
AIX 5L Version 5.3

Performance Tools Guide and Reference

SC23-4906-03

���

AIX 5L Version 5.3

Performance Tools Guide and Reference

SC23-4906-03

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 209.

Fourth Edition (November 2007)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in

new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address

comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas

78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any

information that you supply may be used without incurring any obligation to you.

(c) Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from

The Regents of the University of California. We acknowledge the following institutions for their role in its

development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.
The Rand MH Message Handling System was developed by the Rand Corporation and the University of California.
Portions of the code and documentation described in this book were derived from code and documentation

developed under the auspices of the Regents of the University of California and have been acquired and modified

under the provisions that the following copyright notice and permission notice appear:
Copyright Regents of the University of California, 1986, 1987, 1988, 1989. All rights reserved.
Redistribution and use in source and binary forms are permitted provided that this notice is preserved and that due

credit is given to the University of California at Berkeley. The name of the University may not be used to endorse or

promote products derived from this software without specific prior written permission. This software is provided "as

is" without express or implied warranty.

© Copyright International Business Machines Corporation 2002, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . v

Highlighting . v

Case-Sensitivity in AIX . v

ISO 9000 . v

Related Publications . v

Chapter 1. Introduction to Performance Tools and Application Program Interfaces (APIs) 1

Chapter 2. X-Windows Performance Profiler (Xprofiler) 3

Before You Begin . 3

Xprofiler Installation Information . 4

Starting the Xprofiler GUI . 6

Understanding the Xprofiler Display . 20

Controlling how the Display is Updated . 25

Other Viewing Options . 25

Filtering what You See . 27

Clustering Libraries . 32

Locating Specific Objects in the Function Call Tree . 35

Obtaining Performance Data for Your Application . 37

Saving Screen Images of Profiled Data . 54

Customizing Xprofiler Resources . 56

Chapter 3. CPU Utilization Reporting Tool (curt) . 63

Syntax for the curt Command . 63

Measurement and Sampling . 64

Examples of the curt command . 65

Chapter 4. Simple Performance Lock Analysis Tool (splat) 95

splat Command Syntax . 95

Measurement and Sampling . 96

Examples of Generated Reports . 98

Chapter 5. Hardware Performance Monitor APIs and tools 115

Performance Monitor accuracy . 115

Performance Monitor context and state . 116

Thread accumulation and thread group accumulation 116

Security considerations . 117

The pmapi library . 117

The hpm library and associated tools . 126

Chapter 6. Perfstat API Programming . 135

API Characteristics . 135

Global Interfaces . 135

Component-Specific Interfaces . 147

Cached metrics interfaces . 161

Change History of the perfstat API . 164

Related Information . 167

Chapter 7. Kernel Tuning . 169

Migration and Compatibility . 169

Tunables File Directory . 170

Tunable Parameters Type . 171

Common Syntax for Tuning Commands . 171

© Copyright IBM Corp. 2002, 2007 iii

Tunable File-Manipulation Commands . 173

Initial setup . 176

Reboot Tuning Procedure . 177

Recovery Procedure . 177

Kernel Tuning Using the SMIT Interface . 177

Kernel Tuning using the Performance Plug-In for Web-based System Manager 183

Files . 193

Related Information . 193

Chapter 8. The procmon tool . 195

Overview of the procmon tool . 195

Components of the procmon tool . 196

Filtering processes . 198

Performing AIX commands on processes . 198

Chapter 9. Profiling tools . 199

The timing commands . 199

The prof command . 199

The gprof command . 201

The tprof command . 203

Appendix. Notices . 209

Trademarks . 210

Index . 211

iv Performance Tools Guide and Reference

About This Book

The Performance Tools Guide and Reference provides experienced system administrators, application

programmers, service representatives, system engineers, end users, and system programmers with

complete, detailed information about the various performance tools that are available for monitoring and

tuning AIX® systems and applications running on those systems. This publication is also available on the

documentation CD that is shipped with the operating system.

The information contained in this book pertains to systems running AIX 5.4 or later. Any content that is

applicable to earlier releases will be noted as such.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items

whose names are predefined by the system. Also identifies graphical objects such as buttons,

labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a

programmer, messages from the system, or information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX 5L™ operating system is case-sensitive, which means that it distinguishes between

uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,

always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to performance monitoring:

Performance management

Performance Toolbox Version 2 and 3 for AIX: Guide and Reference

© Copyright IBM Corp. 2002, 2007 v

vi Performance Tools Guide and Reference

Chapter 1. Introduction to Performance Tools and Application

Program Interfaces (APIs)

The performance of a computer system is based on human expectations and the ability of the computer

system to fulfill these expectations. The objective for performance tuning is to make those expectations

and their fulfillment match. The path to achieving this objective is a balance between appropriate

expectations and optimizing the available system resources. The performance-tuning process demands

great skill, knowledge, and experience, and cannot be performed by only analyzing statistics, graphs, and

figures. If results are to be achieved, the human aspect of perceived performance must not be neglected.

Performance tuning also takes into consideration problem-determination aspects as well as pure

performance issues.

Expectations can often be classified as either of the following:

 Throughput expectations A measure of the amount of work performed over a period of time

Response time expectations The elapsed time between when a request is submitted and when the

response from that request is returned

The performance-tuning process can be initiated for a number of reasons:

v To achieve optimal performance in a newly installed system

v To resolve performance problems resulting from the design (sizing) phase

v To resolve performance problems occurring in the run-time (production) phase

Performance tuning on a newly installed system usually involves setting some base parameters for the

operating system and applications. Throughout this book, there are sections that describe the

characteristics of different system resources and provide guidelines regarding their base tuning

parameters, if applicable.

Limitations originating from the sizing phase will either limit the possibility of tuning, or incur greater cost to

overcome them. The system might not meet the original performance expectations because of unrealistic

expectations, physical problems in the computer environment, or human error in the design or

implementation of the system. In the worst case, adding or replacing hardware might be necessary. Be

particularly careful when sizing a system to permit enough capacity for unexpected system loads. In other

words, do not design the system to be 100 percent busy from the start of the project.

When a system in a productive environment still meets the performance expectations for which it was

initially designed, but the demands and needs of the utilizing organization have outgrown the system’s

basic capacity, performance tuning is performed to delay or even to avoid the cost of adding or replacing

hardware.

Many performance-related issues can be traced back to operations performed by a person with limited

experience and knowledge who unintentionally restricted some vital logical or physical resource of the

system.

© Copyright IBM Corp. 2002, 2007 1

2 Performance Tools Guide and Reference

Chapter 2. X-Windows Performance Profiler (Xprofiler)

The X-Windows Performance Profiler (Xprofiler) tool helps you analyze your parallel or serial application’s

performance. It uses procedure-profiling information to construct a graphical display of the functions within

your application. Xprofiler provides quick access to the profiled data, which lets you identify the functions

that are the most CPU-intensive. The graphical user interface (GUI) also lets you manipulate the display in

order to focus on the application’s critical areas.

The following Xprofiler topics are covered in this chapter:

v Before You Begin

v Xprofiler installation information

v Starting the Xprofiler GUI

v Customizing Xprofiler resources

The word function is used frequently throughout this chapter. Consider it to be synonymous with the terms

routine, subroutine, and procedure.

Before You Begin

About Xprofiler

Xprofiler lets you profile both serial and parallel applications. Serial applications generate a single profile

data file, while a parallel application produces multiple profile data files. You can use Xprofiler to analyze

the resulting profiling information.

Xprofiler provides a set of resource variables that let you customize some of the features of the Xprofiler

window and reports.

Requirements and Limitations

To use Xprofiler, your application must be compiled with the -pg flag. For more information, see “Compiling

Applications to be Profiled” on page 4.

Note: Beginning with AIX 5.3, you can generate a new format of the thread-level profiling gmon.out files.

Xprofiler does not support this new format, so you must set the GPROF environment variable to

ensure that you produce the previous format of the gmon.out files. For more information, please

see the gprof Command.

Like the gprof command, Xprofiler lets you analyze CPU (busy) usage only. It does not provide other

kinds of information, such as CPU idle, I/O, or communication information.

If you compile your application on one processor, and then analyze it on another, you must first make sure

that both processors have similar library configurations, at least for the system libraries used by the

application. For example, if you run a High Performance Fortran application on a server, then try to

analyze the profiled data on a workstation, the levels of High Performance Fortran run-time libraries must

match and must be placed in a location on the workstation that Xprofiler recognizes. Otherwise, Xprofiler

produces unpredictable results.

Because Xprofiler collects data by sampling, functions that run for a short amount of time might not show

any CPU use.

Xprofiler does not give you information about the specific threads in a multi-threaded program. Xprofiler

presents the data as a summary of the activities of all the threads.

© Copyright IBM Corp. 2002, 2007 3

Comparing Xprofiler and the gprof Command

With Xprofiler, you can produce the same tabular reports that you might be accustomed to seeing with the

gprof command. As with gprof, you can generate the Flat Profile, Call Graph Profile, and Function Index

reports.

Unlike gprof, Xprofiler provides a GUI that you can use to profile your application. Xprofiler generates a

graphical display of your application’s performance, as opposed to a text-based report. Xprofiler also lets

you profile your application at the source statement level.

From the Xprofiler GUI, you can use all of the same command line flags as gprof, as well as some

additional flags that are unique to Xprofiler.

Compiling Applications to be Profiled

To use Xprofiler, you must compile and link your application with the -pg flag of the compiler command.

This applies regardless of whether you are compiling a serial or parallel application. You can compile and

link your application all at once, or perform the compile and link operations separately. The following is an

example of how you would compile and link all at once:

cc -pg -o foo foo.c

The following is an example of how you would first compile your application and then link it. To compile, do

the following:

cc -pg -c foo.c

To link, do the following:

cc -pg -o foo foo.o

Notice that when you compile and link separately, you must use the -pg flag with both the compile and link

commands.

The -pg flag compiles and links the application so that when you run it, the CPU usage data is written to

one or more output files. For a serial application, this output consists of only one file called gmon.out, by

default. For parallel applications, the output is written into multiple files, one for each task that is running in

the application. To prevent each output file from overwriting the others, the task ID is appended to each

gmon.out file (for example: gmon.out.10).

Note: The -pg flag is not a combination of the -p and the -g compiling flags.

To get a complete picture of your parallel application’s performance, you must indicate all of its gmon.out

files when you load the application into Xprofiler. When you specify more than one gmon.out file, Xprofiler

shows you the sum of the profile information contained in each file.

The Xprofiler GUI lets you view included functions. Your application must also be compiled with the -g flag

in order for Xprofiler to display the included functions.

In addition to the -pg flag, the -g flag is also required for source-statement profiling.

Xprofiler Installation Information

This section contains Xprofiler system requirements, limitations, and information about installing Xprofiler. It

also lists the files and directories that are created by installing Xprofiler.

4 Performance Tools Guide and Reference

Preinstallation Information

The following are hardware and software requirements for Xprofiler:

Software requirements:

v X-Windows

v X11.Dt.lib 4.2.1.0 or later, if you want to run Xprofiler in the Common Desktop Environment (CDE)

Disk space requirements:

v 6500 512-byte blocks in the /usr directory

Limitations

Although it is not required to install Xprofiler on every node, it is advisable to install it on at least one node

in each group of nodes that have the same software library levels.

If users plan to collect a gmon.out file on one processor and then use Xprofiler to analyze the data on

another processor, they should be aware that some shared (system) libraries might not be the same on

the two processors. This situation might result in different function-call tree displays for shared libraries.

Installing Xprofiler

There are two methods to install Xprofiler. One method is by using the installp command. The other is by

using SMIT.

Using the installp Command

To install Xprofiler, type:

installp -a -I -X -d device_name xprofiler

Using SMIT

To install Xprofiler using SMIT, do the following:

1. Insert the distribution media in the installation device (unless you are installing over a network).

2. Enter the following:

smit install_latest

This command opens the SMIT panel for installing software.

3. Press List. A panel lists the available INPUT devices and directories for software.

4. Select the installation device or directory from the list of available INPUT devices. The original SMIT

panel indicates your selection.

5. Press Do. The SMIT panel displays the default installation parameters.

6. Type:

xprofiler

in the SOFTWARE to install field and press Enter.

7. Once the installation is complete, press F10 to exit SMIT.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 5

Directories and Files Created by Xprofiler

Installing Xprofiler creates the directories and files shown in the following table:

 Table 1. Xprofiler directories and files installed

Directory or file Description

/usr/lib/nls/msg/En_US/xprofiler.cat

/usr/lib/nls/msg/en_US/xprofiler.cat

/usr/lib/nls/msg/C/xprofiler.cat

Message catalog for Xprofiler

/usr/xprofiler/defaults/Xprofiler.ad Defaults file for X-Windows and Motif resource variables

/usr/xprofiler/bin/.startup_script Startup script for Xprofiler

/usr/xprofiler/bin/xprofiler Xprofiler exec file

/usr/xprofiler/help/en_US/xprofiler.sdl

/usr/xprofiler/help/en_US/xprofiler_msg.sdl

/usr/xprofiler/help/en_US/graphics

Online help

/usr/xprofiler/READMES/xprofiler.README Installation readme file

/usr/xprofiler/samples Directory containing sample programs

The following symbolic link is made during the installation process of Xprofiler:

 This link: To:

/usr/lpp/X11/lib/X11/app-defaults/Xprofiler /usr/xprofiler/defaults/Xprofiler.ad

/usr/bin/xprofiler /usr/xprofiler/bin.startup_script

Starting the Xprofiler GUI

To start Xprofiler, enter the xprofiler command on the command line. You must also specify the binary

executable file, one or more profile data files, and optionally, one or more flags, which you can do in one

of two ways. You can either specify the files and flags on the command line along with the xprofiler

command, or you can enter the xprofiler command alone, then specify the files and flags from within the

GUI.

You will have more than one gmon.out file if you are profiling a parallel application, because a gmon.out

file is created for each task in the application when it is run. If you are running a serial application, there

might be times when you want to summarize the profiling results from multiple runs of the application. In

these cases, you must specify each of the profile data files you want to profile with Xprofiler.

To start Xprofiler and specify the binary executable file, one or more profile data files, and one or more

flags, type:

xprofiler a.out gmon.out... [flag...]

where: a.out is the binary executable file, gmon.out... is the name of your profile data file (or files), and

flag... is one or more of the flags listed in the following section on Xprofiler command-line flags.

Xprofiler Command-line Flags

You can specify the same command-line flags with the xprofiler command that you do with gprof, as well

as one additional flag (-disp_max), which is specific to Xprofiler. The command-line flags let you control

the way Xprofiler displays the profiled output.

6 Performance Tools Guide and Reference

You can specify the flags in Table 2 from the command line or from the Xprofiler GUI (see “Specifying

Command Line Options (from the GUI)” on page 14 for more information).

 Table 2. Xprofiler command-line flags

Use this flag: To: For example:

-a Add alternative paths to search for source code and library

files, or changes the current path search order. When using

this flag, you can use the ″at″ symbol (@) to represent the

default file path, in order to specify that other paths be

searched before the default path.

To set an alternative file search path

so that Xprofiler searches pathA, the

default path, then pathB, type:

xprofiler -a pathA:@:pathB

-b Suppress the printing of the field descriptions for the Flat

Profile, Call Graph Profile, and Function Index reports

when they are written to a file with the Save As option of the

File menu.

Type: xprofiler -b a.out gmon.out

-c Load the specified configuration file. If this flag is used on the

command line, the configuration file name specified with it will

appear in the Configuration File (-c): text field in Load Files

Dialog window and in the Selection field of the Load

Configuration File Dialog window. When both the -c and

-disp_max flags are specified on the command line, the

-disp_max flag is ignored, but the value that was specified

with it will appear in the Initial Display (-disp_max): field in

the Load Files Dialog window the next time this window is

opened.

To load the configuration file

myfile.cfg, type: xprofiler a.out

gmon.out -c myfile.cfg

-disp_max Set the number of function boxes that Xprofiler initially

displays in the function call tree. The value supplied with this

flag can be any integer between 0 and 5000. Xprofiler

displays the function boxes for the most CPU-intensive

functions through the number you specify. For example, if you

specify 50, Xprofiler displays the function boxes for the 50

functions in your program with the highest CPU usage. After

this, you can change the number of function boxes that are

displayed using the Filter menu options. This flag has no

effect on the content of any of the Xprofiler reports.

To display the function boxes for the

50 most CPU-intensive functions in

the function call tree, type: xprofiler

-disp_max 50 a.out gmon.out

-e Deemphasize the general appearance of the function box for

the specified function in the function call tree, and limits the

number of entries for this function in the Call Graph Profile

report. This also applies to the specified function’s

descendants, as long as they have not been called by

non-specified functions.

In the function call tree, the function box for the specified

function is made unavailable. The box size and the content of

the label remain the same. This also applies to descendant

functions, as long as they have not been called by

non-specified functions.

In the Call Graph Profile report, an entry for a specified

function only appears where it is a child of another function,

or as a parent of a function that also has at least one

non-specified function as its parent. The information for this

entry remains unchanged. Entries for descendants of the

specified function do not appear unless they have been

called by at least one non-specified function in the program.

To deemphasize the appearance of

the function boxes for foo and bar

and their qualifying descendants in

the function call tree, and limit their

entries in the Call Graph Profile

report, type: xprofiler -e foo -e

bar a.out gmon.out

Chapter 2. X-Windows Performance Profiler (Xprofiler) 7

Table 2. Xprofiler command-line flags (continued)

Use this flag: To: For example:

-E Change the general appearance and label information of the

function box for the specified function in the function call tree.

This flag also limits the number of entries for this function in

the Call Graph Profile report, and changes the CPU data

associated with them. These results also apply to the

specified function’s descendants, as long as they have not

been called by non-specified functions in the program.

In the function call tree, the function box for the specified

function is made unavailable, and the box size and shape

also changes so that it appears as a square of the smallest

permitted size. In addition, the CPU time shown in the

function box label, appears as 0. The same applies to

function boxes for descendant functions, as long as they

have not been called by non-specified functions. This flag

also causes the CPU time spent by the specified function to

be deducted from the CPU total on the left in the label of the

function box for each of the specified function’s ancestors.

In the Call Graph Profile report, an entry for the specified

function only appears where it is a child of another function,

or as a parent of a function that also has at least one

non-specified function as its parent. When this is the case,

the time in the self and descendants columns for this entry

is set to 0. In addition, the amount of time that was in the

descendants column for the specified function is subtracted

from the time listed under the descendants column for the

profiled function. As a result, be aware that the value listed in

the % time column for most profiled functions in this report

will change.

To change the display and label

information for foo and bar, as well

as their qualifying descendants in the

function call tree, and limit their

entries and data in the Call Graph

Profile report, type: xprofiler -E

foo -E bar a.out gmon.out

-f Deemphasize the general appearance of all function boxes in

the function call tree, except for that of the specified function

and its descendants. In addition, the number of entries in the

Call Graph Profile report for the non-specified functions and

non-descendant functions is limited. The -f flag overrides the

-e flag.

In the function call tree, all function boxes except for that of

the specified function and its descendants are made

unavailable. The size of these boxes and the content of their

labels remain the same. For the specified function and its

descendants, the appearance of the function boxes and

labels remain the same.

In the Call Graph Profile report, an entry for a non-specified

or non-descendant function only appears where it is a parent

or child of a specified function or one of its descendants. All

information for this entry remains the same.

To deemphasize the display of

function boxes for all functions in the

function call tree except for foo, bar,

and their descendants, and limit their

types of entries in the Call Graph

Profile report, type: xprofiler -f

foo -f bar a.out gmon.out

8 Performance Tools Guide and Reference

Table 2. Xprofiler command-line flags (continued)

Use this flag: To: For example:

-F Change the general appearance and label information of all

function boxes in the function call tree except for that of the

specified function and its descendants. In addition, the

number of entries in the Call Graph Profile report for the

non-specified and non-descendant functions is limited, and

the CPU data associated with them is changed. The -F flag

overrides the -E flag.

In the function call tree, the function box for the specified

function are made unavailable, and its size and shape also

changes so that it appears as a square of the smallest

permitted size. In addition, the CPU time shown in the

function box label, appears as 0.

In the Call Graph Profile report, an entry for a non-specified

or non-descendant function only appears where it is a parent

or child of a specified function or one of its descendants.

When this is the case, the time in the self and descendants

columns for this entry is set to 0. As a result, be aware that

the value listed in the % time column for most profiled

functions in this report will change.

To change the display and label

information of the function boxes for

all functions except the functions foo

and bar and their descendants, and

limit their types of entries and data in

the Call Graph Profile report, type:

xprofiler -F foo -F bar a.out

gmon.out

-h │ -? Display the xprofiler command’s usage statement. xprofiler -h

Usage: xprofiler [program] [-b]

[-h] [-s] [-z] [-a path(s)] [-c

file] [-L pathname] [[-e

function]...] [[-E function]...]

[[-f function]...] [[-F

function]...] [-disp_max

number_of_functions]

[[gmon.out]...]

-L Specify an alternative path name for locating shared libraries.

If you plan to specify multiple paths, use the Set File Search

Path option of the File menu on the Xprofiler GUI. See

“Setting the File Search Sequence” on page 19 for more

information.

To specify /lib/profiled/libc.a:shr.o

as an alternative path name for your

shared libraries, type: xprofiler -L

/lib/profiled/libc.a:shr.o

-s Produce the gmon.sum profile data file (if multiple gmon.out

files are specified when Xprofiler is started). The gmon.sum

file represents the sum of the profile information in all the

specified profile files. Note that if you specify a single

gmon.out file, the gmon.sum file contains the same data as

the gmon.out file.

To write the sum of the data from

three profile data files, gmon.out.1,

gmon.out.2, and gmon.out.3, into a

file called gmon.sum, type:

xprofiler -s a.out gmon.out.1

gmon.out.2 gmon.out.3

-z Include functions that have both zero CPU usage and no call

counts in the Flat Profile, Call Graph Profile, and Function

Index reports. A function will not have a call count if the file

that contains its definition was not compiled with the -pg flag,

which is common with system library files.

To include all functions used by the

application that have zero CPU

usage and no call counts in the Flat

Profile, Call Graph Profile, and

Function Index reports, type:

xprofiler -z a.out gmon.out

After you enter the xprofiler command, the Xprofiler main window appears and displays your application’s

data.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 9

Loading Files from the Xprofiler GUI

If you enter the xprofiler command on its own, you can then specify an executable file, one or more

profile data file, and any flags, from within the Xprofiler GUI. You use the Load File option of the File

menu to do this.

If you enter the xprofiler -h or xprofiler -? command, Xprofiler displays the usage statement for the

command and then exits.

When you enter the xprofiler command alone, the Xprofiler main window appears. Because you did not

load an executable file or specify a profile data file, the window will be empty, as shown below.

From the Xprofiler GUI, select File, then Load File from the menu bar. The Load Files Dialog window will

appear, as shown below.

Figure 1. The Xprofiler main window.. The screen capture below is an empty Xprofiler window. All that is visible is a

menu bar at the top with dropdowns for File, View, Filter, Report, Utility, and Help. Also, there is a description box at

the bottom that contains the following text: Empty display, use ″File->Load Files″ option to load a valid file set.

10 Performance Tools Guide and Reference

The Load Files Dialog window lets you specify your application’s executable file and its corresponding

profile data (gmon.out) files. When you load a file, you can also specify the various command-line options

that let you control the way Xprofiler displays the profiled data.

To load the files for the application you want to profile, you must specify the following:

Figure 2. The Load Files Dialog window. The screen capture below is a Load Files Dialog box that is split into three

different sections. There are two boxes, side by side at the top, and one long box at the bottom that are described in

more detail in the next three figures.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 11

v the binary executable file

v one or more profile data files

Optionally, you can also specify one or more command-line flags.

The Binary Executable File

You specify the binary executable file from the Binary Executable File: area of the Load Files Dialog

window.

Use the scroll bars of the Directories and Files selection boxes to locate the executable file you want to

load. By default, all of the files in the directory from which you called Xprofiler appear in the Files selection

box.

To make locating your binary executable files easier, the Binary Executable File: area includes a Filter

button. Filtering lets you limit the files that are displayed in the Files selection box to those of a specific

directory or of a specific type. For information about filtering, see “Filtering what You See” on page 27.

Figure 3. The Binary Executable File dialog. The screen capture below is the Binary Executable File dialog box of the

Load Files Dialog window. There is a Filter box at the top that shows the path of the file to load. Underneath the Filter

box, there are two selection boxes, side by side that are labeled Directory and Files. The one on the left is to select

the Directory in which to locate the executable file, and the one on the right is a listing of the files that are contained in

the directory that is selected in the Directory selection box. There is a Selection box that shows the file selected and at

the bottom there is a Filter button.

12 Performance Tools Guide and Reference

Profile Data Files

You specify one or more profile data files from the gmon.out Profile Data File(s) area of the Load Files

Dialog window.

When you start Xprofiler using the xprofiler command, you are not required to indicate the name of the

profile data file. If you do not specify a profile data file, Xprofiler searches your directory for the presence

of a file named gmon.out and, if found, places it in the Selection field of the gmon.out Profile Data

File(s) area, as the default. Xprofiler then uses this file as input, even if it is not related to the binary

executable file you specify. Because this will cause Xprofiler to display incorrect data, it is important that

you enter the correct file into this field. If the profile data file you want to use is named something other

than what appears in the Selection field, you must replace it with the correct file name.

Use the scroll bars of the Directories and Files selection boxes to locate one or more of the profile data

(gmon.out) files you want to specify. The file you use does not have to be named gmon.out, and you can

specify more than one profile data file.

Figure 4. The gmon.out Profile Data File area. The screen capture below is the gmon.out Profile Data File(s) dialog

box of the Load Files Dialog window. There is a Filter box at the top that shows the path of the file to use as input.

Underneath the Filter box, there are two selection boxes, side by side that are labeled Directory and Files. The one on

the left is to select the Directory in which to locate the profile file, and the one on the right is a listing of the files that

are contained in the directory that is selected in the Directory selection box. There is a Selection box that shows the

file selected and at the bottom there is a Filter button.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 13

To make locating your output files easier, the gmon.out Profile Data File(s) area includes a Filter button.

Filtering lets you limit the files that are displayed in the Files selection box to those in a specific directory

or of a specific type. For information about filtering, see “Filtering what You See” on page 27.

Specifying Command Line Options (from the GUI)

Specify command-line flags from the Command Line Options area of the Load Files Dialog window,

which looks similar to the following:

 You can specify one or more flags as follows:

Figure 5. The Command Line Options area. The screen capture below is the Command Line Options box of the Load

Files Dialog window. There are three check boxes side by side at the top: No description (-b), gmon.sum File (-s), and

Show Zero Usage (-z). Below that, there are eight boxes corresponding to the eight Xprofiler GUI command-line flags,

Alt File Search Paths (-a), Configuration File (-c), Initial Display (-disp_max), Exclude Functions (-e), Exclude

Functions (-E), Include Functions (-f), Include Functions (-F), and Alt Library Path (-L), that are described in great

detail below. There is a Choices button next to the Configuration File (-c) box.

14 Performance Tools Guide and Reference

Table 3. Xprofiler GUI command-line flags

Use this flag: To: For example:

-a (field) Add alternative paths to search for source code

and library files, or changes the current path

search order. After clicking the OK button, any

modifications to this field are also made to the

Enter Alt File Search Paths: field of the Alt File

Search Path Dialog window. If both the Load

Files Dialog window and the Alt File Search Path

Dialog window are opened at the same time,

when you make path changes in the Alt File

Search Path Dialog window and click OK, these

changes are also made to the Load Files Dialog

window. Also, when both of these windows are

open at the same time, clicking the OK or

Cancel buttons in the Load Files Dialog window

causes both windows to close. If you want to

restore the Alt File Search Path(s) (-a): field to

the same state as when the Load Files Dialog

window was opened, click the Reset button.

You can use the “at” symbol (@) with this flag to

represent the default file path, in order to specify

that other paths be searched before the default

path.

To set an alternative file search path so that

Xprofiler searches pathA, the default path, then

pathB, type pathA:@:pathB in the Alt File

Search Path(s) (-a) field.

-b (button) Suppress the printing of the field descriptions for

the Flat Profile, Call Graph Profile, and

Function Index reports when they are written to

a file with the Save As option of the File menu.

To suppress printing of the field descriptions for

the Flat Profile, Call Graph Profile, and

Function Index reports in the saved file, set the

-b button to the pressed-in position.

-c (field) Load the specified configuration file. If the -c

option was used on the command line, or a

configuration file had been previously loaded

with the Load Files Dialog window or the Load

Configuration File Dialog window, the name of

the most recently loaded file will appear in the

Configuration File (-c): text field in the Load

Files Dialog window, as well as the Selection

field of Load Files Dialog window. If the Load

Files Dialog window and the Load Files Dialog

window are open at the same time, when you

specify a configuration file in the Load

Configuration File Dialog window and then click

the OK button, the name of the specified file

also appears in the Load Files Dialog window.

Also, when both of these windows are open at

the same time, clicking the OK or Cancel button

in the Load Files Dialog window causes both

windows to close. When entries are made to

both the Configuration File (-c): and Initial

Display (-disp_max): fields in the Load Files

Dialog window, the value in the Initial Display

(-disp_max): field is ignored, but is retained the

next time this window is opened. If you want to

retrieve the file name that was in the

Configuration File (-c): field when the Load

Files Dialog window was opened, click the

Reset button.

To load the configuration file myfile.cfg, type

myfile.cfg in the Configuration File (-c) field.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 15

Table 3. Xprofiler GUI command-line flags (continued)

Use this flag: To: For example:

-disp_max

(field)

Set the number of function boxes that Xprofiler

initially displays in the function call tree. The

value supplied with this flag can be any integer

between 0 and 5000. Xprofiler displays the

function boxes for the most CPU-intensive

functions through the number you specify. For

example, if you specify 50, Xprofiler displays the

function boxes for the 50 functions in your

program with the highest CPU usage. After this,

you can change the number of function boxes

that are displayed using the Filter menu options.

This flag has no effect on the content of any of

the Xprofiler reports.

To display the function boxes for the 50 most

CPU-intensive functions in the function call tree,

type 50 in the Init Display (-disp_max) field.

-e (field) Deemphasize the general appearance of the

function box for the specified function in the

function call tree, and limits the number of

entries for this function in the Call Graph Profile

report. This also applies to the specified

function’s descendants, as long as they have not

been called by non-specified functions.

In the function call tree, the function box for the

specified function is made unavailable. The box

size and the content of the label remain the

same. This also applies to descendant functions,

as long as they have not been called by

non-specified functions.

In the Call Graph Profile report, an entry for a

specified function only appears where it is a

child of another function, or as a parent of a

function that also has at least one non-specified

function as its parent. The information for this

entry remains unchanged. Entries for

descendants of the specified function do not

appear unless they have been called by at least

one non-specified function in the program.

To deemphasize the appearance of the function

boxes for foo and bar and their qualifying

descendants in the function call tree, and limit

their entries in the Call Graph Profile report,

type foo and bar in the Exclude Routines (-e)

field.

Multiple functions are separated by a space.

16 Performance Tools Guide and Reference

Table 3. Xprofiler GUI command-line flags (continued)

Use this flag: To: For example:

-E (field) Change the general appearance and label

information of the function box for the specified

function in the function call tree. This flag also

limits the number of entries for this function in

the Call Graph Profile report, and changes the

CPU data associated with them. These results

also apply to the specified function’s

descendants, as long as they have not been

called by non-specified functions in the program.

In the function call tree, the function box for the

specified function appears greyed out, and the

box size and shape also changes so that it

appears as a square of the smallest permitted

size. In addition, the CPU time shown in the

function box label, appears as 0. The same

applies to function boxes for descendant

functions, as long as they have not been called

by non-specified functions. This flag also causes

the CPU time spent by the specified function to

be deducted from the CPU total on the left in the

label of the function box for each of the specified

function’s ancestors.

In the Call Graph Profile report, an entry for the

specified function only appears where it is a

child of another function, or as a parent of a

function that also has at least one non-specified

function as its parent. When this is the case, the

time in the self and descendants columns for

this entry is set to 0. In addition, the amount of

time that was in the descendants column for the

specified function is subtracted from the time

listed under the descendants column for the

profiled function. As a result, be aware that the

value listed in the % time column for most

profiled functions in this report will change.

To change the display and label information for

foo and bar and their qualifying descendants in

the function call tree, and limit their entries and

data in the Call Graph Profile report, type foo

bar in the Exclude Routines (-E) field.

Multiple functions are separated by a space.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 17

Table 3. Xprofiler GUI command-line flags (continued)

Use this flag: To: For example:

-f (field) Deemphasize the general appearance of all

function boxes in the function call tree, except

for that of the specified function and its

descendants. In addition, the number of entries

in the Call Graph Profile report for the

non-specified functions and non-descendant

functions is limited. The -f flag overrides the -e

flag.

In the function call tree, all function boxes except

for that of the specified function and its

descendants are made unavailable. The size of

these boxes and the content of their labels

remain the same. For the specified function and

its descendants, the appearance of the function

boxes and labels remain the same.

In the Call Graph Profile report, an entry for a

non-specified or non-descendant function only

appears where it is a parent or child of a

specified function or one of its descendants. All

information for this entry remains the same.

To deemphasize the display of function boxes for

all functions in the function call tree except for

foo and bar and their descendants, and limit

their types of entries in the Call Graph Profile

report, type foo bar in the Include Routines (-f)

field.

Multiple functions are separated by a space.

-F (field) Change the general appearance and label

information of all function boxes in the function

call tree except for that of the specified function

and its descendants. In addition, the number of

entries in the Call Graph Profile report for the

non-specified and non-descendant functions is

limited, and the CPU data associated with them

is changed. The -F flag overrides the -E flag.

In the function call tree, the function box for the

specified function is made unavailable, and its

size and shape also changes so that it appears

as a square of the smallest permitted size. In

addition, the CPU time shown in the function box

label, appears as 0.

In the Call Graph Profile report, an entry for a

non-specified or non-descendant function only

appears where it is a parent or child of a

specified function or one of its descendants.

When this is the case, the time in the self and

descendants columns for this entry is set to 0.

As a result, be aware that the value listed in the

% time column for most profiled functions in this

report will change.

To change the display and label information of

the function boxes for all functions except the

functions foo and bar and their descendants,

and limit their types of entries and data in the

Call Graph Profile report, type foo bar in the

Include Routines (-F) field.

Multiple functions are separated by a space.

-L (field) Set the alternative path name for locating shared

objects. If you plan to specify multiple paths, use

the Set File Search Path option of the File

menu on the Xprofiler GUI. See “Setting the File

Search Sequence” on page 19 for information.

To specify /lib/profiled/libc.a:shr.o as an

alternative path name for your shared libraries,

type /lib/profiled/libc.a:shr.o in this field.

18 Performance Tools Guide and Reference

Table 3. Xprofiler GUI command-line flags (continued)

Use this flag: To: For example:

-s (button) Produces the gmon.sum profile data file, if

multiple gmon.out files are specified when

Xprofiler is started. The gmon.sum file

represents the sum of the profile information in

all the specified profile files. Note that if you

specify a single gmon.out file, the gmon.sum

file contains the same data as the gmon.out file.

To write the sum of the data from three profile

data files, gmon.out.1, gmon.out.2, and

gmon.out.3, into a file called gmon.sum, set

the -s button to the pressed-in position.

-z (button) Includes functions that have both zero CPU

usage and no call counts in the Flat Profile,

Call Graph Profile, and Function Index

reports. A function will not have a call count if

the file that contains its definition was not

compiled with the -pg flag, which is common

with system library files.

To include all functions used by the application

that have zero CPU usage and no call counts in

the Flat Profile, Call Graph Profile, and

Function Index reports, set the -z button to the

pressed-in position.

After you have specified the binary executable file, one or more profile data files, and any command-line

flags you want to use, click the OK button to save the changes and close the window. Xprofiler loads your

application and displays its performance data.

Setting the File Search Sequence

You can specify where you want Xprofiler to look for your library files and source code files by using the

Set File Search Paths option of the File menu. By default, Xprofiler searches the default paths first and

then any alternative paths you specify.

Default Paths

For library files, Xprofiler uses the paths recorded in the specified gmon.out files. If you use the -L flag,

the path you specify with it will be used instead of those in the gmon.out files.

Note: The -L flag enables only one path to be specified, and you can use this flag only once.

For source code files, the paths recorded in the specified a.out file are used.

Alternative Paths

You specify the alternative paths with the Set File Search Paths option of the File menu.

For library files, if everything else failed, the search will be extended to the path (or paths) specified by the

LIBPATH environment variable associated with the executable file.

To specify alternative paths, do the following:

1. Select the File menu, and then the Set File Search Paths option. The Alt File Search Path Dialog

window appears.

2. Enter the name of the path in the Enter Alt File Search Path(s) text field. You can specify more than

one path by separating each path name with a colon (:) or a space.

Notes:

a. You can use the “at” symbol (@) with this option to represent the default file path, in order to

specify that other paths be searched before the default path. For example, to set the alternative file

search paths so that Xprofiler searches pathA, the default path, then pathB, type pathA:@:pathB in

the Alt File Search Path(s) (-a) field.

b. If @ is used in the alternative search path, the two buttons in the Alt File Search Path Dialog

window will be unavailable, and will have no effect on the search order.

3. Click the OK button. The paths you specified in the text field become the alternative paths.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 19

Changing the Search Sequence

You can change the order of the search sequence for library files and source code files using the Set File

Search Paths option of the File menu. To change the search sequence:

1. Select the File menu, and then the Set File Search Paths option. The Alt File Search Path Dialog

window appears.

2. To indicate that the file search should use alternative paths first, click the Check alternative path(s)

first button.

3. Click OK. This changes the search sequence to the following:

a. Alternative paths

b. Default paths

c. Paths specified in LIBPATH (library files only)

To return the search sequence back to its default order, repeat steps 1 through 3, but in step 2, click the

Check default path(s) first button. When the action is confirmed (by clicking OK), the search sequence

will start with the default paths again.

If a file is found in one of the alternative paths or a path in LIBPATH, this path now becomes the default

path for this file throughout the current Xprofiler session (until you exit this Xprofiler session or load a new

set of data).

Understanding the Xprofiler Display

The primary difference between Xprofiler and the gprof command is that Xprofiler gives you a graphical

picture of your application’s CPU consumption in addition to textual data.

Xprofiler displays your profiled program in a single main window. It uses several types of graphical images

to represent the relevant parts of your program. Functions appear as solid green boxes (called function

boxes), and the calls between them appear as blue arrows (called call arcs). The function boxes and call

arcs that belong to each library within your application appear within a fenced-in area called a cluster box.

Xprofiler Main Window

The Xprofiler main window contains a graphical representation of the functions and calls within your

application, as well as their interrelationships. The window provides six menus, including one for online

help.

When an application has been loaded, the Xprofiler main window looks similar to the following:

20 Performance Tools Guide and Reference

In the main window, Xprofiler displays the function call tree. The function call tree displays the function

boxes, call arcs, and cluster boxes that represent the functions within your application.

Note: When Xprofiler first opens, by default, the function boxes for your application will be clustered by

library. A cluster box appears around each library, and the function boxes and arcs within the cluster

box are reduced in size. To see more detail, you must uncluster the functions. To do this, select the

File menu and then the Uncluster Functions option.

Xprofiler’s Main Menus

The Xprofiler menus are as follows:

The File menu: The File menu lets you specify the executable (a.out) files and profile data (gmon.out)

files that Xprofiler will use. It also lets you control how your files are accessed and saved.

The View menu: The View menu lets you focus on specific portions of the function call tree in order to

get a better view of the application’s critical areas.

Figure 6. The Xprofiler main window with application loaded. The screen capture below shows one function box

displaying a function call tree, with an arc pointing down to another function box displaying a function call tree in the

Xprofiler main window.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 21

The Filter menu: The Filter menu lets you add, remove, and change specific parts of the function call

tree. By controlling what Xprofiler displays, you can focus on the objects that are most important to you.

The Report menu: The Report menu provides several types of profiled data in a textual and tabular

format. In addition to presenting the profiled data, the options of the Report menu let you do the following:

v Display textual data

v Save it to a file

v View the corresponding source code

v Locate the corresponding function box or call arc in the function call tree

The Utility menu: The Utility menu contains one option, Locate Function By Name, which lets you

highlight a particular function in the function call tree.

Xprofiler’s Hidden Menus

The Function menu: The Function menu lets you perform a number of operations for any of the

functions shown in the function call tree. You can access statistical data, look at source code, and control

which functions are displayed.

The Function menu is not visible from the Xprofiler window. You access it by right-clicking on the function

box of the function in which you are interested. By doing this, you open the Function menu, and select this

function as well. Then, when you select actions from the Function menu, the actions are applied to this

function.

The Arc menu: The Arc menu lets you locate the caller and callee functions for a particular call arc. A

call arc is the representation of a call between two functions within the function call tree.

The Arc menu is not visible from the Xprofiler window. You access it by right-clicking on the call arc in

which you are interested. By doing this, you open the Arc menu, and select that call arc as well. Then,

when you perform actions with the Arc menu, they are applied to that call arc.

The Cluster Node menu: The Cluster Node menu lets you control the way your libraries are displayed

by Xprofiler. To access the Cluster Node menu, the function boxes in the function call tree must first be

clustered by library. For information about clustering and unclustering the function boxes of your

application, see “Clustering Libraries” on page 32. When the function call tree is clustered, all the function

boxes within each library appear within a cluster box.

The Cluster Node menu is not visible from the Xprofiler window. You access it by right-clicking on the edge

of the cluster box in which you are interested. By doing this, you open the Cluster Node menu, and select

that cluster as well. Then, when you perform actions with the Cluster Node menu, they are applied to the

functions within that library cluster.

The Display Status Field

At the bottom of the Xprofiler window is a single field that provides the following information:

v Name of your application

v Number of gmon.out files used in this session

v Total amount of CPU used by the application

v Number of functions and calls in your application, and how many of these are currently displayed

How Functions are Represented

Functions are represented by solid green boxes in the function call tree. The size and shape of each

function box indicates its CPU usage. The height of each function box represents the amount of CPU time

it spent on executing itself. The width of each function box represents the amount of CPU time it spent

executing itself, plus its descendant functions.

22 Performance Tools Guide and Reference

This type of representation is known as summary mode. In summary mode, the size and shape of each

function box is determined by the total CPU time of multiple gmon.out files used on that function alone,

and the total time used by the function and its descendant functions. A function box that is wide and flat

represents a function that uses a relatively small amount of CPU on itself (it spends most of its time on its

descendants). The function box for a function that spends most of its time executing only itself will be

roughly square-shaped.

Functions can also be represented in average mode. In average mode, the size and shape of each

function box is determined by the average CPU time used on that function alone, among all loaded

gmon.out files, and the standard deviation of CPU time for that function among all loaded gmon.out files.

The height of each function node represents the average CPU time, among all the input gmon.out files,

used on the function itself. The width of each node represents the standard deviation of CPU time, among

the gmon.out files, used on the function itself. The average mode representation is available only when

more than one gmon.out file is entered. For more information about summary mode and average mode,

see “Controlling the Representation of the Function Call Tree” on page 26.

Under each function box in the function call tree is a label that contains the name of the function and

related CPU usage data. For information about the function box labels, see “Obtaining Basic Data” on

page 37.

The following figure shows the function boxes for two functions, sub1 and printf, as they would appear in

the Xprofiler display.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 23

Each function box has its own menu. To access it, place your mouse cursor over the function box of the

function you are interested in and press the right mouse button. Each function also has an information box

that lets you get basic performance numbers quickly. To access the information box, place your mouse

cursor over the function box of the function you are interested in and press the left mouse button.

How Calls Between Functions are Depicted

The calls made between each of the functions in the function call tree are represented by blue arrows

extending between their corresponding function boxes. These lines are called call arcs. Each call arc

appears as a solid blue line between two functions. The arrowhead indicates the direction of the call; the

function represented by the function box it points to is the one that receives the call. The function making

the call is known as the caller, while the function receiving the call is known as the callee.

Each call arc includes a numeric label that indicates how many calls were exchanged between the two

corresponding functions.

Each call arc has its own menu that lets you locate the function boxes for its caller and callee functions. To

access it, place your mouse cursor over the call arc for the call in which you are interested, and press the

right mouse button. Each call arc also has an information box that shows you the number of times the

caller function called the callee function. To access the information box, place your mouse cursor over the

call arc for the call in which you are interested, and press the left mouse button.

Figure 7. Function boxes and arcs in the Xprofiler display. The screen capture below shows a large function box for

the sub1 function at the top and a small function box for the printf function at the bottom.

24 Performance Tools Guide and Reference

How Library Clusters are Represented

Xprofiler lets you collect the function boxes and call arcs that belong to each of your shared libraries into

cluster boxes.

Because there will be a box around each library, the individual function boxes and call arcs will be difficult

to see. If you want to see more detail, you must uncluster the function boxes. To do this, select the Filter

menu and then the Uncluster Functions option.

When viewing function boxes within a cluster box, note that the size of each function box is relative to

those of the other functions within the same library cluster. On the other hand, when all the libraries are

unclustered, the size of each function box is relative to all the functions in the application (as shown in the

function call tree).

Each library cluster has its own menu that lets you manipulate the cluster box. To access it, place your

mouse cursor over the edge of the cluster box you are interested in, and press the right mouse button.

Each cluster also has an information box that shows you the name of the library and the total CPU usage

(in seconds) consumed by the functions within it. To access the information box, place your mouse cursor

over the edge of the cluster box you are interested in and press the left mouse button.

Controlling how the Display is Updated

The Utility menu of the Overview Window lets you choose the mode in which the display is updated. The

default is the Immediate Update option, which causes the display to show you the items in the highlight

area as you are moving it around. The Delayed Update option, on the other hand, causes the display to

be updated only when you have moved the highlight area over the area in which you are interested, and

released the mouse button. The Immediate Update option applies only to what you see when you move

the highlight area; it has no effect on the resizing of items in highlight area, which is always delayed.

Other Viewing Options

Xprofiler lets you change the way it displays the function call tree, based on your personal preferences.

Controlling the Graphic Style of the Function Call Tree

You can choose between two-dimensional and three-dimensional function boxes in the function call tree.

The default style is two-dimensional. To change to three-dimensional, select the View menu, and then the

3-D Image option. The function boxes in the function call tree now appear in three-dimensional format.

Controlling the Orientation of the Function Call Tree

You can choose to have Xprofiler display the function call tree in either top-to-bottom or left-to-right format.

The default is top-to-bottom. To see the function call tree displayed in left-to-right format, select the View

menu, and then the Layout: Left→Right option. The function call tree now displays in left-to-right format,

as shown below.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 25

Controlling the Representation of the Function Call Tree

You can choose to have Xprofiler represent the function call tree in either summary mode or average

mode.

When you select the Summary Mode option of the View menu, the size and shape of each function box is

determined by the total CPU time of multiple gmon.out files used on that function alone, and the total time

used by the function and its descendant functions. The height of each function node represents the total

CPU time used on the function itself. The width of each node represents the total CPU time used on the

function and its descendant functions. When the display is in summary mode, the Summary Mode option

is unavailable and the Average Mode option is activated.

When you select the Average Mode option of the View menu, the size and shape of each function box is

determined by the average CPU time used on that function alone, among all loaded gmon.out files, and

the standard deviation of CPU time for that function among all loaded gmon.out files. The height of each

Figure 8. Left-to-right format. The screen capture below shows a function call tree with three different function boxes

from left to right.

26 Performance Tools Guide and Reference

function node represents the average CPU time, among all the input gmon.out files, used on the function

itself. The width of each node represents the standard deviation of CPU time, among the gmon.out files,

used on the function itself.

The purpose of average mode is to reveal workload balancing problems when an application is involved

with multiple gmon.out files. In general, a function node with large standard deviation has a wide width,

and a node with small standard deviation has a slim width.

Both summary mode and average mode affect only the appearance of the function call tree and the labels

associated with it. All the performance data in Xprofiler reports and code displays are always summary

data. If only one gmon.out file is specified, Summary Mode and Average Mode will be unavailable, and

the display is always in Summary Mode.

Filtering what You See

When Xprofiler first opens, the entire function call tree appears in the main window. This includes the

function boxes and call arcs that belong to your executable file as well as the shared libraries that it uses.

You can simplify what you see in the main window, and there are several ways to do this.

Note: Filtering options of the Filter menu let you change the appearance only of the function call tree. The

performance data contained in the reports (through the Reports menu) is not affected.

Restoring the Status of the Function Call Tree

Xprofiler enables you to undo operations that involve adding or removing nodes and arcs from the function

call tree. When you undo an operation, you reverse the effect of any operation which adds or removes

function boxes or call arcs to the function call tree. When you select the Undo option, the function call tree

is returned to its appearance just prior to the performance of the add or remove operation. To undo an

operation, select the Filter menu, and then the Undo option. The function call tree is returned to its

appearance just prior to the performance of the add or remove operation.

Whenever you invoke the Undo option, the function call tree loses its zoom focus and zooms all the way

out to reveal the entire function call tree in the main display. When you start Xprofiler, the Undo option is

unavailable. It is activated only after an add or remove operation involving the function call tree takes

place. After you undo an operation, the option is made unavailable again until the next add or remove

operation takes place.

The options that activate the Undo option include the following:

v In the main File menu:

– Load Configuration

v In the main Filter menu:

– Show Entire Call Tree

– Hide All Library Calls

– Add Library Calls

– Filter by Function Names

– Filter by CPU Time

– Filter by Call Counts

v In the Function menu:

– Immediate Parents

– All Paths To

– Immediate Children

– All Paths From

– All Functions on The Cycle

– Show This Function Only

– Hide This Function

– Hide Descendant Functions

Chapter 2. X-Windows Performance Profiler (Xprofiler) 27

– Hide This & Descendant Functions

If a dialog such as the Load Configuration Dialog or the Filter by CPU Time Dialog is invoked and then

canceled immediately, the status of the Undo option is not affected. After the option is available, it stays

that way until you invoke it, or a new set of files is loaded into Xprofiler through the Load Files Dialog

window.

Displaying the Entire Function Call Tree

When you first open Xprofiler, by default, all the function boxes and call arcs of your executable and its

shared libraries appear in the main window. After that, you can choose to filter out specific items from the

window. However, there might be times when you want to see the entire function call tree again, without

having to reload your application. To do this, select the Filter menu, and then the Show Entire Call Tree

option. Xprofiler erases whatever is currently displayed in the main window and replaces it with the entire

function call tree.

Excluding and including specific objects

There are a number of ways that Xprofiler lets you control the items that display in the main window. You

will want to include or exclude certain objects so that you can more easily focus on the things that are of

most interest to you.

Filtering Shared Library Functions

In most cases, your application will call functions that are within shared libraries. By default, these shared

libraries display in the Xprofiler window along with your executable file. As a result, the window can get

crowded and obscure the items that you most need to see. If this is the case, you can filter the shared

libraries from the display. To do this, select the Filter menu, and then the Remove All Library Calls

option.

The shared library function boxes disappear from the function call tree, leaving only the function boxes of

your executable file visible.

If you removed the library calls from the display, you might want to restore them. To do this, select the File

menu and then the Add Library Calls option.

The function boxes again appear with the function call tree. Note, however, that all of the shared library

calls that were in the initial function call tree might not be added back. This is because the Add Library

Calls option only adds back in the function boxes for the library functions that were called by functions that

are currently displayed in the Xprofiler window.

To add only specific function boxes back into the display, do the following:

1. Select the Filter menu, and then the Filter by Function Names option. The Filter By Function Names

dialog window appears.

2. From the Filter By Function Names Dialog window, click the add these functions to graph button,

and then type the name of the function you want to add in the Enter function name field. If you enter

more than one function name, you must separate them with a blank space between each function

name string.

If there are multiple functions in your program that include the string you enter in their names, the filter

applies to each one. For example, if you specified sub and print, and your program also included

functions named sub1, psub1, and printf. The sub, sub1, psub1, print, and printf functions would all

be added to the graph.

3. Click OK. One or more function boxes appears in the Xprofiler display with the function call tree.

Filtering by Function Characteristics

The Filter menu of Xprofiler offers the following options that enable you to add or subtract function boxes

from the main window, based on specific characteristics:

28 Performance Tools Guide and Reference

v Filter by Function Names

v Filter by CPU Time

v Filter by Call Counts

Each option uses a different window to let you specify the criteria by which you want to include or exclude

function boxes from the window.

To filter by function names, do the following:

1. Select the Filter menu and then the Filter by Function Names option. The following Filter By

Function Names Dialog window appears:

 The Filter By Function Names Dialog window includes the following options:

v add these functions to graph

v remove these functions from the graph

v display only these functions

2. From the Filter By Function Names Dialog window, select the option, and then type the name of the

function (or functions) to which you want it applied in the Enter function name field. For example, if

you want to remove the function box for a function called printf from the main window, click the

remove this function from the graph button, and type printf in the Enter function name field.

You can enter more than one function name in this field. If there are multiple functions in your program

that include the string you enter in their names, the filter will apply to each one. For example, if you

specified sub and print, and your program also included functions named sub1, psub1, and printf,

the option you chose would be applied to the sub, sub1, psub1, print, and printf functions.

3. Click OK. The contents of the function call tree now reflect the filtering options you specified.

To filter by CPU time, do the following:

1. Select the Filter menu and then the Filter by CPU Time option. The following Filter By CPU Time

Dialog window appears:

Figure 9. The Filter By Function Names Dialog window. The screen capture below shows the Filter By Function

Names Dialog window. There are three check boxes: Add these functions to graph, Remove these functions from

graph, and Display only these functions. There is an Enter Function Name box, where regular expressions are

supported, and below it there are four buttons: OK, Apply, Cancel, and Help.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 29

The Filter By CPU Time Dialog window includes the following options:

v show functions consuming the most CPU time

v show functions consuming the least CPU time

2. Select the option you want (show functions consuming the most CPU time is the default).

3. Select the number of functions to which you want it applied (1 is the default). You can move the slider

in the Functions bar until the desired number appears, or you can enter the number in the Slider

Value field. The slider and Slider Value field are synchronized so when the slider is updated, the text

field value is updated also. If you enter a value in the text field, the slider is updated to that value when

you click Apply or OK.

For example, to display the function boxes for the 10 functions in your application that consumed the

most CPU, you would select the show functions consuming the most CPU button, and specify 10

with the slider or enter the value 10 in the text field.

4. Click Apply to show the changes to the function call tree without closing the dialog. Click OK to show

the changes and close the dialog.

To filter by call counts, do the following:

1. Select the Filter menu and then the Filter by Call Counts option. The Filter By Call Counts Dialog

window appears.

Figure 10. The Filter By CPU Time Dialog window. The screen capture below shows the Filter By CPU Time Dialog

window. At the top, the user can select the Number of Functions To Be Displayed by either using the sliding bar to

increase the value or type in the number in the Slider Value box. Then, there are two check boxes: Show functions

consuming the most CPU time, and Show functions consuming the least CPU time. At the bottom, there are four

buttons: OK, Apply, Cancel, and Help.

30 Performance Tools Guide and Reference

The Filter By Call Counts Dialog window includes the following options:

v show arcs with the most call counts

v show arcs with the least call counts

2. Select the option you want (show arcs with the most call counts is the default).

3. Select the number of call arcs to which you want it applied (1 is the default). If you enter a value in the

text field, the slider is updated to that value when you click Apply or OK.

For example, to display the 10 call arcs in your application that represented the least number of calls,

you would select the show arcs with the least call counts button, and specify 10 with the slider or

enter the value 10 in the text field.

4. Click Apply to show the changes to the function call tree without closing the dialog. Click OK to show

the changes and close the dialog.

Including and excluding parent and child functions

When tuning the performance of your application, you will want to know which functions consumed the

most CPU time, and then you will need to ask several questions in order to understand their behavior:

v Where did each function spend most of the CPU time?

v What other functions called this function? Were the calls made directly or indirectly?

v What other functions did this function call? Were the calls made directly or indirectly?

After you understand how these functions behave, and are able to improve their performance, you can

proceed to analyzing the functions that consume less CPU.

When your application is large, the function call tree will also be large. As a result, the functions that are

the most CPU-intensive might be difficult to see in the function call tree. To avoid this situation, use the

Filter by CPU option of the Filter menu, which lets you display only the function boxes for the functions

that consume the most CPU time. After you have done this, the Function menu for each function lets you

Figure 11. The Filter By Call Counts Dialog window. The screen capture below shows the Filter By Call Counts Dialog

window. At the top, the user can select the Number of Call Arcs To Be Displayed by either using the sliding bar to

increase the value or type in the number in the Slider Value box. Then, there are two check boxes: Show arcs with the

most call counts, and Show arcs with the least call counts. At the bottom, there are four buttons: OK, Apply, Cancel,

and Help.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 31

add the parent and descendant function boxes to the function call tree. By doing this, you create a smaller,

simpler function call tree that displays the function boxes associated with the most CPU-intensive area of

the application.

A child function is one that is directly called by the function of interest. To see only the function boxes for

the function of interest and its child functions, do the following:

1. Place your mouse cursor over the function box in which you are interested, and press the right mouse

button. The Function menu appears.

2. From the Function menu, select the Immediate Children option, and then the Show Child Functions

Only option.

Xprofiler erases the current display and replaces it with only the function boxes for the function you

chose, as well as its child functions.

A parent function is one that directly calls the function of interest. To see only the function box for the

function of interest and its parent functions, do the following:

1. Place your mouse cursor over the function box in which you are interested, and press the right mouse

button. The Function menu appears.

2. From the Function menu, select the Immediate Parents option, and then the Show Parent Functions

Only option.

Xprofiler erases the current display and replaces it with only the function boxes for the function you

chose, as well as its parent functions.

You might want to view the function boxes for both the parent and child functions of the function in which

you are interested, without erasing the rest of the function call tree. This is especially true if you chose to

display the function boxes for two or more of the most CPU-intensive functions with the Filter by CPU

option of the Filter menu (you suspect that more than one function is consuming too much CPU). Do the

following:

1. Place your mouse cursor over the function box in which you are interested, and press the right mouse

button. The Function menu appears.

2. From the Function menu, select the Immediate Parents option, and then the Add Parent Functions

to Tree option.

Xprofiler leaves the current display as it is, but adds the parent function boxes.

3. Place your mouse cursor over the same function box and press the right mouse button. The Function

menu appears.

4. From the Function menu, select the Immediate Children option, and then the Add Child Functions

to Tree option.

Xprofiler leaves the current display as it is, but now adds the child function boxes in addition to the

parents.

Clustering Libraries

When you first open the Xprofiler window, by default, the function boxes of your executable file, and the

libraries associated with it, are clustered. Because Xprofiler shrinks the call tree of each library when it

places it in a cluster, you must uncluster the function boxes if you want to look closely at a specific

function box label.

You can see much more detail for each function, when your display is in the unclustered or expanded

state, than when it is in the clustered or collapsed state. Depending on what you want to do, you must

cluster or uncluster (collapse or expand) the display.

The Xprofiler window can be visually crowded, especially if your application calls functions that are within

shared libraries; function boxes representing your executable functions as well as the functions of the

shared libraries are displayed. As a result, you might want to organize what you see in the Xprofiler

32 Performance Tools Guide and Reference

window so you can focus on the areas that are most important to you. You can do this by collecting all the

function boxes of each library into a single area, known as a library cluster.

The following figure shows the hello_world application with its function boxes unclustered.

Clustering Functions

If the functions within your application are unclustered, you can use an option of the Filter menu to cluster

them. To do this, select the Filter menu and then the Cluster Functions by Library option. The libraries

within your application appear within their respective cluster boxes.

After you cluster the functions in your application you can further reduce the size (also referred to as

collapse) of each cluster box by doing the following:

1. Place your mouse cursor over the edge of the cluster box and press the right mouse button. The

Cluster Node menu appears.

Figure 12. The Xprofiler window with function boxes unclustered. The following screen capture shows the hello_world

application with the top-to-bottom view of its function boxes unclustered in the Xprofiler main window.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 33

2. Select the Collapse Cluster Node option. The cluster box and its contents now appear as a small

solid green box. In the following figure, the /lib/profiled/libc.a:shr.o library is collapsed.

To return the cluster box to its original condition (expand it), do the following:

1. Place your mouse cursor over the collapsed cluster box and press the right mouse button. The Cluster

Node menu appears.

2. Select the Expand Cluster Node option. The cluster box and its contents appear again.

Unclustering Functions

If the functions within your application are clustered, you can use an option of the Filter menu to uncluster

them. To do this, select the Filter menu, and then the Uncluster Functions option. The cluster boxes

disappear and the functions boxes of each library expand to fill the Xprofiler window.

If your functions have been clustered, you can remove one or more (but not all) cluster boxes. For

example, if you want to uncluster only the functions of your executable file, but keep its shared libraries

within their cluster boxes, you would do the following:

Figure 13. The Xprofiler window with one library cluster box collapsed. The following screen capture shows the

function call tree of the hello program in the Xprofiler window with one library cluster box collapsed.

34 Performance Tools Guide and Reference

1. Place your mouse cursor over the edge of the cluster box that contains the executable and press the

right mouse button. The Cluster Node menu appears.

2. Select the Remove Cluster Box option. The cluster box is removed and the function boxes and call

arcs that represent the executable functions, now appear in full detail. The function boxes and call arcs

of the shared libraries remain within their cluster boxes, which now appear smaller to make room for

the unclustered executable function boxes. The following figure shows the hello_world executable file

with its cluster box removed. Its shared library remains within its cluster box.

Locating Specific Objects in the Function Call Tree

If you are interested in one or more specific functions in a complex program, you might need help locating

their corresponding function boxes in the function call tree.

If you want to locate a single function, and you know its name, you can use the Locate Function By

Name option of the Utility menu. To locate a function by name, do the following:

Figure 14. The Xprofiler window with one library cluster box removed. The following screen capture shows the function

call tree of the hello program in the Xprofiler window with one library cluster box removed.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 35

1. Select the Utility menu, and then the Locate Function By Name option. The Search By Function

Name Dialog window appears.

2. Type the name of the function you want to locate in the Enter Function Name field. The function

name you type here must be a continuous string (it cannot include blanks).

3. Click OK or Apply. The corresponding function box is highlighted (its color changes to red) in the

function call tree and Xprofiler zooms in on its location.

To display the function call tree in full detail again, go to the View menu and use the Overview option.

You might want to see only the function boxes for the functions that you are concerned with, in addition to

other specific functions that are related to it. For example, if you want to see all the functions that directly

called the function in which you are interested, it might not be easy to separate these function boxes when

you view the entire call tree. You would want to display them, as well as the function of interest, alone.

Each function has its own menu. Through the Function menu, you can choose to see the following for the

function you are interested in:

v Parent functions (functions that directly call the function of interest)

v Child functions (functions that are directly called by the function of interest)

v Ancestor functions (functions that can call, directly or indirectly, the function of interest)

v Descendant functions (functions that can be called, directly or indirectly, by the function of interest)

v Functions that belong to the same cycle

When you use these options, Xprofiler erases the current display and replaces it with only the function

boxes for the function of interest and all the functions of the type you specified.

Locating and Displaying Parent Functions

A parent is any function that directly calls the function in which you are interested. To locate the parent

function boxes of the function in which you are interested:

1. Click the function box of interest with the right mouse button. The Function menu appears.

2. From the Function menu, select Immediate Parents then Show Parent Functions Only. Xprofiler

redraws the display to show you only the function boxes for the function of interest and its parent

functions.

Locating and Displaying Child Functions

A child is any function that is directly called by the function in which you are interested. To locate the child

functions boxes for the function in which you are interested:

1. Click the function box of interest with the right mouse button. The Function menu appears.

2. From the Function menu, select Immediate Children then Show Child Functions Only. Xprofiler

redraws the display to show you only the function boxes for the function of interest and its child

functions.

Locating and Displaying Ancestor Functions

An ancestor is any function that can call, directly or indirectly, the function in which you are interested. To

locate the ancestor functions:

1. Click the function box of interest with the right mouse button. The Function menu appears.

2. From the Function menu, select All Paths To then Show Ancestor Functions Only. Xprofiler redraws

the display to show you only the function boxes for the function of interest and its ancestor functions.

36 Performance Tools Guide and Reference

Locating and Displaying Descendant Functions

A descendant is any function that can be called, directly or indirectly, by the function in which you are

interested. To locate the descendant functions (all the functions that the function of interest can reach,

directly or indirectly):

1. Click the function box of interest with the right mouse button. The Function menu appears.

2. From the Function menu, select All Paths From then Show Descendant Functions Only. Xprofiler

redraws the display to show you only the function boxes for the function of interest and its descendant

functions.

Locating and Displaying Functions on a Cycle

To locate the functions that are on the same cycle as the function in which you are interested:

1. Click the function box of interest with the right mouse button. The Function menu appears.

2. From the Function menu, select All Functions on the Cycle then Show Cycle Functions Only.

Xprofiler redraws the display to show you only the function of interest and all the other functions on its

cycle.

Obtaining Performance Data for Your Application

With Xprofiler, you can get performance data for your application on a number of levels, and in a number

of ways. You can easily view data pertaining to a single function, or you can use the reports provided to

get information on your application as a whole.

Obtaining Basic Data

Xprofiler makes it easy to get data on specific items in the function call tree. After you have located the

item you are interested in, you can get data a number of ways. If you are having trouble locating a

function in the function call tree, see “Locating Specific Objects in the Function Call Tree” on page 35.

Basic Function Data

Below each function box in the function call tree is a label that contains basic performance data, similar to

the following:

Chapter 2. X-Windows Performance Profiler (Xprofiler) 37

The label contains the name of the function, its associated cycle, if any, and its index. In the preceding

figure, the name of the function is sub1. It is associated with cycle 1, and its index is 5. Also, depending

on whether the function call tree is viewed in summary mode or average mode, the label will contain

different information.

If the function call tree is viewed in summary mode, the label will contain the following information:

v The total amount of CPU time (in seconds) this function spent on itself plus the amount of CPU time it

spent on its descendants (the number on the left of the x).

v The amount of CPU time (in seconds) this function spent only on itself (the number on the right of the

x).

If the function call tree is viewed in average mode, the label will contain the following information:

v The average CPU time (in seconds), among all the input gmon.out files, used on the function itself

v The standard deviation of CPU time (in seconds), among all the input gmon.out files, used on the

function itself

For more information about summary mode and average mode, see “Controlling the Representation of the

Function Call Tree” on page 26.

Because labels are not always visible in the Xprofiler window when it is fully zoomed out, you might need

to zoom in on it in order to see the labels. For information about how to do this, see “Information Boxes”

on page 39.

Basic Call Data

Call arc labels appear over each call arc. The label indicates the number of calls that were made between

the two functions (from caller to callee). For example:

Figure 15. An example of a function box label. The following screen capture shows the details of a function box and in

this example it is of the sub1 function. The following information is listed: The function label (sub1), the cycle it is

associated with (1), and its index (5).

38 Performance Tools Guide and Reference

To see a call arc label, you can zoom in on it. For information about how to do this, see “Information

Boxes.”

Basic Cluster Data

Cluster box labels indicate the name of the library that is represented by that cluster. If it is a shared

library, the label shows its full path name.

Information Boxes

For each function box, call arc, and cluster box, a corresponding information box gives you the same basic

data that appears on the label. This is useful when the Xprofiler display is fully zoomed out and the labels

are not visible. To access the information box, click on the function box, call arc, or cluster box (place the

mouse pointer over the edge of the box) with the left mouse button. The information box appears.

For a function, the information box contains the following:

v The name of the function, its associated cycle, if any, and its index.

v The amount of CPU used by this function. There are two values supplied in this field. The first is the

amount of CPU time spent on this function plus the time spent on its descendants. The second value

represents the amount of CPU time this function spent only on itself.

v The number of times this function was called (by itself or any other function in the application).

For a call, the information box contains the following:

v The caller and callee functions (their names) and their corresponding indexes

v The number of times the caller function called the callee

For a cluster, the information box contains the following:

v The name of the library

v The total CPU usage (in seconds) consumed by the functions within it

Function Menu Statistics Report Option

You can get performance statistics for a single function through the Statistics Report option of the

Function menu. This option lets you see data on the CPU usage and call counts of the selected function.

If you are using more than one gmon.out file, the Statistics Report option breaks down the statistics for

each gmon.out file you use.

Figure 16. An example of a call arc label. In the screen capture below, there are three arcs pointing to a function box.

Each arc has a call arc label that indicates the number of calls that were made between the two functions, and in this

example the arc labels are 3, 4, and 4.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 39

When you select the Statistics Report menu option, the Function Level Statistics Report window appears.

 The Function Level Statistics Report window provides the following information:

Function Name

The name of the function you selected.

Summary Data

The total amount of CPU used by this function. If you used multiple gmon.out files, the value shown here

represents their sum.

The CPU Usage field indicates:

v The amount of CPU time used by this function. There are two values supplied in this field. The first is

the amount of CPU time spent on this function plus the time spent on its descendants. The second

value represents the amount of CPU time this function spent only on itself.

The Call Counts field indicates:

v The number of times this function called itself, plus the number of times it was called by other functions.

Statistics Data

The CPU usage and calls made to or by this function, broken down for each gmon.out file.

The CPU Usage field indicates:

v Average

The average CPU time used by the data in each gmon.out file.

Figure 17. The Function Level Statistics Report window. The screen capture below shows the Function Level Statistics

Report window and shows the details of the main function. The specifics of a Function Level Statistics Report are

detailed below the graphic.

40 Performance Tools Guide and Reference

v Std Dev

Standard deviation. A value that represents the difference in CPU usage samplings, per function, from

one gmon.out file to another. The smaller the standard deviation, the more balanced the workload.

v Maximum

Of all the gmon.out files, the maximum amount of CPU time used. The corresponding gmon.out file

appears to the right.

v Minimum

Of all the gmon.out files, the minimum amount of CPU time used. The corresponding gmon.out file

appears to the right.

The Call Counts field indicates:

v Average

The average number of calls made to this function or by this function, for each gmon.out file.

v Std Dev

Standard deviation. A value that represents the difference in call count sampling, per function, from one

gmon.out file to another. A small standard deviation value in this field means that the function was

almost always called the same number of times in each gmon.out file.

v Maximum

The maximum number of calls made to this function or by this function in a single gmon.out file. The

corresponding gmon.out file appears to the right.

v Minimum

The minimum number of calls made to this function or by this function in a single gmon.out file. The

corresponding gmon.out file appears to the right.

Getting Detailed Data from Reports

Xprofiler provides performance data in textual and tabular format. This data is provided in various tables

called reports. Similar to the gprof command, Xprofiler generates the Flat Profile, Call Graph Profile,

and Function Index reports, as well as two additional reports.

You can access the Xprofiler reports from the Report menu. The Report menu displays the following

reports:

v Flat Profile

v Call Graph Profile

v Function Index

v Function Call Summary

v Library Statistics

Each report window includes a File menu. Under the File menu is the Save As option, which lets you save

the report to a file. For information about using the Save File Dialog window to save a report to a file, see

“Saving the Call Graph Profile, Function Index, and Flat Profile reports to a file” on page 49.

Note: If you select the Save As option from the Flat Profile, Function Index, or Function Call

Summary report window, you must either complete the save operation or cancel it before you can

select any other option from the menus of these reports. You can, however, use the other Xprofiler

menus before completing the save operation or canceling it, with the exception of the Load Files

option of the File menu, which remains unavailable.

Each of the Xprofiler reports are explained as follows.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 41

Flat Profile Report

When you select the Flat Profile menu option, the Flat Profile window appears. The Flat Profile report

shows you the total execution times and call counts for each function (including shared library calls) within

your application. The entries for the functions that use the greatest percentage of the total CPU usage

appear at the top of the list, while the remaining functions appear in descending order, based on the

amount of time used.

Unless you specified the -z flag, the Flat Profile report does not include functions that have no CPU

usage and no call counts. The data presented in the Flat Profile window is the same data that is

generated with the gprof command.

The Flat Profile report looks similar to the following:

Flat Profile window fields: The Flat Profile window contains the following fields:

v %time

The percentage of the program’s total CPU usage that is consumed by this function.

v cumulative seconds

A running sum of the number of seconds used by this function and those listed above it.

v self seconds

The number of seconds used by this function alone. Xprofiler uses the self seconds values to sort the

functions of the Flat Profile report.

v calls

The number of times this function was called (if this function is profiled). Otherwise, it is blank.

Figure 18. The Flat Profile report. The screen capture below shows an example of a Flat Profile report window. There

is a menu bar at the top with the following options: File, Code Display, Utility, and Help. Below the menu bar is a list of

statistics that are described below the graphic.

42 Performance Tools Guide and Reference

v self ms/call

The average number of milliseconds spent in this function per call (if this function is profiled). Otherwise,

it is blank.

v total ms/call

The average number of milliseconds spent in this function and its descendants per call (if this function is

profiled). Otherwise, it is blank.

v name

The name of the function. The index appears in brackets ([]) to the right of the function name. The

index serves as the function’s identifier within Xprofiler. It also appears below the corresponding function

in the function call tree.

Call Graph Profile Report

The Call Graph Profile menu option lets you view the functions of your application, sorted by the

percentage of total CPU usage that each function, and its descendants, consumed. When you select this

option, the Call Graph Profile window appears.

Unless you specified the -z flag, the Call Graph Profile report does not include functions whose CPU

usage is 0 (zero) and have no call counts. The data presented in the Call Graph Profile window is the

same data that is generated with the gprof command.

The Call Graph Profile report looks similar to the following:

Call Graph Profile window fields: The Call Graph Profile window contains the following fields:

v index

Figure 19. The Call Graph Profile report. The screen capture below shows an example of a Flat Profile report window.

There is a menu bar at the top with the following options: File, and Help. Below the menu bar is a list of statistics that

are described below the graphic.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 43

The index of the function in the Call Graph Profile. Each function in the Call Graph Profile has an

associated index number which serves as the function’s identifier. The same index also appears with

each function box label in the function call tree, as well as other Xprofiler reports.

v %time

The percentage of the program’s total CPU usage that was consumed by this function and its

descendants.

v self

The number of seconds this function spends within itself.

v descendants

The number of seconds spent in the descendants of this function, on behalf of this function.

v called/total, called+self, called/total

The heading of this column refers to the different kinds of calls that take place within your program. The

values in this field correspond to the functions listed in the name, index, parents, children field to its

right. Depending on whether the function is a parent, a child, or the function of interest (the function with

the index listed in the index field of this row), this value might represent the number of times that:

– a parent called the function of interest

– the function of interest called itself, recursively

– the function of interest called a child

In the following figure, sub2 is the function of interest, sub1 and main are its parents, and printf and

sub1 are its children.

v called/total

For a parent function, the number of calls made to the function of interest, as well as the total number

of calls it made to all functions.

v called+self

The number of times the function of interest called itself, recursively.

v name, index, parents, children

The layout of the heading of this column indicates the information that is provided. To the left is the

name of the function, and to its right is the function’s index number. Appearing above the function are its

parents, and below are its children.

Figure 20. The called/total, call/self, called/total field. The screen capture below is an example of the called/total,

call/self, called/total field of the Call Graph Profile report where sub2 is the function of interest, sub1 and main are its

parents, and printf and sub1 are its children.

44 Performance Tools Guide and Reference

v name

The name of the function, with an indication of its membership in a cycle, if any. The function of interest

appears to the left, while its parent and child functions are indented above and below it.

v index

The index of the function in the Call Graph Profile. This number corresponds to the index that appears

in the index column of the Call Graph Profile and the on the function box labels in the function call

tree.

v parents

The parents of the function. A parent is any function that directly calls the function in which you are

interested.

If any portion of your application was not compiled with the -pg flag, Xprofiler cannot identify the parents

for the functions within those portions. As a result, these parents will be listed as spontaneous in the

Call Graph Profile report.

v children

The children of the function. A child is any function that is directly called by the function in which you are

interested.

Function Index Report

The Function Index menu option lets you view a list of the function names included in the function call

tree. When you select this option, the Function Index window appears and displays the function names in

alphabetical order. To the left of each function name is its index, enclosed in brackets ([]). The index is the

function’s identifier, which is assigned by Xprofiler. An index also appears on the label of each

corresponding function box in the function call tree, as well as on other reports.

Unless you specified the -z flag, the Function Index report does not include functions that have no CPU

usage and no call counts.

Like the Flat Profile menu option, the Function Index menu option includes a Code Display menu, so

you can view source code or disassembler code. See “Looking at Your Code” on page 50 for more

information.

The Function Index report looks similar to the following:

Figure 21. The name/index/parents/children field. The screen capture below is an example of the name/index/parents/
children field of the Call Graph Profile report. To the left is the name of the function, and to its right is the function’s

index number. Appearing above the function are its parents, and below are its children.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 45

Function Call Summary Report

The Function Call Summary menu option lets you display all the functions in your application that call

other functions. They appear as caller-callee pairs (call arcs, in the function call tree), and are sorted by

the number of calls in descending order. When you select this option, the Function Call Summary window

appears.

The Function Call Summary report looks similar to the following:

Figure 22. The Function Index report. The following screen capture shows the Function Index Report window. There is

a menu bar at the top with the following options: File, Code Display, Utility, and Help. Then, there is a list of the

function names included in the function call tree, where to the left of each function name is its index, enclosed in

brackets. An index also appears on the label of each corresponding function box in the function call tree.

46 Performance Tools Guide and Reference

Function Call Summary window fields: The Function Call Summary window contains the following

fields:

v %total

The percentage of the total number of calls generated by this caller-callee pair

v calls

The number of calls attributed to this caller-callee pair

v function

The name of the caller function and callee function

Library Statistics Report

The Library Statistics menu option lets you display the CPU time consumed and call counts of each library

within your application. When you select this option, the Library Statistics window appears.

The Library Statistics report looks similar to the following:

Figure 23. The Function Call Summary report. The screen capture below shows an example of the Function Call

Summary Report window. There is a menu bar at the top with the following options: File, Utility, and Help. There is a

list of all the functions in your application that call other functions and they appear as caller-callee pairs (call arcs, in

the function call tree), and are sorted by the number of calls in descending order.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 47

Library Statistics window fields: The Library Statistics window contains the following fields:

v total seconds

The total CPU usage of the library, in seconds

v %total time

The percentage of the total CPU usage that was consumed by this library

v total calls

The total number of calls that this library generated

v %total calls

The percentage of the total calls that this library generated

v %calls out of

The percentage of the total number of calls made from this library to other libraries

v %calls into

The percentage of the total number of calls made from other libraries into this library

v %calls within

The percentage of the total number of calls made between the functions within this library

v load unit

The library’s full path name

Saving Reports to a File

Xprofiler lets you save any of the reports you generate with the Report menu to a file. You can do this

using the File and Report menus of the Xprofiler GUI.

Figure 24. The Library Statistics report. The following screen capture shows an example of the Library Statistics

Report window. There is a menu bar at the top with the following options: File, and Help. There is a list of statistics for

each library that is described in greater detail below the graphic.

48 Performance Tools Guide and Reference

Saving a single report: To save a single report, go to the Report menu on the Xprofiler main window

and select the report you want to save. Each report window includes a File menu. Select the File menu

and then the Save As option to save the report. A Save dialog window appears, which is named according

to the report from which you selected the Save As option. For example, if you chose Save As from the

Flat Profile window, the save window is named Save Flat Profile Dialog.

Saving the Call Graph Profile, Function Index, and Flat Profile reports to a file: You can save the

Call Graph Profile, Function Index, and Flat Profile reports to a single file through the File menu of the

Xprofiler main window. The information you generate here is identical to the output of the gprof command.

From the File menu, select the Save As option. The Save File Dialog window appears.

To save the reports, do the following:

1. Specify the file into which the profiled data should be placed. You can specify either an existing file or

a new one. To specify an existing file, use the scroll bars of the Directories and Files selection boxes

to locate the file. To make locating your files easier, you can also use the Filter button (see “Filtering

what You See” on page 27 for more information). To specify a new file, type its name in the Selection

field.

2. Click OK. A file that contains the profiled data appears in the directory you specified, under the name

you gave it.

Note: After you select the Save As option from the File menu and the Save Profile Reports window

opens, you must either complete the save operation or cancel it before you can select any other

option from the menus of its parent window. For example, if you select the Save As option from the

Flat Profile report and the Save File Dialog window appears, you cannot use any other option of

the Flat Profile report window.

The File Selection field of the Save File Dialog window follows Motif standards.

Saving summarized data from multiple profile data files: If you are profiling a parallel program, you

can specify more than one profile data (gmon.out) file when you start Xprofiler. The Save gmon.sum As

option of the File menu lets you save a summary of the data in each of these files to a single file.

The Xprofiler Save gmon.sum As option produces the same result as the xprofiler -s command and the

gprof -s command. If you run Xprofiler later, you can use the file you create here as input with the -s flag.

In this way, you can accumulate summary data over several runs of your application.

To create a summary file, do the following:

1. Select the File menu, and then the Save gmon.sum As option. The Save gmon.sum Dialog window

appears.

2. Specify the file into which the summarized, profiled data should be placed. By default, Xprofiler puts

the data into a file called gmon.sum. To specify a new file, type its name in the selection field. To

specify an existing file, use the scroll bars of the Directories and Files selection boxes to locate the

file you want. To make locating your files easier, you can also use the Filter button (see “Filtering what

You See” on page 27 for information).

3. Click OK. A file that contains the summary data appears in the directory you specified, under the name

you specified.

Saving a configuration file: The Save Configuration menu option lets you save the names of the

functions that are displayed currently to a file. Later, in the same Xprofiler session or in a different session,

you can read this configuration file in using the Load Configuration option. For more information, see

“Loading a configuration file” on page 50.

To save a configuration file, do the following:

Chapter 2. X-Windows Performance Profiler (Xprofiler) 49

1. Select the File menu, and then the Save Configuration option. The Save Configuration File Dialog

window opens with the program.cfg file as the default value in the Selection field, where program is

the name of the input a.out file.

You can use the default file name, enter a file name in the Selection field, or select a file from the file

list.

2. Specify a file name in the Selection field and click OK. A configuration file is created that contains the

name of the program and the names of the functions that are displayed currently.

3. Specify an existing file name in the Selection field and click OK. An Overwrite File Dialog window

appears so that you can check the file before overwriting it.

If you selected the Forced File Overwriting option in the Runtime Options Dialog window, the Overwrite

File Dialog window does not open and the specified file is overwritten without warning.

Loading a configuration file: The Load Configuration menu option lets you read in a configuration file

that you saved. See “Saving a configuration file” on page 49 for more information. The Load

Configuration option automatically reconstructs the function call tree according to the function names

recorded in the configuration file.

To load a configuration file, do the following:

1. Select the File menu, and then the Load Configuration option. The Load Configuration File Dialog

window opens. If configuration files were loaded previously during the current Xprofiler session, the

name of the file that was most recently loaded will appear in the Selection field of this dialog.

You can also load the file with the -c flag. For more information, see “Specifying Command Line

Options (from the GUI)” on page 14.

2. Select a configuration file from the dialog’s Files list or specify a file name in the Selection field and

click OK. The function call tree is redrawn to show only those function boxes for functions that are

listed in the configuration file and are called within the program that is currently represented in the

display. All corresponding call arcs are also drawn.

If the a.out name, that is, the program name in the configuration file, is different from the a.out name

in the current display, a confirmation dialog asks you whether you still want to load the file.

3. If after loading a configuration file, you want to return the function call tree to its previous state, select

the Filter menu, and then the Undo option.

Looking at Your Code

Xprofiler provides several ways for you to view your code. You can view the source code or the

disassembler code for your application, for each function. This also applies to any included function code

that your application might use.

To view source or included function code, use the Source Code window. To view disassembler code, use

the Disassembler Code window. You can access these windows through the Report menu of the Xprofiler

GUI or the Function menu of the function you are interested in.

Viewing the Source Code

Both the Function menu and Report menu permits you to access the Source Code window, from which

you can view your code.

To access the Source Code window through the Function menu:

1. Click the function box you are interested in with the right mouse button. The Function menu appears.

2. From the Function menu, select the Show Source Code option. The Source Code window appears.

To access the Source Code window through the Report menu:

1. Select the Report menu, and then the Flat Profile option. The Flat Profile window appears.

50 Performance Tools Guide and Reference

2. From the Flat Profile window, select the function you would like to view by clicking on its entry in the

window. The entry is highlighted to show that it is selected.

3. Select the Code Display menu, and then the Show Source Code option. The Source Code window

appears, containing the source code for the function you selected.

Using the Source Code window: The Source Code window shows you the source code file for the

function you specified from the Flat Profile window or the Function menu. The Source Code window

looks similar to the following:

The Source Code window contains information in the following fields:

v line

The source code line number.

v no. ticks per line

Each tick represents .01 seconds of CPU time used. The value in this field represents the number of

ticks used by the corresponding line of code. For example, if the number 3 appeared in this field, for a

source statement, this source statement would have used .03 seconds of CPU time. The CPU usage

data only appears in this field if you used the -g flag when you compiled your application. Otherwise,

this field is blank.

v source code

The application’s source code.

The Source Code window contains the following menus:

v File

The Save As option lets you save the annotated source code to a file. When you select this option, the

Save File Dialog window appears. For more information about using the Save File Dialog window, see

“Saving the Call Graph Profile, Function Index, and Flat Profile reports to a file” on page 49.

Figure 25. The Source Code window. The following screen capture shows an example of the Source Code window.

There is a menu bar at the top with the following options: File, Utility, and Help. The fields of the Source Code window

are described in greater detail below the graphic.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 51

To close the Source Code window, select Close.

v Utility

This menu contains the Show Included Functions option.

For C++ users, the Show Included Functions option lets you view the source code of included function

files that are included by the application’s source code.

If a selected function does not have an included function file associated with it or does not have the

function file information available because the -g flag was not used for compiling, the Utility menu will be

unavailable. The availability of the Utility menu indicates whether there is any included function-file

information associated with the selected function.

When you select the Show Included Functions option, the Included Functions Dialog window appears,

which lists all of the included function files. Specify a file by either clicking on one of the entries in the list

with the left mouse button, or by typing the file name in the Selection field. Then click OK or Apply. After

you select a file from the Included Functions Dialog window, the Included Function File window

appears, displaying the source code for the file that you specified.

Viewing the Disassembler Code

Both the Function menu and Report menu permit you to access the Disassembler Code window, from

which you can view your code.

To access the Disassembler Code window through the Function menu, do the following:

1. Click the function you are interested in with the right mouse button. The Function menu appears.

2. From the Function menu, select the Show Disassembler Code option. The Disassembler Code

window appears.

To access the Disassembler Code window through the Report menu, do the following:

1. Select the Report menu, and then the Flat Profile option. The Flat Profile window appears.

2. From the Flat Profile window, select the function you want to view by clicking on its entry in the

window. The entry is highlighted to show that it is selected.

3. Select the Code Display menu, and then the Show Disassembler Code option. The Disassembler

Code window appears, and contains the disassembler code for the function you selected.

Using the Disassembler Code window: The Disassembler Code window shows you only the

disassembler code for the function you specified from the Flat Profile window. The Disassembler Code

window looks similar to the following:

52 Performance Tools Guide and Reference

The Disassembler Code window contains information in the following fields:

v address

The address of each instruction in the function you selected (from either the Flat Profile window or the

function call tree).

v no. ticks per instr.

Each tick represents .01 seconds of CPU time used. The value in this field represents the number of

ticks used by the corresponding instruction. For instance, if the number 3 appeared in this field, this

instruction would have used .03 seconds of CPU time.

v instruction

The execution instruction.

v assembler code

The execution instruction’s corresponding assembler code.

v source code

The line in your application’s source code that corresponds to the execution instruction and assembler

code. In order for information to appear in this field, you must have compiled your application with the

-g flag.

The Search Engine field at the bottom of the Disassembler Code window lets you search for a specific

string in your disassembler code.

The Disassembler Code window contains one menu:

v File

Figure 26. The Disassembler Code window. The following screen capture shows an example of the Disassembler

Code window. There is a menu bar at the top with the following options: File, and Help. There are five fields that are

described in greater detail below the graphic.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 53

Select Save As to save the annotated disassembler code to a file. When you select this option, the

Save File Dialog window appears. For information on using the Save File Dialog window, see “Saving

the Call Graph Profile, Function Index, and Flat Profile reports to a file” on page 49.

To close the Disassembler Code window, select Close.

Saving Screen Images of Profiled Data

The File menu of the Xprofiler GUI includes an option called Screen Dump that lets you capture an image

of the Xprofiler main window. This option is useful if you want to save a copy of the graphical display to

refer to later. You can either save the image as a file in PostScript format, or send it directly to a printer.

To capture a window image, do the following:

1. Select File and then Screen Dump. The Screen Dump menu opens.

2. From the Screen Dump menu, select Set Option. The Screen Dump Options Dialog window appears.

3. Make the appropriate selections in the fields of the Screen Dump Options Dialog window, as follows:

v Output To:

Figure 27. The Screen Dump Options Dialog window. The screen capture below shows an example of the Screen

Dump Options Dialog window. Each section of the Screen Dump Options Dialog window is described in greater detail

below the graphic.

54 Performance Tools Guide and Reference

This option lets you specify whether you want to save the captured image as a PostScript file or

send it directly to a printer.

If you would like to save the image to a file, select the File button. This file, by default, is named

Xprofiler.screenDump.ps.0, and is displayed in the Default File Name field of this dialog window.

When you select the File button, the text in the Print Command field greys out.

To send the image directly to a printer, select the Printer button. The image is sent to the printer

you specify in the Print Command field of this dialog window. When you specify the Print option, a

file of the image is not saved. Also, selecting this option causes the text in the Default File Name

field is made unavailable.

v PostScript Output:

This option lets you specify whether you want to capture the image in shades of grey or in color.

If you want to capture the image in shades of grey, select the GreyShades button. You must also

select the number of shades you want the image to include with the Number of Grey Shades

option, as discussed below.

If you want to capture the image in color, select the Color button.

v Number of Grey Shades

This option lets you specify the number of grey shades that the captured image will include. Select

either the 2, 4, or 16 buttons, depending on the number of shades you want to use. Typically, the

more shades you use, the longer it will take to print the image.

v Delay Before Grab

This option lets you specify how much of a delay will occur between activating the capturing

mechanism and when the image is actually captured. By default, the delay is set to one second, but

you might need time to arrange the window the way you want it. Setting the delay to a longer

interval gives you some extra time to do this. You set the delay with the slider bar of this field. The

number above the slider indicates the time interval in seconds. You can set the delay to a maximum

of thirty seconds.

v Enable Landscape (button)

This option lets you specify that you want the output to be in landscape format (the default is

portrait). To select landscape format, select the Enable Landscape button.

v Annotate Output (button)

This option lets you specify that you would like information about how the file was created to be

included in the PostScript image file. By default, this information is not included. To include this

information, select the Annotate Output button.

v Default File Name (field)

If you chose to put your output in a file, this field lets you specify the file name. The default file

name is Xprofiler.screenDump.ps.0. If you want to change to a different file name, type it over the

one that appears in this field.

If you specify the output file name with an integer suffix (that is, the file name ends with xxx.nn,

where nn is a non-negative integer), the suffix automatically increases by one every time a new

output file is written in the same Xprofiler session.

v Print Command (field)

If you chose to send the captured image directly to a printer, this field lets you specify the print

command. The default print command is qprt -B ga -c -Pps. If you want to use a different

command, type the new command over the one that appears in this field.

4. Click OK. The Screen Dump Options Dialog window closes.

After you have set your screen dump options, you need to select the window, or portion of a window, you

want to capture. From the Screen Dump menu, select the Select Target Window option. A cursor that

looks like a person’s hand appears after the number of seconds you specified. To cancel the capture, click

the right mouse button. The hand-shaped cursor will revert to normal and the operation will be terminated.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 55

To capture the entire Xprofiler window, place the cursor in the window and then click the left mouse button.

To capture a portion of the Xprofiler window, do the following:

1. Place the cursor in the upper left corner of the area you want to capture.

2. Press and hold the middle mouse button and drag the cursor diagonally downward, until the area you

want to capture is within the rubberband box.

3. Release the middle mouse button to set the location of the rubberband box.

4. Press the left mouse button to capture the image.

If you chose to save the image as a file, the file is stored in the directory that you specified. If you chose

to print the image, the image is sent to the printer you specified.

Customizing Xprofiler Resources

You can customize certain features of an X-Window. For example, you can customize its colors, fonts, and

orientation. This section lists each of the resource variables you can set for Xprofiler.

You can customize resources by assigning a value to a resource name in a standard X-Windows format.

Several resource files are searched according to the following X-Windows convention:

/usr/lib/X11/$LANG/app-defaults/Xprofiler

/usr/lib/X11/app-defaults/Xprofiler

$XAPPLRESDIR/Xprofiler

$HOME/.Xdefaults

Options in the .Xdefaults file take precedence over entries in the preceding files. This permits you to have

certain specifications apply to all users in the app-defaults file, as well as user-specific preferences set for

each user in their $HOME/.Xdefaults file.

You customize a resource by setting a value to a resource variable associated with that feature. You store

these resource settings in a file called .Xdefaults in your home directory. You can create this file on a

server, and so customize a resource for all users. Individual users might also want to customize resources.

The resource settings are essentially your personal preferences for how the X-Windows should look.

For example, consider the following resource variables for a hypothetical X-Windows tool:

TOOL*MainWindow.foreground:

TOOL*MainWindow.background:

In this example, suppose the resource variable TOOL*MainWindow.foreground controls the color of text on

the tool’s main window. The resource variable TOOL*MainWindow.background controls the background

color of this same window. If you wanted the tool’s main window to have red lettering on a white

background, you would insert these lines into the .Xdefaults file:

TOOL*MainWindow.foreground: red

TOOL*MainWindow.background: white

Customizable resources and instructions for their use for Xprofiler are defined in /usr/lib/X11/app-
defaults/Xprofiler file, as well as /usr/lpp/ppe.xprofiler/defaults/Xprofiler.ad file. This file contains a set

of X-Windows resources for defining graphical user interfaces based on the following criteria:

v Window geometry

v Window title

v Push button and label text

v Color maps

v Text font (in both textual reports and the graphical display)

56 Performance Tools Guide and Reference

Xprofiler Resource Variables

You can use the following resource variables to control the appearance and behavior of Xprofiler. The

values listed in this section are the defaults; you can change these values to suit your preferences.

Controlling Fonts

To specify the font for the labels that appear with function boxes, call arcs, and cluster boxes:

 Use this resource variable: Specify this default, or a value of your choice:

*narc*font fixed

To specify the font used in textual reports:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*fontList rom10

Controlling the Appearance of the Xprofiler Main Window

To specify the size of the main window:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*mainW.height 700

Xprofiler*mainW.width 900

To specify the foreground and background colors of the main window:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*foreground black

Xprofiler*background light grey

To specify the number of function boxes that are displayed when you first open the Xprofiler main window:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*InitialDisplayGraph 5000

You can use the -disp_max flag to override this value.

To specify the colors of the function boxes and call arcs of the function call tree:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*defaultNodeColor forest green

Xprofiler*defaultArcColor royal blue

To specify the color in which a specified function box or call arc is highlighted:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*HighlightNode red

Xprofiler*HighlightArc red

Chapter 2. X-Windows Performance Profiler (Xprofiler) 57

To specify the color in which de-emphasized function boxes appear:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*SuppressNode grey

Function boxes are de-emphasized with the -e, -E, -f, and -F flags.

Controlling Variables Related to the File Menu

To specify the size of the Load Files Dialog window, use the following:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*loadFile.height 785

Xprofiler*loadFile.width 725

The Load Files Dialog window is called by the Load Files option of the File menu.

To specify whether a confirmation dialog box should appear whenever a file will be overwritten:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*OverwriteOK False

The value True would be equivalent to selecting the Set Options option from the File menu, and then

selecting the Forced File Overwriting option from the Runtime Options Dialog window.

To specify the alternative search paths for locating source or library files:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*fileSearchPath . (refers to the current working directory)

The value you specify for the search path is equivalent to the search path you would designate from the

Alt File Search Path Dialog window. To get to this window, choose the Set File Search Paths option from

the File menu.

To specify the file search sequence (whether the default or alternative path is searched first):

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*fileSearchDefault True

The value True is equivalent to selecting the Set File Search Paths from the File menu, and then the

Check default path(s) first option from the Alt File Search Path Dialog window.

Controlling variables related to the Screen Dump option: To specify whether a screen dump will be

sent to a printer or placed in a file:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*PrintToFile True

The value True is equivalent to selecting the File button in the Output To field of the Screen Dump

Options Dialog window. You access the Screen Dump Options Dialog window by selecting Screen Dump

and then Set Option from the File menu.

To specify whether the PostScript screen dump will created in color or in shades of grey:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*ColorPscript False

The value False is equivalent to selecting the GreyShades button in the PostScript Output area of the

58 Performance Tools Guide and Reference

Screen Dump Options Dialog window. You access the Screen Dump Options Dialog window by selecting

Screen Dump and then Set Option from the File menu.

To specify the number of grey shades that the PostScript screen dump will include (if you selected

GreyShades in the PostScript Output area):

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*GreyShades 16

The value 16 is equivalent to selecting the 16 button in the Number of Grey Shades field of the Screen

Dump Options Dialog window. You access the Screen Dump Options Dialog window by selecting Screen

Dump and then Set Option from the File menu.

To specify the number of seconds that Xprofiler waits before capturing a screen image:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*GrabDelay 1

The value 1 is the default for the Delay Before Grab option of the Screen Dump Options Dialog window,

but you can specify a longer interval by entering a value here. You access the Screen Dump Options

Dialog window by selecting Screen Dump and then Set Option from the File menu.

To set the maximum number of seconds that can be specified with the slider of the Delay Before Grab

option:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*grabDelayScale.maximum 30

The value 30 is the maximum for the Delay Before Grab option of the Screen Dump Options Dialog

window. This means that users cannot set the slider scale to a value greater than 30. You access the

Screen Dump Options Dialog window by selecting Screen Dump and then Set Option from the File

menu.

To specify whether the screen dump is created in landscape or portrait format:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*Landscape False

The value True is the default for the Enable Landscape option of the Screen Dump Options Dialog

window. You access the Screen Dump Options Dialog window by selecting Screen Dump and then Set

Option from the File menu.

To specify whether you would like information about how the image was created to be added to the

PostScript screen dump:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*Annotate False

The value False is the default for the Annotate Output option of the Screen Dump Options Dialog

window. You access the Screen Dump Options Dialog window by selecting Screen Dump and then Set

Option from the File menu.

To specify the directory that will store the screen dump file (if you selected File in the Output To field):

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*PrintFileName /tmp/Xprofiler_screenDump.ps.0

Chapter 2. X-Windows Performance Profiler (Xprofiler) 59

The value you specify is equivalent to the file name you would designate in the File Name field of the

Screen Dump Dialog window. You access the Screen Dump Options Dialog window by selecting Screen

Dump and then Set Option from the File menu.

To specify the printer destination of the screen dump (if you selected Printer in the Output To field):

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*PrintCommand qprt -B ga -c -Pps

The value qprt -B ga -c -Pps is the default print command, but you can supply a different one.

Controlling Variables Related to the View Menu

To specify the size of the Overview window:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*overviewMain.height 300

Xprofiler*overviewMain.width 300

To specify the color of the highlight area of the Overview window:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*overviewGraph*defaultHighlightColor sky blue

To specify whether the function call tree is updated as the highlight area is moved (immediate) or only

when it is stopped and the mouse button released (delayed):

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*TrackImmed True

The value True is equivalent to selecting the Immediate Update option from the Utility menu of the

Overview window. You access the Overview window by selecting the Overview option from the View

menu.

To specify whether the function boxes in the function call tree appear in two-dimensional or

three-dimensional format:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*Shape2D True

The value True is equivalent to selecting the 2-D Image option from the View menu.

To specify whether the function call tree appears in top-to-bottom or left-to-right format:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*LayoutTopDown True

The value True is equivalent to selecting the Layout: Top and Bottom option from the View menu.

Controlling Variables Related to the Filter Menu

To specify whether the function boxes of the function call tree are clustered or unclustered when the

Xprofiler main window is first opened:

60 Performance Tools Guide and Reference

Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*ClusterNode True

The value True is equivalent to selecting the Cluster Functions by Library option from the Filter menu.

To specify whether the call arcs of the function call tree are collapsed or expanded when the Xprofiler

main window is first opened:

 Use this resource variable: Specify this default, or a value of your choice:

Xprofiler*ClusterArc True

The value True is equivalent to selecting the Collapse Library Arcs option from the Filter menu.

Chapter 2. X-Windows Performance Profiler (Xprofiler) 61

62 Performance Tools Guide and Reference

Chapter 3. CPU Utilization Reporting Tool (curt)

The CPU Utilization Reporting Tool (curt) command converts an AIX trace file into a number of statistics

related to CPU utilization and either process, thread or pthread activity. These statistics ease the tracking

of specific application activity. The curt command works with both uniprocessor and multiprocessor AIX

Version 4 and AIX Version 5 traces.

Syntax for the curt Command

The syntax for the curt command is as follows:

curt -i inputfile [-o outputfile] [-n gensymsfile] [-m trcnmfile] [-a pidnamefile] [-f timestamp] [-l timestamp] [-r

PURR][-ehpstP]

Flags

 -i inputfile Specifies the input AIX trace file to be analyzed.

-o outputfile Specifies an output file (default is stdout).

-n gensymsfile Specifies a names file produced by gensyms.

-m trcnmfile Specifies a names file produced by trcnm.

-a pidnamefile Specifies a PID-to-process name mapping file.

-f timestamp Starts processing trace at timestamp seconds.

-l timestamp Stops processing trace at timestamp seconds.

-r PURR Uses the PURR register to calculate CPU times.

-e Outputs elapsed time information for system calls.

-h Displays usage text (this information).

-p Outputs detailed process information.

-s Outputs information about errors returned by system calls.

-t Outputs detailed thread information.

-P Outputs detailed pthread information.

Parameters

 gensymsfile The names file as produced by the gensyms command.

inputfile The AIX trace file to be processed by the curt command.

outputfile The name of the output file created by the curt command.

pidnamefile If the trace process name table is not accurate, or if more descriptive names are desired, use

the -a flag to specify a PID to process name mapping file. This is a file with lines consisting

of a process ID (in decimal) followed by a space, then an ASCII string to use as the name for

that process.

timestamp The time in seconds at which to start and stop the trace file processing.

trcnmfile The names file as produced by the trcnmcommand.

PURR The name of the register that is used to calculate CPU times.

© Copyright IBM Corp. 2002, 2007 63

Measurement and Sampling

A raw, or unformatted, system trace is read by the curt command to produce CPU utilization summaries.

The summary information is useful for determining which application, system call, Network File System

(NFS) operation, hypervisor call, pthread call, or interrupt handler is using most of the CPU time and is a

candidate for optimization to improve system performance.

The following table lists the minimum trace hooks required for the curt command. Using only these trace

hooks will limit the size of the trace file. However, other events on the system might not be captured in this

case. This is significant if you intend to analyze the trace in more detail.

 Hook ID Event Name Event Explanation

100 HKWD_KERN_FLIH Occurrence of a first level interrupt, such as an I/O interrupt, a

data access page fault, or a timer interrupt (scheduler).

101 HKWD_KERN_SVC A thread has issued a system call.

102 HKWD_KERN_SLIH Occurrence of a second level interrupt, that is, first level I/O

interrupts are being passed on to the second level interrupt

handler which then is working directly with the device driver.

103 HKWD_KERN_SLIHRET Return from a second level interrupt to the caller (usually a first

level interrupt handler).

104 HKWD_KERN_SYSCRET Return from a system call to the caller (usually a thread).

106 HKWD_KERN_DISPATCH A thread has been dispatched from the run queue to a CPU.

10C HKWD_KERN_IDLE The idle process has been dispatched.

119 HKWD_KERN_PIDSIG A signal has been sent to a process.

134 HKWD_SYSC_EXECVE An exec supervisor call (SVC) has been issued by a (forked)

process.

135 HKWD_SYSC__EXIT An exit supervisor call (SVC) has been issued by a process.

139 HKWD_SYSC_FORK A fork SVC has been issued by a process.

200 HKWD_KERN_RESUME A dispatched thread is being resumed on the CPU.

210 HKWD_KERN_INITP A kernel process has been created.

215 HKWD_NFS_DISPATCH An entry or exit NFS V2 and V3 operation has been issued by

a process.

38F HKWD_DR A processor has been added/removed.

419 HKWD_CPU_PREEMPT A processor has been preempted.

465 HKWD_SYSC_CRTHREAD A thread_create SVC has been issued by a process.

47F HKWD_KERN_PHANTOM_EXTINT A phantom interrupt has occurred.

488 HKWD_RFS4_VOPS An entry or exit NFS V4 client operation (VOPS) has been

issued by a process.

489 HKWD_RFS4_VFSOPS An entry or exit NFS V4 client operation (VFSOPS) has been

issued by a process.

48A HKWD_RFS4_MISCOPS An entry or exit NFS V4 client operation (MISCOPS) has been

issued by a process.

48D HKWD_RFS4 An entry or exit NFS V4 server operation has been issued by a

process.

492 HKWD_KERN_HCALL A hypervisor call has been issued by the kernel.

605 HKWD_PTHREAD_VPSLEEP A pthread vp_sleep operation has been done by a pthread.

609 HKWD_PTHREAD_GENERAL A general pthread operation has been done by a pthread.

64 Performance Tools Guide and Reference

Trace hooks 119 and 135 are used to report on the time spent in the exit system call. Trace hooks 134,

139, 210, and 465 are used to keep track of TIDs, PIDs and process names.

Trace hook 492 is used to report on the time spent in the hypervisor.

Trace hooks 605 and 609 are used to report on the time spent in the pthreads library.

To get the PTHREAD hooks in the trace, you must execute your pthread application using the

instrumented libpthreads.a library.

Examples of the curt command

Preparing the curt command input is a three-stage process.

Trace and name files are generated using the following process:

1. Build the raw trace.

On a 4-way machine, this will create files as listed in the example code below. One raw trace file per

CPU is produced. The files are named trace.raw-0, trace.raw-1, and so forth for each CPU. An

additional file named trace.raw is also generated. This is a master file that has information that ties

together the other CPU-specific traces.

Note: If you want pthread information in the curt report, you must add the instrumented libpthreads

directory to the library path, LIBPATH, when you build the trace. Otherwise, the export LIBPATH

statement in the example below is unnecessary.

2. Merge the trace files.

To merge the individual CPU raw trace files to form one trace file, run the trcrpt command. If you are

tracing a uniprocessor machine, this step is not necessary.

3. Create the supporting gensymsfile and trcnmfile files by running the gensyms and trcnm

commands.

Neither the gensymsfile nor the trcnmfile file are necessary for the curt command to run. However, if

you provide one or both of these files, or if you use the trace command with the -n option, the curt

command outputs names for system calls and interrupt handlers instead of just addresses. The

gensyms command output includes more information than the trcnm command output, and so, while

the trcnmfile file will contain most of the important address to name mapping data, a gensymsfile file

will enable the curt command to output more names, and is the preferred address to name mapping

data collection command.

The following is an example of how to generate input files for the curt command:

HOOKS="100,101,102,103,104,106,10C,119,134,135,139,200,210,215,38F,419,465,47F,488,489,48A,48D,492,605,609"

SIZE="1000000"

export HOOKS SIZE

trace -n -C all -d -j $HOOKS -L $SIZE -T $SIZE -afo trace.raw

export LIBPATH=/usr/ccs/lib/perf:$LIBPATH

trcon ; pthread.app ; trcstop

unset HOOKS SIZE

ls trace.raw*

trace.raw trace.raw-0 trace.raw-1 trace.raw-2 trace.raw-3

trcrpt -C all -r trace.raw > trace.r

rm trace.raw*

ls trace*

trace.r

gensyms > gensyms.out

trcnm > trace.nm

Overview of Information Generated by the curt Command

The following is an overview of the content of the report that the curt command generates:

v A report header, including the trace file name, the trace size, and the date and time the trace was taken.

The header also includes the command that was used when the trace was run. If the PURR register

was used to calculate CPU times, this information is also included in the report header.

Chapter 3. CPU Utilization Reporting Tool (curt) 65

v For each CPU (and a summary of all the CPUs), processing time expressed in milliseconds and as a

percentage (idle and non-idle percentages are included) for various CPU usage categories.

v For each CPU (and a summary of all the CPUs), processing time expressed in milliseconds and as a

percentage for CPU usage in application mode for various application usage categories.

v Average thread affinity across all CPUs and for each individual CPU.

v For each CPU (and for all the CPUs), the Physical CPU time spent and the percentage of total time this

represents.

v Average physical CPU affinity across all CPUs and for each individual CPU.

v The physical CPU dispatch histogram of each CPU.

v The number of preemptions, and the number of H_CEDE and H_CONFER hypervisor calls for each

individual CPU.

v The total number of idle and non-idle process dispatches for each individual CPU.

v Average pthread affinity across all CPUs and for each individual CPU.

v The total number of idle and non-idle pthread dispatches for each individual CPU.

v Information on the amount of CPU time spent in application and system call (syscall) mode expressed

in milliseconds and as a percentage by thread, process, and process type. Also included are the

number of threads per process and per process type.

v Information on the amount of CPU time spent executing each kernel process, including the idle process,

expressed in milliseconds and as a percentage of the total CPU time.

v Information on the amount of CPU time spent executing calls to libpthread, expressed in milliseconds

and as percentages of the total time and the total application time.

v Information on completed system calls that includes the name and address of the system call, the

number of times the system call was executed, and the total CPU time expressed in milliseconds and

as a percentage with average, minimum, and maximum time the system call was running.

v Information on pending system calls, that is, system calls for which the system call return has not

occurred at the end of the trace. The information includes the name and address of the system call, the

thread or process which made the system call, and the accumulated CPU time the system call was

running expressed in milliseconds.

v Information on completed hypervisor calls that includes the name and address of the hypervisor call, the

number of times the hypervisor call was executed, and the total CPU time expressed in milliseconds

and as a percentage with average, minimum, and maximum time the hypervisor call was running.

v Information on pending hypervisor calls, which are hypervisor calls that were not completed by the end

of the trace. The information includes the name and address of the hypervisor call, the thread or

process which made the hypervisor call, and the accumulated CPU time the hypervisor call was

running, expressed in milliseconds.

v Information on completed pthread calls that includes the name of the pthread call routine, the number of

times the pthread call was executed, and the total CPU time expressed in milliseconds and the average,

minimum, and maximum time the pthread call was running.

v Information on pending pthread calls, that is, pthread calls for which the pthread call return has not

occurred at the end of the trace. The information includes the name of the pthread call, the process, the

thread and the pthread which made the pthread call, and the accumulated CPU time the pthread call

was running expressed in milliseconds.

v Information on completed NFS operations that includes the name of the NFS operation, the number of

times the NFS operation was executed, and the total CPU time, expressed in milliseconds, and as a

percentage with average, minimum, and maximum time the NFS operation call was running.

v Information on pending NFS operations, where the NFS operations did not complete before the end of

the trace. The information includes the sequence number for NFS V2/V3, or opcode for NFS V4, the

thread or process which made the NFS operation, and the accumulated CPU time that the NFS

operation was running, expressed in milliseconds.

v Information on the first level interrupt handlers (FLIHs) that includes the type of interrupt, the number of

times the interrupt occurred, and the total CPU time spent handling the interrupt with average, minimum,

66 Performance Tools Guide and Reference

and maximum time. This information is given for all CPUs and for each individual CPU. If there are any

pending FLIHs (FLIHs for which the resume has not occurred at the end of the trace), for each CPU the

accumulated time and the pending FLIH type is reported.

v Information on the second level interrupt handlers (SLIHs), which includes the interrupt handler name

and address, the number of times the interrupt handler was called, and the total CPU time spent

handling the interrupt with average, minimum, and maximum time. This information is given for all CPUs

and for each individual CPU. If there are any pending SLIHs (SLIHs for which the return has not

occurred at the end of the trace), the accumulated time and the pending SLIH name and address is

reported for each CPU.

To create additional, specialized reports, run the curt command using the following flags:

 -e Produces reports containing statistics and additional information on the System Calls Summary Report,

Pending System Calls Summary Report, Hypervisor™ Calls Summary Report, Pending Hypervisor Calls

Summary Report, System NFS Calls Summary Report, Pending NFS Calls Summary, Pthread Calls

Summary, and the Pending Pthread Calls Summary. The additional information pertains to the total,

average, maximum, and minimum elapsed times that a system call was running.

-s Produces a report containing a list of errors returned by system calls.

-t Produces a report containing a detailed report on thread status that includes the amount of CPU time the

thread was in application and system call mode, what system calls the thread made, processor affinity, the

number of times the thread was dispatched, and to which CPU(s) it was dispatched. The report also

includes dispatch wait time and details of interrupts.

-p Produces a report containing a detailed report on process status that includes the amount of CPU time the

process was in application and system call mode, application time details, threads that were in the process,

pthreads that were in the process, pthread calls that the process made and system calls that the process

made.

-P Produces a report containing a detailed report on pthread status that includes the amount of CPU time the

pthread was in application and system call mode, system calls made by the pthread, pthread calls made by

the pthread, processor affinity, the number of times the pthread was dispatched and to which CPU(s) it was

dispatched, thread affinity, and the number of times the pthread was dispatched and to which kernel

thread(s) it was dispatched. The report also includes dispatch wait time and details of interrupts.

Default Report Generated by the curt Command

This section explains the default report created by the curt command, as follows:

curt -i trace.r -n gensyms.out -o curt.out

The curt command output always includes this default report in its output, even if one of the flags

described in the previous section is used.

The report is divided into the following sections:

v General Information

v System Summary

v System Application Summary

v Processor Summary

v Processor Application Summary

v Application Summary by TID

v Application Summary by PID

v Application Summary by Process Type

v Kproc Summary

v Application Pthread Summary by PID

v System Calls Summary

Chapter 3. CPU Utilization Reporting Tool (curt) 67

v Pending System Calls Summary

v Hypervisor Calls Summary

v Pending Hypervisor Calls Summary

v System NFS Calls Summary

v Pending NFS System Calls Summary

v Pthread Calls Summary

v Pending Pthread Calls Summary

v FLIH Summary

v SLIH Summary

General Information

The General Information section begins with the time and date when the report was generated. It is

followed by the syntax of the curt command line that was used to produce the report.

This section also contains some information about the AIX trace file that was processed by the curt

command. This information consists of the trace file’s name, size, and its creation date. The command

used to invoke the AIX trace facility and gather the trace file is displayed at the end of the report.

The following is a sample of the general information section:

Run on Wed Apr 26 10:51:33 2XXX

Command line was:

curt -i trace.raw -n gensyms.out -o curt.out

AIX trace file name = trace.raw

AIX trace file size = 787848

Wed Apr 26 10:50:11 2XXX

System: AIX 5.3 Node: bu Machine: 00CFEDAD4C00

AIX trace file created = Wed Apr 26 10:50:11 2XXX

Command used to gather AIX trace was:

 trace -n -C all -d -j 100,101,102,103,104,106,10C,134,139,200,215,419,465,47F,488,489,48A,48D,492,605,609

 -L 1000000 -T 1000000 -afo trace.raw

System Summary

The next section of the default report is the System Summary produced by the curt command. The

following is a sample of the System Summary:

 System Summary

 processing percent percent

 total time total time busy time

 (msec) (incl. idle) (excl. idle) processing category

=========== =========== =========== ===================

 4998.65 45.94 75.21 APPLICATION

 591.59 5.44 8.90 SYSCALL

 110.40 1.02 1.66 HCALL

 48.33 0.44 0.73 KPROC (excluding IDLE and NFS)

 352.23 3.24 5.30 NFS

 486.19 4.47 7.32 FLIH

 49.10 0.45 0.74 SLIH

 8.83 0.08 0.13 DISPATCH (all procs. incl. IDLE)

 1.04 0.01 0.02 IDLE DISPATCH (only IDLE proc.)

----------- ---------- -------

 6646.36 61.08 100.00 CPU(s) busy time

 4234.76 38.92 IDLE

----------- ----------

 10881.12 TOTAL

Avg. Thread Affinity = 0.99

Total Physical CPU time (msec) = 20417.45

Physical CPU percentage = 100.00%

68 Performance Tools Guide and Reference

This portion of the report describes the time spent by the whole system (all CPUs) in various execution

modes.

The System Summary has the following fields:

 processing total time Total time in milliseconds for the corresponding processing category.

percent total time Time from the first column as a percentage of the sum of total trace elapsed time for

all processors. This includes whatever amount of time each processor spent running

the IDLE process.

percent busy time Time from the first column as a percentage of the sum of total trace elapsed time for

all processors without including the time each processor spent executing the IDLE

process.

Avg. Thread Affinity Probability that a thread was dispatched to the same processor on which it last

executed.

Total Physical CPU time The real time that the virtual processor was running and not preempted.

Physical CPU percentage Gives the Physical CPU Time as a percentage of total time.

The possible execution modes or processing categories are interpreted as follows:

 APPLICATION The sum of times spent by all processors in User (that is, non-privileged) mode.

SYSCALL The sum of times spent by all processors doing System Calls. This is the portion of time

that a processor spends executing in the kernel code providing services directly requested

by a user process.

HCALL The sum of times spent by all processors doing Hypervisor Calls. This is the portion of

time that a processor spends executing in the hypervisor code providing services directly

requested by the kernel.

KPROC The sum of times spent by all processors executing kernel processes other than IDLE and

NFS processes. This is the portion of time that a processor spends executing specially

created dispatchable processes that only execute kernel code.

NFS The sum of times spent by all processors executing NFS operations. This is the portion of

time that a processor spends executing in the kernel code providing NFS services directly

requested by a kernel process.

FLIH The sum of times spent by all processors executing FLIHs.

SLIH The sum of times spent by all processors executing SLIHs.

DISPATCH The sum of times spent by all processors executing the AIX dispatch code. This sum

includes the time spent dispatching all threads (that is, it includes dispatches of the IDLE

process).

IDLE DISPATCH The sum of times spent by all processors executing the AIX dispatch code where the

process being dispatched was the IDLE process. Because the DISPATCH category

includes the IDLE DISPATCH category’s time, the IDLE DISPATCH category’s time is not

separately added to calculate either CPU(s) busy time or TOTAL (see below).

CPU(s) busy time The sum of times spent by all processors executing in APPLICATION, SYSCALL, KPROC,

FLIH, SLIH, and DISPATCH modes.

IDLE The sum of times spent by all processors executing the IDLE process.

TOTAL The sum of CPU(s) busy time and IDLE.

The System Summary example indicates that the CPU is spending most of its time in application mode.

There is still 4234.76 ms of IDLE time so there is enough CPU to run applications. If there is insufficient

CPU power, do not expect to see any IDLE time. The Avg. Thread Affinity value is 0.99 showing good

processor affinity; that is, threads returning to the same processor when they are ready to be run again.

Chapter 3. CPU Utilization Reporting Tool (curt) 69

System Application Summary

The next part of the default report is the System Application Summary produced by the curt command.

The following is a sample of the System Application Summary:

 System Application Summary

 processing percent percent

 total time total time application

 (msec) (incl. idle) time processing category

=========== =========== =========== ===================

 3.95 0.42 0.07 PTHREAD

 4.69 0.49 0.09 PDISPATCH

 0.13 0.01 0.00 PIDLE

 5356.99 563.18 99.84 OTHER

----------- ---------- -------

 5365.77 564.11 100.00 APPLICATION

Avg. Pthread Affinity = 0.84

This portion of the report describes the time spent by the system as a whole (all CPUs) in various

execution modes. The System Application Summary has the following fields:

 processing total time Total time in milliseconds for the corresponding processing category.

percent total time Time from the first column as a percentage of the sum of total trace elapsed time for all

processors. This includes whatever amount of time each processor spent running the

IDLE process.

percent application time Time from the first column as a percentage of the sum of total trace elapsed application

time for all processors

Avg. Pthread Affinity Probability that a pthread was dispatched on the same kernel thread on which it last

executed.

The possible execution modes or processing categories are interpreted as follows:

 PTHREAD The sum of times spent by all pthreads on all processors in traced pthread library

calls.

PDISPATCH The sum of times spent by all pthreads on all processors executing the libpthreads

dispatch code.

PIDLE The sum of times spent by all kernel threads on all processors executing the

libpthreads vp_sleep code.

OTHER The sum of times spent by all pthreads on all processors in non-traced user mode.

APPLICATION The sum of times spent by all processors in User (that is, non-privileged) mode.

Processor Summary and Processor Application Summary

This part of the curt command output follows the System Summary and System Application Summary and

is essentially the same information but presented on a processor-by-processor basis. The same

description that was given for the System Summary and System Application Summary applies here, except

that this report covers each processor rather than the whole system.

Below is a sample of this output:

 Processor Summary processor number 0

 processing percent percent

 total time total time busy time

 (msec) (incl. idle) (excl. idle) processing category

=========== =========== =========== ===================

 45.07 0.88 5.16 APPLICATION

 591.39 11.58 67.71 SYSCALL

70 Performance Tools Guide and Reference

0.00 0.00 0.00 HCALL

 47.83 0.94 5.48 KPROC (excluding IDLE and NFS)

 0.00 0.00 0.00 NFS

 173.78 3.40 19.90 FLIH

 9.27 0.18 1.06 SLIH

 6.07 0.12 0.70 DISPATCH (all procs. incl. IDLE)

 1.04 0.02 0.12 IDLE DISPATCH (only IDLE proc.)

----------- ---------- -------

 873.42 17.10 100.00 CPU(s) busy time

 4232.92 82.90 IDLE

----------- ----------

 5106.34 TOTAL

Avg. Thread Affinity = 0.98

Total number of process dispatches = 1620

Total number of idle dispatches = 782

Total Physical CPU time (msec) = 3246.25

Physical CPU percentage = 63.57%

Physical processor affinity = 0.50

Dispatch Histogram for processor (PHYSICAL CPUid : times_dispatched).

 PROC 0 : 15

 PROC 24 : 15

Total number of preemptions = 30

Total number of H_CEDE = 6 with preeemption = 3

Total number of H_CONFER = 3 with preeemption = 2

 Processor Application Summary processor 0

 --

 processing percent percent

 total time total time application

 (msec) (incl. idle) time processing category

=========== =========== =========== ===================

 1.66 0.04 0.06 PTHREAD

 2.61 0.05 0.10 PDISPATCH

 0.00 0.00 0.00 PIDLE

 2685.12 56.67 99.84 OTHER

----------- ---------- -------

 2689.39 56.76 100.00 APPLICATION

Avg. Pthread Affinity = 0.78

Total number of pthread dispatches = 104

Total number of pthread idle dispatches = 0

 Processor Summary processor number 1

 processing percent percent

 total time total time busy time

 (msec) (incl. idle) (excl. idle) processing category

=========== =========== =========== ===================

 4985.81 97.70 97.70 APPLICATION

 0.09 0.00 0.00 SYSCALL

 0.00 0.00 0.00 HCALL

 0.00 0.00 0.00 KPROC (excluding IDLE and NFS)

 0.00 0.00 0.00 NFS

 103.86 2.04 2.04 FLIH

 12.54 0.25 0.25 SLIH

 0.97 0.02 0.02 DISPATCH (all procs. incl. IDLE)

 0.00 0.00 0.00 IDLE DISPATCH (only IDLE proc.)

----------- ---------- -------

 5103.26 100.00 100.00 CPU(s) busy time

 0.00 0.00 IDLE

Chapter 3. CPU Utilization Reporting Tool (curt) 71

----------- ----------

 5103.26 TOTAL

Avg. Thread Affinity = 0.99

Total number of process dispatches = 516

Total number of idle dispatches = 0

Total Physical CPU time (msec) = 5103.26

Physical CPU percentage = 100.00%

Physical processor affinity = 1.00

Dispatch Histogram for processor (PHYSICAL CPUid : times_dispatched).

Total number of preemptions = 0

Total number of H_CEDE = 0 with preeemption = 0

Total number of H_CONFER = 0 with preeemption = 0

 Processor Application Summary processor 1

 --

 processing percent percent

 total time total time application

 (msec) (incl. idle) time processing category

=========== =========== =========== ===================

 2.29 0.05 0.09 PTHREAD

 2.09 0.04 0.08 PDISPATCH

 0.13 0.00 0.00 PIDLE

 2671.86 56.40 99.83 OTHER

----------- ---------- -------

 2676.38 56.49 100.00 APPLICATION

Avg. Pthread Affinity = 0.83

Total number of pthread dispatches = 91

Total number of pthread idle dispatches = 5

The following terms are referred to in the example above:

Total number of process dispatches

The number of times AIX dispatched any non-IDLE process on the processor.

Total number of idle dispatches

The number of IDLE process dispatches.

Total number of pthread dispatches

The number of times the libpthreads dispatcher was executed on the processor.

Total number of pthread idle dispatches

The number of vp_sleep calls.

Application Summary by Thread ID (Tid)

The Application Summary, by Tid, shows an output of all the threads that were running on the system

during the time of trace collection and their CPU consumption. The thread that consumed the most CPU

time during the time of the trace collection is at the top of the list.

 Application Summary (by Tid)

 -- processing total (msec) -- -- percent of total processing time --

 combined application syscall combined application syscall name (Pid Tid)

 ======== =========== ======= ======== =========== ======= ===================

4986.2355 4986.2355 0.0000 24.4214 24.4214 0.0000 cpu(18418 32437)

4985.8051 4985.8051 0.0000 24.4193 24.4193 0.0000 cpu(19128 33557)

4982.0331 4982.0331 0.0000 24.4009 24.4009 0.0000 cpu(18894 28671)

 83.8436 2.5062 81.3374 0.4106 0.0123 0.3984 disp+work(20390 28397)

 72.5809 2.7269 69.8540 0.3555 0.0134 0.3421 disp+work(18584 32777)

72 Performance Tools Guide and Reference

69.8023 2.5351 67.2672 0.3419 0.0124 0.3295 disp+work(19916 33033)

 63.6399 2.5032 61.1368 0.3117 0.0123 0.2994 disp+work(17580 30199)

 63.5906 2.2187 61.3719 0.3115 0.0109 0.3006 disp+work(20154 34321)

 62.1134 3.3125 58.8009 0.3042 0.0162 0.2880 disp+work(21424 31493)

 60.0789 2.0590 58.0199 0.2943 0.0101 0.2842 disp+work(21992 32539)

 ...(lines omitted)...

The output is divided into two main sections:

v The total processing time of the thread in milliseconds (processing total (msec))

v The CPU time that the thread has consumed, expressed as a percentage of the total CPU time (percent

of total processing time)

The Application Summary (by Tid) has the following fields:

 name (Pid Tid) The name of the process associated with the thread, its process id, and its thread id.

processing total (msec)

 combined The total amount of CPU time, expressed in milliseconds, that the thread was running in either

application mode or system call mode.

application The amount of CPU time, expressed in milliseconds, that the thread spent in application mode.

syscall The amount of CPU time, expressed in milliseconds, that the thread spent in system call

mode.

percent of total processing time

 combined The amount of CPU time that the thread was running, expressed as percentage of the total

processing time.

application The amount of CPU time that the thread the thread spent in application mode, expressed as

percentage of the total processing time.

syscall The amount of CPU time that the thread spent in system call mode, expressed as percentage

of the total processing time.

In the example above, we can investigate why the system is spending so much time in application mode

by looking at the Application Summary (by Tid), where we can see the top three processes of the report

are named cpu, a test program that uses a great deal of CPU time. The report shows again that the CPU

spent most of its time in application mode running the cpu process. Therefore the cpu process is a

candidate to be optimized to improve system performance.

Application Summary by Process ID (Pid)

The Application Summary, by Pid, has the same content as the Application Summary, by Tid, except that

the threads that belong to each process are consolidated and the process that consumed the most CPU

time during the monitoring period is at the beginning of the list.

The name (PID) (Thread Count) column shows the process name, its process ID, and the number of

threads that belong to this process and that have been accumulated for this line of data.

 Application Summary (by Pid)

 -- processing total (msec) -- -- percent of total processing time --

 combined application syscall combined application syscall name (Pid)(Thread Count)

 ======== =========== ======= ======== =========== ======= ===================

 4986.2355 4986.2355 0.0000 24.4214 24.4214 0.0000 cpu(18418)(1)

 4985.8051 4985.8051 0.0000 24.4193 24.4193 0.0000 cpu(19128)(1)

 4982.0331 4982.0331 0.0000 24.4009 24.4009 0.0000 cpu(18894)(1)

Chapter 3. CPU Utilization Reporting Tool (curt) 73

83.8436 2.5062 81.3374 0.4106 0.0123 0.3984 disp+work(20390)(1)

 72.5809 2.7269 69.8540 0.3555 0.0134 0.3421 disp+work(18584)(1)

 69.8023 2.5351 67.2672 0.3419 0.0124 0.3295 disp+work(19916)(1)

 63.6399 2.5032 61.1368 0.3117 0.0123 0.2994 disp+work(17580)(1)

 63.5906 2.2187 61.3719 0.3115 0.0109 0.3006 disp+work(20154)(1)

 62.1134 3.3125 58.8009 0.3042 0.0162 0.2880 disp+work(21424)(1)

 60.0789 2.0590 58.0199 0.2943 0.0101 0.2842 disp+work(21992)(1)

 ...(lines omitted)...

Application Summary (by process type)

The Application Summary (by process type) consolidates all processes of the same name and sorts them

in descending order of combined processing time.

The name (thread count) column shows the name of the process, and the number of threads that belong

to this process name (type) and were running on the system during the monitoring period.

 Application Summary (by process type)

 -- processing total (msec) -- -- percent of total processing time --

 combined application syscall combined application syscall name (thread count)

 ======== =========== ======= ======== =========== ======= ==================

 14954.0738 14954.0738 0.0000 73.2416 73.2416 0.0000 cpu(3)

 573.9466 21.2609 552.6857 2.8111 0.1041 2.7069 disp+work(9)

 20.9568 5.5820 15.3748 0.1026 0.0273 0.0753 trcstop(1)

 10.6151 2.4241 8.1909 0.0520 0.0119 0.0401 i4llmd(1)

 8.7146 5.3062 3.4084 0.0427 0.0260 0.0167 dtgreet(1)

 7.6063 1.4893 6.1171 0.0373 0.0073 0.0300 sleep(1)

 ...(lines omitted)...

Kproc Summary by Thread ID (Tid)

The Kproc Summary, by Tid, shows an output of all the kernel process threads that were running on the

system during the time of trace collection and their CPU consumption. The thread that consumed the most

CPU time during the time of the trace collection is at the beginning of the list.

 Kproc Summary (by Tid)

 -- processing total (msec) -- -- percent of total time --

 combined kernel operation combined kernel operation name (Pid Tid Type)

 ======== ====== =========== ======== ====== =========== ===================

 1930.9312 1930.9312 0.0000 13.6525 13.6525 0.0000 wait(8196 8197 W)

 2.1674 2.1674 0.0000 0.0153 0.0153 0.0000 .WSMRefreshServe(0 3 -)

 1.9034 1.9034 1.8020 0.0135 0.0135 0.0128 nfsd(36882 49177 N)

 0.6609 0.5789 0.0820 0.0002 0.0002 0.0000 kbiod(8050 86295 N)

 ...(lines omitted)...

 Kproc Types

 Type Function Operation

 ==== ============================ ==========================

 W idle thread -

 N NFS daemon NFS Remote Procedure Calls

The Kproc Summary has the following fields:

 name (Pid Tid Type) The name of the kernel process associated with the thread, its process ID, its thread

ID, and its type. The kproc type is defined in the Kproc Types listing following the

Kproc Summary.

74 Performance Tools Guide and Reference

processing total (msec)

 combined The total amount of CPU time, expressed in milliseconds, that the thread was running

in either operation or kernel mode.

kernel The amount of CPU time, expressed in milliseconds, that the thread spent in

unidentified kernel mode.

operation The amount of CPU time, expressed in milliseconds, that the thread spent in traced

operations.

percent of total time

 combined The amount of CPU time that the thread was running, expressed as percentage of the

total processing time.

kernel The amount of CPU time that the thread spent in unidentified kernel mode, expressed as

percentage of the total processing time.

operation The amount of CPU time that the thread spent in traced operations, expressed as

percentage of the total processing time.

Kproc Types

 Type A single letter to be used as an index into this listing.

Function A description of the nominal function of this type of kernel process.

Operation A description of the traced operations for this type of kernel process.

Application Pthread Summary by process ID (Pid)

The Application Pthread Summary, by PID, shows an output of all the multi-threaded processes that were

running on the system during trace collection and their CPU consumption, and that have spent time

making pthread calls. The process that consumed the most CPU time during the trace collection is at the

beginning of the list.

 Application Pthread Summary (by Pid)

 -- processing total (msec) -- -- percent of total application time --

application other pthread application other pthread name (Pid)(Pthread Count)

=========== ========== ========== =========== ========== ========== =========================

 1277.6602 1274.9354 2.7249 23.8113 23.7605 0.0508 ./pth(245964)(52)

 802.6445 801.4162 1.2283 14.9586 14.9357 0.0229 ./pth32(245962)(12)

 ...(lines omitted)...

The output is divided into two main sections:

v The total processing time of the process in milliseconds (processing total (msec))

v The CPU time that the process has consumed, expressed as a percentage of the total application time

The Application Pthread Summary has the following fields:

 name (Pid) (Pthread Count) The name of the process associated with the process ID, and

the number of pthreads of this process.

processing total (msec)

 application The total amount of CPU time, expressed in milliseconds, that the process was

running in user mode.

Chapter 3. CPU Utilization Reporting Tool (curt) 75

pthread The amount of CPU time, expressed in milliseconds, that the process spent in traced

call to the pthreads library.

other The amount of CPU time, expressed in milliseconds, that the process spent in non

traced user mode.

percent of total application time

 application The amount of CPU time that the process was running in user mode, expressed as percentage

of the total application time.

pthread The amount of CPU time that the process spent in calls to the pthreads library, expressed as

percentage of the total application time.

other The amount of CPU time that the process spent in non traced user mode, expressed as

percentage of the total application time.

System Calls Summary

The System Calls Summary provides a list of all the system calls that have completed execution on the

system during the monitoring period. The list is sorted by the total CPU time in milliseconds consumed by

each type of system call.

 System Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)

 (msec) time (msec) (msec) (msec)

 ======== =========== ====== ======== ======== ======== ================

 605 355.4475 1.74% 0.5875 0.0482 4.5626 kwrite(4259c4)

 733 196.3752 0.96% 0.2679 0.0042 2.9948 kread(4259e8)

 3 9.2217 0.05% 3.0739 2.8888 3.3418 execve(1c95d8)

 38 7.6013 0.04% 0.2000 0.0051 1.6137 __loadx(1c9608)

 1244 4.4574 0.02% 0.0036 0.0010 0.0143 lseek(425a60)

 45 4.3917 0.02% 0.0976 0.0248 0.1810 access(507860)

 63 3.3929 0.02% 0.0539 0.0294 0.0719 _select(4e0ee4)

 2 2.6761 0.01% 1.3380 1.3338 1.3423 kfork(1c95c8)

 207 2.3958 0.01% 0.0116 0.0030 0.1135 _poll(4e0ecc)

 228 1.1583 0.01% 0.0051 0.0011 0.2436 kioctl(4e07ac)

 9 0.8136 0.00% 0.0904 0.0842 0.0988 .smtcheckinit(1b245a8)

 5 0.5437 0.00% 0.1087 0.0696 0.1777 open(4e08d8)

 15 0.3553 0.00% 0.0237 0.0120 0.0322 .smtcheckinit(1b245cc)

 2 0.2692 0.00% 0.1346 0.1339 0.1353 statx(4e0950)

 33 0.2350 0.00% 0.0071 0.0009 0.0210 _sigaction(1cada4)

 1 0.1999 0.00% 0.1999 0.1999 0.1999 kwaitpid(1cab64)

 102 0.1954 0.00% 0.0019 0.0013 0.0178 klseek(425a48)

 ...(lines omitted)...

The System Calls Summary has the following fields:

 Count The number of times that a system call of a certain type (see SVC (Address)) has been

called during the monitoring period.

Total Time (msec) The total CPU time that the system spent processing these system calls, expressed in

milliseconds.

% sys time The total CPU time that the system spent processing these system calls, expressed as a

percentage of the total processing time.

Avg Time (msec) The average CPU time that the system spent processing one system call of this type,

expressed in milliseconds.

Min Time (msec) The minimum CPU time that the system needed to process one system call of this type,

expressed in milliseconds.

76 Performance Tools Guide and Reference

Max Time (msec) The maximum CPU time that the system needed to process one system call of this type,

expressed in milliseconds.

SVC (Address) The name of the system call and its kernel address.

Pending System Calls Summary

The Pending System Calls Summary provides a list of all the system calls that have been executed on the

system during the monitoring period but have not completed. The list is sorted by Tid.

 Pending System Calls Summary

Accumulated SVC (Address) Procname (Pid Tid)

Time (msec)

============ ========================= ==========================

 0.0656 _select(4e0ee4) sendmail(7844 5001)

 0.0452 _select(4e0ee4) syslogd(7514 8591)

 0.0712 _select(4e0ee4) snmpd(5426 9293)

 0.0156 kioctl(4e07ac) trcstop(47210 18379)

 0.0274 kwaitpid(1cab64) ksh(20276 44359)

 0.0567 kread4259e8) ksh(23342 50873)

 ...(lines omitted)...

The Pending System Calls Summary has the following fields:

 Accumulated Time

(msec)

The accumulated CPU time that the system spent processing the pending system call,

expressed in milliseconds.

SVC (Address) The name of the system call and its kernel address.

Procname (Pid Tid) The name of the process associated with the thread that made the system call, its process

ID, and the thread ID.

Hypervisor Calls Summary

The Hypervisor Calls Summary provides a list of all the hypervisor calls that have completed execution on

the system during the monitoring period. The list is sorted by the total CPU time, in milliseconds,

consumed by each type of hypervisor call.

 Hypervisor Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time HCALL (Address)

 (msec) time (msec) (msec) (msec)

======== =========== ====== ======== ======== ======== =================

 4 0.0077 0.00% 0.0019 0.0014 0.0025 H_XIRR(3ada19c)

 4 0.0070 0.00% 0.0017 0.0015 0.0021 H_EOI(3ad6564)

The Hypervisor Calls Summary has the following fields:

 Count The number of times that a hypervisor call of a certain type has been called during

the monitoring period.

Total Time (msec) The total CPU time that the system spent processing hypervisor calls of this type,

expressed in milliseconds.

% sys Time The total CPU time that the system spent processing the hypervisor calls of this type,

expressed as a percentage of the total processing time.

Avg Time (msec) The average CPU time that the system spent processing one hypervisor call of this

type, expressed in milliseconds.

Min Time (msec) The minimum CPU time that the system needed to process one hypervisor call of this

type, expressed in milliseconds.

Max Time (msec) The maximum CPU time that the system needed to process one hypervisor call of

this type, expressed in milliseconds

Chapter 3. CPU Utilization Reporting Tool (curt) 77

HCALL (address) The name of the hypervisor call and the kernel address of its caller.

Pending Hypervisor Calls Summary

The Pending Hypervisor Calls Summary provides a list of all the hypervisor calls that have been executed

on the system during the monitoring period but have not completed. The list is sorted by Tid.

 Pending Hypervisor Calls Summary

Accumulated HCALL (Address) Procname (Pid Tid)

Time (msec)

============ ========================= ==========================

 0.0066 H_XIRR(3ada19c) syncd(3916 5981)

The Pending Hypervisor Calls Summary has the following fields:

 Accumulated Time (msec) The accumulated CPU time that the system spent processing the pending hypervisor

call, expressed in milliseconds.

HCALL (address) The name of the hypervisor call and the kernel address of its caller.

Procname (Pid Tid) The name of the process associated with the thread that made the hypervisor call, its

process ID, and the thread ID.

System NFS Calls Summary

The System NFS Calls Summary provides a list of all the system NFS calls that have completed execution

on the system during the monitoring period. The list is divided by NFS versions, and each list is sorted by

the total CPU time, in milliseconds, consumed by each type of system NFS call.

 System NFS Calls Summary

 Count Total Time Avg Time Min Time Max Time % Tot % Tot Opcode

 (msec) (msec) (msec) (msec) Time Count

======== =========== ======== ======== ======== ===== ===== =============

 253 48.4115 0.1913 0.0952 1.0097 98.91 98.83 RFS2_READLINK

 2 0.3959 0.1980 0.1750 0.2209 0.81 0.78 RFS2_LOOKUP

 1 0.1373 0.1373 0.1373 0.1373 0.28 0.39 RFS2_NULL

-------- ----------- -------- -------- -------- ----- ----- -------------

 256 48.9448 0.1912 NFS V2 TOTAL

 3015 4086.9121 1.3555 0.1035 31.6976 40.45 17.12 RFS3_READ

 145 2296.3158 15.8367 1.1177 42.9125 22.73 0.82 RFS3_WRITE

 10525 2263.3336 0.2150 0.0547 2.9737 22.40 59.77 RFS3_LOOKUP

 373 777.2854 2.0839 0.2839 17.5724 7.69 2.12 RFS3_READDIRPLUS

 2058 385.9510 0.1875 0.0875 1.1993 3.82 11.69 RFS3_GETATTR

 942 178.6442 0.1896 0.0554 1.2320 1.77 5.35 RFS3_ACCESS

 515 97.0297 0.1884 0.0659 0.9774 0.96 2.92 RFS3_READLINK

 25 11.3046 0.4522 0.2364 0.9712 0.11 0.14 RFS3_READDIR

 3 2.8648 0.9549 0.8939 0.9936 0.03 0.02 RFS3_CREATE

 3 2.8590 0.9530 0.5831 1.4095 0.03 0.02 RFS3_COMMIT

 2 1.1824 0.5912 0.2796 0.9028 0.01 0.01 RFS3_FSSTAT

 1 0.2773 0.2773 0.2773 0.2773 0.00 0.01 RFS3_SETATTR

 1 0.2366 0.2366 0.2366 0.2366 0.00 0.01 RFS3_PATHCONF

 1 0.1804 0.1804 0.1804 0.1804 0.00 0.01 RFS3_NULL

-------- ----------- -------- -------- -------- ----- ----- -------------

 17609 10104.3769 0.5738 NFS V3 TOTAL

 105 2296.3158 15.8367 1.1177 42.9125 22.73 0.82 CLOSE

 3025 2263.3336 0.2150 0.0547 2.9737 22.40 59.77 COMMIT

 373 777.2854 2.0839 0.2839 17.5724 7.69 2.12 CREATE

 2058 385.9510 0.1875 0.0875 1.1993 3.82 11.69 DELEGPURGE

 942 178.6442 0.1896 0.0554 1.2320 1.77 5.35 DELEGRETURN

 515 97.0297 0.1884 0.0659 0.9774 0.96 2.92 GETATTR

 25 11.3046 0.4522 0.2364 0.9712 0.11 0.14 GETFH

 3 2.8648 0.9549 0.8939 0.9936 0.03 0.02 LINK

 3 2.8590 0.9530 0.5831 1.4095 0.03 0.02 LOCK

78 Performance Tools Guide and Reference

2 1.1824 0.5912 0.2796 0.9028 0.01 0.01 LOCKT

 1 0.2773 0.2773 0.2773 0.2773 0.00 0.01 LOCKU

 1 0.2366 0.2366 0.2366 0.2366 0.00 0.01 OOKUP

 1 0.1804 0.1804 0.1804 0.1804 0.00 0.01 LOOKUPP

 1 0.1704 0.1704 0.1704 0.1704 0.00 0.01 NVERIFY

-------- ----------- -------- -------- -------- ----- ----- -------------

 17609 10104.3769 0.5738 NFS V4 SERVER TOTAL

 3 2.8590 0.9530 0.5831 1.4095 0.03 0.02 NFS4_ACCESS

 2 1.1824 0.5912 0.2796 0.9028 0.01 0.01 NFS$_VALIDATE_CACHES

 1 0.2773 0.2773 0.2773 0.2773 0.00 0.01 NFS4_GETATTR

 1 0.2366 0.2366 0.2366 0.2366 0.00 0.01 NFS4_CHECK_ACCESS

 1 0.0000 0.0000 0.1804 0.1804 0.00 0.01 NFS4_HOLD

 1 0.1704 0.1704 0.1704 0.1704 0.00 0.01 NFS4_RELE

-------- ----------- -------- -------- -------- ----- ----- -------------

 17609 10104.3769 0.5738 NFS V4 CLIENT TOTAL

The System NFS Calls Summary has the following fields:

 Count The number of times that a certain type of system NFS call (see Opcode) has been

called during the monitoring period.

Total Time (msec) The total CPU time that the system spent processing system NFS calls of this type,

expressed in milliseconds.

Avg Time (msec) The average CPU time that the system spent processing one system NFS call of this

type, expressed in milliseconds.

Min Time (msec) The minimum CPU time that the system needed to process one system NFS call of

this type, expressed in milliseconds.

Max Time (msec) The maximum CPU time that the system needed to process one system NFS call of

this type, expressed in milliseconds

% Tot Time The total CPU time that the system spent processing the system NFS calls of this

type, expressed as a percentage of the total processing time.

% Tot Count The number of times that a system NFS call of a certain type was made, expressed

as a percentage of the total count.

Opcode The name of the system NFS call.

Pending NFS Calls Summary

The Pending NFS Calls Summary provides a list of all the system NFS calls that have executed on the

system during the monitoring period but have not completed. The list is sorted by the Tid.

Pending NFS Calls Summary

Accumulated Sequence Number Procname (Pid Tid)

Time (msec) Opcode

============ =============== ==========================

 0.0831 1038711932 nfsd(1007854 331969)

 0.0833 1038897247 nfsd(1007854 352459)

 0.0317 1038788652 nfsd(1007854 413931)

 0.0029 NFS4_ATTRCACHE kbiod(100098 678934)

..(lines omitted)...

The Pending System NFS Calls Summary has the following fields:

 Accumulated Time (msec) The accumulated CPU time that the system spent processing the pending system

NFS call, expressed in milliseconds.

Chapter 3. CPU Utilization Reporting Tool (curt) 79

Sequence Number The sequence number represents the transaction identifier (XID) of an NFS

operation. It is used to uniquely identify an operation and is used in the RPC

call/reply messages. This number is provided instead of the operation name

because the name of the operation is unknown until it completes.

Opcode The name of pending operation NFS V4.

Procname (Pid Tid) The name of the process associated with the thread that made the system NFS

call, its process ID, and the thread ID.

Pthread Calls Summary

The Pthread Calls Summary provides a list of all the pthread calls that have completed execution on the

system during the monitoring period. The list is sorted by the total CPU time, in milliseconds, consumed by

each type of pthread call.

 Pthread Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time Pthread Routine

 (msec) time (msec) (msec) (msec)

======== =========== ====== ======== ======== ======== ================

 62 3.6226 0.04% 0.0584 0.0318 0.1833 pthread_create

 10 0.1798 0.00% 0.0180 0.0119 0.0341 pthread_cancel

 8 0.0725 0.00% 0.0091 0.0064 0.0205 pthread_join

 1 0.0553 0.00% 0.0553 0.0553 0.0553 pthread_detach

 1 0.0229 0.00% 0.0229 0.0229 0.0229 pthread_kill

The Pthread Calls Summary report has the following fields:

 Count The number of times that a pthread call of a certain type has been called during the

monitoring period.

Total Time (msec) The total CPU time that the system spent processing all pthread calls of this type, expressed

in milliseconds.

% sys time The total CPU time that the system spent processing all calls of this type, expressed as a

percentage of the total processing time.

Avg Time (msec) The average CPU time that the system spent processing one pthread call of this type,

expressed in milliseconds.

Min Time (msec) The minimum CPU time the system used to process one pthread call of this type, expressed

in milliseconds.

Pthread routine The name of the routine in the pthread library.

Pending Pthread Calls Summary

The Pending Pthread Calls Summary provides a list of all the pthread calls that have been executed on

the system during the monitoring period but have not completed. The list is sorted by Pid-Ptid.

 Pending Pthread Calls Summary

Accumulated Pthread Routine Procname (Pid Tid Ptid)

Time (msec)

============ =============== ==========================

 1990.9400 pthread_join ./pth32(245962 1007759 1)

The Pending Pthread System Calls Summary has the following fields:

 Accumulated Time

(msec)

The accumulated CPU time that the system spent processing the pending pthread call,

expressed in milliseconds.

Pthread Routine The name of the pthread routine of the libpthreads library.

80 Performance Tools Guide and Reference

Procname (Pid Tid

Ptid)

The name of the process associated with the thread and the pthread which made the pthread

call, its process ID, the thread ID and the pthread ID.

FLIH Summary

The FLIH (First Level Interrupt Handler) Summary lists all first level interrupt handlers that were called

during the monitoring period.

The Global FLIH Summary lists the total of first level interrupts on the system, while the Per CPU FLIH

Summary lists the first level interrupts per CPU.

 Global Flih Summary

 Count Total Time Avg Time Min Time Max Time Flih Type

 (msec) (msec) (msec) (msec)

 ====== =========== =========== =========== =========== =========

 2183 203.5524 0.0932 0.0041 0.4576 31(DECR_INTR)

 946 102.4195 0.1083 0.0063 0.6590 3(DATA_ACC_PG_FLT)

 12 1.6720 0.1393 0.0828 0.3366 32(QUEUED_INTR)

 1058 183.6655 0.1736 0.0039 0.7001 5(IO_INTR)

 Per CPU Flih Summary

 CPU Number 0:

 Count Total Time Avg Time Min Time Max Time Flih Type

 (msec) (msec) (msec) (msec)

 ====== =========== =========== =========== =========== =========

 635 39.8413 0.0627 0.0041 0.4576 31(DECR_INTR)

 936 101.4960 0.1084 0.0063 0.6590 3(DATA_ACC_PG_FLT)

 9 1.3946 0.1550 0.0851 0.3366 32(QUEUED_INTR)

 266 33.4247 0.1257 0.0039 0.4319 5(IO_INTR)

 CPU Number 1:

 Count Total Time Avg Time Min Time Max Time Flih Type

 (msec) (msec) (msec) (msec)

 ====== =========== =========== =========== =========== =========

 4 0.2405 0.0601 0.0517 0.0735 3(DATA_ACC_PG_FLT)

 258 49.2098 0.1907 0.0060 0.5076 5(IO_INTR)

 515 55.3714 0.1075 0.0080 0.3696 31(DECR_INTR)

 Pending Flih Summary

 Accumulated Time (msec) Flih Type

 ======================== ================

 0.0123 5(IO_INTR)

 ...(lines omitted)...

The FLIH Summary report has the following fields:

 Count The number of times that a first level interrupt of a certain type (see Flih Type) occurred

during the monitoring period.

Total Time (msec) The total CPU time that the system spent processing these first level interrupts, expressed in

milliseconds.

Avg Time (msec) The average CPU time that the system spent processing one first level interrupt of this type,

expressed in milliseconds.

Min Time (msec) The minimum CPU time that the system needed to process one first level interrupt of this

type, expressed in milliseconds.

Max Time (msec) The maximum CPU time that the system needed to process one first level interrupt of this

type, expressed in milliseconds.

Flih Type The number and name of the first level interrupt.

Chapter 3. CPU Utilization Reporting Tool (curt) 81

Accumulated Time

(msec)

The accumulated CPU time that the system spent processing the pending first level interrupt,

expressed in milliseconds.

FLIH types in the example

The following are FLIH types that were depicted in the above example:

 DATA_ACC_PG_FLT Data access page fault

QUEUED_INTR Queued interrupt

DECR_INTR Decrementer interrupt

IO_INTR I/O interrupt

SLIH Summary

The Second level interrupt handler (SLIH) Summary lists all second level interrupt handlers that were

called during the monitoring period.

The Global Slih Summary lists the total of second level interrupts on the system, while the Per CPU Slih

Summary lists the second level interrupts per CPU.

 Global Slih Summary

 Count Total Time Avg Time Min Time Max Time Slih Name(Address)

 (msec) (msec) (msec) (msec)

 ====== =========== =========== =========== =========== =================

 43 7.0434 0.1638 0.0284 0.3763 s_scsiddpin(1a99104)

 1015 42.0601 0.0414 0.0096 0.0913 ssapin(1990490)

 Per CPU Slih Summary

 CPU Number 0:

 Count Total Time Avg Time Min Time Max Time Slih Name(Address)

 (msec) (msec) (msec) (msec)

 ====== =========== =========== =========== =========== =================

 8 1.3500 0.1688 0.0289 0.3087 s_scsiddpin(1a99104)

 258 7.9232 0.0307 0.0096 0.0733 ssapin(1990490)

 CPU Number 1:

 Count Total Time Avg Time Min Time Max Time Slih Name(Address)

 (msec) (msec) (msec) (msec)

 ====== =========== =========== =========== =========== =================

 10 1.2685 0.1268 0.0579 0.2818 s_scsiddpin(1a99104)

 248 11.2759 0.0455 0.0138 0.0641 ssapin(1990490)

 ...(lines omitted)...

The SLIH Summary report has the following fields:

 Count The number of times that each second level interrupt handler was called during the

monitoring period.

Total Time (msec) The total CPU time that the system spent processing these second level interrupts,

expressed in milliseconds.

Avg Time (msec) The average CPU time that the system spent processing one second level interrupt of this

type, expressed in milliseconds.

Min Time (msec) The minimum CPU time that the system needed to process one second level interrupt of this

type, expressed in milliseconds.

Max Time (msec) The maximum CPU time that the system needed to process one second level interrupt of this

type, expressed in milliseconds.

Slih Name (Address) The module name and kernel address of the second level interrupt.

82 Performance Tools Guide and Reference

Reports Generated with the -e Flag

The report generated with the -e flag includes the data shown in the default report, and also includes

additional information in the System Calls Summary, the Pending System Calls Summary, the Hypervisor

Calls Summary, the Pending Hypervisor Calls Summary, the System NFS Calls Summary, the Pending

NFS Calls Summary, the Pthread Calls Summary and the Pending Pthread Calls Summary.

The additional information in the System Calls Summary, Hypervisor Calls Summary, System NFS Calls

Summary, and the Pthread Calls Summary includes the total, average, maximum, and minimum elapsed

time that a call was running. The additional information in the Pending System Calls Summary, Pending

Hypervisor Calls Summary, Pending NFS Calls Summary, and the Pending Pthread Calls Summary is the

accumulated elapsed time for the pending calls. This additional information is present in all the system

call, hypervisor call, NFS call, and pthread call reports: globally, in the process detailed report (-p), the

thread detailed report (-t), and the pthread detailed report (-P).

The following is an example of the additional information reported by using the -e flag:

curt -e -i trace.r -m trace.nm -n gensyms.out -o curt.out

cat curt.out

 ...(lines omitted)...

 System Calls Summary

 Count Total % sys Avg Min Max Tot Avg Min Max SVC (Address)

 Time time Time Time Time ETime ETime ETime ETime

 (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec)

 ===== ======== ===== ====== ====== ====== ========== ========= ========= ========= ======================

 605 355.4475 1.74% 0.5875 0.0482 4.5626 31172.7658 51.5252 0.0482 422.2323 kwrite(4259c4)

 733 196.3752 0.96% 0.2679 0.0042 2.9948 12967.9407 17.6916 0.0042 265.1204 kread(4259e8)

 3 9.2217 0.05% 3.0739 2.8888 3.3418 57.2051 19.0684 4.5475 40.0557 execve(1c95d8)

 38 7.6013 0.04% 0.2000 0.0051 1.6137 12.5002 0.3290 0.0051 3.3120 __loadx(1c9608)

 1244 4.4574 0.02% 0.0036 0.0010 0.0143 4.4574 0.0036 0.0010 0.0143 lseek(425a60)

 45 4.3917 0.02% 0.0976 0.0248 0.1810 4.6636 0.1036 0.0248 0.3037 access(507860)

 63 3.3929 0.02% 0.0539 0.0294 0.0719 5006.0887 79.4617 0.0294 100.4802 _select(4e0ee4)

 2 2.6761 0.01% 1.3380 1.3338 1.3423 45.5026 22.7513 7.5745 37.9281 kfork(1c95c8)

 207 2.3958 0.01% 0.0116 0.0030 0.1135 4494.9249 21.7146 0.0030 499.1363 _poll(4e0ecc)

 228 1.1583 0.01% 0.0051 0.0011 0.2436 1.1583 0.0051 0.0011 0.2436 kioctl(4e07ac)

 9 0.8136 0.00% 0.0904 0.0842 0.0988 4498.7472 499.8608 499.8052 499.8898 .smtcheckinit(1b245a8)

 5 0.5437 0.00% 0.1087 0.0696 0.1777 0.5437 0.1087 0.0696 0.1777 open(4e08d8)

 15 0.3553 0.00% 0.0237 0.0120 0.0322 0.3553 0.0237 0.0120 0.0322 .smtcheckinit(1b245cc)

 2 0.2692 0.00% 0.1346 0.1339 0.1353 0.2692 0.1346 0.1339 0.1353 statx(4e0950)

 33 0.2350 0.00% 0.0071 0.0009 0.0210 0.2350 0.0071 0.0009 0.0210 _sigaction(1cada4)

 1 0.1999 0.00% 0.1999 0.1999 0.1999 5019.0588 5019.0588 5019.0588 5019.0588 kwaitpid(1cab64)

 102 0.1954 0.00% 0.0019 0.0013 0.0178 0.5427 0.0053 0.0013 0.3650 klseek(425a48)

 ...(lines omitted)...

 Pending System Calls Summary

Accumulated Accumulated SVC (Address) Procname (Pid Tid)

Time (msec) ETime (msec)

============ ============ ========================= =========================

 0.0855 93.6498 kread(4259e8) oracle(143984 48841)

 ...(lines omitted)...

 Hypervisor Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time Tot ETime Avg ETime Min ETime Max ETime HCALL (Address)

 (msec) time (msec) (msec) (msec) (msec) (msec) (msec) (msec)

======== =========== ====== ======== ======== ======== ======== ========= ========= ========= =================

 4 0.0077 0.00% 0.0019 0.0014 0.0025 0.0077 0.0019 0.0014 0.0025 H_XIRR(3ada19c)

 4 0.0070 0.00% 0.0017 0.0015 0.0021 0.0070 0.0017 0.0015 0.0021 H_EOI(3ad6564)

 Pending Hypervisor Calls Summary

Accumulated Accumulated HCALL (Address) Procname (Pid Tid)

Time (msec) ETime (msec)

============ ============ ========================= =========================

 0.0855 93.6498 H_XIRR(3ada19c) syncd(3916 5981)

 System NFS Calls Summary

 Count Total Time Avg Time Min Time Max Time % Tot Total ETime Avg ETime Min ETime Max ETime % Tot % Tot Opcode

 (msec) (msec) (msec) (msec) Time (msec) (msec) (msec) (msec) ETime Count

======== =========== ======== ======== ======== ===== =========== ========= ========= ========= ===== ===== =============

Chapter 3. CPU Utilization Reporting Tool (curt) 83

6647 456.1029 0.0686 0.0376 0.6267 15.83 9267.7256 1.3943 0.0376 304.9501 14.63 27.88 RFS3_LOOKUP

 2694 147.1680 0.0546 0.0348 0.5517 5.11 1474.4267 0.5473 0.0348 25.9402 2.33 11.30 RFS3_GETATTR

 1702 85.8328 0.0504 0.0339 0.5793 2.98 146.4281 0.0860 0.0339 5.7539 0.23 7.14 RFS3_READLINK

 1552 78.1015 0.0503 0.0367 0.5513 2.71 153.5844 0.0990 0.0367 7.5125 0.24 6.51 RFS3_ACCESS

 235 33.3158 0.1418 0.0890 0.3312 1.16 1579.4557 6.7211 0.0890 56.0876 2.49 0.99 RFS3_SETATTR

 21 5.5979 0.2666 0.0097 0.8142 82.79 127.2616 6.0601 0.0097 89.0570 99.37 25.00 NFS4_WRITE

 59 1.1505 0.0195 0.0121 0.0258 17.01 0.7873 0.0133 0.0093 0.0194 0.61 70.24 NFS4_ATTRCACHE

 4 0.0135 0.0034 0.0026 0.0044 0.20 0.0135 0.0034 0.0026 0.0044 0.01 4.76 NFS4_GET_UID_GID

...(line omitted)...

 Pending NFS Calls Summary

Accumulated Accumulated Sequence Number Procname (Pid Tid)

Time (msec) ETime (msec) Opcode

============ ============ =============== ==========================

 0.0831 15.1581 1038711932 nfsd(1007854 331969)

 0.0833 13.8889 1038897247 nfsd(1007854 352459)

 0.0087 10.8976 NFS4_ATTRCACHE kbiod(100098 678934)

...(line omitted)...

 Pthread Calls Summary

Count Total Time % sys Avg Time Min Time Max Time Tot ETime Avg ETime Min ETime Max ETime Pthread Routine

 (msec) time (msec) (msec) (msec) (msec) (msec) (msec) (msec)

==== =========== ====== ======== ======== ======== ======== ========= ========= ========= ================

 72 2.0126 0.01% 0.0280 0.0173 0.1222 13.7738 0.1913 0.0975 0.6147 pthread_create

 2 0.6948 0.00% 0.3474 0.0740 0.6208 92.3033 46.1517 9.9445 82.3588 pthread_kill

 12 0.3087 0.00% 0.0257 0.0058 0.0779 25.0506 2.0876 0.0168 10.0605 pthread_cancel

 22 0.0613 0.00% 0.0028 0.0017 0.0104 2329.0179 105.8644 0.0044 1908.3402 pthread_join

 2 0.0128 0.00% 0.0064 0.0062 0.0065 0.1528 0.0764 0.0637 0.0891 pthread_detach

 Pending Pthread Calls Summary

Accumulated Accumulated Pthread Routine Procname (pid tid ptid)

Time (msec) ETime (msec)

============ ============ =============== =========================

 3.3102 4946.5433 pthread_join ./pth32(282718 700515 1)

 0.0025 544.4914 pthread_join ./pth(282720 - 1)

The system call, hypervisor call, NFS call, and pthread call reports in the preceding example have the

following fields in addition to the default System Calls Summary, Hypervisor Calls Summary, System NFS

Calls Summary, and Pthread Calls Summary :

 Tot ETime (msec) The total amount of time from when each instance of the call was started until it

completed. This time will include any time spent servicing interrupts, running other

processes, and so forth.

Avg ETime (msec) The average amount of time from when the call was started until it completed. This time

will include any time spent servicing interrupts, running other processes, and so forth.

Min ETime (msec) The minimum amount of time from when the call was started until it completed. This time

will include any time spent servicing interrupts, running other processes, and so forth.

Max ETime (msec) The maximum amount of time from when the call was started until it completed. This time

will include any time spent servicing interrupts, running other processes, and so forth.

Accumulated ETime

(msec)

The total amount of time from when the pending call was started until the end of the

trace. This time will include any time spent servicing interrupts, running other processes,

and so forth.

The preceding example report shows that the maximum elapsed time for the kwrite system call was

422.2323 msec, but the maximum CPU time was 4.5626 msec. If this amount of overhead time is unusual

for the device being written to, further analysis is needed.

Reports Generated with the -s Flag

The report generated with the -s flag includes the data shown in the default report, and also includes data

on errors returned by system calls as shown by the following:

curt -s -i trace.r -m trace.nm -n gensyms.out -o curt.out

cat curt.out

...(lines omitted)...

84 Performance Tools Guide and Reference

Errors Returned by System Calls

Errors (errno : count : description) returned for System Call: kioctl(4e07ac)

 25 : 15 : "Not a typewriter"

Errors (errno : count : description) returned for System Call: execve(1c95d8)

 2 : 2 : "No such file or directory"

...(lines omitted)...

If a large number of errors of a specific type or on a specific system call point to a system or application

problem, other debug measures can be used to determine and fix the problem.

Reports Generated with the -t Flag

The report generated with the -t flag includes the data shown in the default report, and also includes a

detailed report on thread status that includes the amount of time the thread was in application and system

call mode, what system calls the thread made, processor affinity, the number of times the thread was

dispatched, and to which CPU(s) it was dispatched. The report also includes dispatch wait time and details

of interrupts:

...(lines omitted)...

--

Report for Thread Id: 48841 (hex bec9) Pid: 143984 (hex 23270)

Process Name: oracle

 Total Application Time (ms): 70.324465

 Total System Call Time (ms): 53.014910

 Total Hypervisor Call Time (ms): 0.077000

 Thread System Call Summary

 Count Total Time Avg Time Min Time Max Time SVC (Address)

 (msec) (msec) (msec) (msec)

======== =========== =========== =========== =========== ================

 69 34.0819 0.4939 0.1666 1.2762 kwrite(169ff8)

 77 12.0026 0.1559 0.0474 0.2889 kread(16a01c)

 510 4.9743 0.0098 0.0029 0.0467 times(f1e14)

 73 1.2045 0.0165 0.0105 0.0306 select(1d1704)

 68 0.6000 0.0088 0.0023 0.0445 lseek(16a094)

 12 0.1516 0.0126 0.0071 0.0241 getrusage(f1be0)

 No Errors Returned by System Calls

 Pending System Calls Summary

Accumulated SVC (Address)

Time (msec)

============ ==========================

 0.1420 kread(16a01c)

 Thread Hypervisor Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time HCALL (Address)

 (msec) time (msec) (msec) (msec)

 ======== =========== ====== ======== ======== ======== =================

 4 0.0077 0.00% 0.0019 0.0014 0.0025 H_XIRR(3ada19c)

 Pending Hypervisor Calls Summary

 Accumulated HCALL (Address)

 Time (msec)

 ============ =========================

Chapter 3. CPU Utilization Reporting Tool (curt) 85

0.0066 H_XIRR(3ada19c)

 processor affinity: 0.583333

Dispatch Histogram for thread (CPUid : times_dispatched).

 CPU 0 : 23

 CPU 1 : 23

 CPU 2 : 9

 CPU 3 : 9

 CPU 4 : 8

 CPU 5 : 14

 CPU 6 : 17

 CPU 7 : 19

 CPU 8 : 1

 CPU 9 : 4

 CPU 10 : 1

 CPU 11 : 4

 total number of dispatches: 131

 total number of redispatches due to interupts being disabled: 1

 avg. dispatch wait time (ms): 8.273515

 Data on Interrupts that Occurred while Thread was Running

 Type of Interrupt Count

 =============================== ============================

 Data Access Page Faults (DSI): 115

 Instr. Fetch Page Faults (ISI): 0

 Align. Error Interrupts: 0

 IO (external) Interrupts: 0

 Program Check Interrupts: 0

 FP Unavailable Interrupts: 0

 FP Imprecise Interrupts: 0

 RunMode Interrupts: 0

 Decrementer Interrupts: 18

 Queued (Soft level) Interrupts: 15

...(lines omitted)...

If the thread belongs to an NFS kernel process, the report will include information on NFS operations

instead of System calls:

Report for Thread Id: 1966273 (hex 1e00c1) Pid: 1007854 (hex f60ee)

Process Name: nfsd

 Total Kernel Time (ms): 3.198998

 Total Operation Time (ms): 28.839927

Total Hypervisor Call Time (ms): 0.000000

 Thread NFS Call Summary

 Count Total Time Avg Time Min Time Max Time % Tot Total ETime Avg ETime Min ETime Max ETime % Tot % Tot Opcode

 (msec) (msec) (msec) (msec) Time (msec) (msec) (msec) (msec) ETime Count

======== =========== ======== ======== ======== ===== =========== ========= ========= ========= ===== ===== =============

 28 12.2661 0.4381 0.3815 0.4841 42.73 32.0893 1.1460 0.4391 16.6283 11.46 11.52 RFS3_READDIRPLUS

 63 3.8953 0.0618 0.0405 0.1288 13.57 23.1031 0.3667 0.0405 7.0886 8.25 25.93 RFS3_LOOKUP

 49 3.2795 0.0669 0.0527 0.0960 11.42 103.8431 2.1192 0.0534 35.3617 37.09 20.16 RFS3_READ

 18 2.8464 0.1581 0.1099 0.2264 9.91 7.9129 0.4396 0.1258 4.3503 2.83 7.41 RFS3_WRITE

 29 1.3331 0.0460 0.0348 0.0620 4.64 1.4953 0.0516 0.0348 0.0940 0.53 11.93 RFS3_GETATTR

 5 1.2763 0.2553 0.2374 0.3036 4.45 45.0798 9.0160 0.9015 21.7257 16.10 2.06 RFS3_REMOVE

 8 1.1001 0.1375 0.1180 0.1719 3.83 53.6532 6.7067 1.4293 19.9199 19.17 3.29 RFS3_COMMIT

 20 0.9262 0.0463 0.0367 0.0507 3.23 1.2060 0.0603 0.0367 0.1314 0.43 8.23 RFS3_READLINK

 15 0.6798 0.0453 0.0386 0.0519 2.37 0.8015 0.0534 0.0386 0.0788 0.29 6.17 RFS3_ACCESS

 2 0.4033 0.2017 0.1982 0.2051 1.40 0.5355 0.2677 0.2677 0.2677 0.19 0.82 RFS3_READDIR

 1 0.3015 0.3015 0.3015 0.3015 1.05 6.2614 6.2614 6.2614 6.2614 2.24 0.41 RFS3_CREATE

 2 0.2531 0.1265 0.1000 0.1531 0.88 3.7756 1.8878 0.1000 3.6756 1.35 0.82 RFS3_SETATTR

 2 0.0853 0.0426 0.0413 0.0440 0.30 0.1333 0.0667 0.0532 0.0802 0.05 0.82 RFS3_FSINFO

 1 0.0634 0.0634 0.0634 0.0634 0.22 0.0634 0.0634 0.0634 0.0634 0.02 0.41 RFS3_FSSTAT

-------- ----------- -------- -------- -------- ----- ----------- --------- --------- --------- ----- ----- -------------

 243 28.7094 0.1181 279.9534 1.1521 NFS V3 TOTAL

 4 0.0777 0.0194 0.0164 0.0232 10.00 0.0523 0.0131 0.0115 0.0152 10.00 10.00 LINK

-------- ----------- -------- -------- -------- ----- ----------- --------- ---------- --------- ----- ----- -------------

 4 0.0777 0.0194 0.0523 0.0131 NFS V4 CLIENT TOTAL

 Pending NFS Calls Summary

86 Performance Tools Guide and Reference

Accumulated Accumulated Sequence Number

Time (msec) ETime (msec) Opcode

============ ============ ===============

 0.1305 182.6903 1038932778

 0.0123 102.6324 NFS4_ATTRCACHE

The information in the threads summary includes the following:

 Thread ID The Thread ID of the thread.

Process ID The Process ID that the thread belongs to.

Process Name The process name, if known, that the thread belongs to.

Total Application Time (ms) The amount of time, expressed in milliseconds, that the thread spent in application

mode.

Total System Call Time (ms) The amount of time, expressed in milliseconds, that the thread spent in system call

mode.

Thread System Call

Summary

A system call summary for the thread; this has the same fields as the global System

Calls Summary. It also includes elapsed time if the -e flag is specified and error

information if the -s flag is specified.

Pending System Calls

Summary

If the thread was executing a system call at the end of the trace, a pending system

call summary will be printed. This has the Accumulated Time and Supervisor Call

(SVC Address) fields. It also includes elapsed time if the -e flag is specified.

Thread Hypervisor Calls

Summary

The hypervisor call summary for the thread; this has the same fields as the global

Hypervisor Calls Summary. It also includes elapsed time if the -e flag is specified.

Pending Hypervisor Calls

Summary

If the thread was executing a hypervisor call at the end of the trace, a pending

hypervisor call summary will be printed. This has the Accumulated Time and

Hypervisor Call fields. It also includes elapsed time if the -e flag is specified.

Thread NFS Calls Summary An NFS call summary for the thread. This has the same fields as the global System

NFS Call Summary. It also includes elapsed time if the -e flag is specified.

Pending NFS Calls Summary If the thread was executing an NFS call at the end of the trace, a pending NFS call

summary will be printed. This has the Accumulated Time and Sequence Number

or, in the case of NFS V4, Opcode, fields. It also includes elapsed time if the -e flag

is specified.

processor affinity The process affinity, which is the probability that, for any dispatch of the thread, the

thread was dispatched to the same processor on which it last executed.

Dispatch Histogram for

thread

Shows the number of times the thread was dispatched to each CPU in the system.

total number of dispatches The total number of times the thread was dispatched (not including redispatches).

total number of redispatches

due to interrupts being

disabled

The number of redispatches due to interrupts being disabled, which is when the

dispatch code is forced to dispatch the same thread that is currently running on that

particular CPU because the thread had disabled some interrupts. This total is only

reported if the value is non-zero.

avg. dispatch wait time (ms) The average dispatch wait time is the average elapsed time for the thread from being

undispatched and its next dispatch.

Data on Interrupts that

occurred while Thread was

Running

Count of how many times each type of FLIH occurred while this thread was

executing.

Reports Generated with the -p Flag

The report generated with the -p flag includes the data shown in the default report and also includes a

detailed report for each process that includes the Process ID and name, a count and list of the thread IDs,

and the count and list of the pthread IDs belonging to the process. The total application time, the system

Chapter 3. CPU Utilization Reporting Tool (curt) 87

call time, and the application time details for all the threads of the process are given. Lastly, it includes

summary reports of all the completed and pending system calls, and pthread calls for the threads of the

process.

The following example shows the report generated for the router process (PID 129190):

Process Details for Pid: 129190

 Process Name: router

 7 Tids for this Pid: 245889 245631 244599 82843 78701 75347 28941

 9 Ptids for this Pid: 2057 1800 1543 1286 1029 772 515 258 1

Total Application Time (ms): 124.023749

Total System Call Time (ms): 8.948695

Total Hypervisor Time (ms): 0.000000

Application time details:

 Total Pthread Call Time (ms): 1.228271

 Total Pthread Dispatch Time (ms): 2.760476

 Total Pthread Idle Dispatch Time (ms): 0.110307

 Total Other Time (ms): 798.545446

 Total number of pthread dispatches: 53

 Total number of pthread idle dispatches: 3

 Process System Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)

 (msec) time (msec) (msec) (msec)

 ======== =========== ====== ======== ======== ======== ================

 93 3.6829 0.05% 0.0396 0.0060 0.3077 kread(19731c)

 23 2.2395 0.03% 0.0974 0.0090 0.4537 kwrite(1972f8)

 30 0.8885 0.01% 0.0296 0.0073 0.0460 select(208c5c)

 1 0.5933 0.01% 0.5933 0.5933 0.5933 fsync(1972a4)

 106 0.4902 0.01% 0.0046 0.0035 0.0105 klseek(19737c)

 13 0.3285 0.00% 0.0253 0.0130 0.0387 semctl(2089e0)

 6 0.2513 0.00% 0.0419 0.0238 0.0650 semop(2089c8)

 3 0.1223 0.00% 0.0408 0.0127 0.0730 statx(2086d4)

 1 0.0793 0.00% 0.0793 0.0793 0.0793 send(11e1ec)

 9 0.0679 0.00% 0.0075 0.0053 0.0147 fstatx(2086c8)

 4 0.0524 0.00% 0.0131 0.0023 0.0348 kfcntl(22aa14)

 5 0.0448 0.00% 0.0090 0.0086 0.0096 yield(11dbec)

 3 0.0444 0.00% 0.0148 0.0049 0.0219 recv(11e1b0)

 1 0.0355 0.00% 0.0355 0.0355 0.0355 open(208674)

 1 0.0281 0.00% 0.0281 0.0281 0.0281 close(19728c)

 Pending System Calls Summary

Accumulated SVC (Address) Tid

Time (msec)

============ ========================= ================

 0.0452 select(208c5c) 245889

 0.0425 select(208c5c) 78701

 0.0285 select(208c5c) 82843

 0.0284 select(208c5c) 245631

 0.0274 select(208c5c) 244599

 0.0179 select(208c5c) 75347

 ...(omitted lines)...

 Pthread Calls Summary

88 Performance Tools Guide and Reference

Count Total Time % sys Avg Time Min Time Max Time Pthread Routine

 (msec) time (msec) (msec) (msec)

======== =========== ====== ======== ======== ======== ================

 19 0.0477 0.00% 0.0025 0.0017 0.0104 pthread_join

 1 0.0065 0.00% 0.0065 0.0065 0.0065 pthread_detach

 1 0.6208 0.00% 0.6208 0.6208 0.6208 pthread_kill

 6 0.1261 0.00% 0.0210 0.0077 0.0779 pthread_cancel

 21 0.7080 0.01% 0.0337 0.0226 0.1222 pthread_create

 Pending Pthread Calls Summary

Accumulated Pthread Routine Tid Ptid

Time (msec)

============ =============== ================ ================

 3.3102 pthread_join 78701 1

If the process is an NFS kernel process, the report will include information on NFS operations instead of

System and Pthread calls:

Process Details for Pid: 1007854

 Process Name: nfsd

 252 Tids for this Pid: 2089213 2085115 2081017 2076919 2072821 2068723

 2040037 2035939 2031841 2027743 2023645 2019547

 2015449 2011351 2007253 2003155 1999057 1994959

...(lines omitted)...

 454909 434421 413931 397359 364797 352459

 340185 331969 315411 303283 299237 266405

 Total Kernel Time (ms): 380.237018

 Total Operation Time (ms): 2891.971209

 Process NFS Calls Summary

 Count Total Time Avg Time Min Time Max Time % Tot Total ETime Avg ETime Min ETime Max ETime % Tot % Tot Opcode

 (msec) (msec) (msec) (msec) Time (msec) (msec) (msec) (msec) ETime Count

======== =========== ======== ======== ======== ===== =========== ========= ========= ========= ===== ===== =============

 2254 1018.3621 0.4518 0.3639 0.9966 35.34 1800.5708 0.7988 0.4204 16.6283 2.84 9.45 RFS3_READDIRPLUS

 6647 456.1029 0.0686 0.0376 0.6267 15.83 9267.7256 1.3943 0.0376 304.9501 14.63 27.88 RFS3_LOOKUP

 1993 321.4973 0.1613 0.0781 0.6428 11.16 3006.1774 1.5084 0.0781 121.8822 4.75 8.36 RFS3_WRITE

 4409 314.3122 0.0713 0.0425 0.6139 10.91 14052.7567 3.1873 0.0425 313.2698 22.19 18.49 RFS3_READ

 1001 177.9891 0.1778 0.0903 8.7271 6.18 23187.1693 23.1640 0.7657 298.0521 36.61 4.20 RFS3_COMMIT

 2694 147.1680 0.0546 0.0348 0.5517 5.11 1474.4267 0.5473 0.0348 25.9402 2.33 11.30 RFS3_GETATTR

 495 102.0142 0.2061 0.1837 0.7000 3.54 185.8549 0.3755 0.1895 6.1340 0.29 2.08 RFS3_READDIR

 1702 85.8328 0.0504 0.0339 0.5793 2.98 146.4281 0.0860 0.0339 5.7539 0.23 7.14 RFS3_READLINK

 1552 78.1015 0.0503 0.0367 0.5513 2.71 153.5844 0.0990 0.0367 7.5125 0.24 6.51 RFS3_ACCESS

 186 64.4498 0.3465 0.2194 0.7895 2.24 4201.0235 22.5861 1.0235 117.5351 6.63 0.78 RFS3_CREATE

 208 56.8876 0.2735 0.1928 0.7351 1.97 4245.4378 20.4108 0.9015 181.0121 6.70 0.87 RFS3_REMOVE

 235 33.3158 0.1418 0.0890 0.3312 1.16 1579.4557 6.7211 0.0890 56.0876 2.49 0.99 RFS3_SETATTR

 190 13.3856 0.0705 0.0473 0.5495 0.46 19.3971 0.1021 0.0473 0.6827 0.03 0.80 RFS3_FSSTAT

 275 12.4504 0.0453 0.0343 0.0561 0.43 16.6542 0.0606 0.0343 0.2357 0.03 1.15 RFS3_FSINFO

-------- ----------- -------- -------- -------- ----- ----------- --------- --------- --------- ----- ----- -------------

 23841 2881.8692 0.1209 63336.6621 2.6566 NFS V3 TOTAL

 55 1.0983 0.0200 0.0164 0.0258 100.00 0.7434 0.0135 0.0115 0.0194 10.00 10.00 NFS4_ATTRCACHE

-------- ----------- -------- -------- -------- ----- ----------- --------- --------- --------- ----- ----- -------------

 55 1.0983 0.0200 0.7434 0.0135 NFS V4 CLIENT TOTAL

 Pending NFS Calls Summary

Accumulated Accumulated Sequence Number Tid

Time (msec) ETime (msec) Opcode

============ ============ =============== ================

 0.1812 48.1456 1039026977 2089213

 0.0188 14.8878 1038285324 2085115

 0.0484 2.7123 1039220089 2081017

 0.1070 49.5471 1039103658 2072821

 0.0953 58.8009 1038453491 2035939

 0.0533 62.9266 1039037391 2031841

 0.1195 14.6817 1038686320 2019547

 0.2063 37.1826 1039164331 2015449

 0.0140 6.0718 1039260848 2011351

 0.0671 8.8971 NFS4_WRITE 2012896

...(lines omitted)...

Chapter 3. CPU Utilization Reporting Tool (curt) 89

The information in the process detailed report includes the following:

 Total Application Time

(ms)

The amount of time, expressed in milliseconds, that the process spent in application

mode.

Total System Call Time

(ms)

The amount of time, expressed in milliseconds, that the process spent in system call

mode.

The information in the application time details report includes the following:

 Total Pthread Call Time The amount of time, expressed in milliseconds, that the process spent in traced pthread

library calls.

Total Pthread Dispatch

Time

The amount of time, expressed in milliseconds, that the process spent in libpthreads

dispatch code.

Total Pthread Idle

Dispatch Time

The amount of time, expressed in milliseconds, that the process spent in libpthreads

vp_sleep code.

Total Other Time The amount of time, expressed in milliseconds, that the process spent in non-traced user

mode code.

Total number of pthread

dispatches

The total number of times a pthread belonging to the process was dispatched by the

libpthreads dispatcher.

Total number of pthread

idle dispatches

The total number of times a thread belonging to the process was in the libpthreads

vp_sleep code.

The summary information in the report includes the following:

 Process System Calls

Summary

A system call summary for the process; this has the same fields as the global System

Call Summary. It also includes elapsed time information if the -e flag is specified and

error information if the -s flag is specified.

Pending System Calls

Summary

If the process was executing a system call at the end of the trace, a pending system call

summary will be printed. This has the Accumulated Time and Supervisor Call (SVC

Address) fields. It also includes elapsed time information if the -e flag is specified.

Process Hypervisor Calls

Summary

A summary of the hypervisor calls for the process; this has the same fields as the global

Hypervisor Calls Summary. It also includes elapsed time information if the -e flag is

specified.

Pending Hypervisor Calls

Summary

If the process was executing a hypervisor call at the end of the trace, a pending

hypervisor call summary will be printed. This has the Accumulated Time and Hypervisor

Call fields. It also includes elapsed time information if the -e flag is specified.

Process NFS Calls

Summary

An NFS call summary for the process. This has the same fields as the global System

NFS Call Summary. It also includes elapsed time information if the -e flag is specified.

Pending NFS Calls

Summary

If the process was executing an NFS call at the end of the trace, a pending NFS call

summary will be printed. This has the Accumulated Time and Sequence Number or, in

the case of NFS V4, Opcode, fields. It also includes elapsed time information if the -e

flag is specified.

Pthread Calls Summary A summary of the pthread calls for the process. This has the same fields as the global

pthread Calls Summary. It also includes elapsed time information if the -e flag is

specified.

Pending Pthread Calls

Summary

If the process was executing pthread library calls at the end of the trace, a pending

pthread call summary will be printed. This has the Accumulated Time and Pthread

Routine fields. It also includes elapsed time information if the -e flag is specified.

Reports Generated with the -P Flag

The report generated with the -P flag includes the data shown in the default report and also includes a

detailed report on pthread status that includes the following:

90 Performance Tools Guide and Reference

v The amount of time the pthread was in application and system call mode

v The application time details

v The system calls and pthread calls that the pthread made

v The system calls and pthread calls that were pending at the end of the trace

v The processor affinity

v The number of times the pthread was dispatched

v To which CPU(s) the thread was dispatched

v The thread affinity

v The number of times that the pthread was dispatched

v To which kernel thread(s) the pthread was dispatched

The report also includes dispatch wait time and details of interrupts.

The following is an example of a report generated with the -P flag:

Report for Pthread Id: 1 (hex 1) Pid: 245962 (hex 3c0ca)

Process Name: ./pth32

 Total Application Time (ms): 3.919091

 Total System Call Time (ms): 8.303156

 Total Hypervisor Call Time (ms): 0.000000

 Application time details:

 Total Pthread Call Time (ms): 1.139372

 Total Pthread Dispatch Time (ms): 0.115822

 Total Pthread Idle Dispatch Time (ms): 0.036630

 Total Other Time (ms): 2.627266

 Pthread System Calls Summary

 Count Total Time Avg Time Min Time Max Time SVC (Address)

 (msec) (msec) (msec) (msec)

======== =========== ======== ======== ======== ================

 1 3.3898 3.3898 3.3898 3.3898 _exit(409e50)

 61 0.8138 0.0133 0.0089 0.0254 kread(5ffd78)

 11 0.4616 0.0420 0.0262 0.0835 thread_create(407360)

 22 0.2570 0.0117 0.0062 0.0373 mprotect(6d5bd8)

 12 0.2126 0.0177 0.0100 0.0324 thread_setstate(40a660)

 115 0.1875 0.0016 0.0012 0.0037 klseek(5ffe38)

 12 0.1061 0.0088 0.0032 0.0134 sbrk(6d4f90)

 23 0.0803 0.0035 0.0018 0.0072 trcgent(4078d8)

...(lines omitted)...

 Pending System Calls Summary

Accumulated SVC (Address)

Time (msec)

============ ==========================

 0.0141 thread_tsleep(40a4f8)

 Pthread Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time Pthread Routine

 (msec) time (msec) (msec) (msec)

======== =========== ====== ======== ======== ======== ================

 11 0.9545 0.01% 0.0868 0.0457 0.1833 pthread_create

 8 0.0725 0.00% 0.0091 0.0064 0.0205 pthread_join

 1 0.0553 0.00% 0.0553 0.0553 0.0553 pthread_detach

Chapter 3. CPU Utilization Reporting Tool (curt) 91

1 0.0341 0.00% 0.0341 0.0341 0.0341 pthread_cancel

 1 0.0229 0.00% 0.0229 0.0229 0.0229 pthread_kill

 Pending Pthread Calls Summary

Accumulated Pthread Routine

Time (msec)

============ ===============

 0.0025 pthread_join

 processor affinity: 0.600000

Processor Dispatch Histogram for pthread (CPUid : times_dispatched):

 CPU 0 : 4

 CPU 1 : 1

 total number of dispatches : 5

 avg. dispatch wait time (ms): 798.449725

 Thread affinity: 0.333333

Thread Dispatch Histogram for pthread (thread id : number dispatches):

 Thread id 688279 : 1

 Thread id 856237 : 1

 Thread id 1007759 : 1

 total number of pthread dispatches: 3

 avg. dispatch wait time (ms): 1330.749542

 Data on Interrupts that Occurred while Phread was Running

 Type of Interrupt Count

 =============================== ============================

 Data Access Page Faults (DSI): 452

 Instr. Fetch Page Faults (ISI): 0

 Align. Error Interrupts: 0

 IO (external) Interrupts: 0

 Program Check Interrupts: 0

 FP Unavailable Interrupts: 0

 FP Imprecise Interrupts: 0

 RunMode Interrupts: 0

 Decrementer Interrupts: 2

 Queued (Soft level) Interrupts: 0

The information in the pthreads summary report includes the following:

 Pthread ID The Pthread ID of the thread.

Process ID The Process ID that the pthread belongs to.

Process Name The process name, if known, that the pthread belongs to.

Total Application Time

(ms)

The amount of time, expressed in milliseconds, that the pthread spent in application

mode.

Total System Call Time

(ms)

The amount of time, expressed in milliseconds, that the pthread spent in system call

mode.

The information in the application time details report includes the following:

 Total Pthread Call Time The amount of time, expressed in milliseconds, that the pthread spent in traced pthread

library calls.

Total Pthread Dispatch

Time

The amount of time, expressed in milliseconds, that the pthread spent in libpthreads

dispatch code.

92 Performance Tools Guide and Reference

Total Pthread Idle

Dispatch Time

The amount of time, expressed in milliseconds, that the pthread spent in libpthreads

vp_sleep code.

Total Other Time The amount of time, expressed in milliseconds, that the pthread spent in non-traced user

mode code.

Total number of pthread

dispatches

The total number of times a pthread belonging to the process was dispatched by the

libpthreads dispatcher.

Total number of pthread

idle dispatches

The total number of times a thread belonging to the process was in the libpthreads

vp_sleep code.

The summary information in the report includes the following:

 Pthread System Calls

Summary

A system call summary for the pthread; this has the same fields as the global System Call

Summary. It also includes elapsed time information if the -e flag is specified and error

information if the -s flag is specified.

Pending System Calls

Summary

If the pthread was executing a system call at the end of the trace, a pending system call

summary will be printed. This has the Accumulated Time and Supervisor Call (SVC Address)

fields. It also includes elapsed time information if the -e flag is specified.

Pthread Hypervisor

Calls Summary

A summary of the hypervisor calls for the pthread. This has the same fields as the global

hypervisor calls summary. It also includes elapsed time information if the -e flag is specified.

Pending Hypervisor

Calls Summary

If the pthread was executing a hypervisor call at the end of the trace, a pending hypervisor

calls summary will be printed. This has the Accumulated Time and Hypervisor Call fields. It

also includes elapsed time information if the -e flag is specified.

Pthread Calls

Summary

A summary of the pthread library calls for the pthread. This has the same fields as the global

pthread Calls Summary. It also includes elapsed time information if the -e flag is specified.

Pending Pthread Calls

Summary

If the pthread was executing a pthread library call at the end of the trace, a pending pthread

call summary will be printed. This has the Accumulated Time and Pthread Routine fields. It

also includes elapsed time information if the -e flag is specified.

The pthreads summary report also includes the following information:

 processor affinity Probability that for any dispatch of the pthread, the pthread was dispatched to the same

processor on which it last executed.

Processor Dispatch

Histogram for pthread

The number of times that the pthread was dispatched to each CPU in the system.

avg. dispatch wait time The average elapsed time for the pthread from being undispatched and its next dispatch.

Thread affinity The probability that for any dispatch of the pthread, the pthread was dispatched to the

same kernel thread on which it last executed

Thread Dispatch

Histogram for pthread

The number of times that the pthread was dispatched to each kernel thread in the

process.

total number of pthread

dispatches

The total number of times the pthread was dispatched by the libpthreads dispatcher.

Data on Interrupts that

occurred while Pthread

was Running

The number of times each type of FLIH occurred while the pthread was executing.

Chapter 3. CPU Utilization Reporting Tool (curt) 93

94 Performance Tools Guide and Reference

Chapter 4. Simple Performance Lock Analysis Tool (splat)

The Simple Performance Lock Analysis Tool (splat) is a software tool that generates reports on the use of

synchronization locks. These include the simple and complex locks provided by the AIX kernel, as well as

user-level mutexes, read and write locks, and condition variables provided by the PThread library. The

splat tool is not currently equipped to analyze the behavior of the Virtual Memory Manager (VMM) and

PMAP locks used in the AIX kernel.

splat Command Syntax

The syntax for the splat command is as follows:

splat [-i file] [-n file] [-o file] [-d [bfta]] [-l address][-c class] [-s [acelmsS]] [-C#] [-S#] [-t start] [-T stop] [-p]

splat -h [topic]

splat -j

Flags

 -i inputfile Specifies the AIX trace log file input.

-n namefile Specifies the file containing output of the gensyms command.

-o outputfile Specifies an output file (default is stdout).

-d detail Specifies the level of detail of the report.

-c class Specifies class of locks to be reported.

-l address Specifies the address for which activity on the lock will be reported.

-s criteria Specifies the sort order of the lock, function, and thread.

-C CPUs Specifies the number of processors on the MP system that the trace was drawn from. The default

is 1. This value is overridden if more processors are observed to be reported in the trace.

-S count Specifies the number of items to report on for each section. The default is 10. This gives the

number of locks to report in the Lock Summary and Lock Detail reports, as well as the number of

functions to report in the Function Detail and threads to report in the Thread detail (the -s option

specifies how the most significant locks, threads, and functions are selected).

-t starttime Overrides the start time from the first event recorded in the trace. This flag forces the analysis to

begin an event that occurs starttime seconds after the first event in the trace.

-T stoptime Overrides the stop time from the last event recorded in the trace. This flag forces the analysis to

end with an event that occurs stoptime seconds after the first event in the trace.

-j Prints the list of IDs of the trace hooks used by the splat command.

-h topic Prints a help message on usage or a specific topic.

-p Specifies the use of the PURR register to calculate CPU times.

Parameters

 inputfile The AIX trace log file input. This file can be a merge trace file generated using the trcrpt -r

command.

namefile File containing output of the gensyms command.

outputfile File to write reports to.

© Copyright IBM Corp. 2002, 2007 95

detail The detail level of the report, it can be one of the following:

basic Lock summary plus lock detail (the default)

function

Basic plus function detail

thread Basic plus thread detail

all Basic plus function plus thread detail

class Activity classes, which is a decimal value found in the /usr/include/sys/lockname.h file.

address The address to be reported, given in hexadecimal.

criteria Order the lock, function, and thread reports by the following criteria:

a Acquisitions

c Percent processor time held

e Percent elapsed time held

l Lock address, function address, or thread ID

m Miss rate

s Spin count

S Percent processor spin hold time (the default)

CPUs The number of processors on the MP system that the trace was drawn from. The default is 1.

This value is overridden if more processors are observed to be reported in the trace.

count The number of locks to report in the Lock Summary and Lock Detail reports, as well as the

number of functions to report in the Function Detail and threads to report in the Thread detail.

(The -s option specifies how the most significant locks, threads, and functions are selected).

starttime The number of seconds after the first event recorded in the trace that the reporting starts.

stoptime The number of seconds after the first event recorded in the trace that the reporting stops.

topic Help topics, which are:

all

overview

input

names

reports

sorting

Measurement and Sampling

The splat tool takes as input an AIX trace log file or (for an SMP trace) a set of log files, and preferably a

names file produced by the gennames or gensyms command. The procedure for generating these files is

shown in the trace section. When you run trace, you will usually use the flag -J splat to capture the

events analyzed by splat (or without the -J flag, to capture all events). The significant trace hooks are

shown in the following table:

 Hook

ID

Event name Event explanation

106 HKWD_KERN_DISPATCH The thread is dispatched from the run queue to a processor.

10C HKWD_KERN_IDLE The idle process is been dispatched.

10E HKWD_KERN_RELOCK One thread is suspended while another is dispatched; the

ownership of a RunQ lock is transferred from the first to the

second.

96 Performance Tools Guide and Reference

Hook

ID

Event name Event explanation

112 HKWD_KERN_LOCK The thread attempts to secure a kernel lock; the sub-hook

shows what happened.

113 HKWD_KERN_UNLOCK A kernel lock is released.

134 HKWD_SYSC_EXECVE An exec supervisor call (SVC) has been issued by a (forked)

process.

139 HKWD_SYSC_FORK A fork SVC has been issued by a process.

419 HKWD_CPU_PREEMPT A process has been preempted.

465 HKWD_SYSC_CRTHREAD A thread_create SVC has been issued by a process.

46D HKWD_KERN_WAITLOCK The thread is enqueued to wait on a kernel lock.

46E HKWD_KERN_WAKEUPLOCK A thread has been awakened.

606 HKWD_PTHREAD_COND Operations on a Condition Variable.

607 HKWD_PTHREAD_MUTEX Operations on a Mutex.

608 HKWD_PTHREAD_RWLOCK Operations on a Read/Write Lock.

609 HKWD_PTHREAD_GENERAL Operations on a PThread.

Execution, Trace, and Analysis Intervals

In some cases, you can use the trace tool to capture the entire execution of a workload, while in other

cases you will capture only an interval of the execution. The execution interval is the entire time that a

workload runs. This interval is arbitrarily long for server workloads that run continuously. The trace interval

is the time actually captured in the trace log file by trace. The length of this trace interval is limited by how

large a trace log file will fit on the file system.

In contrast, the analysis interval is the portion of the trace interval that is analyzed by the splat command.

The -t and -T flags indicate to the splat command to start and finish analysis some number of seconds

after the first event in the trace. By default, the splat command analyzes the entire trace, so this analysis

interval is the same as the trace interval.

Note: As an optimization, the splat command stops reading the trace when it finishes its analysis, so it

indicates that the trace and analysis intervals end at the same time even if they do not.

To most accurately estimate the effect of lock activity on the computation, you will usually want to capture

the longest trace interval that you can, and analyze that entire interval with the splat command. The -t and

-T flags are usually used for debugging purposes to study the behavior of the splat command across a

few events in the trace.

As a rule, either use large buffers when collecting a trace, or limit the captured events to the ones you

need to run the splat command.

Trace Discontinuities

The splat command uses the events in the trace to reconstruct the activities of threads and locks in the

original system. If part of the trace is missing, it is because one of the following situations exists:

v Tracing was stopped at one point and restarted at a later point.

v One processor fills its trace buffer and stops tracing, while other processors continue tracing.

v Event records in the trace buffer were overwritten before they could be copied into the trace log file.

In any of the above cases, the splat command will not be able to correctly analyze all the events across

the trace interval. The policy of splat is to finish its analysis at the first point of discontinuity in the trace,

issue a warning message, and generate its report. In the first two cases, the message is as follows:

Chapter 4. Simple Performance Lock Analysis Tool (splat) 97

TRACE OFF record read at 0.567201 seconds. One or more of the CPUs has

 stopped tracing. You might want to generate a longer trace using larger

 buffers and re-run splat.

In the third case, the message is as follows:

 TRACEBUFFER WRAPAROUND record read at 0.567201 seconds. The input trace

 has some records missing; splat finishes analyzing at this point. You

 might want to re-generate the trace using larger buffers and re-run splat.

Some versions of the AIX kernel or PThread library might be incompletely instrumented, so the traces will

be missing events. The splat command might not provide correct results in this case.

Address-to-Name Resolution in the splat Command

The lock instrumentation in the kernel and PThread library is what captures the information for each lock

event. Data addresses are used to identify locks; instruction addresses are used to identify the point of

execution. These addresses are captured in the event records in the trace, and used by the

splatcommand to identify the locks and the functions that operate on them.

However, these addresses are not of much use to the programmer, who would rather know the names of

the lock and function declarations so that they can be located in the program source files. The conversion

of names to addresses is determined by the compiler and loader, and can be captured in a file using the

gensyms command. The gensyms command also captures the contents of the /usr/include/sys/
lockname.h file, which declares classes of kernel locks.

The gensyms output file is passed to the splat command with the -n flag. When splat reports on a kernel

lock, it provides the best identification that it can.

Kernel locks that are declared are resolved by name. Locks that are created dynamically are identified by

class if their class name is given when they are created. The libpthreads.a instrumentation is not

equipped to capture names or classes of PThread synchronizers, so they are always identified by address

only.

Examples of Generated Reports

The report generated by the splat command consists of an execution summary, a gross lock summary,

and a per-lock summary, followed by a list of lock detail reports that optionally includes a function detail or

a thread detail report.

Execution Summary

The following example shows a sample of the Execution summary. This report is generated by default

when using the splat command.

splat Cmd: splat -p -sa -da -S100 -i trace.cooked -n gensyms -o splat.out

Trace Cmd: trace -C all -aj 600,603,605,606,607,608,609 -T 20000000 -L 200000000 -o CONDVAR.raw

Trace Host: darkwing (0054451E4C00) AIX 5.2

Trace Date: Thu Sep 27 11:26:16 2002

PURR was used to calculate CPU times.

Elapsed Real Time: 0.098167

Number of CPUs Traced: 1 (Observed):0

Cumulative CPU Time: 0.098167

 start stop

 -------------------- --------------------

98 Performance Tools Guide and Reference

trace interval (absolute tics) 967436752 969072535

 (relative tics) 0 1635783

 (absolute secs) 58.057947 58.156114

 (relative secs) 0.000000 0.098167

analysis interval (absolute tics) 967436752 969072535

 (trace-relative tics) 0 1635783

 (self-relative tics) 0 1635783

 (absolute secs) 58.057947 58.156114

 (trace-relative secs) 0.000000 0.098167

 (self-relative secs) 0.000000 0.098167

**

From the example above, you can see that the execution summary consists of the following elements:

v The splat version and build information, disclaimer, and copyright notice.

v The command used to run splat.

v The trace command used to collect the trace.

v The host on which the trace was taken.

v The date that the trace was taken.

v A sentence specifying whether the PURR register was used to calculate CPU times.

v The real-time duration of the trace, expressed in seconds.

v The maximum number of processors that were observed in the trace (the number specified in the trace

conditions information, and the number specified on the splat command line).

v The cumulative processor time, equal to the duration of the trace in seconds times the number of

processors that represents the total number of seconds of processor time consumed.

v A table containing the start and stop times of the trace interval, measured in tics and seconds, as

absolute timestamps, from the trace records, as well as relative to the first event in the trace

v The start and stop times of the analysis interval, measured in tics and seconds, as absolute

timestamps, as well as relative to the beginning of the trace interval and the beginning of the analysis

interval.

Gross Lock Summary

The following example shows a sample of the gross lock summary report. This report is generated by

default when using the splat command.

 Unique Acquisitions Acq. or Passes Total System

 Total Addresses (or Passes) per Second Spin Time

 --------- --------- ------------ -------------- ------------

AIX (all) Locks: 523 523 1323045 72175.7768 0.003986

 RunQ: 2 2 487178 26576.9121 0.000000

 Simple: 480 480 824898 45000.4754 0.003986

 Transformed: 22 18 234 352.3452

 Krlock: 50 21 76876 32.6548 0.000458

 Complex: 41 41 10969 598.3894 0.000000

 PThread CondVar: 7 6 160623 8762.4305 0.000000

 Mutex: 128 116 1927771 105165.2585 10.280745 *

 RWLock: 0 0 0 0.0000 0.000000

 (spin time goal)

Chapter 4. Simple Performance Lock Analysis Tool (splat) 99

The gross lock summary report table consists of the following columns:

 Total The number of AIX Kernel locks, followed by the number of each type of AIX Kernel lock;

RunQ, Simple, and Complex. Under some conditions, this will be larger than the sum of the

numbers of RunQ, Simple, and Complex locks because we might not observe enough activity

on a lock to differentiate its type. This is followed by the number of PThread

condition-variables, the number of PThread Mutexes, and the number of PThread Read/Write.

The Transformed value represents the number of different simple locks responsible for the

allocation (and liberation) of at least one Krlock. In this case, two simple locks will be different

if they are not created at the same time or they do not have the same address.

Unique Addresses The number of unique addresses observed for each synchronizer type. Under some

conditions, a lock will be destroyed and re-created at the same address; the splat command

produces a separate lock detail report for each instance because the usage might be different.

The Transformed value represents the number of different simple locks responsible for the

allocation (and liberation) of at least one Krlock. In this case, simple locks created at different

times but with the same address increment the counter only once.

Acquisitions (or

Passes)

For locks, the total number of times acquired during the analysis interval; for PThread

condition-variables, the total number of times the condition passed during the analysis interval.

The Transformed value represents the number of acquisitions made by a thread holding the

corresponding Krlock.

Acq. or Passes (per

Second)

Acquisitions or passes per second, which is the total number of acquisitions or passes divided

by the elapsed real time of the trace. The Transformed value represents the acquisition rate

for the acquisitions made by threads holding the corresponding krlock.

% Total System spin

Time

The cumulative time spent spinning on each synchronizer type, divided by the cumulative

processor time, times 100 percent. The general goal is to spin for less than 10 percent of the

processor time; a message to this effect is printed at the bottom of the table. If any of the

entries in this column exceed 10 percent, they are marked with an asterisk (*). For simple

locks, the spin time of the Krlocks is included.

Per-lock Summary

The following example shows a sample of the per-lock summary report. This report is generated by default

when using the splat command.

100 max entries, Summary sorted by Acquisitions:

 T Acqui- Wait

 y sitions or Locks or Percent Holdtime

Lock Names, p or Trans- Passes Real Real Comb

Class, or Address e Passes Spins form %Miss %Total / CSec CPU Elapse Spin

********************** * ****** ***** **** ***** ****** ********* ******* ****** *******

PROC_INT_CLASS.0003 Q 486490 0 0 0.0000 36.7705 26539.380 5.3532 100.000 0.0000

THREAD_LOCK_CLASS.0012 S 323277 0 9468 0.0000 24.4343 17635.658 6.8216 6.8216 0.0000

THREAD_LOCK_CLASS.0118 D 323094 0 4568 0.0000 24.4205 17625.674 6.7887 6.7887 0.0000

ELIST_CLASS.003C S 80453 0 201 0.0000 6.0809 4388.934 1.0564 1.0564 0.0000

ELIST_CLASS.0044 S 80419 0 110 0.0000 6.0783 4387.080 1.1299 1.1299 0.0000

tod_lock C 10229 0 0 0.0000 0.7731 558.020 0.2212 0.2212 0.0000

LDATA_CONTROL_LOCK.0000 D 1833 0 10 0.0000 0.1385 99.995 0.0204 0.0204 0.0000

U_TIMER_CLASS.0014 S 1514 0 23 0.0000 0.1144 82.593 0.0536 0.0536 0.0000

(... lines omitted ...)

000000002FF22B70 L 368838 0 N/A 0.0000 100.000 9622.964 99.9865 99.9865 0.0000

00000000F00C3D74 M 160625 0 0 0.0000 14.2831 8762.540 99.7702 99.7702 0.0000

00000000200017E8 M 160625 175 0 0.1088 14.2831 8762.540 42.9371 42.9371 0.1487

0000000020001820 V 160623 0 624 0.0000 100.000 1271.728 N/A N/A N/A

00000000F00C3750 M 37 0 0 0.0000 0.0033 2.018 0.0037 0.0037 0.0000

00000000F00C3800 M 30 0 0 0.0000 0.0027 1.637 0.0698 0.0698 0.0000

 (... lines omitted ...)

**

The first line indicates the maximum number of locks to report (100 in this case, but we show only 14 of

the entries here) as specified by the -S 100 flag. The report also indicates that the entries are sorted by

100 Performance Tools Guide and Reference

the total number of acquisitions or passes, as specified by the -sa flag. The various Kernel locks and

PThread synchronizers are treated as two separate lists in this report, so the report would produce the top

100 Kernel locks sorted by acquisitions, followed by the top 100 PThread synchronizers sorted by

acquisitions or passes.

The per-lock summary table consists of the following columns:

 Lock Names, Class, or

Address

The name, class, or address of the lock, depending on whether the splat command

could map the address from a name file.

Type The type of the lock, identified by one of the following letters:

Q A RunQ lock

S An enabled simple kernel lock

D A disabled simple kernel lock

C A complex kernel lock

M A PThread mutex

V A PThread condition-variable

L A PThread read/write lock

Acquisitions or Passes The number of times that the lock was acquired or the condition passed, during the

analysis interval.

Spins The number of times that the lock (or condition-variable) was spun on during the analysis

interval.

Wait or Transform The number of times that a thread was driven into a wait state for that lock or

condition-variable during the analysis interval. When Krlocks are enabled, a simple lock

never enters the wait state and this value represents the number of Krlocks that the

simple lock has allocated, which is the transform count of simple locks.

%Miss The percentage of access attempts that resulted in a spin as opposed to a successful

acquisition or pass.

%Total The percentage of all acquisitions that were made to this lock, out of all acquisitions to all

locks of this type. All AIX locks (RunQ, simple, and complex) are treated as being the

same type for this calculation. The PThread synchronizers mutex, condition-variable, and

read/write lock are all distinct types.

Locks or Passes / CSec The number of times that the lock (or condition-variable) was acquired (or passed)

divided by the cumulative processor time. This is a measure of the acquisition frequency

of the lock.

Percent Holdtime

Real CPU The percentage of the cumulative processor time that the lock was held by any thread at

all, whether running or suspended. Note that this definition is not applicable to

condition-variables because they are not held.

Real Elapse The percentage of the elapsed real time that the lock was held by any thread at all,

whether running or suspended. Note that this definition is not applicable to

condition-variables because they are not held.

Comb Spin The percentage of the cumulative processor time that executing threads spent spinning

on the lock. The PThreads library uses waiting for condition-variables, so there is no

time actually spent spinning.

AIX Kernel Lock Details

By default, the splat command prints a lock detail report for each entry in the summary report. The AIX

Kernel locks can be either simple or complex.

Chapter 4. Simple Performance Lock Analysis Tool (splat) 101

The RunQ lock is a special case of the simple lock, although its pattern of usage will differ markedly from

other lock types. The splat command distinguishes it from the other simple locks to ease its analysis.

Disabled Simple and RunQ Lock Details

In an AIX SIMPLE Lock report, the first line starts with either [AIX SIMPLE Lock] or [AIX RunQ lock]. If the

gennames or gensyms output file permits, the ADDRESS is also converted into a lock NAME and

CLASS, and the containing kernel extension (KEX) is identified as well. The CLASS is printed with an

eight hex-digit extension indicating how many locks of this class were allocated prior to it.

[AIX SIMPLE Lock] ADDRESS: 0000000020000D60 KEX: unknown

==

 | Trans- | | Percent Held (35.568534s)

Type: | Miss Spin form Busy | Secs Held | Real Real Comb Real

Disabled | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait

 |100.000 1 2658 0 |0.000000 0.000000 | 0.00 0.00 0.00 29.62

--

Total Acquisitions: 12945 |SpinQ Min Max Avg | Krlocks SpinQ Min Max Avg

Acq. holding krlock: 2498 |Depth 0 1 0 | Depth 0 1 0

--

PROD | CONFER | HANDOFF

0 | SELF: 0 TARGET: 0 ALL: 0 | 0

 | w/ preemption: 0 w/ preemption: 0 |

--

 Lock Activity (mSecs) - Interrupts Disabled

 SIMPLE Count Minimum Maximum Average Total

 +++++++ ++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++

 LOCK 0 0.000000 0.000000 0.000000 0.000000

 w/ KRLOCK 0 0.000000 0.000000 0.000000 0.000000

 SPIN 0 0.000000 0.000000 0.000000 0.000000

 KRLOCK LOCK 0 0.000000 0.000000 0.000000 0.000000

 KRLOCK SPIN 0 0.000000 0.000000 0.000000 0.000000

 TRANSFORM 0 0.000000 0.000000 0.000000 0.000000

 Acqui- Miss Spin Transf. Busy Percent Held of Total Time

Function Name sitions Rate Count Count Count CPU Elapse Spin Transf. Return Address Start Address Offset

^^^^^^^^^^^ ̂ ^^^^^^^ ̂ ^^^^^ ̂ ^^^^^ ̂ ^^^^^ ̂ ^^^^^ ̂ ^^^^^ ̂ ^^^^^ ̂ ^^^^^ ̂ ^^^^^ ̂ ^^^^^^^^^^^^^^^ ̂ ^^^^^^^^^^^^^^^ ̂ ^^^^^^^ ̂

 .dispatch 3177 0.63 20 0 0 0.00 0.02 0.00 0.00 0000000000039CF4 0000000000000000 00039CF4

 .dispatch 6053 0.31 19 0 0 0.03 0.07 0.00 0.00 00000000000398E4 0000000000000000 000398E4

 .setrq 3160 0.19 6 0 0 0.01 0.02 0.00 0.00 0000000000038E60 0000000000000000 00038E60

 .steal_threads 1 0.00 0 0 0 0.00 0.00 0.00 0.00 0000000000066A68 0000000000000000 00066A68

 .steal_threads 6 0.00 0 0 0 0.00 0.00 0.00 0.00 0000000000066CE0 0000000000000000 00066CE0

 .dispatch 535 2.19 12 0 12 0.01 0.02 0.00 0.00 0000000000039D88 0000000000000000 00039D88

 .dispatch 2 0.00 0 0 0 0.00 0.00 0.00 0.00 0000000000039D14 0000000000000000 00039D14

 .prio_requeue 7 0.00 0 0 0 0.00 0.00 0.00 0.00 000000000003B2A4 0000000000000000 0003B2A4

 .setnewrq 4 0.00 0 0 0 0.00 0.00 0.00 0.00 0000000000038980 0000000000000000 00038980

 Acqui- Miss Spin Transf. Busy Percent Held of Total Time Process

 ThreadID sitions Rate Count Count Count CPU Elapse Spin Transf. ProcessID Name

 ~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~~~~  ~~~~~~~~~~~~~ 

   775     11548      0.34     39    0      0      0.06   0.10   0.00   0.00     774     wait 

 35619         3     25.00      1    0      0      0.00   0.00   0.00   0.00   18392     sleep 

 31339        21      4.55      1    0      0      0.00   0.00   0.00   0.00    7364     java 

 35621         2      0.00      0    0      0      0.00   0.00   0.00   0.00   18394     locktrace 

  

  

(... lines omitted ...) 

  

  

The SIMPLE lock report fields are as follows: 

 Type If the simple lock was used with interrupts, this field is enabled. Otherwise, this field is 

disabled. 

Miss  Rate  The percentage of attempts that failed to acquire the lock. 

Spin  Count  The number of unsuccessful attempts to acquire the lock. 

Busy  Count  The number of simple_lock_try  calls that returned busy. 

 

102 Performance Tools Guide and Reference



Seconds  Held  This field contains the following sub-fields: 

CPU  The total number of processor seconds that the lock was held by an executing 

thread. 

Elapsed  

The total number of elapsed seconds that the lock was held by any thread, 

whether running or suspended. 

Percent  Held  This field contains the following sub-fields: 

Real  CPU  

The percentage of the cumulative processor time that the lock was held by an 

executing thread. 

Real  Elapsed   

The percentage of the elapsed real time that the lock was held by any thread at 

all, either running or suspended. 

Comb(ined)  Spin   

The percentage of the cumulative processor time that running threads spent 

spinning while trying to acquire this lock. 

Real  Wait 

The percentage of elapsed real time that any thread was waiting to acquire this 

lock. If two or more threads are waiting simultaneously, this wait time will only be 

charged once. To determine how many threads were waiting simultaneously, look 

at the WaitQ Depth statistics. 

Total Acquisitions  The number of times that the lock was acquired in the analysis interval. This includes 

successful simple_lock_try  calls. 

Acq.  holding  krlock  The number of acquisitions made by threads holding a Krlock. 

Transform  count  The number of Krlocks that have been used (allocated and freed) by the simple lock. 

SpinQ  The minimum, maximum, and average number of threads spinning on the lock, whether 

executing or suspended, across the analysis interval. 

Krlocks  SpinQ  The minimum, maximum, and average number of threads spinning on a Krlock allocated 

by the simple lock, across the analysis interval. 

PROD  The associated Krlocks prod  calls count. 

CONFER  SELF  The confer to self calls count for the simple lock and the associated Krlocks. 

CONFER  TARGET  The confer to target calls count for the simple lock and the associated Krlocks 

CONFER  ALL  The confer to all calls count for the simple lock and the associated Krlocks. 

HANDOFF  The associated Krlocks handoff  calls count.
  

The Lock Activity with Interrupts Enabled (milliseconds) and Lock Activity with Interrupts Disabled 

(milliseconds) sections contain information on the time that each lock state is used by the locks. 

The states that a thread can be in (with respect to a given simple or complex lock) are as follows: 

 (no  lock  reference)  The thread is running, does not hold this lock, and is not attempting to acquire this lock. 

LOCK  The thread has successfully acquired the lock and is currently executing. 

LOCK  with  KRLOCK  The thread has successfully acquired the lock, while holding the associated Krlock, and is 

currently executing. 

SPIN  The thread is executing and unsuccessfully attempting to acquire the lock. 

KRLOCK  LOCK  The thread has successfully acquired the associated Krlock and is currently executing. 

KRLOCK  SPIN  The thread is executing and unsuccessfully attempting to acquire the associated Krlock. 

TRANSFORM  The thread has successfully allocated a Krlock that it associates itself to and is executing.
 

 

Chapter 4. Simple Performance Lock Analysis Tool (splat) 103



The Lock Activity sections of the report measure the intervals of time (in milliseconds) that each thread 

spends in each of the states for this lock. The columns report the number of times that a thread entered 

the given state, followed by the maximum, minimum, and average time that a thread spent in the state 

once entered, followed by the total time that all threads spent in that state. These sections distinguish 

whether interrupts were enabled or disabled at the time that the thread was in the given state. 

A thread can acquire a lock prior to the beginning of the analysis interval and release the lock during the 

analysis interval. When the splat  command observes the lock being released, it recognizes that the lock 

had been held during the analysis interval up to that point and counts the time as part of the 

state-machine statistics. For this reason, the state-machine statistics might report that the number of times 

that the lock state was entered might actually be larger than the number of acquisitions of the lock that 

were observed in the analysis interval. 

RunQ locks are used to protect resources in the thread management logic. These locks are acquired a 

large number of times and are only held briefly each time. A thread need not be executing to acquire or 

release a RunQ lock. Further, a thread might spin on a RunQ lock, but it will not go into an UNDISP or 

WAIT state on the lock. You will see a dramatic difference between the statistics for RunQ versus other 

simple locks. 

Enabled Simple Lock Details 

The following example is an enabled simple lock detail report: 

[AIX SIMPLE Lock]                 CLASS:      PROC_INT_CLASS.00000004 

ADDRESS: 000000000200786C 

====================================================================================== 

         |                             |                  | Percent Held ( 26.235284s ) 

Type     |  Miss  Spin   Wait   Busy   |    Secs Held     |  Real  Real    Comb  Real 

Enabled  |  Rate  Count  Count  Count  |CPU      Elapsed  |  CPU  Elapsed  Spin  Wait 

  |  0.438 57     2658   12     |0.022852 0.032960 |  0.04   0.13   0.00   0.00 

-------------------------------------------------------------------------------------- 

Total Acquisitions:   2498 |SpinQ   Min   Max   Avg  | WaitQ    Min   Max   Avg 

                           |Depth   0     1     0    | Depth   0     0     0 

-------------------------------------------------------------------------------------- 

  

  

                      Lock Activity (mSecs) - Interrupts Enabled 

  

  SIMPLE       Count         Minimum        Maximum        Average          Total 

  +++++++      ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ 

  LOCK           8027        0.000597       0.022486       0.002847      22.852000 

  SPIN             45        0.001376       0.008960       0.004738       0.213212 

  UNDISP            0        0.000000       0.000000       0.000000       0.000000 

  WAIT              0        0.000000       0.000000       0.000000       0.000000 

  PREEMPT        4918        0.000811       0.009728       0.001955       9.615807 

  

  

                Acqui-  Miss  Spin   Wait   Busy    Percent Held of Total Time 

Function Name  sitions  Rate  Count  Count  Count    CPU   Elapse  Spin   Wait   Return Address   Start Address    Offset 

^^^^^^^^^^^  ̂ ^^^^^^^  ̂ ^^^^^  ̂ ^^^^^  ̂ ^^^^^  ̂ ^^^^^  ̂ ^^^^^  ̂ ^^^^^  ̂ ^^^^^  ̂ ^^^^^  ̂ ^^^^^^^^^^^^^^^  ̂ ^^^^^^^^^^^^^^^  ̂ ^^^^^^^  ̂

   .dispatch    3177    0.63   20      0      0     0.00    0.02   0.00   0.00  0000000000039CF4 0000000000000000 00039CF4 

   .dispatch    6053    0.31   19      0      0     0.03    0.07   0.00   0.00  00000000000398E4 0000000000000000 000398E4 

   .setrq       3160    0.19    6      0      0     0.01    0.02   0.00   0.00  0000000000038E60 0000000000000000 00038E60 

   .steal_threads  1    0.00    0      0      0     0.00    0.00   0.00   0.00  0000000000066A68 0000000000000000 00066A68 

   .steal_threads  6    0.00    0      0      0     0.00    0.00   0.00   0.00  0000000000066CE0 0000000000000000 00066CE0 

   .dispatch     535    2.19   12      0     12     0.01    0.02   0.00   0.00  0000000000039D88 0000000000000000 00039D88 

   .dispatch       2    0.00    0      0      0     0.00    0.00   0.00   0.00  0000000000039D14 0000000000000000 00039D14 

   .prio_requeue   7    0.00    0      0      0     0.00    0.00   0.00   0.00  000000000003B2A4 0000000000000000 0003B2A4 

   .setnewrq       4    0.00    0      0      0     0.00    0.00   0.00   0.00  0000000000038980 0000000000000000 00038980 

  

  

           Acqui-    Miss   Spin   Wait   Busy    Percent Held of Total Time             Process 

 ThreadID  sitions   Rate   Count  Count  Count    CPU   Elapse  Spin   Wait  ProcessID  Name 

 ~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~~~~  ~~~~~~~~~~~~~ 

 775 11548 0.34 39 0 0 0.06 0.10 0.00 0.00 774 wait

 35619 3 25.00 1 0 0 0.00 0.00 0.00 0.00 18392 sleep

 31339 21 4.55 1 0 0 0.00 0.00 0.00 0.00 7364 java

 35621 2 0.00 0 0 0 0.00 0.00 0.00 0.00 18394 locktrace

(... lines omitted ...)

104 Performance Tools Guide and Reference

The SIMPLE lock report fields are as follows:

 Type If the simple lock was used with interrupts, this field is enabled. Otherwise, this field is

disabled.

Total Acquisitions The number of times that the lock was acquired in the analysis interval. This includes

successful simple_lock_try calls.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The number of times that a thread was forced into a suspended wait state, waiting for the

lock to come available.

Busy Count The number of simple_lock_try calls that returned busy.

Seconds Held This field contains the following sub-fields:

CPU The total number of processor seconds that the lock was held by an executing

thread.

Elapsed

The total number of elapsed seconds that the lock was held by any thread,

whether running or suspended.

Percent Held This field contains the following sub-fields:

Real CPU

The percentage of the cumulative processor time that the lock was held by an

executing thread.

Real Elapsed

The percentage of the elapsed real time that the lock was held by any thread at

all, either running or suspended.

Comb(ined) Spin

The percentage of the cumulative processor time that running threads spent

spinning while trying to acquire this lock.

Real Wait

The percentage of elapsed real time that any thread was waiting to acquire this

lock. If two or more threads are waiting simultaneously, this wait time will only be

charged once. To determine how many threads were waiting simultaneously, look

at the WaitQ Depth statistics.

SpinQ The minimum, maximum, and average number of threads spinning on the lock, whether

executing or suspended, across the analysis interval.

WaitQ The minimum, maximum, and average number of threads waiting on the lock, across the

analysis interval.

The Lock Activity with Interrupts Enabled (milliseconds) and Lock Activity with Interrupts Disabled

(milliseconds) sections contain information on the time that each lock state is used by the locks.

The states that a thread can be in (with respect to a given simple or complex lock) are as follows:

 (no lock reference) The thread is running, does not hold this lock, and is not attempting to acquire this lock.

LOCK The thread has successfully acquired the lock and is currently executing.

SPIN The thread is executing and unsuccessfully attempting to acquire the lock.

UNDISP The thread has become undispatched while unsuccessfully attempting to acquire the lock.

WAIT The thread has been suspended until the lock comes available. It does not necessarily

acquire the lock at that time, but instead returns to a SPIN state.

PREEMPT The thread is holding this lock and has become undispatched.

Chapter 4. Simple Performance Lock Analysis Tool (splat) 105

The Lock Activity sections of the report measure the intervals of time (in milliseconds) that each thread

spends in each of the states for this lock. The columns report the number of times that a thread entered

the given state, followed by the maximum, minimum, and average time that a thread spent in the state

once entered, followed by the total time that all threads spent in that state. These sections distinguish

whether interrupts were enabled or disabled at the time that the thread was in the given state.

A thread can acquire a lock prior to the beginning of the analysis interval and release the lock during the

analysis interval. When the splat command observes the lock being released, it recognizes that the lock

had been held during the analysis interval up to that point and counts the time as part of the

state-machine statistics. For this reason, the state-machine statistics can report that the number of times

that the lock state was entered might actually be larger than the number of acquisitions of the lock that

were observed in the analysis interval.

RunQ locks are used to protect resources in the thread management logic. These locks are acquired a

large number of times and are only held briefly each time. A thread need not be executing to acquire or

release a RunQ lock. Further, a thread might spin on a RunQ lock, but it will not go into an UNDISP or

WAIT state on the lock. You will see a dramatic difference between the statistics for RunQ versus other

simple locks.

Function Detail

The function detail report is obtained by using the -df or -da options of splat.

The columns are defined as follows:

 Function Name The name of the function that acquired or attempted to acquire this lock, if it could be

resolved.

Acquisitions The number of times that the function was able to acquire this lock. For complex lock and

read/write, there is a distinction between acquisition for writing, Acquisition Write, and for

reading, Acquisition Read.

Miss Rate The percentage of acquisition attempts that failed.

Spin Count The number of unsuccessful attempts by the function to acquire this lock. For complex

lock and read/write there is a distinction between spin count for writing, Spin Count

Write, and for reading, Spin Count Read.

Transf. Count The number of times that a simple lock has allocated a Krlock, while a thread was trying

to acquire the simple lock.

Busy Count The number of times simple_lock_try calls returned busy.

Percent Held of Total

Time

Contains the following sub-fields:

CPU Percentage of the cumulative processor time that the lock was held by an

executing thread that had acquired the lock through a call to this function.

Elapse(d)

The percentage of the elapsed real time that the lock was held by any thread at

all, whether running or suspended, that had acquired the lock through a call to

this function.

Spin The percentage of cumulative processor time that executing threads spent

spinning on the lock while trying to acquire the lock through a call to this function.

Wait The percentage of elapsed real time that executing threads spent waiting for the

lock while trying to acquire the lock through a call to this function.

Return Address The return address to this calling function, in hexadecimal.

Start Address The start address to this calling function, in hexadecimal.

Offset The offset from the function start address to the return address, in hexadecimal.

106 Performance Tools Guide and Reference

The functions are ordered by the same sorting criterion as the locks, controlled by the -s option of splat.

Further, the number of functions listed is controlled by the -S parameter. The default is the top ten

functions.

Thread Detail

The Thread Detail report is obtained by using the -dt or -da options of splat.

At any point in time, a single thread is either running or it is not. When a single thread runs, it only runs on

one processor. Some of the composite statistics are measured relative to the cumulative processor time

when they measure activities that can happen simultaneously on more than one processor, and the

magnitude of the measurements can be proportional to the number of processors in the system. In

contrast, the thread statistics are generally measured relative to the elapsed real time, which is the amount

of time that a single processor spends processing and the amount of time that a single thread spends in

an executing or suspended state.

The Thread Detail report columns are defined as follows:

 ThreadID The thread identifier.

Acquisitions The number of times that this thread acquired the lock.

Miss Rate The percentage of acquisition attempts by the thread that failed to secure the lock.

Spin Count The number of unsuccessful attempts by this thread to secure the lock.

Transf. Count The number of times that a simple lock has allocated a Krlock, while a thread was trying

to acquire the simple lock.

Wait Count The number of times that this thread was forced to wait until the lock came available.

Busy Count The number of simple_lock_try() calls that returned busy.

Percent Held of Total

Time

Consists of the following sub-fields:

CPU The percentage of the elapsed real time that this thread executed while holding

the lock.

Elapse(d)

The percentage of the elapsed real time that this thread held the lock while

running or suspended.

Spin The percentage of elapsed real time that this thread executed while spinning on

the lock.

Wait The percentage of elapsed real time that this thread spent waiting on the lock.

Process ID The Process identifier (only for simple and complex lock report).

Process Name Name of the process using the lock (only for simple and complex lock report).

Complex-Lock Report

AIX Complex lock supports recursive locking, where a thread can acquire the lock more than once before

releasing it, as well as differentiating between write-locking, which is exclusive, from read-locking, which is

not exclusive.

This report begins with [AIX COMPLEX Lock]. Most of the entries are identical to the simple lock report,

while some of them are differentiated by read/write/upgrade. For example, the SpinQ and WaitQ statistics

include the minimum, maximum, and average number of threads spinning or waiting on the lock. They also

include the minimum, maximum, and average number of threads attempting to acquire the lock for reading

versus writing. Because an arbitrary number of threads can hold the lock for reading, the report includes

the minimum, maximum, and average number of readers in the LockQ that holds the lock.

A thread might hold a lock for writing; this is exclusive and prevents any other thread from securing the

lock for reading or for writing. The thread downgrades the lock by simultaneously releasing it for writing

and acquiring it for reading; this permits other threads to also acquire the lock for reading. The reverse of

Chapter 4. Simple Performance Lock Analysis Tool (splat) 107

this operation is an upgrade; if the thread holds the lock for reading and no other thread holds it as well,

the thread simultaneously releases the lock for reading and acquires it for writing. The upgrade operation

might require that the thread wait until other threads release their read-locks. The downgrade operation

does not.

A thread might acquire the lock to some recursive depth; it must release the lock the same number of

times to free it. This is useful in library code where a lock must be secured at each entry-point to the

library; a thread will secure the lock once as it enters the library, and internal calls to the library

entry-points simply re-secure the lock, and release it when returning from the call. The minimum,

maximum, and average recursion depths of any thread holding this lock are reported in the table.

A thread holding a recursive write-lock is not permited to downgrade it because the downgrade is intended

to apply to only the last write-acquisition of the lock, and the prior acquisitions had a real reason to keep

the acquisition exclusive. Instead, the lock is marked as being in the downgraded state, which is erased

when the this latest acquisition is released or upgraded. A thread holding a recursive read-lock can only

upgrade the latest acquisition of the lock, in which case the lock is marked as being upgraded. The thread

will have to wait until the lock is released by any other threads holding it for reading. The minimum,

maximum, and average recursion-depths of any thread holding this lock in an upgraded or downgraded

state are reported in the table.

The Lock Activity report also breaks down the time based on what task the lock is being secured for

(reading, writing, or upgrading).

No time is reported to perform a downgrade because this is performed without any contention. The

upgrade state is only reported for the case where a recursive read-lock is upgraded. Otherwise, the thread

activity is measured as releasing a read-lock and acquiring a write-lock.

The function and thread details also break down the acquisition, spin, and wait counts by whether the lock

is to be acquired for reading or writing.

PThread Synchronizer Reports

By default, the splat command prints a detailed report for each PThread entry in the summary report. The

PThread synchronizers are of the following types: mutex, read/write lock, and condition-variable. The

mutex and read/write lock are related to the AIX complex lock. You can view the similarities in the lock

detail reports. The condition-variable differs significantly from a lock, and this is reflected in the report

details.

The PThread library instrumentation does not provide names or classes of synchronizers, so the

addresses are the only way we have to identify them. Under certain conditions, the instrumentation can

capture the return addresses of the function call stack, and these addresses are used with the gensyms

output to identify the call chains when these synchronizers are created. The creation and deletion times of

the synchronizer can sometimes be determined as well, along with the ID of the PThread that created

them.

Mutex Reports

The PThread mutex is similar to an AIX simple lock in that only one thread can acquire the lock, and is

like an AIX complex lock in that it can be held recursively.

[PThread MUTEX] ADDRESS: 00000000F0154CD0

Parent Thread: 0000000000000001 creation time: 26.232305

Pid: 18396 Process Name: trcstop

Creation call-chain ==

00000000D268606C .pthread_mutex_lock

00000000D268EB88 .pthread_once

00000000D01FE588 .__libs_init

00000000D01EB2FC ._libc_inline_callbacks

00000000D01EB280 ._libc_declare_data_functions

00000000D269F960 ._pth_init_libc

00000000D268A2B4 .pthread_init

00000000D01EAC08 .__modinit

108 Performance Tools Guide and Reference

000000001000014C .__start

==

 | | | Percent Held (26.235284s)

Acqui- | Miss Spin Wait Busy | Secs Held | Real Real Comb Real

sitions | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait

1 | 0.000 0 0 0 |0.000006 0.000006 | 0.00 0.00 0.00 0.00

--

Depth Min Max Avg

SpinQ 0 0 0

WaitQ 0 0 0

Recursion 0 1 0

 Acqui- Miss Spin Wait Busy Percent Held of Total Time

 PThreadID sitions Rate Count Count Count CPU Elapse Spin Wait

 ~~~~~~~~~~  ~~~~~~~~  ~~~~~~  ~~~~~~ ~~~~~~  ~~~~~~   ~~~~~~   ~~~~~~   ~~~~~~   ~~~~~~ 

         1         1    0.00      0      0      0     0.00     0.00     0.00     0.00 

  

                    Acqui-   Miss  Spin   Wait   Busy    Percent Held of Total Time 

Function Name      sitions   Rate  Count  Count  Count    CPU   Elapse  Spin   Wait   Return Address   Start Address    Offset 

^^^^^^^^^^^^^^^^^^  ^^^^^^^^  ^^^^^^ ^^^^^^  ^^^^^^ ^^^^^^  ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^  ^^^^^^^^^^^^^^^^  ^^^^^^^^^^^^^^^^  ^^^^^^^^ 

   .pthread_once         0    0.00    0      0      0     99.99  99.99   0.00   0.00  00000000D268EC98  00000000D2684180  0000AB18 

   .pthread_once         1    0.00    0      0      0      0.01   0.01   0.00   0.00  00000000D268EB88  00000000D2684180  0000AA08 

In addition to the common header information and the [PThread  MUTEX] identifier, this report lists the 

following lock details: 

 Parent  Thread  Pthread id of the parent pthread. 

creation  time  Elapsed time in seconds after the first event recorded in trace (if available). 

deletion  time  Elapsed time in seconds after the first event recorded in trace (if available). 

PID  Process identifier. 

Process  Name  Name of the process using the lock. 

Call-chain  Stack of called methods (if available). 

Acquisitions  The number of times that the lock was acquired in the analysis interval. 

Miss  Rate  The percentage of attempts that failed to acquire the lock. 

Spin  Count  The number of unsuccessful attempts to acquire the lock. 

Wait Count  The number of times that a thread was forced into a suspended wait state waiting for the 

lock to come available. 

Busy  Count  The number of trylock  calls that returned busy. 

Seconds  Held  This field contains the following sub-fields: 

CPU  The total number of processor seconds that the lock was held by an executing 

thread. 

Elapse(d)  

The total number of elapsed seconds that the lock was held, whether the thread 

was running or suspended. 

 

Chapter 4. Simple Performance Lock Analysis Tool (splat) 109



Percent  Held  This field contains the following sub-fields: 

Real  CPU  

The percentage of the cumulative processor time that the lock was held by an 

executing thread. 

Real  Elapsed   

The percentage of the elapsed real time that the lock was held by any thread, 

either running or suspended. 

Comb(ined)  Spin  

The percentage of the cumulative processor time that running threads spent 

spinning while trying to acquire this lock. 

Real  Wait 

The percentage of elapsed real time that any thread was waiting to acquire this 

lock. If two or more threads are waiting simultaneously, this wait time will only be 

charged once. To learn how many threads were waiting simultaneously, look at 

the WaitQ Depth statistics. 

Depth  This field contains the following sub-fields: 

SpinQ  The minimum, maximum, and average number of threads spinning on the lock, 

whether executing or suspended, across the analysis interval. 

WaitQ  The minimum, maximum, and average number of threads waiting on the lock, 

across the analysis interval. 

Recursion  

The minimum, maximum, and average recursion depth to which each thread held 

the lock.
  

Mutex Pthread Detail 

If the -dt  or -da  options are used, the splat  command reports the pthread detail as described below: 

 PThreadID  The PThread  identifier. 

Acquisitions  The number of times that this pthread acquired the mutex. 

Miss  Rate  The percentage of acquisition attempts by the pthread that failed to secure the mutex. 

Spin  Count  The number of unsuccessful attempts by this pthread to secure the mutex. 

Wait Count  The number of times that this pthread was forced to wait until the mutex came available. 

Busy  Count  The number of trylock  calls that returned busy. 

Percent  Held  of Total 

Time  

This field contains the following sub-fields: 

CPU  The percentage of the elapsed real time that this pthread executed while holding 

the mutex. 

Elapse(d)  

The percentage of the elapsed real time that this pthread held the mutex while 

running or suspended. 

Spin  The percentage of elapsed real time that this pthread executed while spinning 

on the mutex. 

Wait The percentage of elapsed real time that this pthread spent waiting on the 

mutex.
  

Mutex Function Detail 

If the -df  or -da  options are used, the splat  command reports the function detail as described below: 

 PThreadID  The PThread  identifier. 

Acquisitions  The number of times that this function acquired the mutex. 

 

110 Performance Tools Guide and Reference



Miss  Rate  The percentage of acquisition attempts by the function that failed to secure the mutex. 

Spin  Count  The number of unsuccessful attempts by this function to secure the mutex. 

Wait Count  The number of times that this function was forced to wait until the mutex came available. 

Busy  Count  The number of trylock  calls that returned busy. 

Percent  Held  of  Total 

Time  

This field contains the following sub-fields: 

CPU  The percentage of the elapsed real time that this function executed while holding 

the mutex. 

Elapse(d)  

The percentage of the elapsed real time that this function held the mutex while 

running or suspended. 

Spin  The percentage of elapsed real time that this function executed while spinning 

on the mutex. 

Wait The percentage of elapsed real time that this function spent waiting for the 

mutex. 

Return  Address  The return address to this calling function, in hexadecimal. 

Start  Address  The start address to this calling function, in hexadecimal. 

Offset  The offset from the function start address to the return address, in hexadecimal.
  

Read/Write Lock Reports 

The PThread  read/write lock is similar to an AIX complex lock in that it can be acquired for reading or 

writing; writing is exclusive in that a single thread can only acquire the lock for writing, and no other thread 

can hold the lock for reading or writing at that point. Reading is not exclusive, so more than one thread 

can hold the lock for reading. Reading is recursive in that a single thread can hold multiple 

read-acquisitions on the lock. Writing is not recursive. 

  

  

[PThread  RWLock]     ADDRESS:     000000002FF228E0  

Parent  Thread:   0000000000000001      creation  time:      5.236585           deletion  time:   6.090511  

Pid:  7362         Process  Name:  /home/testrwlock  

Creation  call-chain  ==================================================================  

0000000010000458         .main  

00000000100001DC         .__start  

=============================================================================  

         |                     |                  | Percent  Held  ( 26.235284s  ) 

Acqui-    |  Miss   Spin    Wait   |    Secs  Held      |  Real   Real     Comb   Real  

sitions   |  Rate   Count   Count  |CPU       Elapsed   |  CPU   Elapsed   Spin   Wait  

1150      |40.568    785     0    |21.037942  12.0346  |80.19    99.22   30.45  46.29  

--------------------------------------------------------------------------------------  

                Readers              Writers                      Total  

Depth      Min    Max    Avg        Min    Max    Avg             Min    Max    Avg  

LockQ      0     2     0         0     1     0              0     2     0 

SpinQ      0     768    601        0     15     11              0     782    612  

WaitQ      0     769    166        0     15     3              0     783    169  

  

             Acquisitions    Miss    Spin    Count   Wait    Count   Busy     Percent  Held  of  Total  Time  

PthreadID     Write   Read     Rate    Write   Read    Write   Read    Count     CPU    Elapse   Spin    Wait  

 ~~~~~~~~~~   ~~~~~~  ~~~~~~   ~~~~~~  ~~~~~~  ~~~~~~  ~~~~~~  ~~~~~~  ~~~~~~   ~~~~~~  ~~~~~~  ~~~~~~  ~~~~~~  

 772 0 207 78.70 0 765 0 796 0 11.58 15.13 29.69 23.21

 515 765 0 1.80 14 0 14 0 0 80.10 80.19 49.76 23.08

 258 0 178 3.26 0 6 0 5 0 12.56 17.10 10.00 20.02

 Acquisitions Miss Spin Count Wait Count Busy Percent Held of Total Time

Function Name Write Read Rate Write Read Write Read Count CPU Elapse Spin Wait Return Address Start Address Offset

 ^^^^^^^^^^^^^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^

 ._pthread_body 765 385 40.57 14 771 0 0 0 1.55 3.10 1.63 0.00 00000000D268944C 00000000D2684180 000052CC

In addition to the common header information and the [PThread RWLock] identifier, this report lists the

following lock details:

 Parent Thread Pthread id of the parent pthread.

creation time Elapsed time in seconds after the first event recorded in trace (if available).

deletion time Elapsed time in seconds after the first event recorded in trace (if available).

Chapter 4. Simple Performance Lock Analysis Tool (splat) 111

PID Process identifier.

Process Name Name of the process using the lock.

Call-chain Stack of called methods (if available).

Acquisitions The number of times that the lock was acquired in the analysis interval.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The current PThread implementation does not force pthreads to wait for read/write locks.

This reports the number of times a thread, spinning on this lock, is undispatched.

Seconds Held This field contains the following sub-fields:

CPU The total number of processor seconds that the lock was held by an executing

pthread. If the lock is held multiple times by the same pthread, only one hold

interval is counted.

Elapse(d)

The total number of elapsed seconds that the lock was held by any pthread,

whether the pthread was running or suspended.

Percent Held This field contains the following sub-fields:

Real CPU

The percentage of the cumulative processor time that the lock was held by any

executing pthread.

Real Elapsed

The percentage of the elapsed real time that the lock was held by any pthread,

either running or suspended.

Comb(ined) Spin

The percentage of the cumulative processor time that running pthreads spent

spinning while trying to acquire this lock.

Real Wait

The percentage of elapsed real time that any pthread was waiting to acquire this

lock. If two or more threads are waiting simultaneously, this wait time will only be

charged once. To learn how many pthreads were waiting simultaneously, look at

the WaitQ Depth statistics.

Depth This field contains the following sub-fields:

LockQ The minimum, maximum, and average number of pthreads holding the lock,

whether executing or suspended, across the analysis interval. This is broken down

by read-acquisitions, write-acquisitions, and total acquisitions.

SpinQ The minimum, maximum, and average number of pthreads spinning on the lock,

whether executing or suspended, across the analysis interval. This is broken down

by read-acquisitions, write-acquisitions, and total acquisitions.

WaitQ The minimum, maximum, and average number of pthreads in a timed-wait state for

the lock, across the analysis interval. This is broken down by read-acquisitions,

write-acquisitions, and total acquisitions.

Note: The pthread and function details for read/write locks are similar to the mutex detail reports, except

that they break down the acquisition, spin, and wait counts by whether the lock is to be acquired for

reading or writing.

Condition-Variable Report

The PThread condition-variable is a synchronizer, but not a lock. A PThread is suspended until a signal

indicates that the condition now holds.

112 Performance Tools Guide and Reference

[PThread CondVar] ADDRESS: 0000000020000A18

Parent Thread: 0000000000000001 creation time: 0.216301

Pid: 7360 Process Name: /home/splat/test/condition

Creation call-chain ==

00000000D26A0EE8 .pthread_cond_timedwait

0000000010000510 .main

00000000100001DC .__start

===

 | | Spin / Wait Time (26.235284s)

 | Fail Spin Wait | Comb Comb

 Passes | Rate Count Count | Spin Wait

 1 |50.000 1 0 | 26.02 0.00

Depth Min Max Avg

SpinQ 0 1 1

WaitQ 0 0 0

 Fail Spin Wait % Total Time

 PThreadID Passes Rate Count Count Spin Wait

 ~~~~~~~~~  ~~~~~~~~  ~~~~~~  ~~~~~~ ~~~~~~  ~~~~~~  ~~~~~~ 

         1         1  50.0000     1      0  99.1755  0.0000 

  

                                   Fail   Spin   Wait    % Total Time 

Function Name   Passes     Rate   Count  Count  Spin     Wait    Return Address   Start Address    Offset 

^^^^^^^^^^^^^^  ̂ ^^^^^^^  ̂ ^^^^^  ̂ ^^^^^  ̂ ^^^^^  ̂ ^^^^^  ̂  ^^^^^  ̂ ^^^^^^^^^^^^^^^  ̂ ^^^^^^^^^^^^^^^  ̂ ^^^^^^^  ̂

  .__start       1        50.0000     1     0    99.1755 0.0000  00000000100001DC 0000000010000000 000001DC 

  

In addition to the common header information and the [PThread  CondVar] identifier, this report lists the 

following details: 

 Passes  The number of times that the condition was signaled to hold during the analysis interval. 

Fail  Rate  The percentage of times that the condition was tested and was not found to be true. 

Spin  Count  The number of times that the condition was tested and was not found to be true. 

Wait Count  The number of times that a pthread was forced into a suspended wait state waiting for the 

condition to be signaled. 

Spin  / Wait Time  This field contains the following sub-fields: 

Comb  Spin  

The total number of processor seconds that pthreads spun while waiting for the 

condition. 

Comb  Wait 

The total number of elapsed seconds that pthreads spent in a wait state for the 

condition. 

Depth  This field contains the following sub-fields: 

SpinQ  The minimum, maximum, and average number of pthreads spinning while waiting 

for the condition, across the analysis interval. 

WaitQ   The minimum, maximum, and average number of pthreads waiting for the 

condition, across the analysis interval.
  

Condition-Variable Pthread Detail 

If the -dt  or -da  options are used, the splat  command reports the pthread detail as described below: 

 PThreadID  The PThread  identifier. 

Passes  The number of times that this pthread was notified that the condition passed. 

Fail  Rate  The percentage of times that the pthread checked the condition and did not find it to be 

true. 

Spin  Count  The number of times that the pthread checked the condition and did not find it to be true. 

 

Chapter 4. Simple Performance Lock Analysis Tool (splat) 113



Wait Count  The number of times that this pthread was forced to wait until the condition became true. 

Percent  Total Time  This field contains the following sub-fields: 

Spin  The percentage of elapsed real time that this pthread spun while testing the 

condition. 

Wait The percentage of elapsed real time that this pthread spent waiting for the 

condition to hold.
  

Condition-Variable Function Detail 

If the -df  or -da  options are used, the splat  command reports the function detail as described below: 

 Function  Name  The name of the function that passed or attempted to pass this condition. 

Passes  The number of times that this function was notified that the condition passed. 

Fail  Rate  The percentage of times that the function checked the condition and did not find it to be 

true. 

Spin  Count  The number of times that the function checked the condition and did not find it to be true. 

Wait Count  The number of times that this function was forced to wait until the condition became true. 

Percent  Total Time  This field contains the following sub-fields: 

Spin  The percentage of elapsed real time that this function spun while testing the 

condition. 

Wait The percentage of elapsed real time that this function spent waiting for the 

condition to hold. 

Return  Address  The return address to this calling function, in hexadecimal. 

Start  Address  The start address to this calling function, in hexadecimal. 

Offset  The offset from the function start address to the return address, in hexadecimal.

 

114 Performance Tools Guide and Reference



Chapter  5.  Hardware  Performance  Monitor  APIs  and  tools  

The bos.pmapi  fileset contains libraries and tools that are designed to provide access to some of the 

counting facilities of the Performance Monitor feature included in select IBM microprocessors. They include 

the following: 

v   The pmapi library, which contains a set of low-level application programming interfaces, APIs, includes 

the following: 

–   A set of system-level APIs to permit counting of the activity of a whole machine or of a set of 

processes with a common ancestor. 

–   A set of first party kernel-thread-level APIs to permit threads to count their own activity. 

–   A set of third party kernel-thread-level APIs to permit a debug program to count the activity of target 

threads.

v   The pmcycle  command, which returns the processor clock and decrementer speeds. 

v   The pmlist  command, which displays information about processors, events, event groups and sets, and 

derived metrics supported. 

v   The hpm and hpm_r libraries, which contain a set of high-level APIs that enable the following: 

–   Nested instrumentation of sections of code 

–   Automatic calculation of derived metrics, and gathering of operating system resource-consumption 

metrics in addition to the raw hardware counter values

v    The hpmstat  command, which collects the hardware performance monitor raw and derived metrics 

concerning total system activity of a machine. 

v   The hpmcount  command, which executes applications and provides the applications’ execution wall 

clock time, the raw and derived hardware performance monitor metrics and the operating system 

resource-utilization statistics.

Note:   The APIs and the events available on each of the supported processors have been completely 

separated by design. The events available, their descriptions, and their current testing status (which 

are different on each processor) are in separately installable tables, and are not described here 

because none of the API calls depend on the availability or status of any of the events. 

The status of an event, as returned by the pm_initialize  API initialization routine, can be verified, 

unverified, caveat, broken, group-only, thresholdable, or shared  (see “Performance Monitor accuracy” 

about testing status and event accuracy). 

An event filter (which is any combination of the status bits) must be passed to the pm_initialize  routine to 

force the return of events with status matching the filter. If no filter is passed to the pm_initialize  routine, 

no events will be returned. 

The following topics discuss programming the Performance Monitor API: 

v   “Performance Monitor accuracy” 

v   “Performance Monitor context and state” on page 116 

v   “Thread accumulation and thread group accumulation” on page 116 

v   “Security considerations” on page 117 

v   “The pmapi library” on page 117 

v   “The hpm library and associated tools” on page 126

Performance Monitor accuracy 

Only events marked verified  have gone through full verification. Events marked caveat  have been verified 

within the limitations documented in the event description returned by the pm_initialize  routine. 

 

© Copyright IBM Corp. 2002, 2007 115



Events marked unverified  have undefined accuracy. Use caution with unverified  events. The Performance 

Monitor API is essentially providing a service to read hardware registers that might not have any 

meaningful content. 

Users can experiment with unverified  event counters and determine for themselves if they can be used for 

specific tuning situations. 

Performance Monitor context and state 

To provide Performance Monitor data access at various levels, the AIX operating system supports optional 

performance monitoring contexts. These contexts are an extension to the regular processor and thread 

contexts and include one 64-bit counter per hardware counter and a set of control words. The control 

words define which events are counted and when counting is on or off. 

System-level context and accumulation 

For the system-level APIs, optional Performance Monitor contexts can be associated with each of the 

processors. 

Thread context 

Optional Performance Monitor contexts can also be associated with each thread. The AIX operating 

system and the Performance Monitor kernel extension automatically maintain sets of 64-bit counters for 

each of these contexts. 

Thread counting-group and process context 

The concept of thread counting-group is optionally supported by the thread-level APIs. All the threads 

within a group, in addition to their own Performance Monitor context, share a group accumulation context. 

A thread group is defined as all the threads created by a common ancestor thread. By definition, all the 

threads in a thread group count the same set of events, and, with one exception described below, the 

group must be created before any of the descendant threads are created. This restriction is due to the fact 

that, after descendant threads are created, it is impossible to determine a list of threads with a common 

ancestor. 

One special case of a group is the collection of all the threads belonging to a process. Such a group can 

be created at any time regardless of when the descendant threads are created, because a list of threads 

belonging to a process can be generated. Multiple groups can coexist within a process, but each thread 

can be a member of only one Performance Monitor counting-group. Because all the threads within a group 

must be counting the same events, a process group creation will fail if any thread within the process 

already has a context. 

Performance Monitor state inheritance 

The PM state is defined as the combination of the Performance Monitor programmation (the events being 

counted), the counting state (on or off), and the optional thread group membership. A counting state is 

associated with each group. When the group is created, its counting state is inherited from the initial 

thread in the group. For thread members of a group, the effective counting state is the result of AND-ing 

their own counting state with the group counting state. This provides a way to effectively control the 

counting state for all threads in a group. Simply manipulating the group-counting state will affect the 

effective counting state of all the threads in the group. Threads inherit their complete Performance Monitor 

state from their parents when the thread is created. A thread Performance Monitor context data (the value 

of the 64-bit counters) is not inherited, that is, newly created threads start with counters set to zero. 

Thread accumulation and thread group accumulation 

When a thread gets suspended (or redispatched), its 64-bit accumulation counters are updated. If the 

thread is member of a group, the group accumulation counters are updated at the same time. 

 

116 Performance Tools Guide and Reference



Similarly, when a thread stops counting or reads its Performance Monitor data, its 64 bit accumulation 

counters are also updated by adding the current value of the Performance Monitor hardware counters to 

them. Again, if the thread is a member of a group, the group accumulation counters are also updated, 

regardless of whether the counter read or stop was for the thread or for the thread group. 

The group-level accumulation data is kept consistent with the individual Performance Monitor data for the 

thread members of the group, whenever possible. When a thread voluntarily leaves a group, that is, 

deletes its Performance Monitor context, its accumulated data is automatically subtracted from the 

group-level accumulated data. Similarly, when a thread member in a group resets its own data, the data in 

question is subtracted from the group level accumulated data. When a thread dies, no action is taken on 

the group-accumulated data. 

The only situation where the group-level accumulation is not consistent with the sum of the data for each 

of its members is when the group-level accumulated data has been reset, and the group has more than 

one member. This situation is detected and marked by a bit returned when the group data is read. 

Security considerations 

The system-level APIs calls are only available from the root user except when the process tree option is 

used. In that case, a locking mechanism prevents calls being made from more than one process. This 

mechanism ensures ownership of the API and exclusive access by one process from the time that the 

system-level contexts are created until they are deleted. 

Enabling the process tree option results in counting for only the calling process and its descendants; the 

default is to count all activities on each processor. 

Because the system-level APIs would report bogus data if thread contexts where in use, system-level API 

calls are not enabled at the same time as thread-level API calls. The allocation of the first thread context 

will take the system-level API lock, which will not be released until the last context has been deallocated. 

When using first party calls, a thread is only permitted to modify its own Performance Monitor context. The 

only exception to this rule is when making group level calls, which obviously affect the group context, but 

can also affect other threads’ context. Deleting a group deletes all the contexts associated with the group, 

that is, the caller context, the group context, and all the contexts belonging to all the threads in the group. 

Access to a Performance Monitor context not belonging to the calling thread or its group is available only 

from the target process’s debugger program. The third party API calls are only permitted when the target 

process is either being ptraced  by the API caller, that is, the caller is already attached to the target 

process, and the target process is stopped or the target process is stopped on a /proc  file system event 

and the caller has the privilege required to open its control file. 

The fact that the debugger program must already have been attached to the debugged thread before any 

third party call to the API can be made, ensures that the security level of the API will be the same as the 

one used between debugger programs and process being debugged. 

The pmapi library 

The following rules are common to the Performance Monitor APIs: 

v   The pm_initialize  routine must be called before any other API call can be made, and only events 

returned by a given pm_initialize  call with its associated filter setting can be used in subsequent 

pm_set_program  calls. 

v   PM contexts cannot be reprogrammed or reused at any time. This means that none of the APIs support 

more than one call to a pm_set_program  interface without a call to a pm_delete_program  interface. 

This also means that when creating a process group, none of the threads in the process is permitted to 

already have a context. 

 

Chapter 5. Hardware Performance Monitor APIs and tools 117



v   All the API calls return 0 when successful or a positive error code (which can be decoded using 

pm_error) otherwise.

The pm_init API initialization routine 

The pm_init  routine returns (in a structure of type pm_info_t  pointed to by its second parameter) the 

processor name, the number of counters available, the list of available events for each counter, and the 

threshold multipliers supported. Some processor support two threshold multipliers, others none, meaning 

that thresholding is not supported at all. You can not use the pm_init  routine with processors newer than 

POWER4. You must use the pm_initialize  routine for newer processors. 

For each event returned, in addition to the testing status, the pm_init  routine also returns the identifier to 

be used in subsequent API calls, a short name, and a long name. The short name is a mnemonic name in 

the form PM_MNEMONIC. Events that are the same on different processors will have the same mnemonic 

name. For instance, PM_CYC and PM_INST_CMPL are respectively the number of processor cycles and 

instruction completed and should exist on all processors. For each event returned, a thresholdable flag is 

also returned. This flag indicates whether an event can be used with a threshold. If so, then specifying a 

threshold defers counting until a number of cycles equal to the threshold multiplied by the processor’s 

selected threshold multiplier has been exceeded. 

Beginning with AIX level 5.1.0.15, the Performance Monitoring API enables the specification of event 

groups instead of individual events. Event groups are predefined sets of events. Rather than each event 

being individually specified, a single group ID is specified. The interface to the pm_init  routine has been 

enhanced to return the list of supported event groups in a structure of type pm_groups_info_t  pointed to 

by a new optional third parameter. To preserve binary compatibility, the third parameter must be explicitly 

announced by OR-ing the PM_GET_GROUPS bitflag into the filter. Some events on some platforms can 

only be used from within a group. This is indicated in the threshold flag associated with each event 

returned. The following convention is used: 

 y A thresholdable event 

g An event that can only be used in a group 

G A thresholdable event that can only be used in a group 

n A non-thresholdable event that is usable individually
  

On some platforms, use of event groups is required because all the events are marked g or G. Each of 

the event groups that are returned includes a short name, a long name, and a description similar to those 

associated with events, as well as a group identifier to be used in subsequent API calls and the events 

contained in the group (in the form of an array of event identifiers). 

The testing status of a group is defined as the lowest common denominator among the testing status of 

the events that it includes. If at least one event has a testing status of caveat, the group testing status is at 

best caveat, and if at least one event has a status of unverified, then the group status is unverified. This is 

not returned as a group characteristic, but it is taken into account by the filter. Like events, only groups 

with status matching the filter are returned. 

The pm_initialize API initialize routine 

The pm_initialize  routine returns the processor name in a structure of type pm_info2_t  defined by its 

second parameter, its characteristics, the number of counters available, and the list of available events for 

each counter. 

For each event a status is returned, indicating the event status: validated, unvalidated, or validated  with  

caveat. The status also indicates if the event can be used in a group or not, if it is a thresholdable event 

and if it is a shared event. 

Some events on some platforms can be used only within a group. In the case where an event group is 

specified instead of individual events, the events are defined as grouped  only  events. 

 

118 Performance Tools Guide and Reference



For each returned event, a thresholdable state is also returned. It indicates whether an event can be used 

with a threshold. If so, specifying a threshold defers counting until it exceeds a number of cycles equal to 

the threshold multiplied by the selected processor threshold multiplier. 

Some processors support two hardware threads per physical processing unit. Each thread implements a 

set of counters, but some events defined for those processors are shared events. A shared event, is 

controlled by a signal not specific to a particular thread’s activity and sent simultaneously to both sets of 

hardware counters, one for each thread. Those events are marked by the shared  status. 

For each returned event, in addition to the testing status, the pm_initialize  routine returns the identifier to 

be used in subsequent API calls, as a short name and a long name. The short name is a mnemonic name 

in the form PM_MNEMONIC. The same events on different processors will have the same mnemonic 

name. For instance, PM_CYC and PM_INST_CMPL are respectively the number of processor cycles and 

the number of completed instructions, and should exist on all processors. 

The Performance Monitoring API enables the specification of event groups instead of individual events. 

Event groups are predefined sets of events. Rather than to specify individually each event, a single group 

ID can be specified. The interface to the pm_initialize  routine returns the list of supported event groups in 

a structure of type pm_groups_info_t  whose address is returned in the third parameter. 

On some platforms, the use of event groups is required because all events are marked as group-only. 

Each event group that is returned includes a short name, a long name, and a description similar to those 

associated with events, as well as a group identifier to be used in subsequent API calls and the events 

contained in the group (in the form of an array of event identifiers). 

The testing status of a group is defined as the lowest common denominator among the testing status of 

the events that it includes. If the testing status of at least one event is caveat, then the group testing status 

is at best caveat, and if the status of at least one event is unverified, then the group status is unverified. 

This is not returned as a group characteristic, but it is taken into account by the filter. Like events, only 

groups whose status match the filter are returned. 

If the proctype  parameter is not set to PM_CURRENT, the Performance Monitor APIs library is not 

initialized and the subroutine only returns information about the specified processor in its parameters, 

pm_info2_t  and pm_groups_info_t, taking into account the filter. If the proctype  parameter is set to 

PM_CURRENT, in addition to returning the information described, the Performance Monitor APIs library is 

initialized and ready to accept other calls. 

Basic pmapi library calls 

Each of the sections below describes a system-wide API call that has variations for first- and third-party 

kernel thread or group counting. Variations are indicated by suffixes to the function call names, such as 

pm_set_program, pm_set_program_mythread, and pm_set_program_group. 

pm_set_program  

Sets the counting configuration. Use this call to specify the events (as a list of event identifiers, 

one per counter, or as a single event-group identifier) to be counted, and a mode in which to 

count. The list of events to choose from is returned by the pm_init  routine. If the list includes a 

thresholdable event, you can also use this call to specify a threshold, and a threshold multiplier. 

 The mode in which to count can include user-mode and kernel-mode counting, and whether to 

start counting immediately. For the system-wide API call, the mode also includes whether to turn 

counting on only for a process and its descendants or for the whole system. For counting group 

API calls, the mode includes the type of counting group to create, that is, a group containing the 

initial thread and its future descendants, or a process-level group, which includes all the threads in 

a process. 

 

Chapter 5. Hardware Performance Monitor APIs and tools 119



pm_get_program  

Retrieves the current Performance Monitor settings. This includes mode information and the list of 

events (or the event group) being counted. If the list includes a thresholdable event, this call also 

returns a threshold and the multiplier used. 

pm_delete_program  

Deletes the Performance Monitor configuration. Use this call to undo pm_set_program. 

pm_start/pm_tstart  

Starts Performance Monitor counting. pm_tstart  returns a timestamp associated with the time the 

Performance Monitoring counters started counting. This is a timebase value that can be converted 

to time using time_base_to_time. 

pm_stop/pm_tstop  

Stops Performance Monitor counting. pm_tstop  returns a timestamp associated with the time the 

Performance Monitoring counters stopped counting. This is a timebase value that can be 

converted to time using time_base_to_time. 

pm_get_data/pm_get_tdata/pm_get_Tdata  

Returns Performance Monitor counting data. The data is a set of 64-bit values, one per hardware 

counter. For the counting group API calls, the group information is also returned. (See “Thread 

counting-group information.”) 

 pm_get_tdata  is similar to pm_get_data, but includes a timestamp that indicates the last time that 

the hardware Performance Monitoring counters were read. This is a timebase value that can be 

converted to time by using time_base_to_time. 

 pm_get_Tdata  is also similar to pm_get_data  but includes accumulated times corresponding to 

the interval during which the hardware Performance Monitoring counters were active. The interval 

is measured in real time, PURR and SPURR (on processors supporting those) values, and 

returned in timebase units convertable to time using time_base_to_time. 

 The pm_get_data_cpu, pm_get_tdata_cpu  and pm_get_Tdata_cpu  interfaces return the 

Performance Monitor counting data for a single processor. The specified processor number 

represents a contiguous number going from 0 to _system_configuration.ncpus. This number can 

represent a different processor from call to call if dynamic reconfiguration operations have 

occurred. 

 The pm_get_data_lcpu, pm_get_tdata_lcpu  and pm_get_Tdata_lcpu  interfaces return the 

Performance Monitor counting data for a single logical processor. The logical processor numbering 

is not contiguous, and the call to these interfaces returns an error if the specified logical processor 

has not been on line since the last call to pm_set_program. A logical processor number always 

designates the same processor even if dynamic reconfiguration operations have occurred. To get 

data for all processors, these interfaces must be called in a loop from 0 to 

_system_configuration.max_ncpus. 

pm_reset_data  

Resets Performance Monitor counting data. All values are set to 0.

Thread counting-group information 

The following information is associated with each thread counting-group: 

member  count  

The number of threads that are members of the group. This includes deceased threads that were 

members of the group when running. 

 If the consistency flag is on, the count will be the number of threads that have contributed to the 

group-level data. 

process  flag  

Indicates that the group includes all the threads in the process. 

 

120 Performance Tools Guide and Reference



consistency  flag  

Indicates that the group PM data is consistent with the sum of the individual PM data for the 

thread members.

This information is returned by the pm_get_data_mygroup  and pm_get_data_pgroup  interfaces in a 

pm_groupinfo_t  structure. 

Counter multiplexing mode 

You can set the counting for more events than available hardware counters using counter multiplexing. 

This mode is meant to be used to analyze workloads with homogenous performance characteristics. This 

avoids the requirement to run the workload multiple times to collect more events than available hardware 

counters. In this mode, the pmapi periodically changes the setting of the counting and accumulates values 

and counting time for multiple sets of events. The time each event set is counted before switching to the 

next set can be in the range of 10 ms to 30 s. The default value is 100 ms. 

The values returned include the number of times all sets of events have been counted, and for each set, 

the accumulated counter values and the accumulated time the set was counted. The accumulated time is 

measured up to three different ways: using Time Base, and when available, using the PURR time and one 

the SPURR time. These times are stored in a timebase format that can be converted to time by using the 

time_base_to_time function. These times are meant to be used to normalize the results across the 

complete measurement interval. 

Several basic pmapi calls have the following multiplexing mode variations indicated by the _mx  suffix: 

pm_set_program_mx  

Sets the counting configuration. It differs from the pm_set_program  function in that it accepts a 

set of groups (or event lists) to be counted, and the time each set must be counted before 

switching to the next set. 

pm_get_program_mx  

Retrieves the current Performance Monitor settings. It differs from the pm_get_program  function 

in that it accepts a set of groups (or event lists), and the time each set must be counted before 

switching to the next set. 

pm_get_data_mx  

Returns the Performance Monitor counting data. It returns a set of counting data, one per group 

(or event list) configured. The returned data includes in addition to the accumulated counter 

values, the number of times all the configured sets have been counted, and for each set, the 

accumulated time it was counted. 

pm_get_tdata_mx  

Same as pm_get_data_mx, but includes a timestamp indicating the last time that the hardware 

Performance Monitor counters were read. 

pm_get_data_cpu_mx/pm_get_tdata_cpu_mx  

Same as pm_get_data_mx  or pm_get_tdata_mx, but returns the Performance Monitor counting 

data for a single processor. The specified processor number must be in the range 0 to 

_system_configuration.ncpus. This number might represent different processors from call to call 

if dynamic reconfiguration operations have occurred. 

pm_get_data_lcpu_mx/pm_get_tdata_lcpu_mx  

Same as pm_get_data_cpu_mx  or pm_get_tdata_cpu_mx, but returns the Performance Monitor 

counting data for a single logical processor. The logical processor numbering is not contiguous, 

and the call to these interfaces return an error if the specified logical processor has not been 

online since the last call to pm_set_program_mx. A logical processor number always designates 

the same processor even if dynamic reconfiguration operations have occurred. To get data for all 

processors, these interfaces must be called in a loop from 0 to 

_system_configuration.max_ncpus.

 

Chapter 5. Hardware Performance Monitor APIs and tools 121



Examples of pmapi library usage 

The following examples demonstrate the use of Performance Monitor APIs in pseudo-code: 

v   “Simple single-threaded program example” 

v   “Initialization example using an event group” 

v   “Get information about an event group processor example” on page 123 

v   “Debugger program example for initialization program” on page 123 

v   “Simple multi-threaded example” on page 124 

v   “Simple thread counting-group example” on page 124 

v   “Simple thread counting-group with counter-multiplexing example” on page 125 

v   “Thread counting example with reset” on page 126

Functional sample code is available in the /usr/samples/pmapi  directory. 

Simple single-threaded program example 

# include  <pmapi.h>  

main()  

{ 

       pm_info_t  pminfo;  

       pm_prog_t  prog;  

       pm_data_t  data;  

       int  filter  = PM_VERIFIED;  /* use  only  verified  events  */ 

  

       pm_init(filter,  &pminfo)  

  

       prog.mode.w        = 0;  /* start  with  clean  mode  */  

       prog.mode.b.user   = 1;  /* count  only  user  mode  */ 

  

       for  (i = 0; i < pminfo.maxpmcs;  i++)  

                prog.events[i]  = COUNT_NOTHING;  

  

       prog.events[0]     = 1;  /* count  event  1 in first  counter  */ 

       prog.events[1]     = 2;  /* count  event  2 in second  counter  */ 

  

       pm_set_program_mythread(&prog);  

       pm_start_mythread();  

  

(1)     ...  usefull  work  ....  

  

       pm_stop_mythread();  

       pm_get_data_mythread(&data);  

  

       ...  print  results  ...  

} 

Initialization example using an event group 

# include  <pmapi.h>  

main()  

{ 

       pm_info2_t         pminfo;  

       pm_prog_t         prog;  

       pm_groups_info_t  pmginfo;  

  

       int  filter  = PM_VERIFIED;   /* get  list  of verified  events  */ 

  

       pm_initialize(filter,  &pminfo,  &pmginfo,  PM_CURRENT  ) 

  

       prog.mode.w            = 0;   /* start  with  clean  mode  */ 

       prog.mode.b.user       = 1;  /* count  only  user  mode  */ 

       prog.mode.b.is_group   = 1;  /* specify  event  group  */ 

  

       for  (i = 0; i < pminfo.maxpmcs;  i++)

 

122 Performance Tools Guide and Reference



prog.events[i]  = COUNT_NOTHING;  

  

       prog.events[0]     = 1;  /* count  events  in group  1 */ 

       .....  

} 

Get information about an event group processor example 

# include  <pmapi.h>  

main()  

{ 

       pm_events2_t  *evp;  

  

       int  rc,counter,  event;  

       pm_info2_t        pminfo;  

       pm_prog_t         prog;  

       pm_groups_info_t  pmginfo;  

       int  filter  = PM_VERIFIED;   /* get  list  of verified  events  */ 

  

  

       if ((rc  = pm_initialize(filter,  &pminfo,  &pmginfo,  PM_POWER4)  != 0) { 

           pm_error("pm_initialize",  rc);  

           exit(-1);  

       } 

  

       printf  ("Group  #%d:  %s\n",  i, pmginfo.event_groups[i].short_name);  

       printf  ("Group  name:  %s\n",  pmginfo.event_groups[i].long_name);  

       printf  ("Group  description:  %s\n",  pmginfo.event_groups[i].long_name);  

       printf  ("Group  members:\n");  

       for  (counter  = 0; counter  < pminfo.maxpmcs;  counter++)  { 

  

             printf("Counter  %2d,  ", counter+1);  

             /* get  the  event  id  from  the  list  */ 

             event  = pmginfo.event_groups[i].events[counter];  

             if ((event  == COUNT_NOTHING)  || (pminfo.maxevents[counter]  ==  0)) 

                printf("event  %2d:  No event\n",  event);  

             else  { 

                /* find  pointer  to the  event  */ 

                for  (j = 0; j < pminfo.maxevents[counter];  j++)  { 

                   evp  = pminfo.list_events[counter]+j;  

                   if (event  == evp->event_id)  { 

                      break;  

                   } 

                } 

                printf("event  %2d:  %s",  event,  evp->short_name);  

                printf("  : %s\n",  evp->long_name);  

             } 

       } /* for  (counter  = 0; ...  */ 

       .....  

Debugger program example for initialization program 

The following example illustrates how to look at the Performance Monitor data while the program is 

executing: 

from  a debugger  at  breakpoint  (1)  

  

       pm_initialize(filter);  

(2)     pm_get_program_pthread(pid,  tid,  ptid,  &prog);  

       ...  display  PM programmation  ...  

  

(3)     pm_get_data_pthread(pid,  tid,  ptid);  

       ...  display  PM data  ...  

  

       pm_delete_program_pthread(pid,  tid,  ptid);  

       prog.events[0]  = 2; /* change  counter  1 to count  event  number  2 */ 

       pm_set_program_pthread(pid,  tid,  ptid,  &prog);  

  

continue  program  

 

Chapter 5. Hardware Performance Monitor APIs and tools 123



The preceding scenario would also work if the program being executed under the debugger did not have 

any embedded Performance Monitor API calls. The only difference would be that the calls at (2) and (3) 

would fail, and that when the program continues, it will be counting only event number 2 in counter 1, and 

nothing in other counters. 

Simple multi-threaded example 

The following is a simple multi-threaded example with independent threads counting the same set of 

events. 

# include  <pmapi.h>  

pm_data_t  data2;  

  

void  * 

doit(void  *) 

{ 

  

(1)     pm_start_mythread();  

  

       ...  usefull  work  ....  

  

       pm_stop_mythread();  

       pm_get_data_mythread(&data2);  

} 

  

main()  

{ 

       pthread_t  threadid;  

       pthread_attr_t  attr;  

       pthread_addr_t  status;  

  

       ...  same  initialization  as in previous  example  ...  

  

       pm_program_mythread(&prog);  

  

       /*  setup  1:1  mode  */  

       pthread_attr_init(&attr);  

       pthread_attr_setscope(&attr,  PTHREAD_SCOPE_SYSTEM);  

       pthread_create(&threadid,  &attr,  doit,  NULL);  

  

(2)     pm_start_mythread();  

  

       ...  usefull  work  ....  

  

       pm_stop_mythread();  

       pm_get_data_mythread(&data);  

  

       ...  print  main  thread  results  (data  )...  

  

       pthread_join(threadid,  &status);  

  

       ...  print  auxiliary  thread  results  (data2)  ... 

} 

In the preceding example, counting starts at (1) and (2) for the main and auxiliary threads respectively 

because the initial counting state was off and it was inherited by the auxiliary thread from its creator. 

Simple thread counting-group example 

The following example has two threads in a counting-group. The body of the auxiliary thread’s initialization 

routine is the same as in the previous example. 

main()  

{ 

        ...  same  initialization  as in  previous  example  ...  

  

        pm_set_program_mygroup(&prog);  /* create  counting  group  */ 

(1)      pm_start_mygroup()

 

124 Performance Tools Guide and Reference



pthread_create(&threadid,  &attr,  doit,  NULL)  

  

(2)      pm_start_mythread();  

  

        ...  usefull  work  ....  

  

        pm_stop_mythread();  

        pm_get_data_mythread(&data)  

  

  

        ...  print  main  thread  results  ...  

  

        pthread_join(threadid,  &status);  

  

        ...  print  auxiliary  thread  results  ...  

  

        pm_get_data_mygroup(&data)  

  

  

        ...  print  group  results  ...  

} 

In the preceding example, the call in (2) is necessary because the call in (1) only turns on counting for the 

group, not the individual threads in it. At the end, the group results are the sum of both threads results. 

Simple thread counting-group with counter-multiplexing example 

The following example has two threads in a counting-group. The body of the auxiliary thread’s initialization 

routine is the same as in the previous example. 

main()  

{ 

        pm_info2_t          pminfo;  

        pm_groups_info_t    pmginfo;  

        pm_prog_mx_r        prog;  

        pm_events_prog_t    event_set[2];  

        pm_data_mx_t        data;  

        int  filter  = PM_VERIFIED;   /* get  list  of  verified  events  */  

        pm_initialize(filter,  &pminfo,  &pmginfo,  PM_CURRENT  ) 

        prog.mode.w            = 0;   /*  start  with  clean  mode  */  

        prog.mode.b.user       = 1;   /*  count  only  user  mode  */ 

        prog.mode.b.is_group   = 1;  /* specify  event  group  */  

        prog.events_set        = event_set;  

        prog.nb_events_prog    = 2;    /* two  event  group  counted  */ 

        prog.slice_duration    = 200;  /*  slice  duration  for  each  event  group  is  200ms  */ 

        for  (i  = 0; i < pminfo.maxpmcs;  i++)  { 

                event_set[0][i]  = COUNT_NOTHING;  

                event_set[1][i]  = COUNT_NOTHING;  

        } 

  

        event_set[0][0]      = 1;    /* count  events  in  group  1 in the  first  set  */ 

        event_set[1][0]      = 3;    /* count  events  in  group  3 in the  first  set  */ 

        pm_set_program_mygroup_mx(&prog);  /* create  counting  group  */ 

        pm_start_mygroup()  

        pthread_create(&threadid,  &attr,  doit,  NULL)  

        pm_start_mythread();  

        ...  usefull  work  ....  

        pm_stop_mythread();  

        pm_get_data_mythread_mx(&data)  

        printf  ("Main  thread  results:\n");  

        for  (i  = 0; i < 2 ; i++)  { 

                group_number  = event_set[i][0];  

                printf  ("Group  #%d:  %s\n",  group_number,  pmginfo.event_groups[group_number].short_name);  

                printf  ("    counting  time:  %d  ms\n",  data.accu_set[i].accu_time);  

                printf  ("    counting  values:\n");  

  

                for  (counter  = 0; counter  < pminfo.maxpmcs;  counter++)  { 

                        printf  ("event  %d:  %d\n",  counter,  data.accu_set[i].accu_data[counter]);  

                } 

        } 

  (1)    free(data.accu_set);    /* free  the  memory  alloacted  for  the  main  thread  results  */ 

        pthread_join(threadid,  &status);  

        ...  print  auxiliary  thread  results  ...  

        free(data.accu_set);    /* free  the  memory  allocated  for  the  thread  results  */ 

        pm_get_data_mygroup_mx(&data)  

        ...  print  group  results  ...

 

Chapter 5. Hardware Performance Monitor APIs and tools 125



free(data.accu_set);    /*  free  the  memoory  allocated  for  the  group  results  */  

        pm_delete_program()  

} 

(1)  Each  time  data  are  got  in  time  slice  mode,  the  buffer  allocated  to return  the  counters  must  be freed  after  used.  

Thread counting example with reset 

The following example with a reset call illustrates the impact on the group data. The body of the auxiliary 

thread is the same as before, except for the pm_start_mythread  call, which is not necessary in this case. 

main()  

{ 

        ...  same  initialization  as in  previous  example...  

  

        prog.mode.b.count   = 1;  /* start  counting  immediately  */ 

        pm_program_mygroup(&prog);  

  

        pthread_create(&threadid,  pthread_attr_default,  doit,  NULL)  

  

        ...  usefull  work  ....  

  

        pm_stop_mythread()  

        pm_reset_data_mythread()  

  

        pthread_join(threadid,  &status);  

  

        ...print  auxiliary  thread  results...  

  

        pm_get_data_mygroup(&data)  

  

  

        ...print  group  results...  

} 

In the preceding example, the main thread and the group counting state are both on before the auxiliary 

thread is created, so the auxiliary thread will inherit that state and start counting immediately. 

At the end, data1  is equal to data  because the pm_reset_data_mythread  automatically subtracted the 

main thread data from the group data to keep it consistent. In fact, the group data remains equal to the 

sum of the auxiliary and the main thread data, but in this case, the main thread data is null. 

The hpm library and associated tools 

The hpm libraries are higher-level instrumentation libraries based on the pmapi library. They support 

multiple instrumentation sections, nested instrumentation, and each instrumented section can be called 

multiple times. When nested instrumentation is used, exclusive duration is generated for the outer 

sections. Average and standard deviation is provided when an instrumented section is activated multiple 

times. 

The libraries support OpenMP and threaded applications, which requires linking with the thread-safe 

version of the library,libhpm_r. Both 32-bit and 64-bit library modules are provided. 

The libraries collect information and hardware Performance Monitor summarization during run-time. So, 

there could be considerable overhead if instrumentation sections are inserted inside inner loops. 

Compiling and linking 

The functionality of the libhpm_r  library depends upon the corresponding functions in the libpmapi  and 

libm  libraries. Therefore, the lpmapi  -lm  flag must be specified when compiling applications using the hpm 

libraries. 

 

126 Performance Tools Guide and Reference



By default, argument passing from Fortran applications to the hpm libraries is done by reference, or 

pointer, not by value. Also, there is an extra length argument following character strings. You can modify 

the default argument passing method by using the %VAL  and %REF  built-in functions. 

Overhead and measurement error issues 

It is expected for any software instrumentation to incur some overhead. Since it is not possible to eliminate 

the overhead, the goal is to minimize it. In the hpm library, most of the overhead is due to time 

measurement, which tends to be an expensive operation in most systems. A second source of overhead is 

due to run-time accumulation and storage of performance data. The hpm libraries collect information and 

perform summarization during run-time. Hence, there could be a considerable amount of overhead if 

instrumentation sections are inserted inside inner loops. 

The hpm library uses hardware counters during the initialization and finalization of the library, retaining the 

minimum of the two for each counter as an estimate of the cost of one call to the start and stop functions. 

The estimated overhead is subtracted from the values obtained on each instrumented code section, which 

ensures that the measurement of error becomes close to zero. However, since this is a statistical 

approximation, in some situations where estimated overhead is larger than a measured count for the 

application, the approach fails. When the approach fails, you might get the following error message, which 

indicates that the estimated overhead was not subtracted from the measured values: 

WARNING:  Measurement  error  for  <event  name>  not  removed  

You can deactivate the procedure that attempts to remove measurement errors by setting the 

HPM_WITH_MEASUREMENT_ERROR  environment variable to TRUE  (1). 

Common hpm library rules 

The following rules are common to the hpm library APIs: 

v   The hpmInit()  or f_hpminit()  function must be called before any other function in the API. 

v   The initialization function can only be called once in an application. 

v   Performance Monitor contexts, like the event set, event group, or counter/event pairs, cannot be 

reprogrammed at any time. 

v   All functions of the API are specified as void  and return no value or status.

Overview of the hpm library API calls 

The following table lists the hpm library API calls: 

 API  Call  Purpose  

hpmInit  or f_hpminit  Performs initialization for a specified node ID and program name. 

hpmStart  or f_hpmstart  Indicates the beginning of an instrumented code segment, which is identified 

by an instrumentation identifier, InstID. 

hpmStop  or f_hpmstop  Indicates the end of an instrumented code segment. For each call to the 

hpmStart()  or f_hpmstart()  function, there should be a corresponding call to 

the hpmStop()  or f_hpmstop()  function with the matching instrumentation 

identifier. 

hpmTstart  or f_hpmtstart  Performs the same function as the hpmStart()  and f_hpmstart()  functions, 

but they are used in threaded applications. 

hpmTstop  or f_hpmtstop  Performs the same function as the hpmStop()  and f_hpmstop()  functions, 

but they are used in threaded applications. 

hpmGetTimeAndCounters  or 

f_hpmgettimeandcounters  

Returns the time, in seconds, and the accumulated counts since the call to 

the hpmInit()  or f_hpminit()  initialization function. 

hpmGetCounters  or 

f_hpmgetcounter  

Returns all the accumulated counts since the call to the hpmInit()  or 

f_hpminit()  initialization function. 

 

Chapter 5. Hardware Performance Monitor APIs and tools 127



API  Call  Purpose  

hpmTerminate  or f_hpmterminate  Performs termination and generates output. If an application exits without 

calling the hpmTerminate()  or f_hpmterminate()  function, no performance 

information is generated.
  

Threaded applications 

The T/tstart  and T/tstop  functions respectively start and stop the counters independently on each thread. 

If two distinct threads use the same instID  parameter, the output indicates multiple calls. However, the 

counts are accumulated. 

The instID  parameter is always a constant variable or integer. It cannot be an expression because the 

declarations in the libhpm.h, f_hpm.h, and f_hpm_i8.h  header files that contain #define  statements are 

evaluated during the compiler pre-processing phase, which permits the collection of line numbers and 

source file names. 

Selecting events when using the hpm libraries and tools 

The hpm libraries use the same set of hardware counters and events used by the hpmcount  and 

hpmstat  tools. The events are selected by sets. Sets are specially marked event groups for whichever 

derived metrics are available. For the hpm libraries, you can select the event set to be used by any of the 

following methods: 

v   The HPM_EVENT_SET  environment variable, which is either explicitly set in the environment or 

specified in the HPM_flags.env  file. 

v   The content of the libHPMevents  file.

For the hpmcount  and hpmstat  commands, you can specify which event types you want to be monitored 

and the associated hardware performance counters by any of the following methods: 

v   Using the -s  option 

v   The HPM_EVENT_SET  environment variable, which you can set directly or define in the 

HPM_flags.env  file 

v   The content of the libHPM_events  file

In all cases, the HPM_flags.env  file takes precedence over the explicit setting of the HPM_EVENT_SET  

environment variable and the content of the libHPMevents  or libHPM_events  file takes precedence over 

the HPM_EVENT_SET  environment variable. 

To use the time slice functionality, specify a comma-separated list of sets instead of a single set number. 

By default, the time slice duration for each set is 100 ms, but this can be modified with the 

HPM_MX_DURATION  environment variable. This value must be expressed in ms, and in the range 10 ms 

to 30000 ms. 

The libHPMevents and libHPM_events files 

The libHPMevents and libHPM_events files are both supplied by the user and have the same format. 

For POWER3 or PowerPC 604 RISC Microprocessor systems, the file contains the counter number and 

the event name, like in the following example: 

    0 PM_LD_MISS_L2HIT  

    1 PM_TAG_BURSTRD_L2MISS  

    2 PM_TAG_ST_MISS_L2  

    3 PM_FPU0_DENORM  

    4 PM_LSU_IDLE  

    5 PM_LQ_FULL  

    6 PM_FPU_FMA  

    7 PM_FPU_IDLE

 

128 Performance Tools Guide and Reference



For POWER4 and later systems, the file contains the event group name, like in the following example: 

pm_hpmcount1  

The HPM_flags.env file 

The HPM_flags.env  file contains environment variables that are used to specify the event set and for the 

computation of derived metrics, like in the following example: 

HPM_L2_LATENCY  12 

HPM_EVENT_SET   5 

Output files of the hpm library 

When the hpmTerminate  function is called, a summary report is written to the 

<progName>_<pid>_<taskID>.hpm  file, by default. The taskID and progName values are the first and 

second parameters of the hpmInit()  function, respectively. 

You can define the name of the output file with the HPM_OUTPUT_NAME  environment variable. The hpm 

libraries always add the _<taskID>.hpm  suffix to the specified value. You can also include the date and 

time in the file name using the HPM_OUTPUT_NAME  environment variable. For example, if you use the 

following code: 

MYDATE=$(date  +"m%d:2/2/06M%S")  

export  HPM_OUTPUT_NAME=myprogram_$MYDATE  

the output file for task 27 is named myprogram_yyyymmdd:HHMMSS_0027.hpm. 

You can also generate an XML output file by setting the HPM_VIZ_OUTPUT=TRUE  environment variable. 

The generated output files are named either <progName>_<pid>_<taskID>.viz  or 

HPM_OUTPUT_NAME_<taskID>.viz. 

Output files of the hpmcount command 

Depending on the environment variables set and the execution environment, the following files are created 

when you run the hpmcount  command: 

File  name  

Description  

file_<myID>.<pid>  

The value for file  is specified with the -o  option and the myID  value is assigned the value of the 

MP_CHILD  environment variable, which has a default value of 0000. 

HPM_LOG_DIR/hpm_log.<pid>  

When the HPM_LOG_DIR environment variable is set to an existing directory, results are 

additionally written to the hpm_log.<pid>  file. 

HPM_LOG_DIR/hpm_log.MP_PARTITION  

The MP_PARTITION environment variable is provided in POE environments. The 

hpm_log.MP_PARTITION  file contains the aggregate counts.

Derived metrics and related environment variables 

In relation to the hardware events that are selected to be counted and the hardware platform that is used, 

the output for the hpm library tools and the hpmterminate  function includes derived metrics. You can list 

the globally supported metrics for a given processor with the pmlist  -D  -1  [-p  Processor_name]  

command. 

You can supply the following environment variables to specify estimations of memory, cache, and TLB 

miss latencies for the computation of related derived metrics: 

v   HPM_MEM_LATENCY 

v   HPM_L3_LATENCY 

 

Chapter 5. Hardware Performance Monitor APIs and tools 129



v   HPM_L35_LATENCY 

v   HPM_AVG_L3_LATENCY 

v   HPM_AVG_L2_LATENCY 

v   HPM_L2_LATENCY 

v   HPM_L25_LATENCY 

v   HPM_L275_LATENCY 

v   HPM_L1_LATENCY 

v   HPM_TLB_LATENCY

Precedence is given to variables that are defined in the HPM_flags.env  file. 

You can use the HPM_DIV_WEIGHT  environment variable to compute the weighted flips on systems that 

are POWER4 and later. 

Examples of the hpm tools 

The examples in this section demonstrate the usage of the following hpm library commands: 

v   “The pmlist command” 

v   “The hpmcount command” on page 131 

v   “The hpmstat command” on page 131

The pmlist command 

The following is an example of the pmlist  command: 

# pmlist  -s 

  

POWER5  supports  6 counters  

  

Number  of groups             : 144  

Number  of sets               : 8 

  

Threshold  multiplier  (lower):  1 

Threshold  multiplier  (upper):  32 

Threshold  multiplier  (hyper):  64 

Hypervisor  counting  mode  is supported  

Runlatch  counting  mode  is supported  

The following is another example of the pmlist  command: 

# pmlist  -D -1   -p  POWER5  

Derived  metrics  supported:  

        PMD_UTI_RATE                    Utilization  rate  

        PMD_MIPS                        MIPS  

        PMD_INST_PER_CYC                Instructions  per  cycle  

        PMD_HW_FP_PER_CYC               HW floating  point  instructions  per  Cycle  

        PMD_HW_FP_PER_UTIME             HW floating  point  instructions  / user  time  

        PMD_HW_FP_RATE                  HW floating  point  rate  

        PMD_FX                          Total  Fixed  point  operations  

        PMD_FX_PER_CYC                  Fixed  point  operations  per  Cycle  

        PMD_FP_LD_ST                    Floating  point  load  and  store  operations  

        PMD_INST_PER_FP_LD_ST           Instructions  per  floating  point  load/store  

        PMD_PRC_INST_DISP_CMPL          % Instructions  dispatched  that  completed  

        PMD_DATA_L2                     Total  L2 data  cache  accesses  

        PMD_PRC_L2_ACCESS               % accesses  from  L2 per  cycle  

        PMD_L2_TRAF                     L2 traffic  

        PMD_L2_BDW                      L2 bandwidth  per  processor  

        PMD_L2_LD_EST_LAT_AVG           Estimated  latency  from  loads  from  L2 (Average)  

        PMD_UTI_RATE_RC                 Utilization  rate  (versus  run  cycles)  

        PMD_INST_PER_CYC_RC             Instructions  per  run  cycle  

        PMD_LD_ST                       Total  load  and  store  operations  

        PMD_INST_PER_LD_ST              Instructions  per  load/store  

        PMD_LD_PER_LD_MISS              Number  of  loads  per  load  miss  

        PMD_LD_PER_DTLB                 Number  of  loads  per  DTLB  miss  

        PMD_ST_PER_ST_MISS              Number  of  stores  per  store  miss  

        PMD_LD_PER_TLB                  Number  of  loads  per  TLB  miss  

        PMD_LD_ST_PER_TLB               Number  of  load/store  per  TLB  miss  

        PMD_TLB_EST_LAT                 Estimated  latency  from  TLB  miss  

        PMD_MEM_LD_TRAF                 Memory  load  traffic

 

130 Performance Tools Guide and Reference



PMD_MEM_BDW                     Memory  bandwidth  per  processor  

        PMD_MEM_LD_EST_LAT              Estimated  latency  from  loads  from  memory  

        PMD_LD_LMEM_PER_LD_RMEM         Number  of  loads  from  local  memory  per  loads  from  remote  memory  

        PMD_PRC_MEM_LD_RC               % loads  from  memory  per  run  cycle  

The hpmcount command 

The following is an example of the hpmcount  command: 

# hpmcount  -s 1 ls 

bar            foo  

 Execution  time  (wall  clock  time):  0.004222  seconds  

  

 ########   Resource  Usage  Statistics   ########  

  

 Total  amount  of time  in user  mode             : 0.001783  seconds  

 Total  amount  of time  in system  mode           : 0.000378  seconds  

 Maximum  resident  set  size                     : 220  Kbytes  

 Average  shared  memory  use  in text  segment     : 0 Kbytes*sec  

 Average  unshared  memory  use  in data  segment   : 0 Kbytes*sec  

 Number  of  page  faults  without  I/O  activity    : 63 

 Number  of  page  faults  with  I/O  activity       : 0 

 Number  of  times  process  was  swapped  out       : 0 

 Number  of  times  file  system  performed  INPUT   : 0 

 Number  of  times  file  system  performed  OUTPUT  : 0 

 Number  of  IPC  messages  sent                   : 0 

 Number  of  IPC  messages  received               : 0 

 Number  of  signals  delivered                   : 0 

 Number  of  voluntary  context  switches          : 0 

 Number  of  involuntary  context  switches        : 0 

  

 #######   End  of Resource  Statistics   ########  

  

  PM_CYC  (Processor  cycles)                           :          211939  

  PM_FXU_FIN  (FXU  produced  a result)                  :               0 

  PM_CYC  (Processor  cycles)                           :          211939  

  PM_FPU_FIN  (FPU  produced  a result)                  :              12 

  PM_INST_CMPL  (Instructions  completed)               :           55549  

  PM_RUN_CYC  (Run  cycles)                             :          212012  

  

  Utilization  rate                                  :           3.031  % 

  MIPS                                              :          13.157  

  Instructions  per  cycle                            :           0.262  

  HW Float  point  instructions  per  Cycle             :           0.000  

  HW floating  point  / user  time                     :           0.094  M HWflop/sec  

  HW floating  point  rate  (HW  Flops  / WCT)           :           0.003  M HWflops/sec  

The hpmstat command 

The following is an example of the hpmstat  command: 

# hpmstat  -s  7 

 Execution  time  (wall  clock  time):  1.003946  seconds  

  

  PM_TLB_MISS  (TLB  misses)                            :          260847  

  PM_CYC  (Processor  cycles)                           :      3013964331  

  PM_ST_REF_L1  (L1  D cache  store  references)          :       161377371  

  PM_LD_REF_L1  (L1  D cache  load  references)           :       255317480  

  PM_INST_CMPL  (Instructions  completed)               :      1027391919  

  PM_RUN_CYC  (Run  cycles)                             :      1495147343  

  

  Utilization  rate                                  :         181.243  % 

  Total  load  and  store  operations                   :         416.695  M 

  Instructions  per  load/store                       :           2.466  

  MIPS                                              :        1023.354  

  Instructions  per  cycle                            :           0.341  

The following is an example of the hpmstat  command with counter multiplexing: 

 

Chapter 5. Hardware Performance Monitor APIs and tools 131



# hpmstat  -s 1,2  -d 

Execution  time  (wall  clock  time):  2.129755  seconds  

Set:  1 

Counting  duration:  1.065  seconds  

  PM_INST_CMPL  (Instructions  completed)                 :          244687  

  PM_FPU1_CMPL  (FPU1  produced  a result)                 :               0 

  PM_ST_CMPL  (Store  instruction  completed)              :           31295  

  PM_LD_CMPL  (Loads  completed)                          :           67414  

  PM_FPU0_CMPL  (Floating-point  unit  produced  a result)  :              19 

  PM_CYC  (Processor  cycles)                             :          295427  

  PM_FPU_FMA  (FPU  executed  multiply-add  instruction)    :               0 

  PM_TLB_MISS  (TLB  misses)                              :             788 

Set:  2 

Counting  duration:  1.064  seconds  

  PM_TLB_MISS  (TLB  misses)                            :            379472  

  PM_ST_MISS_L1  (L1  D cache  store  misses)             :             79943  

  PM_LD_MISS_L1  (L1  D cache  load  misses)              :            307338  

  PM_INST_CMPL  (Instructions  completed)               :         848578245  

  PM_LSU_IDLE  (Cycles  LSU  is idle)                    :         229922845  

  PM_CYC  (Processor  cycles)                           :         757442686  

  PM_ST_DISP  (Store  instructions  dispatched)          :         125440562  

  PM_LD_DISP  (Load  instr  dispatched)                  :         258031257  

  

  

  PM_TLB_MISS  (TLB  misses)                              :          380260  

  PM_ST_MISS_L1  (L1  D cache  store  misses)               :          160017  

  PM_LD_MISS_L1  (L1  D cache  load  misses)                :          615182  

  PM_INST_CMPL  (Instructions  completed)                 :       848822932  

  PM_LSU_IDLE  (Cycles  LSU  is idle)                      :       460224933  

  PM_CYC  (Processor  cycles)                             :       757738113  

  PM_ST_DISP  (Store  instructions  dispatched)            :       251088030  

  PM_LD_DISP  (Load  instr  dispatched)                    :       516488120  

  PM_FPU1_CMPL  (FPU1  produced  a result)                 :               0 

  PM_ST_CMPL  (Store  instruction  completed)              :           62582  

  PM_LD_CMPL  (Loads  completed)                          :          134812  

  PM_FPU0_CMPL  (Floating-point  unit  produced  a result)  :              38 

  PM_FPU_FMA  (FPU  executed  multiply-add  instruction)    :               0 

  

  Utilization  rate                                  :         189.830  % 

  % TLB  misses  per  cycle                            :           0.050  % 

  number  of  loads  per  TLB  miss                      :           0.355  

  Total  l2 data  cache  accesses                      :           0.775  M 

  % accesses  from  L2 per  cycle                      :           0.102  % 

  L2 traffic                                        :          47.276  MBytes  

  L2 bandwidth  per  processor                        :          44.431  MBytes/sec  

  Total  load  and  store  operations                   :           0.197  M 

  Instructions  per  load/store                       :        4300.145  

  number  of  loads  per  load  miss                     :         839.569  

  number  of  stores  per  store  miss                   :        1569.133  

  number  of  load/stores  per  D1 miss                 :         990.164  

  L1 cache  hit  rate                                 :           0.999  % 

  % Cycles  LSU  is idle                              :          30.355  % 

  MIPS                                              :         199.113  

  Instructions  per  cycle                            :           1.120  

Examples of hpm library usage 

The following are examples of hpm library usage: 

v   “A C programming language example” on page 133 

v   “A Fortran programming language example” on page 133 

v   “Multithreaded application instrumentation example” on page 134

 

132 Performance Tools Guide and Reference



A C programming language example 

The following C program contains two instrumented sections which perform a trivial floating point 

operation, print the results, and then launch the command interpreter to execute the ls  -R  / 2>&1  

>/dev/null  command: 

#include  <sys/wait.h>  

#include  <unistd.h>  

#include  <stdio.h>  

#include  <libhpm.h>  

  

void  

do_work()  

{ 

        pid_t  p, wpid;  

        int  i, status;  

        float  f1 = 9.7641,  f2 = 2.441,  f3 = 0.0;  

  

        f3 = f1  / f2;  

        printf("f3=%f\n",  f3);  

  

        p = fork();  

  

        if (p  == -1)  { 

          perror("Mike  fork  error");  

          exit(1);  

        } 

  

        if (p  == 0) { 

          i = execl("/usr/bin/sh",  "sh",  "-c",  "ls  -R / 2>&1  >/dev/null",  0);  

          perror("Mike  execl  error");  

          exit(2);  

        } 

        else  

          wpid  = waitpid(p,  &status,  WUNTRACED  | WCONTINUED);  

  

        if (wpid  ==  -1)  { 

            perror("Mike  waitpid  error");  

            exit(3);  

        } 

  

        return;  

} 

  

main(int  argc,  char  **argv)  

{ 

        int  taskID  = 999;  

  

        hpmInit(taskID,  "my_program");  

        hpmStart(1,  "outer  call");  

        do_work();  

        hpmStart(2,  "inner  call");  

        do_work();  

        hpmStop(2);  

        hpmStop(1);  

        hpmTerminate(taskID);  

} 

A Fortran programming language example 

The following declaration is required on all source files that have instrumentation calls: 

#include  "f_hpm.h"  

Fortran programs call functions that include the f_  prefix, as you can see in the following example: 

call  f_hpminit(  taskID,  "my_program"  ) 

call  f_hpmstart(  1, "Do  Loop"   ) 

     do ...

 

Chapter 5. Hardware Performance Monitor APIs and tools 133



call  do_work()  

      call  f_hpmstart(  5, "computing  meaning  of life"  ); 

      call  do_more_work();  

      call  f_hpmstop(  5 ); 

     end  do 

call  f_hpmstop(  1 ) 

call  f_hpmterminate(  taskID  ) 

Multithreaded application instrumentation example 

When placing instrumentation inside of parallel regions, you should use a different id for each thread, as 

shown in the following Fortran example: 

!$OMP  PARALLEL  

!$OMP&PRIVATE  (instID)  

     instID  = 30+omp_get_thread_num()  

     call  f_hpmtstart(  instID,  "computing  meaning  of  life"  ) 

!$OMP  DO 

      do ...  

       do_work()  

      end  do 

      call  f_hpmtstop(  instID  ) 

!$OMP  END  PARALLEL  

The library accepts the use of the same instID  for different threads, but the counters are accumulated for 

all instances with the same instID. 

 

134 Performance Tools Guide and Reference



Chapter  6.  Perfstat  API  Programming  

The perfstat  application programming interface (API) is a collection of C programming language 

subroutines that execute in user space and uses the perfstat  kernel extension to extract various AIX 

performance metrics. System component information is also retrieved from the Object Data Manager 

(ODM) and returned with the performance metrics. 

The perfstat  API is thread–safe, and does not require root authority. 

The API supports extensions so binary compatibility is maintained across all releases of AIX. This is 

accomplished by using one of the parameters in all the API calls to specify the size of the data structure to 

be returned. This permits the library to easily determine which version is in use, as long as the structures 

are only growing, which is guaranteed. This releases the user from version dependencies. For the list of 

extensions made in earlier versions of AIX, see the Change History section. 

The perfstat  API subroutines reside in the libperfstat.a  library and are part of the bos.perf.libperfstat  

fileset, which is installable from the AIX base installation media and requires that the bos.perf.perfstat  

fileset is installed. The latter contains the kernel extension and is automatically installed with AIX. 

The /usr/include/libperfstat.h  file contains the interface declarations and type definitions of the data 

structures to use when calling the interfaces. This include  file is also part of the bos.perf.libperfstat  

fileset. Sample source code is provided with bos.perf.libperfstat  and resides in the /usr/samples/
libperfstat  directory. Detailed information for the individual interfaces and the data structures used can be 

found in the libperfstat.h  file in the AIX  5L  Version  5.3  Files  Reference. 

API Characteristics 

Two types of APIs are available. Global types return global metrics related to a set of components, while 

individual types return metrics related to individual components. Both types of interfaces have similar 

signatures, but slightly different behavior. 

All the interfaces return raw data; that is, values of running counters. Multiple calls must be made at 

regular intervals to calculate rates. 

Several interfaces return data retrieved from the ODM (object data manager) database. This information is 

automatically cached into a dictionary that is assumed to be ″frozen″ after it is loaded. The perfstat_reset  

subroutine must be called to clear the dictionary whenever the machine configuration has changed. In 

order to do a more selective reset, you can use the perfstat_partial_reset  function. For more details, see 

the “Cached metrics interfaces” on page 161 section. 

Most types returned are unsigned long long; that is, unsigned 64-bit data. 

Excessive and redundant calls to Perfstat APIs in a short time span can have a performance impact 

because time-consuming statistics collected by them are not cached. 

All of the examples presented in this chapter can be compiled in AIX 5.3 and later using the cc  command 

with -lperfstat. 

Global Interfaces 

Global interfaces report metrics related to a set of components on a system (such as processors, disks, or 

memory). 

 

© Copyright IBM Corp. 2002, 2007 135



All of the following AIX 5.2 interfaces use the naming convention perfstat_subsystem_total, and use a 

common signature: 

 perfstat_cpu_total  Retrieves global CPU usage metrics 

perfstat_memory_total  Retrieves global memory usage metrics 

perfstat_disk_total  Retrieves global disk usage metrics 

perfstat_netinterface_total  Retrieves global network interfaces metrics 

perfstat_partition_total  Retrieves global partition metrics
  

The common signature used by all of the global interfaces is as follows: 

int  perfstat_subsystem_total(perfstat_id_t  *name,  

                             perfstat_subsystem_total_t  *userbuff,  

                             int  sizeof_struct,  

                             int  desired_number);  

  

The usage of the parameters for all of the interfaces is as follows: 

 perfstat_id_t  *name  Reserved for future use, should be NULL 

perfstat_subsystem_total_t  *userbuff  A pointer to a memory area with enough space for the returned 

structure 

int sizeof_struct  Should be set to sizeof(perfstat_subsystem_t)  

int desired_number  Reserved for future use, must be set to 0 or 1
  

The return value will be -1 in case of errors. Otherwise, the number of structures copied is returned. This 

is always 1. 

The following sections provide examples of the type of data returned and code using each of the 

interfaces. 

perfstat_cpu_total Interface 

The perfstat_cpu_total  function returns a perfstat_cpu_total_t  structure, which is defined in the 

libperfstat.h  file. Selected fields from the perfstat_cpu_total_t  structure include: 

 processorHz  Processor speed in Hertz (from ODM) 

description  Processor type (from ODM) 

ncpus  Current number of active CPUs 

ncpus_cfg  Number of configured CPUs; that is, the maximum number of processors that this copy 

of AIX can handle simultaneously 

ncpus_high  Maximum number of active CPUs; that is, the maximum number of active processors 

since the last reboot 

user  Total number of clock ticks spent in user mode 

sys  Total number of clock ticks spent in system (kernel) mode 

idle  Total number of clock ticks spent idle with no I/O pending 

wait  Total number of clock ticks spent idle with I/O pending
  

Several other processor-related counters (such as number of system calls, number of reads, write, forks, 

execs, and load average) are also returned. For a complete list, see the perfstat_cpu_total_t  section of 

the libperfstat.h  header file in AIX  5L  Version  5.3  Files  Reference. 

The following code shows an example of how perfstat_cpu_total  is used: 

 

136 Performance Tools Guide and Reference



#include  <stdio.h>  

#include  <stdlib.h>  

#include  <unistd.h>  

#include  <libperfstat.h>  

#include  <sys/systemcfg.h>  

  

#define  XINTFRAC  ((double)(_system_configuration.Xint)/(double)(_system_configuration.Xfrac))  

#define  HTIC2SEC(x)  ((double)x  * XINTFRAC)/(double)1000000000.0  

  

static  int  disp_util_header  = 1; 

static  u_longlong_t  last_time_base;  

static  u_longlong_t  last_pcpu_user,  last_pcpu_sys,  last_pcpu_idle,  last_pcpu_wait;  

static  u_longlong_t  last_lcpu_user,  last_lcpu_sys,  last_lcpu_idle,  last_lcpu_wait;  

static  u_longlong_t  last_phint  = 0, last_vcsw  = 0,  last_pit  = 0; 

  

void  display_lpar_util(void);  

  

int  main(int  argc,  char*  argv[])  

{ 

    while  (1)  { 

        display_lpar_util();  

        sleep(atoi(argv[1]));  

    } 

    return(0);  

} 

  

/*  Save  the  current  values  for  the  next  iteration  */ 

void  save_last_values(perfstat_cpu_total_t  *cpustats,  perfstat_partition_total_t  *lparstats)  

{ 

    last_vcsw       = lparstats->vol_virt_cswitch  + lparstats->invol_virt_cswitch;  

    last_time_base  = lparstats->timebase_last;  

    last_phint      = lparstats->phantintrs;  

    last_pit        = lparstats->pool_idle_time;  

  

    last_pcpu_user  = lparstats->puser;  

    last_pcpu_sys   = lparstats->psys;  

    last_pcpu_idle  = lparstats->pidle;  

    last_pcpu_wait  = lparstats->pwait;  

  

    last_lcpu_user  = cpustats->user;  

    last_lcpu_sys   = cpustats->sys;  

    last_lcpu_idle  = cpustats->idle;  

    last_lcpu_wait  = cpustats->wait;  

} 

  

/*  Gather  and  display  lpar  usitilization  metrics  */ 

void  display_lpar_util()  

{ 

    u_longlong_t  dlt_pcpu_user,  dlt_pcpu_sys,  dlt_pcpu_idle,  dlt_pcpu_wait;  

    u_longlong_t  dlt_lcpu_user,  dlt_lcpu_sys,  dlt_lcpu_idle,  dlt_lcpu_wait;  

    u_longlong_t  vcsw,  lcputime,  pcputime;  

    u_longlong_t  entitled_purr,  unused_purr;  

    u_longlong_t  delta_purr,  delta_time_base;  

    double  phys_proc_consumed,  entitlement,  percent_ent,  delta_sec;  

    perfstat_partition_total_t  lparstats;  

    perfstat_cpu_total_t  cpustats;  

  

    /* retrieve  the  metrics  */ 

    if (!perfstat_partition_total(NULL,  &lparstats,  sizeof(perfstat_partition_total_t),  1)) { 

        perror("perfstat_partition_total");  

        exit(-1);  

    } 

  

    if (!perfstat_cpu_total(NULL,  &cpustats,  sizeof(perfstat_cpu_total_t),  1))  { 

        perror("perfstat_cpu_total");  

        exit(-1);  

    }

 

Chapter 6. Perfstat API Programming 137



/* Print  the  header  for  utilization  metrics  (only  once)  */ 

    if (disp_util_header)  { 

       if  (lparstats.type.b.shared_enabled)  { 

          if (lparstats.type.b.pool_util_authority)  { 

             fprintf(stdout,  "\n%5s  %5s  %6s  %6s  %5s  %5s  %5s  %5s %4s %5s",  

             "%user",  "%sys",  "%wait",  "%idle",  "physc",  "%entc",  "lbusy",  "app",  "vcsw",  "phint");  

  

             fprintf(stdout,  "\n%5s  %5s  %6s  %6s  %5s  %5s  %5s  %5s %4s %5s",  

             "-----",  "----",  "-----",  "-----",  "-----",  "-----",  "-----",  "---",  "----",  "-----");  

          } else  { 

             fprintf(stdout,  "\n%5s  %5s  %6s  %6s  %5s  %5s  %5s  %4s %5s",  

             "%user",  "%sys",  "%wait",  "%idle",  "physc",  "%entc",  "lbusy",  "vcsw",  "phint");  

  

             fprintf(stdout,  "\n%5s  %5s  %6s  %6s  %5s  %5s  %5s  %4s %5s",  

             "-----",  "----",  "-----",  "-----",  "-----",  "-----",  "-----",  "----",  "-----");  

          } 

       } else  { 

          fprintf(stdout,  "\n%5s  %5s  %6s  %6s",  "%user",  "%sys",  "%wait",  "%idle");  

          fprintf(stdout,  "\n%5s  %5s  %6s  %6s",  "-----",  "----",  "-----",  "-----");  

       } 

       fprintf(stdout,"\n");  

       disp_util_header  = 0; 

  

       /*  first  iteration,  we only  read  the  data,  print  the header  and save  the  data  */ 

       save_last_values(&cpustats,  &lparstats);  

       return;  

    } 

  

    dlt_pcpu_user   = lparstats.puser  - last_pcpu_user;  

    dlt_pcpu_sys    = lparstats.psys   - last_pcpu_sys;  

    dlt_pcpu_idle   = lparstats.pidle  - last_pcpu_idle;  

    dlt_pcpu_wait   = lparstats.pwait  - last_pcpu_wait;  

  

    delta_purr  = pcputime  = dlt_pcpu_user  + dlt_pcpu_sys  + dlt_pcpu_idle  + dlt_pcpu_wait;  

  

    dlt_lcpu_user   = cpustats.user  - last_lcpu_user;  

    dlt_lcpu_sys    = cpustats.sys   - last_lcpu_sys;  

    dlt_lcpu_idle   = cpustats.idle  - last_lcpu_idle;  

    dlt_lcpu_wait   = cpustats.wait  - last_lcpu_wait;  

  

    lcputime  = dlt_lcpu_user  + dlt_lcpu_sys  + dlt_lcpu_idle  + dlt_lcpu_wait;  

  

    entitlement  = (double)lparstats.entitled_proc_capacity  / 100.0  ; 

  

    delta_time_base  = lparstats.timebase_last  - last_time_base;  

  

    if (lparstats.type.b.shared_enabled)  { 

        entitled_purr  = delta_time_base  * entitlement;  

        if (entitled_purr  < delta_purr)  { 

            /* when  above  entitlement,  use  consumption  in percentages  */  

            entitled_purr  = delta_purr;  

        } 

        unused_purr  = entitled_purr  - delta_purr;  

  

        /* distribute  unused  purr  in wait  and  idle  proportionally  to logical  wait  and  idle  */ 

        dlt_pcpu_wait  +=  unused_purr  * ((double)dlt_lcpu_wait  / (double)(dlt_lcpu_wait  + dlt_lcpu_idle));  

        dlt_pcpu_idle  +=  unused_purr  * ((double)dlt_lcpu_idle  / (double)(dlt_lcpu_wait  + dlt_lcpu_idle));  

  

        pcputime  = entitled_purr;  

    } 

  

    /* Physical  Processor  Utilization  */ 

    printf("%5.1f  ", (double)dlt_pcpu_user  * 100.0  / (double)pcputime);  

    printf("%5.1f  ", (double)dlt_pcpu_sys   * 100.0  / (double)pcputime);  

    printf("%6.1f  ", (double)dlt_pcpu_wait  * 100.0  / (double)pcputime);  

    printf("%6.1f  ", (double)dlt_pcpu_idle  * 100.0  / (double)pcputime);

 

138 Performance Tools Guide and Reference



if (lparstats.type.b.shared_enabled)  { 

        /* Physical  Processor  Consumed  */ 

        phys_proc_consumed  = (double)delta_purr  / (double)delta_time_base;  

        printf("%5.2f  ", (double)phys_proc_consumed);  

  

        /* Percentage  of Entitlement  Consumed  */ 

        percent_ent  = (double)((phys_proc_consumed  / entitlement)  * 100);  

        printf("%5.1f  ", percent_ent);  

  

        /* Logical  Processor  Utilization  */ 

        printf("%5.1f  ", (double)(dlt_lcpu_user+dlt_lcpu_sys)  * 100.0  / (double)lcputime);  

  

        if (lparstats.type.b.pool_util_authority)  { 

           /* Available  Pool  Processor  (app)  */ 

           printf("%5.2f  ", (double)(lparstats.pool_idle_time  - last_pit)  / 

          (XINTFRAC*(double)delta_time_base));  

        } 

  

        /* Virtual  CPU  Context  Switches  per  second  */ 

        vcsw  = lparstats.vol_virt_cswitch  + lparstats.invol_virt_cswitch;  

 delta_sec  = HTIC2SEC(delta_time_base);  

        printf("%4.0f  ", (double)(vcsw  - last_vcsw)  / delta_sec);  

  

        /* Phantom  Interrupts  per  second  */ 

        printf("%5.0f",(double)(lparstats.phantintrs  - last_phint)  / delta_sec);  

    } 

    printf("\n");  

  

    save_last_values(&cpustats,  &lparstats);  

} 

The preceding program emulates lparstat  and displays utilization numbers similar to topas  (or vmstat, 

iostat, sar, and mpstat). 

perfstat_memory_total Interface 

The perfstat_memory_total  function returns a perfstat_memory_total_t  structure, which is defined in the 

libperfstat.h  file. Selected fields from the perfstat_memory_total_t  structure include: 

 virt_total  Amount of virtual memory (in units of 4 KB pages) 

real_total  Amount of real memory (in units of 4 KB pages) 

real_free  Amount of free real memory (in units of 4 KB pages) 

real_pinned  Amount of pinned memory (in units of 4 KB pages) 

pgins  Number of pages paged in 

pgouts  Number of pages paged out 

pgsp_total  Total amount of paging space (in units of 4 KB pages) 

pgsp_free  Amount of free paging space (in units of 4 KB pages) 

pgsp_rsvd  Amount of reserved paging space (in units of 4 KB pages)
  

Several other memory-related metrics (such as amount of paging space paged in and out, and amount of 

system memory) are also returned. For a complete list, see the perfstat_memory_total_t  section of the 

libperfstat.h  header file in AIX  5L  Version  5.3  Files  Reference. 

The following code shows an example of how perfstat_memory_total  is used: 

#include  <stdio.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char*  argv[])  { 

    perfstat_memory_total_t  minfo;

 

Chapter 6. Perfstat API Programming 139



perfstat_memory_total(NULL,  &minfo,  sizeof(perfstat_memory_total_t),  1);  

  

    printf("Memory  statistics\n");  

    printf("-----------------\n");  

    printf("real  memory  size                  : %llu  MB\n",  

           minfo.real_total*4096/1024/1024);  

    printf("reserved  paging  space             : %llu  MB\n",minfo.pgsp_rsvd);  

    printf("virtual  memory  size               : %llu  MB\n",  

           minfo.virt_total*4096/1024/1024);  

    printf("number  of free  pages              : %llu\n",minfo.real_free);  

    printf("number  of pinned  pages            : %llu\n",minfo.real_pinned);  

    printf("number  of pages  in file  cache     : %llu\n",minfo.numperm);  

    printf("total  paging  space  pages          : %llu\n",minfo.pgsp_total);  

    printf("free  paging  space  pages           : %llu\n",  minfo.pgsp_free);  

    printf("used  paging  space                 : %3.2f%%\n",  

        (float)(minfo.pgsp_total-minfo.pgsp_free)*100.0/  

        (float)minfo.pgsp_total);  

    printf("number  of paging  space  page  ins   : %llu\n",minfo.pgspins);  

    printf("number  of paging  space  page  outs  : %llu\n",minfo.pgspouts);  

    printf("number  of page  ins                : %llu\n",minfo.pgins);  

    printf("number  of page  outs               : %llu\n",minfo.pgouts);  

} 

  

The preceding program produces output similar to the following: 

Memory  statistics  

-----------------  

real  memory  size                  : 256  MB 

reserved  paging  space             : 512  MB 

virtual  memory  size               : 768  MB 

number  of free  pages              : 32304  

number  of pinned  pages            : 6546  

number  of pages  in file  cache     : 12881  

total  paging  space  pages          : 131072  

free  paging  space  pages           : 129932  

used  paging  space                 : 0.87%  

number  of paging  space  page  ins   : 0 

number  of paging  space  page  outs  : 0 

number  of page  ins                : 20574  

number  of page  outs               : 92508  

  

perfstat_disk_total Interface 

The perfstat_disk_total  function returns a perfstat_disk_total_t  structure, which is defined in the 

libperfstat.h  file. Selected fields from the perfstat_disk_total_t  structure include: 

 number  Number of disks 

size  Total disk size (in MB) 

free  Total free disk space (in MB) 

xfers  Total transfers to and from disk (in KB)
  

Several other disk-related metrics, such as number of blocks read from and written to disk, are also 

returned. For a complete list, see the perfstat_disk_total_t  section in the libperfstat.h  header file in AIX  

5L  Version  5.3  Files  Reference. 

The following code shows an example of how perfstat_disk_total  is used: 

#include  <stdio.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char*  argv[])  { 

    perfstat_disk_total_t  dinfo;

 

140 Performance Tools Guide and Reference



perfstat_disk_total(NULL,  &dinfo,  sizeof(perfstat_disk_total_t),  1);  

  

    printf("Total  disk  statistics\n");  

    printf("---------------------\n");  

    printf("number  of  disks          : %d\n",    dinfo.number);  

    printf("total  disk  space          : %llu\n",  dinfo.size);  

    printf("total  free  space          : %llu\n",  dinfo.free);  

    printf("number  of transfers       : %llu\n",  dinfo.xfers);  

    printf("number  of blocks  written  : %llu\n",  dinfo.wblks);  

    printf("number  of blocks  read     : %llu\n",  dinfo.rblks);  

} 

  

This program produces output similar to the following: 

Total  disk  statistics  

---------------------  

number  of  disks          : 3 

total  disk  space          : 4296  

total  free  space          : 2912  

number  of transfers       : 77759  

number  of blocks  written  : 738016  

number  of blocks  read     : 363120  

perfstat_netinterface_total  Interface 

The perfstat_netinterface_total  function returns a perfstat_netinterface_total_t  structure, which is 

defined in the libperfstat.h  file. Selected fields from the perfstat_netinterface_total_t  structure include: 

 number  Number of network interfaces 

ipackets  Total number of input packets received on all network interfaces 

opackets  Total number of output packets sent on all network interfaces 

ierror  Total number of input errors on all network interfaces 

oerror  Total number of output errors on all network interfaces
  

Several other network interface related metrics (such as number of bytes sent and received). For a 

complete list, see the perfstat_netinterface_total_t  section in the libperfstat.h  header file in AIX  5L  

Version  5.3  Files  Reference. 

 The following code shows an example of how perfstat_netinterface_total  is used: 

#include  <stdio.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char*  argv[])  { 

    perfstat_netinterface_total_t  ninfo;  

  

    perfstat_netinterface_total(NULL,  &ninfo,  sizeof(perfstat_netinterface_total_t),  1);  

  

    printf("Network  interfaces  statistics\n");  

    printf("-----------------------------\n");  

    printf("number  of interfaces  : %d\n",    ninfo.number);  

    printf("\ninput  statistics:\n");  

    printf("number  of packets     : %llu\n",  ninfo.ipackets);  

    printf("number  of errors      : %llu\n",  ninfo.ierrors);  

    printf("number  of bytes       : %llu\n",  ninfo.ibytes);  

    printf("\noutput  statistics:\n");  

    printf("number  of packets     : %llu\n",  ninfo.opackets);  

    printf("number  of bytes       : %llu\n",  ninfo.obytes);  

    printf("number  of errors      : %llu\n",  ninfo.oerrors);  

} 

 

 

Chapter 6. Perfstat API Programming 141



The program above produces output similar to this: 

Network  interfaces  statistics  

-----------------------------  

number  of interfaces  : 2 

  

input  statistics:  

number  of packets     : 306688  

number  of errors      : 0 

number  of bytes       : 24852688  

  

output  statistics:  

number  of packets     : 63005  

number  of bytes       : 11518591  

number  of errors      : 0 

  

perfstat_partition_total Interface 

The perfstat_partition_total  function returns a perfstat_partition_total_t  structure, which is defined in 

the libperfstat.h  file. Selected fields from the perfstat_partition_total_t  structure include: 

 type  Partition type 

online_cpus  Number of virtual CPUs currently allocated to the partition 

online_memory  Amount of memory currently allocated to the partition
  

For a complete list, see the perfstat_partition_total_t  section in the libperfstat.h  header file in AIX  5L  

Version  5.3  Files  Reference. 

The following code shows examples of how to use the perfstat_partition_total  function. 

The first example demonstrates how to emulate the lpartstat  -i command: 

#include <stdio.h> 

#include <stdlib.h> 

#include <libperfstat.h> 

  

int main(int argc, char* argv[]) 

{ 

  

    perfstat_partition_total_t pinfo; 

    int rc; 

  

    rc = perfstat_partition_total(NULL, &pinfo, sizeof(perfstat_partition_total_t), 1); 

    if (rc != 1) { 

    perror("Error in perfstat_partition_total"); 

    exit(-1); 

    } 

    printf("Partition Name                 : %s\n", pinfo.name); 

    printf("Partition Number               : %u\n", pinfo.lpar_id); 

    printf("Type                           : %s\n", pinfo.type.b.shared_enabled ? "Shared" : "Dedicated"); 

    printf("Mode                           : %s\n", pinfo.type.b.donate_enabled ? "Donating" : 

                                                    pinfo.type.b.capped ? "Capped" : "Uncapped"); 

    printf("Entitled Capacity              : %u\n", pinfo.entitled_proc_capacity); 

    printf("Partition Group-ID             : %u\n", pinfo.group_id); 

    printf("Shared Pool ID                 : %u\n", pinfo.pool_id); 

    printf("Online Virtual CPUs            : %u\n", pinfo.online_cpus); 

    printf("Maximum Virtual CPUs           : %u\n", pinfo.max_cpus); 

    printf("Minimum Virtual CPUs           : %u\n", pinfo.min_cpus); 

    printf("Online Memory                  : %llu MB\n", pinfo.online_memory); 

    printf("Maximum Memory                 : %llu MB\n", pinfo.max_memory); 

    printf("Minimum Memory                 : %llu MB\n", pinfo.min_memory); 

    printf("Variable Capacity Weight       : %u\n", pinfo.var_proc_capacity_weight); 

    printf("Minimum Capacity               : %u\n", pinfo.min_proc_capacity); 

    printf("Maximum Capacity               : %u\n", pinfo.max_proc_capacity); 

    printf("Capacity Increment             : %u\n", pinfo.proc_capacity_increment); 

    printf("Maximum Physical CPUs in system: %u\n", pinfo.max_phys_cpus_sys);

 

142 Performance Tools Guide and Reference



printf("Active Physical CPUs in system : %u\n", pinfo.online_phys_cpus_sys); 

    printf("Active CPUs in Pool            : %u\n", pinfo.phys_cpus_pool); 

    printf("Unallocated Capacity           : %u\n", pinfo.unalloc_proc_capacity); 

    printf("Physical CPU Percentage        : %4.2f%%\n", 

           (double)pinfo.entitled_proc_capacity / (double)pinfo.online_cpus); 

    printf("Unallocated Weight             : %u\n", pinfo.unalloc_var_proc_capacity_weight); 

} 

  

The program above produces output similar to the following: 

Partition  Name                  : aixlpar  

Partition  Number                : 21 

Type                            : Dedicated  

Mode                            : Donating  

Entitled  Capacity               : 35 

Partition  Group-ID              : 43 

Shared  Pool  ID                  : 93 

Online  Virtual  CPUs             : 8 

Maximum  Virtual  CPUs            : 12 

Minimum  Virtual  CPUs            : 6 

Online  Memory                   : 256  MB 

Maximum  Memory                  : 512  MB 

Minimum  Memory                  : 123  MB 

Variable  Capacity  Weight        : 5 

Minimum  Capacity                : 1.5  

Maximum  Capacity                : 3.5  

Capacity  Increment              : 83 

Maximum  Physical  CPUs  in system:  11  

Active  Physical  CPUs  in system  : 8 

Physical  CPUs  in Pool           : 9 

Unallocated  Capacity            : 4.5  

Physical  CPU  Percentage         : 84.34  

Unallocated  Weight              : 6 

The second example demonstrates how to emulate the lparstat  command in default mode: 

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <unistd.h>  

#include  <libperfstat.h>  

#include  <sys/systemcfg.h>  

  

#define  XINTFRAC  ((double)(_system_configuration.Xint)/(double)(_system_configuration.Xfrac))  

#define  HTIC2SEC(x)  ((double)x  * XINTFRAC)/(double)1000000000.0  

  

static  int  disp_util_header  = 1; 

static  u_longlong_t  last_time_base;  

static  u_longlong_t  last_pcpu_user,  last_pcpu_sys,  last_pcpu_idle,  last_pcpu_wait;  

static  u_longlong_t  last_lcpu_user,  last_lcpu_sys,  last_lcpu_idle,  last_lcpu_wait;  

static  u_longlong_t  last_phint  = 0, last_vcsw  = 0,  last_pit  = 0; 

static  u_longlong_t  last_idle_donated_purr  = 0, last_busy_donated_purr  = 0; 

static  u_longlong_t  last_busy_stolen_purr  = 0, last_idle_stolen_purr  = 0; 

  

int  donate_flag=0;  

  

void  display_lpar_util(void);  

  

int  main(int  argc,  char*  argv[])  

{ 

    while  (1)  { 

        display_lpar_util();  

        sleep(atoi(argv[1]));  

    } 

    return(0);  

} 

  

/*  Save  the  current  values  for  the  next  iteration  */

 

Chapter 6. Perfstat API Programming 143



void  save_last_values(perfstat_cpu_total_t  *cpustats,  perfstat_partition_total_t  *lparstats)  

{ 

    last_vcsw       = lparstats->vol_virt_cswitch  + lparstats->invol_virt_cswitch;  

    last_time_base  = lparstats->timebase_last;  

    last_phint      = lparstats->phantintrs;  

    last_pit        = lparstats->pool_idle_time;  

  

    last_pcpu_user  = lparstats->puser;  

    last_pcpu_sys   = lparstats->psys;  

    last_pcpu_idle  = lparstats->pidle;  

    last_pcpu_wait  = lparstats->pwait;  

  

    last_lcpu_user  = cpustats->user;  

    last_lcpu_sys   = cpustats->sys;  

    last_lcpu_idle  = cpustats->idle;  

    last_lcpu_wait  = cpustats->wait;  

  

    if(donate_flag)  

    { 

       last_idle_donated_purr  = lparstats->idle_donated_purr;  

          last_busy_donated_purr  = lparstats->busy_donated_purr;  

          last_busy_stolen_purr   = lparstats->busy_stolen_purr;  

          last_idle_stolen_purr   = lparstats->idle_stolen_purr;  

    } 

} 

  

void  display_lpar_util()  

{ 

    u_longlong_t  dlt_pcpu_user,  dlt_pcpu_sys,  dlt_pcpu_idle,  dlt_pcpu_wait;  

    u_longlong_t  dlt_lcpu_user,  dlt_lcpu_sys,  dlt_lcpu_idle,  dlt_lcpu_wait;  

    u_longlong_t  dlt_busy_stolen_purr,dlt_idle_stolen_purr;  

    u_longlong_t  dlt_idle_donated_purr,  dlt_busy_donated_purr;  

    u_longlong_t  vcsw,  lcputime,  pcputime;  

    u_longlong_t  entitled_purr,  unused_purr;  

    u_longlong_t  delta_purr,  delta_time_base;  

    double  phys_proc_consumed,  entitlement,  percent_ent,  delta_sec;  

    perfstat_partition_total_t  lparstats;  

    perfstat_cpu_total_t  cpustats;  

  

    /* retrieve  the  metrics  */ 

    if (!perfstat_partition_total(NULL,  &lparstats,  sizeof(perfstat_partition_total_t),  1))  { 

        perror("perfstat_partition_total");  

        exit(-1);  

    } 

  

    if (!perfstat_cpu_total(NULL,  &cpustats,  sizeof(perfstat_cpu_total_t),  1))  { 

        perror("perfstat_cpu_total");  

        exit(-1);  

    } 

  

    /* Print  the  header  for  utilization  metrics  (only  once)  */ 

    if (disp_util_header)  { 

       if  (lparstats.type.b.shared_enabled)  { 

          if (lparstats.type.b.pool_util_authority)  { 

             fprintf(stdout,  "\n%5s  %5s  %6s  %6s  %5s  %5s  %5s  %5s %4s %5s",  

             "%user",  "%sys",  "%wait",  "%idle",  "physc",  "%entc",  "lbusy",  "app",  "vcsw",  "phint");  

  

             fprintf(stdout,  "\n%5s  %5s  %6s  %6s  %5s  %5s  %5s  %5s %4s %5s",  

             "-----",  "----",  "-----",  "-----",  "-----",  "-----",  "-----",  "---",  "----",  "-----");  

          } else  { 

             fprintf(stdout,  "\n%5s  %5s  %6s  %6s  %5s  %5s  %5s  %4s %5s",  

             "%user",  "%sys",  "%wait",  "%idle",  "physc",  "%entc",  "lbusy",  "vcsw",  "phint");  

  

             fprintf(stdout,  "\n%5s  %5s  %6s  %6s  %5s  %5s  %5s  %4s %5s",  

             "-----",  "----",  "-----",  "-----",  "-----",  "-----",  "-----",  "----",  "-----");  

          } 

       } else  {

 

144 Performance Tools Guide and Reference



if(lparstats.type.b.donate_enabled)  

                     donate_flag=1;  

                fprintf(stdout,  "\n%5s  %5s  %6s  %6s",  "%user",  "%sys",  "%wait",  "%idle");  

                      if (donate_flag)  

                        fprintf(stdout,  " %5s %5s","%physc","%vcsw");  

                      fprintf(stdout,  "\n%5s  %5s  %6s  %6s",  "-----",  "----",  "-----",  "-----");  

                if (donate_flag)  

                     fprintf(stdout,  " %5s  %4s","------","-----");  

   } 

  

       fprintf(stdout,"\n");  

       disp_util_header  = 0; 

  

  

       /* first  iteration,  we only  read  the  data,  print  the  header  and  save  the data  */  

       save_last_values(&cpustats,  &lparstats);  

       return;  

    } 

  

    dlt_pcpu_user   = lparstats.puser  - last_pcpu_user;  

    dlt_pcpu_sys    = lparstats.psys   - last_pcpu_sys;  

    dlt_pcpu_idle   = lparstats.pidle  - last_pcpu_idle;  

    dlt_pcpu_wait   = lparstats.pwait  - last_pcpu_wait;  

  

    delta_purr  = pcputime  = dlt_pcpu_user  + dlt_pcpu_sys  + dlt_pcpu_idle  + dlt_pcpu_wait;  

  

    dlt_lcpu_user   = cpustats.user  - last_lcpu_user;  

    dlt_lcpu_sys    = cpustats.sys   - last_lcpu_sys;  

    dlt_lcpu_idle   = cpustats.idle  - last_lcpu_idle;  

    dlt_lcpu_wait   = cpustats.wait  - last_lcpu_wait;  

  

    lcputime  = dlt_lcpu_user  + dlt_lcpu_sys  + dlt_lcpu_idle  + dlt_lcpu_wait;  

  

    /* Distribute  the  donated  and  stolen  purr  to the  existing  purr  buckets  in case  if donation  is 

    enabled.*/  

    if(donate_flag)  

    { 

              u_longlong_t  r1,r2;  

              dlt_idle_donated_purr=  lparstats.idle_donated_purr  - last_idle_donated_purr;  

              dlt_busy_donated_purr=  lparstats.busy_donated_purr  - last_busy_donated_purr;  

              dlt_idle_stolen_purr  = lparstats.idle_donated_purr  - last_idle_donated_purr;  

              dlt_busy_stolen_purr  = lparstats.busy_stolen_purr  - last_busy_stolen_purr;  

           if((dlt_lcpu_idle  + dlt_lcpu_wait)!=0)  

              { 

                     r1=  dlt_lcpu_idle  / (dlt_lcpu_idle  + dlt_lcpu_wait);  

                     r2=  dlt_lcpu_wait  / (dlt_lcpu_idle  + dlt_lcpu_wait);  

              } 

              else  

                     r1=r2=0;  

              dlt_pcpu_user  += dlt_idle_donated_purr  *r1  + dlt_idle_stolen_purr  * r1;  

              dlt_pcpu_wait  += dlt_idle_donated_purr  *r2  + dlt_idle_stolen_purr  * r2;  

              dlt_pcpu_sys  += dlt_busy_donated_purr  + dlt_busy_stolen_purr;  

  

              delta_purr+=  dlt_idle_donated_purr  + dlt_busy_donated_purr+  dlt_idle_stolen_purr  

                        + dlt_busy_stolen_purr;  pcputime=delta_purr;  

       } 

  

    entitlement  = (double)lparstats.entitled_proc_capacity  / 100.0  ; 

  

    delta_time_base  = lparstats.timebase_last  - last_time_base;  

    if (lparstats.type.b.shared_enabled)  { 

        entitled_purr  = delta_time_base  * entitlement;  

        if (entitled_purr  < delta_purr)  { 

            /* when  above  entitlement,  use  consumption  in percentages  */ 

            entitled_purr  = delta_purr;  

        } 

        unused_purr  = entitled_purr  - delta_purr;

 

Chapter 6. Perfstat API Programming 145



/* distributed  unused  purr  in wait  and  idle  proportionally  to logical  wait  and  idle  */ 

        dlt_pcpu_wait  +=  unused_purr  * ((double)dlt_lcpu_wait  / (double)(dlt_lcpu_wait  + 

                      dlt_lcpu_idle));  

        dlt_pcpu_idle  +=  unused_purr  * ((double)dlt_lcpu_idle  / (double)(dlt_lcpu_wait  + 

                      dlt_lcpu_idle));  

  

        pcputime  = entitled_purr;  

    } 

  

    /* Physical  Processor  Utilization  */ 

    printf("%5.1f  ", (double)dlt_pcpu_user  * 100.0  / (double)pcputime);  

    printf("%5.1f  ", (double)dlt_pcpu_sys   * 100.0  / (double)pcputime);  

    printf("%6.1f  ", (double)dlt_pcpu_wait  * 100.0  / (double)pcputime);  

    printf("%6.1f  ", (double)dlt_pcpu_idle  * 100.0  / (double)pcputime);  

  

       if  (donate_flag)  { 

               /* Physical  Processor  Consumed  */ 

        phys_proc_consumed  = (double)delta_purr  / (double)delta_time_base;  

        printf("%6.2f  ",  (double)phys_proc_consumed);  

  

               /* Virtual  CPU  Context  Switches  per  second  */ 

        vcsw  = lparstats.vol_virt_cswitch  + lparstats.invol_virt_cswitch;  

        delta_sec  = HTIC2SEC(delta_time_base);  

        printf("%5.0f  ",  (double)(vcsw  - last_vcsw)  / delta_sec);  

       } 

  

    if (lparstats.type.b.shared_enabled)  { 

        /* Physical  Processor  Consumed  */ 

        phys_proc_consumed  = (double)delta_purr  / (double)delta_time_base;  

        printf("%5.2f  ",  (double)phys_proc_consumed);  

  

        /* Percentage  of Entitlement  Consumed  */ 

        percent_ent  = (double)((phys_proc_consumed  / entitlement)  * 100);  

        printf("%5.1f  ",  percent_ent);  

  

        /* Logical  Processor  Utilization  */ 

        printf("%5.1f  ",  (double)(dlt_lcpu_user+dlt_lcpu_sys)  * 100.0  / (double)lcputime);  

  

        if (lparstats.type.b.pool_util_authority)  { 

        /* Available  Pool  Processor  (app)  */ 

           printf("%5.2f  ", (double)(lparstats.pool_idle_time  - last_pit)  / 

                 XINTFRAC*(double)delta_time_base);  

        } 

  

        /* Virtual  CPU  Context  Switches  per  second  */ 

        vcsw  = lparstats.vol_virt_cswitch  + lparstats.invol_virt_cswitch;  

            delta_sec  = HTIC2SEC(delta_time_base);  

        printf("%4.0f  ",  (double)(vcsw  - last_vcsw)  / delta_sec);  

  

        /* Phantom  Interrupts  per  second  */ 

        printf("%5.0f",(double)(lparstats.phantintrs  - last_phint)  / delta_sec);  

    } 

    printf("\n");  

  

    save_last_values(&cpustats,  &lparstats);  

} 

If the program above runs in dedicated - donating mode, the program produces output similar to the 

following: 

%user   %sys   %wait   %idle   %physc   %vcsw  

-----   ----   -----   -----   ------   ------  

  0.1    0.3     0.0    99.5     2.00      172  

  0.0    0.2     0.0    99.8     1.99      171  

  0.0    0.2     0.0    99.8     1.99      170

 

146 Performance Tools Guide and Reference



0.0    0.2     0.0    99.8     1.99      170  

  0.0    0.2     0.0    99.8     1.99      171  

  0.0    0.2     0.0    99.8     1.99      171  

  0.0    0.2     0.0    99.8     1.98      228  

If the program above runs in shared mode, the program produces output similar to the following: 

%user   %sys   %wait   %idle   physc   %entc   lbusy    app   vcsw    pint  

-----   ----   -----   -----   -----   -----   ------   ---   ----   -----  

50.00   5.00    5.00   30.00     2.5   30.00    65.00   1.1    25     10 

50.00   5.00    5.00   30.00     2.5   30.00    65.00   1.1    25     10 

50.00   5.00    5.00   30.00     2.5   30.00    65.00   1.1    25     10 

50.00   5.00    5.00   30.00     2.5   30.00    65.00   1.1    25     10 

50.00   5.00    5.00   30.00     2.5   30.00    65.00   1.1    25     10 

Component-Specific  Interfaces 

Component-specific interfaces report metrics related to individual components on a system (such as a 

processor, disk, network interface, or paging space). 

All of the following AIX interfaces use the naming convention perfstat_subsystem, and use a common 

signature: 

 perfstat_cpu  Retrieves individual CPU usage metrics 

perfstat_disk  Retrieves individual disk usage metrics 

perfstat_diskpath  Retrieves individual disk path metrics 

perfstat_diskadapter  Retrieves individual disk adapter metrics 

perfstat_netinterface  Retrieves individual network interfaces metrics 

perfstat_protocol  Retrieves individual network protocol related metrics 

perfstat_netbuffer  Retrieves individual network buffer allocation metrics 

perfstat_pagingspace  Retrieves individual paging space metrics
  

The common signature used by all the component interfaces is as follows: 

int  perfstat_subsystem(perfstat_id  *name,  

                       perfstat_subsystem_t  * userbuff,  

                       int  sizeof_struct,  

                       int  desired_number);  

  

The usage of the parameters for all of the interfaces is as follows: 

 perfstat_id_t  *name  The name of the first component (for example hdisk2  for perfstat_disk()) for 

which statistics are desired. A structure containing a char * field is used 

instead of directly passing a char * argument to the function to avoid 

allocation errors and to prevent the user from giving a constant string as 

parameter. To start from the first component of a subsystem, set the char* 

field of the name parameter to ″″ (empty string). You can also use the macros 

such as FIRST_SUBSYSTEM  (for example, FIRST_CPU) defined in the 

libperfstat.h  file. 

perfstat_subsystem_total_t  

*userbuff  

A pointer to a memory area with enough space for the returned structure(s). 

int  sizeof_struct  Should be set to sizeof(perfstat_subsystem_t). 

int  desired_number  The number of structures of type perfstat_subsystem_t  to return in userbuff.
  

The return value will be -1 in case of error. Otherwise, the number of structures copied is returned. The 

field name is either set to NULL or to the name of the next structure available. 

 

Chapter 6. Perfstat API Programming 147



An exception to this scheme is when name=NULL, userbuff=NULL  and desired_number=0, the total 

number of structures available is returned. 

To retrieve all structures of a given type, either ask first for their number, allocate enough memory to hold 

them all at once, then call the appropriate API to retrieve them all in one call. Otherwise, allocate a fixed 

set of structures and repeatedly call the API to get the next such number of structures, each time passing 

the name returned by the previous call. Start the process with the name set to ″″  or FIRST_SUBSYSTEM, 

and repeat the process until the name returned is equal to ″″. 

Minimizing the number of API calls, and therefore the number of system calls, will always lead to more 

efficient code, so the two-call approach should be preferred. Some of the examples shown in the following 

sections illustrate the API usage using the two-call approach. Because the two-call approach can lead to a 

lot of memory being allocated, the multiple-call approach must sometimes be used and is illustrated in the 

following examples. 

The following sections provide examples of the type of data returned and code using each of the 

interfaces. 

perfstat_cpu interface 

The perfstat_cpu  function returns a set of structures of type perfstat_cpu_t, which is defined in the 

libperfstat.h  file. Selected fields from the perfstat_cpu_t  structure include: 

 name  Logical CPU name (cpu0, cpu1, ...) 

user  Number of clock ticks spent in user mode 

sys  Number of clock ticks spent in system (kernel) mode 

idle  Number of clock ticks spent idle with no I/O pending 

wait  Number of clock ticks spent idle with I/O pending 

syscall  Number of system call executed
  

Several other CPU related metrics (such as number of forks, read, write, and execs) are also returned. For 

a complete list, see the perfstat_cpu_t  section in the libperfstat.h  header file in AIX  5L  Version  5.3  Files  

Reference. 

The following code shows an example of how perfstat_cpu  is used: 

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char  *argv[])  { 

   int  i, retcode,  cputotal;  

   perfstat_id_t  firstcpu;  

   perfstat_cpu_t  *statp;  

  

   /* check  how  many  perfstat_cpu_t  structures  are  available  */ 

   cputotal  =  perfstat_cpu(NULL,  NULL,  sizeof(perfstat_cpu_t),  0);  

  

   printf("number  of perfstat_cpu_t  available  : %d\n",  cputotal);  

  

   /* allocate  enough  memory  for  all  the  structures  */ 

   statp  = calloc(cputotal,sizeof(perfstat_cpu_t));  

  

   /* set  name  to first  cpu  */ 

   strcpy(firstcpu.name,  FIRST_CPU);  

  

   /* ask  to get  all  the  structures  available  in one  call  */ 

   retcode  = perfstat_cpu(&firstcpu,  statp,  sizeof(perfstat_cpu_t),  cputotal);  

  

   /* return  code  is number  of structures  returned  */

 

148 Performance Tools Guide and Reference



printf("number  of perfstat_cpu_t  returned   : %d\n",  retcode);  

  

   for  (i = 0;  i < retcode;  i++)  { 

      printf("\nStatistics  for  CPU  : %s\n",  statp[i].name);  

      printf("------------------\n");  

      printf("CPU  user  time  (raw  ticks)   : %llu\n",  statp[i].user);  

      printf("CPU  sys   time  (raw  ticks)   : %llu\n",  statp[i].sys);  

      printf("CPU  idle  time  (raw  ticks)   : %llu\n",  statp[i].idle);  

      printf("CPU  wait  time  (raw  ticks)   : %llu\n",  statp[i].wait);  

      printf("number  of  syscalls          : %llu\n",  statp[i].syscall);  

      printf("number  of  readings          : %llu\n",  statp[i].sysread);  

      printf("number  of  writings          : %llu\n",  statp[i].syswrite);  

      printf("number  of  forks             : %llu\n",  statp[i].sysfork);  

      printf("number  of  execs             : %llu\n",  statp[i].sysexec);  

      printf("number  of  char  read         : %llu\n",  statp[i].readch);  

      printf("number  of  char  written      : %llu\n",  statp[i].writech);  

      } 

} 

  

On a single processor machine, the preceding program produces output similar to the following: 

number  of perfstat_cpu_t  available  : 1 

number  of perfstat_cpu_t  returned   : 1 

  

Statistics  for  CPU  : cpu0  

------------------  

CPU  user  time  (raw  ticks)   : 1336297  

CPU  sys   time  (raw  ticks)   : 111958  

CPU  idle  time  (raw  ticks)   : 57069585  

CPU  wait  time  (raw  ticks)   : 19545  

number  of syscalls          : 4734311  

number  of readings          : 562121  

number  of writings          : 323367  

number  of forks             : 6839  

number  of execs             : 7257  

number  of char  read         : 753568874  

number  of char  written      : 132494990  

  

In an environment where dynamic logical partitioning is used, the number of perfstat_cpu_t  structures 

available will always be equal to the ncpus_high  field in the perfstat_cpu_total_t. This number 

represents the highest index of any active processor since the last reboot. Kernel data structures holding 

performance metrics for processors are not deallocated when processors are turned offline or moved to a 

different partition. They simply stop being updated. The ncpus  field of the perfstat_cpu_total_t  structure 

always represents the number of active processors, but the perfstat_cpu  interface will always return 

ncpus_high  structures. 

Applications can detect offline or moved processors by checking clock-tick increments. If the sum of the 

user, sys, idle and wait fields is identical for a given processor between two perfstat_cpu  calls, that 

processor has been offline for the complete interval. If the sum multiplied by 10 ms (the value of a clock 

tick) does not match the time interval, the processor has not been online for the complete interval. 

perfstat_disk Interface 

The perfstat_disk  function returns a set of structures of type perfstat_disk_t, which is defined in the 

libperfstat.h  file. Selected fields from the perfstat_disk_t  structure include: 

 name  Disk name (from ODM) 

description  Disk description (from ODM) 

vgname  Volume group name (from ODM) 

size  Disk size (in MB) 

 

Chapter 6. Perfstat API Programming 149



free  Free space (in MB) 

xfers  Transfers to/from disk (in KB)
  

Several other disk related metrics (such as number of blocks read from and written to disk, and adapter 

names) are also returned. For a complete list, see the perfstat_disk_t  section in the libperfstat.h  header 

file in AIX  5L  Version  5.3  Files  Reference. 

The following code shows an example of how perfstat_disk  is used: 

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char*  argv[])  { 

    int  i, ret,  tot;  

    perfstat_disk_t  *statp;  

    perfstat_id_t  first;  

  

    /* check  how  many  perfstat_disk_t  structures  are available  */ 

    tot  =  perfstat_disk(NULL,  NULL,  sizeof(perfstat_disk_t),  0);  

  

    /* allocate  enough  memory  for  all  the  structures  */ 

    statp  = calloc(tot,  sizeof(perfstat_disk_t));  

  

    /* set  name  to first  interface  */ 

    strcpy(first.name,  FIRST_DISK);  

  

    /* ask  to get  all  the  structures  available  in one call  */ 

    /* return  code  is number  of structures  returned  */ 

    ret  = perfstat_disk(&first,  statp,  

                        sizeof(perfstat_disk_t),  tot);  

  

  

  

    /* print  statistics  for  each  of the  disks  */ 

    for  (i = 0; i < ret;  i++)  { 

        printf("\nStatistics  for  disk  : %s\n",  statp[i].name);  

        printf("-------------------\n");  

        printf("description               : %s\n",  statp[i].description);  

        printf("volume  group  name         : %s\n",  statp[i].vgname);  

        printf("adapter  name              : %s\n",  statp[i].adapter);  

        printf("size                      : %llu  MB\n",  statp[i].size);  

        printf("free  space                : %llu  MB\n",  statp[i].free);  

        printf("number  of blocks  read     : %llu  blocks  of %llu  bytes\n",  statp[i].rblks,  statp[i].bsize);  

        printf("number  of blocks  written  : %llu  blocks  of %llu  bytes\n",  statp[i].wblks,  statp[i].bsize);  

        } 

     } 

  

The preceding program produces output similar to the following: 

Statistics  for  disk  : hdisk1  

-------------------  

description               : 16 Bit  SCSI  Disk  Drive  

volume  group  name         : rootvg  

adapter  name              : scsi0  

size                      : 4296  MB 

free  space                : 2912  MB 

number  of blocks  read     : 403946  blocks  of 512  bytes  

number  of blocks  written  : 768176  blocks  of 512  bytes  

  

Statistics  for  disk  : hdisk0  

-------------------  

description               : 16 Bit  SCSI  Disk  Drive  

volume  group  name         : None  

adapter  name              : scsi0

 

150 Performance Tools Guide and Reference



size                      : 0 MB 

free  space                : 0 MB 

number  of blocks  read     : 0 blocks  of 512  bytes  

number  of blocks  written  : 0 blocks  of 512  bytes  

  

Statistics  for  disk  : cd0  

-------------------  

description               : SCSI  Multimedia  CD-ROM  Drive  

volume  group  name         : not  available  

adapter  name              : scsi0  

size                      : 0 MB 

free  space                : 0 MB 

number  of blocks  read     : 3128  blocks  of  2048  bytes  

number  of blocks  written  : 0 blocks  of 2048  bytes  

  

perfstat_diskpath Interface 

The perfstat_diskpath  function returns a set of structures of type perfstat_diskpath_t, which is defined in 

the libperfstat.h  file. Selected fields from the perfstat_diskpath_t  structure include: 

 name  Path name (<disk_name>_Path<path_id>) 

xfers  Total transfers via this path (in KB) 

adapter  Name of the adapter linked to the path
  

Several other disk path-related metrics (such as the number of blocks read from and written via the path) 

are also returned. For a complete list, see the perfstat_diskpath_t  section in the libperfstat.h  header file 

in AIX  5L  Version  5.3  Files  Reference. 

The following code shows an example of how perfstat_diskpath  is used: 

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char*  argv[])  { 

   int  i, ret,  tot;  

   perfstat_diskpath_t  *statp;  

   perfstat_disk_t  dstat;  

   perfstat_id_t  first;  

   char  *substring;  

  

   /* check  how  many  perfstat_diskpath_t  structures  are  available  */ 

   tot  = perfstat_diskpath(NULL,  NULL,  sizeof(perfstat_diskpath_t),  0);  

  

   /* allocate  enough  memory  for  all  the  structures  */ 

   statp  = calloc(tot,  sizeof(perfstat_diskpath_t));  

  

   /* set  name  to first  interface  */ 

   strcpy(first.name,  FIRST_DISKPATH);  

  

   /* ask  to get  all  the  structures  available  in one  call  */ 

   /* return  code  is number  of structures  returned  */ 

   ret  = perfstat_diskpath(&first,  statp,  sizeof(perfstat_diskpath_t),  tot);  

  

   /* print  statistics  for  each  of the  disk  paths  */  

   for  (i = 0;  i < ret;  i++)  { 

       printf("\nStatistics  for  disk  path  : %s\n",  statp[i].name);  

       printf("----------------------\n");  

       printf("number  of  blocks  read      : %llu\n",  statp[i].rblks);  

       printf("number  of  blocks  written   : %llu\n",  statp[i].wblks);  

       printf("adapter  name               : %s\n",  statp[i].adapter);  

       } 

  

          /* retrieve  paths  for  last  disk  if any  */

 

Chapter 6. Perfstat API Programming 151



if (ret  > 0) { 

       /*  extract  the  disk  name  from  the  last  disk  path  name  */ 

       substring  = strstr(statp[ret  - 1].name,  "_Path");  

       if  (substring  == NULL)  { 

          return  (-1);  

       } 

       substring[0]  = ’\0’;  

  

      /* set  name  to the  disk  name  */ 

      strcpy(first.name,  statp[ret-1]);  

  

      /* retrieve  info  about  disk  */ 

      ret  = perfstat_disk(&first,  &dstat,  sizeof(perfstat_disk_t),1);  

      printf("\nPaths  for  disk  path  : %s (%d)\n",  dstat.name,  dstat.paths_count);  

      printf("----------------------\n");  

  

  

      /* retrieve  all  paths  for  this  disk  */ 

      ret  = perfstat_diskpath(&first,  statp,  sizeof(perfstat_diskpath_t),  dstat.paths_count);  

  

  

  

      /* print  statistics  for  each  of the  paths  */ 

      for  (i = 0;  i < ret;  i++)  { 

          printf("\nStatistics  for  disk  path  : %s\n",  statp[i].name);  

          printf("----------------------\n");  

          printf("number  of blocks  read      : %llu\n",  statp[i].rblks);  

          printf("number  of blocks  written   : %llu\n",  statp[i].wblks);  

          printf("adapter  name               : %s\n",  statp[i].adapter);  

          } 

     } 

} 

  

The preceding program produces output similar to the following: 

Statistics  for  disk  path   : hdisk1_Path0  

----------------------  

number  of blocks  read      : 253612  

number  of blocks  written   : 537132  

adapter  name               : scsi0  

  

Statistics  for  disk  path   : hdisk2_Path0  

----------------------  

number  of blocks  read      : 0 

number  of blocks  written   : 0 

adapter  name               : scsi0  

  

Statistics  for  disk  path   : hdisk2_Path1  

----------------------  

number  of blocks  read      : 26457  

number  of blocks  written   : 43658  

adapter  name               : scsi2  

  

Paths  for  disk  : hdisk2  (2)  

==============  

  

Statistics  for  disk  path   : hdisk2_Path0  

----------------------  

number  of blocks  read      : 0 

number  of blocks  written   : 0 

adapter  name               : scsi0  

  

Statistics  for  disk  path   : hdisk2_Path1

 

152 Performance Tools Guide and Reference



----------------------  

number  of blocks  read      : 26457  

number  of blocks  written   : 43658  

adapter  name               : scsi2  

perfstat_diskadapter  Interface 

The perfstat_diskadapter  function returns a set of structures of type perfstat_diskadapter_t, which is 

defined in the libperfstat.h  file. Selected fields from the perfstat_diskadapter_t  structure include: 

 name  Adapter name (from ODM) 

description  Adapter description (from ODM) 

size  Total disk size connected to this adapter (in MB) 

free  Total free space on disks connected to this adapter (in MB) 

xfers  Total transfers to/from this adapter (in KB)
  

Several other disk adapter related metrics (such as the number of blocks read from and written to the 

adapter) are also returned. For a complete list, see the perfstat_diskadapter_t  section in the 

libperfstat.h  header file in AIX  5L  Version  5.3  Files  Reference. 

The following code shows an example of how perfstat_diskadapter  is used: 

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char*  argv[])  { 

   int  i, ret,  tot;  

   perfstat_diskadapter_t  *statp;  

   perfstat_id_t  first;  

  

   /* check  how  many  perfstat_diskadapter_t  structures  are  available  */ 

   tot  = perfstat_diskadapter(NULL,  NULL,  sizeof(perfstat_diskadapter_t),  0);  

  

   /* allocate  enough  memory  for  all  the  structures  */ 

   statp  = calloc(tot,  sizeof(perfstat_diskadapter_t));  

  

   /* set  name  to first  interface  */ 

   strcpy(first.name,  FIRST_DISK);  

  

   /* ask  to get  all  the  structures  available  in one  call  */ 

   /* return  code  is number  of structures  returned  */ 

   ret  = perfstat_diskadapter(&first,  statp,  sizeof(perfstat_diskadapter_t),  tot);  

  

   /* print  statistics  for  each  of the  disk  adapters  */ 

   for  (i = 0;  i < ret;  i++)  { 

       printf("\nStatistics  for  adapter  : %s\n",  statp[i].name);  

       printf("----------------------\n");  

       printf("description                : %s\n",  statp[i].description);  

       printf("number  of  disks  connected  : %d\n",  statp[i].number);  

       printf("total  disk  size            : %llu  MB\n",  statp[i].size);  

       printf("total  disk  free  space      : %llu  MB\n",  statp[i].free);  

       printf("number  of  blocks  read      : %llu\n",  statp[i].rblks);  

       printf("number  of  blocks  written   : %llu\n",  statp[i].wblks);  

       } 

   } 

  

The preceding program produces output similar to the following: 

Statistics  for  adapter  : scsi0  

----------------------  

description                : Wide/Fast-20  SCSI  I/O  Controller  

number  of disks  connected  : 3 

total  disk  size            : 4296  MB

 

Chapter 6. Perfstat API Programming 153



total  disk  free  space      : 2912  MB 

number  of blocks  read      : 411284  

number  of blocks  written   : 768256  

  

perfstat_netinterface Interface 

The perfstat_netinterface  function returns a set of structures of type perfstat_netinterface_t, which is 

defined in the libperfstat.h  file. Selected fields from the perfstat_netinterface_t  structure include: 

 name  Interface name (from ODM) 

description  Interface description (from ODM) 

ipackets  Total number of input packets received on this network interface 

opackets  Total number of output packets sent on this network interface 

ierror  Total number of input errors on this network interface 

oerror  Total number of output errors on this network interface
  

Several other network interface related metrics (such as number of bytes sent and received, type, and 

bitrate) are also returned. For a complete list, see the perfstat_netinterface_t  section in the libperfstat.h  

header file in AIX  5L  Version  5.3  Files  Reference. 

The following code shows an example of how perfstat_netinterfaceis used: 

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <libperfstat.h>  

#include  <net/if_types.h>  

  

char  * 

decode(uchar  type)  { 

  

    switch(type)  { 

  

    case  IFT_LOOP:  

        return("loopback");  

  

    case  IFT_ISO88025:  

        return("token-ring");  

  

    case  IFT_ETHER:  

        return("ethernet");  

    } 

  

    return("other");  

} 

  

int  main(int  argc,  char*  argv[])  { 

   int  i, ret,  tot;  

   perfstat_netinterface_t  *statp;  

   perfstat_id_t  first;  

  

   /* check  how  many  perfstat_netinterface_t  structures  are  available  */ 

   tot  = perfstat_netinterface(NULL,  NULL,  sizeof(perfstat_netinterface_t),  0);  

  

   /* allocate  enough  memory  for  all  the  structures  */ 

   statp  = calloc(tot,  sizeof(perfstat_netinterface_t));  

  

   /* set  name  to first  interface  */ 

   strcpy(first.name,  FIRST_NETINTERFACE);  

  

   /* ask  to get  all  the  structures  available  in one  call  */ 

   /* return  code  is number  of structures  returned  */ 

   ret  = perfstat_netinterface(&first,  statp,  sizeof(perfstat_netinterface_t),  tot);  

 

 

154 Performance Tools Guide and Reference



/* print  statistics  for  each  of the  interfaces  */ 

   for  (i = 0;  i < ret;  i++)  { 

       printf("\nStatistics  for  interface  : %s\n",  statp[i].name);  

       printf("------------------------\n");  

       printf("type  : %s\n",  decode(statp[i].type));  

       printf("\ninput  statistics:\n");  

       printf("number  of  packets  : %llu\n",  statp[i].ipackets);  

       printf("number  of  errors   : %llu\n",  statp[i].ierrors);  

       printf("number  of  bytes    : %llu\n",  statp[i].ibytes);  

       printf("\noutput  statistics:\n");  

       printf("number  of  packets  : %llu\n",  statp[i].opackets);  

       printf("number  of  bytes    : %llu\n",  statp[i].obytes);  

       printf("number  of  errors   : %llu\n",  statp[i].oerrors);  

       } 

} 

  

The preceding program produces output similar to the following: 

Statistics  for  interface  : tr0  

------------------------  

type  : token-ring  

  

input  statistics:  

number  of packets  : 306352  

number  of errors   : 0 

number  of bytes    : 24831776  

  

output  statistics:  

number  of packets  : 62669  

number  of bytes    : 11497679  

number  of errors   : 0 

  

Statistics  for  interface  : lo0  

------------------------  

type  : loopback  

  

input  statistics:  

number  of packets  : 336  

number  of errors   : 0 

number  of bytes    : 20912  

  

output  statistics:  

number  of packets  : 336  

number  of bytes    : 20912  

number  of errors   : 0 

perfstat_protocol Interface 

The perfstat_protocol  function returns a set of structures of type perfstat_protocol_t, which consists of a 

set of unions to accommodate the different sets of fields needed for each protocol, as defined in the 

libperfstat.h  file. Selected fields from the perfstat_protocol_t  structure include: 

 name  protocol name: ip, ip6, icmp, icmp6, udp, tcp, rpc, nfs, nfsv2  or nfsv3. 

ipackets  Number of input packets received using this protocol. This field exists only for protocols ip, ipv6, 

udp, and tcp. 

opackets  Number of output packets sent using this protocol. This field exists only for protocols ip, ipv6, udp, 

and tcp. 

received  Number of packets received using this protocol. This field exists only for protocols icmp  and icmpv6. 

calls  Number of calls made to this protocol. This field exists only for protocols rpc, nfs, nfsv2, and nfsv3.
  

Many other network protocol related metrics are also returned. The complete set of metrics printed by 

nfsstat  is returned for instance. For a complete list, see the perfstat_protocol_t  section in the 

libperfstat.h  header file in AIX  5L  Version  5.3  Files  Reference. 

 

Chapter 6. Perfstat API Programming 155



The following code shows an example of how perfstat_protocol  is used: 

#include  <stdio.h>  

#include  <string.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char*  argv[])  { 

    int  ret,  tot,  retrieved  = 0; 

    perfstat_protocol_t  pinfo;  

    perfstat_id_t  protid;  

  

    /* check  how  many  perfstat_protocol_t  structures  are  available  */ 

    tot  = perfstat_protocol(NULL,  NULL,  sizeof(perfstat_protocol_t),  0);  

  

    printf("number  of protocol  usage  structures  available  : %d\n",  tot);  

  

    /* set  name  to first  protocol  */ 

    strcpy(protid.name,  FIRST_PROTOCOL);  

  

    /* retrieve  first  protocol  usage  information  */  

    ret  = perfstat_protocol(&protid,  &pinfo,  sizeof(perfstat_protocol_t),  1);  

    retrieved  += ret;  

  

    do { 

       printf("\nStatistics  for  protocol  : %s\n",  pinfo.name);  

       printf("-----------------------\n");  

  

       if  (!strcmp(pinfo.name,"ip"))  { 

           printf("number  of input  packets   : %llu\n",  pinfo.u.ip.ipackets);  

           printf("number  of input  errors    : %llu\n",  pinfo.u.ip.ierrors);  

           printf("number  of output  packets  : %llu\n",  pinfo.u.ip.opackets);  

           printf("number  of output  errors   : %llu\n",  pinfo.u.ip.oerrors);  

       } else  if (!strcmp(pinfo.name,"ipv6"))  { 

           printf("number  of input  packets   : %llu\n",  pinfo.u.ipv6.ipackets);  

           printf("number  of input  errors    : %llu\n",  pinfo.u.ipv6.ierrors);  

           printf("number  of output  packets  : %llu\n",  pinfo.u.ipv6.opackets);  

           printf("number  of output  errors   : %llu\n",  pinfo.u.ipv6.oerrors);  

       } else  if (!strcmp(pinfo.name,"icmp"))  { 

           printf("number  of packets  received  : %llu\n",  pinfo.u.icmp.received);  

           printf("number  of packets  sent      : %llu\n",  pinfo.u.icmp.sent);  

           printf("number  of errors            : %llu\n",  pinfo.u.icmp.errors);  

       } else  if (!strcmp(pinfo.name,"icmpv6"))  { 

           printf("number  of packets  received  : %llu\n",  pinfo.u.icmpv6.received);  

           printf("number  of packets  sent      : %llu\n",  pinfo.u.icmpv6.sent);  

           printf("number  of errors            : %llu\n",  pinfo.u.icmpv6.errors);  

       } else  if (!strcmp(pinfo.name,"udp"))  { 

           printf("number  of input  packets   : %llu\n",  pinfo.u.udp.ipackets);  

           printf("number  of input  errors    : %llu\n",  pinfo.u.udp.ierrors);  

           printf("number  of output  packets  : %llu\n",  pinfo.u.udp.opackets);  

       } else  if (!strcmp(pinfo.name,"tcp"))  { 

           printf("number  of input  packets   : %llu\n",  pinfo.u.tcp.ipackets);  

           printf("number  of input  errors    : %llu\n",  pinfo.u.tcp.ierrors);  

           printf("number  of output  packets  : %llu\n",  pinfo.u.tcp.opackets);  

       } else  if (!strcmp(pinfo.name,"rpc"))  { 

           printf("client  statistics:\n");  

           printf("number  of connection-oriented  RPC  requests   : %llu\n",  

                  pinfo.u.rpc.client.stream.calls);  

           printf("number  of rejected  connection-oriented  RPCs  : %llu\n",  

                  pinfo.u.rpc.client.stream.badcalls);  

           printf("number  of connectionless  RPC requests        : %llu\n",  

                  pinfo.u.rpc.client.dgram.calls);  

           printf("number  of rejected  connectionless  RPCs       : %llu\n",  

                  pinfo.u.rpc.client.dgram.badcalls);  

           printf("\nserver  statistics:\n");  

           printf("number  of connection-oriented  RPC  requests   : %llu\n",  

                  pinfo.u.rpc.server.stream.calls);  

           printf("number  of rejected  connection-oriented  RPCs  : %llu\n",  

                  pinfo.u.rpc.server.stream.badcalls);

 

156 Performance Tools Guide and Reference



printf("number  of connectionless  RPC  requests        : %llu\n",  

                  pinfo.u.rpc.server.dgram.calls);  

           printf("number  of rejected  connectionless  RPCs       : %llu\n",  

                  pinfo.u.rpc.server.dgram.badcalls);  

       } else  if (!strcmp(pinfo.name,"nfs"))  { 

           printf("total  number  of NFS  client  requests         : %llu\n",  

                  pinfo.u.nfs.client.calls);  

           printf("total  number  of NFS  client  failed  calls     : %llu\n",  

                  pinfo.u.nfs.client.badcalls);  

           printf("total  number  of NFS  server  requests         : %llu\n",  

                  pinfo.u.nfs.server.calls);  

           printf("total  number  of NFS  server  failed  calls     : %llu\n",  

                  pinfo.u.nfs.server.badcalls);  

           printf("total  number  of NFS  version  2 server  calls  : %llu\n",  

                  pinfo.u.nfs.server.public_v2);  

           printf("total  number  of NFS  version  3 server  calls  : %llu\n",  

                  pinfo.u.nfs.server.public_v3);  

       } else  if (!strcmp(pinfo.name,"nfsv2"))  { 

           printf("number  of NFS  V2 client  requests  : %llu\n",  

                  pinfo.u.nfsv2.client.calls);  

           printf("number  of NFS  V2 server  requests  : %llu\n",  

                  pinfo.u.nfsv2.server.calls);  

       } else  if (!strcmp(pinfo.name,"nfsv3"))  { 

           printf("number  of NFS  V3 client  requests  : %llu\n",  

                  pinfo.u.nfsv3.client.calls);  

           printf("number  of NFS  V3 server  requests  : %llu\n",  

                  pinfo.u.nfsv3.server.calls);  

       } 

  

       /* make  sure  we stop  after  the  last  protocol  */ 

       if (ret  = strcmp(protid.name,  ""))  { 

           printf("\nnext  protocol  name  : %s\n",  protid.name);  

  

           /* retrieve  information  for  next  protocol  */ 

           ret  = perfstat_protocol(&protid,  &pinfo,  sizeof(perfstat_protocol_t),  1); 

           retrieved  += ret;  

       } 

    } while  (ret  ==  1);  

  

   printf("\nnumber  of protocol  usage  structures  retrieved  : %d\n",  retrieved);  

} 

The preceding program produces output similar to the following: 

number  of protocol  usage  structures  available  : 10 

  

Statistics  for  protocol  : ip 

-----------------------  

number  of input  packets   : 142839  

number  of input  errors    : 54665  

number  of output  packets  : 63974  

number  of output  errors   : 55878  

  

next  protocol  name  : ipv6  

  

Statistics  for  protocol  : ipv6  

-----------------------  

number  of input  packets   : 0 

number  of input  errors    : 0 

number  of output  packets  : 0 

number  of output  errors   : 0 

  

next  protocol  name  : icmp  

  

Statistics  for  protocol  : icmp  

-----------------------  

number  of packets  received  : 35

 

Chapter 6. Perfstat API Programming 157



number  of packets  sent      : 1217  

number  of errors            : 0 

  

next  protocol  name  : icmpv6  

  

Statistics  for  protocol  : icmpv6  

-----------------------  

number  of packets  received  : 0 

number  of packets  sent      : 0 

number  of errors            : 0 

  

next  protocol  name  : udp  

  

Statistics  for  protocol  : udp  

-----------------------  

number  of input  packets   : 4316  

number  of input  errors    : 0 

number  of output  packets  : 308  

  

next  protocol  name  : tcp  

  

Statistics  for  protocol  : tcp  

-----------------------  

number  of input  packets   : 82604  

number  of input  errors    : 0 

number  of output  packets  : 62250  

  

next  protocol  name  : rpc  

  

Statistics  for  protocol  : rpc  

-----------------------  

client  statistics:  

number  of connection-oriented  RPC  requests   : 375  

number  of rejected  connection-oriented  RPCs  : 0 

number  of connectionless  RPC  requests        : 20 

number  of rejected  connectionless  RPCs       : 0 

  

server  statistics:  

number  of connection-oriented  RPC  requests   : 32 

number  of rejected  connection-oriented  RPCs  : 0 

number  of connectionless  RPC  requests        : 0 

number  of rejected  connectionless  RPCs       : 0 

  

next  protocol  name  : nfs  

  

Statistics  for  protocol  : nfs  

-----------------------  

total  number  of NFS  client  requests         : 375  

total  number  of NFS  client  failed  calls     : 0 

total  number  of NFS  server  requests         : 32 

total  number  of NFS  server  failed  calls     : 0 

total  number  of NFS  version  2 server  calls  : 0 

total  number  of NFS  version  3 server  calls  : 0 

  

next  protocol  name  : nfsv2  

  

Statistics  for  protocol  : nfsv2  

-----------------------  

number  of NFS  V2 client  requests  : 0 

number  of NFS  V2 server  requests  : 0 

  

next  protocol  name  : nfsv3  

  

Statistics  for  protocol  : nfsv3  

-----------------------  

number  of NFS  V3 client  requests  : 375

 

158 Performance Tools Guide and Reference



number  of NFS  V3 server  requests  : 32 

  

number  of protocol  usage  structures  retrieved  : 10 

  

perfstat_netbuffer Interface 

The perfstat_netbuffer  function returns a set of structures of type perfstat_netbuffer_t, which is defined 

in the libperfstat.h  file. Selected fields from the perfstat_netbuffer_t  structure include: 

 size  Size of the allocation (string expressing size in bytes) 

inuse  Current allocation of this size 

failed  Failed allocation of this size 

free  Free list for this size
  

Several other allocation related metrics (such as high-water mark and freed) are also returned. For a 

complete list, see the perfstat_netbuffer_t  section in the libperfstat.h  header file in AIX  5L  Version  5.3  

Files  Reference. 

The following code shows an example of how perfstat_netbuffer  is used: 

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char*  argv[])  { 

   int  i, ret,  tot;  

   perfstat_netbuffer_t  *statp;  

   perfstat_id_t  first;  

  

   /* check  how  many  perfstat_netbuffer_t  structures  are available  */ 

   tot  = perfstat_netbuffer(NULL,  NULL,  sizeof(perfstat_netbuffer_t),  0); 

  

   /* allocate  enough  memory  for  all  the  structures  */ 

   statp  = calloc(tot,  sizeof(perfstat_netbuffer_t));  

  

   /* set  name  to first  interface  */ 

   strcpy(first.name,  FIRST_NETBUFFER);  

  

   /* ask  to get  all  the  structures  available  in one  call  */ 

   /* return  code  is number  of structures  returned  */ 

   ret  = perfstat_netbuffer(&first,  statp,  

                          sizeof(perfstat_netbuffer_t),  tot);  

  

   /* print  info  in netstat  -m format  */ 

   printf("%-12s  %10s  %9s  %6s  %9s  %7s  %7s  %7s\n",  

          "By  size",  "inuse",  "calls",  "failed",  

          "delayed",  "free",  "hiwat",  "freed");  

   for  (i = 0;  i < ret;  i++)  { 

       printf("%-12s  %10llu  %9llu  %6llu  %9llu  %7llu  %7llu  %7llu\n",  

           statp[i].name,  

           statp[i].inuse,  

           statp[i].calls,  

           statp[i].delayed,  

           statp[i].free,  

           statp[i].failed,  

           statp[i].highwatermark,  

           statp[i].freed);  

       } 

} 

  

The preceding program produces output similar to the following: 

 

Chapter 6. Perfstat API Programming 159



By size            inuse      calls  failed    delayed     free    hiwat    freed  

32                  199       4798       0        57       0     826        0 

64                   96      8121       0        32       0     413        0 

128                  110      50156       0       146        0     206        2 

256                  279   20313587       0       361        0     496        0 

512                  156       5298       0        12       0      51       0 

1024                  38      1038       0         6       0     129        0 

2048                   1      6946       0       129        0     129     1024  

4096                  67    276102       0       132       0     155       0 

8192                   4       123       0         4       0      12       0 

16384                  1         1      0        15       0      31       0 

65536                  1         1      0         0       0     512        0 

  

perfstat_pagingspace Interface 

The perfstat_pagingspace  function returns a set of structures of type perfstat_pagingspace_t, which is 

defined in the libperfstat.h  file. Selected fields from the perfstat_pagingspace_t  structure include: 

 mb_size  Size of the paging space in MB 

lp_size  Size of the paging space in logical partitions 

mb_used  Portion of the paging space used in MB
  

Several other paging space related metrics (such as name, type, and active) are also returned. For a 

complete list, see the perfstat_pagingspace_t  section in the libperfstat.h  header file in AIX  5L  Version  

5.3  Files  Reference. 

The following code shows an example of how perfstat_pagingspace  is used: 

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char  agrv[])  { 

    int  i, ret,  tot;  

    perfstat_id_t  first;  

    perfstat_pagingspace_t  *pinfo;  

  

    tot  = perfstat_pagingspace(NULL,  NULL,  sizeof(perfstat_pagingspace_t),  0);  

  

    pinfo  = calloc(tot,sizeof(perfstat_pagingspace_t));  

  

    strcpy(first.name,  FIRST_PAGINGSPACE);  

  

    ret  = perfstat_pagingspace(&first,  pinfo,  sizeof(perfstat_pagingspace_t),  tot);  

    for  (i = 0; i < ret;  i++)  { 

        printf("\nStatistics  for  paging  space  : %s\n",  pinfo[i].name);  

        printf("---------------------------\n");  

        printf("type          : %s\n",  

               pinfo[i].type  == LV_PAGING  ? "logical  volume"  : "NFS  file");  

        if (pinfo[i].type  == LV_PAGING)  { 

         printf("volume  group  : %s\n",  pinfo[i].u.lv_paging.vgname);  

        } 

        else  { 

         printf("hostname  : %s\n",  pinfo[i].u.nfs_paging.hostname);  

         printf("filename  : %s\n",  pinfo[i].u.nfs_paging.filename);  

        } 

        printf("size  (in  LP)  : %llu\n",  pinfo[i].lp_size);  

        printf("size  (in  MB)  : %llu\n",  pinfo[i].mb_size);  

        printf("used  (in  MB)  : %llu\n",  pinfo[i].mb_used);  

    } 

} 

  

The preceding program produces output similar to the following: 

 

160 Performance Tools Guide and Reference



Statistics  for  paging  space  : hd6  

---------------------------  

type          : logical  volume  

volume  group  : rootvg  

size  (in  LP)  : 64 

size  (in  MB)  : 512  

used  (in  MB)  : 4 

Cached metrics interfaces 

Cached metrics interfaces are used when the system configuration changes to inform the libperfstat  API 

that it should reset cached metrics, which consist of values that seldom change such as disk size or CPU 

description. 

The following table lists the metrics that are cached: 

 Object  Content  Sample  value  

perfstat_cpu_total  char  cpu_description  [IDENTIFIER_LENGTH]  

u_longlong_t  processorHZ  

PowerPC_POWER3
375000000 

perfstat_diskadapter  The list of disk adapters 

The number of disk adapters 

u_longlong_t  size
 u_longlong_t  free
char  description  [IDENTIFIER_LENGTH]  

scsi0, scsi1, ide0
3 

17344 

15296 

Wide/Ultra-3 SCSI I/O Controller 

perfstat_pagingspace  The list of paging spaces 

The number of paging spaces 

char  automatic  

char  type  

longlong_t  lpsize  

longlong_t  mbsize  

char  hostname  [IDENTIFIER_LENGTH]  

char  filename  [IDENTIFIER_LENGTH]  

hd6 

1
1
NFS_PAGING
16 

512
pompei or rootvg 

/var/tmp/nfsswap/swapfile1 

perfstat_disk  char  adapter  [IDENTIFIER_LENGTH]  

char  description  [IDENTIFIER_LENGTH]  

char  vgname  [IDENTIFIER_LENGTH]  

u_longlong_t  size
u_longlong_t  free  

scsi0
16 Bit LVD SCSI Disk Drive 

rootvg 

17344 

15296 

perfstat_diskpath  char  adapter  [IDENTIFIER_LENGTH]  scsi0 

perfstat_netinterface  char  description  [IDENTIFIER_LENGTH]  Standard Ethernet Network Interface
  

You can use the following AIX interfaces to refresh the cached metrics: 

 Interface  Purpose  Definition  of interface  

perfstat_reset  Resets every cached metric void  perfstat_reset  (void);  

perfstat_partial_reset  Resets selected cached metrics or resets 

the system’s minimum and maximum 

counters for disks 

void  perfstat_partial_reset  (char  * name,  

                           u_longlong_t  

resetmask);
  

The usage of the parameters for all of the interfaces is as follows: 

 Parameter  Usage  

char  *name  Identifies the name of the component of the cached metric that should 

be reset from the libperfstat  API cache. If the value of the parameter 

is NULL, this signifies all of the components. 

 

Chapter 6. Perfstat API Programming 161



Parameter  Usage  

u_longlong_t  resetmask  Identifies the category of the component if the value of the name  

parameter is not NULL. The possible values are: 

v   FLUSH_CPUTOTAL 

v   FLUSH_DISK 

v   RESET_DISK_MINMAX 

v   FLUSH_DISKADAPTER 

v   FLUSH_DISKPATH 

v   FLUSH_NETINTERFACE 

v   FLUSH_PAGINGSPACE

If the value of the name  parameter is NULL, the resetmask  parameter 

value consists of a combination of values. For example: 

RESET_DISK_MINMAX|FLUSH_CPUTOTAL|FLUSH_DISK
  

The perfstat_reset interface 

The perfstat_reset  interface resets every cached metric that is stored by the libperfstat  API. It also resets 

the system’s minimum and maximum counters related to disks and paths. To be more selective, it is 

advised to use the perfstat_partial_reset  interface. 

The perfstat_partial_reset interface 

The perfstat_partial_reset  interface resets the specified cached metrics that are stored by the libperfstat  

API. The perfstat_partial_reset  interface can also reset the system’s minimum and maximum counters 

related to disks and paths. The following table summarizes the various actions of the 

perfstat_partial_reset  interface: 

 

The  resetmask  value  

Action  taken  when  the  value  of name  

is NULL  

Action  taken  when  the  value  of name  

is not NULL  and  a single  resetmask  

value  is set  

FLUSH_CPUTOTAL  Flushes the speed  and description  

values in the perfstat_cputotal_t  

structure. 

Error. The value of errno  is set to 

EINVAL. 

FLUSH_DISK  

Flushes the description, adapter, size, 

free, and vgname  values in every 

perfstat_disk_t  structure.
Flushes the list of disk adapters.
Flushes the size, free, and 

description  values in 

everyperfstat_diskadapter_t  structure. 

Flushes the description, adapter, size, 

free, and vgname  values in the specified 

perfstat_disk_t  structure.
Flushes the adapter  value in every 

perfstat_diskpath_t  structure that 

matches the disk name that is followed 

by the _Path  identifier. 

Flushes the size, free, and 

description  values of each 

perfstat_diskadapter_t  structure that is 

linked to a path leading to the disk or to 

the disk itself. 

RESET_DISK_MINMAX  

Resets the following values in every 

perfstat_diskadapter_t  structure: 

v   wq_min_time  

v   wq_max_time  

v   min_rserv  

v   max_rserv  

v   min_wserv  

v   max_wserv  

Error. The value of errno  is set to 

ENOTSUP. 

 

162 Performance Tools Guide and Reference



The  resetmask  value  

Action  taken  when  the  value  of name  

is NULL  

Action  taken  when  the  value  of name  

is not  NULL  and  a single  resetmask  

value  is set  

FLUSH_DISKADAPTER  

Flushes the list of disk adapters.
Flushes the size, free, and 

description  values in every 

perfstat_diskadapter_t  structure.
Flushes the adapter  value in every 

perfstat_diskpath_t  structure.
Flushes the description  and adapter  

values in every perfstat_disk_t  

structure. 

Flushes the list of disk adapters.
Flushes the size, free, and 

description  values in every 

perfstat_diskadapter_t  structure.
Flushes the adapter  value in every 

perfstat_diskpath_t  structure.
Flushes the description  and adapter  

values in every perfstat_disk_t  

structure. 

FLUSH_DISKPATH  Flushes the adapter  value in every 

perfstat_diskpath_t  structure. 

Flushes the adapter  value in the 

specified perfstat_diskpath_t  structure. 

FLUSH_PAGINGSPACE  Flushes the list of paging spaces.
Flushes the automatic, type, lpsize, 

mbsize, hostname, filename, and vgname  

values in every 

perfstat_pagingspace_t  structure. 

Flushes the list of paging spaces.
Flushes the automatic, type, lpsize, 

mbsize, hostname, filename, and vgname  

values in the specified 

perfstat_pagingspace_t  structure. 

FLUSH_NETINTERFACE  Flushes the description  value in every 

perfstat_netinterface_t  structure. 

Flushes the description  value in the 

specified perfstat_netinterface_t  

structure.
  

You can see how to use the perfstat_partial_reset  interface in the following example code: 

#include  <stdio.h>  

#include  <stdlib.h>  

#include  <libperfstat.h>  

  

int  main(int  argc,  char  *argv[])  { 

   int  i, retcode;  

   perfstat_id_t  diskname;  

   perfstat_disk_t  *statp;  

  

   /* set  name  of the  disk  */ 

   strcpy(diskname.name,  "hdisk0");  

  

   /* we will  now  reset  global  system  min/max  metrics  

    * Be  careful  as  this  could  interact  with  other  programs.  

    */ 

   perfstat_partial_reset(NULL,  RESET_DISK_MINMAX);  

  

   /* min/max  values  are  now  reset.  

    * We  can  now  wait  for  some  time  before  checking  the variation  range.  

    */ 

   sleep(60);  

  

   /* get  disk  metrics  - min/max  counters  illustrate  variations  during  the 

    *                    last  60 seconds  unless  someone  else  reset  these  

    *                    values  in the  meantime.  

    */ 

   retcode  =  perfstat_disk(&diskname,  statp,  sizeof(perfstat_disk_t),  1);  

  

   /* At this  point,  we assume  the  disk  free  part  changes  due  to chfs  for example  */  

  

   /* if we get  disk  metrics  here,  the  free  field  will  be wrong  as it was  

    * cached  by the  libperfstat.  

    */ 

  

   /* That  is why  we reset  cached  metrics  */ 

   perfstat_partial_reset("hdisk0",  FLUSH_DISK);

 

Chapter 6. Perfstat API Programming 163



/* we can  now  get  updated  disk  metrics  */ 

   retcode  =  perfstat_disk(&diskname,  statp,  sizeof(perfstat_disk_t),  1); 

} 

Change History of the perfstat API 

The following changes and additions have been made to the perfstat APIs: 

Interface Changes 

Beginning with the following filesets: 

v   bos.perf.libperfstat  4.3.3.4  

v   bos.perf.libperfstat  5.1.0.50  

v   bos.perf.libperfstat  5.2.0.10

the rblks  and wblks  fields of libperfstat  are represented by blocks of 512 bytes in the 

perfstat_disk_total_t, perfstat_diskadapter_t  and perfstat_diskpath_t  structures, regardless of the 

actual block size used by the device for which metrics are being retrieved. 

Interface Additions 

The following interfaces were added in the bos.perf.libperfstat  5.2.0  fileset : 

v   perfstat_netbuffer  

v   perfstat_protocol  

v   perfstat_pagingspace  

v   perfstat_diskadapter  

v   perfstat_reset

The perfstat_diskpath  interface was added in the bos.perf.libperfstat  5.2.0.10  fileset. 

The perfstat_partition_total  interface was added in the bos.perf.libperfstat  5.3.0.0  fileset. 

Theperfstat_partial_reset  interface was added in the bos.perf.libperfstat  5.3.0.10  fileset. 

Field Additions 

The following additions have been made to the specified fileset levels: 

The bos.perf.libperfstat 5.1.0.15 fileset 

The following fields were added to perfstat_cpu_total_t: 

    u_longlong_t  bread  

    u_longlong_t  bwrite  

    u_longlong_t  lread  

    u_longlong_t  lwrite  

    u_longlong_t  phread  

    u_longlong_t  phwrite  

Support for C++ was added in this fileset level. 

Note that the version of libperfstat  for AIX 4.3 is synchronized with this level. No binary or source 

compatibility is provided between the 4.3.3.4 version and any 5.1 version prior to 5.1.0.15. 

The bos.perf.libperfstat 5.1.0.25 fileset 

The following fields were added to perfstat_cpu_t: 

 

164 Performance Tools Guide and Reference



u_longlong_t  bread  

    u_longlong_t  bwrite  

    u_longlong_t  lread  

    u_longlong_t  lwrite  

    u_longlong_t  phread  

    u_longlong_t  phwrite  

The bos.perf.libperfstat 5.2.0 fileset 

The following fields were added to perfstat_cpu_t: 

    u_longlong_t  iget  

    u_longlong_t  namei  

    u_longlong_t  dirblk  

    u_longlong_t  msg  

    u_longlong_t  sema  

  

The name  field which returns the logical processor name is now of the form cpu0, cpu1, ... instead of 

proc0, proc1, ... as it was in previous releases. 

The following fields were added to perfstat_cpu_total_t: 

    u_longlong_t  runocc  

    u_longlong_t  swpocc  

    u_longlong_t  iget  

    u_longlong_t  namei  

    u_longlong_t  dirblk  

    u_longlong_t  msg  

    u_longlong_t  sema  

    u_longlong_t  rcvint  

    u_longlong_t  xmtint  

    u_longlong_t  mdmint  

    u_longlong_t  tty_rawinch  

    u_longlong_t  tty_caninch  

    u_longlong_t  tty_rawoutch  

    u_longlong_t  ksched  

    u_longlong_t  koverf  

    u_longlong_t  kexit  

    u_longlong_t  rbread  

    u_longlong_t  rcread  

    u_longlong_t  rbwrt  

    u_longlong_t  rcwrt  

    u_longlong_t  traps  

    int  ncpus_high  

  

The following field was added to perfstat_disk_t: 

       char  adapter[IDENTIFIER_LENGTH]  

The following field was added to perfstat_netinterface_t: 

     u_longlong_t  bitrate  

The following fields were added to perfstat_memory_total_t: 

     u_longlong_t  real_system  

     u_longlong_t  real_user  

     u_longlong_t  real_process  

The following defines were added to libperfstat.h: 

    #define  FIRST_CPU           "" 

    #define  FIRST_DISK          "" 

    #define  FIRST_DISKADAPTER   "" 

    #define  FIRST_NETINTERFACE  ""

 

Chapter 6. Perfstat API Programming 165



#define  FIRST_PAGINGSPACE   "" 

    #define  FIRST_PROTOCOL      "" 

    #define  FIRST_ALLOC         "" 

  

The bos.perf.libperfstat 5.2.0.10 fileset 

The following field was added to the perfstat_disk_t  interface: 

    uint  paths_count  

The following define was added to libperfstat.h: 

    #define  FIRST_DISKPATH   "" 

The bos.perf.libperfstat 5.3.0.0 fileset 

The following fields were added to the perfstat_cpu_t  interface: 

    u_longlong_t  puser  

    u_longlong_t  psyss  

    u_longlong_t  pidle  

    u_longlong_t  pwait  

    u_longlong_t  redisp_sd0  

    u_longlong_t  redisp_sd1  

    u_longlong_t  redisp_sd2  

    u_longlong_t  redisp_sd3  

    u_longlong_t  redisp_sd4  

    u_longlong_t  redisp_sd5  

    u_longlong_t  migration_push  

    u_longlong_t  migration_S3grq  

    u_longlong_t  migration_S3pul  

    u_longlong_t  invol_cswitch  

    u_longlong_t  vol_cswitch  

    u_longlong_t  runque  

    u_longlong_t  bound  

    u_longlong_t  decrintrs  

    u_longlong_t  mpcrintrs  

    u_longlong_t  mpcsintrs  

    u_longlong_t  devintrs  

    u_longlong_t  softintrs  

    u_longlong_t  phantintrs  

The following fields were added to the perfstat_cpu_total_t  interface: 

 u_longlong_t  puser  

 u_longlong_t  psys  

 u_longlong_t  pidle  

 u_longlong_t  pwait  

 u_longlong_t  decrintrs  

 u_longlong_t  mpcrintrs  

 u_longlong_t  mpcsintrs  

 u_longlong_t  phantintrs  

The bos.perf.libperfstat 5.3.0.10 fileset 

The following fields were added to both the perfstat_disk_t  and perfstat_diskpath_t  interfaces: 

 u_longlong_t   q_full  

 u_longlong_t   rserv  

 u_longlong_t   rtimeout  

 u_longlong_t   rfailed  

 u_longlong_t   min_rserv  

 u_longlong_t   max_rserv  

 u_longlong_t   wserv  

 u_longlong_t   wtimeout  

 u_longlong_t   wfailed  

 u_longlong_t   min_wserv  

 u_longlong_t   max_wserv  

 u_longlong_t   wq_depth  

 u_longlong_t   wq_sampled

 

166 Performance Tools Guide and Reference



u_longlong_t   wq_time  

 u_longlong_t   wq_min_time  

 u_longlong_t   wq_max_time  

 u_longlong_t   q_sampled  

In addition, the xrate  field in the following data structures has been renamed to _rxfers  and contains the 

number of read transactions when used with selected device drivers or zero: 

    perfstat_disk_t  

    perfstat_disk_total_t  

    perfstat_diskadapter_t  

    perfstat_diskpath_t  

The following definitions were added to the libperfstat.h  header file: 

    #define  FLUSH_CPUTOTAL  

    #define  FLUSH_DISK  

    #define  RESET_DISK_MINMAX  

    #define  FLUSH_DISKADAPTER  

    #define  FLUSH_DISKPATH  

    #define  FLUSH_PAGINGSPACE  

    #define  FLUSH_NETINTERFACE  

The bos.perf.libperfstat 5.3.0.50 fileset 

The following fields were added to perfstat_partition_total_t: 

 u_longlong_t  reserved_pages  

 u_longlong_t  reserved_pagesize  

The bos.perf.libperfstat 5.3.0.60 fileset 

The following fields were added to perfstat_cpu_t, perfstat_cpu_total_t  and perfstat_partition_total_t: 

   u_longlong_t  idle_donated_purr  

   u_longlong_t  idle_donated_spurr  

   u_longlong_t  busy_donated_purr  

   u_longlong_t  busy_donated_spurr  

   u_longlong_t  idle_stolen_purr  

   u_longlong_t  idle_stolen_spurr  

   u_longlong_t  busy_stolen_purr  

   u_longlong_t  busy_stolen_spurr  

The following flags were added to perfstat_partition_type_t: 

    unsigned  donate_capable  

    unsigned  donate_enabled  

Related Information 

The libperfstat.h file. 

 

Chapter 6. Perfstat API Programming 167



168 Performance Tools Guide and Reference



Chapter  7.  Kernel  Tuning  

Beginning with AIX 5.2, you can make permanent kernel-tuning changes without having to edit any rc  files. 

This is achieved by centralizing the reboot values for all tunable parameters in the /etc/tunables/nextboot  

stanza file. When a system is rebooted, the values in the /etc/tunables/nextboot  file are automatically 

applied. 

The following commands are used to manipulate the nextboot  file and other files containing a set of 

tunable parameter values: 

v   The tunchange  command is used to change values in a stanza file. 

v   The tunsave  command is used to save values to a stanza file. 

v   The tunrestore  is used to apply a file; that is, to change all tunables parameter values to those listed in 

a file. 

v   The tuncheck  command must be used to validate a file created manually. 

v   The tundefault  is available to reset tunable parameters to their default values.

The preceding commands work on both current and reboot values. 

All six tuning commands (no, nfso, vmo, ioo, raso, and schedo) use a common syntax and are available 

to directly manipulate the tunable parameter values. Available options include making permanent changes 

and displaying detailed help on each of the parameters that the command manages. 

SMIT panels and Web-based System Manager plug-ins are also available to manipulate current and 

reboot values for all tuning parameters, as well as the files in the /etc/tunables  directory. 

The following topics are covered in this chapter: 

v   “Migration and Compatibility” 

v   “Tunables File Directory” on page 170 

v   “Tunable Parameters Type” on page 171 

v   “Common Syntax for Tuning Commands” on page 171 

v   “Tunable File-Manipulation Commands” on page 173 

v   “Initial setup” on page 176 

v   “Reboot Tuning Procedure” on page 177 

v   “Recovery Procedure” on page 177 

v   “Kernel Tuning Using the SMIT Interface” on page 177 

v   “Kernel Tuning using the Performance Plug-In for Web-based System Manager” on page 183 

v   “Files” on page 193 

v   “Related Information” on page 193

Migration and Compatibility 

When machines are migrated to AIX 5.2 from a previous release of AIX, the tuning commands are 

automatically set to run in compatibility mode. Most of the information in this section does not apply to 

compatibility mode. For more information, see AIX 5.2 compatibility mode in Performance  management. 

When a machine is initially installed with AIX 5.2, it is automatically set to run in AIX 5.2 tuning mode, 

which is described in this chapter. The tuning mode is controlled by the sys0  attribute called pre520tune, 

which can be set to enable to run in compatibility mode and disable to run in AIX 5.2 mode. 

To retrieve the current setting of the pre520tune  attribute, run the following command: 

lsattr  -E -l  sys0  

 

© Copyright IBM Corp. 2002, 2007 169



To change the current setting of the pre520tune  attribute, run the following command: 

chdev  -l sys0  -a pre520tune=enable  

OR 

use SMIT or Web-based System Manager. 

Tunables  File Directory 

Information about tunable parameter values is located in the /etc/tunables  directory. Except for a log file 

created during each reboot, this directory only contains ASCII stanza files with sets of tunable parameters. 

These files contain parameter=value  pairs specifying tunable parameter changes, classified in six stanzas 

corresponding to the six tuning commands : schedo, vmo, ioo, no, raso, and nfso. Additional information 

about the level of AIX, when the file was created, and a user-provided description of file usage is stored in 

a special stanza in the file. For detailed information on the file’s format, see the tunables  file. 

The main file in the tunables directory is called nextboot. It contains all the tunable parameter values to 

be applied at the next reboot. The lastboot  file in the tunables directory contains all the tunable values 

that were set at the last machine reboot, a timestamp  for the last reboot, and checksum  information about 

the matching lastboot.log  file, which is used to log any changes made, or any error messages 

encountered, during the last rebooting. The lastboot  and lastboot.log  files are set to be read-only and 

are owned by the root user, as are the directory and all of the other files. 

Users can create as many /etc/tunables  files as needed, but only the nextboot  file is ever automatically 

applied. Manually created files must be validated using the tuncheck  command. Parameters and stanzas 

can be missing from a file. Only tunable parameters present in the file will be changed when the file is 

applied with the tunrestore  command. Missing tunables will simply be left at their current or default 

values. To force resetting of a tunable to its default value with tunrestore  (presumably to force other 

tunables to known values, otherwise tundefault, which sets all parameters to their default value, could 

have been used), DEFAULT  can be specified. Specifying DEFAULT  for a tunable in the nextboot  file is the 

same as not having it listed in the file at all because the reboot tuning procedure enforces default values 

for missing parameters. This will guarantee to have all tunables parameters set to the values specified in 

the nextboot  file after each reboot. 

Tunable files can have a special stanza named info  containing the parameters AIX_level, Kernel_type  

and Last_validation. Those parameters are automatically set to the level of AIX and to the type of kernel 

(UP, MP, or MP64) running when the tuncheck  or tunsave  is run on the file. Both commands 

automatically update those fields. However, the tuncheck  command will only update if no error was 

detected. 

The lastboot  file always contains values for every tunable parameters. Tunables set to their default value 

will be marked with the comment DEFAULT  VALUE. The Logfile_checksum  parameter only exists in that file 

and is set by the tuning reboot process (which also sets the rest of the info stanza) after closing the log 

file. 

Tunable files can be created and modified using one of the following options: 

v   Using SMIT or Web-based System Manager, to modify the next reboot value for tunable parameters, or 

to ask to save all current values for next boot, or to ask to use an existing tunable file at the next 

reboot. All those actions will update the /etc/tunables/nextboot  file. A new file in the /etc/tunables  

directory can also be created to save all current or all nextboot  values. 

v   Using the tuning commands (ioo, raso, vmo, schedo, no  or nfso) with the -p  or -r  options, which will 

update the /etc/tunables/nexboot  file. 

v   A new file can also be created directly with an editor or copied from another machine. Running 

tuncheck  [-r  | -p] -f  must then be done on that file. 

v   Using the tunsave  command to create or overwrite files in the /etc/tunables  directory 

 

170 Performance Tools Guide and Reference



v   Using the tunrestore  -r command to update the nextboot  file.

Tunable  Parameters Type  

All the tunable parameters manipulated by the tuning commands (no, nfso, vmo, ioo, raso, and schedo) 

have been classified into the following categories: 

v   Dynamic: if the parameter can be changed at any time 

v   Static: if the parameter can never be changed 

v   Reboot: if the parameter can only be changed during reboot 

v   Bosboot: if the parameter can only be changed by running bosboot  and rebooting the machine 

v   Mount: if changes to the parameter are only effective for future file systems or directory mounts 

v   Incremental: if the parameter can only be incremented, except at boot time 

v   Connect: if changes to the parameter are only effective for future socket connections 

v   Deprecated: if changing this parameter is no longer supported by the current release of AIX

The manual page for each of the six tuning commands contains the complete list of all the parameter 

manipulated by each of the commands and for each parameter, its type, range, default value, and any 

dependencies on other parameters. 

For parameters of type Bosboot, whenever a change is performed, the tuning commands automatically 

prompt the user to ask if they want to execute the bosboot  command. For parameters of type Connect, 

the tuning commands automatically restart the inetd  daemon. 

Common Syntax for Tuning  Commands 

The no, nfso, vmo, ioo, raso, and schedo  tuning commands all support the following syntax: 

command  [-p|-r]  {-o  tunable[=newvalue]}  

command  [-p|-r]  {-d  tunable} 

command  [-p|-r]  -D 

command  [-p|-r]  -a 

command  -h [tunable] 

command  -L [tunable] 

command  -x [tunable] 

  

 -a Displays current, reboot (when used in conjunction with -r) or permanent (when used in 

conjunction with -p) value for all tunable parameters, one per line in pairs tunable = value. For 

the permanent options, a value is displayed for a parameter only if its reboot and current values 

are equal. Otherwise, NONE  is displayed as the value. If a tunable is not supported by the running 

kernel or the current platform, ″n/a″  is displayed as the value. 

-d  tunable  Resets tunable to default value. If a tunable needs to be changed (that is, it is currently not set to 

its default value) and is of type Bosboot  or Reboot, or if it is of type Incremental and has been 

changed from its default value, and -r is not used in combination, it is not changed, but a 

message displays instead. 

-D  Resets all tunables to their default value. If tunables needing to be changed are of type Bosboot  

or Reboot, or are of type Incremental and have been changed from their default value, and -r is 

not used in combination, they are not changed, but a message displays instead. 

-h  [tunable] Displays help about tunable parameter. Otherwise, displays the command usage statement. 

 

Chapter 7. Kernel Tuning 171



-o 

tunable[=newvalue] 

Displays the value or sets tunable to newvalue. If a tunable needs to be changed (the specified 

value is different than current value), and is of type Bosboot  or Reboot, or if it is of type 

Incremental and its current value is bigger than the specified value, and -r is not used in 

combination, it is not changed, but a message displays instead. 

When -r is used in combination without a new value, the nextboot  value for tunable is displayed. 

When -p is used in combination without a new value, a value is displayed only if the current and 

next boot values for tunable are the same. Otherwise, NONE  is displayed as the value. If a tunable 

is not supported by the running kernel or the current platform, ″n/a″  is displayed as the value. 

-p When used in combination with -o, -d  or -D, makes changes apply to both current and reboot 

values; that is, turns on the updating of the /etc/tunables/nextboot  file in addition to the updating 

of the current value. This flag cannot be used on Reboot  and Bosboot  type parameters because 

their current value cannot be changed. 

When used with -a or -o flag without specifying a new value, values are displayed only if the 

current and next boot values for a parameter are the same. Otherwise, NONE  is displayed as the 

value. 

-r When used in combination with -o, -d  or -D flags, makes changes apply to reboot values only; 

that is, turns on the updating of the /etc/tunables/nextboot  file. If any parameter of type 

Bosboot  is changed, the user will be prompted to run bosboot. 

When used with -a or -o without specifying a new value, next boot values for tunables are 

displayed instead of current values. 

-x [tunable] Lists the characteristics of one or all tunables, one per line, using the following format: 

tunable,current,default,reboot,  min,max,unit,type,{dtunable  } 

where: 

     current  = current  value  

     default  = default  value  

     reboot  = reboot  value  

     min  = minimal  value  

     max  = maximum  value  

     unit  = tunable  unit  of measure  

     type  = parameter  type:  D(for  Dynamic),  S(for  Static),  

            R(for  Reboot),  B(for  Bosboot),  M(for  Mount),  

            I(for  Incremental),  C (for  Connect),  and  d (for  Deprecated)  

     dtunable  = space  separated  list  of dependent  tunable  parameters  

 

172 Performance Tools Guide and Reference



-L  [tunable] Lists the characteristics of one or all tunables, one per line, using the following format: 

NAME                       CUR     DEF    BOOT    MIN    MAX    UNIT            TYPE  

     DEPENDENCIES  

--------------------------------------------------------------------------------  

memory_frames              128K    128K                         4KB  pages          S 

--------------------------------------------------------------------------------  

maxfree                    128     128     128    16     200K    4KB  pages          D 

     minfree  

     memory_frames  

--------------------------------------------------------------------------------  

where: 

     CUR   = current  value  

     DEF   = default  value  

     BOOT  = reboot  value  

     MIN   = minimal  value  

     MAX   = maximum  value  

     UNIT  = tunable  unit  of measure  

     TYPE  = parameter  type:  D (for  Dynamic),S  (for  Static),  

                            R (for  Reboot),B  (for  Bosboot),  

                            M (for  Mount),  I (for  Incremental),  

                            C (for  Connect),  and d (for  Deprecated)  

     DEPENDENCIES  = list  of dependent  tunable  parameters,  one  per line  

  

Any change (with -o, -d  or -D  flags) to a parameter of type Mount  will result in a message displays to 

warn the user that the change is only effective for future mountings. 

Any change (with -o, -d  or -D  flags) to a parameter of type Connect  will result in the inetd  daemon being 

restarted, and a message will display to warn the user that the change is only effective for socket 

connections. 

Any attempt to change (with -o, -d  or -D  flags ) a parameter of type Bosboot  or Reboot  without -r, will 

result in an error message. 

Any attempt to change (with -o, -d  or -D  flags but without -r) the current value of a parameter of type 

Incremental  with a new value smaller than the current value, will result in an error message. 

Tunable  File-Manipulation Commands 

The following commands normally manipulate files in the /etc/tunables  directory, but the files can be 

located anywhere. Therefore, as long as the file name does not contain a forward slash (/), all the file 

names specified are expanded to /etc/tunables/filename. To guarantee the consistency of their content, 

all the files are locked before any updates are made. The commands tunsave, tuncheck  (only if 

successful), and tundefault  -r  all update the info stanza. 

tunchange Command 

The tunchange  command is used to update one or more tunable stanzas in a file. Its syntax is as follows: 

tunchange  -f filename  ( -t stanza  ( {-o  parameter[=value]}  | -D ) | -m filename2  ) 

where stanza is schedo, vmo, ioo, raso, no, or nfso. 

The following is an example of how to update the pacefork  parameter in the /etc/tunables/mytunable  

directory: 

tunchange  -f mytunable  -t schedo  -o pacefork=10  

 

Chapter 7. Kernel Tuning 173



The following is an example of how to unconditionally update the pacefork  parameter in the 

/etc/tunables/nextboot  directory. This should be done with caution because no warning will be printed if a 

parameter of type bosboot  was changed. 

tunchange  -f nextboot  -t schedo  -o pacefork=10  

The following is an example of how to clear the schedo  stanza in the nextboot  file. 

tunchange  -f nextboot  -t schedo  -D 

The following is an example of how to merge the /home/admin/schedo_conf  file with the current 

nextboot  file. If the file to merge contains multiple entries for a parameter, only the first entry will be 

applied. If both files contain an entry for the same tunable, the entry from the file to merge will replace the 

current nextboot  file’s value. 

tunchange  -f nextboot  -m /home/admin/schedo_conf  

The tunchange  command is called by the tuning commands to implement the -p  and -r  flags using -f  

nextboot. 

tuncheck Command 

The tuncheck  command is used to validate a file. Its syntax is as follows: 

tuncheck  [-r|-p]  -f filename  

The following is an example of how to validate the /etc/tunables/mytunable  file for usage on current 

values. 

tuncheck  -f mytunable  

The following is an example of how to validate the /etc/tunables/nextboot  file or my_nextboot  file for 

usage during reboot. Note that the -r  flag is the only valid option when the file to check is the nextboot  

file. 

tuncheck  -r -f nextboot  

  

tuncheck  -r -f /home/bill/my_nextboot  

All parameters in the nextboot  or my_nextboot  file are checked for range, and dependencies, and if a 

problem is detected, a message similar to: ″Parameter  X is  out  of  range″ or ″Dependency  problem  

between  parameter  A and  B″  is issued. The -r  and -p  options control the values used in dependency 

checking for parameters not listed in the file and the handling of proposed changes to parameters of type 

Incremental, Bosboot, and Reboot. 

Except when used with the -r option, checking is performed on parameter of type Incremental  to make 

sure the value in the file is not less than the current value. If one or more parameters of type Bosboot  are 

listed in the file with a different value than its current value, the user will either be prompted to run 

bosboot  (when -r is used) or an error message will display. 

Parameters having dependencies are checked for compatible values. When one or more parameters in a 

set of interdependent parameters is not listed in the file being checked, their values are assumed to either 

be set at their current value (when the tuncheck  command is called without -p  or -r), or their default 

value. This is because when called without -r, the file is validated to be applicable on the current values, 

while with -r, it is validated to be used during reboot when parameters not listed in the file will be left at 

their default value. Calling this command with -p  is the same as calling it twice; once with no argument, 

and once with the -r flag. This checks whether a file can be used both immediately, and at reboot time. 

Note:   Users creating a file with an editor, or copying a file from another machine, must run the tuncheck  

command to validate their file.

 

174 Performance Tools Guide and Reference



tunrestore Command 

The tunrestore  command is used to restore all the parameters from a file. Its syntax is as follows: 

tunrestore  -R | [-r]  -f filename  

For example, the following will change the current values for all tunable parameters present in the file if 

ranges, dependencies, and incremental parameter rules are all satisfied. 

tunrestore  -f mytunable  

  

tunrestore  -f /etc/tunables/mytunable  

In case of problems, only the changes possible will be made. 

For example, the following will change the reboot  values for all tunable parameters present in the file if 

ranges and dependencies rules are all satisfied. In other words, they will be copied to the 

/etc/tunables/nextboot  file. 

tunrestore  -r -f mytunable  

If changes to parameters of type Bosboot  are detected, the user will be prompted to run the bosboot  

command. 

The following command can only be called from the /etc/inittab  file and changes tunable parameters to 

values from the /etc/tunables/nextboot  file. 

tunrestore  -R 

Any problem found or change made is logged in the /etc/tunables/lastboot.log  file. A new 

/etc/tunables/lastboot  file is always created with the list of current values for all parameters. 

If filename  does not exist, an error message displays. If the nextboot  file does not exist, an error message 

displays if -r was used. If -R  was used, all the tuning parameters of a type other than Bosboot  will be set 

to their default value, and a nextboot  file containing only an info stanza will be created. A warning will also 

be logged in the lastboot.log  file. 

Except when -r  is used, parameters requiring a call to bosboot  and a reboot  are not changed, but an 

error message is displayed to indicate they could not be changed. When -r is used, if any parameter of 

type Bosboot  needs to be changed, the user will be prompted to run bosboot. Parameters missing from 

the file are simply left unchanged, except when -R  is used, in which case missing parameters are set to 

their default values. If the file contains multiple entries for a parameter, only the first entry will be applied, 

and a warning will be displayed or logged (if called with -R). 

tunsave Command 

The tunsave  command is used to save current tunable parameter values into a file. Its syntax is as 

follows: 

tunsave  [-a|-A]  -f|-F  filename  

For example, the following saves all of the current tunable parameter values that are different from their 

default into the /etc/tunables/mytunable  file. 

tunsave  -f mytunable  

If the file already exists, an error message is printed instead. The -F  flag must be used to overwrite an 

existing file. 

For example, the following saves all of the current tunable parameter values different from their default into 

the /etc/tunables/nextboot  file. 

tunsave  -f nextboot  

 

Chapter 7. Kernel Tuning 175



If necessary, the tunsave  command will prompt the user to run bosboot. 

For example, the following saves all of the current tunable parameters values (including parameters for 

which default is their value) into the mytunable  file. 

tunsave  -A -f mytunable  

This permits you to save the current setting. This setting can be reproduced at a later time, even if the 

default values have changed (default values can change when the file is used on another machine or 

when running another version of AIX). 

For example, the following saves all current tunable parameter values into the /etc/tunables/mytunable  

file or the mytunable  file in the current directory. 

tunsave  -a -f mytunable  

  

tunsave  -a -f ./mytunable  

For the parameters that are set to default values, a line using the keyword DEFAULT  will be put in the file. 

This essentially saves only the current changed values, while forcing all the other parameters to their 

default values. This permits you to return to a known setup later using the tunrestore  command. 

tundefault Command 

The tundefault  command is used to force all tuning parameters to be reset to their default value. The -p 

flag makes changes permanent, while the -r  flag defers changes until the next reboot. The command 

syntax is as follows: 

tundefault  [-p|-r]  

For example, the following example resets all tunable parameters to their default value, except the 

parameters of type Bosboot  and Reboot, and parameters of type Incremental  set at values bigger than 

their default value. 

 tundefault  

Error messages will be displayed for any parameter change that is not permitted. 

For example, the following example resets all the tunable parameters to their default value. It also updates 

the /etc/tunables/nextboot  file, and if necessary, offers to run bosboot, and displays a message warning 

that rebooting is needed for all the changes to be effective. 

tundefault  -p 

This command permanently resets all  tunable parameters to their default values, returning the system to a 

consistent state and making sure the state is preserved after the next reboot. 

For example, the following example clears all the command stanzas in the /etc/tunables/nextboot  file, 

and proposes bosboot  if necessary. 

tundefault  -r 

Initial setup 

Installing the bos.perf.tune  fileset automatically creates an initial /etc/tunables/nextboot  file and adds the 

following line at the beginning of the /etc/inittab  file: 

tunable:23456789:wait:/usr/bin/tunrestore  -R > /dev/console  2>&1  

This entry sets the reboot  value of all tunable parameters to their default. For more information about 

migration from a previous version of AIX and the compatibility mode automatically setup in case of 

migration, read ″Introduction to AIX 5.2 Tunable Parameter Settings″  in the Performance  management. 

 

176 Performance Tools Guide and Reference



Reboot Tuning  Procedure 

Parameters of type Bosboot  are set by the bosboot  command, which retrieves their values from the 

nextboot  file when creating a new boot image. Parameters of type Reboot  are set during the reboot 

process by the appropriate configuration methods, which also retrieve the necessary values from the 

nextboot  file. In both cases, if there is no nextboot  file, the parameters will be set to their default values. 

All other parameters are set using the following process: 

1.   When tunrestore  -R  is called, any tunable changed from its default value is logged in the lastboot.log  

file. The parameters of type Reboot  and Bosboot  present in the nextboot  file, and which should 

already have been changed by the time tunrestore  -R  is called, will be checked against the value in 

the file, and any difference will also be logged. 

2.   The lastboot  file will record all the tunable parameter settings, including default values, which will be 

flagged using # DEFAULT  VALUE, and the AIX_level,  Kernel_type, Last_validation, and 

Logfile_checksum  fields will be set appropriately. 

3.   If there is no /etc/tunables/nextboot  file, all tunable parameters, except those of type Bosboot, will 

be set to their default value, a nextboot  file with only an info stanza will be created, and the following 

warning: ″cannot  access  the  /etc/tunables/nextboot  file″ will be printed in the log file. The 

lastboot  file will be created as described in step 2. 

4.   If the desired value for a parameter is found to be out of range, the parameter will be left to its default 

value, and a message similar to the following: ″Parameter  A could  not  be  set  to  X,  which  is  out  of 

range,  and  was  left  to  its  current  value  (Y)  instead″  will be printed in the log file. Similarly, if a 

set of interdependent parameters have values incompatible with each other, they will all be left at their 

default values and a message similar to the following: ″Dependent  parameter  A,  B and  C could  not  

be  set  to  X,  Y and  Z because  those  values  are  incompatible  with  each  other.  Instead,  they  

were  left  to  their  current  values  (T,  U and  V)″  will be printed in the log file. 

All of these error conditions could exist if a user modified the /etc/tunables/nextboot  file with an editor 

or copied it from another machine, possibly running a different version of AIX with different valid 

ranges, and did not run tuncheck  -r  -f  on the file. Alternatively, tuncheck  -r  -f  prompted the user to 

run bosboot, but this was not done.

Recovery Procedure 

If the machine becomes unstable with a given nextboot  file, users should put the system into 

maintenance mode, make sure the sys0  pre520tune  attribute is set to disable, delete the nextboot  file, 

run the bosboot  command and reboot. This action will guarantee that all tunables are set to their default 

value. 

Kernel Tuning  Using the SMIT Interface 

To start the SMIT panels that manage AIX kernel tuning parameters, use the SMIT fast path smitty  

tuning. The following is a view of the tuning panel: 

    Tuning  Kernel Parameters  

  

  Save/Restore  All Kernel & Network  Parameters  

  Tuning Scheduler  and Memory Load Control  Parameters  

  Tuning Virtual  Memory  Manager  Parameters  

  Tuning Network  Parameters  

  Tuning NFS Parameters  

  Tuning I/O Parameters  

  Tuning RAS Parameters  

  

 

Select Save/Restore  All  Kernel  & Network  Parameters  to manipulate all tuning parameter values at the 

same time. To individually change tuning parameters managed by one of the tuning commands, select any 

of the other lines. 

 

Chapter 7. Kernel Tuning 177



Global Manipulation of Tuning  Parameters 

The main panel to manipulate all tunable parameters by sets looks similar to the following: 

       Save/Restore  All Kernel  Tuning  Parameters  

  

  View Last Boot Parameters  

  View Last Boot Log File 

  

  Save All Current  Parameters  for Next Boot 

  Save All Current  Parameters  

  Restore  All Current  Parameters  from Last Boot Values 

  Restore  All Current  Parameters  from Saved Values 

  Reset All Current  Parameters  To Default Value 

  

  Save All Next Boot Parameters  

  Restore  All Next Boot Parameters  from Last Boot Values 

  Restore  All Next Boot Parameters  from Saved  Values 

  Reset All Next Boot Parameters  To Default  Value 

  

Each of the options in this panel are explained in the following sections. 

 1.   View Last Boot Parameters 

All last boot parameters are listed stanza by stanza, retrieved from the /etc/tunables/lastboot  file. 

 2.   View Last Boot Log File 

Displays the content of the file /etc/tunables/lastboot.log. 

 3.   Save All Current Parameters for Next Boot 

     Save All Current  Kernel Tuning Parameters  for Next Boot 

  

  ARE YOU SURE ? 

  

After selecting yes  and pressing ENTER, all the current tuning parameter values are saved in the 

/etc/tunables/nextboot  file. Bosboot  will be offered if necessary. 

 4.   Save All Current Parameters 

     Save All Current  Kernel Tuning Parameters  

  

  File name                                     [] 

  Description                                    [] 

  

Type or select values for the two entry fields: 

v   File  name: F4 will show the list of existing files. This is the list of all files in the /etc/tunables  

directory except the files nextboot, lastboot  and lastboot.log  which all have special purposes. 

File names entered cannot be any of the above three reserved names. 

v   Description: This field will be written in the info stanza of the selected file.

After pressing ENTER, all of the current tuning parameter values will be saved in the selected stanza 

file of the /etc/tunables  directory. 

 5.   Restore All Current Parameters from Last Boot Values 

     Restore  All Current  Parameters  from Last Boot Values 

  

  ARE YOU SURE ? 

  

 

178 Performance Tools Guide and Reference



After selecting yes  and pressing ENTER, all the tuning parameters will be set to values from the 

/etc/tunables/lastboot  file. Error messages will be displayed if any parameter of type Bosboot  or 

Reboot  would need to be changed, which can only be done when changing reboot values. 

 6.   Restore All Current Parameters from Saved Values 

     Restore  Saved Kernel Tuning Parameters  

  

Move cursor  to desired  item and press  Enter.  

  

  mytunablefile     Description  field of mytunable  file 

  tun1             Description  field of lastweek  file 

  

A select menu shows existing files in the /etc/tunables  directory, except the files nextboot, lastboot  

and lastboot.log  which all have special purposes. 

After pressing ENTER, the parameters present in the selected file in the /etc/tunables  directory will 

be set to the value listed if possible. Error messages will be displayed if any parameter of type 

Bosboot  or Reboot  would need to be changed, which can’t be done on the current values. Error 

messages will also be displayed for any parameter of type Incremental  when the value in the file is 

smaller than the current value, and for out of range and incompatible values present in the file. All 

possible changes will be made. 

 7.   Reset All Current Parameters To Default Value 

     Reset All Current  Kernel Tuning Parameters  To Default Value 

  

  ARE YOU SURE ? 

  

After pressing ENTER, each tunable parameter will be reset to its default value. Parameters of type 

Bosboot  and Reboot, are never changed, but error messages are displayed if they should have 

been changed to get back to their default values. 

 8.   Save All Next Boot Parameters 

     Save All Next Boot Kernel  Tuning Parameters  

  

  File name                                     [] 

  

Type or a select values for the entry field. Pressing F4 displays a list of existing files. This is the list of 

all files in the /etc/tunables  directory except the files nextboot, lastboot  and lastboot.log  which all 

have special purposes. File names entered cannot be any of those three reserved names. 

After pressing ENTER, the nextboot  file, is copied to the specified /etc/tunables  file if it can be 

successfully tunchecked. 

 9.   Restore All Next Boot Parameters from Last Boot Values 

     Restore  All Next Boot Kernel Tuning Parameters  from Last Boot Values 

  

  ARE YOU SURE ? 

  

After selecting yes  and pressing ENTER, all values from the lastboot  file will be copied to the 

nextboot  file. If necessary, the user will be prompted to run bosboot, and warned that for all the 

changes to be effective, the machine must be rebooted. 

10.   Restore All Next Boot Parameters from Saved Values 

 

Chapter 7. Kernel Tuning 179



Restore  All Next Boot Kernel  Tuning  Parameters  from Saved Values 

  

Move cursor to desired  item and press Enter. 

  

  mytunablefile     Description  field of mytunablefile  file 

  tun1             Description  field of tun1 file 

  

A select menu shows existing files in the /etc/tunables  directory, except the files nextboot, lastboot  

and lastboot.log  which all have special purposes. 

After selecting a file and pressing ENTER, all values from the selected file will be copied to the 

nextboot  file, if the file was successfully tunchecked first. If necessary, the user will be prompted to 

run bosboot, and warned that for all the changes to be effective, rebooting the machine is necessary. 

11.   Reset All Next Boot Parameters To Default Value 

     Reset All Next Boot Kernel  Tuning Parameters  To Default Value 

  

ARE YOU SURE ? 

  

After hitting ENTER, the /etc/tunables/nextboot  file will be cleared. If necessary bosboot  will be 

proposed and a message indicating that a reboot is needed will be displayed.

Changing individual parameters managed by a tuning command 

All the panels for all six commands behave the same way. In the following sections, we will use the 

example of the Scheduler and Memory Load Control (i.e. schedo) panels to explain the behavior. Here is 

the main panel to manipulate parameters managed by the schedo  command: 

     Tuning Scheduler  and Memory Load Control  Parameters  

  

  List All Characteristics  of Current  Parameters  

  Change  / Show Current  Parameters  

  Change  / Show Parameters  for next boot 

  Save Current  Parameters  for Next Boot 

  Reset Current  Parameters  to Default  value 

  Reset Next Boot Parameters  To Default  Value  

  

Interaction between parameter types and the different SMIT sub-panels 

The following table shows the interaction between parameter types and the different SMIT sub-panels: 

 Sub-panel name Action 

List All Characteristics of Current Parameters Lists current, default, reboot, limit values, unit, type and 

dependencies. This is the output of a tuning command called 

with the -L option. 

Change / Show Current Parameters Displays and changes current parameter value, except for 

parameter of type Static, Bosboot and Reboot which are 

displayed without surrounding square brackets to indicate 

that they cannot be changed. 

Change / Show Parameters for Next Boot Displays values from and rewrite updated values to the 

nextboot  file. If necessary, bosboot  will be proposed. Only 

parameters of type Static cannot be changed (no brackets 

around their value). 

Save Current Parameters for Next Boot Writes current parameters in the nextboot  file, bosboot  will 

be proposed if any parameter of type Bosboot was changed. 

 

180 Performance Tools Guide and Reference



Reset Current Parameters to Default value Resets current parameters to default values, except those 

which need a bosboot  plus reboot or a reboot (bosboot and 

reboot type). 

Reset Next Boot Parameters to Default value Clears values in the nextboot  file, and propose bosboot  if 

any parameter of type Bosboot was different from its default 

value.
  

Each of the sub-panels behavior is explained in the following sections using examples of the scheduler 

and memory load control sub-panels: 

1.   List All Characteristics of Tuning Parameters 

The output of schedo  -L  is displayed. 

2.   Change/Show Current Scheduler and Memory Load Control Parameters 

Change  / Show Current  Scheduler  and Memory Load Control Parameters  

  

                                   [Entry  Field] 

  

  

  affinity_lim                           [7] 

  idle_migration_barrier                 [4] 

  fixed_pri_global                       [0] 

  maxspin                                [1] 

  pacefork                               [10] 

  sched_D                                [16] 

  sched_R                                [16] 

  timeslice                              [1] 

  %usDelta                               [100] 

  v_exempt_secs                          [2] 

  v_min_process                          [2] 

  v_repage_hi                            [2] 

  v_repage_proc                          [6] 

  v_sec_wait                             [4] 

  

This panel is initialized with the current schedo  values (output from the schedo  -a  command). Any 

parameter of type Bosboot, Reboot  or Static  is displayed with no surrounding square bracket 

indicating that it cannot be changed. 

From the F4 list, type or select values for the entry fields corresponding to parameters to be changed. 

Clearing a value results in resetting the parameter to its default value. The F4 list also shows 

minimum, maximum, and default values, the unit of the parameter and its type. Selecting F1 displays 

the help associated with the selected parameter. The text displayed will be identical to what is 

displayed by the tuning commands when called with the -h  option. 

Press ENTER  after making all the desired changes. Doing so will launch the schedo  command to 

make the changes. Any error message generated by the command, for values out of range, 

incompatible values, or lower values for parameter of type Incremental, will be displayed to the user. 

3.   The following is an example of the Change / Show Scheduler and Memory Load Control Parameters 

for next boot panel. 

 

Chapter 7. Kernel Tuning 181



Change / Show Scheduler  and Memory  Load Control  Parameters  for next boot 

  

                                   [Entry Field]  

  

  affinity_lim                           [7] 

  idle_migration_barrier                 [4] 

  fixed_pri_global                       [0] 

  maxpin                                 [1] 

  pacefork                               [10] 

  sched_D                                [16] 

  sched_R                                [16] 

  timeslice                              [1] 

  %usDelta                               [100] 

  v_exempt_secs                          [2] 

  v_min_process                          [2] 

  v_repage_hi                            [2] 

  v_repage_proc                          [6] 

  v_sec_wait                             [4] 

  

This panel is similar to the previous panel, in that, any parameter value can be changed except for 

parameters of type Static. It is initialized with the values listed in the /etc/tunables/nextboot  file, 

completed with default values for the parameter not listed in the file. 

Type or select (from the F4 list) values for the entry field corresponding to the parameters to be 

changed. Clearing a value results in resetting the parameter to its default value. The F4 list also shows 

minimum, maximum, and default values, the unit of the parameter and its type. Pressing F1 displays 

the help associated with the selected parameter. The text displayed will be identical to what is 

displayed by the tuning commands when called with the -h  option. 

Press ENTER  after making all desired changes. Doing so will result in the/etc/tunables/nextboot  file 

being updated with the values modified in the panel, except for out of range, and incompatible values 

for which an error message will be displayed instead. If necessary, the user will be prompted to run 

bosboot. 

4.   The following is an example of the Save Current Scheduler and Memory Load Control Parameters for 

Next Boot panel. 

     Save Current  Scheduler  and Memory Load Control Parameters  for Next Boot 

  

ARE YOU SURE ? 

  

After pressing ENTER  on this panel, all the current schedo  parameter values will be saved in the 

/etc/tunables/nextboot  file . If any parameter of type Bosboot  needs to be changed, the user will be 

prompted to run bosboot. 

5.   The following is an example of the Reset Current Scheduler and Memory Load Control Parameters to 

Default Values 

     Reset Current Scheduler  and Memory  Load Control Parameters  to Default Value 

  

  ARE YOU SURE ? 

  

After selecting yes  and pressing ENTER  on this panel, all the tuning parameters managed by the 

schedo  command will be reset to their default value. If any parameter of type Incremental, Bosboot  

or Reboot  should have been changed, and error message will be displayed instead. 

6.   The following is an example of the Reset Scheduler and Memory Load Control Next Boot Parameters 

To Default Values 

 

182 Performance Tools Guide and Reference



Reset Next Boot Parameters  To Default  Value 

  

  ARE YOU SURE ? 

  

After pressing ENTER, the schedo  stanza in the /etc/tunables/nextboot  file will be cleared. This will 

defer changes until next reboot. If necessary, bosboot  will be proposed.

Kernel Tuning  using the Performance Plug-In for Web-based  System 

Manager 

AIX kernel tuning parameters can be managed using the Web-based System Manager System Tuning 

Plug-in, which is a sub-plugin of the Web-based System Manager Performance plug-in. The Performance 

Plug-in is available from the Web-based System Manager main console which looks similar to the 

following: 

 

 The Performance plug-in is organized into the following sub-plugins: 

v   Performance Monitoring plug-in 

v   System Tuning plug-in

  

Figure  28.  Performance  Plug-in  shown  in Web-based  System  Manager  main  console

 

Chapter 7. Kernel Tuning 183



The Performance Monitoring sub-plugin gives access to a variety of performance-monitoring and 

report-generation tools. The System Tuning sub-plugin consists of CPU, Memory, RAS, Disk I/O, and 

Network I/O sub-plugins, which present tuning tables from which AIX tuning parameters can be visualized 

and changed. 

The Navigation Area for the System Tuning plug-in contains three levels of sub-plugins as seen in the 

following:
 

These intermediate levels represent tuning resources. They are further split into sub-plugins but have no 

specific actions associated with them and only exist to group access to tunable parameters in a logical 

way. Actions on tunable parameters can be applied at the following levels: 

System-Tuning  level  

Global actions applicable to all tunable parameters are provided at this level. 

Leaf  Levels  

Leaves are represented by a folder icon (see navigation area in Figure 29). When selecting a leaf, 

a tuning table is displayed in the content area. A table represents a logical group of tunable 

parameters, all managed by one of the tunable commands (schedo, vmo, ioo, raso, no, and 

nfso). Specific actions provided at this level apply only to the tunable parameters displayed in the 

current table.

  

Figure  29.  System  Tuning plug-in  Performance  window

 

184 Performance Tools Guide and Reference



The CPU/All  Processes  sub-plugin is a link to the All  Processes  sub-plugin of the Processes application. 

Its purpose is not to manipulate tuning parameters and will not be discussed. 

Global Actions on Tunable  Parameters 

Only the Web-based System Manager Tuning  menu has specific actions associated with it.
 The specific actions available at this level are global, in that they apply to all the performance tunable 

parameters. 

1.   View  Last  Boot  Parameters  

This action displays the /etc/tunables/lastboot  file in an open working dialog. 

2.   View  Last  Boot  Log  File
This action displays the /etc/tunables/lastboot.log  file in an open working dialog. 

3.   Save  All  Current  Parameters  for  Next  Boot  

The Save All Current Parameters warning dialog is opened. 

 

  

Figure  30.  Web-based  System  Manager  Tuning menu

 

Chapter 7. Kernel Tuning 185



After clicking Yes, all the current tuning parameter values will be saved in the /etc/tunables/nextboot  

file. Bosboot  will be offered if necessary. 

4.   Save  All  Current  Parameters  

The Save All Current Parameters dialog with a Filename field and a Description field is opened. 

 

 The Filename  editable combobox, lists all the tunable files present in the /etc/tunables  directory, 

except the nextboot, lastboot  and lastboot.log  files, which all have special purposes. If no file is 

present, the combobox list is empty. The user can choose an existing file, or create a new file by 

entering a new name. File names entered cannot be any of the three reserved names. The 

Description  field will be written in the info stanza of the selected file. After clicking OK, all the current 

tuning parameter values will be saved in the selected file in the /etc/tunables  directory. 

5.   Save  All  Next  Boot  Parameters  

 

  

Figure  31.  Save  All  Current  Parameters  for  next  boot  dialog

  

Figure  32.  Save  All  Current  Parameters  to file  dialog

 

186 Performance Tools Guide and Reference



This action opens an editable combobox which lists all the tunable files present in the /etc/tunables  

directory, except the nextboot, lastboot  and lastboot.log  files, which all have special purposes. If no 

file is present, the combobox list is empty. The user can choose an existing file, or create a new file by 

entering a new name. File names entered cannot be any of the three reserved names. After clicking 

OK, the nextboot  file, is copied to the specified /etc/tunables  file it can be successfully checked using 

the tuncheck  command. 

6.   Restore  All  Current  Parameters
This action opens an editable combobox showing the list of all existing files in the /etc/tunables  

directory, except the files nextboot, and lastboot.log  which have special purposes.
 

 The user selects the file to use for restoring the current values of tuning parameters. The lastboot  file 

is proposed as the default (first element of the combo list). Files can have a description which is 

displayed after the name in the combobox items, separated from the file name by a dash character. 

After clicking OK, the parameters present in the selected file in the /etc/tunables  directory will be set 

to the value listed if possible. Error messages will be displayed if any parameter of type Bosboot  or 

Reboot  would need to be changed, which cannot be done on the current values. Error messages will 

also be displayed for any parameter of type Incremental  when the value in the file is smaller than the 

current value, and for out of range and incompatible values present in the file. All possible changes will 

be made. 

7.   Restore  All  Next  Boot  Parameters
A combobox is opened to display the list of all existing files in the /etc/tunables  directory, except the 

files nextboot, and lastboot.log  which have special purposes. 

 

  

Figure  33.  Save  All Next  Boot  Parameters  to file  dialog

  

Figure  34.  Restore  All Current  Parameters  dialog

 

Chapter 7. Kernel Tuning 187



The user selects the file to use for restoring the nextboot  values of tuning parameters. The lastboot  

file is proposed as the default (first element of the combo list). Files can have a description which is 

displayed after the name in the combobox items, separated from the file name by a dash character. 

After clicking OK, all values from the selected file will be copied to the /etc/tunables/nextboot  file. 

Incompatible dependent parameter values or out of range values will not be copied to the file (this 

could happen if the file selected was not previously tunchecked). Error messages will be displayed 

instead. If necessary, the user will be prompted to run bosboot, and warned that for all the changes to 

be effective, rebooting the machine is necessary. 

8.   Reset  All  Current  Parameters  to  Default  Values  

A warning dialog is opened and after clicking Yes, a working dialog is displayed. Each tunable 

parameter is reset to its default value. Parameters of type Incremental, Bosboot  and Reboot, are 

never changed, but error messages are displayed if they should have been changed to revert to 

default values. 

9.   Reset  All  Next  Boot  Parameters  to  Default  Values  

A warning dialog is opened and after clicking Yes, an interactive working dialog is displayed and the 

/etc/tunables/nextboot  file is cleared. If necessary bosboot  will be proposed and a message 

indicating that a reboot is needed will be displayed.

Using Tuning  Tables  to Change Individual Parameter Values 

Each tuning table in the content area has the same structure. It enables all the characteristics of the 

tunable parameters to be viewed at a glance. The table has two editable columns, Current  Value  and 

Next  Boot  Value. Each cell in these two columns is an editable combobox, with only one predefined value 

of Default, for the capture of new value for a parameter. Data entered in these columns is validated when 

pressing ENTER. 

 

  

Figure  35.  Restore  All Next  Boot  Parameters  dialog

 

188 Performance Tools Guide and Reference



The parameters are grouped as they are in the SMIT panels with two small exceptions. First, the Network 

related parameters are all presented in one SMIT panel, but subdivided in six sections. The Web-based 

System Manager interface uses six separate tables instead. 

Lastly, the parameters managed by the schedo  command are available from two sub-plugins: 

CPU/scheduling and memory/scheduling. 

Actions permitted vary according to parameter types: 

v   Static parameters do not have an editable cell. 

v   New values for Dynamic parameters can be applied now or saved for next boot. 

v   New values for Reboot  parameters can only be saved for next boot. 

v   New values for Bosboot  parameters can only be saved for next boot, and users are prompted to run 

bosboot. 

v   New values for Mount  parameters can be applied now or saved for next boot, but when applied 

immediately, a warning will be displayed to tell the user that changes will only be effective for future file 

systems or directory mountings. 

v    New values for Incremental  parameters can be applied now or saved for next boot. If applied now, 

they will only be accepted if the new value is bigger than the current value.

The following section explains in detail the behavior of the tables. 

Tunable  Tables  Actions 

The actions available for each tunable table are Save  Changes, Save  Current  Parameters  for  Next  

Boot, Reset  Parameters  to  System  Default, Parameter  Details, and Monitor. The Monitor  action 

  

Figure  36.  Memory  VMM  window

 

Chapter 7. Kernel Tuning 189



enables related monitoring tools to start from each of the plug-ins and is not discussed in this section. 

 

1.   Save  Changes  

This option opens a dialog enabling you to save new values for the parameters listed in the Current  

Value  and Next  Boot  Value  columns of the table. The two options are checked by default. They are:
 

  

Figure  37.  Tables Menus  window

 

190 Performance Tools Guide and Reference



v   Selecting Update  and  apply  current  values  and clicking OK, launches the tuning command 

corresponding to the parameters shown in the table to make all the desired changes. Selecting 

Default in the combobox as the new value resets the parameter to its default value. If a parameter 

of type Incremental  has a new value smaller than its current value, an error message will be 

displayed. If incompatible dependent parameter values or out of range values have been entered, 

an error message will also be displayed. All the acceptable changes will be made. 

v   Selecting Update  next  boot  values  and clicking OK, writes the desired changes to the 

/etc/tunables/nextboot  file. If necessary, the user will be prompted to run bosboot. If incompatible 

dependent parameter values or out of range values have been entered, an error message will be 

displayed, and those parameter values will not be copied to the nextboot  file. 

v   Selecting both options makes all the desired changes now and for the next reboot.

2.   Save  Current  Parameters  for  Next  Boot
A warning dialog is opened. 

 

 After clicking Yes, all the current parameter values listed in the table will be saved in the 

/etc/tunables/nextboot  file. If any parameter of type Bosboot  needs to be changed, the user will be 

prompted to run bosboot.

  

Figure  38.  Save  Changes  dialog

  

Figure  39.  Save  All Current  Parameters  to file dialog

 

Chapter 7. Kernel Tuning 191



3.   Reset  Parameters  to  System  Default  

This dialog permits resetting of current or next boot values for all the parameters listed in the table to 

their default value. Two options are available:
 

v   Selecting Reset  current  parameters  to  system  default  and clicking OK, will reset all the tuning 

parameters listed in the table to their default value. If any parameter of type Incremental, Bosboot  

or Reboot  should have been changed, an error message will be displayed and the parameter will 

not be changed. 

v   Selecting Reset  next  boot  parameters  to  system  default  and clicking OK  deletes the parameter 

listed in the table from the /etc/tunables/nextboot  file. This action will defer changes until next 

reboot. If necessary, bosboot  will be proposed.

Parameter Details 

Clicking on Parameter  Details  in the toolbar or selecting the equivalent menu item, followed by a click on 

a parameter in the table will display the help information available in a help dialog.
 

  

Figure  40.  Reset  All Parameters  to System  Defaults  dialog

 

192 Performance Tools Guide and Reference



Files 

 /etc/tunables/lastboot  Contains tuning parameter stanzas from the last boot. 

/etc/tunables/lastboot.log  Contains logging information from the last boot. 

/etc/tunables/nextboot  Contains tuning parameter stanzas for the next system boot.
  

Related Information 

The bosboot, ioo, nfso, no, raso, schedo, tunsave, tunrestore, tuncheck, tundefault, and vmo  

commands. 

The tunables  file. 

  

Figure  41.  Help  dialog

 

Chapter 7. Kernel Tuning 193



194 Performance Tools Guide and Reference



Chapter  8.  The  procmon  tool  

This topic provides detailed information about the procmon  tool and contains the following sections: 

v   “Overview of the procmon tool” 

v   “Components of the procmon tool” on page 196 

v   “Filtering processes” on page 198 

v   “Performing AIX commands on processes” on page 198

Overview of the procmon tool 

You can use the procmon  tool on systems running AIX 5.3 or later. The procmon  tool enables you to 

view and manage the processes running on a system. The procmon  tool has a graphical interface and 

displays a table of process metrics that you can sort on the different fields that are provided. The default 

number of processes listed in the table is 20, but you can change the value in the Table  Properties  panel 

from the main menu. Only the top processes based on the sorting metric are displayed and the default 

sorting key is CPU consumption. 

The default value of the refresh rate for the table of process metrics is 5 seconds, but you can change the 

refresh rate by either using the Table  Properties  panel in the main menu or by clicking on the Refresh  

button. 

By default, the procmon  tool displays the following: 

v   How long a process has been running 

v   How much CPU resource the processes are using 

v   Whether processes are being penalized by the system 

v   How much memory the processes are using 

v   How much I/O a process is performing 

v   The priority and nice values of a process 

v   Who has created a particular process

You can choose other metrics to display from the Table Properties  panel in the main menu. For more 

information, see “The process table of the procmon tool” on page 196. 

You can filter any of the processes that are displayed. For more information, see “Filtering processes” on 

page 198. 

You can also perform certain AIX performance commands on these processes. For more information, see 

“Performing AIX commands on processes” on page 198. 

The procmon  tool is a Performance Workbench plugin, so you can only launch the procmon  tool from 

within the Performance Workbench framework. You must install the bos.perf.gtools  fileset by either using 

the smitty  tool or the installp  command. You can then access the Performance Workbench by running the 

/usr/bin/perfwb  script. 

Note:   Do not run the /opt/perfwb/perfwb  binary file.

 

© Copyright IBM Corp. 2002, 2007 195



Components of the procmon tool 

The graphical interface of the procmon  tool consists of the following components: 

v   “The global statistics area of the procmon tool” 

v   “The process table of the procmon tool” 

v   “The status line of the Performance Workbench” on page 197

The global statistics area of the procmon tool 

The global statistics area is a table that is displayed at the top of the procmon  tool window. The global 

statistics area displays the amount of CPU and memory that is being used by the system. You can refresh 

the statistics data by either clicking on the Refresh  button in the menu bar or by activating the automatic 

refresh option through the menu bar. To save the statistics information, you can export the table to any of 

the following file formats: 

v   XML 

v   HTML 

v   CSV

The process table of the procmon tool 

The process table is the main component of the procmon  tool. The process table displays the various 

processes that are running on the system, ordered and filtered according to the user configuration. The 

default value of the number of processes listed in the process table is 20, but you can change this value 

from the Table Properties  panel from the main menu. 

The yellow arrow key in the column header indicates the sort key for the process table. The arrow points 

either up or down, depending on whether the sort order is ascending or descending, respectively. You can 

change the sort key by clicking on any of the column headers. 

You can customize the process table, modify the information on the various processes, and run commands 

on the displayed processes. By default, the procmon  tool displays the following columns: 

 PID  Process identifier 

PPID  Parent process identifier 

NICE  Nice value for the process 

PRI  Priority of the process 

COMMAND  Short name of the process launched 

DRSS  Data resident set size 

TRSS  Text resident set size 

STARTTIME  Time when the command started 

ELOGIN  Effective login of the process user 

PRM  Percent real memory usage 

CPUPER  Percentage of CPU used per process since the last refresh
  

You can choose to display other metrics, like the following: 

 EUID  Effective user identifier 

RUID  Real user identifier 

EGID  Effective group identifier 

RGID  Real group identifier 

 

196 Performance Tools Guide and Reference



THCOUNT  Number of threads used 

CLASSID  Identifier of the class which pertains to the WLM process 

CLASSNAME  Name of the class which pertains to the WLM process 

TOTDISKIO  Disk I/O for that process 

NVCSW  N voluntary context switches 

NIVCSW  N involuntary context switches 

MINFLT Minor page faults 

MAJFLT  Major page faults 

INBLK  Input blocks 

OUBLK  Output blocks 

MSGSEND  Messages sent 

MSGRECV  Messages received 

EGROUP  Effective group name 

RGROUP  Real group name
  

You can use either the table properties or preference to display the metrics you are interested in. If you 

choose to change the table properties, the new configuration values are set for the current session only. If 

you change the preferences, the new configuration values are set for the next session of the procmon  

tool. 

There are two types of values listed in the process table: 

v   Real values 

v   Delta values

Real values are retrieved from the kernel and displayed in the process table. An example of a real value is 

the PID, PPID, or TTY. 

Delta values are values that are computed from the last-stored measurements. An example of a delta 

value is the CPU percent for each process, which is computed using the values measured between 

refreshes. 

Below the process table, there is another table that displays the sum of the values for each column of the 

process table. For example, this table might provide a good idea of the percentage of total CPU used by 

the top 20 CPU-consuming processes. 

You can refresh the data by either clicking on the Refresh  button in the menu bar or by activating the 

automatic refresh option through the menu bar. To save the statistics information, you can export the table 

to any of the following file formats: 

v   XML 

v   HTML 

v   CSV

The status line of the Performance Workbench  

The Performance Workbench status line displays the date on which the information was retrieved, as well 

as the name of the system. The status line is hidden if you activate another view or perspective, but 

automatically reappears if you refresh the information. 

 

Chapter 8. The procmon tool 197



Filtering processes 

You can filter processes based on the various criteria that is displayed in the process table. To create a 

filter, select Table  Filters  from the menu bar. A new window opens and displays a list of filters. 

Performing AIX commands on processes 

You can run the following AIX commands on the processes you select in the process table: 

v   The svmon  command 

v   The renice  command 

v   The kill  command 

v   The following proctools  commands: 

–   The procfiles  command 

–   The proctree  command 

–   The procsig  command 

–   The procstack  command 

–   The procrun  command 

–   The procmap  command 

–   The procflags  command 

–   The proccred  command 

–   The procldd  command 

To run any of the above commands on one or more processes, select the processes in the process table 

and right click your mouse, and select either Commands  or Modify  and then select the command you 

want to run. A new window opens, which displays the command output while the command is running. You 

can interrupt the command by clicking on the STOP  button. 

 

198 Performance Tools Guide and Reference



Chapter  9.  Profiling  tools  

You can use profiling tools to identify which portions of the program are executed most frequently or where 

most of the time is spent. Profiling tools are typically used after a basic tool, such as the vmstat  or iostat  

commands, shows that a CPU bottleneck is causing a performance problem. 

Before you begin locating hot spots in your program, you need a fully functional program and realistic data 

values. 

The following is a list of the profiling tools you can use: 

v   Chapter 2, “X-Windows Performance Profiler (Xprofiler),” on page 3 

v   “The timing commands” 

v   “The prof command” 

v   “The gprof command” on page 201 

v   “The tprof command” on page 203

The timing commands 

Use the timing commands discussed in Using the time command to measure CPU use for testing and 

debugging programs whose performance you are recording and trying to improve. 

The output from the time  command is in minutes and seconds, as follows: 

real     0m26.72s  

user     0m26.53s  

sys      0m0.03s  

The output from the timex  command is in seconds, as follows: 

real  26.70  

user  26.55  

sys   0.02  

Comparing the user+sys  CPU time to the real time will give you an idea if your application is CPU-bound 

or I/O-bound.

Note:   Be careful when you do this on an SMP system. For more information, see time and timex 

Cautions). 

The timex  command is also available through the SMIT command on the Analysis Tools menu, found 

under Performance  and  Resource  Scheduling. The -p  and -s  options of the timex  command enable data 

from accounting (-p) and the sar command (-s) to be accessed and reported. The -o  option reports on 

blocks read or written. 

The prof command 

The prof  command displays a profile of CPU usage for each external symbol, or routine, of a specified 

program. In detail, it displays the following: 

v   The percentage of execution time spent between the address of that symbol and the address of the 

next 

v   The number of times that function was called 

v   The average number of milliseconds per call

 

© Copyright IBM Corp. 2002, 2007 199



The prof  command interprets the profile data collected by the monitor()  subroutine for the object file 

(a.out  by default), reads the symbol table in the object file, and correlates it with the profile file (mon.out  

by default) generated by the monitor()  subroutine. A usage report is sent to the terminal, or can be 

redirected to a file. 

To use the prof  command, use the -p  option to compile a source program in C, FORTRAN, PASCAL, or 

COBOL. This inserts a special profiling startup function into the object file that calls the monitor()  

subroutine to track function calls. When the program is executed, the monitor()  subroutine creates a 

mon.out  file to track execution time. Therefore, only programs that explicitly exit or return from the main 

program cause the mon.out  file to be produced. Also, the -p  flag causes the compiler to insert a call to 

the mcount()  subroutine into the object code generated for each recompiled function of your program. 

While the program runs, each time a parent calls a child function, the child calls the mcount()  subroutine 

to increment a distinct counter for that parent-child pair. This counts the number of calls to a function.

Note:   You cannot use the prof  command for profiling optimized code. 

By default, the displayed report is sorted by decreasing percentage of CPU time. This is the same as 

when specifying the -t  option. 

The -c  option sorts by decreasing number of calls and the -n  option sorts alphabetically by symbol name. 

If the -s  option is used, a summary file mon.sum  is produced. This is useful when more than one profile 

file is specified with the -m  option (the -m  option specifies files containing monitor data). 

The -z option includes all symbols, even if there are zero calls and time associated. 

Other options are available and explained in the prof  command in the AIX  5L  Version  5.3  Commands  

Reference. 

The following example shows the first part of the prof  command output for a modified version of the 

Whetstone benchmark (Double Precision) program. 

# cc -o cwhet  -p -lm  cwhet.c  

# cwhet  > cwhet.out  

# prof  

Name                  %Time      Seconds      Cumsecs   #Calls    msec/call  

.main                  32.6        17.63        17.63        1  17630.  

.__mcount              28.2        15.25        32.88  

.mod8                  16.3         8.82        41.70  8990000       0.0010  

.mod9                   9.9         5.38        47.08  6160000       0.0009  

.cos                    2.9         1.57        48.65  1920000       0.0008  

.exp                    2.4         1.32        49.97   930000       0.0014  

.log                    2.4         1.31        51.28   930000       0.0014  

.mod3                   1.9         1.01        52.29   140000       0.0072  

.sin                    1.2         0.63        52.92   640000       0.0010  

.sqrt                   1.1         0.59        53.51  

.atan                   1.1         0.57        54.08   640000       0.0009  

.pout                   0.0         0.00        54.08       10      0.0 

.exit                   0.0         0.00        54.08        1      0. 

.free                   0.0         0.00        54.08        2      0. 

.free_y                 0.0         0.00        54.08        2      0. 

In this example, we see many calls to the mod8()  and mod9()  routines. As a starting point, examine the 

source code to see why they are used so much. Another starting point could be to investigate why a 

routine requires so much time.

Note:   If the program you want to monitor uses a fork()  system call, be aware that the parent and the child 

create the same file (mon.out). To avoid this problem, change the current directory of the child 

process.

 

200 Performance Tools Guide and Reference



The gprof command 

The gprof  command produces an execution profile of C, PASCAL, FORTRAN, or COBOL programs. The 

statistics of called subroutines are included in the profile of the calling program. The gprof  command is 

useful in identifying how a program consumes CPU resources. It is roughly a superset of the prof  

command, giving additional information and providing more visibility to active sections of code. 

Implementation of the gprof command 

The source code must be compiled with the -pg  option. This action links in versions of library routines 

compiled for profiling and reads the symbol table in the named object file (a.out  by default), correlating it 

with the call graph profile file (gmon.out  by default). This means that the compiler inserts a call to the 

mcount()  function into the object code generated for each recompiled function of your program. The 

mcount()  function counts each time a parent calls a child function. Also, the monitor()  function is enabled 

to estimate the time spent in each routine. 

The gprof  command generates two useful reports: 

v   The call-graph profile, which shows the routines, in descending order by CPU time, plus their 

descendants. The profile permits you to understand which parent routines called a particular routine 

most frequently and which child routines were called by a particular routine most frequently. 

v   The flat profile of CPU usage, which shows the usage by routine and number of calls, similar to the 

prof  output. 

Each report section begins with an explanatory part describing the output columns. You can suppress 

these pages by using the -b  option. 

Use -s  for summaries and -z  to display routines with zero usage. 

Where the program is executed, statistics are collected in the gmon.out  file. These statistics include the 

following: 

v   The names of the executable program and shared library objects that were loaded 

v   The virtual memory addresses assigned to each program segment 

v   The mcount()  data for each parent-child 

v   The number of milliseconds accumulated for each program segment 

Later, when the gprof  command is issued, it reads the a.out  and gmon.out  files to generate the two 

reports. The call-graph profile is generated first, followed by the flat profile. It is best to redirect the gprof  

output to a file, because browsing the flat profile first might answer most of your usage questions. 

The following example shows the profiling for the cwhet  benchmark program. This example is also used in 

“The prof command” on page 199: 

# cc -o cwhet  -pg  -lm  cwhet.c  

# cwhet  > cwhet.out  

# gprof  cwhet  > cwhet.gprof  

The call-graph profile 

The call-graph profile is the first part of the cwhet.gprof  file and looks similar to the following: 

granularity:  each  sample  hit  covers  4 byte(s)  Time:  62.85  seconds  

  

                                  called/total        parents  

index   %time     self  descendents   called+self     name            index  

                                  called/total        children  

  

               19.44        21.18        1/1            .__start  [2]  

[1]      64.6    19.44        21.18        1         .main  [1]  

                8.89         0.00  8990000/8990000      .mod8  [4]

 

Chapter 9. Profiling tools 201



5.64         0.00  6160000/6160000      .mod9  [5]  

                1.58         0.00   930000/930000       .exp  [6] 

                1.53         0.00  1920000/1920000      .cos  [7]  

                1.37         0.00   930000/930000       .log  [8] 

                1.02         0.00   140000/140000       .mod3  [10]  

                0.63         0.00   640000/640000       .atan  [12]  

                0.52         0.00   640000/640000       .sin  [14]  

                0.00         0.00       10/10           .pout  [27]  

  

-----------------------------------------------  

                                                     <spontaneous>  

[2]      64.6     0.00        40.62                  .__start  [2]  

               19.44        21.18        1/1            .main  [1] 

                0.00         0.00        1/1            .exit  [37]  

-----------------------------------------------  

Usually the call graph report begins with a description of each column of the report, but it has been 

deleted in this example. The column headings vary according to type of function (current, parent of 

current, or child of current function). The current function is indicated by an index in brackets at the 

beginning of the line. Functions are listed in decreasing order of CPU time used. 

To read this report, look at the first index [1]  in the left-hand column. The .main  function is the current 

function. It was started by .__start  (the parent function is on top of the current function), and it, in turn, 

calls .mod8  and .mod9  (the child functions are beneath the current function). All the accumulated time of 

.main  is propagated to .__start. The self  and descendents  columns of the children of the current function 

add up to the descendents  entry for the current function. The current function can have more than one 

parent. Execution time is allocated to the parent functions based on the number of times they are called. 

Flat profile 

The flat profile sample is the second part of the cwhet.gprof  file and looks similar to the following: 

granularity:  each  sample  hit  covers  4 byte(s)  Total  time:  62.85  seconds  

  

  %   cumulative    self               self      total  

 time    seconds   seconds      calls   ms/call   ms/call   name  

 30.9       19.44     19.44         1 19440.00  40620.00   .main  [1]  

 30.5       38.61     19.17                              .__mcount  [3]  

 14.1       47.50      8.89   8990000      0.00      0.00   .mod8  [4]  

  9.0       53.14      5.64   6160000      0.00      0.00   .mod9  [5]  

  2.5       54.72      1.58    930000      0.00      0.00   .exp  [6]  

  2.4       56.25      1.53   1920000      0.00      0.00   .cos  [7]  

  2.2       57.62      1.37    930000      0.00      0.00   .log  [8]  

  2.0       58.88      1.26                              .qincrement  [9] 

  1.6       59.90      1.02    140000      0.01      0.01   .mod3  [10]  

  1.2       60.68      0.78                              .__stack_pointer  [11]  

  1.0       61.31      0.63    640000      0.00      0.00   .atan  [12]  

  0.9       61.89      0.58                              .qincrement1  [13]  

  0.8       62.41      0.52    640000      0.00      0.00   .sin  [14]  

  0.7       62.85      0.44                              .sqrt  [15]  

  0.0       62.85      0.00       180      0.00      0.00   .fwrite  [16]  

  0.0       62.85      0.00       180      0.00      0.00   .memchr  [17]  

  0.0       62.85      0.00        90     0.00      0.00   .__flsbuf  [18]  

  0.0       62.85      0.00        90     0.00      0.00   ._flsbuf  [19]  

The flat profile is much less complex than the call-graph profile and very similar to the output of the prof  

command. The primary columns of interest are the self  seconds  and the calls  columns. These reflect the 

CPU seconds spent in each function and the number of times each function was called. The next columns 

to look at are self  ms/call  (CPU time used by the body of the function itself) and total  ms/call  (time in 

the body of the function plus any descendent functions called). 

Normally, the top functions on the list are candidates for optimization, but you should also consider how 

many calls are made to the function. Sometimes it can be easier to make slight improvements to a 

frequently called function than to make extensive changes to a piece of code that is called once. 

 

202 Performance Tools Guide and Reference



A cross reference index is the last item produced and looks similar to the following: 

Index  by function  name  

  

  [18]  .__flsbuf             [37]  .exit                  [5] .mod9  

  [34]  .__ioctl               [6]  .exp                  [43]  .moncontrol  

  [20]  .__mcount             [39]  .expand_catname       [44]  .monitor  

   [3]  .__mcount             [32]  .free                 [22]  .myecvt  

  [23]  .__nl_langinfo_std    [33]  .free_y               [28]  .nl_langinfo  

  [11]  .__stack_pointer      [16]  .fwrite               [27]  .pout  

  [24]  ._doprnt              [40]  .getenv               [29]  .printf  

  [35]  ._findbuf             [41]  .ioctl                 [9]  .qincrement  

  [19]  ._flsbuf              [42]  .isatty               [13]  .qincrement1  

  [36]  ._wrtchk               [8]  .log                  [45]  .saved_category_nam  

  [25]  ._xflsbuf              [1]  .main                 [46]  .setlocale  

  [26]  ._xwrite              [17]  .memchr               [14]  .sin  

  [12]  .atan                 [21]  .mf2x2                [31]  .splay  

  [38]  .catopen              [10]  .mod3                 [15]  .sqrt  

   [7]  .cos                   [4]  .mod8                 [30]  .write  

Note:   If the program you want to monitor uses a fork()  system call, be aware that by default, the parent 

and the child create the same file, gmon.out. To avoid this problem, use the GPROF environment 

variable. You can also use the GPROF environment variable to profile multi-threaded applications. 

The tprof command 

The typical program execution is a variable combination of application code, library subroutines, and kernel 

services. Frequently, programs that have not been tuned expend most of their CPU cycles in certain 

statements or subroutines. You can determine which particular statements or subroutines to examine with 

the tprof  command. 

The tprof  command is a versatile profiler that provides a detailed profile of CPU usage by every process 

ID and name. It further profiles at the application level, routine level, and even to the source statement 

level and provides both a global view and a detailed view. In addition, the tprof  command can profile 

kernel extensions, stripped executable programs, and stripped libraries. It does subroutine-level profiling 

for most executable programs on which the stripnm  command produces a symbols table. The tprof  

command can profile any program produced by any of the following compilers: 

v   C 

v   C++ 

v   FORTRAN 

v   Java™

The tprof  command only profiles CPU activity. It does not profile other system resources, such as memory 

or disks. 

The tprof  command can profile Java programs using Java Persistence API (JPA) (-x  java  -Xrunjpa) to 

collect Java Just-in-Time (JIT) source line numbers and instructions, if the following parameters are added 

to -Xrunjpa: 

v   source=1; if IBM® Java Runtime Environment (JRE) 1.5.0 is installed, this parameter enables JIT 

source line collecting. 

v   instructions=1; enables JIT instructions collecting.

You can use the following types of profiling with the tprof  command: 

v   “Time-based profiling” on page 204 

v   “Event-based profiling” on page 204

 

Chapter 9. Profiling tools 203



Time-based  profiling 

Time-based profiling is the default profiling mode and it is triggered by the decrementer interrupt, which 

occurs every 10 milliseconds. With time-based profiling, the tprof  command cannot determine the address 

of a routine when interrupts are disabled. While interrupts are disabled, all ticks are charged to the 

unlock_enable()  routines. 

Event-based profiling 

Event-based profiling is triggered by any one of the software-based events or any Performance Monitor 

event that occurs on the processor. The primary advantages of event-based profiling over time-based 

profiling are the following: 

v   The routine addresses are visible when interrupts are disabled. 

v   The ability to vary the profiling event 

v   The ability to vary the sampling frequency

With event-based profiling, ticks that occur while interrupts are disabled are charged to the proper routines. 

Also, you can select the profiling event and sampling frequency. The profiling event determines the trigger 

for the interrupt and the sampling frequency determines how often the interrupt occurs. After the specified 

number of occurrences of the profiling event, an interrupt is generated and the executing instruction is 

recorded.

Note:   Event-based profiling is not supported in manual offline mode. 

The default type of profiling event is processor cycles. The various types of software-based events include 

the following: 

v   Emulation interrupts (EMULATION) 

v   Alignment interrupts (ALIGNMENT) 

v   Instruction Segment Lookaside Buffer misses (ISLBMISS) 

v   Data Segment Lookaside Buffer misses (DSLBMISS)

The sampling frequency for the software-based events is specified in milliseconds and the supported 

range is 1 to 500 milliseconds. The default sampling frequency is 10 milliseconds. 

The following command generates an interrupt every 5 milliseconds and retrieves the record for the last 

emulation interrupt: 

# tprof  -E EMULATION  -f 5 

The following command generates an interrupt every 100 milliseconds and records the contents of the 

Sampled Instruction Address Register, or SIAR: 

# tprof  -E -f 100  

The other types of profiling events, the Performance Monitor events, include the following: 

v   Completed instructions 

v   Cache misses

For a list of all the Performance Monitor events that are supported on the processors of the system, use 

the pmlist  command. The chosen Performance Monitor event must be taken in a group where we can 

also find the PM_INST_CMPL Performance Monitor event. The sampling frequency for these events is 

specified in the number of occurrences of the event. The supported range is 10,000 to MAXINT 

occurrences. The default sampling frequency is 10,000 occurrences. 

The following command generates an interrupt after the processor completes 50,000 instructions: 

# tprof  -E PM_INST_CMPL  -f 50000  

 

204 Performance Tools Guide and Reference



Event-based profiling uses the SIAR, which contains the address of an instruction close to the executing 

instruction. For example, if the profiling event is PM_FPU0_FIN, which means the floating point unit 0 

produces a result, the SIAR might not contain that floating point instruction but might contain another 

instruction close to it. This is more relevant for profiling based on Performance Monitor events. In fact for 

the proximity reason, on systems based on POWER4 and later, it is recommended that the Performance 

Monitor profiling event be one of the marked events. Marked events have the PM_MRK  prefix. 

Certain combinations of profiling event, sampling frequency, and workload might cause interrupts to occur 

at such a rapid rate that the system spends most of its time in the interrupt handler. The tprof  command 

detects this condition by keeping track of the number of completed instructions between two consecutive 

interrupts. When the tprof  command detects five occurrences of the count falling below the acceptable 

limit, the trace collection stops. Reports are still generated and an error message is displayed. The default 

threshold is 1,000 instructions. 

Implementation of the tprof command 

The tprof  command uses the system trace facility. Since you can only execute the trace facility one user 

at a time, you can only execute one tprof  command at a time. 

You can obtain the raw data for the tprof  command through the trace facility. For more information about 

the trace facility, see Analyzing Performance with the Trace Facility in the Performance  management. 

When a program is profiled, the trace facility is activated and instructed to collect data from the trace hook 

with hook ID 234 that records the contents of the Instruction Address Register, or IAR, when a 

system-clock interrupt occurs (100 times a second per processor). Several other trace hooks are also 

activated to enable the tprof  command to track process and dispatch activity. The trace records are not 

written to a disk file. They are written to a pipe that is read by a program that builds a table of the unique 

program addresses that have been encountered and the number of times each one occurred. When the 

workload being profiled is complete, the table of addresses and their occurrence counts are written to disk. 

The data-reduction component of the tprof  command then correlates the instruction addresses that were 

encountered with the ranges of addresses occupied by the various programs and reports the distribution of 

address occurrences, or ticks, across the programs involved in the workload. 

The distribution of ticks is roughly proportional to the CPU time spent in each program, which is 10 

milliseconds per tick. After the high-use programs are identified, you can take action to restructure the hot 

spots or minimize their use. 

An example of the tprof command 

You can view the complete details of the tprof  command in AIX  5L  Version  5.3  Commands  Reference. 

The following example demonstrates how to collect a CPU tick profile of a program using the tprof  

command. The example was executed on a 4-way SMP system and since it is a fast-running system, the 

command completed in less than a second. To make this program run longer, the array size, or Asize, was 

changed to 4096 instead of 1024. 

Upon running the following command, the version1.prof  file is created in the current directory: 

# tprof  -z -u -p version1  -x version1  

The version1.prof  file reports how many CPU ticks for each of the programs that were running on the 

system while the version1  program was running. 

The following is an example of what the version1.prof  file contains: 

          Process             Freq     Total    Kernel      User    Shared     Other  

          =======             ====     =====    ======      ====    ======     =====  

             wait                4     5810      5810         0        0        0 

       ./version1                1     1672        35     1637         0        0

 

Chapter 9. Profiling tools 205



/usr/bin/tprof                2       15       13        0        2        0 

       /etc/syncd                1        2        2        0        0        0 

      /usr/bin/sh                2        2        2        0        0        0 

          swapper                1        1        1        0        0        0 

 /usr/bin/trcstop                1        1        1        0        0        0 

             rmcd                1        1        1        0        0        0 

          =======              ===     =====    ======      ====    ======     =====  

            Total               13     7504      5865      1637         2        0 

  

           Process       PID       TID     Total    Kernel      User    Shared     Other  

          =======       ===       ===     =====    ======      ====    ======     =====  

             wait     16392     16393      1874      1874         0        0        0 

             wait     12294     12295      1873      1873         0        0        0 

             wait     20490     20491      1860      1860         0        0        0 

       ./version1    245974    606263      1672        35     1637         0        0 

             wait      8196      8197       203       203        0        0        0 

   /usr/bin/tprof    291002    643291        13       13        0        0        0 

   /usr/bin/tprof    274580    610467         2        0        0        2        0 

       /etc/syncd     73824    110691         2        2        0        0        0 

      /usr/bin/sh    245974    606263         1        1        0        0        0 

      /usr/bin/sh    245976    606265         1        1        0        0        0 

 /usr/bin/trcstop    245976    606263         1        1        0        0        0 

          swapper         0        3        1        1        0        0        0 

             rmcd    155876    348337         1        1        0        0        0 

          =======       ===       ===     =====    ======      ====    ======     =====  

            Total                        7504      5865      1637         2        0 

  

  

      Total  Samples  = 7504        Total  Elapsed  Time  = 18.76s  

  

   Profile:  ./version1  

   Total  Ticks  For  All  Processes  (./version1)  = 1637  

  

           Subroutine    Ticks      %        Source    Address   Bytes  

        =============   ======   ======      =======    =======   =====  

                .main     1637    21.82   version1.c        350     536  

  

  

   Profile:  ./version1  

   Total  Ticks  For  ./version1[245974]  (./version1)  = 1637  

  

           Subroutine    Ticks      %        Source    Address   Bytes  

        =============   ======   ======      =======    =======   =====  

                .main     1637    21.82   version1.c        350     536  

The first section of the report summarizes the results by program, regardless of the process ID, or PID. It 

shows the number of different processes, or Freq, that ran each program at some point. 

The second section of the report displays the number of ticks consumed by, or on behalf of, each process. 

In the example, the version1  program used 1637 ticks itself and 35 ticks occurred in the kernel on behalf 

of the version1  process. 

The third section breaks down the user ticks associated with the executable program being profiled. It 

reports the number of ticks used by each function in the executable program and the percentage of the 

total run’s CPU ticks (7504) that each function’s ticks represent. Since the system’s CPUs were mostly 

idle, most of the 7504 ticks are idle ticks. 

To see what percentage of the busy time this program took, subtract the wait thread’s CPU ticks, which 

are the idle CPU ticks, from the total and then divide the difference from the total number of ticks. 

Total  number  of ticks  / (Total  - Idle  CPU  ticks)  = % busy  time  of program  

                1637  /  (7504  - 5810)  = 

                1637  /  1694  = 0.97  

So, the percentage of system busy ticks is 97%. 

 

206 Performance Tools Guide and Reference



The raso tunables 

As the root user, you can tune the sampling frequency with the following raso  tunables: 

v   tprof_cyc_mult  

v   tprof_evt_mult

For example, for events based on processor cycles, setting the tprof_cyc_mult  tunable to 50 and 

specifying the -f  flag as 100 is equivalent to specifying a sampling frequency of 100/50 milliseconds. 

For other Performance Monitor events, setting the tprof_evt_mult  tunable to 100 and specifying the -f flag 

as 20,000 is equivalent to specifying a sampling frequency of 20,000/100 occurrences. 

As the root user, you can tune the instruction threshold with the tprof_inst_threshold  tunable of the raso  

command. 

Manual offline processing with the tprof command 

You can perform offline processing of trace files with the tprof  command, but you must specify filenames 

with a rootstring  name. Also, there are certain suffixes required for the input files that the tprof  command 

uses. For example, the trace binary file must end in .trc. Also, you need to collect the gensyms  command 

output and put it in a file called the rootstring.syms  file. 

To insure the trace file contains sufficient information to be post-processed by tprof, the trace  command 

line must include the -M  and -j tprof  flags. 

If you name the rootstring  file trace1, to collect a trace, you can use the trace  command using all of the 

hooks or at least the following hooks: 

# trace  -af  -M  -T 1000000  -L 10000000  -o trace1.trc  -j tprof  

# workload  

# trcoff  

# gensyms  > trace1.syms  

# trcstop  

# trcrpt  -r trace1  -k -u -s -z 

The example above creates a trace1.prof  file, which gives you a CPU profile of the system while the 

trace  command was running. 

 

Chapter 9. Profiling tools 207



208 Performance Tools Guide and Reference



Appendix.  Notices  

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. 

Consult your local IBM representative for information on the products and services currently available in 

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only 

that IBM product, program, or service may be used. Any functionally equivalent product, program, or 

service that does not infringe any IBM intellectual property right may be used instead. However, it is the 

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. 

The furnishing of this document does not give you any license to these patents. You can send license 

inquiries, in writing, to: 

IBM Director of Licensing 

IBM Corporation 

North Castle Drive 

Armonk, NY 10504-1785 

U.S.A. 

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  country  where  such  

provisions  are  inconsistent  with  local  law:  INTERNATIONAL BUSINESS MACHINES CORPORATION 

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer 

of express or implied warranties in certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically 

made to the information herein; these changes will be incorporated in new editions of the publication. IBM 

may make improvements and/or changes in the product(s) and/or the program(s) described in this 

publication at any time without notice. 

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the 

exchange of information between independently created programs and other programs (including this one) 

and (ii) the mutual use of the information which has been exchanged, should contact: 

IBM Corporation 

Dept. LRAS/Bldg. 003 

11400 Burnet Road 

Austin, TX 78758-3498 

U.S.A. 

Such information may be available, subject to appropriate terms and conditions, including in some cases, 

payment of a fee. 

The licensed program described in this document and all licensed material available for it are provided by 

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any 

equivalent agreement between us. 

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property 

Department in your country or send inquiries, in writing, to: 

 

© Copyright IBM Corp. 2002, 2007 209



IBM World Trade Asia Corporation 

Licensing 

2-31 Roppongi 3-chome, Minato-ku 

Tokyo 106, Japan 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 

incurring any obligation to you. 

Information concerning non-IBM products was obtained from the suppliers of those products, their 

published announcements or other publicly available sources. IBM has not tested those products and 

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. 

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in 

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of 

the materials for this IBM product and use of those Web sites is at your own risk. 

This information contains examples of data and reports used in daily business operations. To illustrate 

them as completely as possible, the examples include the names of individuals, companies, brands, and 

products. All of these names are fictitious and any similarity to the names and addresses used by an 

actual business enterprise is entirely coincidental. 

Trademarks 

The following terms are trademarks of International Business Machines Corporation in the United States, 

other countries, or both: 

   AIX 

   AIX 5L 

   Hypervisor 

   IBM

Java and all Java-based trademarks and logos are registered trademarks of Sun Microsystems, Inc. in the 

United States, other countries, or both. 

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the 

United States, other countries, or both. 

Other company, product, or service names may be trademarks or service marks of others. 

 

210 Performance Tools Guide and Reference



Index  

A
a.out file 6 

about this book v 

API calls
basic

pm_delete_program 119 

pm_get_data 119 

pm_get_program 119 

pm_get_tdata 119 

pm_get_Tdata 119 

pm_reset_data 119 

pm_set_program 119 

pm_start 119 

pm_stop 119 

pm_tstart 119 

pm_tstop 119 

applications
compiling for Xprofiler 4 

B
binary executable

specifying from Xprofiler GUI 12 

C
Call Graph Profile report 43 

calls between functions, how depicted 24 

clustering functions 33 

clusters, library 25 

code
disassembler

viewing 52 

source
viewing 50 

command-line flags
specifying from Xprofiler GUI 14 

Xprofiler 6 

commands
gprof 201 

prof 199 

tprof 203 

configuraiton files
saving 49 

configuration files
loading 50 

controlling how the display is updated 25 

counter multiplexing mode 121 

pm_get_data_mx 121 

pm_get_program_mx 121 

pm_get_tdata_mx 121 

pm_set_program_mx 121 

CPU Utilization Reporting Tool
see curt 63 

curt 63 

Application Pthread Summary (by PID) Report 75 

Application Summary (by process type) Report 74 

curt (continued)
Application Summary by Process ID (PID) 

Report 73 

Application Summary by Thread ID (Tid) Report 72 

default reports 67 

Event Explanation 64 

Event Name 64 

examples 65 

FILH Summary Report 81 

flags 63 

FLIH types 82 

General Information 68 

Global SLIH Summary Report 82 

Hook ID 64 

Kproc Summary (by Tid) Report 74 

measurement and sampling 64 

parameters
gensymsfile 63 

inputfile 63 

outputfile 63 

pidnamefile 63 

timestamp 63 

trcnmfile 63 

Pending Pthread Calls Summary Report 80 

Pending System Calls Summary Report 77 

Processor Summary Report 70 

Pthread Calls Summary Report 80 

report overview 65 

sample report
-e flag 83 

-p flag 87 

-P flag 90 

-s flag 84 

-t flag 85 

syntax 63 

System Calls Summary Report 76 

System Summary Report 68 

customizable resources
Xprofiler 56 

D
data

basic 37 

detailed 41 

getting from reports 41 

performance 37 

disassembler code
viewing 52 

disk space requirements 5 

display
Xprofiler 20 

E
examples

performance monitor APIs 122 

 

© Copyright IBM Corp. 2002, 2007 211



F
features

X-Windows
customizing 56 

file
binary executable

specifying from Xprofiler GUI 12 

profile data
specifying from Xprofiler GUI 13 

files
loading from Xprofiler GUI 10 

filtering, function call tree 27 

finding objects in call tree 35 

flags
specifying from Xprofiler GUI 14 

Xprofiler 6 

Flat Profile report 42 

function call tree
clustering 32 

controlling graphic style 25 

controlling orientation of 25 

controlling representation of 26 

displaying 28 

excluding specific objects 28 

filtering 27 

including specific objects 28 

restoring 27 

Function Index report 45 

functions, how depicted 22 

G
gennames utility 98 

Global Actions on Tunable Parameters 185 

gmon.out file 6 

gprof
and Xprofiler 4 

I
info stanza 170 

installp 5 

introduction 1 

iso 9000 v 

K
kernel tuning 169 

attributes
pre520tune 169 

commands 169 

flags 171 

tunchange 173 

tuncheck 174 

tundefault 176 

tunrestore 175 

tunsave 175 

commands syntax 171 

file manipulation commands 173 

initial setup 176 

kernel tuning (continued)
introduction 169, 183 

migration and compatibility 169 

reboot tuning procedures 177 

recovery procedure 177 

SMIT interface 177 

tunable parameters 169 

tunables file directory 170 

tunables parameters
type 171 

Web-based System Manager 183 

L
lastboot 170 

lastboot.log 170 

library clusters 25 

Library Statistics report 47 

limitations
Xprofiler 3 

locating objects in call tree 35 

N
nextboot 170 

O
objects, locating in call tree 35 

P
parameter details 192 

performance data, getting 37 

performance monitor API
accuracy 115 

common rules 117 

context and state 116 

state inheritance 116 

system level context 116 

thread context 116 

thread counting-group and process context 116 

programming 115 

security considerations 117 

thread accumulation 116 

thread group accumulation 116 

performance monitor plug-in 183 

perfstat 135 

characteristics 135 

component-specific interfaces 147 

global interfaces 135 

perfstat_cpu interface 148 

perfstat_cpu_total Interface 136 

perfstat_disk interface 149 

perfstat_disk_total Interface 140 

perfstat_diskadapter interface 153 

perfstat_diskpath interface 151 

perfstat_memory_total Interface 139 

perfstat_netbuffer interface 159 

perfstat_netinterface interface 154 

 

212 Performance Tools Guide and Reference



perfstat (continued)
perfstat_netinterface_total Interface 141 

perfstat_pagingspace interface 160 

perfstat_partition_total Interface 142 

perfstat_protocol interface 155 

perfstat API programming
see perfstat 135 

Plug-In for Web-based System Manager System 

Tuning 183 

pm_delete_program 117 

pm_error 117 

pm_groups_info_t 118 

pm_info_t 118 

pm_init API initialization 118 

pm_initialize 117 

pm_initialize API initialization 118 

pm_set_program 117 

pmapi library 117 

procmon tool 195 

profile data files
specifying from Xprofiler GUI 13 

profiled data
saving screen images of 54 

profiling 199 

programs
compiling for Xprofiler 4 

R
reboot procedure 177 

recovery procedure 177 

related publications v 

release specific features 164 

reports
Call Graph Profile 43 

Flat Profile 42 

Function Index 45 

getting data from 41 

Library Statistics 47 

saving to a file 48 

requirements
Xprofiler 3 

resource settings
Xprofiler 56 

resource variables
Xprofiler 57 

resources
Xprofiler

customizing 56 

resources, customizable
Xprofiler 56 

S
screen images

saving 54 

search file sequence
setting 19 

settings, resource
Xprofiler 56 

simple performance lock analysis tool (splat)
see splat 95 

SMIT Interface 177 

software requirements 5 

source code
viewing 50 

splat 95 

address-to-name resolution 98 

AIX kernel lock details 101 

command syntax 95 

flags 95 

condition-variable report 112 

event explanation 96 

event name 96 

execution, trace, and analysis intervals 97 

hook ID 96 

measurement and sampling 96 

mutex function detail 110 

mutex pthread detail 110 

mutex reports 108 

parameters 95 

PThread synchronizer reports 108 

read/write lock reports 111 

reports 98 

execution summary 98 

gross lock summary 99 

per-lock summary 100 

simple and runQ lock details 102, 104 

trace discontinuities 97 

T
text highlighting v 

thread counting-group information 120 

consistency flag 120 

member count 120 

process flag 120 

timing commands 199 

tunable parameters
global actions 185 

tunables 170 

tuncheck 170 

tundefault 170 

tuning tables
actions 189 

using 188 

tunrestore 170 

tunsave 170 

U
unclustering functions 34 

V
variables, resource

Xprofiler 57 

 

Index 213



X
X-Windows

features
customizing 56 

X-Windows Performance Profiler (Xprofiler)
see Xprofiler 3 

Xprofiler 3 

about 3 

and gprof 4 

before you begin 3 

binary executable file
specifying 12 

command-line flags 6 

specifying from GUI 14 

compiling applications for 4 

controlling fonts 57 

customizable resources 56 

display 20 

file menu
controlling variables 58 

files and directories created 6 

filter menu
controlling variables 60 

hidden menus 22 

how installation alters system 6 

installing 5 

using SMIT 5 

limitations 3, 5 

loading files from GUI 10 

main menus 21 

main window 20, 57 

profile data files
specifying 13 

requirements 3 

resource settings 56 

resource variables 57 

resources
customizing 56 

screen dump
controlling variables 58 

setting search file sequence 19 

starting 6 

view menu
controlling variables 60 

Xprofiler installation information 4 

Xprofiler preinstallation information 5

 

214 Performance Tools Guide and Reference



Readers’  Comments  — We’d Like  to Hear  from  You  

AIX  5L Version  5.3  

Performance  Tools Guide  and  Reference  

 Publication  No.  SC23-4906-03  

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy, 

organization, subject matter, or completeness of this book. The comments you send should pertain to only the 

information in this manual or product and the way in which the information is presented. 

For technical questions and information about products and prices, please contact your IBM branch office, your IBM 

business partner, or your authorized remarketer. 

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any 

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the 

personal information that you supply to contact you about the issues that you state on this form. 

Comments: 

 Thank you for your support. 

Submit your comments using one of these channels: 

v   Send your comments to the address on the reverse side of this form. 

v   Send your comments via e-mail to: aix6koub@austin.ibm.com 

If you would like a response from IBM, please fill in the following information: 

 

Name
 

Address 

Company or Organization
 

Phone No. E-mail address



Readers’ Comments — We’d Like to Hear from You
 SC23-4906-03

SC23-4906-03

��� 

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please  do not staple Fold and Tape

Fold and Tape Please  do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation 

Information Development 

Department 04XA-905-6C006 

11501 Burnet Road 

Austin, TX  78758-3493 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





���

  

Printed in U.S.A.  

 

  

SC23-4906-03  

              

 


	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. Introduction to Performance Tools and Application Program Interfaces (APIs)
	Chapter 2. X-Windows Performance Profiler (Xprofiler)
	Before You Begin
	About Xprofiler
	Requirements and Limitations
	Comparing Xprofiler and the gprof Command
	Compiling Applications to be Profiled

	Xprofiler Installation Information
	Preinstallation Information
	Installing Xprofiler
	Directories and Files Created by Xprofiler

	Starting the Xprofiler GUI
	Xprofiler Command-line Flags
	Loading Files from the Xprofiler GUI
	Setting the File Search Sequence

	Understanding the Xprofiler Display
	Xprofiler Main Window

	Controlling how the Display is Updated
	Other Viewing Options
	Controlling the Graphic Style of the Function Call Tree
	Controlling the Orientation of the Function Call Tree
	Controlling the Representation of the Function Call Tree

	Filtering what You See
	Restoring the Status of the Function Call Tree
	Displaying the Entire Function Call Tree
	Excluding and including specific objects

	Clustering Libraries
	Clustering Functions
	Unclustering Functions

	Locating Specific Objects in the Function Call Tree
	Locating and Displaying Parent Functions
	Locating and Displaying Child Functions
	Locating and Displaying Ancestor Functions
	Locating and Displaying Descendant Functions
	Locating and Displaying Functions on a Cycle

	Obtaining Performance Data for Your Application
	Obtaining Basic Data
	Getting Detailed Data from Reports
	Looking at Your Code

	Saving Screen Images of Profiled Data
	Customizing Xprofiler Resources
	Xprofiler Resource Variables


	Chapter 3. CPU Utilization Reporting Tool (curt)
	Syntax for the curt Command
	Flags
	Parameters

	Measurement and Sampling
	Examples of the curt command
	Overview of Information Generated by the curt Command
	Default Report Generated by the curt Command


	Chapter 4. Simple Performance Lock Analysis Tool (splat)
	splat Command Syntax
	Flags
	Parameters

	Measurement and Sampling
	Execution, Trace, and Analysis Intervals
	Trace Discontinuities
	Address-to-Name Resolution in the splat Command

	Examples of Generated Reports
	Execution Summary
	Gross Lock Summary
	Per-lock Summary
	AIX Kernel Lock Details
	PThread Synchronizer Reports


	Chapter 5. Hardware Performance Monitor APIs and tools
	Performance Monitor accuracy
	Performance Monitor context and state
	System-level context and accumulation
	Thread context
	Thread counting-group and process context
	Performance Monitor state inheritance

	Thread accumulation and thread group accumulation
	Security considerations
	The pmapi library
	The pm_init API initialization routine
	The pm_initialize API initialize routine
	Basic pmapi library calls
	Thread counting-group information
	Counter multiplexing mode
	Examples of pmapi library usage

	The hpm library and associated tools
	Compiling and linking
	Overhead and measurement error issues
	Common hpm library rules
	Overview of the hpm library API calls
	Threaded applications
	Selecting events when using the hpm libraries and tools
	Output files of the hpm library
	Output files of the hpmcount command
	Derived metrics and related environment variables
	Examples of the hpm tools
	Examples of hpm library usage


	Chapter 6. Perfstat API Programming
	API Characteristics
	Global Interfaces
	perfstat_cpu_total Interface
	perfstat_memory_total Interface
	perfstat_disk_total Interface
	perfstat_netinterface_total Interface
	perfstat_partition_total Interface

	Component-Specific Interfaces
	perfstat_cpu interface
	perfstat_disk Interface
	perfstat_diskpath Interface
	perfstat_diskadapter Interface
	perfstat_netinterface Interface
	perfstat_protocol Interface
	perfstat_netbuffer Interface
	perfstat_pagingspace Interface

	Cached metrics interfaces
	The perfstat_reset interface
	The perfstat_partial_reset interface

	Change History of the perfstat API
	Interface Changes
	Interface Additions
	Field Additions

	Related Information

	Chapter 7. Kernel Tuning
	Migration and Compatibility
	Tunables File Directory
	Tunable Parameters Type
	Common Syntax for Tuning Commands
	Tunable File-Manipulation Commands
	tunchange Command
	tuncheck Command
	tunrestore Command
	tunsave Command
	tundefault Command

	Initial setup
	Reboot Tuning Procedure
	Recovery Procedure
	Kernel Tuning Using the SMIT Interface
	Global Manipulation of Tuning Parameters
	Changing individual parameters managed by a tuning command
	Interaction between parameter types and the different SMIT sub-panels

	Kernel Tuning using the Performance Plug-In for Web-based System Manager
	Global Actions on Tunable Parameters
	Using Tuning Tables to Change Individual Parameter Values
	Tunable Tables Actions
	Parameter Details

	Files
	Related Information

	Chapter 8. The procmon tool
	Overview of the procmon tool
	Components of the procmon tool
	The global statistics area of the procmon tool
	The process table of the procmon tool
	The status line of the Performance Workbench

	Filtering processes
	Performing AIX commands on processes

	Chapter 9. Profiling tools
	The timing commands
	The prof command
	The gprof command
	Implementation of the gprof command

	The tprof command
	Time-based profiling
	Event-based profiling
	Implementation of the tprof command
	An example of the tprof command
	The raso tunables
	Manual offline processing with the tprof command


	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

