening  datagram  socket");  

      exit(1);  

   } 

   /* Construct  name  of socket  to send  to.  */ 

   name.sun_family  = AF_UNIX;  

   strcpy(name.sun_path,  argv[1]);  

   name.sun_len  = strlen(name.sun_path);  

   /* Send  message.  */ 

   if (sendto(sock,  DATA,  sizeof(DATA),  0,  (struct  sockaddr  *)&name,  

       sizeof(struct  sockaddr_un))  < 0) { 

      perror("sending  datagram  message");  

   } 

   close(sock);   

} 

Initiating Internet Stream Connections Example Program 

/*  

 * This  program  creates  a socket  and  initiates  a connection  with  

 * the  socket  given  in the  command  line.  One message  is sent  over  

 * the  connection  and  then  the  socket  is closed,  ending  the  

 * connection.   The  form  of the  command  line  is streamwrite  

 * hostname  portnumber.  

 */ 

#include  <sys/types.h>  

#include  <sys/socket.h>  

#include  <netinet/in.h>  

#include  <netdb.h>  

#include  <stdio.h>  

#define  DATA  "Half  a league,  half  a league..."  

main(argc,  argv)  

   int  argc;  

   char  *argv[];  

{ 

   int  sock;  

   struct  sockaddr_in  server;  

   struct  hostent  *hp,  *gethostbyname();  

   char  buf[1024];  

   /* Create  socket.  */ 

   sock  = socket(AF_INET,  SOCK_STREAM,  0);  

   if (sock  < 0) { 

      perror("opening  stream  socket");  

      exit(1);  

   } 

   /* Connect  socket  using  name  specified  by command  line.  */ 

   server.sin_family  = AF_INET;  

   server.sin_len  = sizeof(server);  

   hp = gethostbyname(argv[1]);  

   if (hp  == 0) { 

      fprintf(stderr,  "%s:  unknown  host",  argv[1]);  

      exit(2);  

   } 

   bcopy(hp->h_addr,  &server.sin_addr,  hp->h_length);  

   server.sin_port  = htons(atoi(argv[2]));  

 

Chapter 9. Sockets 223



if (connect(sock,  (struct  sockaddr  *)&server,  sizeof(server))  < 0) { 

      perror("connecting  stream  socket");  

      exit(1);  

   } 

   if (write(sock,  DATA,  sizeof(DATA))  < 0) 

      perror("writing  on stream  socket");  

   close(sock);  

} 

Accepting Internet Stream Connections Example Program 

/* 

 * This  program  creates  a socket  and  begins  an  infinite  loop.  

 * Each  time  through  the  loop  it accepts  a connection  and  prints  

 * out  messages  from  it.   When  the  connection  breaks,  or a 

 * termination  message  comes  through,  the  program  accepts  a new  

 * connection.  

 */ 

#include  <sys/types.h>  

#include  <sys/socket.h>  

#include  <netinet/in.h>  

#include  <netdb.h>  

#include  <stdio.h>  

#define  TRUE  1 

main()  

{ 

   int  sock,  length;  

   struct  sockaddr_in  server;  

   int  msgsock;  

   char  buf[1024];  

   int  rval;  

   int  i; 

   /* Create  socket.  */ 

   sock  = socket(AF_INET,  SOCK_STREAM,  0);  

   if (sock  < 0) { 

      perror("opening  stream  socket");  

      exit(1);  

   } 

   /* Name  socket  using  wildcards.  */ 

   server.sin_family  = AF_INET;  

   server.sin_len  = sizeof(server);  

   server.sin_addr.s_addr  = INADDR_ANY;  

   server.sin_port  = 0;  

   if (bind(sock,  (struct  sockaddr  *)&server,  sizeof(server)))  { 

      perror("binding  stream  socket");  

      exit(1);  

   } 

   /* Find  out  assigned  port  number  and  print  it out.  */ 

   length  = sizeof(server);  

   if (getsockname(sock,  (struct  sockaddr  *)&server,  &length))  { 

      perror("getting  socket  name");  

      exit(1);  

   } 

   printf("Socket  has  port  #%d\n",  ntohs(server.sin_port));  

   /* Start  accepting  connection.  */ 

   listen(sock,  5);     

      do { 

         msgsock  = accept(sock,  0, 0);  

         if (msgsock  == -1)  perror("accept");  

         else  do { 

            bzero(buf,  sizeof(buf));  

            if ((rval  = read(msgsock,  buf,  1024))  < 0) 

               perror("reading  stream  message");  

            i = 0; 

            if (rval  == 0) 

               printf("Ending  connection\n");

 

224 Communications Programming Concepts



else  

               printf("-->%s\n",  buf);  

      } while  (rval  != 0);  

      close(msgsock);  

   } while  (TRUE);  

   /* 

    * Since  this  program  has  an infinite  loop,  the  socket  "sock"  

    * is  never  explicitly  closed.   However,  all  sockets  will  be  

    * closed  automatically  when  a process  is killed  or terminates  

    * normally.  

    */ 

} 

Checking for Pending Connections Example Program 

This program must be compiled with the -D_BSD  and -lbsd  options. For example, use the 

cc  prog.c  -o  prog  -D_BSD  -lbsd  command. 

/*  

 * This  program  uses  select()  to check  that  someone  is trying  to 

 * connect  before  calling  accept().  

 */ 

#include  <sys/select.h>  

#include  <sys/types.h>  

#include  <sys/socket.h>  

#include  <sys/time.h>  

#include  <netinet/in.h>  

#include  <netdb.h>  

#include  <stdio.h>  

#define  TRUE  1 

main()  

{ 

   int  sock,  length;  

   struct  sockaddr_in  server;  

   int  msgsock;  

   char  buf[1024];  

   int  rval;  

   fd_set  ready;  

   struct  timeval  to;  

   /* Create  socket.  */ 

   sock  = socket(AF_INET,  SOCK_STREAM,  0);  

   if (sock  < 0) { 

      perror("opening  stream  socket");  

      exit(1);  

   } 

   /* Name  socket  using  wildcards.  */ 

   server.sin_family  = AF_INET;  

   server.sin_len  = sizeof(server);  

   server.sin_addr.s_addr  = INADDR_ANY;  

   server.sin_port  = 0; 

   if (bind(sock,  &server,  sizeof(server)))  { 

      perror("binding  stream  socket");  

      exit(1);  

   } 

    

 

   /* Find  out  assigned  port  number  and  print  it out.  */ 

   length  = sizeof(server);  

   if (getsockname(sock,  &server,  &length))  { 

      perror("getting  socket  name");  

      exit(1);  

   } 

   printf("Socket  has  port  #%d\n",  ntohs(server.sin_port));  

  

 

 

Chapter 9. Sockets 225



/* Start  accepting  connections.  */ 

   listen(sock,  5);  

   do { 

      FD_ZERO(&ready);  

      FD_SET(sock,  &ready);  

      to.tv_sec  = 5; 

      to.tv_usec  = 0; 

      if (select(sock  + 1, &ready,  0, 0, &to)  < 0) { 

         perror("select");  

         continue;  

      } 

/* 

 * When  a select  is  done  on  a file  descriptor  of a socket  

 * waiting  to do an accept  on the  connection,  a select  

 * can  be performed  on the  new  descriptor  to insure  availability  

 * of the  data.  

 * 

 * In this  example,  after  accept  returns,   a read  is done,  but  

 * it would  now  be  possible  to select  on the  returned  socket  

 * descriptor  to see  if data  is available.   

 */ 

  if (FD_ISSET(sock,  &ready))  { 

         msgsock  = accept(sock,  (struct  sockaddr  *)0,  (int  *)0);  

         if (msgsock  == -1)  

            perror("accept");  

         else  do { 

            bzero(buf,  sizeof(buf));  

            if ((rval  = read(msgsock,  buf,  1024))  < 0) 

               perror("reading  stream  message");  

            else  if (rval  == 0) 

               printf("Ending  connection\n");  

            else  

               printf("-->%s\n",  buf);  

         } while  (rval  > 0);  

         close(msgsock);  

      } else  

         printf("Do  something  else\n");  

   } while  (TRUE);  

} 

Initiating UNIX Stream Connections Example Program 

/* 

 * This  program  connects  to the  socket  named  in the  command  line  

 * and  sends  a one  line  message  to that  socket.   The  form  of the 

 * command  line  is ustreamwrite  pathname.  

 */ 

#include  <sys/types.h>  

#include  <sys/socket.h>  

#include  <sys/un.h>  

#include  <stdio.h>  

#define  DATA  "Half  a league,  half  a league..."  

main(argc,  argv)  

   int  argc;  

   char  *argv[];  

{ 

   int  sock;  

   struct  sockaddr_un  server;  

   char  buf[1024];  

   /* Create  socket.  */ 

   sock  = socket(AF_UNIX,  SOCK_STREAM,  0);  

   if (sock  < 0) { 

      perror("opening  stream  socket");  

      exit(1);  

   } 

   

 

 

226 Communications Programming Concepts



/* Connect  socket  using  name  specified  by command  line.  */ 

   server.sun_family  = AF_UNIX;  

   strcpy(server.sun_path,  argv[1]);  

   server.sun_len  = strlen(server.sun_path);  

   if (connect(sock,  (struct  sockaddr  *)&server,  

      sizeof(struct  sockaddr_un))  < 0) { 

      close(sock);  

      perror("connecting  stream  socket");  

      exit(1);  

   } 

   if (write(sock,  DATA,  sizeof(DATA))  < 0) 

      perror("writing  on stream  socket");  

} 

Accepting UNIX Stream Connections Example Program 

/*  

 * This  program  creates  a socket  in the  UNIX  domain  and binds  a 

 * name  to it.  After  printing  the  socket’s  name,  a loop  begins.  

 * Each  time  through  the  loop  it accepts  a connection  and prints  

 * out  messages  from  it.   When  the  connection  breaks,  or a 

 * termination  message  comes  through,  the  program  accepts  a new  

 * connection.  

 */ 

#include  <sys/types.h>  

#include  <sys/socket.h>  

#include  <sys/un.h>  

#include  <stdio.h>  

#define  NAME  "socket"  

main()  

{   

   int  sock,  msgsock,  rval;  

   struct  sockaddr_un  server;  

   char  buf[1024];  

   /* Create  socket.  */ 

   sock  = socket(AF_UNIX,  SOCK_STREAM,  0);  

   if (sock  < 0) { 

      perror("opening  stream  socket");  

      exit(1);  

   } 

   /* Name  socket  using  file  system  name.  */ 

   server.sun_family  = AF_UNIX;  

   strcpy(server.sun_path,  NAME);  

   server.sun_len  = strlen(server.sun_path);  

   if (bind(sock,  (struct  sockaddr  *)&server,  SUN_LEN(&server)))  { 

      perror("binding  stream  socket");  

      exit(1);  

   } 

   

 

   printf("Socket  has  name  %s\n",  server.sun_path);  

   /* Start  accepting  connections.  */ 

   listen(sock,  5);  

   for  (;;)  { 

     msgsock  = accept(sock,  0,  0);  if (msgsock  == -1)  perror("accept");  

      else  do { 

         bzero(buf,  sizeof(buf));  

         if ((rval  = read(msgsock,  buf,  1024))  < 0) 

            perror("reading  stream  message");  

         else  if (rval  == 0) 

            printf("Ending  connection\n");  

         else  

            printf("-->%s\n",  buf);  

      } while  (rval  > 0);  

      close(msgsock);  

   } 

 

 

 

Chapter 9. Sockets 227



/* The  following  statements  are  not  executed,  because  they  

    * follow  an infinite  loop.   However,  most  ordinary  programs  

    * will  not  run  forever.  In the  UNIX  domain  it  is necessary  to 

    * tell  the  file  system  that  you  are  through  using  NAME.   In 

    * most  programs  you  use  the  call  unlink()  as below.   Since  

    * the  user  will  have  to kill  this  program,   it will  be 

    * necessary  to remove  the  name  with  a shell  command.  

    */ 

   close(sock);  

   unlink(NAME);  

} 

Sending Data on an ATM  Socket PVC Client Example Program 

This program must be compiled with the -D_BSD  and -lbsd  options. For example, use the 

cc  prog.c  -o  prog  -D_BSD  -lbsd  command. 

/* 

 * 

 * ATM  Sockets  PVC  Client  Example  

 * 

 * This  program  opens  a PVC  and  sends  data  on it. 

 * 

 */ 

#include  <stdio.h>  

#include  <stddef.h>  

#include  <stdlib.h>  

#include  <errno.h>  

#include  <sys/socket.h>  

#include  <sys/ioctl.h>  

#include  <sys/ndd_var.h>  

#include  <sys/atmsock.h>  

#define  BUFF_SIZE     8192  

char     buff[BUFF_SIZE];  

main(argc,  argv)  

        int  argc;  

        char  *argv[];  

{ 

   int                      s;       // Socket  file  descriptor  

   int                      error;    //  Function  return  code  

   sockaddr_ndd_atm_t       addr;     // ATM  Socket  Address  

  // Create  a socket  in the  AF_NDD  domain  of type  SOCK_CONN_DGRAM  

  // and  NDD_PROT_ATM  protocol.  

  s = socket(AF_NDD,  SOCK_CONN_DGRAM,  NDD_PROT_ATM);  

  if (s  ==  -1)  {         // Socket  either  returns  the  file  descriptor  

      perror("socket");   // or a -1 to indicate  an error.  

      exit(-1);  

   } 

  // The  bind  command  associates  this  socket  with  a particular  

  // ATM  device,  as  specified  by addr.sndd_atm_nddname.  

  addr.sndd_atm_len  = sizeof(addr);  

  addr.sndd_atm_family  = AF_NDD;  

  strcpy(  addr.sndd_atm_nddname,  "atm0"  ); // The  name  of the ATM  device  

                                          // which  is to be used.  

  error  = bind(  s, (struct  sockaddr  *)&addr,  sizeof(addr)  ); 

  if (error)  {         // An error  from  bind  would  indicate  the 

     perror("bind");    // requested  ATM  device  is not available.  

     exit(-1);          // Check  smitty  devices.  

   } /* endif  */ 

  // To  open  a PVC,  the  addr.sndd_atm_vc_type  field  of the 

  // sockaddr_ndd_atm  is set  to CONN_PVC.   The  VPI and  VCI  are  

  // specified  in  the  fields  sndd_atm_addr.number.addr[0]  and 

  // sndd_atm_addr.number.addr[1].  

 

228 Communications Programming Concepts



addr.sndd_atm_vc_type  = CONN_PVC;          // Indicates  PVC 

   addr.sndd_atm_addr.number.addr[0]  = 0;    // VPI 

   addr.sndd_atm_addr.number.addr[1]  = 15;    // VCI  

   error  = connect(  s, (struct  sockaddr  *)&addr,  sizeof(addr)  );  

   if (error)  {            // A connect  error  may  indicate  that  

      perror("connect");    // the  VPI/VCI  is already  in use.  

      exit(-1);  

   } /* endif  */ 

   while  (1)  { 

      error  = send(  s, buff,  BUFF_SIZE,  0 ); 

      if (error  < 0 ) {                      // Send  returns  -1 to 

         perror("send");                      // to indicate  an error.  

         exit(-1);                            // The  errno  is set an can  

      } else  {                               // be displayed  with  perror.  

         printf("sent  %d bytes\n",  error  );  // Or  it returns  the number  

      }                                      // of bytes  transmitted  

      sleep(1);       // Just  sleep  1 second,  then  send  more  data.  

   } /* endwhile  */ 

   exit(0);  

} 

Receiving Data on an ATM  Socket PVC Server Example Program 

This program must be compiled with the -D_BSD  and -lbsd  options. For example, use the 

cc  prog.c  -o  prog  -D_BSD  -lbsd  command. 

/*  

 * ATM  Sockets  PVC  Server  Example  

 * 

 * This  program  opens  a PVC  an receives  data  on it.  

 * 

 */ 

#include  <stdio.h>  

#include  <stddef.h>  

#include  <stdlib.h>  

#include  <errno.h>  

#include  <sys/socket.h>  

#include  <sys/ioctl.h>  

#include  <sys/ndd_var.h>  

#include  <sys/atmsock.h>  

#define  BUFF_SIZE     8192  

char     buff[BUFF_SIZE];  

main(argc,  argv)  

        int  argc;  

        char  *argv[];  

{ 

   int                      s;        // Socket  file  descriptor  

   int                      error;    // Function  return  code  

   sockaddr_ndd_atm_t       addr;     // ATM  Socket  Address  

   // Create  a socket  in the  AF_NDD  domain  of type  SOCK_CONN_DGRAM  

   // and  NDD_PROT_ATM  protocol.  

   s = socket(AF_NDD,  SOCK_CONN_DGRAM,  NDD_PROT_ATM);  

   if (s == -1)  {          // Socket  either  returns  the file  descriptor  

      perror("socket");     // or a -1 to indicate  an error.  

      exit(-1);  

   } 

   // The  bind  command  associates  this  socket  with  a particular  

   // ATM  device,  as specified  by addr.sndd_atm_nddname.  

   addr.sndd_atm_len  = sizeof(addr);  

   addr.sndd_atm_family  = AF_NDD;  

   strcpy(  addr.sndd_atm_nddname,  "atm0"  ); // The name  of  the  ATM  device  

                                            // which  is to be used.  

   error  = bind(  s, (struct  sockaddr  *)&addr,  sizeof(addr)  ); 

   if (error)  {         // An error  from  bind  would  indicate  the  

      perror("bind");    // requested  ATM  device  is not available.  

      exit(-1);          //  Check  smitty  devices.  

   } /* endif  */

 

Chapter 9. Sockets 229



// To open  a PVC,  the  addr.sndd_atm_vc_type  field  of the  

   // sockaddr_ndd_atm  is set  to CONN_PVC.   The  VPI  and VCI are  

   // specified  in the  fields  sndd_atm_addr.number.addr[0]  and 

   // sndd_atm_addr.number.addr[1].  

   addr.sndd_atm_vc_type  = CONN_PVC;          // Indicates  PVC  

   addr.sndd_atm_addr.number.addr[0]  = 0;    // VPI 

   addr.sndd_atm_addr.number.addr[1]  = 15;    //  VCI  

   error  = connect(  s, (struct  sockaddr  *)&addr,  sizeof(addr)  ); 

   if (error)  {            // A connect  error  may  indicate  that  

      perror("connect");    // the  VPI/VCI  is  already  in use.  

      exit(-1);  

   } /* endif  */ 

   while  (1)  { 

      error  = recv(  s, buff,  BUFF_SIZE,  0 ); 

      if (error  < 0 ) {                         //  Send  returns  -1 to 

         perror("recv");                         // to indicate  an error.  

         exit(-1);                               // The  errno  is set an  can 

      } else  {                                  // be displayed  with  perror.  

         printf("received  %d bytes\n",  error  ); // Or it returns  the  number  

      }                                         // of bytes  received  

   } /* endwhile  */ 

   exit(0);  

} 

Sending Data on an ATM  Socket Rate-Enforced SVC Client Example 

Program 

This program must be compiled with the -D_BSD  and -lbsd  options. For example, use the 

cc  prog.c  -o  prog  -D_BSD  -lbsd  command. 

/* 

 * ATM  Sockets  rate  enforced  SVC  Client  Example  

 * 

 * This  program  opens  a rate  enforced  (not  best  effort)  SVC  

 * and  sends  data  on it.  

 * 

 */ 

#include  <stdio.h>  

#include  <stddef.h>  

#include  <stdlib.h>  

#include  <errno.h>  

#include  <sys/socket.h>  

#include  <sys/ioctl.h>  

#include  <sys/ndd_var.h>  

#include  <sys/atmsock.h>  

#define  BUFF_SIZE        100000  

char     buff[BUFF_SIZE];  

main(argc,  argv)  

        int  argc;  

        char  *argv[];  

{ 

   int                      s;          // Socket  file  descriptor  

   int                      error;       // Function  return  code  

   int                      i; 

   sockaddr_ndd_atm_t       addr;        // ATM  Socket  Address  

   unsigned  long            size;        // Size  of socket  argument  

   aal_parm_t               aal_parm;    // AAL  parameters  

   blli_t                   blli[3];     // Broadband  Lower  Layer  Info  

   traffic_des_t            traffic;     // Traffic  Descriptor  

   bearer_t                 bearer;      // Broadband  Bearer  Capability  

   int                      o[20];       // Temporary  variable  for  ATM 

                                       //  address  

   cause_t                  cause;       // Cause  of failure  

   unsigned  char            max_pend;    // Maximum  outstanding  transmits  

   // Create  a socket  in the  AF_NDD  domain  of type  SOCK_CONN_DGRAM  

   // and  NDD_PROT_ATM  protocol.

 

230 Communications Programming Concepts



s = socket(AF_NDD,  SOCK_CONN_DGRAM,  NDD_PROT_ATM);  

   if (s == -1)  { 

      perror("socket");  

      exit(-1);  

   } 

   addr.sndd_atm_len  = sizeof(addr);  

   addr.sndd_atm_family  = AF_NDD;  

   strcpy(  addr.sndd_atm_nddname,  "atm0"  ); 

   // The  bind  command  associates  this  socket  with  a particular  

   // ATM  device,  as specified  by addr.sndd_atm_nddname.  

   error  = bind(  s, (struct  sockaddr  *)&addr,  sizeof(addr)  ); 

   if (error)  {         // An error  from  bind  would  indicate  the  

      perror("bind");    // requested  ATM  device  is not available.  

      exit(-1);          //  Check  smitty  devices.  

   } /* endif  */ 

   // Set  the  AAL  parameters.  

   // See  the  ATM  UNI  3.0  for  valid  combinations.  

   // For  a rate  enforced  connection  the  adapter  will  segment  

   // according  to the  fwd_max_sdu_size  field.   This  means  that  

   // although  the  client  sends  100000  bytes  at once,  the  server  

   // will  receive  them  in packets  the  size  of fwd_max_sdu_size.  

   bzero(  aal_parm,  sizeof(aal_parm_t)  ); 

   aal_parm.length  = sizeof(aal_5_t);  

   aal_parm.aal_type  = CM_AAL_5;  

   aal_parm.aal_info.aal5.fwd_max_sdu_size  = 7708;  

   aal_parm.aal_info.aal5.bak_max_sdu_size  = 7520;  

   aal_parm.aal_info.aal5.mode  = CM_MESSAGE_MODE;  

   aal_parm.aal_info.aal5.sscs_type  = CM_NULL_SSCS;  

   error  = setsockopt(  s, 0, SO_ATM_AAL_PARM,  (void  *)&aal_parm,  

                       sizeof(aal_parm_t)  ); 

   if (error)  { 

      perror("setsockopt  SO_AAL_PARM");  

      exit(-1);  

   } /* endif  */ 

   // Up to three  BLLI  may  be specified  in the  setup  message.  

   // If a BLLI  contains  valid  information,  its  length  must  be 

   // set  to sizeof(blli_t).   Otherwise  set  its  length  to 0. 

   // In this  example  the  application  specifies  two BLLIs.  

   // After  the  connection  has  been  established,  the  application  

   // can  use  getsockopt  to see  which  BLLI  was  accepted  by the  

   // called  station.  

   bzero(blli,  sizeof(blli_t)  ); 

   blli[0].length  = sizeof(blli_t);  

   blli[1].length  = sizeof(blli_t);  

   blli[2].length  = 0; 

   blli[0].L2_prot  = CM_L2_PROT_USER;  

   blli[0].L2_info  = 1; 

   // Fields  that  are  not  used  must  be set  to NOT_SPECIFIED_B  (byte)  

   blli[0].L2_mode  = NOT_SPECIFIED_B;  

   blli[0].L2_win_size  = NOT_SPECIFIED_B;  

   blli[0].L3_prot  = NOT_SPECIFIED_B;  

   blli[0].L3_mode  = NOT_SPECIFIED_B;  

   blli[0].L3_def_pkt_size  = NOT_SPECIFIED_B;  

   blli[0].L3_pkt_win_size  = NOT_SPECIFIED_B;  

   blli[0].L3_info  = NOT_SPECIFIED_B;  

   blli[0].ipi  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[0]  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[1]  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[2]  = NOT_SPECIFIED_B;  

   blli[0].snap_pid[0]  = NOT_SPECIFIED_B;  

   blli[0].snap_pid[1]  = NOT_SPECIFIED_B;  

   // Up to three  blli  may  be specified  in the  setup  message.  

   // The  caller  must  query  the  blli  with  getsockopt  to see which  

   // blli  the  other  side  accepted.  

   blli[1].L2_prot  = CM_L2_PROT_USER;  

   blli[1].L2_info  = 2; 

   // Fields  that  are  not  used  must  be set  to NOT_SPECIFIED_B  (byte)

 

Chapter 9. Sockets 231



blli[1].L2_mode  = NOT_SPECIFIED_B;  

   blli[1].L2_win_size  = NOT_SPECIFIED_B;  

   blli[1].L3_prot  = NOT_SPECIFIED_B;  

   blli[1].L3_mode  = NOT_SPECIFIED_B;  

   blli[1].L3_def_pkt_size  = NOT_SPECIFIED_B;  

   blli[1].L3_pkt_win_size  = NOT_SPECIFIED_B;  

   blli[1].L3_info  = NOT_SPECIFIED_B;  

   blli[1].ipi  = NOT_SPECIFIED_B;  

   blli[1].snap_oui[0]  = NOT_SPECIFIED_B;  

   blli[1].snap_oui[1]  = NOT_SPECIFIED_B;  

   blli[1].snap_oui[2]  = NOT_SPECIFIED_B;  

   blli[1].snap_pid[0]  = NOT_SPECIFIED_B;  

   blli[1].snap_pid[1]  = NOT_SPECIFIED_B;  

   error  = setsockopt(  s, 0, SO_ATM_BLLI,  (void  *)&blli,  

                       sizeof(blli)  ); 

   if (error)  { 

      perror("setsockopt  SO_ATM_BLLI");  

      exit(-1);  

   } /* endif  */ 

   // See  ATM  UNI  3.0  Appendix  xx for  details  of valid  combinations  

   // Here  you  specify  a rate  enforced  1 Mbps  connection.  

   traffic.best_effort  = FALSE;      // Specifies  Rate  enforcement  

   traffic.fwd_peakrate_lp  = 1000;   // Kbps  

   traffic.bak_peakrate_lp  = 1000;   // Kbps  

   traffic.tagging_bak  = FALSE;  

   traffic.tagging_fwd  = FALSE;  

   // Fields  that  are  not  used  must  be set  to NOT_SPECIFIED_L  (long)  

   traffic.fwd_peakrate_hp  = NOT_SPECIFIED_L;  

   traffic.bak_peakrate_hp  = NOT_SPECIFIED_L;  

   traffic.fwd_sus_rate_hp  = NOT_SPECIFIED_L;  

   traffic.bak_sus_rate_hp  = NOT_SPECIFIED_L;  

   traffic.fwd_sus_rate_lp  = NOT_SPECIFIED_L;  

   traffic.bak_sus_rate_lp  = NOT_SPECIFIED_L;  

   traffic.fwd_bur_size_hp  = NOT_SPECIFIED_L;  

   traffic.bak_bur_size_hp  = NOT_SPECIFIED_L;  

   traffic.fwd_bur_size_lp  = NOT_SPECIFIED_L;  

   traffic.bak_bur_size_lp  = NOT_SPECIFIED_L;  

   error  = setsockopt(  s, 0, SO_ATM_TRAFFIC_DES,  (void  *)&traffic,  

                       sizeof(traffic_des_t)  ); 

   if (error)  { 

      perror("set  traffic");  

      exit(-1);  

   } /* endif  */ 

   // Set  the  Broadband  Bearer  Capability  

   // See  the  UNI  3.0  for  valid  combinations  

   bearer.bearer_class  = CM_CLASS_C;  

   bearer.traffic_type  = NOT_SPECIFIED_B;  

   bearer.timing  = NOT_SPECIFIED_B;  

   bearer.clipping  = CM_NOT_SUSCEPTIBLE;  

   bearer.connection_cfg  = CM_CON_CFG_PTP;  

   error  = setsockopt(  s, 0, SO_ATM_BEARER,  (void  *)&bearer,  

                       sizeof(bearer_t)  ); 

   if (error)  { 

      perror("set  bearer");  

      exit(-1);  

   } /* endif  */ 

  printf("Input  ATM  address  to be called:\n");  

  i = scanf("%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x",  

            &o[0],  &o[1],  &o[2],  &o[3],  &o[4],  

            &o[5],  &o[6],  &o[7],  &o[8],  &o[9],  

            &o[10],  &o[11],  &o[12],  &o[13],  &o[14],  

            &o[15],  &o[16],  &o[17],  &o[18],  &o[19]  ); 

   if (i != 20)  { 

      printf("invalid  atm  address\n");  

      exit(-1);  

   } 

   for  (i=0;  i<20;  i++)  {

 

232 Communications Programming Concepts



addr.sndd_atm_addr.number.addr[i]  = o[i];  

   } /* endfor  */ 

   addr.sndd_atm_addr.length  = ATM_ADDR_LEN;  

   addr.sndd_atm_addr.type  = CM_INTL_ADDR_TYPE;  

   addr.sndd_atm_addr.plan_id  = CM_NSAP;  

   addr.sndd_atm_addr.pres_ind  = NOT_SPECIFIED_B;  

   addr.sndd_atm_addr.screening  = NOT_SPECIFIED_B;  

   addr.sndd_atm_vc_type  = CONN_SVC;  

   error  = connect(  s, (struct  sockaddr  *)&addr,  sizeof(addr)  );  

  if (error)  { 

      perror("connect");  

      // If a connect  fails,  the  cause  structure  may  contain  useful  

      // information  for  determining  the  reason  of the  failure.  

      // See  the  ATM  UNI  3.0  for  a description  of the  cause  values.  

      size  = sizeof(cause_t);  

      error  = getsockopt(s,  0, SO_ATM_CAUSE,  (void  *)&cause,  &size);  

      if (error)  { 

         perror("SO_ATM_CAUSE");  

      } else  { 

         printf("cause  = %d\n",  cause.cause  ); 

      } /* endif  */ 

      exit(-1);  

   } /* endif  */ 

   // The  caller  can  now  check  to see  which  BLLI  was  accepted  by 

   // the  called  station.  

   size  = sizeof(blli_t);  

   error  = getsockopt(s,  0, SO_ATM_BLLI,  

                         (void  *)&blli,  &size);  

   if (error)  { 

     perror("get  blli");  

     exit(0);  

   } /* endif  */ 

   printf("The  call  was  accepted  by L2_info  %d\n",  blli[0].L2_info  ); 

   size  = sizeof(aal_parm_t);  

   error  = getsockopt(s,  0, SO_ATM_AAL_PARM,  

                               (void  *)&aal_parm,  &size);  

   // If any  of these  negotiated  parameters  is unacceptable  to 

   // the  caller,  he should  disconnect  the  call  by closing  the  socket.  

   printf("fwd        %d\n",  

           aal_parm.aal_info.aal5.fwd_max_sdu_size  );  

   printf("bak        %d\n",  

           aal_parm.aal_info.aal5.bak_max_sdu_size  );  

   // Specifies  how  many  outstanding  transmits  are  allowed  before  

   // the  adapter  device  driver  will  return  an error.   The  error  

   // informs  the  application  that  it must  wait  before  trying  to 

   // transmit  again.  

   max_pend  = 2; 

   error  = setsockopt(  s, 0, SO_ATM_MAX_PEND,  (void  *)&max_pend,  1 ); 

   if (error)  { 

     perror("set  MAX_PENDING");  

     exit(-1);  

   } /* endif  */ 

   while  (1)  { 

      error  = send(  s, buff,  BUFF_SIZE,  0 ); 

      if (error  == -1)  { 

         if (errno  ==  ENOSPC)  { 

         // The  application  has  reached  the  maximum  outstanding  

         // transmits.   It  must  wait  before  trying  again.  

            perror("send");  

            sleep(1);  

        } else  { 

            perror("send");  

            size  = sizeof(cause_t);  

            error  = getsockopt(s,  0, SO_ATM_CAUSE,  (void  *)&cause,  &size);  

            if (error)  { 

               perror("SO_ATM_CAUSE");  

            } else  {

 

Chapter 9. Sockets 233



printf("cause  = %d\n",  cause.cause  ); 

            } 

            exit(-1);  

         } /* endif  */ 

      } else  { 

         printf("sent  %d\n",  error  ); 

      } 

   } 

} 

Receiving Data on an ATM  Socket Rate-Enforced SVC Server Example 

Program 

This program must be compiled with the -D_BSD  and -lbsd  options. For example, use the 

cc  prog.c  -o  prog  -D_BSD  -lbsd  command. 

/* 

 * ATM  Sockets  rate  enforced  SVC  Server  Example  

 * 

 * This  program  listens  for  and  accepts  an SVC  and receives  data  on it.  

 * It also  demostrates  AAL  negotiation.  

 * 

 */ 

#include  <stdio.h>  

#include  <stddef.h>  

#include  <stdlib.h>  

#include  <errno.h>  

#include  <sys/socket.h>  

#include  <sys/ioctl.h>  

#include  <sys/ndd_var.h>  

#include  <sys/atmsock.h>  

#define  BUFF_SIZE        8192  

char     buff[BUFF_SIZE];  

main(argc,  argv)  

        int  argc;  

        char  *argv[];  

{ 

   int                      s;          // Socket  file  descriptor  

   int                      new_s;       // Socket  returned  by accept  

   int                      error;       // Function  return  code  

   int                      i; 

   sockaddr_ndd_atm_t       addr;        // ATM  Socket  Address  

   unsigned  long            size;        // Size  of socket  argument  

   aal_parm_t               aal_parm;    // AAL  parameters  

   blli_t                   blli[3];     // Broadband  Lower  Layer  Info  

   traffic_des_t            traffic;     // Traffic  Descriptor  

   bearer_t                 bearer;      // Broadband  Bearer  Capability  

   cause_t                  cause;       // Cause  of failure  

   unsigned  char            max_pend;  

   indaccept_ie_t           indaccept;  

   // Create  a socket  in the  AF_NDD  domain  of type  SOCK_CONN_DGRAM  

   // and  NDD_PROT_ATM  protocol.  

   s = socket(AF_NDD,  SOCK_CONN_DGRAM,  NDD_PROT_ATM);  

   if (s == -1)  { 

      perror("socket");  

      exit(-1);  

   } 

   addr.sndd_atm_len  = sizeof(addr);  

   addr.sndd_atm_family  = AF_NDD;  

   strcpy(  addr.sndd_atm_nddname,  "atm0"  );  // The  name  of the  ATM device  

                                             // which  is to be used.  

   // The  bind  command  associates  this  socket  with  a particular  

   // ATM  device,  as specified  by addr.sndd_atm_nddname.  

   error  = bind(  s, (struct  sockaddr  *)&addr,  sizeof(addr)  ); 

   if (error)  { 

      perror("bind");

 

234 Communications Programming Concepts



exit(-1);  

   } /* endif  */ 

   // Although  up to 3 BLLIs  may  be specified  by the  calling  side,  

   // the  listening  side  may  only  specify  one.  

   bzero(blli,  sizeof(blli_t)  ); 

   blli[0].length  = sizeof(blli_t);  

   blli[1].length  = 0; 

   blli[2].length  = 0; 

   // If a call  arrives  that  matches  these  two  parameters,  it will  

   // be given  to this  application.  

   blli[0].L2_prot  = CM_L2_PROT_USER;  

   blli[0].L2_info  = 2; 

   // Fields  that  are  not  used  must  be set  to NOT_SPECIFIED_B  (byte)  

   blli[0].L2_mode  = NOT_SPECIFIED_B;  

   blli[0].L2_win_size  = NOT_SPECIFIED_B;  

   blli[0].L3_prot  = NOT_SPECIFIED_B;  

   blli[0].L3_mode  = NOT_SPECIFIED_B;  

   blli[0].L3_def_pkt_size  = NOT_SPECIFIED_B;  

   blli[0].L3_pkt_win_size  = NOT_SPECIFIED_B;  

   blli[0].L3_info  = NOT_SPECIFIED_B;  

   blli[0].ipi  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[0]  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[1]  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[2]  = NOT_SPECIFIED_B;  

   blli[0].snap_pid[0]  = NOT_SPECIFIED_B;  

   blli[0].snap_pid[1]  = NOT_SPECIFIED_B;  

   error  = setsockopt(  s, 0, SO_ATM_BLLI,  (void  *)&blli,  

                       sizeof(blli)  ); 

   if (error)  { 

      perror("setsockopt  SO_ATM_BLLI");  

      exit(-1);  

   } /* endif  */ 

   // Query  and  print  out  the  ATM  address  of this  station.   The  

   // client  application  will  need  it.  

   bzero(  &addr,  sizeof(addr));  

   size  = sizeof(addr);  

   error  = getsockname(  s, (struct  sockaddr  *)&addr,  &size  ); 

   if (error)  { 

      printf("getsock  error  = %d errno  = %d\n",  error,  errno  ); 

      exit(-1);  

   } /* endif  */ 

   printf("My  ATM  address:  ");  

   for  (i=0;  i<20;  i++)  { 

     printf("%X.",  addr.sndd_atm_addr.number.addr[i]);  

   } /* endfor  */ 

   printf("\n");  

   // The  listen  call  enables  this  socket  to receive  incoming  call  

   // that  match  its  BLLI.  

   error  = listen(  s, 10 ); 

   if (error)  { 

      // Listen  will  fail  if the  station  is not connected  to 

      // an ATM  switch.  

      perror("listen");  

      exit(-1);  

   } /* endif  */ 

   size  = sizeof(addr);  

   printf("accepting\n");  

   // The  accept  will  return  a new  socket  of an incoming  call  

   // for  this  socket,  or sleep  until  one  arrives.  

   new_s  = accept(  s, (struct  sockaddr  *)&addr,  &size  ); 

   if (new_s  == -1)  { 

      printf("accept  error  = %d errno  = %d\n",  new_s,  errno  ); 

      exit(-1);  

   } /* endif  */ 

   // Query  the  AAL  parameters  before  fully  establishing  the  

   // connection.   See  the  ATM  UNI  3.0  for  a description  of 

   // which  parameters  may  be negotiated.

 

Chapter 9. Sockets 235



size  = sizeof(aal_parm_t);  

   error  = getsockopt(  new_s,  0, SO_ATM_AAL_PARM,  

                      (void  *)&aal_parm,  &size  ); 

   indaccept.ia_aal_parm  = aal_parm;  

   // Change  the  fwd_max_sdu_size  down  to 7520.  

   if (indaccept.ia_aal_parm.aal_info.aal5.fwd_max_sdu_size  > 7520  ) { 

      indaccept.ia_aal_parm.aal_info.aal5.fwd_max_sdu_size  = 7520;  

   } /* endif  */ 

   size  = sizeof(indaccept_ie_t);  

   error  = setsockopt(  new_s,  0, SO_ATM_ACCEPT,  

                         (void  *)&indaccept,  size  ); 

   if (error)  { 

     perror("setsockopt  ACCEPT");  

     exit(-1);  

   } /* endif  */ 

   while  (1)  { 

      error  = recv(  new_s,  buff,  BUFF_SIZE,  0 ); 

      if (error  ==  -1)  { 

         // If a recv  fails,  the  cause  structure  may  contain  useful  

         // information  for  determining  the  reason  of the  failure.  

         // The  connection  might  have  been  closed  by the other  party,  

         // or the  physical  network  might  have  been  disconnected.  

         // See  the  ATM  UNI  3.0  for  a description  of the  cause  values.  

         // If the  send  failed  for  some  other  reason,  the  errno  will  

         // indicate  this.  

       perror("recv");  

         size  = sizeof(cause_t);  

         error  = getsockopt(new_s,  0, SO_ATM_CAUSE,  

                           (void  *)&cause,  &size);  

         if (error)  { 

            perror("SO_ATM_CAUSE");  

         } else  { 

            printf("cause  = %d\n",  cause.cause  ); 

         } /* endif  */ 

         exit(0);  

      } /* endif  */ 

      printf("recv  %d bytes\n",  error);  

   } 

} 

Sending Data on an ATM  Socket SVC Client Example Program 

This program must be compiled with the -D_BSD  and -lbsd  options. For example, use the 

cc  prog.c  -o  prog  -D_BSD  -lbsd  command. 

/* 

 * ATM  Sockets  SVC  Client  Example  

 * 

 * This  program  opens  a opens  an best  effort  SVC  and  sends  data  on it.  

 * 

 */ 

#include  <stdio.h>  

#include  <stddef.h>  

#include  <stdlib.h>  

#include  <errno.h>  

#include  <sys/socket.h>  

#include  <sys/ioctl.h>  

#include  <sys/ndd_var.h>  

#include  <sys/atmsock.h>  

#define  BUFF_SIZE     8192  

char     buff[BUFF_SIZE];  

main(argc,  argv)  

        int  argc;  

        char  *argv[];  

{ 

   int                      s;          // Socket  file  descriptor  

   int                      error;       // Function  return  code

 

236 Communications Programming Concepts



int                      i;  

   sockaddr_ndd_atm_t       addr;        // ATM Socket  Address  

   unsigned  long            size;        // Size  of socket  argument  

   aal_parm_t               aal_parm;    // AAL  parameters  

   blli_t                   blli[3];     // Broadband  Lower  Layer  Info  

   traffic_des_t            traffic;     // Traffic  Descriptor  

   bearer_t                 bearer;      // Broadband  Bearer  Capability  

   int                      o[20];       //  Temorary  variable  for  ATM 

                                       // address  

   cause_t                  cause;       // Cause  of failure  

   // Create  a socket  in the  AF_NDD  domain  of type  SOCK_CONN_DGRAM  

   // and  NDD_PROT_ATM  protocol.  

   s = socket(AF_NDD,  SOCK_CONN_DGRAM,  NDD_PROT_ATM);  

   if (s == -1)  {          // Socket  either  returns  the file  descriptor  

      perror("socket");     // or a -1 to indicate  an error.  

      exit(-1);  

   } 

   // The  bind  command  associates  this  socket  with  a particular  

   // ATM  device,  as specified  by addr.sndd_atm_nddname.  

   addr.sndd_atm_len  = sizeof(addr);  

   addr.sndd_atm_family  = AF_NDD;  

   strcpy(  addr.sndd_atm_nddname,  "atm0"  );  // The  name  of the ATM device  

                                             // which  is to be  used.  

   error  = bind(  s, (struct  sockaddr  *)&addr,  sizeof(addr)  ); 

   if (error)  {         // An error  from  bind  would  indicate  the  

      perror("bind");    // requested  ATM  device  is not available.  

      exit(-1);          //  Check  smitty  devices.  

   } /* endif  */ 

   // Set  the  AAL  parameters.  

   // See  the  ATM  UNI  3.0  for  valid  combinations.  

   bzero(  aal_parm,  sizeof(aal_parm_t)  ); 

   aal_parm.length  = sizeof(aal_5_t);  

   aal_parm.aal_type  = CM_AAL_5;  

   aal_parm.aal_info.aal5.fwd_max_sdu_size  = 9188;  

   aal_parm.aal_info.aal5.bak_max_sdu_size  = 9188;  

   aal_parm.aal_info.aal5.mode  = CM_MESSAGE_MODE;  

   aal_parm.aal_info.aal5.sscs_type  = CM_NULL_SSCS;  

   error  = setsockopt(  s, 0, SO_ATM_AAL_PARM,  (void  *)&aal_parm,  

                       sizeof(aal_parm_t)  ); 

   if (error)  { 

      perror("setsockopt  SO_AAL_PARM");  

      exit(-1);  

   } /* endif  */ 

   // Up to three  BLLI  may  be specified  in the  setup  message.  

   // If a BLLI  contains  valid  information,  its  length  must  be 

   // set  to sizeof(blli_t).   Otherwise  set  its  length  to 0. 

   bzero(blli,  sizeof(blli_t)  * 3);  

   blli[0].length  = sizeof(blli_t);  // Only  use the  first  BLLI  

   blli[1].length  = 0; 

   blli[2].length  = 0; 

   // This  call  will  be delivered  to the  application  that  is 

   // listening  for  calls  that  match  these  two  parameters.  

   blli[0].L2_prot  = CM_L2_PROT_USER;  

   blli[0].L2_info  = 1; 

   // Fields  that  are  not  used  must  be set  to NOT_SPECIFIED_B  (byte)  

   blli[0].L2_mode  = NOT_SPECIFIED_B;  

   blli[0].L2_win_size  = NOT_SPECIFIED_B;  

   blli[0].L3_prot  = NOT_SPECIFIED_B;  

   blli[0].L3_mode  = NOT_SPECIFIED_B;  

   blli[0].L3_def_pkt_size  = NOT_SPECIFIED_B;  

   blli[0].L3_pkt_win_size  = NOT_SPECIFIED_B;  

   blli[0].L3_info  = NOT_SPECIFIED_B;  

   blli[0].ipi  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[0]  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[1]  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[2]  = NOT_SPECIFIED_B;  

   blli[0].snap_pid[0]  = NOT_SPECIFIED_B;

 

Chapter 9. Sockets 237



blli[0].snap_pid[1]  = NOT_SPECIFIED_B;  

   blli[1].length  = 0; /*  sizeof(blli_t);  */ 

   blli[2].length  = 0; 

   error  = setsockopt(  s, 0, SO_ATM_BLLI,  (void  *)&blli,  

                       sizeof(blli)  ); 

   if (error)  { 

      perror("setsockopt  SO_ATM_BLLI");  

      exit(-1);  

   } /* endif  */ 

   // Set  the  Traffic  Descriptor  

   // See  the  ATM  UNI  3.0  for  valid  settings.  

   bzero(  traffic,  sizeof(traffic_des_t)  ); 

   // Here  we specify  a 25 Mbps  best  effort  connection.   Best  effort  

   // indicates  that  the  adapter  should  not  enforce  the  transmission  

   // rate.   Note  that  the  minimum  rate  will  be depend  on  what  

   // best  effort  rate  queues  have  bet  configured  for  the  ATM adapter.  

   // See  SMIT  for  details.  

   traffic.best_effort  = TRUE;          // No rate  enforcement  

   traffic.fwd_peakrate_lp  = 25000;     // Kbps  

   traffic.bak_peakrate_lp  = 25000;     // Kbps  

   traffic.tagging_bak  = FALSE;  

   traffic.tagging_fwd  = FALSE;  

   // Fields  that  are  not  used  must  be set  to NOT_SPECIFIED_L  (long)  

   traffic.fwd_peakrate_hp  = NOT_SPECIFIED_L;  

   traffic.bak_peakrate_hp  = NOT_SPECIFIED_L;  

   traffic.fwd_sus_rate_hp  = NOT_SPECIFIED_L;  

   traffic.bak_sus_rate_hp  = NOT_SPECIFIED_L;  

   traffic.fwd_sus_rate_lp  = NOT_SPECIFIED_L;  

   traffic.bak_sus_rate_lp  = NOT_SPECIFIED_L;  

   traffic.fwd_bur_size_hp  = NOT_SPECIFIED_L;  

   traffic.bak_bur_size_hp  = NOT_SPECIFIED_L;  

   traffic.fwd_bur_size_lp  = NOT_SPECIFIED_L;  

   traffic.bak_bur_size_lp  = NOT_SPECIFIED_L;  

   error  = setsockopt(  s, 0, SO_ATM_TRAFFIC_DES,  (void  *)&traffic,  

                       sizeof(traffic_des_t)  ); 

   if (error)  { 

      perror("set  traffic");  

      exit(-1);  

   } /* endif  */ 

  // Set  the  Broadband  Bearer  Capability  

   // See  the  UNI  3.0  for  valid  combinations  

   bearer.bearer_class  = CM_CLASS_C;  

   bearer.traffic_type  = NOT_SPECIFIED_B;  

   bearer.timing  = NOT_SPECIFIED_B;  

   bearer.clipping  = CM_NOT_SUSCEPTIBLE;  

   bearer.connection_cfg  = CM_CON_CFG_PTP;  

   error  = setsockopt(  s, 0, SO_ATM_BEARER,  (void  *)&bearer,  

                       sizeof(bearer_t)  ); 

   if (error)  { 

      perror("set  bearer");  

      exit(-1);  

   } /* endif  */ 

   printf("Input  ATM  address  to be  called:\n");  

   i = scanf(  "%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x.%x",  

               &o[0],  &o[1],  &o[2],  &o[3],  &o[4],  

               &o[5],  &o[6],  &o[7],  &o[8],  &o[9],  

               &o[10],  &o[11],  &o[12],  &o[13],  &o[14],  

               &o[15],  &o[16],  &o[17],  &o[18],  &o[19]  ); 

   if (i != 20)  { 

      printf("invalid  atm  address\n");  

      exit(-1);  

   } 

   for  (i=0;  i<20;  i++)  { 

     addr.sndd_atm_addr.number.addr[i]  = o[i];  

   } /* endfor  */ 

   addr.sndd_atm_addr.length  = ATM_ADDR_LEN;  

   addr.sndd_atm_addr.type  = CM_INTL_ADDR_TYPE;

 

238 Communications Programming Concepts



addr.sndd_atm_addr.plan_id  = CM_NSAP;  

   addr.sndd_atm_addr.pres_ind  = NOT_SPECIFIED_B;  

   addr.sndd_atm_addr.screening  = NOT_SPECIFIED_B;  

   addr.sndd_atm_vc_type  = CONN_SVC;  

   error  = connect(  s, (struct  sockaddr  *)&addr,  sizeof(addr)  );  

   if (error)  { 

      perror("connect");  

      // If a connect  fails,  the  cause  structure  may  contain  useful  

      // information  for  determining  the  reason  of the  failure.  

      // See  the  ATM  UNI  3.0  for  a description  of the  cause  values.  

      size  = sizeof(cause_t);  

      error  = getsockopt(s,  0, SO_ATM_CAUSE,  (void  *)&cause,  &size);  

      if (error)  { 

         perror("SO_ATM_CAUSE");  

      } else  { 

         printf("cause  = %d\n",  cause.cause  ); 

      } /* endif  */ 

      exit(-1);  

   } /* endif  */ 

   while  (1)  { 

      error  = send(  s, buff,  BUFF_SIZE,  0 ); 

      if (error  == -1)  { 

         // If  a send  fails,  the  cause  structure  may  contain  useful  

         // information  for  determining  the  reason  of the  failure.  

         // The  connection  might  have  been  closed  by the  other  party,  

         // or  the  physical  network  might  have  been  disconnected.  

         // See  the  ATM  UNI  3.0  for  a description  of the  cause  values.  

         // If  the  send  failed  for  some  other  reason,  the  errno  will  

         // indicate  this.  

         perror("send");  

         size  = sizeof(cause_t);  

         error  = getsockopt(s,  0, SO_ATM_CAUSE,  (void  *)&cause,  &size);  

         if (error)  { 

            perror("SO_ATM_CAUSE");  

         } else  { 

            printf("cause  = %d\n",  cause.cause  ); 

         } 

         exit(-1);  

      } else  { 

         printf("sent  %d bytes\n",  error  ); 

      } 

      sleep(1);  

   } 

} 

Receiving Data on an ATM  Socket SVC Server Example Program 

This program must be compiled with the -D_BSD  and -lbsd  options. For example, use the 

cc  prog.c  -o  prog  -D_BSD  -lbsd  command. 

/*  

 * ATM  Sockets  SVC  Server  Example  

 * 

 * This  program  listens  for  and  accepts  an SVC and receives  data  on it.  

 * 

 */ 

#include  <stdio.h>  

#include  <stddef.h>  

#include  <stdlib.h>  

#include  <errno.h>  

#include  <sys/socket.h>  

#include  <sys/ioctl.h>  

#include  <sys/ndd_var.h>  

#include  <sys/atmsock.h>  

#define  BUFF_SIZE        8192  

char     buff[BUFF_SIZE];  

main(argc,  argv)

 

Chapter 9. Sockets 239



int  argc;  

        char  *argv[];  

{ 

   int                      s;          // Socket  file  descriptor  

   int                      new_s;       // Socket  returned  by accept  

   int                      error;       // Function  return  code  

   int                      i; 

   sockaddr_ndd_atm_t       addr;        // ATM  Socket  Address  

   unsigned  long            size;        // Size  of socket  argument  

   aal_parm_t               aal_parm;    // AAL  parameters  

   blli_t                   blli[3];     // Broadband  Lower  Layer  Info  

   traffic_des_t            traffic;     // Traffic  Descriptor  

   bearer_t                 bearer;      // Broadband  Bearer  Capability  

   cause_t                  cause;       // Cause  of failure  

   // Create  a socket  in the  AF_NDD  domain  of type  SOCK_CONN_DGRAM  

   // and  NDD_PROT_ATM  protocol.  

   s = socket(AF_NDD,  SOCK_CONN_DGRAM,  NDD_PROT_ATM);  

   if (s == -1)  { 

      perror("socket");  

      exit(-1);  

   } 

   // The  bind  command  associates  this  socket  with  a particular  

   // ATM  device,  as specified  by addr.sndd_atm_nddname.  

   addr.sndd_atm_len  = sizeof(addr);  

   addr.sndd_atm_family  = AF_NDD;  

   strcpy(  addr.sndd_atm_nddname,  "atm0"  );  // The  name  of the  ATM device  

                                             // which  is to be used.  

   error  = bind(  s, (struct  sockaddr  *)&addr,  sizeof(addr)  ); 

   if (error)  { 

      perror("bind");  

      exit(-1);  

   } /* endif  */ 

   // Although  up to 3 BLLIs  may  be specified  by the  calling  side,  

   // the  listening  side  may  only  specify  one.  

   bzero(blli,  sizeof(blli_t)  ); 

   blli[0].length  = sizeof(blli_t);  

   blli[1].length  = 0; 

   blli[2].length  = 0; 

   // If a call  arrives  that  matches  these  two  parameters,  it will  

   // be given  to this  application.  

   blli[0].L2_prot  = CM_L2_PROT_USER;  

   blli[0].L2_info  = 1;  

   // Fields  that  are  not  used  must  be set  to NOT_SPECIFIED_B  (byte)  

   blli[0].L2_mode  = NOT_SPECIFIED_B;  

   blli[0].L2_win_size  = NOT_SPECIFIED_B;  

   blli[0].L3_prot  = NOT_SPECIFIED_B;  

   blli[0].L3_mode  = NOT_SPECIFIED_B;  

   blli[0].L3_def_pkt_size  = NOT_SPECIFIED_B;  

   blli[0].L3_pkt_win_size  = NOT_SPECIFIED_B;  

   blli[0].L3_info  = NOT_SPECIFIED_B;  

   blli[0].ipi  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[0]  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[1]  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[2]  = NOT_SPECIFIED_B;  

   blli[0].snap_pid[0]  = NOT_SPECIFIED_B;  

   blli[0].snap_pid[1]  = NOT_SPECIFIED_B;  

   error  = setsockopt(  s, 0, SO_ATM_BLLI,  (void  *)&blli,  

                       sizeof(blli)  ); 

   if (error)  { 

      perror("setsockopt  SO_ATM_BLLI");  

      exit(-1);  

   } /* endif  */ 

   // Query  and  print  out  the  ATM  address  of this  station.   The  

   // client  application  will  need  it.  

   bzero(  &addr,  sizeof(addr));  

   size  = sizeof(addr);  

   error  = getsockname(  s, (struct  sockaddr  *)&addr,  &size  );

 

240 Communications Programming Concepts



if (error)  { 

      perror("getsockname");  

      exit(-1);  

   } /* endif  */ 

   printf("My  ATM  address:  ");  

   for  (i=0;  i<20;  i++)  { 

     printf("%X.",  addr.sndd_atm_addr.number.addr[i]);  

   } /* endfor  */ 

   printf("\n");  

   // Although  up to 3 BLLIs  may  be specified  by the  calling  side,  

   // the  listening  side  may  only  specify  one.  

 bzero(blli,  sizeof(blli_t)  ); 

   blli[0].length  = sizeof(blli_t);  

   blli[1].length  = 0; 

   blli[2].length  = 0; 

   // If a call  arrives  that  matches  these  two  parameters,  it will  

   // be given  to this  application.  

   blli[0].L2_prot  = CM_L2_PROT_USER;  

   blli[0].L2_info  = 1; 

   // Fields  that  are  not  used  must  be set  to NOT_SPECIFIED_B  (byte)  

   blli[0].L2_mode  = NOT_SPECIFIED_B;  

   blli[0].L2_win_size  = NOT_SPECIFIED_B;  

   blli[0].L3_prot  = NOT_SPECIFIED_B;  

   blli[0].L3_mode  = NOT_SPECIFIED_B;  

   blli[0].L3_def_pkt_size  = NOT_SPECIFIED_B;  

   blli[0].L3_pkt_win_size  = NOT_SPECIFIED_B;  

   blli[0].L3_info  = NOT_SPECIFIED_B;  

   blli[0].ipi  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[0]  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[1]  = NOT_SPECIFIED_B;  

   blli[0].snap_oui[2]  = NOT_SPECIFIED_B;  

   blli[0].snap_pid[0]  = NOT_SPECIFIED_B;  

   blli[0].snap_pid[1]  = NOT_SPECIFIED_B;  

   error  = setsockopt(  s, 0, SO_ATM_BLLI,  (void  *)&blli,  

                       sizeof(blli)  ); 

   if (error)  { 

      perror("setsockopt  SO_ATM_BLLI");  

      exit(-1);  

   } /* endif  */ 

   // Query  and  print  out  the  ATM  address  of this  station.   The  

   // client  application  will  need  it.  

   bzero(  &addr,  sizeof(addr));  

   size  = sizeof(addr);  

   error  = getsockname(  s, (struct  sockaddr  *)&addr,  &size  ); 

   if (error)  { 

      perror("getsockname");  

      exit(-1);  

   } /* endif  */ 

   bzero(  &addr,  sizeof(addr));  

   size  = sizeof(addr);  

   error  = getsockname(  s, (struct  sockaddr  *)&addr,  &size  ); 

   if (error)  { 

      perror("getsockname");  

      exit(-1);  

   } /* endif  */ 

   // The  listen  call  enables  this  socket  to receive  incoming  call  

   // that  match  its  BLLI.  

   error  = listen(  s, 10 ); 

   if (error)  { 

      // Listen  will  fail  if the  station  is not connected  to 

      // an ATM  switch.  

      perror("listen");  

      exit(-1);  

   } /* endif  */ 

   size  = sizeof(addr);  

   // The  accept  will  return  a new  socket  of an incoming  call  

   // for  this  socket,  or sleep  until  one  arrives.

 

Chapter 9. Sockets 241



new_s  = accept(  s, (struct  sockaddr  *)&addr,  &size  ); 

   if (new_s  == -1)  { 

      perror("accept");  

      exit(-1);  

   } /* endif  */ 

   // In order  for  the  connection  to be fully  established,  the  

   // SO_ATM_ACCEPT  setsockopt  call  must  be issued.   An application  

   // may  query  the  parameters  first  with  getsockopt  before  deciding  

   // to fully  establish  this  connection  and  change  some  parameters.  

   // If no parameters  are  to be changed  the  third  parameter  may  

   // be NULL,  otherwise  it points  to a indaccept_ie  structure.  

   error  = setsockopt(  new_s,  0, SO_ATM_ACCEPT,  NULL,  0 );  

   if (error)  { 

     perror("setsockopt  ACCEPT");  

     exit(-1);  

   } /* endif  */ 

   while  (1)  { 

      error  = recv(  new_s,  buff,  BUFF_SIZE,  0 ); 

      if (error  ==  -1)  { 

         // If a recv  fails,  the  cause  structure  may  contain  useful  

         // information  for  determining  the  reason  of the  failure.  

         // The  connection  might  have  been  closed  by the other  party,  

         // or the  physical  network  might  have  been  disconnected.  

         // See  the  ATM  UNI  3.0  for  a description  of the  cause  values.  

         // If the  send  failed  for  some  other  reason,  the  errno  will  

         // indicate  this.  

         perror("recv");  

         size  = sizeof(cause_t);  

         error  = getsockopt(new_s,  0, SO_ATM_CAUSE,  

                           (void  *)&cause,  &size);  

         if (error)  { 

            perror("SO_ATM_CAUSE");  

         } else  { 

            printf("cause  = %d\n",  cause.cause  ); 

         } /* endif  */ 

         exit(-1);  

      } else  { 

         printf("received  %d bytes\n",  error);  

      } /* endif  */ 

   } 

} 

Receiving Packets Over Ethernet Example Program 

#include  <stdio.h>  

#include  <sys/ndd_var.h>  

#include  <sys/kinfo.h>  

/* 

 * Get  the  MAC  address  of the  ethernet  adapter  we’re  using...  

 */ 

getaddr(char  *device,  char  *addr)  

{ 

          int  size;  

          struct  kinfo_ndd  *nddp;  

          void  *end;  

          int  found  = 0; 

          size  = getkerninfo(KINFO_NDD,  0, 0, 0);  

          if (size  == 0) { 

                    fprintf(stderr,  "No  ndds.\n");  

                    exit(0);  

          } 

  

          if (size  < 0) { 

                    perror("getkerninfo  1");  

                    exit(1);  

          } 

          nddp  = (struct  kinfo_ndd  *)malloc(size);

 

242 Communications Programming Concepts



if (!nddp)  { 

                    perror("malloc");  

                    exit(1);  

          } 

          if (getkerninfo(KINFO_NDD,  nddp,  &size,  0) < 0) { 

                    perror("getkerninfo  2");  

                    exit(2);  

          } 

          end  = (void  *)nddp  + size;  

          while  (((void  *)nddp  < end)  && !found)  { 

                    if (!strcmp(nddp->ndd_alias,  device)  || 

                              !strcmp(nddp->ndd_name,  device))  { 

                              found++;  

                              bcopy(nddp->ndd_addr,  addr,  6); 

                    } else  

                              nddp++;  

          } 

          return  (found);  

} 

/*  

 * Hex  print  function...  

 */ 

pit(str,  buf,  len)  

u_char  *str;  

u_char  *buf;  

int  len;  

{ 

          int  i;  

          printf("%s",  str);  

          for  (i=0;  i<len;  i++)  

                    printf("%2.2X",  buf[i]);  

          printf("\n");  

          fflush(stdout);  

} 

/*  

 * Ethernet  packet  format...  

 */ 

typedef  struct  { 

          unsigned  char           dst[6];  

          unsigned  char           src[6];  

          unsigned  short          ethertype;  

          unsigned  char           data[1500];  

} xmit;  

main(int  argc,  char  *argv[])  { 

          char  *device;  

          u_int  ethertype;  

          xmit  buf;  

          int  s;  

          struct  sockaddr_ndd_8022  sa;  

          int  cc;  

          if (argc  != 3) { 

                    printf("Usage:  %s  <ifname>  ethertype\n",  argv[0]);  

                    printf("EG:     %s ent0  0x600\n",  argv[0]);  

                    exit(1);  

          } 

          device  = argv[1];  

          sscanf(argv[2],  "%x",  &ethertype);  

          printf("Ethertype:  %x\n",  ethertype);  

          s = socket(AF_NDD,  SOCK_DGRAM,  NDD_PROT_ETHER);  

          if (s < 0) { 

                    perror("socket");  

                    exit(1);  

          } 

          sa.sndd_8022_family  = AF_NDD;  

          sa.sndd_8022_len  = sizeof(sa);  

          sa.sndd_8022_filtertype  = NS_ETHERTYPE;

 

Chapter 9. Sockets 243



sa.sndd_8022_ethertype  = (u_short)ethertype;  

          sa.sndd_8022_filterlen  = sizeof(struct  ns_8022);  

          bcopy(device,  sa.sndd_8022_nddname,  sizeof(sa.sndd_8022_nddname));  

          if (bind(s,  (struct  sockaddr  *)&sa,  sizeof(sa)))  { 

                    perror("bind");  

                    exit(2);  

          } 

        if (connect(s,  (struct  sockaddr  *)&sa,  sizeof(sa))  < 0)  { 

                perror("connect");  

                exit(3);  

        } 

        do { 

                if  ((cc  = read(s,  &buf,  sizeof(buf)))  < 0) { 

                        perror("write");  

                        exit(4);  

                } 

                    if (cc)  { 

                              printf("Read  %d bytes:\n",  cc);  

                              pit("\tsrc  = ",  buf.src,  6);  

                              pit("\tdst  = ",  buf.dst,  6);  

                              pit("\ttype  = ",  &(buf.ethertype),  2); 

                              printf("\tdata  string:  %s\n",  buf.data);  

                    } 

                         } while  (cc  > 0);  

          close(s);  

} 

Sending Packets Over Ethernet Example Program 

#include  <stdio.h>#include  <sys/ndd_var.h>  

#include  <sys/kinfo.h>  

/* 

 * Get  the  MAC  address  of the  ethernet  adapter  we’re  using...  

 */ 

getaddr(char  *device,  char  *addr)  

{ 

          int  size;  

          struct  kinfo_ndd  *nddp;  

          void  *end;  

          int  found  = 0; 

          size  = getkerninfo(KINFO_NDD,  0, 0, 0);  

          if (size  == 0) { 

                    fprintf(stderr,  "No  ndds.\n");  

                    exit(0);  

          } 

  

          if (size  < 0) { 

                    perror("getkerninfo  1");  

                    exit(1);  

          } 

          nddp  = (struct  kinfo_ndd  *)malloc(size);  

  

          if (!nddp)  { 

                    perror("malloc");  

                    exit(1);  

          } 

          if (getkerninfo(KINFO_NDD,  nddp,  &size,  0) < 0) { 

                    perror("getkerninfo  2");  

                    exit(2);  

          } 

          end  = (void  *)nddp  + size;  

          while  (((void  *)nddp  < end)  && !found)  { 

                    if (!strcmp(nddp->ndd_alias,  device)  || 

                              !strcmp(nddp->ndd_name,  device))  { 

                              found++;  

                              bcopy(nddp->ndd_addr,  addr,  6);  

                    } else

 

244 Communications Programming Concepts



nddp++;  

          } 

          return  (found);  

} 

/*  

 * Hex  print  function...  

 */ 

pit(str,  buf,  len)  

u_char  *str;  

u_char  *buf;  

int  len;  

{ 

          int  i;  

          printf("%s",  str);  

          for  (i=0;  i<len;  i++)  

                    printf("%2.2X",  buf[i]);  

          printf("\n");  

          fflush(stdout);  

} 

/*  

 * Ethernet  packet  format...  

 */ 

typedef  struct  { 

          unsigned  char           dst[6];  

          unsigned  char           src[6];  

          unsigned  short           ethertype;  

          unsigned  char           data[1500];  

} xmit;  

/*  

 * Convert  ascii  hardware  address  into  byte  string.  

 */ 

hwaddr_aton(a,  n) 

        char  *a;  

        u_char  *n;  

{ 

        int  i, o[6];  

        i = sscanf(a,  "%x:%x:%x:%x:%x:%x",  &o[0],  &o[1],  &o[2],  

                                           &o[3],  &o[4],  &o[5]);  

        if (i  != 6) { 

                fprintf(stderr,  "invalid  hardware  address  ’%s’\n");  

                return  (0);  

        } 

        for  (i=0;  i<6;  i++)  

                n[i]  = o[i];  

        return  (6);  

} 

main(int  argc,  char  *argv[])  { 

          char  srcaddr[6];  

          char  *device,  dstaddr[6];  

          u_int  ethertype;  

          u_int  count,  size;  

          xmit  buf;  

          int  s;  

          struct  sockaddr_ndd_8022  sa;  

          int  last;  

  

          if (argc  != 6) { 

                 printf("Usage:  %s <ifname>  dstaddr  ethertype  count  size\n",  

                              argv[0]);  

                 printf("EG:     %s  en0  01:02:03:04:05:06  0x600  10 10\n",  

                              argv[0]);  

                    exit(1);  

          } 

          if (!getaddr(argv[1],  srcaddr))  { 

                    printf("interface  not  found\n");  

                    exit(1);  

          }

 

Chapter 9. Sockets 245



device=argv[1];  

          hwaddr_aton(argv[2],  dstaddr);  

          pit("src  addr  = ", srcaddr,  6);  

          pit("dst  addr  = ", dstaddr,  6);  

          sscanf(argv[3],  "%x",  &ethertype);  

          count  = atoi(argv[4]);  

          size  = atoi(argv[5]);  

          if (size  > 1500)  

                    size  = 1500;  

          if (size  < 60)  

                    size  = 60;  

          printf("Ethertype:  %x\n",  ethertype);  

          printf("Count:  %d\n",  count);  

          printf("Size:  %d\n",  size);  

  

          s = socket(AF_NDD,  SOCK_DGRAM,  NDD_PROT_ETHER);  

          if (s < 0) { 

                    perror("socket");  

                    exit(1);  

          } 

          sa.sndd_8022_family  = AF_NDD;  

          sa.sndd_8022_len  = sizeof(sa);  

          sa.sndd_8022_filtertype  = NS_ETHERTYPE;  

          sa.sndd_8022_ethertype  = (u_short)ethertype;  

          sa.sndd_8022_filterlen  = sizeof(struct  ns_8022);  

          bcopy(device,  sa.sndd_8022_nddname,  sizeof(sa.sndd_8022_nddname));  

          if (bind(s,  (struct  sockaddr  *)&sa,  sizeof(sa)))  { 

                    perror("bind");  

                    exit(2);  

          } 

          bcopy(dstaddr,  buf.dst,  sizeof(buf.dst));  

          bcopy(srcaddr,  buf.src,  sizeof(buf.src));  

          buf.ethertype  = (u_short)ethertype;  

          if (connect(s,  (struct  sockaddr  *)&sa,  sizeof(sa))  < 0)  { 

                    perror("connect");  

                    exit(3);  

          } 

          last  = count;  

          while  (count--  > 0) { 

                    sprintf(buf.data,  "Foo%d",  last-count);  

                    if (write(s,  &buf,  size)  < 0)  { 

                              perror("write");  

                              exit(4);  

                    } 

          } 

          close(s);  

} 

Analyzing Packets Over the Network Example Program 

/* 

 * Simple  sniffer  to capture  802.2  frames  on 802.3  ethernet,  token  ring,  

 * FDDI,  and  other  CDLI  devices  that  support  802.2  encapsulation...  

 */ 

#include  <stdio.h>  

#include  <sys/types.h>  

#include  <sys/ndd_var.h>  

#include  <sys/tok_demux.h>  

#include  <netinet/if_802_5.h>  

main(argc,  argv)  

int  argc;  

char  *argv[];  

{ 

          int         s; 

          struct  sockaddr_ndd_8022  sa;  

          struct  sockaddr_ndd_8022  from;

 

246 Communications Programming Concepts



struct  sockaddr  *fromp  = (struct  sockaddr  *)&from;  

          int  len;  

          char  buf[2000];  

          int  cc;  

          u_long  fromlen;  

          int  sap;  

          struct  ie5_mac_hdr  *macp  = (struct  ie5_mac_hdr  *)buf;  

          struct  ie2_llc_hdr  *llcp;  

          if (argc  != 3) { 

                    printf("Usage  %s <interface>  <sap>\n",  argv[0]);  

                    exit(1);  

          } 

          sscanf(argv[2],  "%x",  &sap);  

          printf("sap  is %x\n",  sap);  

          s = socket(AF_NDD,  SOCK_DGRAM,  0);  

          if (s < 0) { 

                    perror("socket");  

                    exit(1);  

          } 

          sa.sndd_8022_family  = AF_NDD;  

          sa.sndd_8022_len  = sizeof(struct  sockaddr_ndd_8022);  

          sa.sndd_8022_filtertype  = NS_TAP;  

          sa.sndd_8022_filterlen  = sizeof(ns_8022_t);  

          strcpy(sa.sndd_8022_nddname,  argv[1]);  

          if (bind(s,  (struct  sockaddr  *)&sa,  sizeof(struct  sockaddr_ndd_8022)))  { 

                    perror("bind");  

                    exit(2);  

          } 

          len  = sizeof(buf);  

          fromlen  = sizeof(from);  

          while  (TRUE)  { 

                    if ((cc  = recvfrom(s,  buf,  len,  0, fromp,  &fromlen))  < 0) { 

                              perror("recvfrom");  

                              exit(3);  

                    } 

                    if (!strcmp(argv[1],  "ent0"))  

                    llcp  = (struct  ie2_llc_hdr  *)(buf+14);  

                    else  

                             llcp  = (struct  ie2_llc_hdr  *)(buf  + mac_size(macp));  

                    if ((llcp->dsap  == sap)  || (llcp->ssap  == sap))  

                             printit(buf,  cc);  

          } 

} 

printit(char  *buf,  int  cc)  

{ 

          int  i;  

          printf("FRAME:  ");  

          for  (i=0;  i < cc;  i++)  

                    printf("%2.2x",  *(buf+i));  

          printf("\n");  

} 

List of Socket Programming References 

The list includes: 

v   “Kernel Service Subroutines” 

v   “Network Library Subroutines” on page 248 

v   “Header Files” on page 249 

v   “Protocols” on page 249

Kernel Service Subroutines 

 accept  Accepts a connection on a socket to create a new socket. 

 

Chapter 9. Sockets 247



bind  Binds a name to a socket. 

connect  Connects two sockets. 

getdomainname  Gets the name of the current domain. 

gethostid  Gets the unique identifier of the current host. 

gethostname  Gets the unique name of the current host. 

getpeername  Gets the name of the peer socket. 

getsockname  Gets the socket name. 

getsockopt  Gets options on sockets. 

listen  Listens for socket connections and limits the backlog of incoming connections. 

recv  Receives messages from connected sockets. 

recvfrom  Receives messages from sockets. 

recvmsg  Receives a message from any socket. 

send  Sends messages from a connected socket. 

sendmsg  Sends a message from a socket by using a message structure. 

sendto  Sends messages through a socket. 

send_file  Sends the contents of a file through a socket. 

setdomainname  Sets the name of the current domain. 

sethostid  Sets the unique identifier of the current host. 

sethostname  Sets the unique name of the current host. 

setsockopt  Sets socket options. 

shutdown  Shuts down all socket send and receive operations. 

socket  Creates an end point for communication and returns a descriptor. 

socketpair  Creates a pair of connected sockets.
  

Network Library Subroutines 

 dn_comp  Compresses a domain name. 

dn_expand  Expands a compressed domain name. 

endhostent  Ends retrieval of network host entries. 

endnetent  Closes the networks  file. 

endprotoent  Closes the /etc/protocols  file. 

endservent  Closes the /etc/service  file entry. 

gethostbyaddr  Gets network host entry by address. 

gethostbyname  Gets network host entry by name. 

gethostent  Gets host entry from the /etc/hosts  file. 

getnetbyaddr  Gets network entry by address. 

getnetbyname  Gets network entry by name. 

getnetent  Gets network entry. 

getprotobyname  Gets protocol entry from the /etc/protocols  file by protocol name. 

getprotobynumber  Gets a protocol entry from the /etc/protocols  file by number. 

getprotoent  Gets protocol entry from the /etc/protocols  file. 

_getlong  Retrieves long byte quantities. 

_getshort  Retrieves short byte quantities. 

getservbyname  Gets service entry by name. 

getservbyport  Gets service entry by port. 

getservent  Gets services file entry. 

htonl  Converts an unsigned long integer from host byte order to Internet-network byte 

order. 

htons  Converts an unsigned short integer from host byte order to Internet-network 

byte order. 

inet_addr  Converts Internet addresses to Internet numbers. 

inet_lnaof  Separates local Internet addresses into their network number and local network 

address. 

inet_makeaddr  Makes an Internet address. 

 

248 Communications Programming Concepts



inet_netof  Separates network Internet addresses into their network number and local 

network address. 

inet_network  Converts Internet network addresses in . (dot) notation to Internet numbers. 

inet_ntoa  Converts an Internet address into an ASCII string. 

ntohl  Converts an unsigned long integer from Internet-network standard byte order to 

host byte order. 

ntohs  Converts an unsigned short integer from Internet-network byte order to host 

byte order. 

_putlong  Places long byte quantities into the byte stream. 

_putshort  Places short byte quantities into the byte stream. 

rcmd  Allows execution of commands on a remote host. 

res_init  Searches for a default domain name and Internet address. 

res_mkquery  Makes query messages for name server. 

res_query  Provides an interface to the server query mechanism. 

res_search  Makes a query and awaits a response. 

res_send  Sends a query to a name server and retrieves a response. 

rexec  Allows command execution on a remote host. 

rresvport  Retrieves a socket with a privileged address. 

ruserok  Allows servers to authenticate clients. 

sethostent  Opens network host file. 

setnetent  Opens and rewinds the network file. 

setprotoent  Opens and rewinds the /etc/protocols  file. 

setservent. Opens and rewinds the service file. 

socks5tcp_connect  Connect to a SOCKS version 5 server and request a connection to an external 

destination. 

socks5tcp_bind  Connect to a SOCKS version 5 server and request a listening socket for 

incoming remote connections. 

socks5tcp_accept  Awaits an incoming connection to a socket from a previous socks5tcp_bind call. 

socks5udp_associate  Connects to a SOCKS version 5 server and requests a UDP association for 

subsequent UDP socket communications. 

socks5udp_sendto  Send UDP packets through a SOCKS version 5 server. 

socks5_getserv  Returns the address of the SOCKS version 5 server (if any) to use when 

connecting to a given destination.
  

Header Files 

 /usr/include/netinet/in.h  Defines Internet constants and structures. 

/usr/include/arpa/nameser.h  Contains Internet name-server information. 

/usr/include/netdb.h  Contains data definitions for socket subroutines. 

/usr/include/resolv.h  Contains resolver global definitions and variables. 

/usr/include/sys/socket.h  Contains data definitions and socket structures. 

/usr/include/sys/socketvar.h  Defines the kernel structure per socket and contains buffer 

queues. 

/usr/include/sys/types.h  Contains data type definitions. 

/usr/include/sys/un.h  Defines structures for the UNIX Interprocess Communication 

domain.
  

Protocols 

 PF_UNIX  Local communication 

PF_INET  Internet (TCP/IP)

 

Chapter 9. Sockets 249



250 Communications Programming Concepts



Chapter  10.  STREAMS  

STREAMS is a general, flexible facility and a set of tools for developing system communication services. 

With STREAMS, developers can provide services ranging from complete networking protocol suites to 

individual device drivers. 

This chapter provides an overview of the major STREAMS concepts. Consult UNIX  System  V Release  4, 

Programmer’s  Guide:  STREAMS  and Data  Link  Provider  Interface  Specification  for additional information. 

The following concepts are discussed: 

v   “STREAMS Introduction” 

v   “Benefits and Features of STREAMS” on page 254 

v   “STREAMS Flow Control” on page 256 

v   “STREAMS Synchronization” on page 257 

v   “Using STREAMS” on page 264 

v   “STREAMS Tunable Parameters” on page 265 

v   “streamio (STREAMS ioctl) Operations” on page 267 

v   “Building STREAMS” on page 267 

v   “STREAMS Messages” on page 270 

v   “Put and Service Procedures” on page 273 

v   “STREAMS Drivers and Modules” on page 274 

v   “log Device Driver” on page 277 

v   “Configuring Drivers and Modules in the Portable Streams Environment” on page 279. 

v   “An Asynchronous Protocol STREAMS Example” on page 282 

v   “Differences Between Portable Streams Environment and V.4 STREAMS” on page 287 

v   “List of STREAMS Programming References” on page 289 

v   “Transport Service Library Interface Overview” on page 291

STREAMS Introduction 

STREAMS represent a collection of system calls, kernel resources, and kernel utility routines that can 

create, use, and dismantle a stream. A stream  is a full-duplex processing and data transfer path between a 

driver in kernel space and a process in user space. 

The STREAMS mechanism constructs a stream by serially connecting kernel-resident STREAMS 

components, each constructed from a specific set of structures. As shown in the Stream Detail figure 

(Figure 32 on page 252), the primary STREAMS components are: 

 stream  head  Provides the interface between the stream and user processes. Its principal function is to 

process STREAMS-related user system calls. STREAMS system calls can be used from 

64-bit and 32-bit user processes. 

module  Processes data that travels between the stream head and driver. Modules are optional. 

stream  end  Provides the services of an external input/output device or an internal software driver. The 

internal software driver is commonly called a pseudo-device driver.
  

 

 

© Copyright IBM Corp. 1994, 2007 251



STREAMS defines standard interfaces for character input and output within the system kernel and 

between the kernel and the rest of the system. The associated mechanism is simple and open-ended. It 

consists of a set of system calls, kernel resources, and kernel utility routines. The standard interface and 

open-ended mechanism enable modular, portable development and easy integration of high-performance 

network services and components. STREAMS does not impose any specific network architecture. Instead, 

it provides a powerful framework with a consistent user interface that is compatible with the existing 

character input/output interface. 

Using a combination of system calls, kernel routines, and kernel utilities, STREAMS passes data between 

a driver and the stream head in the form of messages. Messages that are passed from the stream head 

toward the driver are said to travel downstream  while messages passed in the other direction travel 

upstream. 

Stream Head 

The stream head transfers data between the data space of a user process and STREAMS kernel data 

space. Data sent to a driver from a user process is packaged into STREAMS messages and transmitted 

  

Figure  32.  Stream  Detail.  This  diagram  shows  the  user  process  at the  top  with  a bidirectional  arrow  going  into  the  

kernel  space  to the stream  head.  On the downstream  path  (or left)  an arrow  travels  from  the  stream  head  to queue  

“Bd”  in module  B, and  then  an  arrow  goes  to queue  “Ad”  in module  A (with  message  “Ad”  as a parameter).  An arrow  

then  travels  from  queue  “Ad”  to queue  pair  in the  stream  end.  The  driver  routine  is connected  to the  queue  pair  in the  

driver.  There  is a bidirectional  arrow  from  the driver  routine  to the  external  interface.  On the  upstream  path  (or right),  

an arrow  travels  from  the  queue  pair  to queue  “Au”  in module  A, and  then  an arrow  travels  to queue  “Bu”  in module  B 

(with  message  “Bu”  as a parameter).  An  arrow  then  travels  from  queue  “Bu”  to the  stream  head.

 

252 Communications Programming Concepts



downstream. Downstream messages arriving at the stream head are processed by the stream head, and 

data is copied from user buffers. STREAMS can insert one or more modules into a stream between the 

stream head and the driver to process data passing between the two. 

The stream head provides an interface between the stream and an application program. The stream head 

processes STREAMS-related operations from the application and performs the bidirectional transfer of 

data and information between the application (in user space) and messages (in STREAMS kernel space). 

Messages are the only means of transferring data and communicating within a stream. A STREAMS 

message contains data, status or control information, or a combination of both. Each message includes a 

specified message type indicator that identifies the contents. 

For more information about the STREAMS message-passing scheme, see “STREAMS Messages” on 

page 270. 

Modules 

A module performs intermediate transformations on messages passing between the stream head and the 

driver. Zero or more modules can exist in a stream (zero when the driver performs all the required 

character and device processing). 

Each module is constructed from a pair of QUEUE structures (see the Au/Ad QUEUE pair and the Bu/Bd 

QUEUE pair in the Stream Detail diagram shown previously). A pair of such structures is required to 

implement the bidirectional and symmetrical attributes of a stream. One QUEUE (such as the Au or Bu 

QUEUE) performs functions on messages passing upstream through the module. The other QUEUE (the 

Ad or Bd QUEUE) performs another set of functions on downstream messages. (A QUEUE, which is part 

of a module, is different from a message queue, which is described in “STREAMS Flow Control” on page 

256.) 

Each of the two QUEUEs in a module generally have distinct functions; that is, unrelated processing 

procedures and data. The QUEUEs operate independently so that the Au QUEUE does not know if a 

message passes though the Ad QUEUE unless the Ad QUEUE is programmed to inform it. Messages and 

data can be shared only if the developer specifically programs the module functions to perform the 

sharing. 

Each QUEUE can directly access the adjacent QUEUE in the direction of message flow (for example, Au 

to Bu or stream head to Bd). In addition, within a module, a QUEUE can readily locate its mate and 

access its messages (for example, for echoing) and data. 

Each QUEUE in a module can contain or point to: 

v   Messages — These are dynamically attached to the QUEUE on a linked list, or message queue (see 

Ad and Bu in the Figure 32 on page 252), as they pass through the module. 

v   Processing procedures — A put procedure must be incorporated in each QUEUE to process messages. 

An optional service procedure for sharing the message processing with the put procedure can also be 

incorporated. According to their function, the procedures can send messages upstream or downstream, 

and they can also modify the private data in their module. 

For more information about processing procedures, see “Put and Service Procedures” on page 273. 

v   Data — Developers can provide private data if required by the QUEUE to perform message processing 

(for example, state information and translation tables).

In general, each of the two QUEUEs in a module has a distinct set of all these elements. Additional 

module elements are described later. Although depicted as distinct from modules, a stream head and a 

stream end also contain a pair of QUEUEs. 

 

Chapter 10. STREAMS 253



Stream End 

A stream end is a module in which the module processing procedures are the driver routines. The 

procedures in the stream end are different from those in other modules because they are accessible from 

an external device and because the STREAMS mechanism allows multiple streams to be connected to the 

same driver. 

The driver can be a device driver, providing an interface between kernel space and an external 

communications device, or an internal pseudo-device driver. A pseudo-device driver is not directly related 

to any external device, and it performs functions internal to the kernel. 

Device drivers must transform all data and status or control information between STREAMS message 

formats and their external representation. For more information on the differences between STREAMS and 

character device drivers, see “STREAMS Drivers and Modules” on page 274. 

STREAMS Modularity 

STREAMS modularity and design reflect the layers and option characteristics of contemporary networking 

architectures. The basic components in a STREAMS implementation are referred to as modules  (see 

“Modules” on page 275). The modules, which reside in the kernel, offer a set of processing functions and 

associated service interfaces. From a user level, modules can be selected dynamically and interconnected 

to provide any rational processing sequence. Kernel programming, assembly, and link editing are not 

required to create the interconnection. Modules can also be dynamically plugged into existing connections 

from user level. STREAMS modularity allows: 

v   User-level programs that are independent of underlying protocols and physical communication media 

v   Network architectures and high-level protocols that are independent of underlying protocols, drivers, and 

physical communication media 

v   High-level services that can be created by selecting and connecting low-level services and protocols 

v   Enhanced portability of protocol modules, resulting from the well-defined structure and interface 

standards of STREAMS.

STREAMS Facilities 

In addition to modularity, STREAMS provides developers with integral functions, a library of utility routines, 

and facilities that expedite software design and implementation. The principal facilities are: 

 Buffer management Maintains an independent buffer pool for STREAMS. 

Scheduling Incorporates a scheduling mechanism for STREAMS. 

Asynchronous operation of STREAMS 

and user processes 

Allows STREAMS-related operations to be performed efficiently from user 

level.
  

Other facilities include flow control (“STREAMS Flow Control” on page 256) to conserve STREAMS 

memory and processing resources. 

Benefits and Features of STREAMS 

STREAMS offers two major benefits for applications programmers: 

v   Easy creation of modules that offer standard data communications services. See “Creating Service 

Interfaces” on page 255. 

v   The ability to manipulate those modules on a stream. See “Manipulating Modules” on page 255.

Additional STREAMS features are provided to handle characteristic problems of protocol implementation 

and to assist in development. There are also kernel- and user-level facilities that support the 

implementation of advanced functions and allow asynchronous operation of a user process and STREAMS 

input and output. The following features are discussed: 

 

254 Communications Programming Concepts



v   “STREAMS Flow Control” on page 256 

v   “STREAMS Synchronization” on page 257

Creating Service Interfaces 

One benefit of STREAMS is that it simplifies the creation of modules that present a service interface to 

any neighboring application program, module, or device driver. A service interface is defined at the 

boundary between two neighbors. In STREAMS, a service interface is a specified set of messages and the 

rules for allowable sequences of these messages across the boundary. A module that implements a 

service interface will receive a message from a neighbor and respond with an appropriate action (for 

example, send back a request to retransmit) based on the specific message received and the preceding 

sequence of messages. 

STREAMS provides features that make it easier to design various application processes and modules to 

common service interfaces. If these modules are written to comply with industry-standard service 

interfaces, they are called protocol  modules. 

In general, any two modules can be connected anywhere in a stream. However, rational sequences are 

generally constructed by connecting modules with compatible protocol service interfaces. 

Manipulating Modules 

STREAMS provides the capabilities to manipulate modules from user level, to interchange modules with 

common service interfaces, and to present a service interface to a stream user process. These capabilities 

yield benefits when implementing networking services and protocols, including: 

v   User-level programs can be independent of underlying protocols and physical communication media. 

v   Network architectures and high-level protocols can be independent of underlying protocols, drivers, and 

physical communication media. 

v   Higher-level services can be created by selecting and connecting lower-level services and protocols.

Examples of the benefits of STREAMS capabilities to developers for creating service interfaces and 

manipulating modules are: 

v   “Protocol Substitution” 

v   “Module Reusability”

Protocol Substitution 

Alternative protocol modules (and device drivers) can be interchanged on the same machine if they are 

implemented to equivalent service interfaces. 

Module Reusability 

The Module Reusability figure (Figure 33 on page 256) shows the same canonical module (for example, 

one that provides delete and kill processing on character strings) reused in two different streams. This 

module typically is implemented as a filter, with no downstream service interface. In both cases, a tty 

interface is presented to the stream user process because the module is nearest the stream head. 

 

 

Chapter 10. STREAMS 255



STREAMS Flow Control 

Even on a well-designed system, general system delays, malfunctions, and excessive accumulation on 

one or more streams can cause the message buffer pools to become depleted. Additionally, processing 

bursts can arise when a service procedure in one module has a long message queue and processes all its 

messages in one pass. STREAMS provides an independent mechanism to guard its message buffer pools 

from being depleted and to minimize long processing bursts at any one module. 

Note:   Flow control is applied only to normal priority messages. 

The flow control mechanism is local to each stream and is advisory (voluntary), and it limits the number of 

characters that can be queued for processing at any QUEUE in a stream. This mechanism limits the 

buffers and related processing at any one QUEUE and in any one stream, but does not consider buffer 

pool levels or buffer usage in other streams. 

The advisory mechanism operates between the two nearest QUEUEs in a stream containing service 

procedures. Messages are generally held on a message queue only if a service procedure is present in 

the associated QUEUE. 

Messages accumulate at a QUEUE when its service procedure processing does not keep pace with the 

message arrival rate, or when the procedure is blocked from placing its messages on the following stream 

component by the flow-control mechanism. Pushable modules contain independent upstream and 

downstream limits, which are set when a developer specifies high-water and low-water control values for 

the QUEUE. The stream head contains a preset upstream limit (which can be modified by a special 

message sent from downstream) and a driver may contain a downstream limit. 

STREAMS flow control operates in the following order: 

Class 1
Transport
Protocol

SAME
INTERFACE

User
Process

Canonical
Module

LAPB
Driver

Module Reusability Diagram

User
Process

Canonical
Module

SAME
Module

Raw
TTY
Driver

  

Figure  33.  Module  Reusability  Diagram.  This  diagram  shows  two  of the  same  user  processes  using  the  same  interface  

to communicate  with  two  different  streams.  The  first  stream  contains  the  following  elements,  which  are  connected  with  

bidirectional  arrows:  same  interface,  canonical  module,  class  1 transport  protocol,  and  LAPB  driver.  The  second  

stream  contains  the following  elements,  which  are  connected  with  bidirectional  arrows:  same  interface,  canonical  

module,  and  raw  TTY  driver.  In each  stream,  the  elements  below  the  a dashed  line  representing  the  same  interface  

are  in the  same  module.

 

256 Communications Programming Concepts



1.   Each time a STREAMS message-handling routine (for example, the putq  utility) adds or removes a 

message from a message queue in a QUEUE, the limits are checked. STREAMS calculates the total 

size of all message blocks on the message queue. 

2.   The total is compared to the QUEUE high-water and low-water values. If the total exceeds the 

high-water value, an internal full indicator is set for the QUEUE. The operation of the service procedure 

in this QUEUE is not affected if the indicator is set, and the service procedure continues to be 

scheduled (see “Service Procedures” on page 274). 

3.   The next part of flow control processing occurs in the nearest preceding QUEUE that contains a 

service procedure. In the Flow Control diagram (Figure 34), if D is full and C has no service procedure, 

then B is the nearest preceding QUEUE. 

 

4.   In the Flow Control Diagram, the service procedure in B uses a STREAMS utility routine to see if a 

QUEUE ahead is marked full. If messages cannot be sent, the scheduler blocks the service procedure 

in B from further execution. B remains blocked until the low-water mark of the full QUEUE D is 

reached. 

5.   While B is blocked (in the Flow Control Diagram), any nonpriority messages that arrive at B will 

accumulate on its message queue (recall that priority messages are not blocked). In turn, B can reach 

a full state and the full condition will propagate back to the last module in the stream. 

6.   When the service procedure processing on D (in the Flow Control Diagram) causes the message block 

total to fall below the low-water mark, the full indicator is turned off. Then STREAMS automatically 

schedules the nearest preceding blocked QUEUE (in this case, B) and gets things moving again. This 

automatic scheduling is known as back-enabling  a QUEUE.

To use flow control, a developer need only call the utility that tests if a full condition exists ahead (for 

example, the canput  utility), and perform some housekeeping if it does. Everything else is automatically 

handled by STREAMS. 

For more information about the STREAMS message-passing scheme, see “STREAMS Messages” on 

page 270. 

STREAMS Synchronization 

In a multi-threaded environment, several threads may access the same stream, the same module, or even 

the same queue at the same time. In order to protect the STREAMS resources (queues and other specific 

data), STREAMS provides per-thread resource synchronization. This synchronization is ensured by 

STREAMS and is completely transparent to the user. 

Read the following to learn more about STREAMS synchronization: 

v   “Synchronization Mechanism” on page 258 

v   “Synchronization of timeout and bufcall Utilities” on page 258 

v   “Synchronization Levels” on page 258 

Queue
    B

Queue
     C

Queue
    D

Message
Queue

Flow Control Diagram

Message
Queue

  

Figure  34.  Flow  Control.  This  diagram  shows  queue  B, queue  C, and  queue  D side-by-side.  Beside  each  queue  is an 

arrow  coming  from  the left  pointing  toward  that  queue,  then  another  arrow  leaving  that  queue  and  pointing  to the  

queue  on the  right.  There  are  dashed  arrows  leading  down  from  queue  B and  queue  D to message  queues.

 

Chapter 10. STREAMS 257



v   “Per-stream Synchronization” on page 262 

v   “Queue-Welding Mechanism” on page 263

Synchronization Mechanism 

STREAMS uses a synchronization-queueing mechanism that maximizes execution throughput. A 

synchronization queue is a linked list of structures. Each structure encapsulates a callback to a function 

attempting to access a resource. A thread which cannot block (a service procedure, for example) can 

access the resource using a transparent call. 

v   If the resource is already held by another thread, the thread puts a request on the resource’s 

synchronization queue. 

v   If the resource is free, the thread executes its request immediately. After having done its job, and before 

releasing the resource, the thread goes through the synchronization queue and executes all the pending 

requests. 

In either case, the call returns immediately. Routines performing synchronous operations, like stream head 

routines, are blocked until they gain access to the resource. Although the mechanism is completely 

transparent, the user needs to set the adequate synchronization level. 

Synchronization of timeout and bufcall Utilities 

On multiprocessor systems, the timeout  and bufcall  utilities present a particular problem to the 

synchronization mechanism. These utilities specify a callback function. Multiprocessor-safe modules or 

drivers require that the callback functions be interrupt-safe. 

Multiprocessor-safe modules or drivers are designed to run on any processor. They are very similar to 

multiprocessor-safe device drivers. Interrupt-safe functions serialize their code with interrupt handlers. 

Functions such as the qenable  utility or the wakeup  kernel service are interrupt-safe. 

To support callback functions that are not interrupt-safe, the STR_QSAFETY  flag can be set when calling 

the str_install  utility. When this flag is set, STREAMS ensures the data integrity of the module. Using this 

flag imposes an overhead to the module or driver, thus it should only be used when porting old code. 

When writing new code, callback functions must be interrupt-safe. 

Synchronization Levels 

The STREAMS synchronization mechanism offers flexible selection of synchronization levels. It is possible 

to select the set of resources serialized by one synchronization queue. 

The synchronization levels are set dynamically by calling the str_install  utility when a module or a driver 

is loaded. The synchronization levels are implemented by linking synchronization queues together, so that 

one synchronization queue is used for several resources. The following synchronization levels are defined: 

v   “No Synchronization Level” 

v   “Queue-Level Synchronization” on page 259 

v   “Queue Pair-Level Synchronization” on page 259 

v   “Module-Level Synchronization” on page 260 

v   “Arbitrary-Level Synchronization” on page 261 

v   “Global-Level Synchronization” on page 262

No Synchronization Level 

No synchronization level indicates that each queue can be accessed by more than one thread at the same 

time. The protection of internal data and of put  and service  routines against the timeout  or bufcall  

utilities is done by the module or driver itself. 

This synchronization level is typically used by multiprocessor-efficient modules. 

 

258 Communications Programming Concepts



Queue-Level Synchronization 

Queue-level synchronization protects an individual message queue. The module must ensure that no data 

inconsistency may occur when two different threads access both upstream and downstream queues at the 

same time. 

This is the lowest level of synchronization available. It is typically used by modules with no need for 

synchronization, either because they share no state or provide their own synchronization or locking. 

In the STREAMS Queue-Level Synchronization figure (Figure 35), the queue Bd (downstream queue of 

module B) is protected by queue-level synchronization. The bolded box shows the protected area; only 

one thread can access this area. 

   

Queue Pair-Level Synchronization 

Queue pair-level synchronization protects the pair of message queues (downstream and upstream) of one 

instance of a module. The module may share common data between both queues, but it cannot assume 

that two instances of the module are accessed by two different threads at the same time. 

Queue pair-level synchronization is a common synchronization level for most modules that have only 

per-stream data, such as TTY line disciplines. All stream-head queues are synchronized at this level. 

In the Queue Pair-Level Synchronization figure (Figure 36 on page 260), the queue pair of module B’s left 

instance is protected by queue pair-level synchronization. The boxes highlighted in bold show the 

protected area; only one thread can access this area. 

 

  

Figure  35.  STREAMS  Queue-Level  Synchronization.  This  diagram  shows  two  streams,  with  two  modules  each,  where  

the  first  module  in each  stream  is an instance  of the  same  module  (Module  B). The  first  stream  (on  the  left)  contains  

the  protected  Queue  “Bd”,  which  is downstream  in the  first  instance  of Module  B.

 

Chapter 10. STREAMS 259



Module-Level Synchronization 

Module-level synchronization protects all instances of one module or driver. The module (or driver) can 

have global data, shared among all instances of the module. This data and all message queues are 

protected against concurrent access. 

Module-level synchronization is the default synchronization level. Modules protected at this level are not 

required to be thread-safe, because multiple threads cannot access the module. Module-level 

synchronization is also used by modules that maintain shared state information. 

In the Module-Level Synchronization figure Figure 37 on page 261), module B (both instances) is protected 

by module-level synchronization. The boxes highlighted in bold show the protected area; only one thread 

can access this area. 

 

  

Figure  36.  Queue  Pair-Level  Synchronization.  This  diagram  shows  two  streams,  with  two  modules  each,  where  the 

first  module  in each  stream  is an instance  of the  same  module  (Module  B).  The  first  stream  (on the  left)  contains  two  

protected  queues:  Queue  “Bd  ”which  is downstream  in the  first  instance  of Module  B, and  Queue  “Bu”  which  is 

upstream  in the  first  instance  of Module  B.

 

260 Communications Programming Concepts



Arbitrary-Level Synchronization 

Arbitrary-level synchronization protects an arbitrary group of modules or drivers (including all instances of 

each module or driver). A name passed when setting this level (with the str_install  utility) is used to 

associate modules together. The name is decided by convention among cooperating modules. 

Arbitrary-level synchronization is used for synchronizing a group of modules that access each other’s data. 

An example might be a networking stack such as a Transmission Control Protocol (TCP) module and an 

Internet Protocol (IP) module, both of which share data. Such modules might agree to pass the string 

″tcp/ip″. 

In the Arbitrary-Level Synchronization figure (Figure 38 on page 262), modules A and B are protected by 

arbitrary-level synchronization. Module A and both instances of module B are in the same group. The 

boxes highlighted in bold show the protected area; only one thread can access this area. 

 

  

Figure  37.  Module-Level  Synchronization.  This  diagram  shows  two  streams,  with  two  modules  each,  where  the  first 

module  in each  stream  is an instance  of the  same  module  (Module  B).  Each  instance  of Module  B in each  of the  two 

streams  is protected  by module-level  synchronization.

 

Chapter 10. STREAMS 261



Global-Level Synchronization 

Global-level synchronization protects the entire STREAMS. 

Note:   This level can be useful for debugging purposes, but should not be used otherwise. 

Per-stream Synchronization 

Synchronization levels take all their signification in multiprocessor systems. In a uniprocessor system, the 

benefit of synchronization is reduced; and sometimes it is better to provide serialization rather than 

concurrent execution. The per-stream synchronization provides this serialization on a whole stream and 

can be applied only if the whole stream accepts to run on this mode. Two conditions are required for a 

module or driver to run at per-stream-synchronization level: 

v   The STR_PERSTREAM  flag must be set when calling the str_install  utility. 

v   Either the queue level or the queue pair-level synchronization must be set when calling the str_install  

utility.

If a module that does not support the per-stream synchronization is pushed in the stream, then all other 

modules and drivers will be reset to their original synchronization level (queue level or the queue-pair 

level). 

In the same way, if a module that was not supporting the per-stream synchronization is popped out of the 

stream, a new check of the stream is done to see if it now deals with a per-stream synchronization. 

  

Figure  38.  Arbitrary-Level  Synchronization.  This  diagram  shows  two  streams,  with  two  modules  each,  where  the  first 

module  in each  stream  is an instance  of the  same  module  (Module  B).  Each  instance  of Module  B in each  of the  two  

streams  is protected.  Module  A, the  other  module  in the  first  stream,  is also  protected  by  the  arbitrary-level  

synchronization.

 

262 Communications Programming Concepts



Queue-Welding  Mechanism 

The STREAMS synchronization-queueing mechanism allows only one queue to be accessed at any one 

time. In some cases, however, it is necessary for a thread to establish queue connections between 

modules that are not in the same stream. 

These queue connections (welding mechanism) are especially useful for STREAMS multiplexing and for 

echo-like STREAMS drivers. 

Welding Queues 

STREAMS uses a special synchronization queue for welding queues. As for individual queue 

synchronization, the welding and unwelding requests are queued. The actual operation is done safely by 

STREAMS, without any risk of deadlocks. 

The weldq  and unweldq  utilities, respectively, establish and remove connections between one or two 

pairs of module or driver queues. Because the actual operation is done asynchronously, the utilities specify 

a callback function and its argument. The callback function is typically the qenable  utility or the e_wakeup  

kernel service. 

During the welding or unwelding operation, both pairs of queues are acquired, as shown in the STREAMS 

Queue-Welding Synchronization figure (Figure 39). However, it may be necessary to prevent another 

queue, queue pair, module, or group of modules from being accessed during the operation. Therefore, an 

additional queue can be specified when calling the weldq  or unweldq  utility; this queue will also be 

acquired during the operation. Depending on the synchronization level of the module to which this queue 

belongs, the queue, the queue pair, the module instance, all module instances, or an arbitrary group of 

modules will be acquired. 

 

 For example, in the Queue Welding Using an Extra Queue figure (Figure 40 on page 264), the welding is 

done using the queue Bd as an extra synchronization queue. Module B is synchronized at module level. 

  

Figure  39.  STREAMS  Queue-Welding  Synchronization.  This  diagram  shows  two  streams  side-by  side,  each  acquiring  

a queue  from  the  other.  The  first  stream  (on  the  left)  contains  two  modules  with  two  queues  each,  as follows  (from  the  

top):  Module  B with  Queue  “Bd”  and  Queue  “Bu”,  as  well  as  Module  A with  Queues  “Ad”  and  “Au”.  The  second  stream  

contains  two  modules  with  two  queues  each  as follows  (from  the top):  Module  D with  Queue  “Dd”  and  Queue  “Du”,  as 

well  as Module  C with  Queues  “Cd”  and  “Cu”.  A dotted  arrow  leads  from  Queue  “Ad”  to Queue  “Cu”.  Another  dotted  

arrow  leads  from  Queue  “Cd”  to Queue  “Au”.  The  four  queues  involved  are  highlighted;  they  are  Queues  “Ad”,  “Cu”,  

“Cd”,  and  “Au”.

 

Chapter 10. STREAMS 263



Therefore, the queues Ad, Au, Cd, and Cu and all instances of module B will all be acquired for performing 

the weld operation. 

   

Using STREAMS 

Applications programmers can take advantage of the STREAMS facilities by using a set of system calls, 

subroutines, utilities, and operations (see “List of STREAMS Programming References” on page 289). The 

subroutine interface is upward-compatible with the existing character I/O facilities. 

Subroutines 

The open, close, read, and write  subroutines support the basic set of operations on streams. In addition, 

new operations support advanced STREAMS facilities. 

The poll  subroutine enables an application program to poll multiple streams for various events. When 

used with the I_SETSIG  operation, the poll  subroutine allows an application to process I/O in an 

asynchronous manner. 

The following is a set of STREAMS-related subroutines: 

 open  Opens a stream to the specified driver. 

close  Closes a stream. 

read  Reads data from a stream. Data is read in the same manner as character files and devices. 

write  Writes data to a stream. Data is written in the same manner as character files and devices. 

poll  Notifies the application program when selected events occur on a stream.
  

System Calls 

The putmsg  and getmsg  system calls enable application programs to interact with STREAMS modules 

and drivers through a service interface. 

  

Figure  40.  Queue  Welding  Using  an  Extra  Queue.  This  diagram  shows  two  streams  side-by  side.  The  first  stream  (on  

the left)  contains  two  modules  with  two  queues  each,  as follows  (from  the  top):  Module  B with  Queue  “Bd”  and  Queue  

“Bu”,  as well  as Module  A with  Queue  “Ad  ”and  “Au”.  The  second  stream  contains  two  modules  with  two  queues  each  

as follows  (from  the  top):  Module  D with  Queue  “Dd”  and  Queue  “Du”,  as well  as Module  C with  Queue  “Cd”  and  “Cu”.  

A dotted  arrow  leads  from  Queue  “Ad  ”to Queue  “Cu”.  Another  dotted  arrow  leads  from  Queue  “Cd”  to Queue  “Au”.  

The  module  and  four  queues  involved  are  highlighted;  they  are  Module  B as well  as Queues  “Ad”,  “Cu”,  “Cd”,  and  

“Au”.

 

264 Communications Programming Concepts



getmsg  Receives the message at the stream head. 

getpmsg  Receives the priority message at the stream head. 

putmsg  Sends a message downstream. 

putpmsg  Sends a priority message downstream.
  

streamio Operations 

After a stream has been opened, ioctl operations allow a user process to insert and delete (push and pop) 

modules. That process can then communicate with and control the operation of the stream head, modules, 

and drivers, and can send and receive messages containing data and control information. 

 ioctl  Controls a stream by enabling application programs to perform functions specific to a particular device. A 

set of generic STREAMS ioctl operations (referred to as streamio  operations) support a variety of functions 

for accessing and controlling streams.
  

STREAMS Tunable  Parameters 

Certain system parameters referenced by STREAMS are configurable during system boot or while the 

system is running. These parameters are tunable based on requirements. There are two types of 

STREAMS tunable parameters: load-time configurable and run-time configurable parameters. At boot time, 

the strload  command loads the STREAMS framework in the operating system kernel. This command is 

used to set both types of parameters using a configuration file. To configure the run-time parameters, use 

the no  command. The no  command also displays all the parameter values. See the no  command 

description in AIX  5L  Version  5.3  Commands  Reference  for more information. 

Load-Time  Parameters 

The load-time parameters can only be set at initial STREAMS load time. The strload  command reads the 

parameter names and values from the /etc/pse_tune.conf  file. This file can be modified by privileged 

users only. It contains parameter names and values in the following format: 

# Streams  Tunable  Parameters  

# 

# This  file  contains  Streams  tunable  parameter  values.  

# The  initial  values  are  the  same  as the  default  values.  

# To change  any  parameter,  modify  the  parameter  value  and  

# the  next  system  reboot  will  make  it effective.  

# To change  the  run-time  parameter,  use  the  no command  any  time.  

strmsgsz         0        # run-time  parameter  

strctlsz         1024      # run-time  parameter  

nstrpush         8        # load-time  parameter  

psetimers        20       # run-time  parameter  

psebufcalls      20       # run-time  parameter  

strturncnt       15       # run-time  parameter  

strthresh        85       # run-time  parameter,  85%  of "thewall"  

lowthresh        90       # tun-time  parameter,  90%  of "thewall"  

medthresh        95       # run-time  parameter,  95%  of "thewall"  

pseintrstack     12288     # load-time  parameter,  (3 * 4096)  

The initial values are the same as the default values. If the user changes any values, they are effective on 

the next system reboot. If this file is not present in the system or if it is empty, the strload  command will 

not fail, and all the parameters are set to their default values. 

The load-time parameters are as follows: 

 nstrpush  Indicates the maximum number of modules that can be pushed onto a single STREAM. 

The default value is 8. 

 

Chapter 10. STREAMS 265



psetintrstack  Indicates the maximum number of the interrupt stack size allowed by STREAMS while 

running in the offlevel. Sometimes, when a process, running other than INTBASE level, 

enters a STREAM, it encounters stack overflow problems because of not enough interrupt 

stack size. Tuning this parameter properly reduces the chances of stack overflow problems. 

The default value is 0x3000 (decimal 12288).
  

Run-Time  Parameters 

These parameters can be set using the no  -o  command or the no  -d  command, and they become 

effective immediately. If a user tries to set a load-time parameter to its default value or to a new value 

using the no  command, it returns an error. The no  -a  Parameter  and no  -o  Parameter  commands show 

the parameter’s current value. 

The run-time parameters are as follows: 

 strmsgsz  Specifies the maximum number of bytes that a single system call can pass to a STREAM to be 

placed into the data part of a message (in M_DATA blocks). Any write  subroutine exceeding 

this size will be broken into multiple messages. A putmsg  subroutine with a data part 

exceeding this size will fail returning an ERANGE  error code. The default value is 0. 

strctlsz  Specifies the maximum number of bytes that a single system call can pass to a STREAM to be 

placed into the control part of a message (in an M_PROTO or M_PCPROTO block). A putmsg  

subroutine with a control part exceeding this size will fail returning an ERANGE  error code. The 

default value is 1024. 

strthresh  Specifies the maximum number of bytes STREAMS are allowed to allocate. When the 

threshold is passed, users without the appropriate privilege will not be allowed to open 

STREAMS, push modules, or write to STREAMS devices. The ENOSR  error code is returned. 

The threshold applies only to the output side; therefore, data coming into the system is not 

affected and continues to work properly. A value of 0 indicates there is no threshold. 

The strthresh  parameter represents a percentage of the value of the thewall  parameter, and its 

value can be set between 0 and 100, inclusively. The thewall  parameter indicates the maximum 

number of bytes that can be allocated by STREAMS and sockets using the net_malloc  

subroutine. The user can change the value of the thewall  parameter using the no command. 

When the user changes the value of the thewall  parameter, the threshold gets updated 

accordingly. The default value is 85, indicating the threshold is 85% of the value of the thewall  

parameter. 

psetimers  Specifies the maximum number of timers allocated. In the operating system, the STREAM 

subsystem allocates a certain number of timer structures at initialization time, so the STREAMS 

driver or module can register the timeout  requests. Lowering this value is not allowed until the 

system reboots, at which time it returns to its default value. The default value is 20. 

psebufcalls  Specifies the maximum number of bufcalls  allocated. In the operating system, the STREAM 

subsystem allocates a certain number of bufcall  structures at initialization time. When an 

allocb  subroutine fails, the user can register requests for the bufcall  subroutine. Lowering this 

value is not allowed until the system reboots, at which time it returns to its default value. The 

default value is 20. 

strturncnt  Specifies the maximum number of requests handled by the currently running thread for module- 

or elsewhere-level STREAMS synchronization. The module-level synchronization works in such 

a way that only one thread can run in the module at any given time, and all other threads trying 

to acquire the same module enqueue their requests and exit. After the currently running thread 

completes its work, it dequeues all the previously enqueued requests one at a time and starts 

them. If there are large numbers of requests enqueued in the list, the currently running thread 

must serve everyone. To eliminate this problem, the currently running thread serves only the 

strturncnt  number of threads. After that, a separate kernel thread starts all the pending 

requests. The default value is 15. 

lowthresh  Specifies the maximum number of bytes (in percentage) allocated by the thewall  parameter 

using allocb  for the BPRI_LO priority. When the total amount of memory allocated by the 

net_malloc  subroutine reaches this threshold, the allocb  request for the BPRI_LO priority 

returns 0. The lowthresh  parameter can be set to any value between 0 and 100, inclusively. 

The default value is 90, indicating the threshold is at 90% of the value of the thewall  parameter. 

 

266 Communications Programming Concepts



medthresh  Specifies the maximum number of bytes (in percentage) allocated by the thewall  parameter 

using allocb  for the BPRI_MED priority. When the total amount of memory allocated by the 

net_malloc  subroutine reaches this threshold, the allocb  request for the BPRI_MED priority 

returns 0. The medthresh  parameter can be set to any value between 0 and 100, inclusively. 

The default value is 95, indicating the threshold is 95% of the value of the thewall  parameter.
  

streamio (STREAMS ioctl) Operations 

The streamio  operations are a subset of ioctl operations that perform a variety of control functions on 

streams. 

Because these STREAMS operations are a subset of the ioctl operations, they are subject to the errors 

described there. In addition to those errors, the call fails with the errno  global variable set to EINVAL, 

without processing a control function, if the specified stream is linked below a multiplexor, or if the 

specified operation is not valid for a stream. 

Also, as described in the ioctl operations, STREAMS modules and drivers can detect errors. In this case, 

the module or driver sends an error message to the stream head containing an error value. This causes 

subsequent system calls to fail with the errno  global variable set to this value. 

Building STREAMS 

A stream is created on the first open  subroutine to a character special file corresponding to a STREAMS 

driver. 

A stream is usually built in two steps. Step one creates a minimal stream consisting of just the stream 

head (see “Stream Head” on page 252) and device driver, and step two adds modules to produce an 

expanded stream (see “Expanded Streams” on page 268) as shown in the Stream Setup diagram 

(Figure 41). Modules which can be added to a stream are known as pushable modules (see “Pushable 

Modules” on page 269). 

 

 The first step in building a stream has three parts: 

Minimal
Stream

Expanded
Stream

Stream
Head

CANONPROC
Module

Queue Pair

Raw tty
Device Driver

Queue Pair

Raw tty
Device Driver

Stream
Head

Stream Setup

  

Figure  41.  Stream  Setup.  This  diagram  shows  minimal  stream  setup  on  the left.  The  stream  head  is transmitting  and  

receiving  communication  from  the queue  pair  which  sits  on  top  of the  raw  tty device  driver.  The  expanded  stream  on 

the  right  has  a CANONPROC  module  between  the queue  pair  and  stream  head.  There  is two-way  communication  

between  CANONPROC  and  the  stream  head  and  the  queue  pair.

 

Chapter 10. STREAMS 267



1.   Allocate and initialize head and driver structures. 

2.   Link the modules in the head and end to each other to form a stream. 

3.   Call the driver open routine. 

If the driver performs all character and device processing required, no modules need to be added to a 

stream. Examples of STREAMS drivers include a raw tty driver (one that passes along input characters 

without change) and a driver with multiple streams open to it (corresponding to multiple minor devices 

opened to a character device driver). 

When the driver receives characters from the device, it places them into messages. The messages are 

then transferred to the next stream component, the stream head, which extracts the contents of the 

message and copies them to user space. Similar processing occurs for downstream character output; the 

stream head copies data from user space into messages and sends them to the driver. 

Expanded Streams 

As the second step in building a stream, modules can be added to the stream. In the right-hand stream in 

the Stream Setup diagram (Figure 41 on page 267), the CANONPROC module was added to provide 

additional processing on the characters sent between head and driver. 

Modules are added and removed from a stream in last-in-first-out (LIFO) order. They are inserted and 

deleted at the stream head by using ioctl operations. In the stream on the left of the Module Reusability 

diagram (Figure 42), the Class 1 Transport was added first, followed by the Canonical modules. To replace 

the Class 1 module with a Class 0 module, the Canonical module would have to be removed first, and 

then the Class 1 module. Finally, a Class 0 module would be added and the Canonical module put back. 

 

 Because adding and removing modules resembles stack operations, an add routine is called a push  and 

the remove routine is called a pop. I_PUSH  and I_POP  are two of the operations included in the 

STREAMS subset of ioctl operations (the streamio  operations). These operations perform various 

manipulations of streams. The modules manipulated in this manner are called pushable  modules, in 

Class 1
Transport
Protocol

SAME
INTERFACE

User
Process

Canonical
Module

LAPB
Driver

Module Reusability Diagram

User
Process

Canonical
Module

SAME
Module

Raw
TTY
Driver

  

Figure  42.  Module  Reusability.  This  diagram  shows  the  user  process  on the  left  where  the  canonical  module  has  

two-way  communication  with  the  boarder  of the SAME  module  and  SAME  interface.  The  canonical  module  also  has  

two-way  communication  with  the  class  1 transport  protocol.  There  is also  two-way  communication  from  the  transport  

protocol  to the LAPB  (link-access  procedure  balanced)  driver.  The  second  stream  user  process  on the  right  shows  a 

canonical  module  which  has  two-way  communication  with  the  boarder  of the SAME  module  and  SAME  interface.  The  

canonical  module  also  has  two-way  communication  with  the  raw  tty driver.

 

268 Communications Programming Concepts



contrast to the modules contained in the stream head and stream end. This stack terminology applies only 

to the setup, modification, and breakdown of a stream. 

Note:   Subsequent use of the word module  will refer to those pushable modules between stream head and 

stream end. 

The stream head processes the streamio  operation and executes the push, which is analogous to 

opening the stream driver. Modules are referenced by a unique symbolic name, contained in the 

STREAMS fmodsw  module table (similar to the devsw  table associated with a device file). The module 

table and module name are internal to STREAMS and are accessible from user space only through 

STREAMS ioctl  subroutines. The fmodsw  table points to the module template in the kernel. When a 

module is pushed, the template is located, the module structures for both QUEUES are allocated, and the 

template values are copied into the structures. 

In addition to the module elements, each module contains pointers to an open routine and a close routine. 

The open routine is called when the module is pushed, and the close routine is called when the module is 

popped. Module open and close procedures are similar to a driver open and close. 

As in other files, a STREAMS file is closed when the last process open to it closes the file by the close  

subroutine. This subroutine causes the stream to be dismantled (that is, modules are popped and the 

driver close routine is executed). 

Pushable Modules 

Modules are pushed onto a stream to provide special functions and additional protocol layers. In the 

Stream Set Up diagram (Figure 41 on page 267), the stream on the left is opened in a minimal 

configuration with a raw tty driver and no other module added. The driver receives one character at a time 

from the device, places the character in a message, then sends the message upstream. The stream head 

receives the message, extracts the single character, then copies it into the reading process buffer to send 

to the user process in response to the read  subroutine. When the user process wants to send characters 

back to the driver, it issues the write  subroutine, and the characters are sent to the stream head. The 

head copies the characters into one or more multiple-character messages and sends these messages 

downstream. An application program requiring no further kernel character processing would use this 

minimal stream. 

A user requiring a more terminal-like interface would need to insert a module to perform functions such as 

echoing, character-erase, and line-kill. Assuming that the CANONPROC module shown in the Stream Set 

Up diagram (Figure 41 on page 267) fulfills this need, the application program first opens a raw tty stream. 

Then the CANONPROC module is pushed above the driver to create an expanded stream of the form 

shown on the right of the diagram. The driver is not aware that a module has been placed above it and 

therefore continues to send single character messages upstream. The module receives single-character 

messages from the driver, processes the characters, then accumulates them into line strings. Each line is 

placed into a message then sent to the stream head. The head now finds more than one character in the 

messages it receives from downstream. 

Stream head implementation accommodates this change in format automatically and transfers the 

multiple-character data into user space. The stream head also keeps track of messages partially 

transferred into user space (for example, when the current user read buffer can only hold part of the 

current message). Downstream operation is not affected: the head sends, and the driver receives, 

multiple-character messages. 

The stream head provides the interface between the stream and user process. Modules and drivers do not 

have to implement user interface functions other than the open  and close  subroutines. 

 

Chapter 10. STREAMS 269



STREAMS Messages 

STREAMS provides a basic message-passing scheme based on the following concepts: 

v   “Message Blocks” 

v   “Message Allocation” on page 271 

v   “Message Types” on page 271 

v   “Message Queue Priority” on page 272 

v   “Sending and Receiving Messages” on page 273 

v   “Put Procedures” on page 273 

v   “Service Procedures” on page 274

Message Blocks 

A STREAMS message consists of one or more linked message blocks. That is, the first message block of 

a message may be attached to other message blocks that are part of the same message. Multiple blocks 

in a message can occur, for example, as the result of processing that adds header or trailer data to the 

data contained in the message, or because of size limitations in the message buffer that cause the data to 

span multiple blocks. When a message is composed of multiple message blocks, the message type of the 

first block determines the type of the entire message, regardless of the types of the attached message 

blocks. 

STREAMS allocates a message as a single block containing a buffer of a certain size. If the data for a 

message exceeds the size of the buffer containing the data, the procedure can allocate a new block 

containing a larger buffer, copy the current data to it, insert the new data, and deallocate the old block. 

Alternatively, the procedure can allocate an additional (smaller) block, place the new data in the new 

message block, and link it after or before the initial message block. Both alternatives yield one new 

message. 

Messages can exist standalone when the message is being processed by a procedure. Alternatively, a 

message can await processing on a linked list of messages, called a message  queue, in a QUEUE. In the 

Message Queue diagram (Figure 43 on page 271), Message 1 is linked to Message 2. 

 

 

270 Communications Programming Concepts



When a message is queued, the first block of the message contains links to preceding and succeeding 

messages on the same message queue, in addition to containing a link to the second block of the 

message (if present). The message queue head and tail are contained in the QUEUE. 

STREAMS utility routines enable developers to manipulate messages and message queues. 

Message Allocation 

STREAMS maintains its own storage pool for messages. A procedure can request the allocation of a 

message of a specified size at one of three message pool priorities. The allocb  utility returns a message 

containing a single block with a buffer of at least the size requested, provided there is a buffer available at 

the priority requested. When requesting priority for messages, developers must weigh the process’ need 

for resources against the needs of other processes on the same machine. 

Message Types  

All STREAMS messages are assigned message types to indicate their intended use by modules and 

drivers and to determine their handling by the stream head. A driver or module can assign most types to a 

message it generates, and a module can modify a message type during processing. The stream head will 

convert certain system calls to specified message types and send them downstream. It will also respond to 

other calls by copying the contents of certain message types that were sent upstream. Messages exist 

only in the kernel, so a user process can only send and receive buffers. The process is not explicitly 

aware of the message type, but it may be aware of message boundaries, depending on the system call 

used (see the distinction between the getmsg  system call and the read  subroutine in “Sending and 

Receiving Messages” on page 273 ). 

Most message types are internal to STREAMS and can only be passed from one STREAMS module to 

another. A few message types, including M_DATA, M_PROTO, and M_PCPROTO, can also be passed 

between a stream and user processes. M_DATA messages carry data both within a stream and between a 

Queue
Header

Message
Block
(type)

Message
Block

Message
Block

Message 1 Message 2

Message

Next Message
Block
(type) Message

Next

Message
Block

Message  Queue

  

Figure  43.  Message  Queue.  This  diagram  shows  the  queue  header  on the  left  which  is bordered  by message  1. The  

message  block  (type)  in message  1 has  a two-way  arrow  connected  to the  queue  header  and  also  another  two-way  

arrow  to the  message  block  in message  2. Below  this  message  block  (type)  an arrow  points  to another  message  block  

and  that  block,  in turn,  points  to another  message  block  within  the message  1 area.  The  lowest  message  block  has  an 

arrow  that  points  downward.  To the  right  of message  1, is message  2. A two-way  arrow  exits  the  message  block  (type)  

on  the right  and  continues  to the  next  message.  Below  the  message  block  (type)  of message  2, an arrow  points  to a 

message  block.  That  message  block  has  an arrow  that  points  downward.

 

Chapter 10. STREAMS 271



stream and a user process. M_PROTO and M_PCPROTO messages carry both data and control 

information. However, the distinction between control information and data is generally determined by the 

developer when implementing a particular stream. Control information includes two types of information: 

service interface information and condition or status information. Service interface information is carried 

between two stream entities that present service interfaces. Condition or status information can be sent 

between any two stream entities regardless of their interface. An M_PCPROTO message has the same 

general use as an M_PROTO message, but the former moves faster through a stream. 

Message Queue Priority 

The STREAMS scheduler operates strictly in a first-in-first-out (FIFO) manner so that each QUEUE service 

procedure receives control in the order it was scheduled. When a service procedure receives control, it 

may encounter multiple messages on its message queue. This buildup can occur if there is a long interval 

between the time a message is queued by a put procedure and the time that the STREAMS scheduler 

calls the associated service procedure. In this interval, there can be multiple calls to the put procedure 

causing multiple messages. The service procedure processes all messages on its message queue unless 

prevented by flow control. Each message must pass through all the modules connecting its origin and 

destination in the stream. 

If service procedures were used in all QUEUEs and there was no message priority, the most recently 

scheduled message would be processed after all the other scheduled messages on all streams had been 

processed. In certain cases, message types containing urgent information (such as a break or alarm 

condition) must pass through the stream quickly. To accommodate these cases, STREAMS assigns 

priorities to the messages. These priorities order the messages on the queue. Each message has a 

priority band associated with it. Ordinary messages have a priority of 0. Message priorities range from 0 

(ordinary) to 255 (highest). This provides up to 256 bands of message flow within a stream. (See 

Figure 44.) 

 

 High-priority messages are not affected by flow control. Their priority band is ignored. The putq  utility 

places high priority messages at the head of the message queue, followed by priority band messages and 

ordinary messages. STREAMS prevents high-priority messages from being blocked by flow control and 

causes a service procedure to process them ahead of all other messages on the procedure queue. This 

procedure results in the high-priority message moving through each module with minimal delay. 

Message queues are generally not present in a QUEUE unless that QUEUE contains a service procedure. 

When a message is passed to the putq  utility to schedule the message for service procedure processing, 

the putq  utility places the message on the message queue in order of priority. High-priority messages are 

placed ahead of all ordinary messages, but behind any other high-priority messages on the queue. Other 

messages are placed after messages of the same priority that are already on the queue. STREAMS 

utilities deliver the messages to the processing service procedure in a FIFO manner within each priority 

band. The service procedure is unaware of the message priority and receives the next message. 

Normal
Band 0
Messages

Priority
Band 1
Messages

Priority
Band 2
Messages

 .   .   .   .
Priority
Band n
Messages

High-
Priority
Messages

Tail Head
Message Ordering on a Queue

  

Figure  44.  Message  Ordering  on a Queue.  This  diagram  shows  the  head  of the  continuum  of message  ordering  on the  

right  and  the  tail  on the  left.  At the  head,  are  high-priority  messages,  followed  by priority  band  n messages.  The  next  

box  of dots  represent  all bands  between  n and  2. Following  (to the  left)  are  priority  band  2 messages  and  priority  band  

1 messages.  On the tail  (left)  end  are  normal  band  0 messages.

 

272 Communications Programming Concepts



Message priority is defined by the message type; after a message is created, its priority cannot be 

changed. Certain message types come in equivalent high/ordinary priority pairs (for example, 

M_PCPROTO and M_PROTO), so that a module or device driver can choose between the two priorities 

when sending information. 

Sending and Receiving Messages 

The putmsg  system call is a STREAMS-related system call that sends messages. It is similar to the write  

subroutine. The putmsg  system call provides a data buffer that is converted into an M_DATA message. 

The system call can also provide a separate control buffer to be placed into an M_PROTO or 

M_PCPROTO block. The write  subroutine provides byte-stream data to be converted into M_DATA 

messages. 

The getmsg  system call is a STREAM-related system call that accepts messages. It is similar to the read  

subroutine. One difference between the two calls is that the read  subroutine accepts only data (messages 

sent upstream to the stream head as message type M_DATA), such as the characters entered from the 

terminal. The getmsg  system call can simultaneously accept both data and control information (that is, a 

message sent upstream as type M_PROTO or M_PCPROTO). The getmsg  system call also differs from 

the read  subroutine in that it preserves message boundaries so that the same boundaries exist above and 

below the stream head (that is, between a user process and a stream). The read  subroutine generally 

ignores message boundaries, processing data as a byte stream. 

Certain streamio  operations, such as the I_STR  operation, also cause messages to be sent or received 

on the stream. The I_STR  operation provides the general ioctl capability of the character input/output 

subsystem. A user process above the stream head can issue the putmsg  system call, the getmsg  system 

call, the I_STR  operation, and certain other STREAMS-related functions. Other streamio  operations 

perform functions that include changing the state of the stream head, pushing and popping modules, or 

returning special information. 

In addition to message types that explicitly transfer data to a process, some messages sent upstream 

result in information transfer. When these messages reach the stream head, they are transformed into 

various forms and sent to the user process. The forms include signals, error codes, and call return values. 

Put and Service Procedures 

The procedures in the QUEUE are the software routines that process messages as they transit the 

QUEUE. The processing is generally performed according to the message type and can result in a 

modified message, new messages, or no message. A resultant message is generally sent in the same 

direction in which it was received by the QUEUE, but may be sent in either direction. A QUEUE always 

contains a put procedure and may also contain an associated service procedure. 

Put Procedures 

A put procedure is the QUEUE routine that receives messages from the preceding QUEUE in the stream. 

Messages are passed between QUEUEs by a procedure in one QUEUE calling the put procedure 

contained in the following QUEUE. A call to the put procedure in the appropriate direction is generally the 

only way to pass messages between modules. (Unless otherwise indicated, the term modules  implies a 

module, driver, and stream head.) QUEUEs in pushable modules contain a put procedure. In general, 

there is a separate put procedure for the read and write QUEUEs in a module because of the full-duplex 

operation of most streams. 

A put procedure is associated with immediate (as opposed to deferred) processing on a message. Each 

module accesses the adjacent put procedure as a subroutine. For example, suppose that modA, modB, 

and modC are three consecutive modules in a stream, with modC connected to the stream head. If modA 

receives a message to be sent upstream, modA processes that message and then calls the modB put 

procedure. The modB procedure processes the message and then calls the modC put procedure. Finally, 

the modC procedure processes the message and then calls the stream-head put procedure. 

 

Chapter 10. STREAMS 273



Thus, the message will be passed along the stream in one continuous processing sequence. This 

sequence has the benefit of completing the entire processing in a short time with low overhead (subroutine 

calls). However, it may not be desirable to use this manner of processing if this sequence is lengthy and 

the processing is implemented on a system with multiple users. Using this manner of processing under 

those circumstances may be good for this stream but detrimental to other streams since they may have to 

wait a long time to be processed. 

In addition, some situations exist where the put procedure cannot immediately process the message but 

must hold it until processing is allowed. The most typical examples of this are a driver (which must wait 

until the current output completes before sending the next message) and the stream head (which may 

have to wait until a process initiates the read  subroutine on the stream). 

Service Procedures 

STREAMS allows a service procedure to be contained in each QUEUE, in addition to the put procedure, 

to address the above cases and for either purposes. A service procedure is not required in a QUEUE and 

is associated with deferred processing. If a QUEUE has both a put and service procedure, message 

processing will generally be divided between the procedures. The put procedure is always called first, from 

a preceding QUEUE. After the put procedure completes its part of the message processing, it arranges for 

the service procedure to be called by passing the message to the putq  utility. The putq  utility does two 

things: it places the message on the message queue of the QUEUE, and it links the QUEUE to the end of 

the STREAMS scheduling queue. When the putq  utility returns to the put procedure, the procedure 

typically exits. Some time later, the service procedure will be automatically called by the STREAMS 

scheduler. 

The STREAMS scheduler is separate and distinct from the system process scheduler. It is concerned only 

with QUEUEs linked on the STREAMS scheduling queue. The scheduler calls the service procedure of the 

scheduled QUEUE one at a time, in a FIFO manner. 

Having both a put and service procedure in a QUEUE enables STREAMS to provide the rapid response 

and the queuing required in systems with many users. The put procedure allows rapid response to certain 

data and events, such as software echoing of input characters. Put procedures effectively have higher 

priority than any scheduled service procedures. When called from the preceding STREAMS component, a 

put procedure starts before the scheduled service procedures of any QUEUE are started. 

The service procedure implies message queuing. Queuing results in deferred processing of the service 

procedure, following all other QUEUEs currently on the scheduling queue. For example, terminal output, 

input erase, and kill processing would typically be performed in a service procedure because this type of 

processing does not have to be as timely as echoing. Using a service procedure also allows processing 

time to be more evenly spread among multiple streams. As with the put procedure, there will generally be 

a separate service procedure for each QUEUE in a module. The flow-control mechanism uses the service 

procedures. 

STREAMS Drivers and Modules 

This section compares operational features of character I/O device drivers with STREAMS drivers and 

modules. It is intended for experienced developers of system character device drivers. The Drivers section 

includes a discussion of clone  device drivers and the log  device driver. The Modules section includes a 

discussion of the timod  and the tirdwr  modules. The 64-Bit Support section discusses the impact of 64-bit 

support on STREAMS drivers and modules. 

Environment 

No user environment is generally available to STREAMS module procedures and drivers. Exceptions are 

the module and driver open and close routines, both of which have access to the u_area  of the calling 

process and both of which can sleep. Otherwise, a STREAMS driver, module put procedure, and module 

service procedure have no user context and can neither sleep nor access the u_area. 

 

274 Communications Programming Concepts



Multiple streams can use a copy of the same module (that is, the same fmodsw), each containing the 

same processing procedures. Therefore, modules must be reentrant, and care must be exercised when 

using global data in a module. Put and service procedures are always passed the address of the QUEUE 

(for example, in the Stream Detail diagram (Figure 32 on page 252), Au calls the Bu put procedure with Bu 

as a parameter). The processing procedure establishes its environment solely from the QUEUE contents, 

which is typically the private data (for example, state information). 

Drivers 

At the interface to hardware devices, character I/O drivers have interrupt entry points; at the system 

interface, those same drivers generally have direct entry points (routines) to process open, close, read, 

and write  subroutines, and ioctl operations. 

STREAMS device drivers have similar interrupt entry points at the hardware device interface and have 

direct entry points only for the open  and close  subroutines. These entry points are accessed using 

STREAMS, and the call formats differ from character device drivers. The put procedure is a driver’s third 

entry point, but it is a message (not system) interface. The stream head translates write  subroutines and 

ioctl operations into messages and sends them downstream to be processed by the driver’s write QUEUE 

put procedure. The read  subroutine is seen directly only by the stream head, which contains the functions 

required to process subroutines. A driver does not know about system interfaces other than the open  and 

close  subroutines, but it can detect the absence of a read  subroutine indirectly if flow control propagates 

from the stream head to the driver and affects the driver’s ability to send messages upstream. 

For input processing, when the driver is ready to send data or other information to a user process, it does 

not wake up the process. It prepares a message and sends it to the read QUEUE of the appropriate 

(minor device) stream. The driver’s open routine generally stores the QUEUE address corresponding to 

this stream. 

For output processing, the driver receives messages from the stream head instead of processing a write  

subroutine. If a message cannot be sent immediately to the hardware, it may be stored on the driver’s 

write message queue. Subsequent output interrupts can remove messages from this queue. 

Drivers and modules can pass signals, error codes, and return values to processes by using message 

types provided for that purpose. 

There are three special device drivers: 

 clone  Finds and opens an unused minor device on another STREAMS driver. 

log  Provides an interface for the STREAMS error-logging and event-tracing processes. 

sad  Provides an interface for administrative operations.
  

Modules 

Modules have user context available only during the execution of their open and close routines. Otherwise, 

the QUEUEs forming the module are not associated with the user process at the end of the stream, nor 

with any other process. Because of this, QUEUE procedures must not sleep when they cannot proceed; 

instead, they must explicitly return control to the system. The system saves no state information for the 

QUEUE. The QUEUE must store this information internally if it is to proceed from the same point on a 

later entry. 

When a module or driver that requires private working storage (for example, for state information) is 

pushed, the open routine must obtain the storage from external sources. STREAMS copies the module 

template from the fmodsw table for the I_PUSH  operation, so only fixed data can be contained in the 

module template. STREAMS has no automatic mechanism to allocate working storage to a module when it 

is opened. The sources for the storage typically include either a module-specific kernel array, installed 

when the system is configured, or the STREAMS buffer pool. When using an array as a module storage 

 

Chapter 10. STREAMS 275



pool, the maximum number of copies of the module that can exist at any one time must be determined. 

For drivers, this is typically determined from the physical devices connected, such as the number of ports 

on a multiplexor. However, certain types of modules may not be associated with a particular external 

physical limit. For example, the CANONICAL module shown in the Module Reusability diagram (Figure 45) 

could be used on different types of streams. 

 

 There are two special modules for use with the Transport Interface (TI) functions of the Network Services 

Library: 

 timod  Converts a set of ioctl  operations into STREAMS messages. 

tirdwr  Provides an alternate interface to a transport provider.
  

64-Bit Support 

The STREAMS modules and drivers will set a new flag STR_64BIT  in the sc_flags  field of the strconf_t  

structure, to indicate their capability to support 64-bit data types. They will set this flag before calling the 

str_install  subroutine. 

At the driver open time, the stream head will set a per-stream 64-bit flag, if all autopushed modules (if 

any) and the driver support 64-bit data types. The same flag gets updated at the time of module push or 

pop, based on the module’s 64-bit support capability. The system calls that pass data downstream in PSE, 

putmsg  and putpmsg, will check this per-stream flag for that particular stream. Also, certain ioctl 

subroutines (such as I_STR  and I_STRFDINSERT) and transparent ioctls will check this flag too. If the 

system call is issued by a 64-bit process and this flag is not set, the system call will fail. The 32-bit 

behavior is not affected by this flag. All of the present operating system Streams modules and drivers will 

support 64-bit user processes. 

At link or unlink operation time, the stream head of upper half of the STREAMS multiplexor updates its 

per-stream 64-bit flag based on the flag value of the lower half stream head. For example, if the upper half 

Class 1
Transport
Protocol

SAME
INTERFACE

User
Process

Canonical
Module

LAPB
Driver

Module Reusability Diagram

User
Process

Canonical
Module

SAME
Module

Raw
TTY
Driver

  

Figure  45.  Module  Reusability.  This  diagram  shows  the  user  process  on the  left  where  the  canonical  module  has  

two-way  communication  with  the  boarder  of the SAME  module  and  SAME  interface.  The  canonical  module  also  has  

two-way  communication  with  the  class  1 transport  protocol.  There  is also  two-way  communication  from  the  transport  

protocol  to the LAPB  (link-access  procedure  balanced)  driver.  The  second  stream  user  process  on the  right  shows  a 

canonical  module  which  has  two-way  communication  with  the  boarder  of the SAME  module  and  SAME  interface.  The  

canonical  module  also  has  two-way  communication  with  the  raw  tty driver.

 

276 Communications Programming Concepts



supports 64-bit and lower half does not, then the multiplexor will not support 64-bit processes. This is 

necessary because all the system calls are processed at the upper half of the multiplexor. 

STREAMS Message Block MSG64BIT Flag 

The STREAMS modules and drivers establish the 64-bit or 32-bit user process context by setting the 

message block flag (the b_flag  field of msgb  structure), MSG64BIT. This flag is set by the streams head 

when it allocates a message to process a system call from a 64-bit process. This flag is set for the 

putmsg, putpmsg, and ioctl  system calls; for the I_STR  and I_STRFDINSERT  commands; and for 

transparent ioctls. 

Transparent ioctls 

The third argument of the transparent ioctl is a pointer to the data in user space to be copied in or out. 

This address is remapped properly by the ioctl system call. The streams driver or module passes 

M_COPYIN  or M_COPYOUT  messages to the stream head and the stream head calls the copyin  or 

copyout  subroutines. 

If the third argument of the ioctl  subroutine points to a structure that contains a pointer (for example, 

ptr64) or long, remapping is solved by a new structure, copyreq64, which contains a 64-bit user space 

pointer. If the message block flag is set to MSG64BIT, the driver or module will pass M_COPYIN64  or 

M_COPYOUT64  to copy in or out a pointer within a structure. In this case, the stream head will call 

copyin64  or copyout64  to move the data into or out of the user address space, respectively. 

The copyreq64  structure uses the last unused cq_filler  field to store the 64-bit address. The copyreq64  

structure looks like the following example: 

struct  copyreq64  { 

              int      cq_cmd;          /* command  type  == ioc_cmd  */ 

              cred_t  *cq_cr;           /* pointer  to full  credentials*/  

              int      cq_id;           /*  ioctl  id == ioc_id  */ 

              ioc_pad  cq_ad;           /* addr  to copy  data  to/from  */ 

              uint     cq_size;         /* number  of bytes  to copy  */ 

              int      cq_flag;         /* reserved  */ 

              mblk_t  *cq_private;      /* module’s  private  state  info*/  

              ptr64    cq_addr64;       /* 64-bit  address  */ 

              long     cq_filler[2];    /* reserved  */ 

              }; 

The cq_addr64  field is added in the above structure and the size of the cq_filler  is reduced, so overall 

size remains same. The driver or module first determines whether the MSG64BIT  flag is set and, if so, 

stores the user-space 64-bit address in the cq_addr64  field. 

log Device Driver 

The log  driver is a STREAMS software device driver that provides an interface for the STREAMS 

error-logging and event-tracing processes. The log  driver presents two separate interfaces: 

v   A function call interface in the kernel through which STREAMS drivers and modules submit log  

messages 

v   A subset of ioctl  operations and STREAMS messages for interaction with a user-level error logger, a 

trace logger, or processes that need to submit their own log  messages

Kernel Interface 

The log  messages are generated within the kernel by calls to the strlog  utility. 

User Interface 

The log  driver is opened using the clone interface, /dev/slog. Each open of /dev/slog  obtains a separate 

stream to log. In order to receive log  messages, a process must first notify the log  driver whether it is an 

error logger or trace logger by using an I_STR  operation. 

 

Chapter 10. STREAMS 277



For the error logger, the I_STR  operation has an ic_cmd  parameter value of I_ERRLOG  with no 

accompanying data. 

For the trace logger, the I_STR  operation has an ic_cmd  parameter value of I_TRCLOG, and must be 

accompanied by a data buffer containing an array of one or more trace_ids  structures. Each trace_ids  

structure specifies a mid, sid, and level field from which messages are accepted. The strlog  subroutine 

accepts messages whose values in the mid and sid fields exactly match those in the trace_ids  structure, 

and whose level is less than or equal to the level given in the trace_ids  structure. A value of -1 in any of 

the fields of the trace_ids  structure indicates that any value is accepted for that field. 

At most, one trace logger and one error logger can be active at a time. After the logger process has 

identified itself by using the ioctl  operation, the log  driver will begin sending messages, subject to the 

restrictions previously noted. These messages are obtained by using the getmsg  system call. The control 

part of this message contains a log_ctl  structure, which specifies the mid, sid, level, and flags fields, as 

well as the time in ticks since boot that the message was submitted, the corresponding time in seconds 

since Jan. 1, 1970, and a sequence number. The time in seconds since 1970 is provided so that the date 

and time of the message can be easily computed; the time in ticks since boot is provided so that the 

relative timing of log  messages can be determined. 

Different sequence numbers are maintained for the error-logging and trace-logging streams so that gaps in 

the sequence of messages can be determined. (During times of high message traffic, some messages 

may not be delivered by the logger to avoid tying up system resources.) The data part of the message 

contains the unexpanded text of the format string (null-terminated), followed by the arguments to the 

format string (up to the number specified by the NLOGARGS  value), aligned on the first word boundary 

following the format string. 

A process may also send a message of the same structure to the log  driver, even if it is not an error or 

trace logger. The only fields of the log_ctl  structure in the control part of the message that are accepted 

are the level and flags fields. All other fields are filled in by the log  driver before being forwarded to the 

appropriate logger. The data portion must contain a null-terminated format string, and any arguments (up 

to NLOGARGS) must be packed one word each, on the next word boundary following the end of the 

format string. 

Attempting to issue an I_TRCLOG  or I_ERRLOG  operation when a logging process of the given type 

already exists results in the ENXIO  error being returned. Similarly, ENXIO  is returned for I_TRCLOG  

operations without any trace_ids  structures, or for any unrecognized I_STR  operations. Incorrectly 

formatted log messages sent to the driver by a user process are silently ignored (no error results). 

Examples 

1.   The following is an example of I_ERRLOG  notification: 

struct  strioctl  ioc;  

ioc.ic_cmd  = I_ERRLOG;  

ioc.ic_timout  = 0;      /* default  timeout  (15  secs.)*/  

ioc.ic_len  = 0; 

ioc.ic_dp  = NULL;  

ioctl(log,  I_STR,  &ioc);  

2.   The following is an example of I_TRCLOG  notification: 

struct  trace_ids  tid[2];  

tid[0].ti_mid  = 2; 

tid[0].ti_sid  = 0; 

tid[0].ti_level  = 1; 

tid[1].ti_mid  = 1002;  

tid[1].ti_sid  = -1;    /*  any  sub-id  will  be allowed*/  

tid[1].ti_level  = -1;   /* any  level  will  be allowed*/  

ioc.ic_cmd  = I_TRCLOG;

 

278 Communications Programming Concepts



ioc.ic_timeout  = 0; 

ioc.ic_len  = 2 * sizeof(struct  trace_ids);  

ioc.ic_dp  = (char  *)tid;  

ioctl(log,  I_STR,  &ioc);  

3.   The following is an example of submitting a log message (no arguments): 

struct  strbuf  ctl,  dat;  

struct  log_ctl  lc;  

char  *message  = "Honey,  I’m  working  late  again.";  

ctl.len  = ctl.maxlen  = sizeof(lc);  

ctl.buf  = (char  *)&lc;  

dat.len  = dat.maxlen  = strlen(message);  

dat.buf  = message;  

lc.level  = 0 

lc.flags  = SL_ERROS;  

putmsg(log,  &ctl,  &dat,  0);  

Configuring Drivers and Modules in the Portable Streams Environment 

Portable Streams Environment (PSE) drivers and modules are dynamically loaded and unloaded. To 

support this feature, each driver and module must have a configuration routine that performs the 

necessary initialization and setup operations. 

PSE provides the strload  command to load drivers and modules. After loading the extension, the strload  

command calls the extension entry point using the SYS_CFGDD  and SYS_CFGKMOD  operations 

explained in the sysconfig  subroutine section in AIX  5L  Version  5.3  Technical  Reference. 

Each PSE kernel extension configuration routine must eventually call the str_install  utility to link into 

STREAMS. 

Commonly used extensions can be placed in a configuration file, which controls the normal setup and 

tear-down of PSE. The configuration file allows more flexibility when loading extensions by providing 

user-specified nodes and arguments. For a detailed description of the configuration file, see the strload  

command. 

Loading and Unloading PSE 

To load PSE using the default configuration, type the following command with no flags: 

strload  

To unload PSE, type the following command with the unload flag: 

strload  -u 

Loading and Unloading a Driver or Module 

PSE drivers and modules can be added and removed as necessary. This is especially helpful during 

development of new extensions. To load only a new driver, type the following command: 

strload  -d newdriver  

To unload the driver, type: 

strload  -u -d newdriver  

Modules can also be added and removed with the strload  command by using the -m  flag instead of the -d  

flag. 

PSE Configuration Routines 

To support dynamic loading and unloading, each PSE extension must provide a configuration routine. This 

routine is called each time the extension is referenced in a load or unload operation. Detailed information 

 

Chapter 10. STREAMS 279



about kernel extension configuration routines can be found in the sysconfig  subroutine section in AIX  5L  

Version  5.3  Kernel  Extensions  and  Device  Support  Programming  Concepts. However, PSE requires 

additional logic to successfully configure an extension. 

To establish the linkage between PSE and the extension, the extension configuration routine must 

eventually call the str_install  utility. This utility performs the internal operations necessary to add or 

remove the extension from PSE internal tables. 

The following code fragment provides an example of a minimal configuration routine for a driver called 

dgb. Device-specific configuration and initialization logic can be added as necessary. The dgb_config entry 

point defines and initializes the strconf_t  structure required by the str_install  utility. In this example, the 

dgb_config  operation retrieves the argument pointed to by the uiop  parameter and uses it as an example 

of usage. An extension may ignore the argument. The major number is required for drivers and is retrieved 

from the dev  parameter. Because the dgb  driver requires no initialization, its last step is to perform the 

indicated operation by calling the str_install  utility. Other drivers may need to perform other initialization 

steps either before or after calling the str_install  utility. 

#include  <sys/device.h>           /* for  the  CFG_*  constants  */ 

#include  <sys/strconf.h>          /* for  the  STR_*  constants  */  

dgb_config(dev,  cmd,  uiop)  

      dev_t  dev;  

      int  cmd;  

      struct  uio  *uiop;  

{ 

      char  buf[FMNAMESZ+1];  

      static  strconf_t  conf  = { 

                "dgb",  &dgbinfo,  STR_NEW_OPEN,  

      }; 

      if (uiomove(buf,  sizeof  buf,  UIO_WRITE,  uiop))  

                return  EFAULT;  

      buf[FMNAMESZ]  = 0; 

      conf.sc_name  = buf;  

      conf.sc_major  = major(dev);  

      switch  (cmd)  { 

      case  CFG_INIT:   return  str_install(STR_LOAD_DEV,  &conf);  

      case  CFG_TERM:   return  str_install(STR_UNLOAD_DEV,  &conf);  

      default:    return  EINVAL;  

      } 

} 

A module configuration routine is similar to the driver routine, except a major number is not required and 

the calling convention is slightly different. The following code fragment provides an example of a minimal 

complete configuration routine: 

#include  <sys/device.h>  

#include  <sys/strconf.h>  

/* ARGSUSED  */ 

aoot_config(cmd,  uiop)  

       int  cmd;  

       struct  uio  *uiop;  

{ 

       static  strconf_t  conf  = { 

               "aoot",  &aootinfo,  STR_NEW_OPEN,  

       };  

       /*  uiop  ignored  */ 

       switch  (cmd)  { 

       case  CFG_INIT:   return  str_install(STR_LOAD_MOD,  &conf);  

       case  CFG_TERM:   return  str_install(STR_UNLOAD_MOD,  &conf);  

       default:         return  EINVAL;  

       } 

} 

 

280 Communications Programming Concepts



For the strload  command to successfully install an extension, the configuration routine of each extension 

must be marked as the entry point. Assuming the extension exists in a file called dgb.c, and has a 

configuration routine named dgb_config, a PSE object named dgb  can be created by the following 

commands: 

cc  -c  dgb.c  

ld  -o  dgb  dgb.o  -edgb_config  -bimport:/lib/pse.exp  -lcsys  

A driver extension created in such a manner can be installed with the following command: 

strload  -d dgb  

and removed with the following command: 

strload  -u -d dgb  

Example Module 

The following is a compilable example of a module called pass. 

Note:   Before it can be compiled, the code must exist in a file called pass.c. 

#include  <errno.h>  

#include  <sys/stream.h>  

static  int  passclose(),  passopen  

(),  passrput(),  passwput();  

static  struct  module_info  minfo  =  { 0, "pass",  0, INFPSZ,  2048,  128  }; 

static  struct  qinit  rinit  = { passrput,  0, passopen,  passclose,  0,  &minfo  }; 

static  struct  qinit  winit  = { passwput,  0, 0, 0, 0, &minfo  }; 

struct  streamtab  passinfo  = { &rinit,  &winit  }; 

static  int  

passclose  (queue_t  *q)  

{ 

        return  0; 

} 

static  int  

passopen  (queue_t  *q,  dev_t  *devp,  int  flag,  int  sflag,  cred_t  *credp)  

{ 

        return  0; 

} 

static  int  

passrput  (queue_t  *q,  mblk_t  *mp)  

{ 

        putnext(q,  mp);  

        return  0; 

} 

static  int  

passwput  (queue_t  *q,  mblk_t  *mp)  

{ 

        putnext(q,  mp);  

        return  0; 

} 

#include  <sys/device.h>  

#include  <sys/strconf.h>  

int  

passconfig(int  cmd,  struct  uio  *uiop)  

{ 

      static  strconf_t  conf  = { 

              "pass",  &passinfo,  STR_NEW_OPEN,  

      }; 

 

Chapter 10. STREAMS 281



switch  (cmd)  { 

      case  CFG_INIT:    return  str_install(STR_LOAD_MOD,  &conf);  

      case  CFG_TERM:    return  str_install(STR_UNLOAD_MOD,  &conf);  

      default:          return  EINVAL;  

      } 

} 

The object named pass  can be created using the following commands: 

cc -c pass.c  

ld -o pass  pass.o  -epass_config  -bimport:/lib/pse.exp  -lcsys  

Use the following command to install the module: 

strload  -m pass  

Use the following command to remove the module: 

strload  -u -m pass  

An Asynchronous Protocol STREAMS Example 

In this example, suppose that the computer supports different kinds of asynchronous terminals, each 

logging in on its own port. The port hardware is limited in function; for example, it detects and reports line 

and modem status, but does not check parity. 

Communications software support for these terminals is provided using a STREAMS-implemented 

asynchronous protocol. The protocol includes a variety of options that are set when a terminal operator 

dials in to log on. The options are determined by a getty-type STREAMS user-written process, getstrm,  

which analyzes data sent to it through a series of dialogs (prompts and responses) between the process 

and terminal operator. 

Note:   The getstrm  process used in this example is a nonexistent process. It is not supported by this 

system. 

The process sets the terminal options for the duration of the connection by pushing modules onto the 

stream by sending control messages to cause changes in modules (or in the device driver) already on the 

stream. The options supported include: 

v   ASCII or EBCDIC character codes 

v   For ASCII code, the parity (odd, even, or none) 

v   Echoing or no echoing of input characters 

v   Canonical input and output processing or transparent (raw) character handling

These options are set with the following modules: 

 CHARPROC  Provides input character-processing functions, including dynamically settable (using control 

messages passed to the module) character echo and parity checking. The module default 

settings are meant to echo characters and do not check character parity. 

CANONPROC  Performs canonical processing on ASCII characters upstream and downstream, this module 

performs some processing in a different manner from the standard character I/O tty subsystem. 

ASCEBC  Translates EBCDIC code to ASCII, upstream, and ASCII to EBCDIC, downstream.
  

Note:   The modules used in this example are nonexistent. They are not supported by this system. 

Initializing the Stream 

At system initialization a user-written process, getstrm, is created for each tty port. The getstrm  process 

opens a stream to its port and pushes the CHARPROC module onto the stream by use of a I_PUSH  

 

282 Communications Programming Concepts



operation. Then, the process issues a getmsg  system call to the stream and sleeps until a message 

reaches the stream head. The stream is now in its idle state. 

The initial idle stream contains only one pushable module, CHARPROC. The device driver is a 

limited-function, raw tty driver connected to a limited-function communication port. The driver and port 

transparently transmit and receive one unbuffered character at a time. 

Upon receipt of initial input from a tty port, the getstrm  process establishes a connection with the terminal, 

analyzes the option requests, verifies them, and issues STREAMS subroutines to set the options. After 

setting up the options, the getstrm  process creates a user application process. Later, when the user 

terminates that application, the getstrm  process restores the stream to its idle state by use of subroutines. 

The next step is to analyze in more detail how the stream sets up the communications options. 

Using Messages in the Example 

The getstrm  process has issued a getmsg  system call and is sleeping until the arrival of a message from 

the stream head. Such a message would result from the driver detecting activity on the associated tty port. 

An incoming call arrives at port 1 and causes a ring-detect signal in the modem. The driver receives the 

ring signal, answers the call, and sends upstream an M_PROTO message containing information 

indicating an incoming call. The getstrm  process is notified of all incoming calls, although it can choose to 

refuse the call because of system limits. In this idle state, the getstrm  process will also accept M_PROTO 

messages indicating, for example, error conditions such as detection of line or modem problems on the 

idle line. 

The M_PROTO message containing notification of the incoming call flows upstream from the driver into 

the CHARPROC module. The CHARPROC module inspects the message type, determines that message 

processing is not required, and passes the unmodified message upstream to the stream head. The stream 

head copies the message into the getmsg  buffers (one buffer for control information, the other for data) 

associated with the getstrm  process and wakes up the process. The getstrm  process sends its 

acceptance of the incoming call with a putmsg  system call, which results in a downstream M_PROTO 

message to the driver. 

Then, the getstrm  process sends a prompt to the operator with a write  subroutine and issues a getmsg  

system call to receive the response. A read  subroutine could have been used to receive the response, but 

the getmsg  system call allows concurrent monitoring for control (M_PROTO and M_PCPROTO) 

information. The getstrm  process will now sleep until the response characters, or information regarding 

possible error conditions detected by modules or driver, are sent upstream. 

The first response, sent upstream in an M_DATA block, indicates that the code set is ASCII and that 

canonical processing is requested. The getstrm  process implements these options by pushing the 

CANONPROC module onto the stream, above the CHARPROC module, to perform canonical processing 

on the input ASCII characters. 

The response to the next prompt requests even-parity checking. The getstrm  process sends an I_STR  

operation to the CHARPROC module, requesting the module to perform even-parity checking on upstream 

characters. When the dialog indicates that protocol-option setting is complete, the getstrm  process creates 

an application process. At the end of the connection, the getstrm  process will pop the CANONPROC 

module and then send an I_STR  operation to the CHARPROC module requesting that module restore the 

no-parity idle state (the CHARPROC module remains on the stream). 

As a result of the above dialogs, the terminal at port 1 operates in the following configuration: 

v   ASCII, even parity 

v   Echo 

v   Canonical processing

 

Chapter 10. STREAMS 283



In similar fashion, an operator at a different type of terminal on port 2 requests a different set of options, 

resulting in the following configuration: 

v   EBCDIC 

v   No echo 

v   Canonical processing

The resultant streams for the two ports are shown in the Asynchronous Terminal STREAMS diagram 

(Figure 46). For port 1, the modules in the stream are CANONPROC and CHARPROC. 

 

 

For port 2, the resultant modules are CANONPROC, ASCEBC, and CHARPROC. The ASCEBC module 

has been pushed on this stream to translate between the ASCII interface at the downstream side of the 

CANONPROC module and the EBCDIC interface at the upstream output side of the CHARPROC module. 

In addition, the getstrm  process has sent an I_STR  operation to the CHARPROC module in this stream 

requesting it to disable echo. The resultant modification to the CHARPROC function is indicated by the 

word ″modified″  in the right stream of the diagram. 

Asynchronous Terminal STREAMS

User
Process

User
Process

Stream
Head

Stream
Head

CANONPROC CANONPROC

ASCEBC

CHARPROC
(Modified)

CHARPROC

Queue Pair Queue Pair

Raw tty
Driver

Port 1 Port 2

User Space

Kernel Space

  

Figure  46.  Asynchronous  Terminal  STREAMS.  This  diagram  shows  port  1 and  port  2. Both  streams  have  a user  

process  in the  user  space.  The  processes  receive  and  transmit  to a stream  head  which  extends  from  the  user  space  

into  the  kernel  space.  Each  stream  head  transmits  and  receives  a CANONPROC  shown  below  it. In port  1, 

CANONPROC  has  a connection  to and  from  CHARPROC,  and  CHARPROC  receives  and  transmits  to a queue  pair  

below  it. In port  2, CANONPROC  receives  and  transmits  to ASCEBC,  and  ASCEBC  receives  and  transmits  to a 

modified  CHARPROC.  This  modified  CHARPROC  receives  and  transmits  to a queue  pair  below  it. Below  the  queue  

ports  (yet  unconnected  from  the  queue  pair)  is a raw  tty driver.  Port  1 is on the  left  below  the driver  and  port  2 is on 

the right.  There  are bidirectional  arrows  between  the  ports  and  the  driver;  dashed  lines  continue  from  these  arrows  

through  the driver.

 

284 Communications Programming Concepts



Because the CHARPROC module is now performing no function for port 2, it usually would be popped 

from the stream to be reinserted by the getstrm  process at the end of the connection. However, the low 

overhead of STREAMS does not require its removal. The module remains on the stream, passing 

unmodified messages between the ASCEBC module and the driver. At the end of the connection, the 

getstrm  process restores this stream to its idle configuration by popping the added modules and then 

sending an I_STR  operation to the CHARPROC module to restore the echo default. 

Note:   The tty driver shown in the Asynchronous Terminal STREAMS diagram (Figure 46 on page 284) 

handles minor devices. Each minor device has a distinct stream connected from user space to the 

driver. This ability to handle multiple devices is a standard STREAMS feature, similar to the minor 

device mechanism in character I/O device drivers. 

Other User Functions 

The previous example illustrates basic STREAMS concepts. However, more efficient STREAMS calls or 

mechanisms could have been used in place of those described earlier. 

For example, the initialization process that created a getstrm  process for each tty port could have been 

implemented as a ″supergetty″ by use of the STREAMS-related poll  subroutine. The poll  subroutine 

allows a single process to efficiently monitor and control multiple streams. The ″supergetty″ process would 

handle all of the stream and terminal protocol initialization and would create application processes only for 

established connections. 

Otherwise, the M_PROTO notification sent to the getstrm  process could be sent by the driver as an 

M_SIG message that causes a specified signal to be sent to the process. Error and status information can 

also be sent upstream from a driver or module to user processes using different message types. These 

messages will be transformed by the stream head into a signal or error code. 

Finally, a I_STR  operation could be used in place of a putmsg  system call M_PROTO message to send 

information to a driver. The sending process must receive an explicit response from an I_STR  operation by 

a specified time period, or an error will be returned. A response message must be sent upstream by the 

destination module or driver to be translated into the user response by the stream head. 

Kernel Processing 

This section describes STREAMS kernel operations and associates them, where relevant, with user-level 

system calls. As a result of initializing operations and pushing a module, the stream for port 1 has the 

configuration shown in the Operational Stream diagram (Figure 47 on page 286). 

 

 

Chapter 10. STREAMS 285



Here the upstream QUEUE is also referred to as the read QUEUE, reflecting the message flow in 

response to a read  subroutine. The downstream QUEUE is referred to as the write QUEUE. 

Read-Side Processing 

In the example, read-side processing consists of driver processing, CHARPROC processing, and 

CANONPROC processing. 

Driver  Processing:    In the example, the user process has blocked on the getmsg  subroutine while 

waiting for a message to reach the stream head, and the device driver independently waits for input of a 

character from the port hardware or for a message from upstream. Upon receipt of an input character 

interrupt from the port, the driver places the associated character in an M_DATA message, allocated 

previously. Then, the driver sends the message to the CHARPROC module by calling the CHARPROC 

upstream put procedure. On return from the CHARPROC module, the driver calls the allocb  utility routine 

to get another message for the next character. 

CHARPROC:    The CHARPROC module has both put and service procedures on its read side. As a 

result, the other QUEUEs in the modules also have put and service procedures. 

When the driver calls the CHARPROC read-QUEUE put procedure, the procedure checks private data 

flags in the QUEUE. In this case, the flags indicate that echoing is to be performed (recall that echoing is 

optional and that you are working with port hardware that cannot automatically echo). The CHARPROC 

module causes the echo to be transmitted back to the terminal by first making a copy of the message with 

a STREAMS utility. Then, the CHARPROC module uses another utility to obtain the address of its own 

write QUEUE. Finally, the CHARPROC read put procedure calls its write put procedure and passes it the 

message copy. The write procedure sends the message to the driver to effect the echo and then returns to 

the read procedure. 

This part of read-side processing is implemented with put procedures so that the entire processing 

sequence occurs as an extension of the driver input-character interrupt. The CHARPROC read and write 

put procedures appear as subroutines (nested in the case of the write procedure) to the driver. This 

manner of processing is intended to produce the character echo in a minimal time frame. 

Stream
Head

CANONPROC
Module

CHARPROC
Module

Queue Pair

Raw tty
Device Driver

Operational Stream

Write Read

  

Figure  47.  Operational  Stream.  This  diagram  shows  the  raw  tty device  driver  and  the  queue  pair  joined.  The  

CHARPROC  module  is above  the queue  pair  and  the  CANONPROC  module  is between  the stream  head  (at  the top  

of the  kernel  space)  and  CHARPROC.  The  modules  have  the  same  communication  arrows  as used  in the  previous  

diagram.  The  upstream  queue  or read  queue  is on the  right  (signified  by  the upward  arrow)  while  the  downstream  

queue  or write  queue  is on the  left  (signified  by the downward  arrow).

 

286 Communications Programming Concepts



After returning from echo processing, the CHARPROC read put procedure checks another of its private 

data flags and determines that parity checking should be performed on the input character. Usually, parity 

would be checked as part of echo processing. However, for this example, parity is checked only when the 

characters are sent upstream. As a result, parity checking can be deferred along with the canonical 

processing. The CHARPROC module uses the putq  utility to schedule the (original) message for 

parity-check processing by its read service procedure. When the CHARPROC read service procedure is 

complete, it forwards the message to the read put procedure of the CANONPROC module. If parity 

checking were not required, the CHARPROC put procedure would call the CANONPROC put procedure 

directly. 

CANONPROC:    The CANONPROC module performs canonical processing. As implemented, all read 

QUEUE processing is performed in its service procedure. The CANONPROC put procedure calls the putq  

utility to schedule the message for its read service procedure, and then exits. The service procedure 

extracts the character from the message buffer and places it in the line buffer contained in another 

M_DATA message it is constructing. Then, the message containing the single character is returned to the 

buffer pool. If the character received was not an end-of-line, the CANONPROC module exits. Otherwise, a 

complete line has been assembled and the CANONPROC module sends the message upstream to the 

stream head, which unlocks the user process from the getmsg  subroutine call and passes it the contents 

of the message. 

Write-Side Processing 

The write side of the stream carries two kinds of messages from the user process: streamio  messages for 

the CHARPROC module and M_DATA messages to be output to the terminal. 

The streamio  messages are sent downstream as a result of an I_STR  operation. When the CHARPROC 

module receives a streamio  message type, it processes the message contents to modify internal QUEUE 

flags and then uses a utility to send an acknowledgment message upstream (read side) to the stream 

head. The stream head acts on the acknowledgment message by unblocking the user from the streamio  

message. 

For terminal output, it is presumed that M_DATA messages, sent by write  subroutines, contain multiple 

characters. In general, STREAMS returns to the user process immediately after processing the write  

subroutine so that the process may send additional messages. Flow control will eventually block the 

sending process. The messages can queue on the write side of the driver because of 

character-transmission timing. When a message is received by the driver’s write put procedure, the 

procedure will use the putq  utility to place the message on its write-side service message queue if the 

driver is currently transmitting a previous message buffer. However, there is generally no write-QUEUE 

service procedure in a device driver. Driver output-interrupt processing takes the place of scheduling and 

performs the service procedure functions, removing messages from the queue. 

Analysis 

For reasons of efficiency, a module implementation would generally avoid placing one character per 

message and using separate routines to echo and parity-check each character, as done in this example. 

Nevertheless, even this design yields potential benefits. Consider a case in which an alternative and more 

intelligent port hardware was substituted. If the hardware processed multiple input characters and 

performed the echo and parity-checking functions of the CHARPROC module, then the new driver could 

be implemented to present the same interface as the CHARPROC module. Other modules such as 

CANONPROC could continue to be used without modification. 

Differences Between Portable Streams Environment and V.4 STREAMS 

Portable Streams Environment (PSE) was implemented from the AT&T UNIX  System  V Release  4, 

Programmer’s  Guide:  STREAMS  document. It is designed for compatibility with existing STREAMS 

applications and modules that adhere to the STREAMS design guidelines. 

 

Chapter 10. STREAMS 287



Extensions to STREAMS 

In some areas, the STREAMS definition is extended to enhance functionality. These enhancements 

include: 

v   Extended read modes. PSE supports an extra read mode, RFILL, which requests that the stream head 

fill a buffer completely before returning to the application. This is used in conjunction with a cooperating 

module and M_READ messages. 

v   The putctl2  utility. A new utility routine, putctl2, is supported for creating M_ERROR messages with 2 

bytes of data. The parameters are the same as for the putctl1  utility. 

v   Autopush names. The PSE autopush  command accepts device names in place of major numbers on 

the command line. It then translates names into major numbers with the help of the sc  module.

Note:   Although these extensions can be used freely in this operating system, their use limits portability. 

Differences in PSE 

Although PSE is written to the specifications in the AT&T document, there are places in which compatibility 

with the specification is not implemented or is not possible. These differences are: 

v   Include files. Not all structures and definitions in AT&T include files are discussed in the STREAMS 

documentation. Module and application writers can use only those symbols specified in the 

documentation. 

v   Module configuration. The configuration of modules and devices under PSE is different from AT&T 

System V Release 4 in that there is no master file or related structures. PSE maintains an fmodsw table 

for modules, and a dmodsw table for devices and multiplexors. Entries are dynamically placed in these 

tables as modules are loaded into a running system. Similarly, PSE normally supports init  routines for 

modules and devices, but not start  routines. 

v   Logging device. The STREAMS logging device is named /dev/slog. The /dev/log  node refers to a 

different type of logging device. 

v   Structure definitions. PSE supports the standard STREAMS structure definitions in terms of field names 

and types, but also includes additional fields for host-specific needs. Modules and applications should 

not depend on the field position or structure size as taken from STREAMS documentation. Also, PSE 

does not support the notion of expanded fundamental types and the associated _STYPES  definition. 

v   Queue flags. PSE defines, but does not implement, the QBACK  and QHLIST  queue flags. 

v   Memory allocation. PSE does not support the rmalloc, rminit, and rmfree  memory allocation routines. 

v   Named streams. PSE does not support named streams and the associated fdetach  program. 

v   Terminals. PSE does not include STREAMS-based terminals or the related modules and utilities 

(including job control primitives). However, nothing in PSE prevents STREAMS-based terminals from 

being added. 

v   Network selection. PSE does not support the V.4 Network Selection and Name-to-Address Mapping 

extensions to the TLI (Transport Layer Interface).

List of Streams Commands 

System management commands are arranged by the following functions: 

v   Configuring 

v   Maintaining 

For information about STREAMS operations, modules and drivers, subroutines, a function, system calls, 

and utilities, see “List of STREAMS Programming References” on page 289. 

Configuring 

 autopush  Configures lists of automatically pushed STREAMS modules. 

 

288 Communications Programming Concepts



strchg  Changes stream configuration. 

strconf  Queries stream configuration. 

strload  Loads and configures Portable Streams Environment (PSE).
  

Maintaining 

 scls  Produces a list of module and driver names. 

strace  Prints STREAMS trace messages. 

strclean  Cleans up the STREAMS error logger. 

strerr  (Daemon) Receives error log messages from the STREAMS log driver.
  

List of STREAMS Programming References 

The list includes: 

v   “Operation” 

v   “Modules and Drivers” 

v   “Subroutines” 

v   “Function” on page 290 

v   “System Calls” on page 290 

v   “Utilities” on page 290 

For information about STREAMS commands for configuring and managing, see “List of Streams 

Commands” on page 288. 

Operation 

 streamio  Lists the ioctl operations which perform a variety of control functions on streams.
  

Modules and Drivers 

The following modules and drivers are used in the STREAMS environment. The references are found in 

the list of subroutines. 

 pfmod  Selectively removes upstream data messages on a stream. 

timod  Converts a set of streamio  operations into STREAMS messages. 

tirdwr  Supports the Transport Interface functions of the Network Services library. 

xtiso  Provides access to sockets-based protocols to STREAMS applications. 

dlpi  Provides an interface to the data link provider.
  

Subroutines 

 t_accept  Accepts a connect request. 

t_alloc  Allocates a library structure. 

t_bind  Binds an address to a transport endpoint. 

t_close  Closes a transport endpoint. 

t_connect  Establishes a connection with another transport user. 

t_error  Produces an error message. 

t_free  Frees a library structure. 

t_getinfo  Gets protocol-specific service information. 

t_getstate  Gets the current state. 

t_listen  Listens for a connect request. 

 

Chapter 10. STREAMS 289



t_look  Looks at the current event on a transport endpoint. 

t_open  Establishes a transport endpoint. 

t_optmgmt  Manages options for a transport endpoint. 

t_rcv  Receives normal data or expedited data sent over a connection. 

t_rcvconnect  Receives the confirmation from a connect request. 

t_rcvdis  Retrieves information from disconnect. 

t_rcvrel  Acknowledges receipt of an orderly release indication. 

t_rcvudata  Receives a data unit. 

t_rcvuderr  Receives a unit data error indication. 

t_snd  Sends data or expedited data over a connection. 

t_snddis  Sends a user-initiated disconnect request. 

t_sndrel  Initiates an orderly release of a transport connection. 

t_sndudata  Sends a data unit to another transport user. 

t_sync  Synchronizes transport library. 

t_unbind  Disables a transport endpoint.
  

Function 

 isastream  Tests a file descriptor.
  

System Calls 

 getmsg  Gets the next message off a stream. 

getpmsg  Gets the next priority message off a stream. 

putmsg  Sends a message on a stream. 

putpmsg  Sends a priority message on a stream.
  

Utilities 

The following utilities are used by STREAMS: 

 adjmsg  Trims bytes in a message. 

allocb  Allocates message and data blocks. 

backq  Returns a pointer to the queue behind a given queue. 

bcanput  Tests for flow control in the given priority band. 

bufcall  Recovers from a failure of the allocb  utility. 

canput  Tests for available room in a queue. 

copyb  Copies a message block. 

copymsg  Copies a message. 

datamsg  Tests whether message is a data message. 

dupb  Duplicates a message-block descriptor. 

dupmsg  Duplicates a message. 

enableok  Enables a queue to be scheduled for service. 

esballoc  Allocates message and data blocks. 

flushband  Flushes the messages in a given priority band. 

flushq  Flushes a queue. 

freeb  Frees a single message block. 

freemsg  Frees all message blocks in a message. 

getadmin  Returns a pointer to a module. 

getmid  Returns a module ID. 

getq  Gets a message from a queue. 

insq  Puts a message at a specific place in a queue. 

linkb  Concatenates two messages into one. 

 

290 Communications Programming Concepts



mi_bufcall  Provides a reliable alternative to the bufcall  utility. 

mi_close_comm  Performs housekeeping during STREAMS module close operations. 

mi_next_ptr  Traverses a STREAMS module’s linked list of open streams. 

mi_open_comm  Performs housekeeping during STREAMS module open operations. 

msgdsize  Gets the number of data bytes in a message. 

noenable  Prevents a queue from being scheduled. 

OTHERQ  Returns the pointer to the mate queue. 

pullupmsg  Concatenates and aligns bytes in a message. 

putbq  Returns a message to the beginning of a queue. 

putctl  Passes a control message. 

putctl1  Passes a control message with a one-byte parameter. 

putnext  Passes a message to the next queue. 

putq  Puts a message on a queue. 

qenable  Enables a queue. 

qreply  Sends a message on a stream in the reverse direction. 

qsize  Finds the number of messages on a queue. 

RD  Gets the pointer to the read queue. 

rmvb  Removes a message block from a message. 

rmvq  Removes a message from a queue. 

splstr  Sets the processor level. 

splx  Terminates a section of code. 

srv  Services queued messages for STREAMS modules or drivers. 

str_install  Installs STREAMS modules and drivers. 

strlog  Generates STREAMS error-logging and event-tracing messages. 

strqget  Obtains information about a queue or band of the queue. 

testb  Checks for an available buffer. 

timeout  Schedules a function to be called after a specified interval. 

unbufcall  Cancels a bufcall  request. 

unlinkb  Removes a message block from the head of a message. 

untimeout  Cancels a pending time-out request. 

unweldq  Removes a previously established weld connection between STREAMS queues. 

wantio  Register direct I/O entry points with the stream head. 

weldq  Establishes a unidirectional connection between STREAMS queues. 

WR  Retrieves a pointer to the write queue.
  

Transport Service Library Interface Overview 

Network applications that are either system-provided or developed in-house require a programming 

interface to the network, such as Transmission Control Protocol/Internet Protocol (TCP/IP). The transport 

level programming interface provides application developers a means of getting to the network protocols 

without requiring the knowledge of protocol-specific semantics, the framework which the protocols are 

loaded or the complexity of kernel interfaces. 

Two libraries are provided for accessing well-known protocols such as TCP/IP. These libraries are: 

v   Transport Library Interface (TLI) 

v   X/OPEN Transport Library Interface (XTI)

These library interfaces are provided in addition to the existing socket system calls. Generally speaking, 

well-known protocols, such as TCP/IP and Open Systems Interconnection (OSI), are divided into two 

parts: 

v   Transport layer and below are in the kernel space 

v   Session layer and above services are in the user space.

 

Chapter 10. STREAMS 291



The operating system supplies the socket-based TCP/IP protocol suites as a part of the base system. It 

also supplies the socket system calls and socket library calls (libc.a) for the existing applications which 

have been developed using the sockets applications programming interface (API). 

TLI is a library that is used for porting applications developed using the AT&T System V-based UNIX 

operating systems. 

XTI is a library implementation, as specified by X/OPEN CAE Specification of X/Open Transport Interface 

and fully conformant to X/OPEN  XPG4  Common  Application  Environment  (CAE)  specification, that defines 

a set of transport-level services that are independent of any specific transport provider’s protocol or its 

framework. 

The purpose of XTI is to provide a universal programming interface for the transport layer functions 

regardless of the transport layer protocols, how the framework of the transport layer protocols are 

implemented, or the type of UNIX operating system. For example, an application which writes to XTI 

should not have to know that the service provider is written using STREAMS or sockets. The application 

accesses the transport end point (using the returned handle, fd, of the t_open  subroutine) and requests 

and receives indications from the well-known service primitives. If desired or necessary, applications can 

obtain any protocol-specific information by calls to the t_info  subroutine. 

Both TLI and XTI are implemented using STREAMS. This implementation includes the following members: 

v   Transport Library - libtli.a  

v   X/OPEN Transport Library - libxti.a  

v   STREAMS driver - Sends STREAMS messages initiated from the XTI or TLI library to the 

sockets-based network protocol (as in the case of TCP/IP) or to other STREAMS drivers (as in the case 

of Netware).

The TLI (libtli.a) and XTI (libxti.a) libraries are shared libraries. This means that applications can run 

without recompiling, even though the system may update the libraries in the future. 

The TLI and XTI calls syntax is similar. For the most part, XTI is a superset of TLI in terms of definitions, 

clarification of usage, and robustness of return codes. For specific XTI usage and return codes, see the 

X/OPEN CAE Specification of X/Open Transport Interface and the “Subroutines” on page 289. 

TLI and XTI Characteristics 

TLI and XTI are the interfaces for providing the transport layer services. The semantics of these interfaces 

closely resemble those of sockets. Some of the characteristics of the interfaces are: 

v   Transport  end  points  - A transport end point specifies a communication path between a transport user 

and a specific transport provider. Similar to the socket  subroutine (which returns the file descriptor, s), 

calls to the TLI and XTI t_open  subroutines return the file descriptor, fd, as a handle to be used with 

subsequent calls. 

A transport end point can support only one established transport connection at a time, though a 

transport provider, such as TCP/IP, serves the multiple transport end points. To activate and bind the 

local transport port, a transport end point must have a transport address associated with it by t_bind  

subroutine calls. To make a end-to-end connection between two active transport end points, the 

t_connect  subroutine must follow. For a transport end point that needs a connectionless service, such 

as User Datagram Protocol/Internet Protocol (UDP/IP), a connect phase is skipped and the t_rcvudata  

subroutine can be called after the t_bind  subroutine is issued. 

v   Ownership  of  transport  end  points  - Once a transport end point is acquired from the transport 

provider (by getting the file descriptor, fd, from the t_open  calls), the handle as specified by fd can be 

shared by multiple processes, such as the fork  subroutine. However, the transport provider treats the 

processes sharing the same fd  as a single return point. These processes must coordinate their activities 

to not violate the state of provider. 

 

292 Communications Programming Concepts



The t_sync  subroutine calls return the state of the transport provider, allowing users to verify the 

transport provider state before taking further action. An application that wants to manage multiple 

transport providers, such as a server application, must call the t_open  subroutine for each provider. For 

example, a server application that is waiting for incoming connect indications from several transport 

providers, such as TCP/IP and OSI, must open multiple t_open  subroutines and listen for connection 

indications on each of the associated handles (fd). 

v   Synchronous  and  asynchronous  execution  of  calls  - TLI and XTI provide synchronous and 

asynchronous execution of calls. In the synchronous mode of operation, the calls block until a specific 

event is satisfied. Synchronous mode is the default mode of operation. In the asynchronous mode of 

operation (t_open  subroutine with the O_NONBLOCK  flag set), the call is returned immediately and the 

specified event is notified by either or both the poll  and select  system calls some time later. 

Users are advised to choose a mode of execution based on the nature of its function. For example, a 

typical server application should exploit the asynchronous execution to facilitate multiple concurrent 

actions required for client requests. 

v   Event  Management  - For connection-oriented mode, it is important for users to know the state of the 

current connection or the change of any state caused by calls issued to that state. The TLI and XTI 

event management allows the state of event either by return code (TLOOK) or a call (t_look  

subroutine) to request the current state information.

The following tables list the typical sequence of calls a user must issue for various connection types. 

Note:   These tables are provided as examples of typical sequences, rather than the exact order in which 

the transport providers are required. 

Connection  oriented  calls:  

 Server  Client  

t_open() t_open() 

| | 

t_bind() t_bind() 

| | 

t_alloc() t_alloc() 

| | 

t_listen() t_connect() 

: <—————————-: 

: : 

t_accept() : 

| : 

t_rcv()/t_snd() t_snd()/t_rcv() 

| | 

t_snddis()/t_rcvdis() t_rcvdis()/t_snddis() 

| | 

t_unbind() t_unbind() 

| | 

t_close() t_close()
 

 

Chapter 10. STREAMS 293



Connectionless  calls: 

 Server  Client  

t_open() t_open() 

| | 

t_bind() t_bind() 

| | 

t_alloc() t_alloc() 

| | 

t_rcvudata()/t_sndudata t_sndudata/t_rcvudata 

| | 

t_unbind() t_unbind() 

| | 

t_close() t_close()

 

294 Communications Programming Concepts



Chapter  11.  Transmission  Control  Protocol/Internet  Protocol  

Transmission Control Protocol/Internet Protocol (TCP/IP) includes a suite of protocols that specify 

communications standards between computers as well as detail conventions for routing and 

interconnecting networks. TCP/IP is used extensively on the Internet and consequently allows research 

institutions, colleges and universities, government, industry, and individuals to communicate with each 

other. 

This chapter provides the following: 

v   “DHCP Server API” 

v   “Dynamic Load API” on page 301 

v   “Service Location Protocol (SLP) APIs” on page 305 

v   “Lists of Programming References” on page 309

For information on name resolution, see “Network Address Translation” on page 213. 

DHCP Server API 

The DHCP server lets you define modules that can be linked to the DHCP Server and called at specified 

checkpoints during DHCP or BOOTP  message processing. This section describes the following: 

v   “Loading User Objects” 

v   “Predefined Structures” 

v   “User-Defined Object Requirements” on page 297 

v   “User-Defined Object Optional Routine” on page 301

Note:   Because the DHCP server is run with root-user authority, user-defined objects can introduce 

security vulnerabilities and performance degradation. Especially protect against buffer overrun 

exploitations and enforce security measures when an object writes to temporary files or executes 

system commands. Also, since many of the routines that can be defined by the object are executed 

during the normal processing path of each DHCP client’s message, monitor the response time to 

the DHCP client for any impacts on performance. 

Loading User Objects 

The DHCP server loads any user-defined object referenced in the configuration file with the UserObject  

configuration line or stanza. For example: 

  UserObject  myobject  

or 

  UserObject  myobject  

  { 

         file  /tmp/myobject.log;  

  } 

For both of these examples, the dynamically loadable shared object myobject.dhcpo  is loaded from the 

/usr/sbin  directory. In the second case, the object’s Initialize  subroutine is passed a file pointer; the object 

must parse and handle its own configuration stanza. 

Predefined Structures 

The operating system provides the following structures through the dhcp_api.h  file. The structures are 

more thoroughly described in the following sections: 

v   “dhcpmessage” on page 296 

 

© Copyright IBM Corp. 1994, 2007 295



v   “dhcpoption” 

v   “dhcpclientid” 

v   “dhcplogseverity”

dhcpmessage 

dhcpmessage  defines the structure and fields of a basic DHCP message. The options field is variable in 

length and every routine that references a DHCP message also specifies the total length of the message. 

The content of the structure follows: 

  struct  dhcpmessage  

  { 

         uint8_t         op;  

         uint8_t         htype;  

         uint8_t         hlen;  

         uint8_t         hops;  

         uint32_t        xid;  

         uint16_t        secs;  

         uint16_t        flags;  

         uint32_t        ciaddr;  

         uint32_t        yiaddr;  

         uint32_t        siaddr;  

         uint32_t        giaddr;  

         uint8_t         chaddr[16];  

         uint8_t         sname[64];  

         uint8_t         file[128];  

         uint8_t         options[1];  

  }; 

dhcpoption 

dhcpoption  defines the framework of a DHCP option encoded in its type, length, data format. The content 

of the structure follows: 

  struct  dhcpoption  

  { 

         uint8_t         code;  

         uint8_t         len;  

         uint8_t         data[1];  

  }; 

dhcpclientid 

dhcpclientid  uniquely identifies a DHCP client. You can define it using the DHCP Client Identifier Option 

or it can be created from the hardware type, hardware length, and hardware address of a DHCP or 

BOOTP message that does not contain a Client Identifier Option. The DHCP message option and client 

identifier references always point to network byte-ordered data. The content of the structure follows: 

struct  dhcpclientid  

  { 

          uint8_t          type;  

          uint8_t          len;  

          uint8_t          id[64];  

  }; 

dhcplogseverity 

The enumerated type dhcplogseverity  assigns a log severity level to a user-defined object’s error 

messages. An object’s error message is displayed to the DHCP server’s log file through the exported 

dhcpapi_logmessage  routine, provided that logging severity level has been enabled. 

enum  dhcplogseverity  

  { 

          dhcplog_syserr  = 1 , 

          dhcplog_objerr  , 

          dhcplog_protocol  , 

          dhcplog_warning  , 

          dhcplog_event  , 

          dhcplog_action  ,

 

296 Communications Programming Concepts



dhcplog_info  , 

          dhcplog_accounting  , 

          dhcplog_stats  , 

          dhcplog_trace  

  }; 

User-Defined Object Requirements 

The following are required for any user-defined object to conform to this API: 

1.   The object must use the Initialize  routine (see “Initialize”). 

2.   The object must use the Shutdown  routine (see “Shutdown”). 

3.   The object must contain at least one of the checkpoint routines defined in the API (see “Checkpoint 

Routines” on page 298). 

4.   The object must never  alter any data provided by a const  pointer reference to the routine.

Initialize 

The Initialize  routine must be defined by the object to be loaded by the server. It is used each time the 

server is started, including restarts, and is called each time the object is referenced in the DHCP server’s 

configuration file. 

The following is the structure of the Initialize  routine: 

int  Initialize        ( FILE  *fp,  

                       caddr_t  *hObjectInstance                ) ; 

Where: 

 fp Points to the configuration block for the loaded UserObject. The value of the pointer is NULL 

if no configuration block exists following the UserObject  definition in the DHCP Server 

configuration file. 

hObjectInstance  Is set by the loaded object if the object requires private data to be returned to it through each 

invocation. One handle is created for each configuration instance of the loaded object.
  

If the file pointer fp  is not NULL, its initial value references the first line of contained data within the 

configuration block of the user-defined object. Parsing should continue only as far as an unmatched close 

brace (}), which indicates the end of the configuration block. 

The Initialize  routine does not require setting the hObjectInstance  handle. However, it is required that the 

routine return specific codes, depending on whether the initialization succeeded or failed. The required 

codes and their meanings follow: 

 0 (zero) Instance is successfully initialized. The server can continue to link to each symbol. 

!= 0 (non-zero) Instance failed to initialize. The server can free its resources and continue to load, ignoring 

this section of the configuration file.
  

Shutdown 

The Shutdown  routine is used to reverse the effects of initialization: to deallocate data and to destroy 

threads. The Shutdown  routine is called before shutting down the server and again before reloading the 

configuration file at each server reinitialization. The routine must return execution to the server so the 

server can reinitialize and properly shut down. The following is the structure of the Shutdown  routine: 

void  Shutdown         ( caddr_t  hObjectInstance                 ) ; 

Where: 

 hObjectInstance  Is the same configuration instance handle created when this object was initialized.
 

 

Chapter 11. Transmission Control Protocol/Internet Protocol 297



Checkpoint Routines 

A user-defined object must implement at least one of the following checkpoint routines. The routines are 

more thoroughly described in the following sections. 

v   “messageReceived” 

v   “addressOffered” 

v   “addressAssigned” on page 299 

v   “addressReleased” on page 299 

v   “addressExpired” on page 300 

v   “addressDeleted” on page 300 

v   “addressDeclined” on page 300

messageReceived:    The messageReceived  routine lets you add an external means of authentication to 

each received DHCP or BOOTP message. The routine is called just as the message is received by the 

protocol processor and before any parsing of the message itself. 

In addition to the message, the server passes three IP addresses to the routine. These addresses, when 

used together, can determine whether the client is on a locally attached network or a remotely routed 

network and whether the server is receiving a broadcast message. 

Additionally, you can use the messageReceived  routine to alter the received message. Because changes 

directly affect the remainder of message processing, use this ability rarely and only under well-understood 

circumstances. 

The following is the structure of the messageReceived  routine: 

int  messageReceived   ( caddr_t  hObjectInstance,  

                       struct  dhcpmessage  **inMessage,  

                       size_t  *messageSize,  

                       const  struct  in_addr  *receivingIP,  

                       const  struct  in_addr  *destinationIP,  

                       const  struct  in_addr  *sourceIP          ) ; 

Where: 

 hObjectInstance  Is the same configuration instance handle created when this object was initialized. 

inMessage  Is a pointer to the unaltered, incoming DHCP or BOOTP message. 

messageSize  Is the total length, in bytes, of the received DHCP or BOOTP message. 

receivingIP  Is the IP address of the interface receiving the DHCP or BOOTP message. 

destinationIP  Is the destination IP address taken from the IP header of the received DHCP or BOOTP 

message. 

sourceIP  Is the source IP address taken from the IP header of the received DHCP or BOOTP 

message.
  

The messageReceived  routine returns one of the following values: 

 0 (zero) The received message can continue to be parsed and the client possibly offered or given an 

address through the regular means of the DHCP server. 

!= 0 (non-zero) The source client of this message is not to be given any response from this server. This 

server remains silent to the client.
  

addressOffered:    The addressOffered  routine is used for accounting. Parameters passed to the routine 

are read-only. The routine has no return code to prevent sending the outgoing message. It is called when 

a DHCP client is ready to be sent an address OFFER message. The following is the structure of the 

addressOffered  routine: 

 

298 Communications Programming Concepts



void  addressOffered   ( caddr_t  hObjectInstance,  

                       const  struct  dhcpclientid  *cid,  

                       const  struct  in_addr  *addr,  

                       const  struct  dhcpmessage  *outMessage,  

                       size_t  messageSize                      ) ; 

Where: 

 hObjectInstance  Is the same configuration instance handle created when this object was initialized. 

cid  Is the client identifier of the client. 

addr  Is the address to be offered to the client. 

outMessage  Is the outgoing message that is ready to be sent to the client. 

messageSize  Is the length, in bytes, of the outgoing message that is ready to be sent to the client.
  

addressAssigned:    The addressAssigned  routine can be used for accounting purposes or to add an 

external means of name and address association. The hostname  and domain  arguments are selected 

based upon the A-record proxy update policy and the append domain policy (configured in the db_file  

database through the keywords proxyARec  and appendDomain, respectively), as well as the defined and 

suggested hostname  and domain  options for the client. 

The addressAssigned  routine is called after the database has associated the address with the client and 

just before sending the BOOTP response or DHCP ACK to the client. If a DNS update is configured, the 

addressAssigned  routine is called after the update has occurred or, at least, has been queued. 

Parameters offered to the routine are read-only. The routine has no return code to prevent address and 

client binding. The structure of the addressAssigned  routine follows: 

void  addressAssigned  ( caddr_t  hObjectInstance,  

                       const  struct  dhcpclientid  *cid,  

                       const  struct  in_addr  *addr,  

                       const  char  *hostname,  

                       const  char  *domain,  

                       const  struct  dhcpmessage  *outMessage,  

                       size_t  messageSize                      ) ; 

 hObjectInstance  Is the same configuration instance handle created when this object was initialized. 

cid  Is the client identifier of the client. 

addr  Is the address selected for the client. 

hostname  Is the host name which is (or should have been) associated with the client. 

domain  Is the domain in which the host name for the client was (or should have been) updated. 

outMessage  Is the outgoing message that is ready to be sent to the client. 

messageSize  Is the length, in bytes, of the outgoing message that is ready to be sent to the client.
  

addressReleased:    The addressReleased  routine is used for accounting when DHCP clients are ready 

to be sent an address OFFER message. Parameters given to the routine are read-only. 

The routine is called just after the database has been instructed to disassociate the client identifier and 

address binding. If so configured, the routine is called after the DNS server has been indicated to 

disassociate the name and address binding. 

The structure of the addressReleased  routine follows: 

void  addressReleased  ( caddr_t  hObjectInstance,  

                       const  struct  dhcpclientid  *cid,  

                       const  struct  in_addr  *addr,  

                       const  char  *hostname,  

                       const  char  *domain                      ) ; 

 

Chapter 11. Transmission Control Protocol/Internet Protocol 299



Where: 

 hObjectInstance  Is the same configuration instance handle created when this object was initialized. 

cid  Is the client identifier of the client. 

addr  Is the address previously used by the client. 

hostname  Is the hostname previously associated with this client and address binding. 

domain  Is the domain in which the hostname for the client was (or should have been) previously 

updated.
  

addressExpired:    The addressExpired  routine is used for accounting when any DHCP database detects 

an association must be cancelled because the address and client identifier association has existed beyond 

the end of the offered lease. Parameters given to the routine are read-only. 

The structure of the addressExpired  routine follows: 

void  addressExpired   ( caddr_t  hObjectInstance,  

                       const  struct  dhcpclientid  *cid,  

                       const  struct  in_addr  *addr,  

                       const  char  *hostname,  

                       const  char  *domain                      ) ; 

Where: 

 hObjectInstance  Is the same configuration instance handle created when this object was initialized. 

cid  Is the client identifier of the client. 

addr  Is the address previously used by the client. 

hostname  Is the hostname previously associated with this client and address binding. 

domain  Is the domain in which the hostname for the client was (or should have been) previously 

updated.
  

addressDeleted:    The addressDeleted  routine is used for accounting when any address association is 

explicitly deleted from lack of interaction with the client or because of a lease expired. Most commonly, this 

routine is invoked when the DHCP server is reinitialized, when a new configuration might cause a previous 

client and address association to become invalid, or when the administrator explicitly deletes an address 

using the dadmin  command. Parameters given to the routine are read-only. 

The structure of the addressDeleted  routine follows: 

void  addressDeleted   ( caddr_t  hObjectInstance,  

                       const  struct  dhcpclientid  *cid,  

                       const  struct  in_addr  *addr,  

                       const  char  *hostname,  

                       const  char  *domain                      ) ; 

Where: 

 hObjectInstance  Is the same configuration instance handle created when this object was initialized. 

cid  Is the client identifier of the client. 

addr  Is the address previously used by the client. 

hostname  Is the hostname previously associated with this client and address binding. 

domain  Is the domain in which the hostname for the client was (or should have been) previously 

updated.
  

addressDeclined:    The addressDeclined  routine is used for accounting purposes when a DHCP client 

indicates to the server (through the DHCP DECLINE message type) that the given address is in use on 

the network. The routine is called immediately after the database has been instructed to disassociate the 

client identifier and address binding. If so configured, the routine is called after the DNS server has been 

indicated to disassociate the name and address binding. Parameters given to the routine are read-only. 

 

300 Communications Programming Concepts



The structure of the addressDeclined  routine follows: 

void  addressDeclined  ( caddr_t  hObjectInstance,  

                       const  struct  dhcpclientid  *cid,  

                       const  struct  in_addr  *addr,  

                       const  char  *hostname,  

                       const  char  *domain                      ) ; 

Where: 

 hObjectInstance  Is the same configuration instance handle created when this object was initialized. 

cid  Is the client identifier of the client. 

addr  Is the address that was declined by the client. 

hostname  Is the hostname previously associated with this client and address binding. 

domain  Is the domain in which the hostname for the client was (or should have been) previously updated.
  

User-Defined Object Optional Routine 

The dhcpapi_logmessage  routine is available to the user-defined object programmer. A prototype is 

available in dhcpapi.h  with the symbol defined for linking in /usr/lib/dhcp_api.exp. 

The routine specifies a message that is logged to the DHCP server’s configured log file, provided that 

message severity level, which specified by the s parameter, has been enabled. The structure of the 

dhcpapi_logmessage  routine follows: 

void  dhcpapi_logmessage  ( enum  dhcplogseverity  s, 

                          char  *format,  

                          ...                                               ) ; 

 s Is the severity level of the message to be logged. Message severities are defined in the dhcpapi.h  

header file and correspond directly to the DHCP server configuration logItem  levels of logging. 

format  Is the typical printf  format string.
  

Dynamic Load API 

The operating system supports name resolution from five different maps: 

v   Domain Name Server (DNS) 

v   Network Information Server (NIS) 

v   NIS+ 

v   Local methods of name resolution 

v   Dynamically loaded, user-defined APIs

With the Dynamic Load Application Programming Interface (API), you can load your own modules to 

provide routines that supplement the maps provided by the operating system. The Dynamic Load API 

enables you to create dynamically loading APIs in any of the following map classes: 

v   “Services Map Type” on page 302 

v   “Protocols Map Type” on page 302 

v   “Hosts Map Type” on page 302 

v   “Networks Map Type” on page 302 

v   “Netgroup Map Type” on page 303

You can build your own user modules containing APIs for any or all of the map classes. The following 

sections define an API’s function names and prototypes for each of the five classes. To instantiate each 

map accesssor, the operating system requires that a user-provided module use the specified function 

names and function prototypes for each map class. 

 

Chapter 11. Transmission Control Protocol/Internet Protocol 301



For information about configuring a dynamically loading API, see “Configuring a Dynamic API” on page 

304. 

Services Map Type  

The following is the required prototype for a user-defined services map class: 

  void  *sv_pvtinit();  

  void  sv_close(void  *private);  

  struct  servent  * sv_byname(void  *private,  const  char  *name,  const  char  *proto);  

  struct  servent  * sv_byport(void  *private,  int  port,  const  char  *proto);  

  struct  servent  * sv_next(void  *private);  

  void  sv_rewind(void  *private);  

  void  sv_minimize(void  *private);  

Function sv_pvtinit  must exist. It is not required to return anything more than NULL. For example, the 

function can return NULL if the calling routine does not need private data. 

Functions other than sv_pvtinit  are optional for this class. The module can provide none or only part of 

the optional functions in its definition. 

Protocols Map Type  

The following is the required prototype for a user-defined protocols map class: 

  void  * pr_pvtinit();  

  void  pr_close(void  *private);  

  struct  protoent  * pr_byname(void  *private,  const  char  *name);  

  struct  protoent  * pr_bynumber(void  *private,  int  num);  

  struct  protoent  * pr_next(void  *private);  

  void  pr_rewind(void  *private);  

  void  pr_minimize(void  *private);  

Function pr_pvtinit  must exist. It is not required to return anything more than NULL. For example, the 

function can return NULL if the calling routine does not need private data. 

Functions other than pr_pvtinit  are optional for this class. The module can provide none or only part of 

the optional functions in its definition. 

Hosts Map Type  

The following is the required prototype for a user-defined hosts map class: 

  void  * ho_pvtinit();  

  void  ho_close(void  *private);  

  struct  hostent  * ho_byname(void  *private,  const  char  *name);  

  struct  hostent  * ho_byname2(void  *private,  const  char  *name,  int  af);  

  struct  hostent  * ho_byaddr(void  *private,  const  void  *addr,  size_t  len,  int  af);  

  struct  hostent  * ho_next(void  *private);  

  void  ho_rewind(void  *private);  

  void  ho_minimize(void  *private);  

Function ho_pvtinit  must exist. It is not required to return anything more than NULL. For example, the 

function can return NULL if the calling routine does not need private data. 

Functions other than ho_pvtinit  are optional for this class. The module can provide none or only part of 

the optional functions in its definition. 

Networks Map Type  

The following is the required prototype for a user-defined networks map class: 

 void  * nw_pvtinit();  

 void  nw_close(void  *private);  

 struct  nwent  * nw_byname(void  *private,  const  char  *name,  int addrtype);

 

302 Communications Programming Concepts



struct  nwent  * nw_byaddr(void  *private,  void  *net,  int  length,  int addrtype);  

 struct  nwent  * nw_next(void  *private);  

 void  nw_rewind(void  *private);  

 void  nw_minimize(void  *private);  

Function nw_pvtinit  must exist. It is not required to return anything more than NULL. For example, the 

function can return NULL if the calling routine does not need private data. 

Functions other than nw_pvtinit  are optional for this class. The module can provide none or only part of 

the optional functions in its definition. 

The operating system provides a data structure required to implement the networks map class, which uses 

this structure to communicate with the operating system. 

   struct  nwent  { 

        char  *name;        /*  official  name  of net  */ 

        char  **n_aliases;  /* alias  list  */ 

        int  n_addrtype;    /* net  address  type  */ 

        void  *n_addr;      /* network  address  */ 

        int  n_length;      /* address  length,  in bits  */ 

   }; 

Netgroup Map Type  

The following is the required prototype for a user-defined netgroup map class: 

void  * ng_pvtinit();  

void  ng_rewind(void  *private,  const  char  *group);  

void  ng_close(void  *private);  

int  ng_next(void  *private,  char  **host,  char  **user,  char  **domain);  

int  ng_test(void  *private,  const  char  *name,  const  char  *host,  const  char  *user,  

const  char  *domain);  

void  ng_minimize(void  *private);  

Function ng_pvtinit  must exist. It is not required to return anything more than NULL. For example, the 

function can return NULL if the calling routine does not need private data. 

Functions other than ng_pvtinit  are optional for this class. The module can provide none or only part of 

the optional functions in its definition. 

Using the Dynamic Load API 

You must name your user-defined module according to a pre-established convention. Also, you must 

configure it into the operating system before it will work. The following sections explain API module naming 

and configuration. 

Naming the User-Provided Module 

The names of modules containing user-defined APIs follow this general form: 

NameAddressfamily  

 

Chapter 11. Transmission Control Protocol/Internet Protocol 303



Where: 

 Name  Is the name of the dynamic loadable module name. The length of the Name can be between one 

to eight characters. 

The following key words are reserved as the user option name and may not be used as the name 

of the dynamically loadable module: 

v   local 

v   bind 

v   dns 

v   nis 

v   ldap 

v   nis_ldap 

Addressfamily  Represents the address family and can be either 4 or 6. If no number is specified, the address 

family is AF_UNSPEC. If the number is 4, the address family is AF_INET. If the number is 6, the 

address family is AF_INET6. 

Any other format for user options is not valid. 

Note:  If a user calls the gethostbyname2  system call from within the application, whatever the 

address family the user passed to the gethostbyname2  system call overwrites the address family 

in the user option. For example, a user option is david6  and there is a system call 

gethostbyname2(name,  AF_INET)  in the application. Given this example, the address family 

AF_INET  overwrites the user option’s address family (6, same as AF_INET6).
  

Configuring a Dynamic API 

There are three ways to specify user-provided, dynamically loading resolver routines. You can use the 

NSORDER environment variable, the /etc/netsvc.conf  configuration file, or the /etc/irs.conf  configuration 

file. With any of these sources, you are not restricted in the number of options that you can enter, nor in 

the sequence in which they are entered. You are, however, restricted to a maximum number of 16 user 

modules that a user can specify from any of these sources. 

The NSORDER environemnt variable is given the highest priority. Next is the /etc/netsvc.conf  

configuration file, then the /etc/irs.conf  configuration file. A user option specified in a higher priority source 

(for example, NSORDER) causes any user options specified in the lower priority sources to be ignored. 

NSORDER  Environment  Variable  

You can specify zero or more user options in the environment variable NSORDER. For example, 

on the command line, you can type: 

 

 export  NSORDER=local,  bind,  bob,  nis,  david4,  jason6  

In this example, the operating system invokes the listed name resolution modules, left to right, until 

the name is resolved. The modules named local, bind, and nis  are reserved by the operating 

system, but bob, david4, and jason6  are user-provided modules. 

/etc/netsvc.conf  Configuration  File  

You can specify zero or more user options in the configuration file /etc/netsvc.conf. For example: 

 

  hosts=nis,  jason4,  david,  local,  bob6,  bind  

/etc/irs.conf  Configuration  File  

You can specify zero or more user options in the configuration file /etc/irs.conf. For example: 

 

  hosts  dns  continue  

  hosts  jason6  merge  

  hosts  david4  

 

304 Communications Programming Concepts



Procedures 

To create and install a module containing a dynamically loading API, use the following procedure. The 

operating system provides a sample Makefile, sample export file, and sample user module file, which are 

located in the /usr/samples/tcpip/dynload  directory. 

1.   Create the dynamic loadable module based on operating system specifications. 

2.   Create an export file (for example, rnd.exp) that exports all the symbols to be used. 

3.   After compilation, put all the dynamic loadable object files in the /usr/lib/netsvc/dynload  directory. 

4.   Configure one of the sources described immediately before htis procedure (NSORDER, 

/etc/netsvc.conf, or /etc/irs.conf).

Service Location Protocol (SLP) APIs 

Service Location Protocol provides a flexible and scalable framework for providing hosts with access to 

information about the existence, location, and configuration of network services. Any TCP/IP application 

can take advantage of this protocol. SLP is based on RFC 2608 and RFC 2614. 

This sections shows sample code on how to use the SLP APIs. The SLP APIs are as follows. 

Documentation for these APIs can be found in AIX  5L  Version  5.3  Technical  Reference:  Communications  

Volume  2. 

v   SLPOpen  

v   SLPClose  

v   SLPFree  

v   SLPFindSrvs  

v   SLPFindSrvTypes  

v   SLPFindAttrs  

v   SLPEscape  

v   SLPUnescape  

v   SLPParseSrvURL  

v   SLPFindScopes  

v   SLPGetProperty  

v   SLPSrvTypeCallback  

v   SLPSrvURLCallback  

v   SLPAttrCallback  

v   SLPReg  

v   SLPDereg  

v   SLPRegReport
 * To compile  it this  sample  code:  

 * cc -o samplecode  samplecode.c  -lslp  

 * 

 * To run  the  program:  

 * samplecode  -s <scopes>  -p <predicate>  -a <attrids>  -t <service_type>  \ 

              -u <url_string>  -n  <naming_authority>  

 */ 

  

#include  <stdio.h>  

#include  <slp.h>  

  

extern        int        optind;  

extern        char       *optarg;  

  

int     s_flag  = 0, 

       p_flag  = 0, 

       a_flag  = 0,

 

Chapter 11. Transmission Control Protocol/Internet Protocol 305



t_flag  = 0, 

       u_flag  = 0, 

       n_flag  = 0; 

  

void  arginit(int  argc,  char  *argv[]);  

void  Usage(void);  

  

char    *service_type  = NULL,        /* For  service  type  

         */ 

       scopes  = NULL,               /* For  scopes  list  

        */ 

       *predicate  = NULL,           /* For  precicate  list  

           */ 

       *attrids  = NULL,             /* For  attribute  ids  

          */ 

       *url  = NULL,               /* For  URL  string  

     */ 

       *na  = NULL;               /* For  naming  authority  string  

    */ 

  

SLPBoolean  SrvURLCallback  (SLPHandle  hslp,  

                          const  char  *pcSrvURL,  

                          unsigned  short  sLifetime,  

                          SLPError  errCode,  

                          void  *pvCookie)  

{ 

       SLPSrvURL*  ppSrvURL;  

       SLPError  err;  

  

       if  ( errCode  ==  SLP_LAST_CALL)  

       { 

              *(SLPError  *) pvCookie  = errCode;  

              return  (SLP_FALSE);    /* last  call,  no more  data  available  */ 

       } 

       else  if  (errCode  !=  SLP_OK)  

       { 

              *(SLPError  *) pvCookie  = errCode;  

              return  (SLP_FALSE);   /* error  happened.  don’t  want  any more  

data  */ 

       } 

       else  

       { 

               printf("pcSrvURL  is:  %s\n",  pcSrvURL);  

               printf("sLifetime  is:  %d\n",  sLifetime);  

              *(SLPError  *) pvCookie  = errCode;  

  

              /* Will  parse  the  pcSrvURL  string.  */ 

              err  = SLPParseSrvURL((char  *)pcSrvURL,  &ppSrvURL);  

                 if (err  != SLP_OK)  

                 { 

                        SLPFree((void  *)ppSrvURL);   /* release  the  dynamically  

allocated  memory  */ 

                     return(SLP_FALSE);   /* don’t  want  any more  data  */ 

                 } 

                 SLPFree((void  *)ppSrvURL);   /*  release  the  dynamically  allocated  

memory  */ 

  

              return(SLP_TRUE);   /* want  more  data  */ 

       } 

} 

  

SLPBoolean  SrvTypeCallback  (SLPHandle  hslp,  

                                const  char  *pcSrvTypes,  

                           SLPError  errCode,  

                           void  *pvCookie)  

{ 

        if ( errCode  == SLP_LAST_CALL)

 

306 Communications Programming Concepts



{ 

              *(SLPError  *) pvCookie  = errCode;  

                return  (SLP_FALSE);     /* last  call,  no more  data  available  

*/  

        } 

        else  if (errCode  != SLP_OK)  

        { 

              *(SLPError  *) pvCookie  = errCode;  

                return  (SLP_FALSE);   /* error  happened.  don’t  want  any  more  

data  */  

        } 

        else  

        { 

                printf("pcSrvTypes  is:  %s\n",  pcSrvTypes);  

              *(SLPError  *) pvCookie  = errCode;  

              return(SLP_TRUE);   /* want  more  data  */ 

        } 

} 

  

SLPBoolean  AttrCallback  (SLPHandle  hslp,  

                               const  char  *pcAttrList,  

                         SLPError  errCode,  

                         void  *pvCookie)  

{ 

        if ( errCode  == SLP_LAST_CALL)  

        { 

              *(SLPError  *) pvCookie  = errCode;  

                return  (SLP_FALSE);      /* last  call,  no  more  data  available  

*/  

        } 

        else  if (errCode  != SLP_OK)  

        { 

              *(SLPError  *) pvCookie  = errCode;  

                return  (SLP_FALSE);     /* error  happened.  don’t  want  any more  

data  */  

        } 

        else  

        { 

                printf("pcAttrList  is:  %s\n",  pcAttrList);  

              *(SLPError  *) pvCookie  = errCode;  

              return(SLP_TRUE);   /* want  more  data  */ 

        } 

} 

  

int  main  (int  argc,  char  *argv[])  

{ 

       SLPHandle  slph;  

          SLPError  callbackerr;  

           SLPError  err;  

  

       arginit(argc,  argv);  

  

           err  = SLPOpen("en",  SLP_FALSE,  &slph);  

       if (err  != SLP_OK)  

       { 

                   printf("SLPOpen  returns  error,  err  = %d\n",  err);  

              exit(1);  

       } 

  

       err  = SLPFindSrvs  (slph,  

                           service_type,  

                           scopes,        /* if NULL,  use static  configuration  

in  /etc/slp.conf  */ 

                        predicate,  

                           SrvURLCallback,  

                           &callbackerr);  

        if (err  !=  SLP_OK)

 

Chapter 11. Transmission Control Protocol/Internet Protocol 307



{ 

                   printf("SLPFindSrvs  returns  error,  err = %d\n",  err);  

                  exit(1);  

        } 

  

       err  = SLPFindSrvTypes  (slph,  

                                na,  

                                scopes,  /* if NULL,  use  static  configuration  

in /etc/slp.conf*/  

                                SrvTypeCallback,  

                                &callbackerr);  

        if (err  != SLP_OK)  

        { 

                   printf("SLPFindSrvTypes  returns  error,  err = %d\n",  err);  

              exit(1);  

        } 

  

       err  = SLPFindAttrs(slph,  

                           url,  

                           scopes,        /* if NULL,  use  static  configuration  

in /etc/slp.conf  */ 

                           attrids,  

                           AttrCallback,  

                           &callbackerr);  

        if (err  != SLP_OK)  

        { 

                   printf("SLPFindAttrs  returns  error,  err  = %d\n",  err);  

              exit(1);  

        } 

  

       SLPClose(slph);  

  

       return  (err);  

} 

  

void  Usage(void)  

{ 

       printf("\n***Usage:  samplecode  -s <scopes>  -p <predicate>  -a 

<attrids>\n");  

       printf("\t   -t  <service_type>  -u <url_string>  -n <naming_authority>  

\n");  

       printf("Where:\n");  

       printf("\t  -s <scopes>,  a scopes  string.  e.g.  \"david,bob\"\n");  

       printf("\t  -p <predicate>,  a predicate  string.  e.g.  \"(cn=Hard  Rock)\"  

\n");  

       printf("\t  -a <attrids>,  attribute  string,  e.g \"\"\n");  

       printf("\t  -t <service_type>,  e.g.  \"service:ftp\"\n");  

       printf("\t  -u <url>,  e.g.  \"service:ftp\",  or \"service:ftp://9.3.149.20\"\n");  

       printf("\t  -n <naming_authority>,  e.g.  \"\",  or \"*\"  \n");  

       exit(1);  

} 

  

void  arginit(int  argc,  char  *argv[])  

{ 

       char        *opts  = "s:p:a:t:u:n:";  

       int        i; 

  

       if  (argc  <=1)  

              Usage();  

  

  

       while  ((i=getopt(argc,  argv,  opts))  != EOF  ) { 

              switch  (i)    { 

                     case  ’s’:  

                            if (++s_flag  > 1) 

                                   Usage();  

                            scopes  = optarg;

 

308 Communications Programming Concepts



break;  

                     case  ’p’:  

                            if  (++p_flag  > 1) 

                                   Usage();  

                            predicate  = optarg;  

                            break;  

                     case  ’a’:  

                            if  (++a_flag  > 1) 

                                   Usage();  

                            attrids  = optarg;  

                            break;  

                     case  ’t’:  

                            if  (++t_flag  > 1) 

                                   Usage();  

                            service_type  = optarg;  

                            break;  

                     case  ’u’:  

                            if  (++u_flag  > 1) 

                                   Usage();  

                            url  = optarg;  

                            break;  

                     case  ’n’:  

                            if  (++n_flag  > 1) 

                                   Usage();  

                            na  = optarg;  

                            break;  

                     default:  

                            Usage();  

              } 

       } 

} 

Lists of Programming References 

The following lists provide references for Transmission Control Protocol/Internet Protocol (TCP/IP): 

v   “Methods” 

v   “Files and File Formats” on page 310 

v   “RFCs” on page 310 

See ″TCP/IP commands″ in Networks  and  communication  management  for information about commands 

and daemons for using and managing Transmission Control Protocol/Internet Protocol (TCP/IP). 

Methods 

 cfgif  Configures an interface instance in the system configuration database. 

cfginet  Loads and configures an Internet instance and its associated instances. 

chgif  Reconfigures an instance of a network interface. 

chginet  Reconfigures the Internet instance. 

defif  Defines a network interface in the configuration database. 

definet  Defines an inet  instance in the system configuration database. 

stpinet  Disables the inet  instance. 

sttinet  Enables the inet  instance. 

ucfgif  Unloads an interface instance from the kernel. 

ucfginet  Unloads the Internet instance and all related interface instances from the kernel. 

udefif  Removes an interface object from the system configuration database. 

udefinet  Undefines the Internet instance in the configuration database.
 

 

Chapter 11. Transmission Control Protocol/Internet Protocol 309



Files and File Formats 

 Domain  Cache  file format Defines the root name server or servers for a domain name server host. 

Domain  Data  file format Stores name resolution information for the named  daemon. 

Domain  Local  Data  file format Defines the local loopback information for named  on the name server host. 

Domain  Reverse  Data  file format Stores reverse name resolution information for the named  daemon. 

ftpusers  file format Specifies local user names that cannot be used by remote File Transfer 

Protocol (FTP) clients. 

gated.conf  file format Contains configuration information for the gated  daemon. 

gateways  file format Specifies Internet routing information to the routed  and gated  daemons on a 

network. 

hosts  file format Defines the Internet Protocol (IP) name and address of the local host and 

specifies the names and addresses of remote hosts. 

hosts.equiv  file format Specifies remote systems that can execute commands on the local system. 

hosts.lpd  file format Specifies remote hosts that can print on the local host. 

inetd.conf  file format Defines how the inetd  daemon handles Internet service requests. 

map3270  file format Defines a user keyboard mapping and colors for the tn3270  command. 

named.conf  file format Defines how named  initializes the domain name server file. 

.netrc  file format Specifies automatic login information for the ftp and rexec  commands. 

networks  file format Contains the network name file. 

protocols  file format Defines the Internet protocols used on the local host. 

rc.net  file format Defines host configuration for the following areas: network interfaces, host 

name, default gateway, and any static routes. 

rc.tcpip  file Initializes daemons at each system startup. 

resolv.conf  file format Defines domain name server information for local resolver routines. 

.rhosts  file format Specifies remote users that can use a local user account on a network. 

services  file format Defines the sockets and protocols used for Internet services. 

Standard  Resource  Record  Format  Defines the format of lines in the DOMAIN data files. 

telnet.conf  file format Translates a client’s terminal-type strings into terminfo  file entries. 

.3270keys  file format Defines the default keyboard mapping and colors for the tn and telnet  

commands.
  

RFCs 

The list of Requests for Comments (RFCs) for TCP/IP includes: 

v   “Name Server” on page 311 

v   “Telnet” on page 311 

v   “FTP” on page 311 

v   “TFTP” on page 311 

v   “SNMP” on page 311 

v   “SMTP” on page 311 

v   “Name/Finger” on page 311 

v   “Time” on page 311 

v   “TCP” on page 311 

v   “UDP” on page 311 

v   “ARP” on page 312 

v   “IP” on page 312 

v   “ICMP” on page 312 

v   “Link (802.2)” on page 312 

v   “IP Multicasts” on page 212 

v   “Others” on page 312

 

310 Communications Programming Concepts



Name Server 

v   Mail Routing and the Domain System, RFC 974, C. Partridge 

v   Domain Administrator’s Guide, RFC 1032, M. Stahl 

v   Domain Administrator’s Operations Guide, RFC 1033, M. Lottor 

v   Domain Names—Concepts and Facilities, RFC 1034, P. Mockapetris 

v   Domain Names—Implementations and Specification, RFC 1035, P. Mockapetris 

v   Requirements for Internet Hosts—Application and Support, RFC 1123, R. Braden, ed.

Telnet 

v   Telnet Protocol Specification, RFC 854, J. Postel, J. Reynolds 

v   Telnet Option Specifications, RFC 855, J. Postel, J. Reynolds 

v   Telnet Binary Transmission, RFC 856, J. Postel, J. Reynolds 

v   Telnet Echo Option, RFC 857, J. Postel, J. Reynolds 

v   Telnet Suppresses Go Ahead Option, RFC 858, J. Postel, J. Reynolds 

v   Telnet Timing Mark Option, RFC 860, J. Postel, J. Reynolds 

v   Telnet Window Size Option, RFC 1073, D. Waitzman 

v   Telnet Terminal Type Option, RFC 1091, J. Von Bokkelen 

v   Requirements for Internet Hosts—Application and Support, RFC 1123, R. Braden, ed.

FTP 

v   File Transfer Protocol, RFC 959, J. Postel 

v   Requirements for Internet Hosts—Application and Support, RFC 1123, R. Braden, ed.

TFTP 

v   Trivial File Transfer Protocol, RFC 783, K. R. Sollins 

v   Requirements for Internet Hosts—Application and Support, RFC 1123, R. Braden, ed.

SNMP 

See “Simple Network Management Protocol” on page 119. 

SMTP 

v   Simple Mail Transfer Protocol, RFC 821, J. Postel 

v   Mail Routing and the Domain System, RFC 974, C. Partridge 

v   Requirements for Internet Hosts—Application and Support, RFC 1123, R. Braden, ed.

Name/Finger 

v   Name/Finger, RFC 742, K. Harrenstien

Time 

v   Time Protocol, RFC 868, J. Postel, K. Harrenstien

TCP 

v   Transmission Control Protocol, RFC 793, J. Postel 

v   Requirements for Internet Hosts—Communication Layers, RFC 1122, R. Braden, ed. 

v   TCP Extensions for High Performance, RFC 1323, V. Jacobson, R. Braden, D. Borman

UDP 

v   User Datagram Protocol, RFC 768, J. Postel 

v   Requirements for Internet Hosts—Communication Layers, RFC 1122, R. Braden, ed.

 

Chapter 11. Transmission Control Protocol/Internet Protocol 311



ARP 

v   An Ethernet Address Resolution Protocol, RFC 826, D. Plummer 

v   Requirements for Internet Hosts—Communication Layers, RFC 1122, R. Braden, ed. 

v   A Reverse Address Resolution Protocol, RFC 903, R. Finlayson, T. Mann, J. Mogul, M. Theimer

IP 

v   Internet Protocol, RFC 791, J. Postel 

v   Stub Exterior Gateway Protocol, RFC 888, L. Seamonson, E. Rosen 

v   Exterior Gateway Protocol Implementation Schedule, RFC 890, J. Postel 

v   Exterior Gateway Protocol Format Specification, RFC 904, D. Mills 

v   Internet Standard Subnetting Procedure, RFC 950, J. Mogul 

v   Requirements for Internet Gateways, RFC 1009, R. Braden, J. Postel 

v   Routing Information Protocol, RFC 1058, C. Hedrick 

v   Requirements for Internet Hosts—Communication Layers, RFC 1122, R. Braden, ed.

ICMP 

v   Internet Control Message Protocol, RFC 792, J. Postel 

v   Requirements for Internet Hosts—Communication Layers, RFC 1122, R. Braden, ed.

Link (802.2) 

v   Standard for the Transmission of IP Datagrams over Public Data Networks, RFC 877, J. Korb 

v   A Standard for the Transmission of IP Datagrams over IEEE 802 Networks, RFC 1042, J. Postel, J. 

Reynolds

IP Multicasts 

v   Host Extensions for IP Multicasting, RFC 1112

Others 

v   Internet Assigned Numbers, RFC 1010, J. Reynolds, J. Postel 

v   Official Internet Protocols, RFC 1011, J. Reynolds, J. Postel 

v   Internet Numbers, RFC 1062, S. Romano, M. Stahl, M. Recker

 

312 Communications Programming Concepts



Chapter  12.  Packet  Capture  Library  

The Packet Capture Library information in this chapter is valid only for AIX 5.1 and later releases. 

The operating system provides the Berkeley Packet Filter (BPF) as a means of packet capture. The 

Packet Capture Library (libpcap.a) provides a user-level interface to that packet capture facility. 

The following code samples are only for illustrating the use of the Packet Capture Library APIs. It is 

recommended that you write your own applications for optimal function in a production environment. 

This chapter discusses the following topics: 

v   “Packet Capture Library Overview” 

v   “Packet Capture Library Subroutines” on page 314 

v   “Packet Capture Library Header Files” on page 314 

v   “Packet Capture Library Data Structures” on page 314 

v   “Packet Capture Library Filter Expressions” on page 315 

v   “Sample 1: Capturing Packet Data and Printing It in Binary Form to the Screen” on page 317 

v   “Sample 2: Capturing Packet Data and Saving It to a File for Processing Later” on page 320 

v   “Sample 3: Reading Previously Captured Packet Data from a Savefile and Processing It” on page 324

Packet Capture Library Overview 

The Packet Capture Library provides a high-level interface to packet capture systems. In the operating 

system, the Berkeley Packet Filter (BPF) is the packet capture system. This library provides user-level 

subroutines that interface with the BPF to allow users access for reading unprocessed network traffic. By 

using the Packet Capture Library, users can write their own network-monitoring tools. Applications using 

the Packet Capture Library subroutines must be run as root user. A reference for BPF is in UNIX  Network  

Programming,  Volume  1:  Networking  APIs:  Sockets  and  XTI, Second Edition by W. Richard Stevens, 

1998. 

Performing Packet Capture 

To accomplish packet capture, follow these steps: 

1.   Decide which network device will be the packet capture device. Use the pcap_lookupdev  subroutine 

to do this. 

2.   Obtain a packet capture descriptor by using the pcap_open_live  subroutine. 

3.   Choose a packet filter. The filter expression identifies which packets you are interested in capturing. 

4.   Compile the packet filter into a filter program using the pcap_compile  subroutine. The packet filter 

expression is specified in an ASCII string. Refer to Packet Capture Library Filter Expressions for more 

information. 

5.   After a BPF filter program is compiled, notify the packet capture device of the filter using the 

pcap_setfilter  subroutine. If the packet capture data is to be saved to a file for processing later, open 

the previously saved packet capture data file, known as the savefile, using the pcap_dump_open  

subroutine. 

6.   Use the pcap_dispatch  or pcap_loop  subroutine to read in the captured packets and call the 

subroutine to process them. This processing subroutine can be the pcap_dump  subroutine, if the 

packets are to be written to a savefile, or some other subroutine you provide. 

7.   Call the pcap_close  subroutine to cleanup the open files and deallocate the resources used by the 

packet capture descriptor.

 

© Copyright IBM Corp. 1994, 2007 313



Packet Capture Library Subroutines 

The Packet Capture Library (libpcap.a) subroutines allow users to communicate with the packet capture 

facility provided by the operating system to read unprocessed network traffic. Applications using these 

subroutines must be run as root user. The following subroutines are maintained in the libpcap.a  library: 

v   pcap_close  

v   pcap_compile  

v   pcap_datalink  

v   pcap_dispatch  

v   pcap_dump  

v   pcap_dump_close  

v   pcap_dump_open  

v   pcap_file  

v   pcap_fileno  

v   pcap_geterr  

v   pcap_is_swapped  

v   pcap_lookupdev  

v   pcap_lookupnet  

v   pcap_loop  

v   pcap_major_version  

v   pcap_minor_version  

v   pcap_next  

v   pcap_open_live  

v   pcap_open_offline  

v   pcap_perror  

v   pcap_setfilter  

v   pcap_snapshot  

v   pcap_stats  

v   pcap_strerror

Packet Capture Library Header Files 

The /usr/include/pcap.h  file is the header file that should be included in all applications using libpcap.a. 

This file contains data definitions, structures, constants, and macros used by the packet capture library 

subroutines. 

Packet Capture Library Data Structures 

The three data structures defined in the /usr/include/pcap.h  file for use with the libpcap.a  subroutines 

are as follows: 

 struct  pcap_file_header  This structure defines the first record in the savefile  that contains the saved packet 

capture data. 

struct  pcap_pkthdr  This is the structure that defines the packet header that is added to the front of each 

packet that is written to the savefile. 

struct  pcap_stat  This structure is returned by the pcap_stats  subroutine, and contains information 

related to the packet statistics from the start of the packet capture session to the 

time of the call to the pcap_stats  subroutine.
 

 

314 Communications Programming Concepts



Packet Capture Library Filter Expressions 

The filter expression is passed into the pcap_compile  subroutine to specify the packets that should be 

captured. If no filter expression is given, all packets on the network will be captured. Otherwise, only 

packets for which the filter expression is True will be captured. The filter expression is an ASCII string that 

consists of one or more primitives. Primitives usually consist of an id  (name or number) preceded by one 

or more qualifiers. There are three types of qualifiers: 

 type  Specifies what kind of device the id name or number refers to. Possible types are host, net, and port. 

Examples are host  foo, net  128.3, port  20. If there is no type  qualifier, then host  is assumed. 

dir  Specifies a particular transfer direction to or from id. Possible directions are src, dst, src  or  dst, and 

src  and  dst. Some examples with dir qualifiers are: src  foo, dst  net  128.3, srcor dst port  ftp-data. 

If there is no dir qualifier, src  or dst  is assumed. 

proto  Restricts the match to a particular protocol. Possible protoqualifiers are: ether, ip, arp, rarp, tcp, and 

udp. Examples are: ether  src  foo, arp  net 128.3, tcp port  21. If there is no proto  qualifier, all 

protocols consistent with the type are assumed. For example, src  foo  means ip or arp, net  bar  

means ip or arp  or rarp  net  bar, and port  53 means tcp  or udp  port  53.
  

There are also some special primitive keywords that do not follow the pattern: broadcast, multicast, less, 

greater, and arithmetic expressions. All of these keywords are described in the following information. 

Allowable Primitives 

The following primitives are allowed: 

 dst  host  Host  True if the value of the IP (Internet Protocol) destination field of the packet is the same as the 

value of the Host  variable, which can be either an address or a name. 

dst  port  Port  True if the packet is TCP/IP (Transmission Control Protocol/Internet Protocol) or IP/UDP 

(Internet Protocol/User Datagram Protocol) and has a destination port value of Port. The port 

can be a number or a name used in /etc/services. If a name is used, both the port number 

and protocol are checked. If a number or ambiguous name is used, only the port number is 

checked (dst  port  513  will print both TCP/login traffic and UDP/who traffic, and port  domain  

will print both TCP/domain and UDP/domain traffic). 

DST  net  Net  True if the value of the IP destination address of the packet has a network number of Net. 

Note that Net  must be in dotted decimal format. 

greater  Length  True if the packet has a length greater than or equal to the Length  variable. This is equivalent 

to the following: 

len  > = Length  

host  Host  True if the value of either the IP source or destination of the packet is the same as the value 

of the Host  variable. You can add the keywords ip, arp, or rarp  in front of any previous host  

expressions as in the following: 

ip host  Host  

If the Host  variable is a name with multiple IP addresses, each address will be checked for a 

match. 

ip, arp,rarp  These keywords are abbrieviated forms of the following: 

proto  ip, proto  arp, and proto  rarp. 

ip broadcast  True if the packet is an IP broadcast packet. It checks for the all-zeroes and all-ones 

broadcast conventions, and looks up the local subnet mask. 

ip multicast  True if the packet is an IP multicast packet. 

ip proto  Protocol  True if the packet is an IP packet of protocol type Protocol. Protocol  can be a number or one 

of the names icmp,udp, or tcp. 

less  Length  True if the packet has a length less than or equal to Length. This is equivalent to the 

following: 

len  < = Length  

 

Chapter 12. Packet Capture Library 315



net  Net  True if the value of either the IP source or destination address of the packet has a network 

number of Net. Note that Net  must be in dotted decimal format 

net  Net/Len  True if the value of either the IP source or destination address of the packet has a network 

number of Net  and a netmask with the width of Len  bits. Note that Net  must be in dotted 

decimal format. 

net  Net  mask  Mask  True if the value of either the IP source or destination address of the packet has a network 

number of Net  and the specific netmask of Mask. Note that Net  and Mask  must be in dotted 

decimal format. 

port  Port  True if the value of either the source or the destination port of the packet is Port. You can add 

the keywords tcp  or udp  in front of any of the previous port  expressions, as in the following: 

tcp  src  port  port  

which matches only TCP packets. 

proto  Protocol  True if the packet is of type Protocol. Protocol  can be a number or a name like ip, arp, or 

rarp. 

src  host  Host  True if the value of the IP source field of the packet is the same as the value of the Host  

variable. 

src  net  Net  True if the value of the IP source address of the packet has a network number of Net. Note 

that Net  must be in dotted decimal format. 

src  port  Port  True if the value of the Port  variable is the same as the value of the source port. 

tcp, udp, icmp  These keywords are abbrieviated forms of the following: 

ip proto  tcp, ip proto  udp, or ip proto  icmp
  

Relational Operators of the Expression Parameter 

The simple relationship: 

expr  relop  expr  

Is true where relop  is one of the following: 

v   ampersand (&) 

v   asterisk (*) 

v   equal (=) 

v   exclamation point and equal sign (!=) and expr  is an arithmetic 

expression composed of integer constants (expressed in standard C syntax) 

v   greater than (>) 

v   greater than or equal to (>=) 

v   less than (<) 

v   less than or equal to (<=) 

v   length operator 

v   minus sign (-) 

v   pipe (|) 

v   plus sign (+) 

v   slash (/) 

v   special packet data accessors 

To access data inside the packet, use the following syntax: 

proto  [ expr  : size  ] 

Proto  is one of the keywords ip, arp, rarp, tcp  or icmp, and indicates the protocol layer for the index 

operation. The byte offset relative to the indicated protocol layer is given by expr. The indicator size  is 

 

316 Communications Programming Concepts



optional and indicates the number of bytes in the field of interest; it can be either one, two, or four, and 

defaults to one byte. The length operator, indicated by the keyword len, gives the length of the packet. 

For example, expression ip[0]  & 0xf  !=  5 catches only nonfragmented datagrams and frag 0 of 

fragmented datagrams. This check is implicitly implied to the tcp  and udp  index operations. For example, 

tcp[0]  always means the first byte of the TCP header, and never means the first byte of an intervening 

fragment. 

Combining Primitives 

More complex filter expressions are created by using the words and, or, and not  to combine primitives. 

For example, host  foo  and  not  port  ftp  and  not  port  ftp-data. To save typing, identical qualifier lists 

can be omitted. For example, tcp  dst  port  ftp  or  ftp-data  or  domain  is exactly the same as tcp  dst  

port  ftp  or  tcp  dst  port  ftp-data  or  tcp  dst  port  domain. 

Primitives can be combined using a parenthesized group of primitives and operators: 

v   A 

v   Negation (`!’ or `not’). 

v   Concatenation (`and’). 

v   Alternation (`or’). 

Negation has highest precedence. Alternation and concatenation have equal precedence and associate left 

to right. 

If an identifier is given without a keyword, the most recent keyword is assumed. For example: 

not  host  gil  and  devo  

This filter captures packets that do not have a source or destination of host gil and also packets that do 

have a source or destination of host devo. It is an abbreviated version of the following: 

not  host  gil  and  host  devo  

Avoid confusing it with the following filter which captures packets that do not have a source or destination 

of either gil or devo: 

not  (host  gil  or devo)  

Sample 1: Capturing Packet Data and Printing It in Binary Form to the 

Screen 

The following code sample demonstrates capturing packet data and printing it in binary form to the screen. 

This sample is only for illustrating the use of the Packet Capture Library APIs. It is recommended that you 

write your own application for optimal function in a production environment. 

/*  

 * Use  pcap_open_live()  to open  a packet  capture  device  and  use pcap_dump()  

 * to output  the  packet  capture  data  in binary  format  to standard  out.  The 

 * output  can  be piped  to another  program,  such  as the  one  in Sample  3, 

 * for  formatting  and  readability.  

 */ 

  

#include  <stdio.h>  

#include  <pcap.h>  

#include  <netinet/in.h>  

#include  <sys/socket.h>  

  

#include  <string.h>  

  

#define  FLTRSZ  120  

#define  MAXHOSTSZ  256  

#define  ADDR_STRSZ  16

 

Chapter 12. Packet Capture Library 317



extern  char  *inet_ntoa();  

  

int  

main(int  argc,  char  **argv)  

{ 

        pcap_t  *p;                /*  packet  capture  descriptor  */ 

        pcap_dumper_t  *pd;        /* pointer  to the dump  file  */ 

        char  *ifname;             /* interface  name  (such  as "en0")  */ 

        char  errbuf[PCAP_ERRBUF_SIZE];   /* buffer  to hold  error  text  */ 

        char  lhost[MAXHOSTSZ];    /* local  host  name  */ 

        char  fltstr[FLTRSZ];      /* bpf  filter  string  */ 

        char  prestr[80];          /* prefix  string  for errors  from  pcap_perror  */ 

        struct  bpf_program  prog;  /* compiled  bpf  filter  program  */ 

        int  optimize  = 1;        /* passed  to  pcap_compile  to do optimization  */ 

        int  snaplen  = 80;         /* amount  of  data  per packet  */ 

        int  promisc  = 0;         /* do not  change  mode;  if in promiscuous  */ 

                                 /* mode,  stay  in it,  otherwise,  do not  */ 

        int  to_ms  = 1000;         /* timeout,  in milliseconds  */ 

        int  count  = 20;           /* number  of packets  to capture  */ 

        u_int32  net  = 0;         /* network  IP address  */ 

        u_int32  mask  = 0;        /* network  address  mask  */ 

        char  netstr[INET_ADDRSTRLEN];    /*  dotted  decimal  form  of address  */ 

        char  maskstr[INET_ADDRSTRLEN];   /* dotted  decimal  form  of net  mask  */ 

  

        /* 

         * Find  a network  device  on the  system.  

         */ 

        if (!(ifname  = pcap_lookupdev(errbuf)))  { 

                fprintf(stderr,  "Error  getting  device  on system:  %s\n",  errbuf);  

                exit(1);  

        } 

  

        /* 

         * Open  the  network  device  for  packet  capture.  This  must  be called  

         * before  any  packets  can  be captured  on the  network  device.  

         */ 

        if (!(p  = pcap_open_live(ifname,  snaplen,  promisc,  to_ms,  errbuf)))  { 

                fprintf(stderr,  

                        "Error  opening  interface  %s: %s\n",  ifname,  errbuf);  

                exit(2);  

        } 

  

        /* 

         * Look  up the  network  address  and  subnet  mask  for  the network  device  

         * returned  by pcap_lookupdev().  The  network  mask  will  be used  later  

         * in the  call  to pcap_compile().  

         */ 

        if (pcap_lookupnet(ifname,  &net,  &mask,  errbuf)  < 0) { 

                fprintf(stderr,  "Error  looking  up network:  %s\n",  errbuf);  

                exit(3);  

        } 

  

        /* 

         * Create  the  filter  and  store  it in the  string  called  ’fltstr.’  

         * Here,  you  want  only  incoming  packets  (destined  for  this  host),  

         * which  use  port  23 (telnet),  and  originate  from  a host  on the  

         * local  network.  

         */ 

  

        /* First,  get  the  hostname  of the  local  system  */ 

        if (gethostname(lhost,sizeof(lhost))  < 0) { 

                fprintf(stderr,  "Error  getting  hostname.\n");  

                exit(4);  

        } 

  

        /*

 

318 Communications Programming Concepts



* Second,  get  the  dotted  decimal  representation  of the network  address  

         * and  netmask.  These  will  be  used  as part  of the filter  string.  

         */ 

        inet_ntop(AF_INET,  (char*)  &net,  netstr,  sizeof  netstr);  

        inet_ntop(AF_INET,  (char*)  &mask,  maskstr,  sizeof  maskstr);  

  

        /* Next,  put  the  filter  expression  into  the  fltstr  string.  */  

        sprintf(fltstr,"dst  host  %s and  src  net  %s mask  %s  and  tcp  port  23",  

                lhost,  netstr,  maskstr);  

  

        /* 

         * Compile  the  filter.  The  filter  will  be  converted  from  a text  

         * string  to  a bpf  program  that  can  be used  by the  Berkely  Packet  

         * Filtering  mechanism.  The  fourth  argument,  optimize,  is set  to 1 so 

         * the  resulting  bpf  program,  prog,  is compiled  for  better  performance.  

         */ 

        if (pcap_compile(p,&prog,fltstr,optimize,mask)  < 0) { 

                /* 

                 * Print  out  appropriate  text,  followed  by the error  message  

                 * generated  by the  packet  capture  library.  

                 */ 

                fprintf(stderr,  "Error  compiling  bpf  filter  on %s:  %s\n",  

                        ifname,  pcap_geterr(p));  

                exit(5);  

        } 

  

        /* 

         * Load  the  compiled  filter  program  into  the packet  capture  device.  

         * This  causes  the  capture  of the  packets  defined  by the  filter  

         * program,  prog,  to begin.  

         */ 

        if (pcap_setfilter(p,  &prog)  < 0) { 

                /* Copy  appropriate  error  text  to prefix  string,  prestr  */ 

                sprintf(prestr,  "Error  installing  bpf  filter  on interface  %s",  

                        ifname);  

                /* 

                 * Print  out  error.  The  format  will  be the  prefix  string,  

                 * created  above,  followed  by the error  message  that  the  packet  

                 * capture  library  generates.  

                 */ 

                pcap_perror(p,prestr);  

                exit(6);  

        } 

  

        /* 

         * Open  dump  device  for  writing  packet  capture  data.  Passing  in "-"  

         * indicates  that  packets  are  to be written  to standard  output.  

         * pcap_dump()  will  be called  to write  the packet  capture  data  in 

         * binary  format,  so the  output  from  this  program  can be piped  into  

         * another  application  for  further  processing  or formatting  before  

         * reading.  

         */ 

        if ((pd  = pcap_dump_open(p,"-"))  == NULL)  { 

                /* 

                 * Print  out  error  message  if pcap_dump_open  failed.  This  will  

                 * be the  below  message  followed  by the  pcap  library  error  text,  

                 * obtained  by pcap_geterr().  

                 */ 

                fprintf(stderr,  "Error  opening  dump  device  stdout:  %s\n",  

                        pcap_geterr(p));  

                exit(7);  

        } 

  

        /* 

         * Call  pcap_loop()  to read  and  process  a maximum  of count  (20)  

         * packets.  For  each  captured  packet  (a packet  that  matches  the  filter  

         * specified  to pcap_compile()),  pcap_dump()  will  be called  to write

 

Chapter 12. Packet Capture Library 319



* the  packet  capture  data  (in  binary  format)  to the  savefile  specified  

         * to pcap_dump_open().  Note  that  the  packet  in this  case  may not  be a 

         * complete  packet.  The  amount  of data  captured  per  packet  is 

         * determined  by the  snaplen  variable  which  is passed  to 

         * pcap_open_live().  

         */ 

        if (pcap_loop(p,  count,  &pcap_dump,  (char  *)pd)  < 0) { 

                /*  

                 * Print  out  appropriate  text,  followed  by the error  message  

                 * generated  by the  packet  capture  library.  

                 */ 

                sprintf(prestr,"Error  reading  packets  from  interface  %s",  

                        ifname);  

                pcap_perror(p,prestr);  

                exit(8);  

        } 

  

        /* 

         * Close  the  packet  capture  device  and  free  the  memory  used  by the 

         * packet  capture  descriptor.  

         */ 

        pcap_close(p);  

} 

Sample 2: Capturing Packet Data and Saving It to a File for Processing 

Later 

The following code sample demonstrates capturing packet data and saving it to a file for processing. This 

sample is only for illustrating the use of the Packet Capture Library APIs. It is recommended that you write 

your own application for optimal function in a production environment. 

/* 

 * Use  pcap_open_live()  to open  a packet  capture  device.  

 * Use  pcap_dump()  to output  the  packet  capture  data  in 

 * binary  format  to a file  for  processing  later.  

 */ 

  

#include  <unistd.h>  

#include  <stdio.h>  

#include  <pcap.h>  

#include  <netinet/in.h>  

#include  <sys/socket.h>  

  

#define  IFSZ  16 

#define  FLTRSZ  120  

#define  MAXHOSTSZ  256  

#define  PCAP_SAVEFILE  "./pcap_savefile"  

  

extern  char  *inet_ntoa();  

  

int  

usage(char  *progname)  

{ 

        printf("Usage:  %s <interface>  [<savefile  name>]\n",  basename(progname));  

        exit(11);  

} 

  

int  

main(int  argc,  char  **argv)  

{ 

        pcap_t  *p;                /*  packet  capture  descriptor  */ 

        struct  pcap_stat  ps;      /* packet  statistics  */ 

        pcap_dumper_t  *pd;        /* pointer  to the dump  file  */ 

        char  ifname[IFSZ];        /* interface  name  (such  as "en0")  */ 

        char  filename[80];        /* name  of savefile  for dumping  packet  data  */ 

        char  errbuf[PCAP_ERRBUF_SIZE];   /* buffer  to hold  error  text  */

 

320 Communications Programming Concepts



char  lhost[MAXHOSTSZ];    /* local  host  name  */ 

        char  fltstr[FLTRSZ];      /* bpf  filter  string  */ 

        char  prestr[80];          /* prefix  string  for  errors  from  pcap_perror  */ 

        struct  bpf_program  prog;  /* compiled  bpf filter  program  */ 

        int  optimize  = 1;        /* passed  to pcap_compile  to do optimization  */ 

        int  snaplen  = 80;         /* amount  of data  per packet  */ 

        int  promisc  = 0;         /* do not  change  mode;  if in promiscuous  */ 

                                 /* mode,  stay  in it,  otherwise,  do not */ 

        int  to_ms  = 1000;         /* timeout,  in milliseconds  */ 

        int  count  = 20;           /* number  of  packets  to  capture  */ 

        u_int32  net  = 0;         /* network  IP address  */ 

        u_int32  mask  = 0;        /* network  address  mask  */ 

        char  netstr[INET_ADDRSTRLEN];    /* dotted  decimal  form  of address  */ 

        char  maskstr[INET_ADDRSTRLEN];   /* dotted  decimal  form  of net  mask  */ 

        int  linktype  = 0;        /* data  link  type  */ 

        int  pcount  = 0;          /* number  of  packets  actually  read  */ 

  

        /* 

         * For  this  program,  the  interface  name  must  be  passed  to it on the 

         * command  line.  The  savefile  name  may  be optionally  passed  in 

         * as well.  If no savefile  name  is passed  in, "./pcap_savefile"  is 

         * used.  If there  are  no arguments,  the  program  has been  invoked  

         * incorrectly.  

         */ 

        if (argc  < 2) 

                usage(argv[0]);  

  

        if (strlen(argv[1])  > IFSZ)  { 

                fprintf(stderr,  "Invalid  interface  name.\n");  

                exit(1);  

        } 

        strcpy(ifname,  argv[1]);  

  

        /* 

         * If there  is a second  argument  (the  name  of the savefile),  save  it in 

         * filename.  Otherwise,  use  the  default  name.  

         */ 

        if (argc  >=  3) 

                strcpy(filename,argv[2]);  

        else  

                strcpy(filename,  PCAP_SAVEFILE);  

  

        /* 

         * Open  the  network  device  for  packet  capture.  This  must  be  called  

         * before  any  packets  can  be captured  on the  network  device.  

         */ 

        if (!(p  = pcap_open_live(ifname,  snaplen,  promisc,  to_ms,  errbuf)))  { 

                fprintf(stderr,  "Error  opening  interface  %s:  %s\n",  

                        ifname,  errbuf);  

                exit(2);  

        } 

  

        /* 

         * Look  up the  network  address  and  subnet  mask  for  the  network  device  

         * returned  by pcap_lookupdev().  The  network  mask  will  be used  later  

         * in the  call  to pcap_compile().  

         */ 

        if (pcap_lookupnet(ifname,  &net,  &mask,  errbuf)  < 0) { 

                fprintf(stderr,  "Error  looking  up  network:  %s\n",  errbuf);  

                exit(3);  

        } 

  

        /* 

         * Create  the  filter  and  store  it in the  string  called  ’fltstr.’  

         * Here,  you  want  only  incoming  packets  (destined  for  this  host),  

         * which  use  port  69 (tftp),  and  originate  from  a host  on the 

         * local  network.

 

Chapter 12. Packet Capture Library 321



*/ 

  

        /* First,  get  the  hostname  of the  local  system  */ 

        if (gethostname(lhost,sizeof(lhost))  < 0) { 

                fprintf(stderr,  "Error  getting  hostname.\n");  

                exit(4);  

        } 

  

        /* 

         * Second,  get  the  dotted  decimal  representation  of  the  network  address  

         * and  netmask.  These  will  be used  as part  of  the filter  string.  

         */ 

        inet_ntop(AF_INET,  (char*)  &net,  netstr,  sizeof  netstr);  

        inet_ntop(AF_INET,  (char*)  &mask,  maskstr,  sizeof  maskstr);  

  

        /* Next,  put  the  filter  expression  into  the  fltstr  string.  */ 

        sprintf(fltstr,"dst  host  %s and  src  net  %s mask  %s and  udp  port  69",  

                lhost,  netstr,  maskstr);  

  

        /* 

         * Compile  the  filter.  The  filter  will  be converted  from  a text  

         * string  to a bpf  program  that  can  be used  by the  Berkely  Packet  

         * Filtering  mechanism.  The  fourth  argument,  optimize,  is set  to 1 so 

         * the  resulting  bpf  program,  prog,  is compiled  for  better  performance.  

         */ 

        if (pcap_compile(p,&prog,fltstr,optimize,mask)  < 0) { 

                /*  

                 * Print  out  appropriate  text,  followed  by the error  message  

                 * generated  by the  packet  capture  library.  

                 */ 

                fprintf(stderr,  "Error  compiling  bpf filter  on %s:  %s\n",  

                        ifname,  pcap_geterr(p));  

                exit(5);  

        } 

  

        /* 

         * Load  the  compiled  filter  program  into  the packet  capture  device.  

         * This  causes  the  capture  of the  packets  defined  by the  filter  

         * program,  prog,  to begin.  

         */ 

        if (pcap_setfilter(p,  &prog)  < 0) { 

                /*  Copy  appropriate  error  text  to prefix  string,  prestr  */ 

                sprintf(prestr,  "Error  installing  bpf  filter  on interface  %s",  

                        ifname);  

                /*  

                 * Print  error  to screen.  The  format  will  be the prefix  string,  

                 * created  above,  followed  by  the error  message  that  the packet  

                 * capture  library  generates.  

                 */ 

                pcap_perror(p,prestr);  

                exit(6);  

        } 

  

        /* 

         * Open  dump  device  for  writing  packet  capture  data.  In this  sample,  

         * the  data  will  be written  to a savefile.  The  name  of the  file  is 

         * passed  in as the  filename  string.  

         */ 

        if ((pd  = pcap_dump_open(p,filename))  == NULL)  { 

                /*  

                 * Print  out  error  message  if pcap_dump_open  failed.  This  will  

                 * be the  below  message  followed  by the  pcap  library  error  text,  

                 * obtained  by pcap_geterr().  

                 */ 

                fprintf(stderr,  

                        "Error  opening  savefile  \"%s\"  for writing:  %s\n",  

                        filename,  pcap_geterr(p));

 

322 Communications Programming Concepts



exit(7);  

        } 

  

        /* 

         * Call  pcap_dispatch()  to read  and  process  a maximum  of count  (20)  

         * packets.  For  each  captured  packet  (a packet  that  matches  the  filter  

         * specified  to pcap_compile()),  pcap_dump()  will  be called  to write  

         * the  packet  capture  data  (in  binary  format)  to the  savefile  specified  

         * to pcap_dump_open().  Note  that  packet  in this  case  may  not  be a 

         * complete  packet.  The  amount  of  data  captured  per  packet  is 

         * determined  by the  snaplen  variable  which  is passed  to 

         * pcap_open_live().  

         */ 

        if ((pcount  = pcap_dispatch(p,  count,  &pcap_dump,  (char  *)pd))  < 0) { 

                /* 

                 * Print  out  appropriate  text,  followed  by the error  message  

                 * generated  by the  packet  capture  library.  

                 */ 

                sprintf(prestr,"Error  reading  packets  from  interface  %s",  

                        ifname);  

                pcap_perror(p,prestr);  

                exit(8);  

        } 

        printf("Packets  received  and  successfully  passed  through  filter:  %d.\n",  

                pcount);  

  

        /* 

         * Get  and  print  the  link  layer  type  for  the packet  capture  device,  

         * which  is the  network  device  selected  for  packet  capture.  

         */ 

        if (!(linktype  = pcap_datalink(p)))  { 

                fprintf(stderr,  

                        "Error  getting  link  layer  type  for  interface  %s",  

                        ifname);  

                exit(9);  

        } 

        printf("The  link  layer  type  for  packet  capture  device  %s is:  %d.\n",  

                ifname,  linktype);  

  

        /* 

         * Get  the  packet  capture  statistics  associated  with  this  packet  

         * capture  device.  The  values  represent  packet  statistics  from  the  time  

         * pcap_open_live()  was  called  up until  this  call.  

         */ 

        if (pcap_stats(p,  &ps)  != 0) { 

                fprintf(stderr,  "Error  getting  Packet  Capture  stats:  %s\n",  

                        pcap_geterr(p));  

                exit(10);  

        } 

  

        /* Print  the  statistics  out  */ 

        printf("Packet  Capture  Statistics:\n");  

        printf("%d  packets  received  by filter\n",  ps.ps_recv);  

        printf("%d  packets  dropped  by kernel\n",  ps.ps_drop);  

  

        /* 

         * Close  the  savefile  opened  in pcap_dump_open().  

         */ 

        pcap_dump_close(pd);  

        /* 

         * Close  the  packet  capture  device  and free  the  memory  used  by the  

         * packet  capture  descriptor.  

         */ 

        pcap_close(p);  

} 

 

Chapter 12. Packet Capture Library 323



Sample 3: Reading Previously Captured Packet Data from a Savefile 

and Processing It 

The following code sample demonstrates reading previously captured packet data from a savefile  and 

processing it. This sample is only for illustrating the use of the Packet Capture Library APIs. It is 

recommended that you write your own application for optimal function in a production environment. 

/* 

 * Use  pcap_open_offline()  to open  a savefile,  containing  packet  capture  data,  

 * and  use  the  print_addrs()  routine  to print  the  source  and destination  IP 

 * addresses  from  the  packet  capture  data  to stdout.  

 */ 

  

#include  <stdio.h>  

#include  <pcap.h>  

  

#define  IFSZ  16 

#define  FLTRSZ  120  

#define  MAXHOSTSZ  256  

#define  PCAP_SAVEFILE  "./pcap_savefile"  

  

int  packets  = 0;   /* running  count  of packets  read  in */ 

  

int  

usage(char  *progname)  

{ 

        printf("Usage:  %s <interface>  [<savefile  name>]\n",  basename(progname));  

        exit(7);  

} 

  

  

/* 

 * Function:     print_addrs()  

 * 

 * Description:  Write  source  and  destination  IP addresses  from  packet  data  

 *              out  to stdout.  

 *              For  simplification,  in this  sample,  assume  the 

 *              following  about  the  captured  packet  data:  

 *                      - the  addresses  are  IPv4  addresses  

 *                      - the  data  link  type  is ethernet  

 *                      - ethernet  encapsulation,  according  to RFC  894,  is used.  

 * 

 * Return:       0 upon  success  

 *              -1 on failure  (if  packet  data  was  cut  off  before  IP addresses).  

 */ 

void  

print_addrs(u_char  *user,  const  struct  pcap_pkthdr  *hdr,  const  u_char  *data)  

{ 

        int  offset  = 26;  /* 14 bytes  for  MAC  header  + 

                          * 12 byte  offset  into  IP header  for IP addresses  

                          */ 

  

        if (hdr->caplen  < 30)  { 

                /*  captured  data  is not  long  enough  to extract  IP address  */ 

                fprintf(stderr,  

                        "Error:  not  enough  captured  packet  data  present  to extract  IP addresses.\n");  

                return;  

        } 

  

        printf("Packet  received  from  source  address  %d.%d.%d.%d\n",  

                data[offset],  data[offset+1],  data[offset+2],  data[offset+3]);  

        if (hdr->caplen  >=  34)  { 

                printf("and  destined  for  %d.%d.%d.%d\n",  

                        data[offset+4],  data[offset+5],  

                        data[offset+6],  data[offset+7]);  

        }

 

324 Communications Programming Concepts



packets++;  /* keep  a running  total  of number  of packets  read  in */ 

} 

  

  

int  

main(int  argc,  char  **argv)  

{ 

        pcap_t  *p;                /* packet  capture  descriptor  */ 

        char  ifname[IFSZ];        /* interface  name  (such  as "en0")  */ 

        char  filename[80];        /* name  of  savefile  to  read  packet  data  from  */ 

        char  errbuf[PCAP_ERRBUF_SIZE];   /* buffer  to hold  error  text  */ 

        char  prestr[80];          /* prefix  string  for  errors  from  pcap_perror  */ 

        int  majver  = 0, minver  = 0;  /* major  and  minor  numbers  for  the  */ 

                                     /* current  Pcap  library  version  */ 

  

        /* 

         * For  this  program,  the  interface  name  must  be  passed  to it on the 

         * command  line.  The  savefile  name  may  optionally  be passed  in 

         * as well.  If no savefile  name  is passed  in, "./pcap_savefile"  is 

         * assumed.  If there  are  no arguments,  program  has  been  invoked  

         * incorrectly.  

         */ 

        if (argc  < 2) 

                usage(argv[0]);  

  

        if (strlen(argv[1])  > IFSZ)  { 

                fprintf(stderr,  "Invalid  interface  name.\n");  

                exit(1);  

        } 

        strcpy(ifname,  argv[1]);  

  

        /* 

         * If there  is a second  argument  (the  name  of the savefile),  save  it in 

         * filename.  Otherwise,  use  the  default  name.  

         */ 

        if (argc  >=  3) 

                strcpy(filename,argv[2]);  

        else  

                strcpy(filename,  PCAP_SAVEFILE);  

  

        /* 

         * Open  a file  containing  packet  capture  data.  This  must  be  called  

         * before  processing  any  of the  packet  capture  data.  The  file  

         * containing  pcaket  capture  data  should  have  been  generated  by a 

         * previous  call  to  pcap_open_live().  

         */ 

        if (!(p  = pcap_open_offline(filename,  errbuf)))  { 

                fprintf(stderr,  

                        "Error  in opening  savefile,  %s,  for  reading:  %s\n",  

                        filename,  errbuf);  

                exit(2);  

        } 

  

        /* 

         * Call  pcap_dispatch()  with  a count  of 0 which  will  cause  

         * pcap_dispatch()  to read  and  process  packets  until  an error  or EOF  

         * occurs.  For  each  packet  read  from  the savefile,  the  output  routine,  

         * print_addrs(),  will  be called  to print  the  source  and  destinations  

         * addresses  from  the IP header  in the  packet  capture  data.  

         * Note  that  packet  in this  case  may  not  be a complete  packet.  The 

         * amount  of  data  captured  per  packet  is determined  by the snaplen  

         * variable  which  was passed  into  pcap_open_live()  when  the  savefile  

         * was  created.  

         */ 

        if (pcap_dispatch(p,  0, &print_addrs,  (char  *)0)  < 0) { 

                /* 

                 * Print  out  appropriate  text,  followed  by the error  message

 

Chapter 12. Packet Capture Library 325



* generated  by the  packet  capture  library.  

                 */ 

                sprintf(prestr,"Error  reading  packets  from  interface  %s",  

                        ifname);  

                pcap_perror(p,prestr);  

                exit(4);  

        } 

  

        printf("\nPackets  read  in:  %d\n",  packets);  

  

        /* 

         * Print  out  the  major  and  minor  version  numbers.  These  are  the  version  

         * numbers  associated  with  this  revision  of the  packet  capture  library.  

         * The  major  and  minor  version  numbers  can be used  to help  determine  

         * what  revision  of libpcap  created  the savefile,  and,  therefore,  what  

         * format  was  used  when  it was  written.  

         */ 

  

        if (!(majver  = pcap_major_version(p)))  { 

                fprintf(stderr,  

                        "Error  getting  major  version  number  from  interface  %s",  

                        ifname);  

                exit(5);  

        } 

        printf("The  major  version  number  used  to create  the  savefile  was:  %d.\n",  majver);  

  

        if (!(minver  = pcap_minor_version(p)))  { 

                fprintf(stderr,  

                        "Error  getting  minor  version  number  from  interface  %s",  

                        ifname);  

                exit(6);  

        } 

        printf("The  minor  version  number  used  to create  the  savefile  was:  %d.\n",  minver);  

  

        /* 

         * Close  the  packet  capture  device  and  free  the  memory  used  by the 

         * packet  capture  descriptor.  

         */ 

  

        pcap_close(p);  

} 

 

326 Communications Programming Concepts



Appendix.  Notices  

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. 

Consult your local IBM representative for information on the products and services currently available in 

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only 

that IBM product, program, or service may be used. Any functionally equivalent product, program, or 

service that does not infringe any IBM intellectual property right may be used instead. However, it is the 

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. 

The furnishing of this document does not give you any license to these patents. You can send license 

inquiries, in writing, to: 

IBM Director of Licensing 

IBM Corporation 

North Castle Drive 

Armonk, NY 10504-1785 

U.S.A. 

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  country  where  such  

provisions  are  inconsistent  with  local  law:  INTERNATIONAL BUSINESS MACHINES CORPORATION 

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer 

of express or implied warranties in certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically 

made to the information herein; these changes will be incorporated in new editions of the publication. IBM 

may make improvements and/or changes in the product(s) and/or the program(s) described in this 

publication at any time without notice. 

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the 

exchange of information between independently created programs and other programs (including this one) 

and (ii) the mutual use of the information which has been exchanged, should contact: 

IBM Corporation 

Dept. LRAS/Bldg. 003 

11400 Burnet Road 

Austin, TX 78758-3498 

U.S.A. 

Such information may be available, subject to appropriate terms and conditions, including in some cases, 

payment of a fee. 

The licensed program described in this document and all licensed material available for it are provided by 

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any 

equivalent agreement between us. 

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property 

Department in your country or send inquiries, in writing, to: 

 

© Copyright IBM Corp. 1994, 2007 327



IBM World Trade Asia Corporation 

Licensing 

2-31 Roppongi 3-chome, Minato-ku 

Tokyo 106-0032, Japan 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 

incurring any obligation to you. 

Information concerning non-IBM products was obtained from the suppliers of those products, their 

published announcements or other publicly available sources. IBM has not tested those products and 

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. 

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in 

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of 

the materials for this IBM product and use of those Web sites is at your own risk. 

This information contains examples of data and reports used in daily business operations. To illustrate 

them as completely as possible, the examples include the names of individuals, companies, brands, and 

products. All of these names are fictitious and any similarity to the names and addresses used by an 

actual business enterprise is entirely coincidental. 

COPYRIGHT LICENSE: 

This information contains sample application programs in source language, which illustrates programming 

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 

any form without payment to IBM, for the purposes of developing, using, marketing or distributing 

application programs conforming to the application programming interface for the operating platform for 

which the sample programs are written. These examples have not been thoroughly tested under all 

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these 

programs. You may copy, modify, and distribute these sample programs in any form without payment to 

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to 

IBM’s application programming interfaces. 

Each copy or any portion of these sample programs or any derivative work, must include a copyright 

notice as follows: 

(c) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (c) 

Copyright IBM Corp. _enter the year or years_. All rights reserved. 

Trademarks 

The following terms are trademarks of International Business Machines Corporation in the United States, 

other countries, or both: 

   AIX 

   IBM

UNIX is a registered trademark of The Open Group in the United States and other countries. 

Other company, product, or service names may be the trademarks or service marks of others. 

 

328 Communications Programming Concepts



Index  

A
addresses

binding 205 

NDD 199 

obtaining 206 

Socket
data structures 195 

families 196 

storage 198 

TCP/IP 198 

translation 213, 217 

agent (SNMP) 125 

array data type (XDR) 89 

arrays
XDR 106 

XDR filter primitive 97 

authentication 138 

DES
RPC 140, 168 

NULL (RPC) 139 

UNIX (RPC) 139, 166 

B
batching (RPC) 153 

binding
Sockets 204, 205 

binding processes (RPC) 133 

boolean
data type (XDR) 86 

RPC 86 

booleans
RPC 159 

broadcasting (RPC) 154, 177 

server side 161 

byte-order translation 217 

C
C preprocessor (RPC) 161 

callback
RPC 180 

callback procedures
RPC 154 

canonical data representation (XDR) 80 

client routines 109 

clients
agent 110, 112 

binding 133 

clocks 141 

communications domains (Sockets) 196 

connections (Sockets) 206 

constants
RPC language 157 

XDR language 92 

conversion routines 110 

D
data description 102 

data link control 2 

data representation
canonical 80 

data streams (XDR) 98 

data structures 314 

data transfer, (Sockets) 209 

data types
passing 175 

data types (XDR) 84 

database
MIB 123 

database manager 77 

datagram services
connectionless 208 

datagram sockets 203 

DBM
NDBM equivalents 78 

subroutines 78 

DCL8023 (IEEE 802.3 Ethernet data link control) 24 

declarations
RPC language 158 

XDR language 83 

DES
authentication

RPC 143, 168 

DES authentication
protocol 142 

RPC 140 

Diffie-Hellman encryption 143 

discriminated union
example 91 

discriminated union (XDR)
example 107 

XDR 91 

DLC (data link control) 12, 24, 34, 44 

device manager environment
components 3 

multiuser configuration 3 

structure 2 

error logging facility 9 

generic 2 

programming procedures 11 

qualified logical link control 51 

reference information 11 

DLC_ENABLE_SAP 21 

DLC8023
programming interfaces 31 

protocol support 26 

data packet 26 

response modes 26 

station types 26 

DLC8023 (IEEE 802.3 Ethernet data link control)
connection contention 30 

direct network services 30 

 

© Copyright IBM Corp. 1994, 2007 329



DLC8023 (IEEE 802.3 Ethernet data link control) 

(continued)
link sessions

initializing 30 

terminating 31 

name-discovery services 27 

overview 24 

DLC8023 device manager
functions 25 

nodes 25 

DLCETHER (standard Ethernet data link control) 34 

connection contention 40 

device manager functions 35 

device manager nodes 35 

direct network services 40 

link sessions
initiating 40 

terminating 41 

name-discovery services 37 

overview 34 

programming interfaces 41 

protocol support 36 

DLCQLLC device manager 51 

DLCTOKEN
device manager

ADM and ABME modes 13 

functions of 14 

introduction 12 

DLCTOKEN (token-ring data link control) 12 

connection contention 19 

device manager functions 14 

device manager nodes 13 

direct network services 19 

initiating link sessions 19 

name-discovery services 16 

programming interfaces 20 

protocol support
data packet 15 

response modes 15 

station types 15 

drivers
configuring, in PSE 279 

STREAMS 275 

E
enumeration data type (XDR) 86 

enumerations
RPC language 157 

XDR language 83 

error logging
SMUX example subroutines 128 

example
XDR 105 

eXternal Data Representation 79 

F
FDDIDLC

connection contention 63 

device manager functions 58 

FDDIDLC (continued)
device manager nodes 58 

device protocol support 59 

direct network services 63 

initiating link sessions 63 

name-discovery services 60 

programming interfaces 64 

Fiber Distributed Data Interface 57 

filter expressions 315 

filter primitives
basic 95 

constructed 96 

floating-point data types (XDR) 86 

Flow Control, STREAMS 256 

G
GDLC

overview 2 

GDLC (generic data link control)
criteria 4 

interface
implementing 4 

ioctl operations 5 

kernel services 7 

problem determination
error logs 9 

LAN monitor trace 10 

link station trace 10 

overview 8 

status information 8 

generic data link control 2 

H
handles

RPC 163, 164 

header files 314 

Sockets 195, 249 

highest layer
RPC 149 

I
I/O modes

sockets 211 

idsocket 209 

include files
Sockets 195 

integer data type (XDR) 85 

interface (Sockets) 193, 194 

intermediate layer 149 

RPC 170 

internet protocol
multicasts 212 

intrinsic functions
list of 127 

ioctl operations
Sockets 203 

STREAMS 267 

 

330 Communications Programming Concepts



L
LAN

monitor trace 10 

language (RPC) 155 

language specifications (XDR) 82 

libraries
RPC run-time 109 

XDR 81, 94 

library
Sockets 194 

XDR 95 

link station 6 

linked lists (XDR) 100 

links
testing 7 

tracing 7 

LLC 13, 14 

local-busy mode 7 

location broker
client agent 110, 112 

components 110 

daemons 110 

global 113 

local 113 

overview 110 

log device driver 277, 278 

lowest layer
RPC 151 

LS
definition 6 

statistics
querying 7 

LS (link station)
trace facilities

channels 10 

trace facility
entries 10 

entry size 10 

reports 10 

using with DLCTOKEN 19, 20 

M
MAC 14 

Management Information Base 120 

memory
allocating 152 

message, sending 212 

messages
blocks 270 

RPC 138 

streams 270 

MIB
database 123 

overview 120 

variables 122, 123 

model (RPC) 132 

modules 269 

64-bit support 276 

configuring (PSE) 279 

modules (continued)
introduction to streams 253 

modules 276 

user-context 275 

monitors
SNMP 125 

multiprogram versions
RPC 176 

N
NCS 109 

NDBM
DBM equivalents 77 

subroutines 77 

NDD
protocols 199 

socket addresses 199 

NDMB
problem diagnosis 77 

Network Computing System 109 

Network Information Service 115 

Network Management
SNMP 119 

xgmon 119 

NIS
files 115 

subroutines 115 

non-filter primitives
list 98 

nonfilter primitives
list 94 

O
opaque data type

RPC 160 

opaque data types
XDR 88 

optional data types (XDR) 93 

options, socket 209 

options, sockets 209 

out-of-band data 210 

P
packet capture library 313 

data structures 314 

delayed processing ex. 320 

filter expressions 315 

header files 314 

print binary form ex. 317 

savefile ex. 324 

subroutines 314 

passing linked lists (XDR)
example 100 

ping program (RPC) 183 

pointers
XDR 108 

port mapper 144 

Portable Streams Environment 279 

 

Index 331



ports
registering (RPC) 144 

primitives
filter 95 

non-filter 98 

nonfilter 94 

procedure
packet capture 313 

procedure numbers
list of 148 

procedure numbers (RPC)
assigning 148 

program numbers
assigning (RPC) 147 

protocol
RPC

port mapper 145 

Sockets 203, 249 

protocol compilers
rpcgen 160 

protocols
RPC 133 

authentication 138 

specifications 148 

PSE 279 

put procedures
Streams 273 

Q
QLLC (qualified logical link control) DLC

describing device manager functions 52 

QLLC (Qualified Logical Link Control) DLC
describing programming interfaces 52 

device manager 51 

overview 51 

qualified logical link control 51 

QUEUES
processing messages with STREAMS 273 

R
records

RPC messages 138 

Remote Procedure Call (RPC)
highest layer 149 

lowest layer 151 

remote procedure calls 109, 131 

RPC
arbitrary data types

passing 175 

authentication 138 

client side 139 

DES overview 140 

DES protocol 142 

server side 140 

batching 153 

binding process 133 

broadcasting 177 

protocols 154 

server side 161 

RPC (continued)
C preprocessor 161 

callback 180 

procedures 154 

constants 157 

converting local procedures 184 

overview 160 

declarations 158 

enumerations 157 

examples
list of 162 

features 153 

generating XDR routines 187 

overview 161 

intermediate layer 170 

language 155 

macros 162 

message protocol 133 

message replies 136 

messages 134 

model 132 

multiple program versions 176 

overview 131 

port mapper 144 

programming 146 

programs
list of 148 

rpc process (TCP) 178 

rpcgen protocol compiler 160 

select subroutine 178 

on the server side 155 

semantics 133 

server procedures 162 

starting
from inetd daemon 153 

structures 156 

subroutines 162 

timeouts
changing 161 

transports 133 

type definitions 157 

unions 156 

XDR, using with 82 

RPC (Remote Procedure Call)
arbitrary data types

passing 151 

intermediate layer 149 

marking records in messages 138 

RPC authentication
DES 168 

clock synchronization 141 

Diffie-Hellman encryption 143 

naming scheme 140 

nicknames 141 

on the client side 141 

on the server side 141 

verifiers 141 

NULL 139 

overview 138 

protocol 138 

UNIX 166 

 

332 Communications Programming Concepts



RPC authentication (continued)
overview 139 

RPC example programs
generating XDR routines 187 

ping program 183 

select subroutine 178 

UNIX authentication 166 

RPC language
constants 157 

declarations 158 

definitions 155 

descriptions 155 

enumerations 157 

exceptions to rules
booleans 159 

opaque data 160 

strings 159 

voids 160 

overview 155 

ping program 183 

programs
syntax 157 

rpcgen protocol compiler 160 

structures 156 

syntax requirements for program definition 159 

type definitions 157 

unions 156 

RPC layers
highest 170 

intermediate
handling arbitrary data structures 149 

routines 149 

lowest 171 

RPC messages
calls 134 

protocol requirements 134 

replies 136 

structures 134 

RPC port mapper
overview 144 

procedures 146 

protocol 145 

registering ports with 144 

rpc process (RPC)
on TCP 178 

RPC programming
procedure numbers 148 

program numbers 147 

version numbers 147 

RPC programs
compiling 153 

linking 153 

list of 148 

syntax 157 

RPC runtime library
NCS 109 

routines
client 109 

conversion 110 

server 109 

rpcgen protocol compiler
broadcasting

server side 161 

C preprocessor 161 

changing timeouts 161 

converting local procedures 160, 184 

generating XDR routines 161, 187 

other information passed to server 162 

overview 160 

RPCL 159 

S
SAP

definition 6 

statistics
querying 7 

SDLC 44 

SDLC (synchronous data link control) DLC
device manager functions 45 

programming interfaces 48 

providing protocol support 45 

SDLC (Synchronous Data Link Control) DLC
initiating asynchronous function subroutine calls 51 

select subroutines (RPC) 178 

overview 155 

semantics (RPC) 133 

sending messages 212 

server procedures (RPC) 162 

servers
RPC routines and 109 

service access point 6 

service procedures
STREAMS 274 

short-hold mode 7 

shutdown sockets 211 

simple network management protocol 119 

SMUX subroutines 127 

adios 128 

advise 129 

SNMP
agent 125 

database 120 

monitor 125 

overview 119 

traps 126 

SNMP multiplexer (SMUX) 128 

socket
binding 198 

communication domains 196 

sockets 198 

accepting internet Streams connections 224 

accepting UNIX Stream connections 227 

address translation 213 

atm socket pvc client
sending data 228 

atm socket pvc server
receiving data 229 

atm socket rate-enforced svc server
receiving data 234 

 

Index 333



sockets (continued)
atm socket svc client

sending data 236 

atm socket svc server
receiving data 239 

atm sockets rate-enforced svc client
sending data 230 

binding addresses 205 

binding names 204 

blocking mode 211 

checking pending connections 225 

closing 211 

connecting 192 

connectionless 208 

connections 206 

creating 192, 204 

data structures 195 

data transfer 193, 209 

ethernet
receiving packets 242 

sending packets 244 

examples, understanding 219 

header files 195, 249 

I/O modes 211 

Infiniband 203 

interface 193, 194 

internet datagrams
reading 220 

sending 221 

Internet Stream
initiating 223 

kernel services
list of 247 

layer 193 

library 194 

subroutines 248 

names
binding 204 

host 216 

network 216 

protocol 216 

resolution 217 

service 216 

translation 217 

network packets
analyzing 246 

out-of-band data 210 

protocols 203, 249 

server connections 207 

shutdown 211 

socketpair subroutine 219 

types 201 

UNIX datagrams
reading 222 

sending 222 

UNIX Stream connections 226 

XDR 105 

Sockets
options, get, set 209 

overview 191 

standard Ethernet data link control 34 

statistics
querying

LS 7 

SAP 7 

stream end 254 

stream head 252 

streams
TLI 291 

STREAMS
asynchronous protocol example 282 

building 267 

commands 288 

configuring 288 

maintaining 289 

definition 251 

differences between PSE and V.4 287 

drivers
introduction 275 

list of 289 

Flow Control 256 

functions
list of 290 

ioctl operations 265 

log device driver 277, 278 

message queue 272 

messages 270 

allocation 271 

sending and receiving 273 

types 271 

modules 253, 255, 275 

list of 289 

overview 251 

protocol substitution 255 

PSE 279 

pushable modules 269 

put procedures 273 

QUEUE procedures 273 

queues 272 

service procedures 274 

stream end 254 

stream head 252 

streamio operations 267 

subroutines 264 

list of 289 

synchronization 257 

system calls 264 

list of 290 

tunable parameters 265 

understanding flow control 256 

utilities
list of 290 

welding mechanism 263 

strings
RPC 159 

XDR 90 

structures
RPC language 156 

XDR language 83, 91 

subroutine format (XDR) 81 

subroutines 314 

Synchronous Data Link Control 44 

 

334 Communications Programming Concepts



T
TCP/IP

list of RFCs 310 

programming references
list of files and file formats 310 

list of methods 309 

socket addresses 198 

timeouts
changing (RPC) 161 

token-ring data link control 12 

Transmission Control Protocol/Internet Protocol 295 

transport protocol
and RPC 133 

transport service library interface 291 

traps 126 

type definitions
RPC language 157 

XDR language 92 

U
Understanding STREAMS Flow Control 256 

unions
discriminated 91 

optional data 93 

RPC language 156 

XDR language 83 

UNIX authentication (RPC) 139, 166 

V
V.4 STREAMS

differences between and 287 

version numbers
assigning (RPC) 147 

voids
RPC 160 

XDR 92 

X
XDR

canonical data representation 80 

data streams 98 

data types 84 

filter primitives 95, 96 

generating routines with RPC 161 

language
specifications 82 

library 81 

memory allocation (RPC) 152 

non-filter primitives 98 

overview 79 

primitives 95 

programming reference library 94 

remote procedure calls and 131 

RPC
generating routines with 187 

RPC, using with 82 

structures 91 

XDR (continued)
subroutine format 81 

type definitions 92 

unions
optional data 93 

unsupported representations 81 

using rpc process with 178 

XDR (eXternal Data Representation)
unions

discriminated 91 

XDR example
array 106 

data description 102 

discriminated unions 107 

justification for using 103 

linked lists 100 

pointers 108 

XDR language
block size 80 

declarations 83 

enumerations 83 

lexical notes 82 

structures 83 

syntax notes 84 

unions 83 

XTI 291

 

Index 335



336 Communications Programming Concepts



Readers’  Comments  — We’d Like  to Hear  from  You  

AIX  5L Version  5.3  

Communications  Programming  Concepts  

 Publication  No.  SC23-4894-04  

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, 

organization, subject matter, or completeness of this book. The comments you send should pertain to only the 

information in this manual or product and the way in which the information is presented. 

For technical questions and information about products and prices, please contact your IBM branch office, your IBM 

business partner, or your authorized remarketer. 

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any 

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the 

personal information that you supply to contact you about the issues that you state on this form. 

Comments: 

 Thank you for your support. 

Submit your comments using one of these channels: 

v   Send your comments to the address on the reverse side of this form. 

v   Send your comments via e-mail to: aix6koub@austin.ibm.com 

If you would like a response from IBM, please fill in the following information: 

 

Name
 

Address 

Company or Organization
 

Phone No. E-mail address



Readers’ Comments — We’d Like to Hear from You
 SC23-4894-04

SC23-4894-04

��� 

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please  do not staple Fold and Tape

Fold and Tape Please  do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation 

Information Development 

Department 04XA-905-6C006 

11501 Burnet Road 

Austin, TX  78758-3493 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





���

  

Printed in U.S.A.  

 

  

SC23-4894-04  

              

 


	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. Data Link Control
	Generic Data Link Control Environment Overview
	Meeting the GDLC Criteria

	Implementing GDLC Interface
	GDLC Interface ioctl Entry Point Operations
	Service Access Points
	Link Stations
	Local-Busy Mode
	Short-Hold Mode
	Testing and Tracing Links
	Statistics

	GDLC Special Kernel Services
	GDLC Problem Determination
	DLC Status Information
	DLC Error Log
	DLC Link Station Trace Facility
	LAN Monitor Trace

	Data Link Control Programming and Reference Information
	DLC Reference Information
	DLC Programming Procedures

	Token-Ring Data Link Control Overview
	DLCTOKEN Device Manager Nodes
	DLCTOKEN Device Manager Functions
	DLCTOKEN Protocol Support
	Station Types
	Response Modes
	Token-Ring Data Packet

	DLCTOKEN Name-Discovery Service
	LAN Find Data Format
	LAN Found Data Format
	Bridge Route Discovery

	DLCTOKEN Direct Network Services
	DLCTOKEN Connection Contention
	Initiating DLCTOKEN Link Sessions
	Stopping DLCTOKEN Link Sessions
	DLCTOKEN Programming Interfaces
	DLC_ENABLE_SAP
	DLC_START_LS
	DLC_ALTER
	DLC_QUERY_SAP
	DLC_QUERY_LS
	DLC_ENTER_SHOLD
	DLC_EXIT_SHOLD
	DLC_ADD_GROUP
	DLC_ADD_FUNC_ADDR
	DLC_DEL_FUNC_ADDR
	DLC_DEL_GRP
	IOCINFO

	IEEE 802.3 Ethernet Data Link Control Overview
	DLC8023 Device Manager Nodes
	DLC8023 Device Manager Functions
	DLC8023 Protocol Support
	Station Types
	Response Modes
	IEEE 802.3 Data Packet

	DLC8023 Name-Discovery Services
	LAN Find Data Format
	LAN Found Data Format

	DLC8023 Direct Network Services
	DLC8023 Connection Contention
	DLC8023 Link Sessions
	Link Session Termination

	DLC8023 Programming Interfaces
	DLC_ENABLE_SAP
	DLC_START_LS
	DLC_ALTER
	DLC_QUERY_SAP
	DLC_QUERY_LS
	DLC_ENTER_SHOLD
	DLC_EXIT_SHOLD
	DLC_ADD_GROUP
	DLC_ADD_FUNC_ADDR
	DLC_DEL_FUNC_ADDR
	DLC_DEL_GRP
	IOCINFO

	Standard Ethernet Data Link Control Overview
	DLCETHER Device Manager Nodes
	DLCETHER Device Manager Functions
	DLCETHER Protocol Support
	Station Type
	Response Modes
	Ethernet Data Packet

	DLCETHER Name-Discovery Services
	LAN Find Data Format
	LAN Found Data Format

	DLCETHER Direct Network Services
	DLCETHER Connection Contention
	DLCETHER Link Session Initiation
	DLCETHER Link Session Termination
	DLCETHER Programming Interfaces
	DLC_ENABLE_SAP
	DLC_START_LS
	DLC_ALTER
	DLC_QUERY_SAP
	DLC_QUERY_LS
	DLC_ENTER_SHOLD
	DLC_EXIT_SHOLD
	DLC_ADD_GRP
	DLC_ADD_FUNC_ADDR
	DLC_DEL_FUNC_ADDR
	DLC_DEL_GRP
	IOCINFO

	Synchronous Data Link Control Overview
	DLCSDLC Device Manager Functions
	DLCSDLC Protocol Support
	Station Types
	Operation Modes
	Transmission Frames
	Response Modes
	Station Link Address Field
	Control Field (Commands Supported)
	Control Field (Responses Supported)

	DLCSDLC Programming Interfaces
	DLC_ENABLE_SAP
	DLC_START_LS
	DLC_ALTER
	DLC_QUERY_SAP
	DLC_QUERY_LS
	DLC_ENTER_SHOLD
	DLC_EXIT_SHOLD
	DLC_ADD_GRP
	DLC_ADD_FUNC_ADDR
	DLC_DEL_FUNC_ADDR
	IOCINFO

	DLCSDLC Asynchronous Function Subroutine Calls
	Qualified Logical Link Control (DLCQLLC) Overview
	DLCQLLC Device Manager Functions
	DLCQLLC Programming Interfaces
	DLC_ENABLE_SAP
	DLC_START_LS
	DLC_ALTER
	DLC_QUERY_SAP
	DLC_QUERY_LS
	DLC_ENTER_SHOLD
	DLC_EXIT_SHOLD
	DLC_ADD_GRP
	DLC_ADD_FUNC_ADDR
	DLC_DEL_FUNC_ADDR
	IOCINFO
	DLCQLLC Asynchronous Function Subroutine Calls

	Data Link Control FDDI (DLC FDDI) Overview
	DLC FDDI Device Manager Nodes
	DLC FDDI Device Manager Functions
	DLC FDDI Protocol Support
	Station Type
	Response Modes
	FDDI Data Packet

	DLC FDDI Name-Discovery Services
	LAN Find Data Format
	LAN Found Data Format
	Bridge Route Discovery

	DLC FDDI Direct Network Services
	DLC FDDI Connection Contention
	DLC FDDI Link Sessions
	Link Session Termination

	DLC FDDI Programming Interfaces
	DLC_ENABLE_SAP
	DLC_START_LS
	DLC_ALTER
	DLC_ENTER_SHOLD
	DLC_EXIT_SHOLD
	DLC_ADD_GROUP
	DLC_ADD_FUNC_ADDR
	DLC_DEL_FUNC_ADDR
	DLC_DEL_GRP
	DLC_QUERY_SAP
	DLC_QUERY_LS
	IOCINFO
	Asynchronous Function Calls


	Chapter 2. Data Link Provider Interface Implementation
	Primitive Implementation Specifics
	Packet Format Registration Specifics
	Address Resolution Routine Registration Specifics
	ioctl Specifics
	Dynamic Route Discovery
	DRD Configuration
	Connectionless Mode Only DLPI Driver versus Connectionless/Connection-Oriented DLPI Driver
	DLPI Primitives
	Obtaining Copies of the DLPI Specifications

	Chapter 3. New Database Manager
	Using NDBM Subroutines
	Diagnosing NDBM Problems
	List of NDBM and DBM Programming References
	NDBM Subroutines
	DBM Subroutines


	Chapter 4. eXternal Data Representation
	eXternal Data Representation Overview for Programming
	A Canonical Standard
	Basic Block Size
	Unsupported Representations

	XDR Subroutine Format
	XDR Library
	XDR with RPC
	XDR Operation Directions

	XDR Language Specification
	Lexical Notes
	Declarations, Enumerations, Structures, and Unions
	Syntax Notes

	XDR Data Types
	Integer Data Types
	Enumeration Data Types
	Boolean Data Types
	Floating-Point Data Types
	Opaque Data Types
	Array Data Types
	Strings
	Structures
	Discriminated Unions
	Voids
	Constants
	Type Definitions
	Optional Data

	List of XDR Programming References
	XDR Library Filter Primitives
	XDR Library Non-Filter Primitives
	Examples

	XDR Library Filter Primitives
	XDR Basic Filter Primitives
	XDR Constructed Filter Primitives

	XDR Non-Filter Primitives
	Creating and Using XDR Data Streams
	Manipulating an XDR Data Stream
	Implementing an XDR Data Stream
	Destroying an XDR Data Stream

	Passing Linked Lists Using XDR Example
	Using an XDR Data Description Example
	Showing the Justification for Using XDR Example
	Using XDR Example
	Using XDR Array Examples
	Example A
	Example B
	Example C
	Example D

	Using an XDR Discriminated Union Example
	Showing the Use of Pointers in XDR Example

	Chapter 5. Network Computing System
	Remote Procedure Call Runtime Library
	Routines
	Client Routines
	Server Routines
	Conversion Routines

	The Location Broker
	Location Broker Components
	Location Broker Data
	Location Broker Client Agent
	Local Location Broker
	Global Location Broker


	Chapter 6. Network Information Services (NIS and NIS+)
	List of NIS and NIS+ Programming References
	Subroutines
	Files
	NIS+ Commands
	NIS+ Tables
	NIS+ APIs


	Chapter 7. Network Management
	Simple Network Management Protocol
	Management Information Base
	Terminology Related to Management Information Base Variables
	Working with Management Information Base Variables
	Management Information Base Database
	get-next Request

	How a Manager Functions
	How an Agent Functions
	Traps

	List of SNMP Agent Programming References
	Programming Commands
	Files and File Formats
	SMUX Subroutines

	SMUX Error Logging Subroutines Examples
	adios Sample Subroutine
	advise Sample Subroutine


	Chapter 8. Remote Procedure Call
	RPC Model
	Transports and Semantics
	RPC in the Binding Process

	RPC Message Protocol
	RPC Protocol Requirements
	RPC Messages
	RPC Call Message
	Derived Types
	RPC Reply Message
	Marking Records in RPC Messages

	RPC Authentication
	RPC Authentication Protocol
	NULL Authentication
	UNIX Authentication
	Data Encryption Standard (DES) Authentication
	DES Authentication Protocol
	Diffie-Hellman Encryption

	RPC Port Mapper Program
	Registering Ports
	Port Mapper Protocol
	Port Mapper Procedures

	Programming in RPC
	Assigning Program Numbers
	Assigning Version Numbers
	Assigning Procedure Numbers
	Using Registered RPC Programs
	Using the Highest Layer of RPC
	Using the Intermediate Layer of RPC
	Using the Lowest Layer of RPC
	Allocating Memory with XDR
	Starting RPC from the inetd Daemon
	Compiling and Linking RPC Programs

	RPC Features
	Batching Remote Procedure Calls
	Broadcasting Remote Procedure Calls
	RPC Call-back Procedures
	Using the select Subroutine on the Server Side

	RPC Language
	RPC Language Descriptions
	Definitions
	Structures
	Unions
	Enumerations
	Type Definitions
	Constants
	Programs
	Declarations
	RPCL Syntax Requirements for Program Definition
	Exceptions to the RPCL Rules

	rpcgen Protocol Compiler
	Converting Local Procedures into Remote Procedures
	Generating XDR Routines
	C Preprocessor
	Changing Time Outs
	Handling Broadcast on the Server Side
	Other Information Passed to Server Procedures

	List of RPC Programming References
	Subroutines and Macros
	Examples

	Using UNIX Authentication Example
	UNIX Authentication on the Client Side
	UNIX Authentication on the Server Side

	DES Authentication Example
	DES Authentication on the Client Side
	DES Authentication on the Server Side

	Using the Highest Layer of RPC Example
	Using the Intermediate Layer of RPC Example
	Intermediate Layer of RPC on the Server Side
	Intermediate Layer of RPC on the Client Side

	Using the Lowest Layer of RPC Example
	The Lowest Layer of RPC from the Server Side
	The Lowest Layer of RPC from the Client Side

	Showing How RPC Passes Arbitrary Data Types Example
	Passing a Simple User-Defined Structure Example
	Passing a Variable-Length Array Example
	Passing a Fixed-Length Array Example
	Passing Structure with Pointers Example

	Using Multiple Program Versions Example
	Broadcasting a Remote Procedure Call Example
	Using the select Subroutine Example
	rcp Process on TCP Example
	RPC Callback Procedures Example
	RPC Language ping Program Example
	Converting Local Procedures into Remote Procedures Example
	Generating XDR Routines Example

	Chapter 9. Sockets
	Sockets Overview
	Critical Attributes
	Sockets Background
	Socket Facilities

	Sockets Interface
	Socket Interface to Network Facilities

	Socket Subroutines
	Socket Header Files
	Socket Address Data Structures

	Socket Communication Domains
	Address Formats
	Address Families
	UNIX Domain Properties
	Internet Domain Properties
	The Operating System Network Device Driver (NDD) Domain Properties

	Socket Addresses
	Socket Address Storage
	Socket Addresses in TCP/IP
	Socket Addresses in the Operating System Network Device Driver (NDD)

	Socket Types and Protocols
	Socket Types
	Socket Protocols
	Reliable Datagram Sockets over Infiniband

	Socket Creation
	Binding Names to Sockets
	Binding Addresses to Sockets
	Obtaining Socket Addresses

	Socket Connections
	Server Connections
	Connectionless Datagram Services

	Socket Options
	Socket Data Transfer
	Out-of-Band Data
	Socket I/O Modes

	Socket Shutdown
	Closing Sockets

	IP Multicasts
	Network Address Translation
	Name Resolution
	Host Names
	Network Names
	Protocol Names
	Service Names
	Network Byte-Order Translation
	Internet Address Translation
	Network Host and Domain Names

	Domain Name Resolution
	Socket Examples
	Socketpair Communication Example
	Reading Internet Datagrams Example Program
	Sending Internet Datagrams Example Program
	Reading UNIX Datagrams Example Program
	Sending UNIX Datagrams Example Program
	Initiating Internet Stream Connections Example Program
	Accepting Internet Stream Connections Example Program
	Checking for Pending Connections Example Program
	Initiating UNIX Stream Connections Example Program
	Accepting UNIX Stream Connections Example Program
	Sending Data on an ATM Socket PVC Client Example Program
	Receiving Data on an ATM Socket PVC Server Example Program
	Sending Data on an ATM Socket Rate-Enforced SVC Client Example Program
	Receiving Data on an ATM Socket Rate-Enforced SVC Server Example Program
	Sending Data on an ATM Socket SVC Client Example Program
	Receiving Data on an ATM Socket SVC Server Example Program
	Receiving Packets Over Ethernet Example Program
	Sending Packets Over Ethernet Example Program
	Analyzing Packets Over the Network Example Program
	List of Socket Programming References
	Kernel Service Subroutines
	Network Library Subroutines
	Header Files
	Protocols


	Chapter 10. STREAMS
	STREAMS Introduction
	Stream Head
	Modules
	Stream End
	STREAMS Modularity
	STREAMS Facilities

	Benefits and Features of STREAMS
	Creating Service Interfaces
	Manipulating Modules
	Protocol Substitution
	Module Reusability

	STREAMS Flow Control
	STREAMS Synchronization
	Synchronization Mechanism
	Synchronization of timeout and bufcall Utilities
	Synchronization Levels
	Per-stream Synchronization
	Queue-Welding Mechanism

	Using STREAMS
	Subroutines
	System Calls
	streamio Operations

	STREAMS Tunable Parameters
	Load-Time Parameters
	Run-Time Parameters

	streamio (STREAMS ioctl) Operations
	Building STREAMS
	Expanded Streams
	Pushable Modules

	STREAMS Messages
	Message Blocks
	Message Allocation
	Message Types
	Message Queue Priority
	Sending and Receiving Messages

	Put and Service Procedures
	Put Procedures
	Service Procedures

	STREAMS Drivers and Modules
	Environment
	Drivers
	Modules
	64-Bit Support

	log Device Driver
	Kernel Interface
	User Interface
	Examples

	Configuring Drivers and Modules in the Portable Streams Environment
	Loading and Unloading PSE
	Loading and Unloading a Driver or Module
	PSE Configuration Routines

	An Asynchronous Protocol STREAMS Example
	Initializing the Stream
	Using Messages in the Example
	Other User Functions
	Kernel Processing

	Differences Between Portable Streams Environment and V.4 STREAMS
	Extensions to STREAMS
	Differences in PSE

	List of Streams Commands
	Configuring
	Maintaining

	List of STREAMS Programming References
	Operation
	Modules and Drivers
	Subroutines
	Function
	System Calls
	Utilities

	Transport Service Library Interface Overview
	TLI and XTI Characteristics


	Chapter 11. Transmission Control Protocol/Internet Protocol
	DHCP Server API
	Loading User Objects
	Predefined Structures
	User-Defined Object Requirements
	User-Defined Object Optional Routine

	Dynamic Load API
	Services Map Type
	Protocols Map Type
	Hosts Map Type
	Networks Map Type
	Netgroup Map Type
	Using the Dynamic Load API

	Service Location Protocol (SLP) APIs
	Lists of Programming References
	Methods
	Files and File Formats
	RFCs


	Chapter 12. Packet Capture Library
	Packet Capture Library Overview
	Performing Packet Capture

	Packet Capture Library Subroutines
	Packet Capture Library Header Files
	Packet Capture Library Data Structures
	Packet Capture Library Filter Expressions
	Allowable Primitives

	Sample 1: Capturing Packet Data and Printing It in Binary Form to the Screen
	Sample 2: Capturing Packet Data and Saving It to a File for Processing Later
	Sample 3: Reading Previously Captured Packet Data from a Savefile and Processing It

	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

