
AIX 5L Version 5.3

Technical Reference: Kernel and

Subsystems, Volume 1

SC23-4917-04

���

AIX 5L Version 5.3

Technical Reference: Kernel and

Subsystems, Volume 1

SC23-4917-04

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 595.

Fifth Edition (November 2007)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in

new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address

comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas

78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any

information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . xv

Highlighting . xv

Case-Sensitivity in AIX . xv

ISO 9000 . xv

32-Bit and 64-Bit Support for the Single UNIX Specification xvi

Related Publications . xvi

Chapter 1. Kernel Services . 1

__pag_getid System Call . 1

__pag_getname System Call . 1

__pag_getvalue System Call . 2

__pag_setname System Call . 3

__pag_setvalue System Call . 3

acct_add_LL or acct_zero_LL Kernel Service . 4

acct_get_projid Kernel Service . 5

acct_get_usage Kernel Service . 5

acct_interval_register or acct_interval_unregister Kernel Service 7

acct_put Kernel Service . 8

add_domain_af Kernel Service . 10

add_input_type Kernel Service . 11

add_netisr Kernel Service . 13

add_netopt Macro . 14

as_att Kernel Service . 14

as_att64 Kernel Service . 16

as_det Kernel Service . 17

as_det64 Kernel Service . 18

as_geth Kernel Service . 19

as_geth64 Kernel Service . 20

as_getsrval Kernel Service . 21

as_getsrval64 Kernel Service . 21

as_lw_att64 Kernel Service . 23

as_lw_det64 Kernel Service . 24

as_lw_pool_init Kernel Service . 25

as_puth Kernel Service . 27

as_puth64 Kernel Service . 27

as_remap64 Kernel Service . 29

as_seth Kernel Service . 30

as_seth64 Kernel Service . 31

as_unremap64 Kernel Service . 32

attach Device Queue Management Routine . 32

audit_svcbcopy Kernel Service . 33

audit_svcfinis Kernel Service . 34

audit_svcstart Kernel Service . 35

bawrite Kernel Service . 36

bdwrite Kernel Service . 37

bflush Kernel Service . 37

bindprocessor Kernel Service . 38

binval Kernel Service . 39

blkflush Kernel Service . 40

bread Kernel Service . 41

breada Kernel Service . 42

brelse Kernel Service . 43

bsr_alloc Kernel Service . 44

© Copyright IBM Corp. 1997, 2007 iii

bsr_free Kernel Service . 45

bsr_query Kernel Service . 45

bwrite Kernel Service . 46

cancel Device Queue Management Routine . 47

cfgnadd Kernel Service . 48

cfgncb Configuration Notification Control Block . 49

cfgndel Kernel Service . 50

check Device Queue Management Routine . 51

clrbuf Kernel Service . 52

clrjmpx Kernel Service . 53

common_reclock Kernel Service . 54

compare_and_swap Kernel Service . 56

copyin Kernel Service . 56

copyin64 Kernel Service . 57

copyinstr Kernel Service . 58

copyinstr64 Kernel Service . 59

copyout Kernel Service . 60

copyout64 Kernel Service . 61

crcopy Kernel Service . 62

crdup Kernel Service . 63

creatp Kernel Service . 64

CRED_GETEUID, CRED_GETRUID, CRED_GETSUID, CRED_GETLUID, CRED_GETEGID,

CRED_GETRGID, CRED_GETSGID and CRED_GETNGRPS Macros 65

crexport Kernel Service . 66

crfree Kernel Service . 66

crget Kernel Service . 67

crhold Kernel Service . 68

crref Kernel Service . 68

crset Kernel Service . 69

curtime Kernel Service . 70

d_align Kernel Service . 71

d_alloc_dmamem Kernel Service . 71

d_cflush Kernel Service . 72

delay Kernel Service . 73

del_domain_af Kernel Service . 74

del_input_type Kernel Service . 75

del_netisr Kernel Service . 76

del_netopt Macro . 77

detach Device Queue Management Routine . 78

devdump Kernel Service . 78

devstrat Kernel Service . 80

devswadd Kernel Service . 81

devswchg Kernel Service . 82

devswdel Kernel Service . 83

devswqry Kernel Service . 85

d_free_dmamem Kernel Service . 86

disable_lock Kernel Service . 87

disablement_checking_resume Kernel Service . 88

disablement_checking_suspend Kernel Service . 88

d_map_clear Kernel Service . 89

d_map_disable Kernel Service . 90

d_map_enable Kernel Service . 90

d_map_init Kernel Service . 91

d_map_list Kernel Service . 92

d_map_page Kernel Service . 94

d_map_slave Kernel Service . 95

iv AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

dmp_add Kernel Service . 97

dmp_ctl Kernel Service . 98

dmp_del Kernel Service . 103

dmp_prinit Kernel Service . 104

d_roundup Kernel Service . 104

d_sync_mem Kernel Service . 105

DTOM Macro for mbuf Kernel Services . 106

d_unmap_list Kernel Service . 106

d_unmap_slave Kernel Service . 107

d_unmap_page Kernel Service . 108

dr_reconfig System Call . 109

e_assert_wait Kernel Service . 112

e_block_thread Kernel Service . 113

e_clear_wait Kernel Service . 113

e_sleep Kernel Service . 114

e_sleepl Kernel Service . 116

e_sleep_thread Kernel Service . 117

et_post Kernel Service . 119

et_wait Kernel Service . 120

e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service 121

e_wakeup_w_sig Kernel Service . 122

eeh_broadcast Kernel Service . 123

eeh_clear Kernel Service . 124

eeh_disable_slot Kernel Service . 125

eeh_enable_dma Kernel Service . 126

eeh_enable_pio Kernel Service . 127

eeh_enable_slot Kernel Service . 128

eeh_init Kernel Service . 129

eeh_init_multifunc Kernel Service . 131

eeh_read_slot_state Kernel Service . 133

eeh_reset_slot Kernel Service . 135

eeh_slot_error Kernel Service . 136

enque Kernel Service . 138

errresume Kernel Service . 139

errsave or errlast Kernel Service . 140

fetch_and_add Kernel Service . 141

fetch_and_and or fetch_and_or Kernel Service . 141

fidtovp Kernel Service . 142

find_input_type Kernel Service . 143

fp_access Kernel Service . 144

fp_close Kernel Service . 145

fp_close Kernel Service for Data Link Control (DLC) Devices 146

fp_fstat Kernel Service . 146

fp_fsync Kernel Service . 147

fp_getdevno Kernel Service . 148

fp_getf Kernel Service . 149

fp_hold Kernel Service . 150

fp_ioctl Kernel Service . 150

fp_ioctl Kernel Service for Data Link Control (DLC) Devices 151

fp_ioctlx Kernel Service . 152

fp_lseek, fp_llseek Kernel Service . 153

fp_open Kernel Service . 154

fp_open Kernel Service for Data Link Control (DLC) Devices 155

fp_opendev Kernel Service . 157

fp_poll Kernel Service . 159

fp_read Kernel Service . 161

Contents v

fp_readv Kernel Service . 162

fp_rwuio Kernel Service . 163

fp_select Kernel Service . 164

fp_select Kernel Service notify Routine . 167

fp_write Kernel Service . 168

fp_write Kernel Service for Data Link Control (DLC) Devices 169

fp_writev Kernel Service . 171

fubyte Kernel Service . 172

fubyte64 Kernel Service . 172

fuword Kernel Service . 173

fuword64 Kernel Service . 174

getadsp Kernel Service . 175

getblk Kernel Service . 176

getc Kernel Service . 177

getcb Kernel Service . 178

getcbp Kernel Service . 178

getcf Kernel Service . 179

getcx Kernel Service . 180

geteblk Kernel Service . 181

geterror Kernel Service . 182

getexcept Kernel Service . 182

getfslimit Kernel Service . 183

get_pag or get_pag64 Kernel Service . 184

getpid Kernel Service . 185

getppidx Kernel Service . 185

getuerror Kernel Service . 186

getufdflags and setufdflags Kernel Services . 187

get_umask Kernel Service . 187

get64bitparm Kernel Service . 188

gfsadd Kernel Service . 189

gfsdel Kernel Service . 191

i_clear Kernel Service . 192

i_disable Kernel Service . 192

i_enable Kernel Service . 194

i_eoi Kernel Service . 195

ifa_ifwithaddr Kernel Service . 195

ifa_ifwithdstaddr Kernel Service . 196

ifa_ifwithnet Kernel Service . 197

if_attach Kernel Service . 198

if_detach Kernel Service . 199

if_down Kernel Service . 199

if_nostat Kernel Service . 200

ifunit Kernel Service . 201

i_init Kernel Service . 202

i_mask Kernel Service . 203

init_heap Kernel Service . 204

initp Kernel Service . 205

initp Kernel Service func Subroutine . 207

io_att Kernel Service . 207

io_det Kernel Service . 208

io_map Kernel Service . 209

io_map_clear Kernel Service . 210

io_map_init Kernel Service . 211

io_unmap Kernel Service . 212

iodone Kernel Service . 213

iomem_att Kernel Service . 214

vi AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

iomem_det Kernel Service . 216

iostadd Kernel Service . 216

iostdel Kernel Service . 219

iowait Kernel Service . 220

ip_fltr_in_hook, ip_fltr_out_hook, ipsec_decap_hook, inbound_fw, outbound_fw Kernel Service . . . 221

i_pollsched Kernel Service . 223

i_reset Kernel Service . 224

i_sched Kernel Service . 225

i_unmask Kernel Service . 226

ldata_alloc Kernel Service . 227

ldata_create Kernel Service . 228

ldata_destroy Kernel Service . 229

ldata_free Kernel Service . 230

ldata_grow Kernel Service . 230

IS64U Kernel Service . 231

kcap_is_set and kcap_is_set_cr Kernel Service . 232

kcred_genpagvalue Kernel Service . 232

kcred_getcap Kernel Service . 233

kcred_getgroups Kernel Service . 234

kcred_getpag or kcred_getpag64 Kernel Service . 235

kcred_getpagid Kernel Service . 236

kcred_getpaginfo Kernel Service . 236

kcred_getpagname Kernel Service . 237

kcred_getpriv Kernel Service . 238

kcred_setcap Kernel Service . 238

kcred_setgroups Kernel Service . 239

kcred_setpag or kcred_setpag64 Kernel Service . 240

kcred_setpagname Kernel Service . 241

kcred_setpriv Kernel Service . 242

kgethostname Kernel Service . 242

kgetpname Kernel Service . 243

kgettickd Kernel Service . 244

klpar_get_info Kernel Service . 245

kmod_entrypt Kernel Service . 246

kmod_load Kernel Service . 246

kmod_unload Kernel Service . 249

kmsgctl Kernel Service . 250

kmsgget Kernel Service . 252

kmsgrcv Kernel Service . 254

kmsgsnd Kernel Service . 256

kra_attachrset Subroutine . 257

kra_creatp Subroutine . 259

kra_detachrset Subroutine . 260

kra_getrset Subroutine . 262

krs_alloc Subroutine . 263

krs_free Subroutine . 264

krs_getassociativity Subroutine . 264

krs_getinfo Subroutine . 265

krs_getpartition Subroutine . 266

krs_getrad Subroutine . 267

krs_init Subroutine . 268

krs_numrads Subroutine . 269

krs_op Subroutine . 269

krs_setpartition Subroutine . 271

ksettickd Kernel Service . 272

ksettimer Kernel Service . 273

Contents vii

kthread_kill Kernel Service . 274

kthread_start Kernel Service . 275

kvmgetinfo Kernel Service . 276

limit_sigs or sigsetmask Kernel Service . 278

lock_alloc Kernel Service . 279

lock_clear_recursive Kernel Service . 280

lock_done Kernel Service . 280

lock_free Kernel Service . 281

lock_init Kernel Service . 282

lock_islocked Kernel Service . 283

lockl Kernel Service . 283

lock_mine Kernel Service . 285

lock_read or lock_try_read Kernel Service . 286

lock_read_to_write or lock_try_read_to_write Kernel Service 287

lock_set_recursive Kernel Service . 288

lock_write or lock_try_write Kernel Service . 288

lock_write_to_read Kernel Service . 289

loifp Kernel Service . 290

longjmpx Kernel Service . 291

lookupvp Kernel Service . 291

looutput Kernel Service . 293

ltpin Kernel Service . 294

ltunpin Kernel Service . 295

m_adj Kernel Service . 295

mbreq Structure for mbuf Kernel Services . 296

mbstat Structure for mbuf Kernel Services . 297

m_cat Kernel Service . 297

m_clattach Kernel Service . 298

m_clget Macro for mbuf Kernel Services . 299

m_clgetm Kernel Service . 300

m_collapse Kernel Service . 300

m_copy Macro for mbuf Kernel Services . 301

m_copydata Kernel Service . 302

m_copym Kernel Service . 303

m_dereg Kernel Service . 304

m_free Kernel Service . 304

m_freem Kernel Service . 305

m_get Kernel Service . 306

m_getclr Kernel Service . 307

m_getclust Macro for mbuf Kernel Services . 307

m_getclustm Kernel Service . 308

m_gethdr Kernel Service . 309

M_HASCL Macro for mbuf Kernel Services . 310

m_pullup Kernel Service . 311

m_reg Kernel Service . 311

md_restart_block_read Kernel Service . 312

md_restart_block_upd Kernel Service . 313

MTOCL Macro for mbuf Kernel Services . 314

MTOD Macro for mbuf Kernel Services . 315

M_XMEMD Macro for mbuf Kernel Services . 315

net_attach Kernel Service . 316

net_detach Kernel Service . 317

net_error Kernel Service . 317

net_sleep Kernel Service . 318

net_start Kernel Service . 319

net_start_done Kernel Service . 320

viii AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

net_wakeup Kernel Service . 321

net_xmit Kernel Service . 321

net_xmit_trace Kernel Service . 322

NLuprintf Kernel Service . 323

ns_add_demux Network Kernel Service . 326

ns_add_filter Network Service . 327

ns_add_status Network Service . 329

ns_alloc Network Service . 330

ns_attach Network Service . 331

ns_del_demux Network Service . 332

ns_del_filter Network Service . 333

ns_del_status Network Service . 334

ns_detach Network Service . 335

ns_free Network Service . 335

panic Kernel Service . 336

pci_cfgrw Kernel Service . 337

pfctlinput Kernel Service . 338

pffindproto Kernel Service . 338

pgsignal Kernel Service . 339

pidsig Kernel Service . 340

pin Kernel Service . 341

pincf Kernel Service . 342

pincode Kernel Service . 343

pinu Kernel Service . 344

pio_assist Kernel Service . 345

Process State-Change Notification Routine . 347

proch_reg Kernel Service . 349

proch_unreg Kernel Service . 350

prochadd Kernel Service . 350

prochdel Kernel Service . 352

probe or kprobe Kernel Service . 352

purblk Kernel Service . 355

putc Kernel Service . 356

putcb Kernel Service . 356

putcbp Kernel Service . 357

putcf Kernel Service . 358

putcfl Kernel Service . 359

putcx Kernel Service . 360

RAS_BLOCK_NULL Exported Data Structure . 360

ras_control Exported Kernel Service . 361

ras_customize Exported Kernel Service . 362

ras_path_control Exported Kernel Services . 363

ras_register and ras_unregister Exported Kernel Services 364

raw_input Kernel Service . 366

raw_usrreq Kernel Service . 367

reconfig_register, reconfig_register_ext, reconfig_unregister, or reconfig_complete Kernel Service 368

register_HA_handler Kernel Service . 372

rmalloc Kernel Service . 374

rmfree Kernel Service . 375

rmmap_create Kernel Service . 375

rmmap_create64 Kernel Service . 378

rmmap_getwimg Kernel Service . 380

rmmap_remove Kernel Service . 381

rmmap_remove64 Kernel Service . 382

rtalloc Kernel Service . 383

rtalloc_gr Kernel Service . 384

Contents ix

rtfree Kernel Service . 385

rtinit Kernel Service . 385

rtredirect Kernel Service . 386

rtrequest Kernel Service . 387

rtrequest_gr Kernel Service . 389

rusage_incr Kernel Service . 390

saveretval64 Kernel Service . 391

schednetisr Kernel Service . 392

selnotify Kernel Service . 393

selreg Kernel Service . 395

set_pag or set_pag64 Kernel Service . 396

setjmpx Kernel Service . 397

setpinit Kernel Service . 398

setuerror Kernel Service . 399

shutdown_notify_reg Kernel Service . 400

shutdown_notify_unreg Kernel Service . 401

sig_chk Kernel Service . 402

simple_lock or simple_lock_try Kernel Service . 403

simple_lock_init Kernel Service . 403

simple_unlock Kernel Service . 404

sleep Kernel Service . 405

subyte Kernel Service . 406

subyte64 Kernel Service . 407

suser Kernel Service . 408

suword Kernel Service . 409

suword64 Kernel Service . 410

talloc Kernel Service . 411

tfree Kernel Service . 411

thread_create Kernel Service . 412

thread_self Kernel Service . 413

thread_setsched Kernel Service . 414

thread_terminate Kernel Service . 415

timeout Kernel Service . 415

timeoutcf Subroutine for Kernel Services . 417

trc_ishookon Exported Kernel Service . 418

trcgenk Kernel Service . 419

trcgenkt Kernel Service . 420

trcgenkt Kernel Service for Data Link Control (DLC) Devices 421

tstart Kernel Service . 424

tstop Kernel Service . 425

tuning Kernel Service . 426

ue_proc_check Kernel Service . 429

ue_proc_register Subroutine . 430

ue_proc_unregister Subroutine . 431

uexadd Kernel Service . 432

User-Mode Exception Handler for the uexadd Kernel Service 433

uexblock Kernel Service . 434

uexclear Kernel Service . 435

uexdel Kernel Service . 435

ufdcreate Kernel Service . 436

ufdgetf Kernel Service . 440

ufdhold and ufdrele Kernel Service . 441

uiomove Kernel Service . 442

unlock_enable Kernel Service . 443

unlockl Kernel Service . 444

unpin Kernel Service . 445

x AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

unpincode Kernel Service . 446

unpinu Kernel Service . 447

unregister_HA_handler Kernel Service . 448

untimeout Kernel Service . 449

uphysio Kernel Service . 450

uphysio Kernel Service mincnt Routine . 454

uprintf Kernel Service . 454

ureadc Kernel Service . 456

uwritec Kernel Service . 457

validate_pag or validate_pag64 Kernel Service . 458

vec_clear Kernel Service . 459

vec_init Kernel Service . 460

vfsrele Kernel Service . 461

vm_att Kernel Service . 462

vm_cflush Kernel Service . 463

vm_det Kernel Service . 463

vm_galloc Kernel Service . 464

vm_gfree Kernel Service . 465

vm_guatt Kernel Service . 466

vm_gudet Kernel Service . 467

vm_handle Kernel Service . 468

vm_makep Kernel Service . 469

vm_mount Kernel Service . 470

vm_move Kernel Service . 470

vm_protectp Kernel Service . 472

vm_qmodify Kernel Service . 473

vm_release Kernel Service . 474

vm_releasep Kernel Service . 475

vms_create Kernel Service . 476

vms_delete Kernel Service . 477

vms_iowait Kernel Service . 478

vm_uiomove Kernel Service . 479

vm_umount Kernel Service . 480

vm_write Kernel Service . 481

vm_writep Kernel Service . 482

vn_free Kernel Service . 483

vn_get Kernel Service . 483

waitcfree Kernel Service . 484

waitq Kernel Service . 485

w_clear Kernel Service . 486

w_init Kernel Service . 487

w_start Kernel Service . 488

w_stop Kernel Service . 489

xlate_create Kernel Service . 490

xlate_pin Kernel Service . 491

xlate_remove Kernel Service . 492

xlate_unpin Kernel Service . 493

xm_det Kernel Service . 493

xm_mapin Kernel Service . 494

xm_maxmap Kernel Service . 495

xmalloc Kernel Service . 496

xmattach Kernel Service . 497

xmattach64 Kernel Service . 499

xmdetach Kernel Service . 500

xmemdma Kernel Service . 501

xmemdma64 Kernel Service . 502

Contents xi

xmempin Kernel Service . 504

xmemunpin Kernel Service . 505

xmemin Kernel Service . 506

xmemout Kernel Service . 507

xmempsize Kernel Service . 509

xmfree Kernel Service . 509

Chapter 2. Device Driver Operations . 511

Standard Parameters to Device Driver Entry Points 511

buf Structure . 512

bufx Structure . 514

Character Lists Structure . 516

uio Structure . 517

ddclose Device Driver Entry Point . 519

ddconfig Device Driver Entry Point . 521

dddump Device Driver Entry Point . 523

ddioctl Device Driver Entry Point . 525

ddmpx Device Driver Entry Point . 527

ddopen Device Driver Entry Point . 529

ddread Device Driver Entry Point . 531

ddrevoke Device Driver Entry Point . 533

ddselect Device Driver Entry Point . 534

ddstrategy Device Driver Entry Point . 536

ddwrite Device Driver Entry Point . 537

Select/Poll Logic for ddwrite and ddread Routines . 539

Chapter 3. File System Operations . 541

List of Virtual File System Operations . 541

vfs_aclxcntl Entry Point . 542

vfs_cntl Entry Point . 544

vfs_hold or vfs_unhold Kernel Service . 545

vfs_init Entry Point . 545

vfs_mount Entry Point . 546

vfs_root Entry Point . 547

vfs_search Kernel Service . 548

vfs_statfs Entry Point . 549

vfs_sync Entry Point . 550

vfs_umount Entry Point . 551

vfs_vget Entry Point . 552

vn_access Entry Point . 553

vn_close Entry Point . 554

vn_create Entry Point . 555

vn_create_attr Entry Point . 556

vn_fclear Entry Point . 557

vn_fid Entry Point . 558

vn_finfo Entry Point . 559

vn_fsync Entry Point . 560

vn_fsync_range Entry Point . 561

vn_ftrunc Entry Point . 562

vn_getacl Entry Point . 563

vn_getattr Entry Point . 564

vn_getxacl Entry Point . 565

vn_hold Entry Point . 566

vn_ioctl Entry Point . 567

vn_link Entry Point . 568

vn_lockctl Entry Point . 569

xii AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

vn_lookup Entry Point . 570

vn_map Entry Point . 571

vn_map_lloff Entry Point . 573

vn_mkdir Entry Point . 574

vn_mknod Entry Point . 574

vn_open Entry Point . 575

vn_rdwr Entry Point . 576

vn_rdwr_attr Entry Point . 577

vn_readdir Entry Point . 578

vn_readdir_eofp Entry Point . 579

vn_readlink Entry Point . 580

vn_rele Entry Point . 581

vn_remove Entry Point . 582

vn_rename Entry Point . 583

vn_revoke Entry Point . 584

vn_rmdir Entry Point . 585

vn_seek Entry Point . 586

vn_select Entry Point . 587

vn_setacl Entry Point . 588

vn_setattr Entry Point . 589

vn_setxacl Entry Point . 590

vn_strategy Entry Point . 592

vn_symlink Entry Point . 593

vn_unmap Entry Point . 593

Appendix. Notices . 595

Trademarks . 596

Index . 597

Contents xiii

xiv AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

About This Book

This book provides system programmers with complete detailed information about kernel services, device

driver operations, and file system operations for the AIX operating system. Kernel services, device driver

operations, and file system operations are listed alphabetically by topic. This book is intended for system

programmers wishing to extend the kernel, and to use the book effectively, you should be familiar with

operating system concepts and kernel programming. This book is also available on the documentation CD

that is shipped with the operating system.

This book is part of the six-volume technical reference set, AIX 5L Version 5.3 Technical Reference, that

provides information on system calls, kernel extension calls, and subroutines in the following volumes:

v AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 1 and AIX 5L

Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2 provide information

on system calls, subroutines, functions, macros, and statements associated with base operating system

runtime services.

v AIX 5L Version 5.3 Technical Reference: Communications Volume 1 and AIX 5L Version 5.3 Technical

Reference: Communications Volume 2 provide information on entry points, functions, system calls,

subroutines, and operations related to communications services.

v AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1 and AIX 5L Version 5.3

Technical Reference: Kernel and Subsystems Volume 2 provide information about kernel services,

device driver operations, file system operations, subroutines, the configuration subsystem, the

communications subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem,

the M-audio capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and

the serial DASD subsystem.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files,

structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects

such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to

be supplied by the user.

Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of

portions of program code similar to what you might write

as a programmer, messages from the system, or

information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between

uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,

always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 1997, 2007 xv

32-Bit and 64-Bit Support for the Single UNIX Specification

Beginning with Version 5.2, the operating system is designed to support The Open Group’s Single UNIX

Specification Version 3 (UNIX 03) for portability of UNIX-based operating systems. Many new interfaces,

and some current ones, have been added or enhanced to meet this specification, making Version 5.2 even

more open and portable for applications, while remaining compatible with previous releases of AIX.

To determine the proper way to develop a UNIX 03-portable application, you may need to refer to The

Open Group’s UNIX 03 specification, which can be accessed online or downloaded from

http://www.unix.org/ .

Related Publications

The following books contain information about or related to application programming interfaces:

v AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

v AIX 5L Version 5.3 Communications Programming Concepts

v AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts

xvi AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Chapter 1. Kernel Services

__pag_getid System Call

Purpose

Invokes the kcred_getpagid kernel service and returns the PAG identifier for that PAG name.

Syntax

int __pag_getid (name)

char *name;

Description

Given a PAG type name, the __pag_getid invokes the kcred_getpagid kernel service and returns the

PAG identifier for that PAG name.

Parameters

 name A char * value which references a NULL-terminated string of not more than

PAG_NAME_LENGTH_MAX characters.

Return Values

If successful, a value greater than or equal to 0 is returned and represents the PAG type. This value may

be used in subsequent calls to other PAG system calls that require a type parameter on input. If

unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the cause of the error.

Error Codes

 ENOENT The name parameter doesn’t refer to an existing PAG type.

ENAMETOOLONG The name parameter refers to a string that is longer than PAG_NAME_LENGTH_MAX.

Related Information

“__pag_getname System Call,” “__pag_getvalue System Call” on page 2, “__pag_setname System Call”

on page 3, “__pag_setvalue System Call” on page 3, “kcred_getpagid Kernel Service” on page 236,

“kcred_getpagname Kernel Service” on page 237, and “kcred_setpagname Kernel Service” on page 241.

__pag_getname System Call

Purpose

Retrieves the name of a PAG type.

Syntax

int __pag_getname (type, buf, size)

int type;

char *buf;

int size;

Description

The __pag_getname system call retrieves the name of a PAG type given its integer value by invoking the

kcred_getpagname kernel service with the given parameters.

© Copyright IBM Corp. 1997, 2007 1

Parameters

 type A numerical PAG identifier.

buf A char * value that points to an array at least PAG_NAME_LENGTH_MAX+1 bytes in length.

size An int value that gives the size of buf in bytes.

Return Values

If successful, 0 is returned and the buf parameter contains the PAG name associated with the type

parameter. If unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the

cause of the error.

Error Codes

 EINVAL The value of the type parameter is less than 0 or greater than the maximum PAG identifier.

ENOENT There is no PAG associated with the type parameter.

ENOSPC The value of the size parameter is insuffient to hold the PAG name and its terminating NULL

character.

Related Information

“__pag_getid System Call” on page 1, “__pag_getvalue System Call,” “__pag_setname System Call” on

page 3, “__pag_setvalue System Call” on page 3, “kcred_getpagid Kernel Service” on page 236,

“kcred_getpagname Kernel Service” on page 237, and “kcred_setpagname Kernel Service” on page 241.

__pag_getvalue System Call

Purpose

Invokes the kcred_getpag kernel service and returns the PAG value.

Syntax

int __pag_getvalue (type)

int type;

Description

Given a PAG type, the __pag_getvalue system call invokes the kcred_getpag kernel service and returns

the PAG value for the value of the type parameter.

Parameters

 type An int value indicating the desired PAG.

Return Values

If successful, the value of the PAG (or 0 when there is no value for that PAG type) is returned. If

unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the cause of the error.

Error Codes

 EINVAL The type parameter is less than 0 or greater than the maximum PAG type value.

ENOENT The type parameter doesn’t reference and existing PAG type.

2 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Note: It is not an error for a defined PAG to not have a value in the current process’ credentials.

Related Information

“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_setname System

Call,” “__pag_setvalue System Call,” “kcred_getpagid Kernel Service” on page 236, “kcred_getpagname

Kernel Service” on page 237, and “kcred_setpagname Kernel Service” on page 241.

__pag_setname System Call

Purpose

Invokes the kcred_setpagname kernel service and returns the PAG type identifier.

Syntax

int __pag_setname (name, flags)

char *name;

int flags;

Description

The __pag_setname system call invokes the kcred_setpagname kernel service to register the name of a

PAG and returns the PAG type identifier. The value of the func parameter to kcred_setpagname will be

NULL. The other parameters to this system call are the same as with the underlying kernel service. This

system call requires the SYS_CONFIG privilege.

Parameters

 name A char * value giving the symbolic name of the requested PAG.

flags Either PAG_UNIQUEVALUE or PAG_MULTIVALUED 1 .

Return Values

A return value greater than or equal to 0 is the PAG type associated with the name parameter. This value

may be used with other PAG-related system calls which require a numerical PAG identifier. If

unsuccessful, -1 is returned and the errno global variable is set to indicate the cause of the error.

Error Codes

 ENOSPC The PAG name table is full.

EEXIST The named PAG type already exists in the table, and the flags and func parameters do not match

their earlier values.

EPERM The calling process does not have the SYS_CONFIG privilege.

Related Information

“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System

Call” on page 2, “__pag_setvalue System Call,” “kcred_getpagid Kernel Service” on page 236,

“kcred_getpagname Kernel Service” on page 237, and “kcred_setpagname Kernel Service” on page 241.

__pag_setvalue System Call

Purpose

Invokes the kcred_setpag kernel service and sets the value of PAG type to pag.

Chapter 1. Kernel Services 3

Syntax

int __pag_setvalue (type, pag)

int type;

int pag;

Description

Given a PAG type and value, the __pag_setvalue system call invokes the kcred_setpag kernel service

and sets the value of PAG type to pag. This system call requires the SET_PROC_DAC privilege.

Parameters

 type An int value indicating the desired PAG.

pag An int value containing the new PAG value.

Return Values

If successful, 0 is returned. If unsuccessful, -1 is returned and the errno global variable is set to a value

reflecting the cause of the error.

Error Codes

 ENOENT The type parameter doesn’t reference an existing PAG type.

EINVAL The value of pag is -1.

EPERM The calling process lacks the appropriate privilege.

Related Information

“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System

Call” on page 2, “__pag_setname System Call” on page 3, “kcred_getpagid Kernel Service” on page 236,

“kcred_getpagname Kernel Service” on page 237, and “kcred_setpagname Kernel Service” on page 241.

acct_add_LL or acct_zero_LL Kernel Service

Purpose

Increments counters for advanced accounting.

Syntax

unsigned long long acct_add_LL(ptr, incr)

unsigned long long *ptr;

unsigned int incr;

unsigned long long acct_zero_LL(ptr)

unsigned long long *ptr;

Parameters

 ptr Address of statistic to be incremented.

incr Increment to be applied.

4 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

These kernel services are special atomic increment and clear services that are designed to allow

machine-independent updating of unsigned long long values. The increment service only performs an

increment if advanced accounting is enabled.

The acct_add_LL kernel service adds the value associated with the incr parameter to the 64-bit counter at

the address designated by the ptr parameter. The acct_zero_LL kernel service atomically zeroes the

64-bit counter.

Both routines return the previous value of the 64-bit counter. This way, the acct_zero_LL kernel service

can be used to atomically get the most recent value and set the counter to NULL. Because only delta

statistics are reported each interval, this capability is required by interval accounting when the accounting

record is being built for a report.

Execution Environment

These kernel services can be called from either the interrupt environment or the process environment.

Return Values

These subroutines return the previous value of the location designated by the ptr parameter.

Related Information

“acct_interval_register or acct_interval_unregister Kernel Service” on page 7, “acct_put Kernel Service” on

page 8

acct_get_projid Kernel Service

Purpose

Gets the project identifier for the current process.

Syntax

projid_t acct_get_projid(void)

Description

The acct_get_projid kernel service returns the project identifier for the current process.

Execution Environment

The acct_get_projid kernel service can be called from the process environment only.

Return Values

The acct_get_projid kernel service returns the current project identifier.

Related Information

“acct_put Kernel Service” on page 8

acct_get_usage Kernel Service

Purpose

Allows kernel extensions to measure the resource utilization of transactions.

Chapter 1. Kernel Services 5

Syntax

#include <sys/types.h>

#include <sys/aacct.h>

unsigned long long acct_get_usage(usage)

struct tusage *usage;

Parameters

 usage Resource utilization structure.

Description

This routine is used to measure the resource utilization of a client transaction, so that the cost of the

transaction can be included within the accounting record that identifies the client transaction. This

accounting record is then used for chargeback purposes.

The acct_get_usage kernel service is designed to be called twice: once at the start of a transaction and a

second time at the end of a transaction. Each time that the routine is called, it returns the resource

utilization for the calling thread from creation using the usage parameter. Therefore, this routine can be

called multiple times to determine the resource utilization of a code fragment by subtracting start and end

values.

The following macros are provided for manipulating the usage parameter:

TUSAGE_ZERO(TU)

Initializes the tusage structure

TUSAGE_ADD(TU1, TU2)

Adds tusage structures (T1 = T1 + T2)

TUSAGE_SUB(TU1, TU2)

Subtracts tusage structures (T1 = T1 – T2)

The usage parameter provides thread-specific information, so the caller must ensure that this routine is

called from the same thread context when measuring the utilization of a transaction. The return value

identifies the calling thread context.

The acct_get_usage kernel service returns a token that identifies the calling context. This token can be

logically compared with other tokens returned by this routine to ensure that start and stop invocations were

made from the same thread. The scope of the token depends on the context of the calling program. If this

routine is called under a pthread, then it returns a token representing the currently executing pthread.

Otherwise, the acct_get_usage kernel service returns a token representing the currently executing kernel

thread. In the former case, the token has process-wide scope; in the latter case, the token has

system-wide scope.

Execution Environment

The acct_get_usage kernel service can only be called from the process environment.

Return Values

Upon successful completion, the acct_get_usage kernel service returns a token that identifies the calling

thread context.

6 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

“acct_add_LL or acct_zero_LL Kernel Service” on page 4, “acct_get_projid Kernel Service” on page 5,

“acct_interval_register or acct_interval_unregister Kernel Service,” “acct_put Kernel Service” on page 8

acct_interval_register or acct_interval_unregister Kernel Service

Purpose

Registers or unregisters an advanced accounting handler.

Syntax

#include <sys/aacct.h>

int acct_interval_register(trid, cmds, handler, arg, reg_token, reg_name)

int trid;

int cmds;

int (*handler)(int trid, int cmds, void *arg);

void *arg;

unsigned long *reg_token;

char *reg_name;

int acct_interval_unregister(reg_token)

unsigned long reg_token;

Parameters

 trid Transaction identifier

cmds Invocations supported by the advanced accounting handler

handler Function descriptor for the handler

arg Identifies the instance of the kernel extension

reg_token Token that is returned to caller naming the instance of the registration

reg_name Identifies the transaction using a string

Description

The acct_interval_register kernel service registers accounting records that are produced by the kernel

extension with the advanced accounting subsystem. These accounting records are named through

accounting transaction identifiers, which are provided by the caller. Transaction identifiers are persistent in

nature, because they are used by report and analysis utilities to interpret transaction-specific accounting

data. The transaction identifier is implicitly mapped to a template.

Transaction identifiers (and associated templates) used by AIX are defined in the sys/aacct.h file.

Identifiers in the range of 0 – 127 are reserved for AIX. Vendors can choose any value in the range 128 –

256 for their accounting records. If two vendors choose the same value, report and analysis programs

must reference other fields in the accounting record header to uniquely identify the source of the

transaction; that way, they can apply the appropriate template. The subproject field (which specifies the

command name of the logger) and length field can be used to identify the source of the transaction.

Collisions are very unlikely to occur. The transaction identifier and the transaction name, which is provided

by the reg_name field, are presented to the system administrator. Vendors should choose representative

names for their transactions. The maximum length of a transaction name is 15 bytes.

Administrators can enable and disable transactions, and thereby drive callouts to the kernel extension. A

function descriptor for the advanced accounting handler is provided through the handler parameter. The

interface of this handler is:

int handler(int trid, int cmd, void *arg);

Chapter 1. Kernel Services 7

The trid parameter is the transaction being acted on. The cmd parameter describes the action. The arg

parameter is a value that was specified at registration for this particular instance of the handler. The arg

parameter is specific to the kernel extension.

The following cmd values are supported:

 ACCT_CMD_ENABLE The transaction is being enabled; start collecting.

ACCT_CMD_DISABLE The transaction is being disabled; stop collecting.

ACCT_CMD_INTERVAL The system interval has expired; provide accounting data.

ACCT_CMD_FSWITCH The active accounting file has changed; provide meta data.

The handler is invoked in the process environment from a dedicated kernel-only thread that is part of the

advanced accounting subsystem. The kernel extension registers for the callouts that should be made by

logically ORing cmd values. The cmds parameter to the acct_interval_register kernel service is provided

for this purpose.

When a transaction is enabled, the kernel extension should allocate accounting structures and start

collecting statistics. When a transaction is disabled, the kernel extension should quit collecting statistics

and free accounting structures. If a transaction is not enabled, the kernel subsystem should not collect

statistics for the transaction. The kernel extension relies on the callout mechanism to provide notification

when a transaction is enabled. This way, accounting records that are not required for the report are not

collected and the accounting overhead is minimized.

If the kernel extension registers for interval accounting, the extension is called when the system interval

expires. The handler should record its data using the acct_put kernel service and should reset its

counters so that only delta statistics are produced in the next interval. The acct_zero_LL and

acct_add_LL kernel services are provided so that statistics can be reported and zeroed atomically. When

the system interval is disabled, the system automatically generates an interval callout to collect the last

round of statistics.

The file switch callout is provided, so that subsystems can record accounting data in each accounting file.

Most subsystems are not expected to use this option.

Execution Environment

The acct_interval_register kernel service can be called from the process environment only.

The acct_interval_unregister kernel service can be called from either the interrupt environment or the

process environment.

Return Values

Upon successful completion, 0 is returned. If unsuccessful, errno is set to a value that explains the error.

Related Information

“acct_add_LL or acct_zero_LL Kernel Service” on page 4, “acct_put Kernel Service”

acct_put Kernel Service

Purpose

Writes an accounting record.

8 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/aacct.h>

void acct_put(trid, flags, projid, usage, trdata, tr_len);

int trid;

int flags;

projid_t projid;

struct tusage *usage;

void *trdata;

int tr_len;

Parameters

 trid Transaction identifier.

flags Flags associated with the transaction or the production of the transaction. The following value is

defined:

ACCT_PUT_DIRECT

Overrides aggregate transaction

projid Project identifier, associated with the transaction, that identifies the billable entity. The following

values are defined:

PROJID_SYSTEM

This identifier is typically associated with system overhead and is often used for shared

devices, such as disks and network adapters.

PROJID_UNKNOWN

This identifier is used when the billable entity is unknown to the caller. In this case, the

system calculates the project identifier using the project assignment policy specified by the

system administrator.

project identifier

If the project identifier is known, it should be specified.

usage Identifies the resource usage values associated with the transaction.

trdata Transaction-specific information.

tr_len Size of the transaction-specific data in bytes.

Description

The acct_put kernel service provides accounting data to the advanced accounting subsystem. This

service builds the accounting record header from its parameters and values associated with the calling

context. The transaction-specific data specified by the caller is copied after the header. This data is

internally buffered so that it can be written efficiently to the accounting data file some time later.

The trid parameter identifies the type of transaction that is being provided and implicitly identifies the

format of the transaction-specific data. This identifier is included within the accounting header and is used

by report and analysis commands to infer the right template that can interpret transaction-specific data.

Vendors are encouraged to document their transaction identifiers and record templates so that report and

analysis tools can be produced to interpret this data.

Accounting transaction identifiers are defined in the following range:

 0-127 AIX accounting transaction identifiers

128-255 Vendor accounting transaction identifiers

The ACCT_PUT_DIRECT flag is provided as an override to the aggregation of accounting records, which

is an optional feature of the advanced accounting subsystem. By default, the system does not aggregate

accounting data. Aggregation is designed to reduce the volume of data that is written to the accounting

file. It is transparent to applications and middleware. When aggregation is enabled, the system throws out

Chapter 1. Kernel Services 9

the transaction-specific data and produces statistics about the occurrence of the transaction and the

aggregate resource utilization. The data is produced along project boundaries, so the ability to perform

chargeback is not lost, although the data that is produced is different. Statistical information about the

transaction is captured in the accounting file in lieu of the transaction.

Because aggregation might not be desirable in some cases, the ACCT_PUT_DIRECT flag is provided to

override this feature. For example, because the significance of a transaction that describes the shared use

of a disk is bound up in the transaction-specific data, the transaction cannot be effectively aggregated. The

significance of the transaction is thrown out in the course of aggregation. In effect, the statistic has already

been aggregated by the producer, so it should be written directly to the file instead of being aggregated

again by the accounting subsystem.

The usage values pointed to by the usage parameter is calculated using the acct_get_usage kernel

service. The usage parameter is optional. A value of NULL can be specified to signify no usage

information. Aggregation uses this field to accumulate resource utilization. If this information is calculated

for the transaction, it should be passed as a parameter to this routine, instead of just including it within the

transaction-specific data section. The advanced accounting subsystem does not know the format of this

section and cannot aggregate it. In such a case, this section would be thrown out when aggregation is

enabled.

The trdata parameter contains the address of a buffer containing transaction-specific data, and the tr_len

parameter identifies the number of bytes in this buffer that should be copied to the accounting file. A

maximum of 16 KB of data can be written.

Execution Environment

The acct_put kernel service can be started from either the process or interrupt environment. However,

aggregation of the transaction is only supported when the acct_put service is started from the process

environment.

Return Values

The acct_put kernel service does not return a value.

Related Information

The acctctl Command.

“acct_add_LL or acct_zero_LL Kernel Service” on page 4, “acct_get_projid Kernel Service” on page 5,

“acct_get_usage Kernel Service” on page 5, “acct_interval_register or acct_interval_unregister Kernel

Service” on page 7

add_domain_af Kernel Service

Purpose

Adds an address family to the Address Family domain switch table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/domain.h>

int add_domain_af (domain)

struct domain *domain;

10 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

 domain Specifies the domain of the address family.

Description

The add_domain_af kernel service adds an address family domain to the Address Family domain switch

table.

Execution Environment

The add_domain_af kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the address family was successfully added.

EEXIST Indicates that the address family was already added.

EINVAL Indicates that the address family number to be added is out of range.

Example

To add an address family to the Address Family domain switch table, invoke the add_domain_af kernel

service as follows:

add_domain_af(&inetdomain);

In this example, the family to be added is inetdomain.

Related Information

The del_domain_af kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

add_input_type Kernel Service

Purpose

Adds a new input type to the Network Input table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/if.h>

#include <net/netisr.h>

int add_input_type (type, service_level, isr, ifq, af)

u_short type;

u_short service_level;

int (* isr) ();

struct ifqueue * ifq;

u_short af;

Chapter 1. Kernel Services 11

Parameters

 type Specifies which type of protocol a packet contains. A value of x’FFFF’ indicates that this

input type is a wildcard type and matches all input packets.

service_level Determines the processing level at which the protocol input handler is called. If the

service_level parameter is set to NET_OFF_LEVEL, the input handler specified by the isr

parameter is called directly. Setting the service_level parameter to NET_KPROC schedules

a network dispatcher. This dispatcher calls the subroutine identified by the isr parameter.

isr Identifies the routine that serves as the input handler for an input packet type.

ifq Specifies an input queue for holding input buffers. If this parameter has a non-null value, an

input buffer (mbuf) is enqueued. The ifq parameter must be specified if the processing level

specified by the service_level parameter is NET_KPROC. Specifying null for this parameter

generates a call to the input handler specified by the isr parameter, as in the following:

af Specifies the address family of the calling protocol. The af parameter must be specified if

the ifq parameter is not a null character. This parameter must be greater than or equal to 0

and less than NETISR_MAX. Refer to netisr.h for the range of values of af that are already

in use. Also, other kernel extensions that are not AIX and that use network ISRs currently

running on the system can make use of additional values not mentioned in netisr.h.

(*isr)(CommonPortion,Buffer);

In this example, CommonPortion points to the network common portion (the arpcom

structure) of a network interface and Buffer is a pointer to a buffer (mbuf) containing an

input packet.

Description

To enable the reception of packets, an address family calls the add_input_type kernel service to register

a packet type in the Network Input table. Multiple packet types require multiple calls toAIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts the add_input_type kernel service.

Execution Environment

The add_input_type kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the type was successfully added.

EEXIST Indicates that the type was previously added to the Network Input table.

ENOSPC Indicates that no free slots are left in the table.

EINVAL Indicates that an error occurred in the input parameters.

Examples

1. To register an Internet packet type (TYPE_IP), invoke the add_input_type service as follows:

add_input_type(TYPE_IP, NET_KPROC, ipintr, &ipintrq, AF_INET);

This packet is processed through the network kproc. The input handler is ipintr. The input queue is

ipintrq.

2. To specify the input handler for ARP packets, invoke the add_input_type service as follows:

add_input_type(TYPE_ARP, NET_OFF_LEVEL, arpinput, NULL, NULL);

Packets are not queued and the arpinput subroutine is called directly.

Related Information

The del_input_type kernel service, find_input_type kernel service.

12 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

add_netisr Kernel Service

Purpose

Adds a network software interrupt service to the Network Interrupt table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/netisr.h>

int add_netisr (soft_intr_level, service_level, isr)

u_short soft_intr_level;

u_short service_level;

int (*isr) ();

Parameters

 soft_intr_level Specifies the software interrupt level to add. This parameter must be greater than or

equal to 0 and less than NETISR_MAX. Refer to netisr.h for the range of values of

soft_intr_level that are already in use. Also, other kernel extensions that are not AIX

and that use network ISRs currently running on the system can make use of additional

values not mentioned in netisr.h.

service_level Specifies the processing level of the network software interrupt.

isr Specifies the interrupt service routine to add.

Description

The add_netisr kernel service adds the software-interrupt level specified by the soft_intr_level parameter

to the Network Software Interrupt table.

The processing level of a network software interrupt is specified by the service_level parameter. If the

interrupt level specified by the service_level parameter equals NET_KPROC, a network interrupt scheduler

calls the function specified by the isr parameter. If you set the service_level parameter to

NET_OFF_LEVEL, the schednetisr service calls the interrupt service routine directly.

Execution Environment

The add_netisr kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the interrupt service routine was successfully added.

EEXIST Indicates that the interrupt service routine was previously added to the table.

EINVAL Indicates that the value specified for the soft_intr_level parameter is out of range or at a service level that

is not valid.

Related Information

The del_netisr kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Chapter 1. Kernel Services 13

add_netopt Macro

Purpose

Adds a network option structure to the list of network options.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/netopt.h>

add_netopt (option_name_symbol, print_format)

option_name_symbol;

char *print_format;

Parameters

 option_name_symbol Specifies the symbol name used to construct the netopt structure and default

names.

print_format Specifies the string representing the print format for the network option.

Description

The add_netopt macro adds a network option to the linked list of network options. The no command can

then be used to show or alter the variable’s value.

The add_netopt macro has no return values.

Execution Environment

The add_netopt macro can be called from either the process or interrupt environment.

Related Information

The no command.

The del_netopt macro.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

as_att Kernel Service

Purpose

Selects, allocates, and maps a region in the specified address space for the specified virtual memory

object.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

caddr_t as_att (adspacep, vmhandle, offset)

14 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

adspace_t * adspacep;

vmhandle_t vmhandle;

caddr_t offset;

Parameters

 adspacep Points to the address space structure that defines the address space where the region for the virtual

memory object is to be allocated. The getadsp kernel service can obtain this pointer.

vmhandle Describes the virtual memory object being made addressable within a region of the specified address

space.

offset Specifies the offset in the virtual memory object and the region being mapped. On this system, the

upper 4 bits of this offset are ignored.

Description

The as_att kernel service:

v Selects an unallocated region within the address space specified by the adspacep parameter.

v Allocates the region.

v Maps the virtual memory object selected by the vmhandle parameter with the access permission

specified in the handle.

v Constructs the address of the offset specified by the offset parameter in the specified address space.

If the specified address space is the current address space, the region becomes immediately addressable.

Otherwise, it becomes addressable when the specified address space next becomes the active address

space.

Kernel extensions use the as_att kernel service to manage virtual memory object addressability within a

region of a particular address space. They are also used by base operating system subroutines such as

the shmat and shmdt subroutines.

Subroutines executed by a kernel extension may be executing under a process, with a process address

space, or executing under a kernel process, entirely in the current address space. (The as_att service

never switches to a user-mode address space.) The getadsp kernel service should be used to get the

correct address-space structure pointer in either case.

The as_att kernel service assumes an address space model of fixed-size virtual memory objects and

address space regions.

Note: the as_att kernel service is not supported on the 64-bit kernel.

Execution Environment

The as_att kernel service can be called from the process environment only.

Return Values

If successful, the as_att service returns the address of the offset (specified by the offset parameter) within

the region in the specified address space where the virtual memory object was made addressable.

If there are no more free regions within the specified address space, the as_att service will not allocate a

region and returns a null address.

Related Information

The as_det kernel service, as_geth kernel service, as_getsrval kernel service, as_puth kernel service,

getadsp kernel service.

Chapter 1. Kernel Services 15

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

as_att64 Kernel Service

Purpose

Allocates and maps a specified region in the current user address space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

unsigned long long as_att64 (vmhandle, offset)

vmhandle_t vmhandle;

int offset;

Parameters

 vmhandle Describes the virtual memory object being made addressable in the address space.

offset Specifies the offset in the virtual memory object. The upper 4-bits of this offset are ignored.

Description

 The as_att64 kernel service: Selects an unallocated region within the current user address space.

 Allocates the region.

 Maps the virtual memory object selected by the vmhandle parameter

with the access permission specified in the handle.

 Constructs the address of the offset specified by the offset parameter

within the user-address space.

The as_att64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for

kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on

another address space.

Execution Environment

The as_att64 kernel service can be called from the process environment only.

Return Values

On successful completion, this service returns the base address plus the input offset (offset) into the

allocated region.

 NULL An error occurred and ernno indicates the cause:

EINVAL Address specified is out of range, or

ENOMEM Could not allocate due to insufficient resources.

16 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The as_seth64 kernel service, as_det64 kernel service, as_geth64 kernel service, as_getsrval64 kernel

service, as_puth64 kernel service.

as_det Kernel Service

Purpose

Unmaps and deallocates a region in the specified address space that was mapped with the as_att kernel

service.

Syntax

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

int as_det (adspacep, eaddr)

adspace_t *adspacep;

caddr_t eaddr;

Parameters

 adspacep Points to the address space structure that defines the address space where the region for the virtual

memory object is defined. For the current process, the getadsp kernel service can obtain this pointer.

eaddr Specifies the effective address within the region to be deallocated in the specified address space.

Description

The as_det kernel service unmaps the virtual memory object from the region containing the specified

effective address (specified by the eaddr parameter) and deallocates the region from the address space

specified by the adspacep parameter. This region is added to the free list for the specified address space.

The as_det kernel service assumes an address space model of fixed-size virtual memory objects and

address space regions.

Note: This service should not be used to deallocate a base kernel region, process text, process private or

unallocated region: an EINVAL return code will result. For this system, the upper 4 bits of the eaddr

effective address parameter must never be 0, 1, 2, 0xE, or specify an unallocated region.

Note: The as_det kernel service is not supported on the 64-bit kernel.

Execution Environment

The as_det kernel service can be called from the process environment only.

Return Values

 0 The region was successfully unmapped and deallocated.

EINVAL An attempt was made to deallocate a region that should not have been deallocated (that is, a base

kernel region, process text region, process private region, or unallocated region).

Related Information

The as_att kernel service, getadsp kernel service.

Chapter 1. Kernel Services 17

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

as_det64 Kernel Service

Purpose

Unmaps and deallocates a region in the current user address space that was mapped with the as_att64

kernel service.

Syntax

#include <sys/errno.h>
#include <sys/adspace.h>
int as_det64 (addr64)
unsigned long long addr64;

Parameters

 addr64 Specifies an effective address within the region to be deallocated.

Description

The as_det64 kernel service unmaps the virtual memory object from the region containing the specified

effective address (specified by the addr64 parameter).

The as_det64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service should not be used to deallocate a base kernel region, process text, process private or an

unallocated region. An EINVAL return code will result.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for

kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on

another address space.

Execution Environment

The as_det64 kernel service can be called from the process environment only.

Return Values

 0 The region was successfully unmapped and deallocated.

EINVAL An attempt was made to deallocate a region that should not have been deallocated (that is, a base

kernel region, process text region, process private region, or unallocated region).

EINVAL Input address out of range.

Related Information

The as_att64 kernel service, as_seth64 kernel service, as_geth64 kernel service, as_getsrval64 kernel

service, as_puth64 kernel service.

18 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

as_geth Kernel Service

Purpose

Obtains a handle to the virtual memory object for the specified address given in the specified address

space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

vmhandle_t as_geth (Adspacep, Addr)

adspace_t *Adspacep;

caddr_t Addr;

Parameters

 Adspacep Points to the address space structure to obtain the virtual memory object handle from. The getadsp

kernel service can obtain this pointer.

Addr Specifies the virtual memory address that should be used to determine the virtual memory object

handle for the specified address space.

Description

The as_geth kernel service is used to obtain a handle to the virtual memory object corresponding to a

virtual memory address in a particular address space. This handle can then be used with the as_att or

vm_att kernel services to make the object addressable in another address space.

After the last use of the handle and after it is detached from all address spaces, the as_puth kernel

service must be used to indicate this fact. Failure to call the as_puth kernel service may result in

resources being permanently unavailable for reuse.

If the handle obtained refers to a virtual memory segment, then that segment is protected from deletion

until the as_puth kernel service is called.

If for some reason it is known that the virtual memory object cannot be deleted, the as_getsrval kernel

service may be used. This kernel service does not require that the as_puth kernel service be used. This

service can also be called from the interrupt environment.

Execution Environment

The as_geth kernel service can be called from the process environment only.

Return Values

The as_geth kernel service always succeeds and returns the appropriate handle.

Related Information

The getadsp kernel service, as_att kernel service, vm_att kernel service, as_puth kernel service, and

as_getsrval kernel service.

Chapter 1. Kernel Services 19

as_geth64 Kernel Service

Purpose

Obtains a handle to the virtual memory object for the specified address.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

vmhandle_t as_geth64 (addr64)

unsigned long long addr64;

Parameter

 addr64 Specifies the virtual memory address for which the corresponding handle should be returned.

Description

The as_geth64 kernel service is used to obtain a handle to the virtual memory object corresponding to the

input address (addr64). This handle can then be used with the as_att64 or vm_att kernel service to make

the object addressable at a different location.

After the last use of the handle and after it is detached accordingly, the as_puth64 kernel service must be

used to indicate this fact. Failure to call the as_puth64 service may result in resources being permanently

unavailable for re-use.

If the handle returned refers to a virtual memory segment, then that segment is protected from deletion

until the as_puth64 kernel service is called.

If, for some reason, it is known that the virtual memory object cannot be deleted, then the as_getsrval64

kernel service may be used instead of the as_geth64 service.

The as_geth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for

kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on

another address space.

Execution Environment

The as_geth64 kernel service can be called from the process environment only.

Return Values

On successful completion, this routine returns the appropriate handle.

On error, this routine returns the value INVLSID defined in sys/seg.h. This is caused by an address out of

range.

Errors include: Input address out of range.

20 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The as_att64 kernel service, as_seth64 kernel service, as_det64 kernel service, as_getsrval64 kernel

service, and as_puth64 kernel service.

as_getsrval Kernel Service

Purpose

Obtains a handle to the virtual memory object for the specified address given in the specified address

space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

vmhandle_t as_getsrval (Adspacep, Addr)

adspace_t *Adspacep;

caddr_t Addr;

Parameters

 Adspacep Points to the address space structure to obtain the virtual memory object handle from. The getadsp

kernel service can obtain this pointer.

Addr Specifies the virtual memory address that should be used to determine the virtual memory object

handle for the specified address space.

Description

The as_getsrval kernel service is used to obtain a handle to the virtual memory object corresponding to a

virtual memory address in a particular address space. This handle can then be used with the as_att or

vm_att kernel services to make the object addressable in another address space.

This should only be used when it is known that the virtual memory object cannot be deleted, otherwise the

as_geth kernel service must be used.

The as_puth kernel service must not be called for handles returned by the as_getsrval kernel service.

Execution Environment

The as_getsrval kernel service can be called from both the interrupt and the process environments.

Return Values

The as_getsrval kernel service always succeeds and returns the appropriate handle.

Related Information

The getadsp kernel service, as_att kernel service, vm_att kernel service, as_geth kernel service, and

as_puth kernel service.

as_getsrval64 Kernel Service

Purpose

Obtains a handle to the virtual memory object for the specified address.

Chapter 1. Kernel Services 21

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>
vmhandle_t as_getsrval64 (addr64)
unsigned long long addr64;

Parameters

 addr64 Specifies the virtual memory address for which the corresponding handle should be returned.

Description

The as_getsrval64 kernel service is used to obtain a handle to the virtual memory object corresponding to

the input address(addr64). This handle can then be used with the as_att64 or vm_att kernel services to

make the object addressable at a different location.

This service should only be used when it is known that the virtual memory object cannot be deleted,

otherwise the as_geth64 kernel service must be used.

The as_puth64 kernel service must not be called for handles returned by the as_getsrval64 kernel

service.

The as_getsrval64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for

kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on

another address space.

Execution Environment

The as_getsrval64 kernel service can be called from the process environment only when the current user

address space is 64-bits. If the current user address space is 32-bits, or is a kproc, then as_getsrval64

may be called from an interrupt environment.

Return Values

On successful completion this routine returns the appropriate handle.

On error, this routine returns the value INVLSID defined in sys/seg.h. This is caused by an address out of

range.

Errors include: Input address out of range.

Related Information

The as_att64 kernel service, as_det64 kernel service, as_geth64 kernel service, and as_puth64 kernel

service, as_seth64 kernel service.

22 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

as_lw_att64 Kernel Service

Purpose

Allocates and maps a specified region in the current user address space. Part of the lightweight kernel

service subsystem, which must be initialized with the as_lw_pool_init kernel service before it can be

used.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sysvmuser.h>

#include <sys/adspace.h>

#include <sys/mem.h>

int as_lw_att64 (dp, offset, length, addr)

xmem* dp;

size_t offset;

size_t length;

ptr64* addr;

Parameters

 dp Pointer to a cross memory descriptor that describes the virtual memory object that is being made

addressable in the address space.

offset Specifies the byte offset in the virtual memory object.

length Specifies the number of bytes to map in the virtual memory object.

addr Pointer to the location where the address will be returned.

Description

The as_lw_att64 kernel service does the following:

v Allocates a region from the process’ address space for the mapping.

v Maps the virtual memory object selected by the dp parameter.

v Constructs the address of the offset specified by the offset parameter within the user-address space.

Note: The as_lw_att64 kernel service should be used with caution. Be sure to read the documentation for

this and the other lightweight services (as_lw_det64 and as_lw_pool_init) carefully before doing

so. There is a risk of illegal data access and cross-process data corruption if these services are not

used correctly.

In order to use this service, the cross memory descriptor pointed to by the dp parameter must be initialized

by using the xmattach kernel service with the LW_XMATTACH flag set. The lw_pool_init kernel service

must also have been successfully called by the current process.

The service will map an area length bytes long into the caller’s address space from the memory

represented by the descriptor, starting at the number of bytes specified in the offset parameter. It is illegal

for any thread other than the caller of this service to address the attached region.

This service will operate correctly only in 64-bit user address spaces. It will not work for kernel processes

(kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on

another address space.

Chapter 1. Kernel Services 23

Execution Environment

The as_lw_att64 kernel service can be called from the process environment only.

Return Values

On successful completion, this service sets the value of addr to the address of the allocated region and

returns 0.

 NULL An error occurred and errno indicates the cause.

EINVAL Cross memory descriptor is in an invalid state, length is zero or offset plus length goes past the

end of the virtual memory object.

ENODEV The as_lw_pool_init kernel service has not been called to initialize the pool settings for this

process.

ENOSYS Called by a 32-bit process.

ENOSPC Resources allocated to do lightweight services for this thread expended. Either the region to be

attached is too large (the as_lw_pool_init kernel service was called with too small a pool_size)

or there are outstanding attaches which need to release their lightweight resources using the

as_lw_det64 kernel service before this attach can be completed.

EIO Indicates a failure of the lightweight subsystem, process should discontinue use of lightweight

kernel services.

EPERM Called by a user thread that is not 1:1 with a kernel thread.

ENOMEM Could not allocate system resources for lightweight services for this thread.

Implementation Specifics

The as_lw_att64 kernel service is part of Base Operating System (BOS) Runtime.

Related Information

“as_lw_det64 Kernel Service,” “as_lw_pool_init Kernel Service” on page 25.

as_lw_det64 Kernel Service

Purpose

Unmaps and deallocates a region in the current user address space that was mapped using the

as_lw_att64 kernel service.

Syntax

#include <sys/errno.h>

#include <sys/adspace.h>

#include <sys/xmem.h>

int as_lw_det64 (dp, addr, length)

xmem* dp;

void* addr;

size_t length;

Parameters

 dp The cross memory descriptor describing the attached virtual memory.

addr Specifies the first effective address of the region to be deallocated.

length Specifies the length of the region to be deallocated.

24 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

Note: The as_lw_det64 kernel service should be used with caution. Read the documentation for this and

the other lightweight services (as_lw_att64 and as_lw_pool_init) carefully before doing so. There

is a risk that illegal data accesses will be allowed if these services are not used correctly.

The as_lw_det64 kernel service unmaps the virtual memory from the region starting at the specified

effective address, which is specified by the addr parameter. This service (and only this service) must be

used to unmap regions mapped by the as_lw_att64 kernel service. It must be called by the same thread

that called the as_lw_att64 kernel service. The addr parameter must be the value returned by the

as_lw_att64 kernel service, and the dp parameter and the length parameter must be the same dp and

length passed to it. The xmdetach kernel service must not be called to release the dp parameter until any

outstanding attaches of the dp parameter using the as_lw_att64 kernel service have been detached using

the as_lw_det64 kernel service.

The as_lw_det64 kernel service cannot be used to detach a region not mapped by the as_lw_att64

kernel service.

The as_lw_det64 kernel service will operate correctly only for 64-bit user address spaces. It will not work

for kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on

another address space.

Execution Environment

The as_lw_det64 kernel service can be called from the process environment only.

Return Values

 0 The region was successfully unmapped and deallocated.

EINVAL An attempt was made to deallocate a region that should not have been deallocated.

ENOSYS The service was called by a 32-bit process.

ENOMEM No lightweight resources allocated to this thread.

EIO Indicates a failure of the lightweight subsystem, process should discontinue use of lightweight

kernel services.

EPERM Called by a user thread that is not 1:1 with a kernel thread.

Implementation Specifics

The as_lw_det64 kernel service is part of Base Operating System (BOS) Runtime.

Related Information

“as_lw_att64 Kernel Service” on page 23, “as_lw_pool_init Kernel Service.”

as_lw_pool_init Kernel Service

Purpose

Initializes lightweight attach and detach subsystem for the current process with the given settings.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

Chapter 1. Kernel Services 25

#include <sys/adspace.h>

int as_lw_pool_init (pool_size, flags)

size_t pool_size;

uint flags;

Parameters

 pool_size Specifies the maximum number of bytes that can be attached by lightweight services at

one time by each thread of this process.

flags Specifies flag options for this kernel service. Valid values are 0 and LW_DEBUG.

Description

Note: The as_lw_pool_init kernel service should be used with caution. Read the documentation for this

and the other lightweight services (as_lw_att64 and as_lw_det64) carefully before doing so. There

is a risk that illegal data accesses will be allowed if these services are not used correctly.

The as_lw_pool_init kernel service initializes the lightweight pool size and flag settings for the current

process. Once it has been called, these settings are fixed and cannot be changed for the process.

If LW_DEBUG is set in the flags parameter, the risk of illegal data access will be removed from calls to the

as_lw_att64 kernel service and the as_lw_det64 kernel service. This setting allows users to debug

problems that are caused by incorrect use of these services.

Processes that have called the as_lw_pool_init kernel service can use the other lightweight kernel

services (as_lw_att64 and as_lw_det64) to attach and detach virtual memory regions represented by a

cross memory descriptor. These kernel services are used on a per-thread basis, that is if one thread uses

the as_lw_att64 kernel service to attach virtual memory to a region of its address space, that region

cannot be addressed by any other thread, and it must be detached by the same thread by using the

as_lw_det64 kernel service.

This service will operate correctly only for 64-bit user address spaces. It will not work for kernel processes

(kprocs).

Execution Environment

The as_lw_pool_init kernel service can be called from a 64-bit process environment only.

Return Values

On successful completion, this service returns 0.

 ENOSYS The service was called by a 32-bit process.

EEXIST The as_lw_pool_init kernel service has already been successfully completed for this

process.

EINVAL Invalid flag settings or the pool_size parameter is 0.

EPERM Called by a user thread that is not 1:1 with a kernel thread.

Implementation Specifics

The as_lw_pool_init kernel service is part of Base Operating System (BOS) Runtime.

Related Information

“as_lw_att64 Kernel Service” on page 23, “as_lw_det64 Kernel Service” on page 24.

26 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

as_puth Kernel Service

Purpose

Indicates that no more references will be made to a virtual memory object obtained using the as_geth

kernel service.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>
void as_puth (Adspacep,Vmhandle)
adspace_t *Adspacep;
vmhandle_t Vmhandle;

Parameters

 Adspacep Points to the address space structure that the virtual memory object handle was obtained from. This

must be the same address space pointer that is given to the as_geth kernel service.

Vmhandle Describes the virtual memory object that will no longer be referenced. This handle must have been

returned by the as_geth kernel service.

Description

The as_puth kernel service is used to indicate that no more references will be made to the virtual memory

object returned by a call to the as_geth kernel service. The virtual memory object must be detached from

all address spaces it may have been attached to using the as_att or vm_att kernel services.

Failure to call the as_puth kernel service may result in resources being permanently unavailable for

re-use.

If for some reason it is known that the virtual memory object cannot be deleted, the as_getsrval kernel

service may be used instead of the as_geth kernel service. This kernel service does not require that the

as_puth kernel service be used. This service can also be called from the interrupt environment.

Execution Environment

The as_puth kernel service can be called from the process environment only.

Return Values

The as_puth kernel service always succeeds and returns nothing.

Related Information

The getadsp kernel service, as_att kernel service, vm_att kernel service, as_geth kernel service, and

as_getsrval kernel service.

as_puth64 Kernel Service

Purpose

Indicates that no more references will be made to a virtual memory object obtained using the as_geth64

kernel service.

Chapter 1. Kernel Services 27

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>
int as_puth64 (addr64, vmhandle)
unsigned long long addr64;
vmhandle_t vmhandle;

Parameters

 addr64 Specifies the virtual memory address that the virtual memory object handle was obtained from. This

must be the same address that was given to the as_geth64 kernel service previously.

vmhandle Describes the virtual memory object that will no longer be referenced. This handle must have been

returned by the as_geth64 kernel service.

Description

The as_puth64 kernel service is used to indicate that no more references will be made to the virtual

memory object returned by a call to the as_geth64 kernel service. The virtual memory object must be

detached from the address space already, using either as_det64 or vm_det service.

Failure to call the as_puth64 kernel service may result in resources being permanently unavailable for

re-use.

If, for some reason, it is known that the virtual memory object cannot be deleted, the as_getsrval64 kernel

service may be used instead of the as_geth64 kernel service. This kernel service does not require that the

as_puth64 kernel service be used.

The as_puth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for

kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on

another address space.

Execution Environment

The as_puth64 kernel service can be called from the process environment only.

Return Values

 0 Successful completion.

EINVAL Input address out of range.

Related Information

The as_att64 kernel service, as_det64 kernel service, as_getsrval64 kernel service, as_geth64 kernel

service, and as_seth64 kernel service.

28 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

as_remap64 Kernel Service

Purpose

Maps a 64-bit address to a 32-bit address that can be used by the 32-bit PowerPC kernel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/remap.h>

int as_remap64 (addr64, len, addr32)

unsigned long long addr64;

unsigned int len;

unsigned int*addr32;

Parameters

 addr64 Specifies the 64-bit, effective address of start of range to be mapped.

len Specifies the number of bytes in the range to be mapped.

addr32 Specifies the location where the mapped, 32–bit address will be saved by as_remap64.

Description

The as_remap64 service maps a 64-bit address into a 32-bit address. This service allows other kernel

services to continue using 32-bit addreses, even for 64-bit processes. If the 32-bit address is passed to a

user-memory-access kernel service, the original 64-bit address is obtained and used. The original 64-bit

address can also be obtained by calling the as_unremap64 kernel service.

The as_remap64 kernel service may be called for either a 32-bit or 64-bit process. If called for a 32-bit

process and addr64 is a valid 32-bit address, then this address is simply returned in the addr32

parameter.

Note: The as_remap64 kernel service is not supported on the 64-bit kernel.

Execution Environment

The as_remap64 kernel service can be called from the process environment only.

Return Values

 0 Successful completion.

EINVAL The process is 32-bit, and addr64 is not a valid 32-bit address

or

Too many address ranges have already been mapped.

Related Information

The as_unremap64 kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 29

as_seth Kernel Service

Purpose

Maps a specified region in the specified address space for the specified virtual memory object.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

void as_seth (adspacep, vmhandle, addr)

adspace_t *adspacep;

vmhandle_t vmhandle;

caddr_t addr;

Parameters

 adspacep Points to the address space structure that defines the address space where the region for the virtual

memory object is to be allocated. The getadsp kernel service can obtain this pointer.

vmhandle Describes the virtual memory object being made addressable within a region of the specified address

space.

addr Specifies the virtual memory address which identifies the region of the specified address space to

allocate. On this system, the upper 4 bits of this address are used to determine which region to

allocate.

Description

The as_seth kernel service:

v Allocates the region within the address space specified by the adspacep parameter and the addr

parameter. Any virtual memory object previously mapped in this region of the address space is

unmapped.

v Maps the virtual memory object selected by the vmhandle parameter with the access permission

specified in the handle.

The as_seth kernel service should only be used when it is necessary to map a virtual memory object at a

fixed address within an address space. The as_att kernel service should be used when it is not absolutely

necessary to map the virtual memory object at a fixed address.

Note: The as_seth kernel service is not supported on the 64-bit kernel.

Execution Environment

The as_seth kernel service can be called from the process environment only.

Return Values

The as_seth kernel service always succeeds and returns nothing.

Related Information

The getadsp kernel service, as_att kernel service, vm_att kernel service, as_geth kernel service, and

as_getsrval kernel service.

30 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

as_seth64 Kernel Service

Purpose

Maps a specified region for the specified virtual memory object.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

int as_seth64 (addr64,vmhandle)

unsigned long long addr64;

vmhandle_t vmhandle;

Parameters

 addr64 The region covering this input virtual memory address will be mapped.

vmhandle Describes the virtual memory object being made addressable within a region of the address space.

Description

The as_seth64 kernel service maps the region covering the input addr64 parameter. Any virtual memory

object previously mapped within this region is unmapped.

The virtual memory object specified with the vmhandle parameter is then mapped with the access

permission specified in the handle.

The as_seth64 kernel service should only be used when it is necessary to map a virtual memory object at

a fixed address. The as_att64 kernel service should be used when it is not absolutely necessary to map

the virtual memory object at a fixed address.

The as_seth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for

kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on

another address space.

Execution Environment

The as_seth64 kernel service can be called from the process environment only.

Return Values

 0 Successful completion.

EINVAL Input address out of range.

Related Information

The as_att64 kernel service, as_det64 kernel service, as_getsrval64 kernel service, as_geth64 kernel

service, and as_puth64 kernel service.

Chapter 1. Kernel Services 31

as_unremap64 Kernel Service

Purpose

Returns the original 64-bit address associated with a 32-bit mapped address.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/remap.h>

unsigned long long as_unremap (addr32)

caddr_t addr32;

Parameter

 addr32 Specifies the 32-bit mapped address to be converted to its corresponding 64-bit address.

Description

The as_unremap64 service returns the original 64-bit address associated with a given 32-bit mapped

address.

Note: For a 64-bit process, the addr32 parameter must specify an address in a range mapped by the

as_remap64 service. Otherwise, the returned value is unpredictable.

For a 32-bit process, as_unremap64 casts the 32-bit address to 64 bits.

Note: The as_unremap64 kernel service is not supported on the 64-bit kernel.

Execution Environment

The as_unremap64 kernel service can be called from the process environment only.

Return Values

The 64-bit address corresponding to the 32-bit mapped address, addr32.

Related Information

The as_remap64 kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

attach Device Queue Management Routine

Purpose

Provides a means for performing device-specific processing when the attchq kernel service is called.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/deviceq.h>

32 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int attach (dev_parms, path_id)

caddr_t dev_parms;

cba_id path_id;

Parameters

 dev_parms Passed to the creatd kernel service when the attach routine is defined.

path_id Specifies the path identifier for the queue being attached to.

Description

The attach routine is part of the Device Queue Management kernel extension. Each device queue can

have an attach routine. This routine is optional and must be specified when the creatd kernel service

defines the device queue. The attchq service calls the attach routine each time a new path is created to

the owning device queue. The processing performed by this routine is dependent on the server function.

The attach routine executes under the process under which the attchq kernel service is called. The kernel

does not serialize the execution of this service with the execution of any other server routines.

Execution Environment

The attach-device routine can be called from the process environment only.

Return Values

 RC_GOOD Indicates a successful completion.

RC_NONE Indicates that resources such as pinned memory are unavailable.

RC_MAX Indicates that the server already has the maximum number of users that it

supports.

Greater than or equal to RC_DEVICE Indicates device-specific errors.

audit_svcbcopy Kernel Service

Purpose

Appends event information to the current audit event buffer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int audit_svcbcopy (buf, len)

char *buf;

int len;

Parameters

 buf Specifies the information to append to the current audit event record buffer.

len Specifies the number of bytes in the buffer.

Description

The audit_svcbcopy kernel service appends the specified buffer to the event-specific information for the

current switched virtual circuit (SVC). System calls should initialize auditing with the audit_svcstart kernel

service, which creates a record buffer for the named event.

Chapter 1. Kernel Services 33

The audit_svcbcopy kernel service can then be used to add additional information to that buffer. This

information usually consists of system call parameters passed by reference.

If auditing is enabled, the information is written by the audit_svcfinis kernel service after the record buffer

is complete.

Execution Environment

The audit_svcbcopy kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

ENOMEM Indicates that the kernel service is unable to allocate space for the new buffer.

Related Information

The audit_svcfinis kernel service, audit_svcstart kernel service.

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

audit_svcfinis Kernel Service

Purpose

Writes an audit record for a kernel service.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/audit.h>

int audit_svcfinis ()

Description

The audit_svcfinis kernel service completes an audit record begun earlier by the audit_svcstart kernel

service and writes it to the kernel audit logger. Any space allocated for the record and associated buffers is

freed.

If the system call terminates without calling the audit_svcfinis service, the switched virtual circuit (SVC)

handler exit routine writes the records. This exit routine calls the audit_svcfinis kernel service to complete

the records.

Execution Environment

The audit_svcfinis kernel service can be called from the process environment only.

Return Values

The audit_svcfinis kernel service always returns a value of 0.

Related Information

The audit_svcbcopy kernel service, audit_svcstart kernel service.

34 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

audit_svcstart Kernel Service

Purpose

Initiates an audit record for a system call.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/audit.h>

int audit_svcstart (eventnam , eventnum, numargs, arg1, arg2, ...)

char * eventnam;

int * eventnum;

int numargs;

int arg1;

int arg2;

...

Parameters

 eventnam Specifies the name of the event. In the current implementation, event names must be

less than 17 characters, including the trailing null character. Longer names are

truncated.

eventnum Specifies the number of the event. This is an internal table index meaningful only to the

kernel audit logger. The system call should initialize this parameter to 0. The first time

the audit_svcstart kernel service is called, this parameter is set to the actual table

index. The system call should not reset the parameter. The parameter should be

declared a static.

numargs Specifies the number of parameters to be included in the buffer for this record. These

parameters are normally zero or more of the system call parameters, although this is

not a requirement.

arg1, arg2, ... Specifies the parameters to be included in the buffer.

Description

The audit_svcstart kernel service initiates auditing for a system call event. It dynamically allocates a

buffer to contain event information. The arguments to the system call (which should be specified as

parameters to this kernel service) are automatically added to the buffer, as is the internal number of the

event. You can use the audit_svcbcopy service to add additional information that cannot be passed by

value.

The system call commits this record with the audit_svcfinis kernel service. The system call should call

the audit_svcfinis kernel service before calling another system call.

Execution Environment

The audit_svcstart kernel service can be called from the process environment only.

Return Values

 Nonzero Indicates that auditing is on for this routine.

0 Indicates that auditing is off for this routine.

Chapter 1. Kernel Services 35

Example

svccrash(int x, int y, int z)

{

 static int eventnum;

 if (audit_svcstart("crashed", &eventnum, 2, x, y))

 {

 audit_svcfinis();

 }

 body of svccrash

}

The preceding example allocates an audit event record buffer for the crashed event and copies the first

and second arguments into it. The third argument is unnecessary and not copied.

Related Information

The audit_svcbcopy kernel service, audit_svcfinis kernel service.

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

bawrite Kernel Service

Purpose

Writes the specified buffer data without waiting for I/O to complete.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

int bawrite (bp)

struct buf *bp;

Parameter

 bp Specifies the address of the buffer structure.

Description

The bawrite kernel service sets the asynchronous flag in the specified buffer and calls the bwrite kernel

service to write the buffer.

For a description of how the three buffer-cache write subroutines work, see ″Block I/O Buffer Cache

Services: Overview″ in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Execution Environment

The bawrite kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

ERRNO Returns an error number from the /usr/include/sys/errno.h file on error.

36 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The bwrite kernel service.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

bdwrite Kernel Service

Purpose

Releases the specified buffer after marking it for delayed write.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

void bdwrite (bp)

struct buf *bp;

Parameter

 bp Specifies the address of the buffer structure for the buffer to be written.

Description

The bdwrite kernel service marks the specified buffer so that the block is written to the device when the

buffer is stolen. The bdwrite service marks the specified buffer as delayed write and then releases it (that

is, puts the buffer on the free list). When this buffer is reassigned or reclaimed, it is written to the device.

The bdwrite service has no return values.

For a description of how the three buffer-cache write subroutines work, see ″Block I/O Buffer Cache Kernel

Services: Overview″ in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Execution Environment

The bdwrite kernel service can be called from the process environment only.

Related Information

The brelse kernel service.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

bflush Kernel Service

Purpose

Flushes all write-behind blocks on the specified device from the buffer cache.

Chapter 1. Kernel Services 37

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

void bflush (dev)

dev_t dev;

Parameter

 dev Specifies which device to flush. A value of NODEVICE flushes all devices.

Description

The bflush kernel service runs the free list of buffers. It notes as busy or writing any dirty buffer whose

block is on the specified device. When a value of NODEVICE is specified, the bflush service flushes all

write-behind blocks for all devices. The bflush service has no return values.

Execution Environment

The bflush kernel service can be called from the process environment only.

Related Information

The bwrite kernel service.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

bindprocessor Kernel Service

Purpose

Binds or unbinds kernel threads to a processor.

Syntax

#include <sys/processor.h>

int bindprocessor (What, Who, Where)

int What;

int Who;

cpu_t Where;

Parameters

 What Specifies whether a process or a kernel thread is being bound to a processor. The What parameter can

take one of the following values:

BINDPROCESS

A process is being bound to a processor.

BINDTHREAD

A kernel thread is being bound to a processor.

Who Indicates a process or kernel thread identifier, as appropriate for the What parameter, specifying the

process or kernel thread which is to be bound to a processor.

38 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Where If the Where parameter is in the range 0-n (where n is the number of online processors in the system), it

represents a bind CPU identifier to which the process or kernel thread is to be bound. Otherwise, it

represents a processor class, from which a processor will be selected. A value of

PROCESSOR_CLASS_ANY unbinds the specified process or kernel thread, which will then be able to run

on any processor.

Description

The bindprocessor kernel service binds a single kernel thread, or all kernel threads in a process, to a

processor, forcing the bound threads to be scheduled to run on that processor only. It is important to

understand that a process itself is not bound, but rather its kernel threads are bound. Once kernel threads

are bound, they are always scheduled to run on the chosen processor, unless they are later unbound.

When a new thread is created using the thread_create kernel service, it has the same bind properties as

its creator.

Programs that use processor bindings should become Dynamic Logical Partitioning (DLPAR) aware. Refer

to Dynamic Logical Partitioning in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs for more information.

Return Values

On successful completion, the bindprocessor kernel service returns 0. Otherwise, a value of -1 is

returned and the error code can be checked by calling the getuerror kernel service.

Error Codes

The bindprocessor kernel service is unsuccessful if one of the following is true:

 EINVAL The What parameter is invalid, or the Where parameter indicates an invalid processor number or a

processor class which is not currently available.

ESRCH The specified process or thread does not exist.

EPERM The caller does not have root user authority, and the Who parameter specifies either a process, or a

thread belonging to a process, having a real or effective user ID different from that of the calling process.

Execution Environment

The bindprocessor kernel service can be called from the process environment only.

Related Information

The bindprocessor command.

The exec subroutine, fork subroutine, sysconf subroutine.

The Dynamic Logical Partitioning article in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

binval Kernel Service

Purpose

Makes nonreclaimable all blocks in the buffer cache of a specified device.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

Chapter 1. Kernel Services 39

void binval (dev)

dev_t dev;

Parameter

 dev Specifies the device to be purged.

Description

The binval kernel service makes nonreclaimable all blocks in the buffer cache of a specified device.

Before removing the device from the system, use the binval service to remove the blocks.

All of blocks of the device to be removed need to be flushed before you call the binval service. Typically,

these blocks are flushed after the last close of the device.

Execution Environment

The binval kernel service can be called from the process environment only.

Return Values

The binval service has no return values.

Related Information

The bflush kernel service, blkflush kernel service.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

blkflush Kernel Service

Purpose

Flushes the specified block if it is in the buffer cache.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

int blkflush (dev, blkno)

dev_t dev;

daddr_t blkno;

Parameters

 dev Specifies the device containing the block to be flushed.

blkno Specifies the block to be flushed.

Description

The blkflush kernel service checks to see if the specified buffer is in the buffer cache. If the buffer is not

in the cache, then the blkflush service returns a value of 0. If the buffer is in the cache, but is busy, the

blkflush service calls the e_sleep service to wait until the buffer is no longer in use. Upon waking, the

blkflush service tries again to access the buffer.

40 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

If the buffer is in the cache and is not busy, but is dirty, then it is removed from the free list. The buffer is

then marked as busy and synchronously written to the device. If the buffer is in the cache and is neither

busy nor dirty (that is, the buffer is already clean and therefore does not need to be flushed), the blkflush

service returns a value of 0.

Execution Environment

The blkflush kernel service can be called from the process environment only.

Return Values

 1 Indicates that the block was successfully flushed.

0 Indicates that the block was not flushed. The specified buffer is either not in the buffer cache or is in the buffer

cache but neither busy nor dirty.

Related Information

The bwrite kernel service.

Block I/O Buffer Cache Kernel Services: Overview I/O Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

bread Kernel Service

Purpose

Reads the specified block data into a buffer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

struct buf *bread (dev, blkno)

dev_t dev;

daddr_t blkno;

Parameters

 dev Specifies the device containing the block to be read.

blkno Specifies the block to be read.

Description

The bread kernel service assigns a buffer to the given block. If the specified block is already in the buffer

cache, then the block buffer header is returned. Otherwise, a free buffer is assigned to the specified block

and the data is read into the buffer. The bread service waits for I/O to complete to return the buffer

header.

The buffer is allocated to the caller and marked as busy.

Execution Environment

The bread kernel service can be called from the process environment only.

Chapter 1. Kernel Services 41

Return Values

The bread service returns the address of the selected buffer’s header. A nonzero value for B_ERROR in

the b_flags field of the buffer’s header (buf structure) indicates an error. If this occurs, the caller should

release the buffer associated with the block using the brelse kernel service.

Related Information

The getblk kernel service, iowait kernel service.

Block I/O Buffer Cache Kernel Services: Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts describes how the buffer cache services manage the block I/O buffer

cache mechanism.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

breada Kernel Service

Purpose

Reads in the specified block and then starts I/O on the read-ahead block.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

struct buf *breada (dev, blkno, rablkno)

dev_t dev;

daddr_t blkno;

daddr_t rablkno;

Parameters

 dev Specifies the device containing the block to be read.

blkno Specifies the block to be read.

rablkno Specifies the read-ahead block to be read.

Description

The breada kernel service assigns a buffer to the given block. If the specified block is already in the buffer

cache, then the bread service is called to:

v Obtain the block.

v Return the buffer header.

Otherwise, the getblk service is called to assign a free buffer to the specified block and to read the data

into the buffer. The breada service waits for I/O to complete and then returns the buffer header.

I/O is also started on the specified read-ahead block if the free list is not empty and the block is not

already in the cache. However, the breada service does not wait for I/O to complete on this read-ahead

block.

″Block I/O Buffer Cache Kernel Services: Overview″ in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts summarizes how the getblk, bread, breada, and brelse services

uniquely manage the block I/O buffer cache.

42 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The breada kernel service can be called from the process environment only.

Return Values

The breada service returns the address of the selected buffer’s header. A nonzero value for B_ERROR in

the b_flags field of the buffer header (buf structure) indicates an error. If this occurs, the caller should

release the buffer associated with the block using the brelse kernel service.

Related Information

The bread kernel service, iowait kernel service.

The ddstrategy device driver entry point.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

brelse Kernel Service

Purpose

Frees the specified buffer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

void brelse (bp)

struct buf *bp;

Parameter

 bp Specifies the address of the buf structure to be freed.

Description

The brelse kernel service frees the buffer to which the bp parameter points.

The brelse kernel service awakens any processes waiting for this buffer or for another free buffer. The

buffer is then put on the list of available buffers. The buffer is also marked as not busy so that it can either

be reclaimed or reallocated.

The brelse service has no return values.

Execution Environment

The brelse kernel service can be called from either the process or interrupt environment.

Related Information

The geteblk kernel service.

The buf structure.

Chapter 1. Kernel Services 43

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

bsr_alloc Kernel Service

Purpose

Allocates a Barrier Synchronization Register (BSR) resource, and retrieves mapping information.

Syntax

#include <sys/adspace.h>

int bsr_alloc (

 int bsr_bytes,

 struct io_map * bsr_map,

 int *bsr_stride,

 int *bsr_id)

Parameters

 bsr_bytes Number of BSR bytes wanted.

bsr_map Mapping information for the BSR facility

bsr_stride Stride at which the BSR bytes repeat within the mapping

bsr_id An opaque identifier for the allocated BSR resource

Description

The bsr_alloc service can be used to allocate and reserve all or a portion of the BSR facility. The

requested number of BSR bytes to allocate is communicated through the bsr_bytes parameter. The

requested number of bytes must correspond to a supported window size, as communicated by the

supported_window_mask parameter of the bsr_query service. If the requested number of bytes is

available, the bytes are reserved and the I/O mapping information for accessing the allocated facility is

written to the bsr_map structure. In addition, the stride within the mapping that the allocated BSR bytes

repeat is recorded in the bsr_stride field. The bsr_id field is written with a unique identifier to be used with

the bsr_free call.

If multiple granules or windows are to be used, they must be allocated with independent calls to bsr_alloc.

this is because I/O mappings for multiple granules might not be contiguous, and strides are only applicable

within the granule.

The resulting bsr_map information can then be used as input to rmmap_create for establishing

addressability to the BSR resource within the current process address space.

Execution Environment

The bsr_alloc service can only be called from the process environment.

Return Values

If successful, bsr_alloc returns 0 and modifies the bsr_map structure so that it contains the mapping

information for the newly allocated resource, modifies the bsr_stride field displays the stride on which the

BSR bytes repeat within the mapping, and modifies the bsr_id field so that it displays a unique identifier for

the newly allocated BSR resource. If unsuccessful, one of the following values is returned:

 ENODEV The BSR facility does not exist.

EINVAL Unsupported number of bytes requested.

44 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

EBUSY Requested BSR bytes or mappable BSR windows are currently in use.

Related Information

The “bsr_free Kernel Service,” “bsr_query Kernel Service,” “rmmap_create Kernel Service” on page 375.

bsr_free Kernel Service

Purpose

Frees a Barrier Synchronization Register (BSR) resource previously allocated with the bsr_alloc kernel

service.

Syntax

#include <sys/adspace.h>

int bsr_free (

 int bsr_id,

Parameters

 bsr_id BSR resource identifier as returned in the bsr_id field of the bsr_alloc call.

Description

The bsr_free service releases a BSR allocation. The specific BSR resource being freed is identified by the

unique identifier bsr_id from the corresponding bsr_alloc call.

It is the caller’s responsibility to ensure that all prior attachments to the BSR resource, through

rmmap_create calls, have been detached with corresponding rmmap_remove calls prior to freeing the

BSR resource.

Execution Environment

The bsr_free service can only be called from the process environment.

Return Values

 0 A successful operation.

ENODEV The BSR facility is not present.

EINVAL BSR resource corresponding to bsr_id is invalid or not currently allocated.

Related Information

The “bsr_alloc Kernel Service” on page 44, “bsr_query Kernel Service,” “rmmap_remove Kernel Service”

on page 381.

bsr_query Kernel Service

Purpose

Queries the existence of the Barrier Synchronization Register facility, and, if it exists, its size and allocation

granule.

Chapter 1. Kernel Services 45

Syntax

#include <sys/adspace.h>

int bsr_query (

 int *total_bytes,

 uint * supported_window_mask,

 int *free_bytes,

 uint *free_window_mask)

Parameters

 total_bytes Total bytes of the BSR facility currently present within the system or logical partition

supported_window_mask Bit mask representing supported power-of-2-sized windows that can be allocated

free_bytes Number of BSR bytes currently available (not allocated)

free_window_mask Bit mask representing available (not allocated) power-of-2-sized windows

Description

The bsr_query service can be used to detect the presence and capabilities of the Barrier Synchronization

Register (BSR) facility on a given system or logical partition. If the BSR facility is present on a system or

within a logical partition, a value of 0 is returned, and the parameters, passed by reference, are written

with the appropriate information.

The total_bytes field is written with the total number of BSR bytes currently present in the system or logical

partition. The supported_window_mask field is written with a bitmask, where each bit set indicates the

various power-of-2 window sizes that the total_bytes can be allocated and accessed. For example, a mask

of 0x58 would indicate that windows of size 64 (0x40), 16 (0x10), and 8 (0x8) bytes were supported.

The free_bytes field is written with the number of BSR bytes within the system or logical partition that are

currently unallocated. The free_window_mask field is written with a bitmask, where each bit set indicates

the power-of-2 window sizes that are available for allocating and accessing the remaining free_bytes.

Note: Due to dynamic reconfiguration, the information returned by this query service might become stale.

Execution Environment

The bsr_query service can only be called from the process environment.

Return Values

 0 The BSR facility exists and information is provided.

ENODEV The BSR facility does not exist.

Related Information

The “bsr_alloc Kernel Service” on page 44, “bsr_free Kernel Service” on page 45.

bwrite Kernel Service

Purpose

Writes the specified buffer data.

46 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

int bwrite (bp)

struct buf *bp;

Parameter

 bp Specifies the address of the buffer structure for the buffer to be written.

Description

The bwrite kernel service writes the specified buffer data. If this is a synchronous request, the bwrite

service waits for the I/O to complete.

″Block I/O Buffer Cache Kernel Services: Overview″ in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts describes how the three buffer-cache write routines work.

Execution Environment

The bwrite kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

ERRNO Returns an error number from the /usr/include/sys/errno.h file on error.

Related Information

The brelse kernel service, iowait kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

cancel Device Queue Management Routine

Purpose

Provides a means for cleaning up queue element-related resources when a pending queue element is

eliminated from the queue.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/deviceq.h>

void cancel (ptr)

struct req_qe *ptr;

Parameter

 ptr Specifies the address of the queue element.

Chapter 1. Kernel Services 47

Description

The kernel calls the cancel routine to clean up resources associated with a queue element. Each device

queue can have a cancel routine. This routine is optional and must be specified when the device queue is

created with the creatq service.

The cancel routine is called when a pending queue element is eliminated from the queue. This occurs

when the path is destroyed or when the canclq service is called. The device manager should unpin any

data and detach any cross-memory descriptor.

Any operations started as a result of examining the queue with the peekq service must be stopped.

The cancel routine is also called when a queue is destroyed to get rid of any pending or active queue

elements.

Execution Environment

The cancel-queue-element routine can be called from the process environment only.

cfgnadd Kernel Service

Purpose

Registers a notification routine to be called when system-configurable variables are changed.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/sysconfig.h>

void cfgnadd

(cbp)

struct cfgncb *cbp;

Parameter

 cbp Points to a cfgncb configuration notification control block.

Description

The cfgnadd kernel service adds a cfgncb control block to the list of cfgncb structures that the kernel

maintains. A cfgncb control block contains the address of a notification routine (in its cfgncb.func field) to

be called when a configurable variable is being changed.

The SYS_SETPARMS sysconfig operation allows a user with sufficient authority to change the values of

configurable system parameters. The cfgnadd service allows kernel routines and extensions to register

the notification routine that is called whenever these configurable system variables have been changed.

This notification routine is called in a two-pass process. The first pass performs validity checks on the

proposed changes to the system parameters. During the second pass invocation, the notification routine

performs whatever processing is needed to make these changes to the parameters. This two-pass

procedure ensures that variables used by more than one kernel extension are correctly handled.

To use the cfgnadd service, the caller must define a cfgncb control block using the structure found in the

/usr/include/sys/sysconfig.h file.

48 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The cfgnadd kernel service can be called from the process environment only.

The cfgncb.func notification routine is called in a process environment only.

Related Information

The sysconfig subroutine.

The cfgncb configuration notification control block.

The cfgndel kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

cfgncb Configuration Notification Control Block

Purpose

Contains the address of a notification routine that is invoked each time the sysconfig subroutine is called

with the SYS_SETPARMS command.

Syntax

int func (cmd, cur, new)

int cmd;

struct var *cur;

struct var *new;

Parameters

 cmd Indicates the current operation type. Possible values are CFGV_PREPARE and CFGV_COMMIT, as defined in

the /usr/include/sys/sysconfig.h file.

cur Points to a var structure representing the current values of system-configurable variables.

new Points to a var structure representing the new or proposed values of system-configurable variables.

The cur and new var structures are both in the system address space.

Description

The configuration notification control block contains the address of a notification routine. This structure is

intended to be used as a list element in a list of similar control blocks maintained by the kernel.

Each control block has the following definition:

struct cfgncb {

 struct cfgncb *cbnext; /* next block on chain */

 struct cfgncb *cbprev; /* prev control block on chain */

 int (*func)(); /* notification function */

 };

The cfgndel or cfgnadd kernel service can be used to add or delete a cfgncb control block from the

cfgncb list. To use either of these kernel services, the calling routine must define the cfgncb control block.

This definition can be done using the /usr/include/sys/sysconfig.h file.

Chapter 1. Kernel Services 49

Every time a SYS_SETPARMS sysconfig command is issued, the sysconfig subroutine iterates through

the kernel list of cfgncb blocks, invoking each notification routine with a CFGV_PREPARE command. This

call represents the first pass of what is for the notification routine a two-pass process.

On a CFGV_PREPARE command, the cfgncb.func notification routine should determine if any values of

interest have changed. All changed values should be checked for validity. If the values are valid, a return

code of 0 should be returned. Otherwise, a return value indicating the byte offset of the first field in error in

the new var structure should be returned.

If all registered notification routines create a return code of 0, then no value errors have been detected

during validity checking. In this case, the sysconfig subroutine issues its second pass call to the

cfgncb.func routine and sends the same parameters, although the cmd parameter contains a value of

CFGV_COMMIT. This indicates that the new values go into effect at the earliest opportunity.

An example of notification routine processing might be the following. Suppose the user wishes to increase

the size of the block I/O buffer cache. On a CFGV_PREPARE command, the block I/O notification routine

would verify that the proposed new size for the cache is legal. On a CFGV_COMMIT command, the

notification routine would then make the additional buffers available to the user by chaining more buffers

onto the existing list of buffers.

Related Information

The cfgnadd kernel service, cfgndel kernel service.

The SYS_SETPARMS sysconfig operation.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

cfgndel Kernel Service

Purpose

Removes a notification routine for receiving broadcasts of changes to configurable system variables.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/sysconfig.h>

void cfgndel (cbp)
struct cfgncb *cbp;

Parameter

 cbp Points to a cfgncb configuration notification control block.

Description

The cfgndel kernel service removes a previously registered cfgncb configuration notification control block

from the list of cfgncb structures maintained by the kernel. This service thus allows kernel routines and

extensions to remove their notification routines from the list of those called when a configurable system

variable has been changed.

50 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The address of the cfgncb structure passed to the cfgndel kernel service must be the same address

used to call the cfgnadd service when the structure was originally added to the list. The

/usr/include/sys/sysconfig.h file contains a definition of the cfgncb structure.

Execution Environment

The cfgndel kernel service can be called from the process environment only.

Return Values

The cfgndel service has no return values.

Related Information

The sysconfig subroutine.

The cfgncb configuration notification control block.

The cfgnadd kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

check Device Queue Management Routine

Purpose

Provides a means for performing device-specific validity checking for parameters included in request

queue elements.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/deviceq.h>

int check (type, ptr, length)

int type;

struct req_qe *ptr;

int length;

Parameters

 type Specifies the type of call. The following values are used when the kernel calls the check routine:

CHECK_PARMS + SEND_CMD

Send command queue element.

CHECK_PARMS + START_IO

Start I/O CCB queue element.

CHECK_PARMS + GEN_PURPOSE

General purpose queue element.

ptr Specifies the address of the queue element.

length Specifies the length of the queue element.

Description

The check routine is part of the Device Queue Management Kernel extension. Each device queue can

have a check routine. This routine is optional and must be specified when the device queue is created

Chapter 1. Kernel Services 51

with the creatq service. The enque service calls the check routine before a request queue element is put

on the device queue. The kernel uses the routine’s return value to determine whether to put the queue

element on the device queue or to stop the request.

The kernel does not call the check routine when an acknowledgment or control queue element is sent.

Therefore, the check routine is only called while executing within a process.

The address of the actual queue element is passed to this routine. In the check routine, take care to alter

only the fields that were meant to be altered. This routine does not need to be serialized with the rest of

the server’s routines, because it is only checking the parameters in the queue element.

The check routine can check the request before the request queue element is placed on the device

queue. The advantage of using this routine is that you can filter out unacceptable commands before they

are put on the device queue.

The routine looks at the queue element and returns RC_GOOD if the request is acceptable. If the return

code is not RC_GOOD, the kernel does not place the queue element in a device queue.

Execution Environment

The check routine executes under the process environment of the requester. Therefore, access to data

areas must be handled as if the routine were in an interrupt handler environment. There is, however, no

requirement to pin the code and data as in a normal interrupt handler environment.

Return Values

 RC_GOOD Indicates successful completion.

All other return values are device-specific.

Related Information

The enque kernel service.

clrbuf Kernel Service

Purpose

Sets the memory for the specified buffer structure’s buffer to all zeros.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void clrbuf (bp)

struct buf *bp;

Parameter

 bp Specifies the address of the buffer structure for the buffer to be cleared.

Description

The clrbuf kernel service clears the buffer associated with the specified buffer structure. The clrbuf

service does this by setting to 0 the memory for the buffer that contains the specified buffer structure.

52 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The clrbuf kernel service can be called from either the process or interrupt environment.

Return Values

The clrbuf service has no return values.

Related Information

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

clrjmpx Kernel Service

Purpose

Removes a saved context by popping the last saved jump buffer from the list of saved contexts.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void clrjmpx (jump_buffer)

label_t *jump_buffer;

Parameter

 jump_buffer Specifies the address of the caller-supplied jump buffer that was specified on the call to the

setjmpx service.

Description

The clrjmpx kernel service pops the most recent context saved by a call to the setjmpx kernel service.

Since each longjmpx call automatically pops the jump buffer for the context to resume, the clrjmpx kernel

service should be called only following:

v A normal return from the setjmpx service when the saved context is no longer needed

v Any code to be run that requires the saved context to be correct

The clrjmpx service takes the address of the jump buffer passed in the corresponding setjmpx service.

Execution Environment

The clrjmpx kernel service can be called from either the process or interrupt environment.

Return Values

The clrjmpx service has no return values.

Related Information

The longjmpx kernel service, setjmpx kernel service.

Process and Exception Management Kernel Services and Understanding Exception Handling in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 53

common_reclock Kernel Service

Purpose

Implements a generic interface to the record locking functions.

Syntax

#include <sys/types.h>

#include <sys/flock.h>

common_reclock(gp, size, offset,

lckdat, cmd, retray_fcn, retry_id, lock_fcn,

rele_fcn)

struct gnode *gp;

offset_t size;

offset_t offset;

struct eflock *lckdat;

int cmd;

int (*retry_fcn)();

ulong *retry_id;

int (*lock_fcn)();

int (*rele_fcn)();

Parameters

 gp Points to the gnode that represents the file to lock.

size Identifies the current size of the file in bytes.

offset Specifies the current file offset. The system uses the offset parameter to establish where the lock

region is to begin.

lckdat Points to an eflock structure that describes the lock operation to perform.

cmd Defines the type of operation the kernel service performs. This parameter is a bit mask consisting

of the following bits:

SETFLCK

If set, the system sets or clears a lock. If not set, the lock information is returned.

SLPFLCK

If the lock cannot be granted immediately, wait for it. This is only valid when SETFLCK

flag is set.

INOFLCK

The caller is holding a lock on the object referred to by the gnode. The common_reclock

kernel service calls the release function before sleeping, and the lock function on return

from sleep.

When the cmd parameter is set to SLPFLCK, it indicates that if the lock cannot be granted

immediately, the service should wait for it. If the retry_fcn parameter contains a valid pointer, the

common_reclock kernel service does not sleep, regardless of the SLPFLCK flag.

retry_fcn Points to a retry function. This function is called when the lock is retried. The retry function is not

used if the lock is granted immediately. When the requested lock is blocked by an existing lock, a

sleeping lock is established with the retry function address stored in it. The common_reclock

kernel service then returns a correlating ID (see the retry_id parameter) to the calling routine, along

with an exit value of EAGAIN. When the sleeping lock is awakened, the retry function is called with

the correlating ID as its ID argument.

If this argument is not NULL, then the common_ reclock kernel service does not sleep, regardless

of the SLPFLCK command flag.

retry_id Points to location to store the correlating ID. This ID is used to correlate a retry operation with a

specific lock or set of locks. This parameter is used only in conjunction with retry function. The

value stored in this location is an opaque value. The caller should not use this value for any

purpose other than lock correlation.

54 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

lock_fcn Points to a lock function. This function is invoked by the common_ reclock kernel service to lock a

data structure used by the caller. Typically this is the data structure containing the gnode to lock.

This function is necessary to serialize access to the object to lock. When the common_reclock

kernel service invokes the lock function, it is passed the private data pointer from the gnode as its

only argument.

rele_fcn Points to a release function. This function releases the lock acquired with the lock function. When

the release function is invoked, it is passed the private data pointer from the gnode as its only

argument.

Description

The common_reclock routine implements a generic interface to the record-locking functions. This service

allows distributed file systems to use byte-range locking. The kernel service does the following when a

requested lock is blocked by an existing lock:

v Establishes a sleeping lock with the retry function in the lock structure. The address of the retry function

is specified by the retry_fcn parameter.

v Returns a correlating ID value to the caller along with an exit value of EAGAIN. The ID is stored in the

retry_id parameter.

v Calls the retry function when the sleeping lock is later awakened, the retry function is called with the

retry_id parameter as its argument.

Note: Before a call to the common_ reclock subroutine, the eflock structure must be completely filled

in. The lckdat parameter points to the eflock structure.

The caller can hold a serialization lock on the data object pointed to by the gnode. However, if the caller

expects to sleep for a blocking-file lock and is holding the object lock, the caller must specify a lock

function with the lock_fcn parameter and a release function with the rele_fcn parameter.

The lock is described by a eflock structure. This structure is identified by the lckdat parameter. If a read

lock (F_RDLCK) or write lock (F_WRLCK) is set with a length of 0, the entire file is locked. Similarly, if

unlock (F_UNLCK) is set starting at 0 for 0 length, all locks on this file are unlocked. This method is how

locks are removed when a file is closed.

To allow the common_reclock kernel service to update the per-gnode lock list, the service takes a

GN_RECLK_LOCK lock during processing.

Execution Environment

The common_reclock kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EAGAIN Indicates a lock cannot be granted because of a blocking lock and the caller did not request that the

operation sleep.

ERRNO Indicates an error. Refer to the fcntl system call for the list of possible values.

Related Information

The fcntl subroutine.

The flock.h file.

Chapter 1. Kernel Services 55

compare_and_swap Kernel Service

Purpose

Conditionally updates or returns a single word variable atomically.

Syntax

#include <sys/atomic_op.h>

boolean_t compare_and_swap (word_addr, old_val_addr, new_val)

atomic_p word_addr;

int *old_val_addr;

int new_val;

Parameters

 word_addr Specifies the address of the single word variable.

old_val_addr Specifies the address of the old value to be checked against (and conditionally updated with)

the value of the single word variable.

new_val Specifies the new value to be conditionally assigned to the single word variable.

Description

The compare_and_swap kernel service performs an atomic (uninterruptible) operation which compares

the contents of a single word variable with a stored old value; if equal, a new value is stored in the single

word variable, and TRUE is returned, otherwise the old value is set to the current value of the single word

variable, and FALSE is returned.

The compare_and_swap kernel service is particularly useful in operations on singly linked lists, where a

list pointer must not be updated if it has been changed by another thread since it was read.

Note: The word variable must be aligned on a full word boundary.

Execution Environment

The compare_and_swap kernel service can be called from either the process or interrupt environment.

Return Values

 TRUE Indicates that the single word variable was equal to the old value, and has been set to the new value.

FALSE Indicates that the single word variable was not equal to the old value, and that its current value has been

returned in the location where the old value was stored.

Related Information

The fetch_and_add kernel service, fetch_and_and kernel service, fetch_and_or kernel service.

Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts

copyin Kernel Service

Purpose

Copies data between user and kernel memory.

56 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int copyin (uaddr, kaddr, count)

char *uaddr;

char *kaddr;

int count;

Parameters

 uaddr Specifies the address of user data.

kaddr Specifies the address of kernel data.

count Specifies the number of bytes to copy.

Description

The copyin kernel service copies the specified number of bytes from user memory to kernel memory. This

service is provided so that system calls and device driver top half routines can safely access user data.

The copyin service ensures that the user has the appropriate authority to access the data. It also provides

recovery from paging I/O errors that would otherwise cause the system to crash.

The copyin service should be called only while executing in kernel mode in the user process.

Execution Environment

The copyin kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EFAULT Indicates that the user has insufficient authority to access the data, or the address

specified in the uaddr parameter is not valid.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

ENOSPC Indicates insufficient file system or paging space.

Related Information

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

The copyinstr kernel service, copyout kernel service.

copyin64 Kernel Service

Purpose

Copies data between user and kernel memory.

Syntax

#include <sys/types.h>

#include <sys/ernno.h>

#include <sys/uio.h>

int copyin64 (uaddr64, kaddr, count);

Chapter 1. Kernel Services 57

unsigned long long uaddr64;

char * kaddr;

int count;

Parameters

 uaddr64 Specifies the address of user data.

kaddr Specifies the address of kernel data.

count Specifies the number of bytes to copy.

Description

The copyin64 kernel service copies the specified number of bytes from user memory to kernel memory.

This service is provided so that system calls and device driver top half routines can safely access user

data. The copyin64 service ensures that the user has the appropriate authority to access the data. It also

provides recovery from paging I/O errors that would otherwise cause the system to crash.

This service will operate correctly for both 32-bit and 64-bit user address spaces. The uaddr64 parameter

is interpreted as being a non-remapped 32-bit address for the case where the current user address space

is 32- bits. If the current user address space is 64-bits, then uaddr64 is treated as a 64-bit address.

The copyin64 service should be called only while executing in kernel mode in the user process.

Execution Environment

The copyin64 kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EFAULT Indicates that the user has insufficient authority to access the data, or the address

specified in the uaddr64 parameter is not valid.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

ENOSPC Indicates insufficient file system or paging space.

Related Information

The copyinstr64 kernel service and copyout64 kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

copyinstr Kernel Service

Purpose

Copies a character string (including the terminating null character) from user to kernel space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

On the 32-bit kernel, the syntax for the copyinstr Kernel Service is:

58 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int copyinstr (from, to, max, actual)

caddr_t from;

caddr_t to;

uint max;

uint *actual;

On the 64-bit kernel, the syntax for the copyinstr subroutine is:

int copyinstr (from, to, max, actual)

void *from;

void *to;

size_t max;

size_t *actual;

Parameters

 from Specifies the address of the character string to copy.

to Specifies the address to which the character string is to be copied.

max Specifies the number of characters to be copied.

actual Specifies a parameter, passed by reference, that is updated by the copyinstr service with the actual

number of characters copied.

Description

The copyinstr kernel service permits a user to copy character data from one location to another. The

source location must be in user space or can be in kernel space if the caller is a kernel process. The

destination is in kernel space.

Execution Environment

The copyinstr kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

E2BIG Indicates insufficient space to complete the copy.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOSPC Indicates insufficient file system or paging space.

EFAULT Indicates that the user has insufficient authority to access the data or the address specified in the uaddr

parameter is not valid.

Related Information

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

copyinstr64 Kernel Service

Purpose

Copies data between user and kernel memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

On the 32-bit kernel, the syntax for the copyinstr64 subroutine is:

Chapter 1. Kernel Services 59

int copyinstr64 (from64, to, max, actual)

unsigned long long from64;

caddr_t to;

uint max;

uint *actual;

On the 64-bit kernel, the syntax for the copyinstr64 subroutine is:

int copyinstr64 (from64, to, max, actual)

void *from64;

void *to;

size_t max;

size_t *actual;

Parameters

 from64 Specifies the address of character string to copy.

to Specifies the address to which the character string is to be copied.

max Specifies the number of characters to be copied.

actual Specifies a parameter, passed by reference, that is updated by the copyinstr64 service with the actual

number of characters copied.

Description

The copyinstr64 service permits a user to copy character data from one location to another. The source

location must be in user space or can be in kernel space if the caller is a kernel process. The destination

is in kernel space.

This service will operate correctly for both 32-bit and 64-bit user address spaces. The from64 parameter is

interpreted as being a non-remapped 32-bit address for the case where the current user address space is

32- bits. If the current user address space is 64-bits, then from64 is treated as a 64-bit address.

Execution Environment

The copyinstr64 kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

E2BIG Indicates insufficient space to complete the copy.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOSPC Indicates insufficient file system or paging space.

EFAULT Indicates that the user has insufficient authority to access the data, or the address specified in the

from64 parameter is not valid.

Related Information

The copyinstr64 kernel service and copyout64 kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

copyout Kernel Service

Purpose

Copies data between user and kernel memory.

60 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int copyout (kaddr, uaddr, count)

char *kaddr;

char *uaddr;

int count;

Parameters

 kaddr Specifies the address of kernel data.

uaddr Specifies the address of user data.

count Specifies the number of bytes to copy.

Description

The copyout service copies the specified number of bytes from kernel memory to user memory. It is

provided so that system calls and device driver top half routines can safely access user data. The

copyout service ensures that the user has the appropriate authority to access the data. This service also

provides recovery from paging I/O errors that would otherwise cause the system to crash.

The copyout service should be called only while executing in kernel mode in the user process.

Execution Environment

The copyout kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EFAULT Indicates that the user has insufficient authority to access the data or the address

specified in the uaddr parameter is not valid.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

ENOSPC Indicates insufficient file system or paging space.

Related Information

The copyin kernel service, copyinstr kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

copyout64 Kernel Service

Purpose

Copies data between user and kernel memory.

Syntax

#include <sys/types.h>

#include <sys/ernno.h>

#include <sys/uio.h>

int copyout64 (kaddr, uaddr64, count);

Chapter 1. Kernel Services 61

char * kaddr;

unsigned long long uaddr64;

int count;

Parameters

 kaddr Specifies the address of kernel data.

uaddr64 Specifies the address of user data.

count Specifies the number of bytes to copy.

Description

The copyout64 service copies the specified number of bytes from kernel memory to user memory. It is

provided so that system calls and device driver top half routines can safely access user data. The

copyout64 service ensures that the user has the appropriate authority to access the data. This service

also provides recovery from paging I/O errors that would otherwise cause the system to crash.

This service will operate correctly for both 32-bit and 64-bit user address spaces. The uaddr64 parameter

is interpreted as being a non-remapped 32-bit address for the case where the current user address space

is 32- bits. If the current user address space is 64-bits, then uaddr64 is treated as a 64-bit address.

The copyout64 service should be called only while executing in kernel mode in the user process.

Execution Environment

The copyout64 kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EFAULT Indicates that the user has insufficient authority to access the data, or the address

specified in the uaddr64 parameter is not valid.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

ENOSPC Indicates insufficient file system or paging space.

Related Information

The copyinstr64 kernel service and copyin64 kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

crcopy Kernel Service

Purpose

Copies a credentials structure to a new one and frees the old one.

Syntax

#include <sys/cred.h>

62 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

struct ucred * crcopy (cr)

struct ucred * cr;

Parameter

 cr Pointer to the credentials structure that is to be copied and then freed.

Description

The crcopy kernel service allocates a new credentials structure that is initialized from the contents of the

cr parameter. The reference to cr is then freed and a pointer to the new structure returned to the caller.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup

kernel service, crget kernel service, or the crref kernel service.

Execution Environment

The crcopy kernel service can be called from the process environment only.

Return Values

 Nonzero value A pointer to a newly allocated and initialized credentials structure.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

crdup Kernel Service

Purpose

Copies a credentials structure to a new one.

Syntax

#include <sys/cred.h>

struct ucred * crdup (cr)

struct ucred * cr;

Parameter

 cr Pointer to the credentials structure that is to be copied.

Description

The crdup kernel service allocates a new credentials structure that is initialized from the contents of the cr

parameter.

Execution Environment

The crdup kernel service can be called from the process environment only.

Chapter 1. Kernel Services 63

Return Values

 Nonzero value A pointer to a newly allocated and initialized credentials structure.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

creatp Kernel Service

Purpose

Creates a new kernel process.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

pid_t creatp()

Description

The creatp kernel service creates a kernel process. It also allocates and initializes a process block for the

new process. Initialization involves these three tasks:

v Assigning an identifier to the kernel process.

v Setting the process state to idle.

v Initializing its parent, child, and sibling relationships.

″Using Kernel Processes″ in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts has a more detailed discussion of how the creatp kernel service creates and initializes kernel

processes.

The process calling the creatp service must subsequently call the initp kernel service to complete the

process initialization. The initp service also makes the newly created process runnable.

Execution Environment

The creatp kernel service can be called from the process environment only.

Return Values

 -1 Indicates an error.

Upon successful completion, the creatp kernel service returns the process identifier for the new kernel

process.

Related Information

The initp kernel service.

64 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

CRED_GETEUID, CRED_GETRUID, CRED_GETSUID, CRED_GETLUID,

CRED_GETEGID, CRED_GETRGID, CRED_GETSGID and

CRED_GETNGRPS Macros

Purpose

Credentials structure field accessing macros.

Syntax

#include <sys/cred.h>

uid_t CRED_GETEUID (crp)

uid_t CRED_GETRUID (crp)

uid_t CRED_GETSUID (crp)

uid_t CRED_GETLUID (crp)

gid_t CRED_GETEGID (crp)

gid_t CRED_GETRGID (crp)

gid_t CRED_GETSGID (crp)

int CRED_GETNGRPS (crp)

Parameter

 crp Pointer to a credentials structure

Description

These macros provide a means for accessing the user and group identifier fields within a credentials

structure. The fields within a ucred structure should not be accessed directly as the field names and their

locations are subject to change.

The CRED_GETEUID macro returns the effective user ID field from the credentials structure referenced by

crp.

The CRED_GETRUID macro returns the real user ID field from the credentials structure referenced by crp.

The CRED_GETSUID macro returns the saved user ID field from the credentials structure referenced by

crp.

The CRED_GETLUID macro returns the login user ID field from the credentials structure referenced by

crp.

The CRED_GETEUID macro returns the effective group ID field from the credentials structure referenced

by crp.

The CRED_GETRUID macro returns the real group ID field from the credentials structure referenced by

crp.

The CRED_GETSUID macro returns the saved group ID field from the credentials structure referenced by

crp.

The CRED_GETNGRPS macro returns the number of concurrent group ID values stored within the

credentials structure referenced by crp.

These macros are defined in the system header file <sys/cred.h>.

Chapter 1. Kernel Services 65

Execution Environment

The credentials macros called with any valid credentials pointer.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

crexport Kernel Service

Purpose

Copies an internal format credentials structure to an external format credentials structure.

Syntax

#include <sys/cred.h>

void crexport (src, dst)

struct ucred * src;

struct ucred_ext * dst;

Parameter

 src Pointer to the internal credentials structure.

dst Pointer to the external credentials structure.

Description

The crexport kernel service copies from the internal credentials structure referenced by src into the

external credentials structure referenced by dst. The external credentials structure is guaranteed to be

compatible between releases. Fields within a ucred structure must not be referenced directly as the field

names and locations within that structure are subject to change.

Execution Environment

The crexport kernel service can be called from the process environment only.

Return Values

This kernel service does not have a return value.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

crfree Kernel Service

Purpose

Releases a reference count on a credentials structure.

Syntax

#include <sys/cred.h>

66 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

void crfree (cr)

struct ucred * cr;

Parameter

 cr Pointer to the credentials structure that is to have a reference freed.

Description

The crfree kernel service deallocates a reference to a credentials structure. The credentials structure is

deallocated when no references remain.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup

kernel service, crget kernel service, or the crref kernel service.

Execution Environment

The crfree kernel service can be called from the process environment only.

Return Values

No value is returned by this kernel service.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

crget Kernel Service

Purpose

Allocates a new, uninitialized credentials structure to a new one and frees the old one.

Syntax

#include <sys/cred.h>

struct ucred * crget (void)

Parameter

This kernel service does not require any parameters.

Description

The crget kernel service allocates a new credentials structure. The structure is initialized to all zero

values, and the reference count is set to 1.

Execution Environment

The crget kernel service can be called from the process environment only.

Return Values

 Nonzero value A pointer to a newly allocated and initialized credentials structure.

Chapter 1. Kernel Services 67

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

crhold Kernel Service

Purpose

Increments the reference count for a credentials structure.

Syntax

#include <sys/cred.h>

void crhold (cr)

struct ucred * cr;

Parameter

 cr Pointer to the credentials structure that will have its reference count incremented.

Description

The crhold kernel service increments the reference count of a credentials structure.

Note: Reference counts that are incremented with the crhold kernel service must be decremented with

the crfree kernel service.

Execution Environment

The crhold kernel service can be called from the process environment only.

Return Values

No value is returned by this kernel service.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

crref Kernel Service

Purpose

Increments the reference count for the current credentials structure.

Syntax

#include <sys/cred.h>

struct ucred * crref (void)

68 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

This kernel service does not require any parameters.

Description

The crref kernel service increments the reference count of the current credentials structure and returns a

pointer to the current credentials structure to the invoker.

Note: References that are allocated with the crref kernel service must be released with the crfree kernel

service.

Execution Environment

The crref kernel service can be called from the process environment only.

Return Values

 Nonzero value A pointer to the current credentials structure.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

crset Kernel Service

Purpose

Sets the current security credentials.

Syntax

#include <sys/cred.h>

void crset (cr)

struct ucred * cr;

Parameter

 cr Pointer to the credentials structure that will become the new, current security credentials.

Description

The crset kernel service replaces the current security credentials with the supplied value. The existing

structure will be deallocated.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup

kernel service, crget kernel service, or the crref kernel service.

Execution Environment

The crset kernel service can be called from the process environment only.

Return Values

No value is returned by this kernel service.

Chapter 1. Kernel Services 69

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

curtime Kernel Service

Purpose

Reads the current time into a time structure.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/time.h>

void curtime (timestruct)

struct timestruc_t *timestruct;

Parameter

 timestruct Points to a timestruc_t time structure defined in the /usr/include/sys/time.h file. The curtime

kernel service updates the fields in this structure with the current time.

Description

The curtime kernel service reads the current time into a time structure defined in the

/usr/include/sys/time.h file. This service updates the tv_sec and tv_nsec fields in the time structure,

pointed to by the timestruct parameter, from the hardware real-time clock. The kernel also maintains and

updates a memory-mapped time tod structure. This structure is updated with each clock tick.

The kernel also maintains two other in-memory time values: the lbolt and time values. The three

in-memory time values that the kernel maintains (the tod, lbolt, and time values) are available to kernel

extensions. The lbolt in-memory time value is the number of timer ticks that have occurred since the

system was booted. This value is updated once per timer tick. The time in-memory time value is the

number of seconds since Epoch. The kernel updates the value once per second.

Note: POSIX 1003.1 defines ″seconds since Epoch″ as a ″value interpreted as the number of seconds

between a specified time and the Epoch″. It further specifies that a ″Coordinated Universal Time

name specified in terms of seconds (tm_sec), minutes (tm_min), hours (tm_hour), and days since

January 1 of the year (tm_yday), and calendar year minus 1900 (tm_year) is related to a time

represented as seconds since the Epoch, according to the following expression: tm_sec + tm_min *

60 tm_hour*3600 + tm_yday * 86400 + (tm_year - 70) * 31536000 ((tm_year - 69) / 4) * 86400 if

the year is greater than or equal to 1970, otherwise it is undefined.″

The curtime kernel service does not page-fault if a pinned stack and input time structure are used. Also,

accessing the lbolt, time, and tod in-memory time values does not cause a page fault since they are in

pinned memory.

Execution Environment

The curtime kernel service can be called from either the process or interrupt environment.

The tod, time, and lbolt memory-mapped time values can also be read from the process or interrupt

handler environment. The timestruct parameter and stack must be pinned when the curtime service is

called in an interrupt handler environment.

70 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

The curtime kernel service has no return values.

Related Information

Timer and Time-of-Day Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

d_align Kernel Service

Purpose

Provides needed information to align a buffer with a processor cache line.

Library

Kernel Extension Runtime Routines Library (libsys.a)

Syntax

int d_align()

Description

To maintain cache consistency with system memory, buffers must be aligned. The d_align kernel service

helps provide that function by returning the maximum processor cache-line size. The cache-line size is

returned in log2 form.

Execution Environment

The d_align service can be called from either the process or interrupt environment.

Related Information

The d_cflush kernel service, d_roundup kernel service.

Understanding Direct Memory Access (DMA) Transfer in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

d_alloc_dmamem Kernel Service

Purpose

Allocates an area of “dma-able” memory.

Syntax

void *

 d_alloc_dmamem(d_handle_t device_handle, size_t size,int align)

Description

Exported, documented kernel service supported on PCI-based systems only. The d_alloc_dmamem

kernel service allocates an area of “dma-able” memory which satisfies the constraints associated with a

DMA handle, specified via the device_handle parameter. The constraints (such as need for contiguous

physical pages or need for 32-bit physical address) are intended to guarantee that a given adapter will be

able to access the physical pages associated with the allocated memory. A driver associates such

constraints with a dma handle via the flags parameter on its d_map_init call.

Chapter 1. Kernel Services 71

The area to be allocated is the number of bytes in length specified by the size parameter, and is aligned

on the byte boundary specified by the align parameter. The align parameter is actually the log base 2 of

the desired address boundary. For example, an align value of 12 requests that the allocated area be

aligned on a 4096 byte boundary.

d_alloc_dmamem is appropriate to be used for long-term mappings. Depending on the system

configuration and the constraints encoded in the device_handle, the underlying storage will come from

either the real_heap (rmalloc service) or pinned_heap (xmalloc service).

Notes:

1. The d_free_dmamem service should be called to free allocation from a previous d_alloc_dmamem

call.

2. The d_alloc_dmamem kernel service can be called from the process environment only.

Parameters

 device_handle Indicates the dma handle.

align Specifies alignment characteristics.

size_t size Specifies number of bytes to allocate.

Return Values

 Address of allocated

area

Indicates that d_alloc_dmamem was successful.

NULL Requested memory could not be allocated.

Related Information

The d_free_dmamem kernel service, d_map_init kernel service, rmalloc kernel service, xmalloc kernel

service.

d_cflush Kernel Service

Purpose

Flushes the processor and I/O channel controller (IOCC) data caches when mapping bus device DMA with

the long-term DMA_WRITE_ONLY option.

Syntax

int d_cflush (channel_id, baddr, count, daddr)

int channel_id;

caddr_t baddr;

size_t count;

caddr_t daddr;

Parameters

 channel_id Specifies the DMA channel ID returned by the d_init kernel service.

baddr Designates the address of the memory buffer.

count Specifies the length of the memory buffer transfer in bytes.

daddr Designates the address of the device corresponding to the transfer.

72 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The d_cflush kernel service should be called after data has been modified in a buffer that will undergo

direct memory access (DMA) processing. Through DMA processing, this data is sent to a device where the

d_master kernel service with the DMA_WRITE_ONLY option has already mapped the buffer for device

DMA. The d_cflush kernel service is not required if the DMA_WRITE_ONLY option is not used or if the

buffer is mapped before each DMA operation by calling the d_master kernel service.

The d_cflush kernel service flushes the processor cache for the involved cache lines and invalidates any

previously retrieved data that may be in the IOCC buffers for the designated channel. This most frequently

occurs when using long-term buffer mapping for DMA support to or from a device.

Long-Term DMA Buffer Mapping

The long-term DMA buffer mapping approach is frequently used when a pool of buffers is defined for

sending commands and obtaining responses from an adapter using bus master DMA. This approach is

also used frequently in the communications field where buffers can come from a common pool such as the

mbuf pool or a pool used for protocol headers.

When using a fixed pool of buffers, the d_master kernel service is used only once to map the pool’s

address and range. The device driver then modifies the data in the buffers. It must also flush the data from

the processor and invalidate the IOCC data cache involved in transfers with the device. The IOCC cache

must be invalidated because the data in the IOCC data cache may be stale due to the last DMA operation

to or from the buffer area that has just been modified for the next operation.

The d_cflush kernel service permits the flushing of the processor cache and making the required IOCC

cache not valid. The device driver should use this service after modifying the data in the buffer and before

sending the command to the device to start the DMA operation.

Once DMA processing has been completed, the device driver should call the d_complete service to check

for errors and ensure that any data read from the device has been flushed to memory.

Note: The d_cflush kernel service is not supported on the 64-bit kernel.

Execution Environment

The d_cflush kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the transfer was successfully completed.

EINVAL Indicates the presence of an invalid parameter.

Related Information

I/O Kernel Services and Understanding Direct Memory Access (DMA) Transfer in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

delay Kernel Service

Purpose

Suspends the calling process for the specified number of timer ticks.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

Chapter 1. Kernel Services 73

void delay

(ticks)

int ticks;

Parameter

 ticks Specifies the number of timer ticks that must occur before the process is reactivated. Many timer ticks can

occur per second.

Description

The delay kernel service suspends the calling process for the number of timer ticks specified by the ticks

parameter.

The HZ value in the /usr/include/sys/m_param.h file can be used to determine the number of ticks per

second.

Execution Environment

The delay kernel service can be called from the process environment only.

Return Values

The delay service has no return values.

Related Information

Timer and Time-of-Day Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

del_domain_af Kernel Service

Purpose

Deletes an address family from the Address Family domain switch table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/domain.h>

int

del_domain_af (domain)

struct domain *domain;

Parameter

 domain Specifies the address family.

Description

The del_domain_af kernel service deletes the address family specified by the domain parameter from the

Address Family domain switch table.

Execution Environment

The del_domain_af kernel service can be called from either the process or interrupt environment.

74 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Value

 EINVAL Indicates that the specified address is not found in the Address Family domain switch table.

Example

To delete an address family from the Address Family domain switch table, invoke the del_domain_af

kernel service as follows:

del_domain_af(&inetdomain);

In this example, the family to be deleted is inetdomain.

Related Information

The add_domain_af kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

del_input_type Kernel Service

Purpose

Deletes an input type from the Network Input table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/if.h>

int del_input_type

(type)

u_short type;

Parameter

 type Specifies which type of protocol the packet contains. This parameter is a field in a packet.

Description

The del_input_type kernel service deletes an input type from the Network Input table to disable the

reception of the specified packet type.

Execution Environment

The del_input_type kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the type was successfully deleted.

ENOENT Indicates that the del_input_type service could not find the type in the Network Input table.

Chapter 1. Kernel Services 75

Examples

1. To delete an input type from the Network Input table, invoke the del_input_type kernel service as

follows:

del_input_type(ETHERTYPE_IP);

In this example, ETHERTYPE_IP specifies that Ethernet IP packets should no longer be processed.

2. To delete an input type from the Network Input table, invoke the del_input_type kernel service as

follows:

del_input_type(ETHERTYPE_ARP);

In this example, ETHERTYPE_ARP specifies that Ethernet ARP packets should no longer be processed.

Related Information

The add_input_type kernel service, find_input_type kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

del_netisr Kernel Service

Purpose

Deletes a network software interrupt service routine from the Network Interrupt table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/netisr.h>

int del_netisr (soft_intr_level)

u_short soft_intr_level;

Parameter

 soft_intr_level Specifies the software interrupt level to delete. This parameter must be greater than or

equal to 0 and less than NETISR_MAX. Refer to netisr.h for the range of values of

soft_intr_level that are already in use. Also, other kernel extensions that are not AIX

and that use network ISRs currently running on the system can make use of additional

values not mentioned in netisr.h.

Description

The del_netisr kernel service deletes the network software interrupt service routine specified by the

soft_intr_level parameter from the Network Software Interrupt table.

Execution Environment

The del_netisr kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the software interrupt service was successfully deleted.

ENOENT Indicates that the software interrupt service was not found in the Network Software Interrupt table.

76 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Example

To delete a software interrupt service from the Network Software Interrupt table, invoke the kernel service

as follows:

del_netisr(NETISR_IP);

In this example, the software interrupt routine to be deleted is NETISR_IP.

Related Information

The add_netisr kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

del_netopt Macro

Purpose

Deletes a network option structure from the list of network options.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/netopt.h>

del_netopt (option_name_symbol)

option_name_symbol;

Parameter

 option_name_symbol Specifies the symbol name used to construct the netopt structure and default

names.

Description

The del_netopt macro deletes a network option from the linked list of network options. After the

del_netopt service is called, the option is no longer available to the no command.

Execution Environment

The del_netopt macro can be called from either the process or interrupt environment.

Return Values

The del_netopt macro has no return values.

Related Information

The no command.

The add_netopt macro.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Chapter 1. Kernel Services 77

detach Device Queue Management Routine

Purpose

Provides a means for performing device-specific processing when the detchq kernel service is called.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/deviceq.h>

int detach(dev_parms, path_id)

caddr_t dev_parms;

cba_id path_id;

Parameters

 dev_parms Passed to creatd service when the detach routine is defined.

path_id Specifies the path identifier for the queue that is being detached from.

Description

The detach routine is part of the Device Queue Management kernel extension. Each device queue can

have a detach routine. This routine is optional and must be specified when the device queue is defined

with the creatd service. The detchq service calls the detach routine each time a path to the device queue

is removed.

To ensure that the detach routine is not called while a queue element from this client is still in the device

queue, the kernel puts a detach control queue element at the end of the device queue. The server knows

by convention that a detach control queue element signifies completion of all pending queue elements for

that path. The kernel calls the detach routine after the detach control queue element is processed.

The detach routine executes under the process under which the detchq service is called. The kernel does

not serialize the execution of this service with the execution of any of the other server routines.

Execution Environment

The detach routine can be called from the process environment only.

Return Values

 RC_GOOD Indicates successful completion.

A return value other than RC_GOOD indicates an irrecoverable condition causing system failure.

devdump Kernel Service

Purpose

Calls a device driver dump-to-device routine.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

78 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int devdump

(devno, uiop, cmd, arg, chan, ext)

dev_t devno;

struct uio * uiop;

int cmd, arg, ext;

Parameters

 devno Specifies the major and minor device numbers.

uiop Points to the uio structure containing write parameters.

cmd Specifies which dump command to perform.

arg Specifies a parameter or address to a parameter block for the specified command.

chan Specifies the channel ID.

ext Specifies the extended system call parameter.

Description

The kernel or kernel extension calls the devdump kernel service to initiate a memory dump to a device

when writing dump data and then to terminate the dump to the target device.

The devdump service calls the device driver’s dddump routine, which is found in the device switch table

for the device driver associated with the specified device number. If the device number (specified by the

devno parameter) is not valid or if the associated device driver does not have a dddump routine, an

ENODEV return value is returned.

If the device number is valid and the specified device driver has a dddump routine, the routine is called.

If the device driver’s dddump routine is successfully called, the return value for the devdump service is

set to the return value provided by the device’s dddump routine.

Execution Environment

The devdump kernel service can be called in either the process or interrupt environment, as described

under the conditions described in the dddump routine.

Return Values

 0 Indicates a successful operation.

ENODEV Indicates that the device number is not valid or that no dddump routine is registered for this device.

The dddump device driver routine provides other return values.

Related Information

The dddump device driver entry point.

The dmp_prinit kernel service.

Kernel Extension and Device Driver Management Kernel Services and How Device Drivers are Accessed

in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 79

devstrat Kernel Service

Purpose

Calls a block device driver’s strategy routine.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int devstrat (bp)

struct buf *bp;

Parameter

 bp Points to the buf structure specifying the block transfer parameters.

Description

The kernel or kernel extension calls the devstrat kernel service to request a block data transfer to or from

the device with the specified device number. This device number is found in the buf structure. The

devstrat service can only be used for the block class of device drivers.

The devstrat service calls the device driver’s ddstrategy routine. This routine is found in the device

switch table for the device driver associated with the specified device number found in the b_dev field. The

b_dev field is found in the buf structure pointed to by the bp parameter. The caller of the devstrat service

must have an iodone routine specified in the b_iodone field of the buf structure. Following the return from

the device driver’s ddstrategy routine, the devstrat service returns without waiting for the I/O to be

performed.

On multiprocessor systems, all iodone routines run by default on the first processor started when the

system was booted. This ensures compatibility with uniprocessor device drivers. If the iodone routine has

been designed to be multiprocessor-safe, set the B_MPSAFE flag in the b_flags field of the buf structure

passed to the devstrat kernel service. The iodone routine will then run on any available processor.

If the device major number is not valid or the specified device is not a block device driver, the devstrat

service returns the ENODEV return code. If the device number is valid, the device driver’s ddstrategy

routine is called with the pointer to the buf structure (specified by the bp parameter).

Execution Environment

The devstrat kernel service can be called from either the process or interrupt environment.

Note: The devstrat kernel service can be called in the interrupt environment only if its priority level is

INTIODONE or lower.

Return Values

 0 Indicates a successful operation.

ENODEV Indicates that the device number is not valid or that no ddstrategy routine registered. This value is also

returned when the specified device is not a block device driver. If this error occurs, the devstrat service

can cause a page fault.

80 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The iodone kernel service.

The ddstategy routine.

The buf structure.

Kernel Extension and Device Driver Management Kernel Services and How Device Drivers are Accessed

in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

devswadd Kernel Service

Purpose

Adds a device entry to the device switch table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/device.h>

int devswadd (devno, dswptr)

dev_t devno;

struct devsw *dswptr;

Parameters

 devno Specifies the major and minor device numbers to be associated with the specified entry in the device

switch table.

dswptr Points to the device switch structure to be added to the device switch table.

Description

The devswadd kernel service is typically called by a device driver’s ddconfig routine to add or replace

the device driver’s entry points in the device switch table. The device switch table is a table of device

switch (devsw) structures indexed by the device driver’s major device number. This table of structures is

used by the device driver interface services in the kernel to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index in the device switch

table where the devswadd service must place the specified device switch entry. Before this service copies

the device switch structure into the device switch table, it checks the existing entry to determine if any

opened device is using it. If an opened device is currently occupying the entry to be replaced, the

devswadd service does not perform the update. Instead, it returns an EEXIST error value. If the update is

successful, it returns a value of 0.

Entry points in the device switch structure that are not supported by the device driver must be handled in

one of two ways. If a call to an unsupported entry point should result in the return of an error code, then

the entry point must be set to the nodev routine in the structure. As a result, any call to this entry point

automatically invokes the nodev routine, which returns an ENODEV error code. The kernel provides the

nodev routine.

Otherwise, a call to an unsupported entry point should be treated as a no-operation function. Then the

corresponding entry point should be set to the nulldev routine. The nulldev routine, which is also provided

by the kernel, performs no operation if called and returns a 0 return code.

Chapter 1. Kernel Services 81

On multiprocessor systems, all device driver routines run by default on the first processor started when the

system was booted. This ensures compatibility with uniprocessor device drivers. If the device driver being

added has been designed to be multiprocessor-safe, set the DEV_MPSAFE flag in the d_opts field of the

devsw structure passed to the devswadd kernel service. The device driver routines will then run on any

available processor.

All other fields within the structure that are not used should be set to 0. Some fields in the structure are for

kernel use; the devswadd service does not copy these fields into the device switch table. These fields are

documented in the /usr/include/device.h file.

Execution Environment

The devswadd kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EEXIST Indicates that the specified device switch entry is in use and cannot be replaced.

ENOMEM Indicates that the entry cannot be pinned due to insufficient real memory.

EINVAL Indicates that the major device number portion of the devno parameter exceeds the maximum permitted

number of device switch entries.

Related Information

The devswchg kernel service, devswdel kernel service, devswqry kernel service.

The ddconfig device driver entry point.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

devswchg Kernel Service

Purpose

Alters a device switch entry point in the device switch table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/device.h>

int devswchg (devno, type, newfunc, oldfunc);

dev_t devno;

int type;

int (*newfunc) ();

int (**oldfunc)();

Parameters

 devno Specifies the major and minor device numbers of the device to be changed.

82 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

type Specifies the device switch entry point to alter. The type parameter can have one of the following

values:

DSW_BLOCK

Alters the ddstrategy entry point.

DSW_CONFIG

Alters the ddconfig entry point.

DSW_CREAD

Alters the ddread entry point.

DSW_CWRITE

Alters the ddwrite entry point.

DSW_DUMP

Alters the dddump entry point.

DSW_MPX

Alters the ddmpx entry point.

DSW_SELECT

Alters the ddselect entry point.

DSW_TCPATH

Alters the ddrevoke entry point.

newfunc Specifies the new value for the device switch entry point.

oldfunc Specifies that the old value of the device switch entry point be returned here.

Description

The devswchg kernel service alters the value of a device switch entry point (function pointer) after a

device switch table entry has been added by the devswadd kernel service. The device switch entry point

specified by the type parameter is set to the value of the newfunc parameter. Its previous value is returned

in the memory addressed by the oldfunc parameter. Only one device switch entry can be altered per call.

If the devswchg kernel service is unsuccessful, the value referenced by the oldfunc parameter is not

defined.

Execution Environment

The devswchg kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates the Type command was not valid.

ENODEV Indicates the device switch entry specified by the devno parameter is not defined.

Related Information

The devswadd kernel service.

List of Kernel Extension and Device Driver Management Kernel Services and How Device Drivers are

Accessed in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

devswdel Kernel Service

Purpose

Deletes a device driver entry from the device switch table.

Chapter 1. Kernel Services 83

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/device.h>

int devswdel

(devno)

dev_t devno;

Parameter

 devno Specifies the major and minor device numbers of the device to be deleted.

Description

The devswdel kernel service is typically called by a device driver’s ddconfig routine on termination to

remove the device driver’s entry points from the device switch table.The device switch table is a table of

device switch (devsw) structures indexed by the device driver’s major device number. The device driver

interface services use this table of structures in the kernel to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index into the device

switch table for the entry to be removed. Before the device switch structure is removed, the existing entry

is checked to determine if any opened device is using it.

If an opened device is currently occupying the entry to be removed, the devswdel service does not

perform the update. Instead, it returns an EEXIST return code. If the removal is successful, a return code

of 0 is set.

The devswdel service removes a device switch structure entry from the table by marking the entry as

undefined and setting all of the entry point fields within the structure to a nodev value. As a result, any

callers of the removed device driver return an ENODEV error code. If the specified entry is already marked

undefined, the devswdel service returns an ENODEV error code.

Execution Environment

The devswdel kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EEXIST Indicates that the specified device switch entry is in use and cannot be removed.

ENODEV Indicates that the specified device switch entry is not defined.

EINVAL Indicates that the major device number portion of the devno parameter exceeds the maximum permitted

number of device switch entries.

Related Information

The devswadd kernel service, devswchg kernel service, devswqry kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

84 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

devswqry Kernel Service

Purpose

Checks the status of a device switch entry in the device switch table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/device.h>int devswqry (devno, status, dsdptr)

dev_t devno;

uint *status;

caddr_t *dsdptr;

Parameters

 devno Specifies the major and minor device numbers of the device to be queried.

status Points to the status of the specified device entry in the device switch table. This parameter is passed by

reference.

dsdptr Points to device-dependent information for the specified device entry in the device switch table. This

parameter is passed by reference.

Description

The devswqry kernel service returns the status of a specified device entry in the device switch table. The

entry in the table to query is determined by the major portion of the device number specified in the devno

parameter. The status of the entry is returned in the status parameter that is passed by reference on the

call. If this pointer is null on entry to the devswqry service, then the status is not returned to the caller.

The devswqry service also returns the address of device-dependent information for the specified device

entry in the device switch table. This address is taken from the d_dsdptr field for the entry and returned in

the dsdptr parameter, which is passed by reference. If this pointer is null on entry to the devswqry

service, then the service does not return the address from the d_dsdptr field to the caller.

Status Parameter Flags

The status parameter comprises a set of flags that can indicate the following conditions:

 DSW_BLOCK Device switch entry is defined by a block device driver. This flag is set when the device

driver has a ddstrategy entry point.

DSW_CONFIG Device driver in this device switch entry provides an entry point for configuration.

DSW_CREAD Device driver in this device switch entry is providing a routine for character reads or raw

input. This flag is set when the device driver has a ddread entry point.

DSW_CWRITE Device driver in this device switch entry is providing a routine for character writes or raw

output. This flag is set when the device driver has a ddwrite entry point.

DSW_DEFINED Device switch entry is defined.

DSW_DUMP Device driver defined by this device switch entry provides the capability to support one or

more of its devices as targets for a kernel dump. This flag is set when the device driver has

provided a dddump entry point.

DSW_MPX Device switch entry is defined by a multiplexed device driver. This flag is set when the

device driver has a ddmpx entry point.

DSW_OPENED Device switch entry is in use and the device has outstanding opens. This flag is set when

the device driver has at least one outstanding open.

DSW_SELECT Device driver in this device switch entry provides a routine for handling the select or poll

subroutines. This flag is set when the device driver has provided a ddselect entry point.

Chapter 1. Kernel Services 85

DSW_TCPATH Device driver in this device switch entry supports devices that are considered to be in the

trusted computing path and provide support for the revoke function. This flag is set when

the device driver has provided a ddrevoke entry point.

DSW_TTY Device switch entry is in use by a tty device driver. This flag is set when the pointer to the

d_ttys structure is not a null character.

DSW_UNDEFINED Device switch entry is not defined.

The status parameter is set to the DSW_UNDEFINED flag when a device switch entry is not in use. This

is the case if either of the following are true:

v The entry has never been used. (No previous call to the devswadd service was made.)

v The entry has been used but was later deleted. (A call to the devswadd service was issued, followed

by a call to the devswdel service.)

No other flags are set when the DSW_UNDEFINED flag is set.

Note: The status parameter must be a null character if called from the interrupt environment.

Execution Environment

The devswqry kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates that the major device number portion of the devno parameter exceeds the maximum permitted

number of device switch entries.

Related Information

The devswadd kernel service, devswchg kernel service, devswdel kernel service.

Kernel Extension and Device Driver Management Kernel Services.

d_free_dmamem Kernel Service

Purpose

Frees an area of memory.

Syntax

int d_free_dmamem(d_handle_t device_handle, void * addr, size_t size)

Description

Exported, documented kernel service supported on PCI-based systems only. The d_free_dmamem kernel

service frees the area of memory pointed to by the addr parameter. This area of memory must be

allocated with the d_alloc_dmamem kernel service using the same device_handle, and the addr must be

the address returned from the corresponding d_alloc_dmamem call. Also, the size must be the same size

that was used on the corresponding d_alloc_dmamem call.

Notes:

1. Any memory allocated in a prior d_alloc_dmamem call must be explicitly freed with a

d_free_dmamem call.

2. This service can be called from the process environment only.

86 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 device_handle Indicates the dma handle.

size_t size Specifies size of area to free.

void * addr Specifies address of area to free.

Return Values

 0 Indicates successful completion.

–1 Indicates underlying free service (xmfree or rmalloc) failed.

Related Information

The d_alloc_dmamem kernel service.

disable_lock Kernel Service

Purpose

Raises the interrupt priority, and locks a simple lock if necessary.

Syntax

#include <sys/lock_def.h>

int disable_lock (int_pri, lock_addr)

int int_pri;

simple_lock_t lock_addr;

Parameters

 int_pri Specifies the interrupt priority to set.

lock_addr Specifies the address of the lock word to lock.

Description

The disable_lock kernel service raises the interrupt priority, and locks a simple lock if necessary, in order

to provide optimized thread-interrupt critical section protection for the system on which it is executing. On a

multiprocessor system, calling the disable_lock kernel service is equivalent to calling the i_disable and

simple_lock kernel services. On a uniprocessor system, the call to the simple_lock service is not

necessary, and is omitted. However, you should still pass a valid lock address to the disable_lock kernel

service. Never pass a NULL lock address.

Execution Environment

The disable_lock kernel service can be called from either the process or interrupt environment.

Return Values

The disable_lock kernel service returns the previous interrupt priority.

Related Information

The i_disable kernel service, simple_lock_init kernel service, simple_lock kernel service,

unlock_enable kernel service.

Chapter 1. Kernel Services 87

Understanding Locking,Locking Kernel Services,Understanding Interrupts,I/O Kernel Services, and

Interrupt Environment. in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

disablement_checking_resume Kernel Service

Purpose

Indicates the end of a disabled code path that was exempted from detection of excessive interrupt

disablement.

Syntax

#include <sys/intr.h>

void disablement_checking_resume(long prev_state)

Parameters

 prev_state Specifies the disablement detection state to be restored.

This value is returned by the

disablement_checking_suspend kernel service.

Description

The disablement_checking_resume service restores the disablement detection state to the value passed

as prev_state. This service must be called after reenabling interrupts at the end of an INTMAX critical

section, not within it. This is because, in the case of an INTMAX critical section, the tick counting will have

been deferred by the total disablement until the moment of enablement.

This service must be used in conjunction with the disablement_checking_suspend kernel service, which

temporarily stops disablement detection.

Note: Error checking, including that for excessive interrupt disablement, can be enabled or disabled by

the errctrl command.

Execution Environment

The disablement_checking_resume service can be called from either the process or the interrupt

environments.

Related Information

The “disablement_checking_suspend Kernel Service.”

The errctrl command.

disablement_checking_suspend Kernel Service

Purpose

Indicates the start of a disabled code path that is exempt from detection of excessive interrupt

disablement.

88 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/intr.h>

long disablement_checking_suspend(void)

Description

A call to the disablement_checking_suspend service temporarily disables the detection of excessive

disablement for the duration of a portion of a critical section. For base level code, insert this call at the

beginning of the exempt critical section immediately after it disables, or as soon as possible within interrupt

handling code.

This service must be used in conjunction with the disablement_checking_resume kernel service, which

resumes the prior disablement checking state.

Note: Error checking, including that for excessive interrupt disablement, can be enabled or disabled by

the errctrl command.

Execution Environment

The disablement_checking_suspend service can be called from either the process or the interrupt

environments. Interrupts should be at least partially disabled at the time of the call.

Return Values

The disablement_checking_suspend service returns the previous suspension state to the caller. This

value must be passed later to the resume function, which restores that state. This enables nesting of

exempt critical sections.

Related Information

The “disablement_checking_resume Kernel Service” on page 88.

The errctrl command.

d_map_clear Kernel Service

Purpose

Deallocates resources previously allocated on a d_map_init call.

Syntax

#include <sys/dma.h>

void d_map_clear (*handle)

struct d_handle *handle

Parameters

 handle Indicates the unique handle returned by the d_map_init kernel service.

Description

The d_map_clear kernel service is a bus-specific utility routine determined by the d_map_init service that

deallocates resources previously allocated on a d_map_init call. This includes freeing the d_handle

structure that was allocated by d_map_init.

Chapter 1. Kernel Services 89

Note: You can use the D_MAP_CLEAR macro provided in the /usr/include/sys/dma.h file to code calls

to the d_map_clear kernel service.

Related Information

The d_map_init kernel service.

d_map_disable Kernel Service

Purpose

Disables DMA for the specified handle.

Syntax

#include <sys/dma.h>

int d_map_disable(*handle)

struct d_handle *handle;

Parameters

 handle Indicates the unique handle returned by d_map_init.

Description

The d_map_disable kernel service is a bus-specific utility routine determined by the d_map_init kernel

service that disables DMA for the specified handle with respect to the platform.

Note: You can use the D_MAP_DISABLE macro provided in the /usr/include/sys/dma.h file to code

calls to the d_map_disable kernel service.

Return Values

 DMA_SUCC Indicates the DMA is successfully disabled.

DMA_FAIL Indicates the DMA could not be explicitly disabled for this device or bus.

Related Information

The d_map_init kernel service.

d_map_enable Kernel Service

Purpose

Enables DMA for the specified handle.

Syntax

#include <sys/dma.h>

int d_map_enable(*handle)

struct d_handle *handle;

Parameters

 handle Indicates the unique handle returned by d_map_init.

90 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The d_map_enable kernel service is a bus-specific utility routine determined by the d_map_init kernel

service that enables DMA for the specified handle with respect to the platform.

Note: You can use the D_MAP_ENABLE macro provided in the /usr/include/sys/dma.h file to code calls

to the d_map_enable kernel service.

Return Values

 DMA_SUCC Indicates the DMA is successfully enabled.

DMA_FAIL Indicates the DMA could not be explicitly enabled for this device or bus.

Related Information

The d_map_init kernel service.

d_map_init Kernel Service

Purpose

Allocates and initializes resources for performing DMA with PCI and ISA devices.

Syntax

#include <sys/dma.h>

struct d_handle* d_map_init (bid, flags, bus_flags, channel)

int bid;

int flags;

int bus_flags;

uint channel;

Parameters

 bid Specifies the bus identifier.

flags Describes the mapping.

bus_flags Specifies the target bus flags.

channel Indicates the channel assignment specific to the bus.

Description

The d_map_init kernel service allocates and initializes resources needed for managing DMA operations

and returns a unique handle to be used on subsequent DMA service calls. The handle is a pointer to a

d_handle structure allocated by d_map_init from the pinned heap for the device. The device driver uses

the function addresses provided in the handle for accessing the DMA services specific to its host bus. The

d_map_init service returns a DMA_FAIL error when resources are unavailable or cannot be allocated.

The channel parameter is the assigned channel number for the device, if any. Some devices and or buses

might not have the concept of channels. For example, an ISA device driver would pass in its assigned

DMA channel in the channel parameter.

Note: The possible flag values for the flags parameter can be found in /usr/include/sys/dma.h. These

flags can be logically ORed together to reflect the desired characteristics.

Chapter 1. Kernel Services 91

Execution Environment

The d_map_init kernel service should only be called from the process environment.

Return Values

 DMA_FAIL Indicates that the resources are unavailable. No registration was completed.

struct d_handle * Indicates successful completion.

Related Information

The d_map_clear kernel service, d_map_page kernel service, d_unmap_page kernel service,

d_map_list kernel service, d_unmap_list kernel service, d_map_slave kernel service, d_unmap_slave

kernel service, d_map_disable kernel service, d_map_enable kernel service.

d_map_list Kernel Service

Purpose

Performs platform-specific DMA mapping for a list of virtual addresses.

Syntax

#include <sys/dma.h>

int d_map_list (*handle, flags, minxfer, *virt_list, *bus_list)

struct d_handle *handle;

int flags;

int minxfer;

struct dio *virt_list;

struct dio *bus_list;

Note: The following is the interface definition for d_map_list when the DMA_ADDRESS_64 and

DMA_ENABLE_64 flags are set on the d_map_init call.

int d_map_list (*handle, flags, minxfer, *virt_list, *bus_list)

struct d_handle *handle;

int flags;

int minxfer;

struct dio_64 *virt_list;

struct dio_64 *bus_list;

Parameters

 handle Indicates the unique handle returned by the d_map_init kernel service.

flags Specifies one of the following flags:

DMA_READ

Transfers from a device to memory.

BUS_DMA

Transfers from one device to another device.

DMA_BYPASS

Do not check page access.

minxfer Specifies the minimum transfer size for the device.

virt_list Specifies a list of virtual buffer addresses and lengths.

bus_list Specifies a list of bus addresses and lengths.

92 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The d_map_list kernel service is a bus-specific utility routine determined by the d_map_init kernel service

that accepts a list of virtual addresses and sizes and provides the resulting list of bus addresses. This

service fills out the corresponding bus address list for use by the device in performing the DMA transfer.

This service allows for scatter/gather capability of a device and also allows the device to combine multiple

requests that are contiguous with respect to the device. The lists are passed via the dio structure. If the

d_map_list service is unable to complete the mapping due to exhausting the capacity of the provided dio

structure, the DMA_DIOFULL error is returned. If the d_map_list service is unable to complete the

mapping due to exhausting resources required for the mapping, the DMA_NORES error is returned. In

both of these cases, the bytes_done field of the dio virtual list is set to the number of bytes successfully

mapped. This byte count is a multiple of the minxfer size for the device as provided on the call to

d_map_list. The resid_iov field is set to the index of the remaining d_iovec fields in the list. Unless the

DMA_BYPASS flag is set, this service verifies access permissions to each page. If an access violation is

encountered on a page with the list, the DMA_NOACC error is returned, and the bytes_done field is set to

the number of bytes preceding the faulting iovec.

Note:

1. When the DMA_NOACC return value is received, no mapping is done, and the bus list is

undefined. In this case, the resid_iov field is set to the index of the d_iovec that encountered

the access violation.

2. You can use the D_MAP_LIST macro provided in the /usr/include/sys/dma.h file to code calls

to the d_map_list kernel service.

Return Values

 DMA_NORES Indicates that resources were exhausted during mapping.

Note: d_map_list possible partial transfer was mapped. Device driver may continue with partial transfer

and submit the remainer on a subsequent d_map_list call, or call d_unmap_list to undo the partial

mapping. If a partial transfer is issued, then the driver must call d_unmap_list when the I/O is

complete.

 DMA_DIOFULL Indicates that the target bus list is full.

Note: d_map_list possible partial transfer was mapped. Device driver may continue with partial transfer

and submit the remainder on a subsequent d_map_list call, or call d_unmap_list to undo the

partial mapping. If a partial transfer is issued, then the driver must call d_unmap_list when the I/O

is complete.

 DMA_NOACC Indicates no access permission to a page in the list.

.

Note: d_map_list no mapping was performed. No need for the device driver to call d_unmap_list, but

the driver must fail the faulting I/O request, and resubmit any remainder in a subsequent

d_map_list call.

 DMA_SUCC Indicates that the entire transfer successfully mapped.

Note: d_map_list successful mapping was performed. Device driver must call d_unmap_list when the

I/O is complete. In the case of a long-term mapping, the driver must call d_unmap_list when the

long-term mapping is no longer needed.

Chapter 1. Kernel Services 93

Related Information

The d_map_init kernel service.

d_map_page Kernel Service

Purpose

Performs platform-specific DMA mapping for a single page.

Syntax

#include <sys/dma.h>

#include <sys/xmem.h>

int d_map_page(*handle, flags, baddr, *busaddr, *xmp)

struct d_handle *handle;

int flags;

caddr_t baddr;

uint *busaddr;

struct xmem *xmp;

Note: The following is the interface definition for d_map_page when the DMA_ADDRESS_64 and

DMA_ENABLE_64 flags are set on the d_map_init call.

int d_map_page(*handle, flags, baddr, *busaddr, *xmp)

struct d_handle *handle;

int flags;

unsigned long long baddr;

unsigned long long *busaddr;

struct xmem *xmp;

Parameters

 handle Indicates the unique handle returned by the d_map_init kernel service.

flags Specifies one of the following flags:

DMA_READ

Transfers from a device to memory.

BUS_DMA

Transfers from one device to another device.

DMA_BYPASS

Do not check page access.

baddr Specifies the buffer address.

busaddr Points to the busaddr field.

xmp Cross-memory descriptor for the buffer.

Description

The d_map_page kernel service is a bus-specific utility routine determined by the d_map_init kernel

service that performs platform specific mapping of a single 4KB or less transfer for DMA master devices.

The d_map_page kernel service is a fast-path version of the d_map_list service. The entire transfer

amount must fit within a single page in order to use this service. This service accepts a virtual address

and completes the appropriate bus address for the device to use in the DMA transfer. Unless the

DMA_BYPASS flag is set, this service also verifies access permissions to the page.

If the buffer is a global kernel space buffer, the cross-memory descriptor can be set to point to the

exported GLOBAL cross-memory descriptor, xmem_global.

94 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

If the transfer is unable to be mapped due to resource restrictions, the d_map_page service returns

DMA_NORES. If the transfer is unable to be mapped due to page access violations, this service returns

DMA_NOACC.

Note: You can use the D_MAP_PAGE macro provided in the /usr/include/sys/dma.h file to code calls to

the d_map_page kernel service.

Return Values

 DMA_NORES Indicates that resources are unavailable.

Note: d_map_page no mapping is done, device driver must wait until resources are freed and attempt

the d_map_page call again.

 DMA_NOACC Indicates no access permission to the page.

Note: d_map_page no mapping is done, device driver must fail the corresponding I/O request.

 DMA_SUCC Indicates that the busaddr parameter contains the bus address to use for the device transfer.

Note: d_map_page successful mapping was done, device driver must call d_unmap_page when I/O is

complete, or when device driver is finished with the mapped area in the case of a long-term

mapping.

Related Information

The d_alloc_dmamem kernel service,d_map_init kernel service, d_map_list kernel service.

d_map_slave Kernel Service

Purpose

Accepts a list of virtual addresses and sizes and sets up the slave DMA controller.

Syntax

#include <sys/dma.h>

int d_map_slave (*handle, flags, minxfer, *vlist, chan_flag)

struct d_handle *handle;

int flags;

int minxfer;

struct dio *vlist;

uint chan_flag;

Parameters

 handle Indicates the unique handle returned by the d_map_init kernel service.

flags Specifies one of the following flags:

DMA_READ

Transfers from a device to memory.

BUS_DMA

Transfers from one device to another device.

DMA_BYPASS

Do not check page access.

Chapter 1. Kernel Services 95

minxfer Specifies the minimum transfer size for the device.

vlist Specifies a list of buffer addresses and lengths.

chan_flag Specifies the device and bus specific flags for the transfer.

Description

The d_map_slave kernel service accepts a list of virtual buffer addresses and sizes and sets up the slave

DMA controller for the requested DMA transfer. This includes setting up the system address generation

hardware for a specific slave channel to indicate the specified data buffers, and enabling the specific

hardware channel. The d_map_slave kernel service is not an exported kernel service, but a bus-specific

utility routine determined by the d_map_init kernel service and provided to the caller through the

d_handle structure.

This service allows for scatter/gather capability of the slave DMA controller and also allows the device

driver to coalesce multiple requests that are contiguous with respect to the device. The list is passed with

the dio structure. If the d_map_slave kernel service is unable to complete the mapping due to resource,

an error, DMA_NORES is returned, and the bytes_done field of the dio list is set to the number of bytes

that were successfully mapped. This byte count is guaranteed to be a multiple of the minxfer parameter

size of the device as provided to d_map_slave. Also, the resid_iov field is set to the index of the

remaining d_iovec that could not be mapped. Unless the DMA_BYPASS flag is set, this service will verify

access permissions to each page. If an access violation is encountered on a page within the list, an error,

DMA_NOACC is returned and no mapping is done. The bytes_done field of the virtual list is set to the

number of bytes preceding the faulting iovec. Also in this case, the resid_iov field is set to the index of the

d_iovec entry that encountered the access violation.

The virtual addresses provided in the vlist parameter can be within multiple address spaces, distinguished

by the cross-memory structure pointed to for each element of the dio list. Each cross-memory pointer can

point to the same cross-memory descriptor for multiple buffers in the same address space, and for global

space buffers, the pointers can be set to the address of the exported GLOBAL cross-memory descriptor,

xmem_global.

The minxfer parameter specifies the absolute minimum data transfer supported by the device(the device

blocking factor). If the device supports a minimum transfer of 512 bytes (floppy and disks, for example),

the minxfer parameter would be set to 512. This allows the underlying services to map partial transfers to

a correct multiple of the device block size.

Note:

1. The d_map_slave kernel service does not support more than one outstanding DMA transfer per

channel. Attempts to do multiple slave mappings on a single channel will corrupt the previous

mappings.

2. You can use the D_MAP_SLAVE macro provided in the /usr/include/sys/dma.h file to code

calls to the d_map_clear kernel service.

3. The possible flag values for the chan_flag parameter can be found in /usr/include/sys/dma.h.

These flags can be logically ORed together to reflect the desired characteristics of the device

and channel.

4. If the CH_AUTOINIT flag is used then the transfer described by the vlist pointer is limited to a

single buffer address with a length no greater than 4K bytes.

Return Values

 DMA_NORES Indicates that resources were exhausted during the mapping.

DMA_NOACC Indicates no access permission to a page in the list.

DMA_BAD_MODE Indicates that the mode specified by the chan_flag parameter is not supported.

96 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The d_map_init kernel service.

dmp_add Kernel Service

Purpose

Specifies data to be included in a system dump by adding an entry to the master dump table. Callers

should use the “dmp_ctl Kernel Service” on page 98. This service is provided for compatibility purposes.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/dump.h>

int dmp_add

(cdt_func)

struct cdt * ((*cdt_func) ());

Description

Kernel extensions use the dmp_add service to register data areas to be included in a system dump. The

dmp_add service adds an entry to the master dump table. A master dump table entry is a pointer to a

function provided by the kernel extension that will be called by the kernel dump routine when a system

dump occurs. The function must return a pointer to a component dump table structure.

When a dump occurs, the kernel dump routine calls the function specified by the cdt_func parameter

twice. On the first call, an argument of 1 indicates that the kernel dump routine is starting to dump the data

specified by the component dump table. On the second call, an argument of 2 indicates that the kernel

dump routine has finished dumping the data specified by the component dump table. Kernel extensions

should allocate and pin their component dump tables and call the dmp_add service during initialization.

The entries in the component dump table can be filled in later. The cdt_func routine must not attempt to

allocate memory when it is called.

The Component Dump Table

The component dump table structure specifies memory areas to be included in the system dump. The

structure type (struct cdt) is defined in the /usr/include/sys/dump.h file. A cdt structure consists of a

fixed-length header (cdt_head structure) and an array of one or more cdt_entry structures. The cdt_head

structure contains a component name field, which should be filled in with the name of the kernel extension,

and the length of the component dump table. Each cdt_entry structure describes a contiguous data area,

giving a pointer to the data area, its length, a segment register, and a name for the data area.

Use of the Formatting Routine

Each kernel extension that includes data in the system dump can install a unique formatting routine in the

/var/adm/ras/dmprtns directory.The name of the formatting routine must match the component name field

of the corresponding component dump table.

The dump image file includes a copy of each component dump table used to dump memory.A sample

dump formatter is shipped with bos.sysmgt.serv_aid in the /usr/samples/dumpfmt directory.

Organization of the Dump Image File

Memory dumped for each kernel extension is laid out as follows in the dump image file. The component

dump table is followed by a bit map for the first data area, then the first data area itself, then a bit map for

the next data area, the next data area itself, and so on.

Chapter 1. Kernel Services 97

The bit map for a given data area indicates which pages of the data area are actually present in the dump

image and which are not. Pages that were not in memory when the dump occurred were not dumped. The

least significant bit of the first byte of the bit map is set to 1 (one) if the first page is present. The next

least significant bit indicates the presence or absence of the second page and so on.

A macro for determining the size of a bit map is provided in the /usr/include/sys/dump.h file.

Parameters

 cdt_func Specifies a function that returns a pointer to a component dump table entry. The function

and the component dump table entry both must reside in pinned global memory.

Execution Environment

The dmp_add kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

-1 Indicates that the function pointer to be added is already present in the master dump table.

Related Information

“dmp_del Kernel Service” on page 103, and “dmp_ctl Kernel Service.”

The exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine in AIX 5L Version 5.3

Technical Reference: Base Operating System and Extensions Volume 1.

RAS Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

dmp_ctl Kernel Service

Purpose

Adds and removes entries to the master dump table.

Syntax

#include <sys/types.h>

 #include <errno.h>

 #include <sys/dump.h>

 int dmp_ctl(op, parmp)

 int op;

 struct dmpctl_data *parmp;

Description

The dmp_ctl kernel service is used to manage dump routines. It replaces the dmp_add and dmp_del

kernel services which are still supported for compatibility reasons. The major differences between routines

added with the dmp_add() command and those added with the dmp_ctl() command are:

v The routines are invoked differently from routines added with the dmp_add kernel service. Routines

added using the dmp_ctl kernel service return a void pointer, to a dump table or to a dump size

estimate.

98 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

v Routines added with the dmp_ctl kernel service are expected to ignore functions they don’t support.

For example, they should not trap if they receive an unrecognized request. This allows future

functionality to be added without all users needing to change.

The dmp_ctl kernel service is used to request that an amount of memory be set aside in a global buffer.

This will then be used by the routine to store data not resident in memory. An example of such data is

dump data provided by an adapter. Without a global buffer, the data would need to be placed into a pinned

buffer allocated at configuration time. Each component would need to allocate its own pinned buffer.

The system dump facility maintains a global buffer for such data. This buffer is allocated when it is first

requested, with the requested size. Another dump routine requesting more data causes the buffer to be

reallocated with the larger size. Since this buffer must be maintained in pinned storage for the life of the

system, only ask for as much memory as is required. Asking for an excessive amount of storage will

compromise system performance by reserving too much pinned storage.

Any dump routine using the global buffer is called whenever dump data is required. Routines are only

called once to provide such data. Their dump table addresses are saved and used if the dump is

restarted.

Note: The dmp_ctl kernel service can also be used by a dump routine to report a routine failure. This

may be necessary if the routine detects that it can’t dump what needs to be dumped for some

reason such as corruption of a data structure.

Dump Tables

A dump routine returns a component dump table that begins with DMP_MAGIC, which is the magic

number for the 32- or 64-bit dump table. If the unlimited sized dump table is used, the magic number is

DMP_MAGIC_U and the cdt_u structure is used. If this is the case, the dump routine is called repeatedly

until it returns a null cdt_u pointer. The purpose of the unlimited size dump table is to provide a way to

dump an unknown number of data areas without having to preallocate the largest possible array of

cdt_entry elements as is required for the classic dump table. The definitions for dump tables are in the

sys/dump.h include file.

Parameters

dmp_ctl operations and the dmpctl_data structure are defined in the dump.h text file.

 op Specifies the operation to perform.

Chapter 1. Kernel Services 99

parmp Points to a dmpctl_data structure containing values for the specified operation. The dmpctl_data

structure is defined in the /usr/include/sys/dump.h file as follows:

/* Dump Routine failures data. */

struct __rtnf {

 int rv; /* error code. */

 ulong vaddr; /* address. */

 vmhandle_t handle; /* handle */

};

typedef void *((*__CDTFUNCENH)(int op, void *buf));

struct dmpctl_data {

 int dmpc_magic; /* magic number */

 int dmpc_flags; /* dump routine flags. */

 __CDTFUNCENH dmpc_func;

 union {

 u_longlong_t bsize; /* Global buffer size requested. */

 struct __rtnf rtnf;

 } dmpc_u;

};

#define DMPC_MAGIC1 0xdcdcdc01

#define DMPC_MAGIC DMPC_MAGIC1

#define dmpc_bsize dmpc_u.bsize

#define dmpcf_rv dmpc_u.rtnf.rv

#define dmpcf_vaddr dmpc_u.rtnf.vaddr

#define dmpcf_handle dmpc_u.rtnf.handle

The supported operations and their associated data are:

 DMPCTL_ADD Adds the specified dump routine to the master dump table. This requires a

pointer to the function and function type flags. Supported type flags are:

DMPFUNC_CALL_ON_RESTART

Call this function again if the dump is restarted. A dump function is

only called once to provide dump data. If the function must be called

and the dump is restarted on the secondary dump device, then this

flag must be set. The DMPFUNC_CALL_ON_RESTART flag must be

set if this function uses the global dump buffer. It also must be set if

the function uses an unlimited size dump table, a table with

DMP_MAGIC_U as the magic number.

DMPFUNC_GLOBAL_BUFFER

this function uses the global dump buffer. The size is specified using

the dmpc_bsize field.

DMPCTL_DEL Deletes the specified dump function from the master dump table.

DMPCTL_RTNFAILURE Reports an inability to dump required data. The routine must set the

dmpc_func, dmpcf_rV, dmpcf_vaddr, and dmpcf_handle fields.

Dump function invocation parameters:

100 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

operation code Specifies the operation the routine is to perform. Operation codes are:

DMPRTN_START

The dump is starting for this dump table. Provide data.

DMPRTN_DONE

The dump is finished. This call is provided so that a dump routine can do any

cleanup required after a dump. This is specific to a device for which information was

gathered. It does not free memory, since such memory must be allocated before the

dump is taken.

DMPRTN_AGAIN

Provide more data for this unlimited dump table. The routine must have first passed

back a dump table beginning with DMP_MAGIC_U. When finished, the function must

return a NULL.

DMPRTN_SIZE

Provide a size estimate. The function must return a pointer to an item of type

dmp_sizeest_t. See the examples later in this article.

buffer pointer This is a pointer to the global buffer, or NULL if no global buffer space was requested.

Return Values

 0 Returned if successful.

EINVAL Returned if one or more parameter values are invalid.

ENOMEM Returned if the global buffer request can’t be satisfied.

EEXIST Returned if the dump function has already been added.

Examples

1. To add a dump routine (dmprtn) that can be called once to provide data, type:

void *dmprtn(int op, void *buf);

 struct cdt cdt;

 dmp_sizeest_t estimate;

 config()

 {

 struct dmpctl_data parm;

 ...

 parm.dmpc_magic = DMPC_MAGIC1;

 parm.dmpc_func = dmprtn;

 parm.dmpc_flags = 0;

 ret = dmp_ctl(DMPCTL_ADD, &parm);

 ...

 }

 /*

 * Dump routine.

 *

 * input:

 * op - dump routine operation.

 * buf - NULL since no global buffer is used.

 *

 * returns:

 * A pointer to the component dump table.

 */

 void *

 dmprtn(int op, void *buf)

 {

Chapter 1. Kernel Services 101

void *ret;

 switch(op) {

 case DMPOP_DATA: /* Provide dump data. */

 ...

 ret = (void *)&cdt;

 break;

 case DMPOP_ESTIMATE:

 ret = (void *)&estimate;

 break;

 default:

 break;

 }

 return(ret);

 }

2. To add a dump routine (dmprtn) that requests 16 kb of global buffer space, type:

...

 #define BSIZ 16*1024

 dmp_sizeest_t estimate;

 config()

 {

 ...

 parm.dmpc_magic = DMPC_MAGIC1;

 parm.dmpc_func = dmprtn;

 parm.dmpc_flags = DMPFUNC_CALL_ON_RESTART|DMPC_GLOBAL_BUFFER;

 parm.dmpc_bsize = BSIZ;

 ret = dmp_ctl(DMPCTL_ADD, &parm);

 ...

 }

 /*

 * Dump routine.

 *

 * input:

 * op - dump routine operation.

 * buf - points to the global buffer.

 *

 * output:

 * Return a pointer to the dump table or to the estimate.

 */

 void *

 dmprtn(int op, void *buf)

 {

 void *ret;

 switch(op) {

 case DMPOP_DATA: /* Provide dump data. */

 ...

 (Put data in buffer at buf.)

 ret = (void *)&cdt;

 break;

 case DMPOP_ESTIMATE:

 ret = (void *)&estimate;

 break;

 default:

 break;

 }

 return(ret);

 }

102 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The “dmp_add Kernel Service” on page 97 and “dmp_del Kernel Service” kernel services.

The Dump Special File in AIX 5L Version 5.3 Files Reference.

RAS Kernel Services and System Dump Facility in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

dmp_del Kernel Service

Purpose

Deletes an entry from the master dump table. Callers should use the “dmp_ctl Kernel Service” on page 98.

This service is provided for compatibility purposes.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/dump.h>

dmp_del (cdt_func_ptr)

struct cdt * ((*cdt_func_ptr) ());

Description

Kernel extensions use the dmp_del kernel service to unregister data areas previously registered for

inclusion in a system dump. A kernel extension that uses the “dmp_add Kernel Service” on page 97 to

register such a data area can use the dmp_del service to remove this entry from the master dump table.

Parameters

 cdt_func_ptr Specifies a function that returns a pointer to a component dump table. The

function and the component dump table must both reside in pinned global

memory.

Execution Environment

The dmp_del kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

-1 Indicates that the function pointer to be deleted is not in the master dump table.

Related Information

“dmp_add Kernel Service” on page 97, and “dmp_ctl Kernel Service” on page 98.

RAS Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Chapter 1. Kernel Services 103

dmp_prinit Kernel Service

Purpose

Initializes the remote dump protocol.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/dump.h>

void dmp_prinit

(dmp_proto, proto_info)

int dmp_proto;

void *proto_info;

Parameters

 dmp_proto Identifies the protocol. The values for the dmp_proto parameter are defined in the

/usr/include/sys/dump.h file.

proto_info Points to a protocol-specific structure containing information required by the system dump

services. For the TCP/IP protocol, the proto_info parameter contains a pointer to the ARP table.

Description

When a communications subsystem is configured, it makes itself known to the system dump services by

calling the dmp_prinit kernel service. The dmp_prinit kernel service identifies the protocol and passes

protocol-specific information, which is required for a remote dump.

Execution Environment

The dmp_prinit kernel service can be called from the process environment only.

Related Information

The devdump kernel service.

The dddump device driver entry point.

RAS Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

d_roundup Kernel Service

Purpose

Rounds the value length up to a given number of cache lines.

Syntax

int d_roundup(length)

int length;

Parameter

 length Specifies the size in bytes to be rounded.

104 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

To maintain cache consistency, buffers must occupy entire cache lines. The d_roundup service helps

provide that function by rounding the value length up to a given number in integer form.

Execution Environment

The d_roundup service can be called from either the process or interrupt environment.

Related Information

The d_align kernel service, d_cflush kernel service.

Understanding Direct Memory Access (DMA) Transfers in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

d_sync_mem Kernel Service

Purpose

Allows a device driver to indicate that previously mapped buffers may need to be refreshed.

Syntax

int d_sync_mem(d_handle_t handle, dio_t blist)

Description

The d_sync_mem service allows a device driver to indicate that previously mapped buffers may need to

be refreshed, either because a new DMA is about to start or a previous DMA has now completed.

d_sync_mem is not an exported kernel service, but a bus-specific utility determined by d_map_init based

on platform characteristics and provided to the caller through the d_handle structure. d_sync_mem allows

the driver to identify additional coherency points beyond those of the initial mapping (d_map_list) and

termination of the mapping (d_unmap_list). Thus d_sync_mem provides a way to long-term map buffers

and still handle potential data consistency problems.

The blist parameter is a pointer to the dio structure that describes the initial mapping, as returned by

d_map_list. Note that for bounce buffering, the data direction is also implicitly defined by this initial

mapping.

v If the map_list call describes a transfer from system memory to a device, subsequent d_sync_mem

calls using the corresponding blist will synchronize the memory view. This assumes that the original

system memory pages contain the correct data.

v If the map_list call describes a transfer from a device to system memory, then subsequent

d_sync_mem calls will synchronize the memory view. This assumes that the bounce pages the device

directly accessed contained the correct data.

Note: You can use the D_SYNC_MEM macro provided in the /usr/include/sys/dma.h file to code calls to

the d_sync_mem kernel service.

Parameters

 d_handle_t Indicates the unique dma handle returned by d_map_init.

dio_t blist List of vectors returned by original d_map_list.

Chapter 1. Kernel Services 105

Return Values

 DMA_SUCC Buffers described by the blist have been synchronized.

DMA_FAIL Buffers could not be synchronized.

Related Information

The d_alloc_dmamem kernel service, d_map_init kernel service, d_map_list kernel service,

d_unmap_list kernel service.

DTOM Macro for mbuf Kernel Services

Purpose

Converts an address anywhere within an mbuf structure to the head of that mbuf structure.

Syntax

#include <sys/mbuf.h>

DTOM (bp);

Parameter

 bp Points to an address within an mbuf structure.

Description

The DTOM macro converts an address anywhere within an mbuf structure to the head of that mbuf

structure. This macro is valid only for mbuf structures without an external buffer (that is, with the M_EXT

flag not set).

This macro can be viewed as the opposite of the MTOD macro, which converts the address of an mbuf

structure into the address of the actual data contained in the buffer. However, the DTOM macro is more

general than this view implies. That is, the input parameter can point to any address within the mbuf

structure, not merely the address of the actual data.

Example

The DTOM macro can be used as follows:

char *bp;

struct mbuf *m;

m = DTOM(bp);

Related Information

The MTOD macro for mbuf Kernel Services.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

d_unmap_list Kernel Service

Purpose

Deallocates resources previously allocated on a d_map_list call.

106 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/dma.h>

void d_unmap_list (*handle, *bus_list)

struct d_handle *handle

struct dio *bus_list

Note: The following is the interface definition for d_unmap_list when the DMA_ADDRESS_64 and

DMA_ENABLE_64 flags are set on the d_map_init call.

void d_unmap_list (*handle,

*bus_list)

struct d_handle *handle;

struct dio_64 *bus_list;

Parameters

 handle Indicates the unique handle returned by the d_map_init kernel service.

bus_list Specifies a list of bus addresses and lengths.

Description

The d_unmap_list kernel service is a bus-specific utility routine determined by the d_map_init kernel

service that deallocates resources previously allocated on a d_map_list call.

The d_unmap_list kernel service must be called after I/O completion involving the area mapped by the

prior d_map_list call. Some device drivers might choose to leave pages mapped for a long-term mapping

of certain memory buffers. In this case, the driver must call d_unmap_list when it no longer needs the

long-term mapping.

Note: You can use the D_UNMAP_LIST macro provided in the /usr/include/sys/dma.h file to code calls

to the d_unmap_list kernel service. If not, you must ensure that the d_unmap_list function pointer

is non-NULL before attempting the call. Not all platforms require the unmapping service.

Related Information

The d_map_init kernel service, d_map_list kernel service.

d_unmap_slave Kernel Service

Purpose

Deallocates resources previously allocated on a d_map_slave call.

Syntax

#include <sys/dma.h>

int d_unmap_slave (*handle)

struct d_handle *handle;

Parameters

 handle Indicates the unique handle returned by the d_map_init kernel service.

Chapter 1. Kernel Services 107

Description

The d_unmap_slave kernel service deallocates resources previously allocated on a d_map_slave call,

disables the physical DMA channel, and returns error and status information following the DMA transfer.

The d_unmap_slave kernel service is not an exported kernel service, but a bus-specific utility routine that

is determined by the d_map_init kernel service and provided to the caller through the d_handle structure.

Note: You can use the D_UNMAP_SLAVE macro provided in the /usr/include/sys/dma.h file to code

calls to the d_unmap_slave kernel service. If not, you must ensure that the d_unmap_slave

function pointer is non-NULL before attempting to call. No all platforms require the unmapping

service.

The device driver must call d_unmap_slave when the I/O is complete involving a prior mapping by the

d_map_slave kernel service.

Note: The d_unmap_slave kernel should be paired with a previous d_map_slave call. Multiple

outstanding slave DMA transfers are not supported. This kernel service assumes that there is no

DMA in progress on the affected channel and deallocates the current channel mapping.

Return Values

 DMA_SUCC Indicates successful transfer. The DMA controller did not report any errors and that

the Terminal Count was reached.

DMA_TC_NOTREACHED Indicates a successful partial transfer. The DMA controller reported the Terminal

Count reached for the intended transfer as set up by the d_map_slave call. Block

devices consider this an erro; however, for variable length devices this may not be

an error.

DMA_FAIL Indicates that the transfer failed. The DMA controller reported an error. The device

driver assumes the transfer was unsuccessful.

Related Information

The d_map_init kernel service.

d_unmap_page Kernel Service

Purpose

Deallocates resources previously allocated on a d_unmap_page call.

Syntax

#include <sys/dma.h>

void d_unmap_page (*handle, *busaddr)

struct d_handle *handle

uint *busaddr

Note: The following is the interface definition for d_unmap_page when the DMA_ADDRESS_64 and

DMA_ENABLE_64 flags are set on the d_map_init call.

int d_unmap_page(*handle,

*busaddr)

struct d_handle *handle;

unsigned long long *busaddr;

108 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 handle Indicates the unique handle returned by the d_map_init kernel service.

busaddr Points to the busaddr field.

Description

The d_unmap_page kernel service is a bus-specific utility routine determined by the d_map_init kernel

service that deallocates resources previously allocated on a d_map_page call for a DMA master device.

The d_unmap_page service must be called after I/O completion involving the area mapped by the prior

d_map_page call. Some device drivers might choose to leave pages mapped for a long-term mapping of

certain memory buffers. In this case, the driver must call d_unmap_page when it no longer needs the

long-term mapping.

Note: You can use the D_UNMAP_PAGE macro provided in the /usr/include/sys/dma.h file to code calls

to the d_unmap_page kernel service. If not, you must ensure that the d_unmap_page function

pointer is non-NULL before attempting the call. Not all platforms require the unmapping service.

Related Information

The d_map_init kernel service.

dr_reconfig System Call

Purpose

Determines the nature of the DLPAR request.

Syntax

#include <sys/dr.h>

int dr_reconfig (flags, dr_info)

int flags;

dr_info_t *dr_info;

Description

The dr_reconfig system call is used by DLPAR-aware applications to adjust their use of resources in

relation to a DLPAR request. Applications are notified through the use of the SIGRECONFIG signal, which

is generated three times for each DLPAR event.

The first time to check with the application as to whether the DLPAR event should be continued. An

application may indicate that the operation should be aborted, if it is not DLPAR-safe and its operation is

considered vital to the system. The DR_EVENT_FAIL flag is provided for this purpose.

The application is notified the second time before the resource is added or removed, and the third time

afterwards. Application should attempt to control their scheduling priority and policy in order to guarantee

timely delivery of signals. The system does not guarantee every signal that is sent is delivered before

advancing to the next step in the algorithm.

The dr_reconfig interface is signal handler safe and may be used by multi-threaded programs.

The dr_info structure is declared within the address space of the application. The kernel fills out data in

this structure relative to the current DLPAR request. The user passes this structure identifying the current

DLPAR request, as a parameter to the kernel when the DR_RECONFIG_DONE flag is used. The

DR_RECONFIG_DONE flag is used when the application wants to notify the kernel that necessary action

Chapter 1. Kernel Services 109

to adjust their use of resources has been taken in response to the SIGRECONFIG signal sent to them. It

is expected that the signal handler associated with the SIGRECONFIG signal calls the interface with the

DR_QUERY flag to identify the phase of the DLPAR event, takes the appropriate action, and calls the

interface with the DR_RECONFIG_DONE flag to indicate to the kernel that the signal has been handled.

This type of acknowledgement to the kernel in each of the DLPAR phases enables a DLPAR event to

perform efficiently.

With the addition of new fields to the dr_info structure, DR-aware applications can support

Micro-Partitioning.

The bindproc, softpset, and hardpset bits are only set, if the request is to remove a cpu. If the bindproc is

set, the process or one of its threads has a bindprocessor attachment, which must be resolved. If the

softpset bit is set, the process has a Workload Manager (WLM) attachment, which may be changed by

calling the appropriate WLM interface or by invoking the appropriate WLM command. If the hardpset bit is

set, the appropriate pset API should be used.

Note that the bcpu and lcpu fields identify the cpu being removed and do not necessarily indicate that the

process has a dependency that must be resolved. The bindproc, softpset, and hardpset bits are provided

for that purpose.

The plock and pshm bits are only set, if the request is to remove memory and the process has plock

memory or is attached to a pinned shared memory segment. If the plock bit is set, the process should call

plock to unpin itself. If the pshm bit is set, the application has pinned shared memory segments, which

may need to be detached. The memory remove request may succeed in any case, if there is enough

pinnable memory in the system, so an action in this case is not necessarily required. The field

sys_pinnable_frames provides this information, however, this value and other statistical values are just

approximations. They reflect the state of the system at the time of the request. They are not updated

during the request. The current size of physical memory can be determined by referencing the

_system_configuration.physmem field.

dr_info Structure

typedef struct dr_info {

 unsigned int add : 1; // add request

 rem : 1; // remove request

 cpu : 1; // target resource is a cpu

 mem : 1; // target resource is memory

 check : 1; // check phase in effect

 pre : 1; // pre phase in effect

 post : 1; // post phase in effect

 posterror : 1; // post error phase in effect

 force : 1; // force option is in effect

 bindproc : 1; // process has bindprocessor dependency

 softpset : 1; // process has WLM software partition dependency

 hardpset : 1; // process has processor set API dependency

 plock : 1; // process has plock’d memory

 pshm : 1; // process has pinned shared memory

 ent_cap : 1; // target resource:entitled capacity

 var_wgt : 1; // target resource:variable weight

 splpar_capable : 1; // 1/0 partition is/not splpar capable

 splpar_shared : 1; // 1/0 partition shared/dedicated mode

 splpar_capped : 1; // 1/0 partition capped/uncapped mode

 splpar_constrained : 1; // Set to 1 if requested capacity

 update is constrained by PHYP to

 be within partition capacity bounds.

 //

 unsigned int migrate : 1; // migration operation

 unsigned int hibernate : 1; // hibernation operation

 unsigned int partition : 1; // resource is partition

 // The following fields are filled out for cpu based requests

110 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int lcpu; // logical cpu ID being added or removed

 int bcpu; // bind cpu ID being added or removed

 // The following fields are filled out for memory based requests

 size64_t req_memsz_change; // User request size in bytes

 size64_t sys_memsz; // System Memory size at time of request

 rpn64_t sys_free_frames; // Number of free frames in the system

 rpn64_t sys_pinnable_frames; // Number of pinnable frames in system

 rpn64_t sys_total_frames; // Total number of frames in system

 // SPLPAR parameters.

 uint64_t capacity; // partition current entitled capacity

 if ent_cap bit is set, partition’s

 current variable capacity weight

 if var_wgt bit is set.

 //

 int delta_cap; // delta capacity added/removed to

 current value depending on add/rem

 bit flag value above

 //

 int reserved[9];

} dr_info_t;

Parameters

 flags The following values are supported:

DR_QUERY

Identifies the current DLPAR request as well as

the actions if any that the application should take

to comply with with the current DLPAR request.

This information is returned to the caller in the

structure identified by the dr_info parameter.

DR_EVENT_FAIL

Fail the current DLPAR event. Root authority is

required.

DR_RECONFIG_DONE

This flag is used in conjunction with the

DR_QUERY flag. The application notifies the

kernel that the actions it took to comply with the

current DLPAR request are now complete. The

dr_info structure identifying the DLPAR request

that was returned earlier is passed as an input

parameter.

dr_info Contains the address of a dr_info structure, which is

declared with the address space of the application.

Return Values

Upon success, the dr_reconfig system call returns a zero. If unsuccessful, it returns negative one and

sets the errno variable to the appropriate error value.

Error Codes

 EINVAL Invalid flags.

ENXIO No DLPAR event in progress.

EPERM Root authority required for DR_EVENT_FAIL.

Chapter 1. Kernel Services 111

EINPROGRESS Cancellation of DLPAR event may only occur in the check

phase.

Related Information

Making Programs DLPAR-Aware Using DLPAR APIs in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

e_assert_wait Kernel Service

Purpose

Asserts that the calling kernel thread is going to sleep.

Syntax

#include <sys/sleep.h>

void e_assert_wait (event_word, interruptible)

tid_t *event_word;

boolean_t interruptible;

Parameters

 event_word Specifies the shared event word. The kernel uses the event_word parameter as the anchor

to the list of threads waiting on this shared event.

interruptible Specifies if the sleep is interruptible.

Description

The e_assert_wait kernel service asserts that the calling kernel thread is about to be placed on the event

list anchored by the event_word parameter. The interruptible parameter indicates wether the sleep can be

interrupted.

This kernel service gives the caller the opportunity to release multiple locks and sleep atomically without

losing the event should it occur. This call is typically followed by a call to either the e_clear_wait or

e_block_thread kernel service. If only a single lock needs to be released, then the e_sleep_thread kernel

service should be used instead.

The e_assert_wait kernel service has no return values.

Execution Environment

The e_assert_wait kernel service can be called from the process environment only.

Related Information

The e_clear_wait kernel service, e_block_thread kernel service, e_sleep_thread kernel service

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

112 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

e_block_thread Kernel Service

Purpose

Blocks the calling kernel thread.

Syntax

#include <sys/sleep.h>

int e_block_thread ()

Description

The e_block_thread kernel service blocks the calling kernel thread. The thread must have issued a

request to sleep (by calling the e_assert_wait kernel service). If it has been removed from its event list, it

remains runnable.

Execution Environment

The e_block_thread kernel service can be called from the process environment only.

Return Values

The e_block_thread kernel service return a value that indicate how the thread was awakened. The

following values are defined:

 THREAD_AWAKENED Denotes a normal wakeup; the event occurred.

THREAD_INTERRUPTED Denotes an interruption by a signal.

THREAD_TIMED_OUT Denotes a timeout expiration.

THREAD_OTHER Delineates the predefined system codes from those that need to be defined at the

subsystem level. Subsystem should define their own values greater than or equal

to this value.

Related Information

The e_assert_wait kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

e_clear_wait Kernel Service

Purpose

Clears the wait condition for a kernel thread.

Syntax

#include <sys/sleep.h>

void e_clear_wait (tid, result)

tid_t tid;

int result;

Parameters

 tid Specifies the kernel thread to be awakened.

Chapter 1. Kernel Services 113

result Specifies the value returned to the awakened kernel thread. The following values can be used:

THREAD_AWAKENED

Usually generated by the e_wakeup or e_wakeup_one kernel service to indicate a normal

wakeup.

THREAD_INTERRUPTED

Indicates an interrupted sleep. This value is usually generated by a signal delivery when the

INTERRUPTIBLE flag is set.

THREAD_TIMED_OUT

Indicates a timeout expiration.

THREAD_OTHER

Delineates the predefined system codes from those that need to be defined at the subsystem

level. Subsystem should define their own values greater than or equal to this value.

Description

The e_clear_wait kernel service clears the wait condition for the kernel thread specified by the tid

parameter, and the thread is made runnable.

This kernel service differs from the e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services

in the fact that it assumes the identity of the thread to be awakened. This kernel service should be used to

handle exceptional cases, where a special action needs to be taken. The result parameter is used to

specify the value returned to the awakened thread by the e_block_thread or e_sleep_thread kernel

service.

The e_clear_wait kernel service has no return values.

Execution Environment

The e_clear_wait kernel service can be called from either the process environment or the interrupt

environment.

Related Information

The e_wakeup, e_wakeup_one, or e_wakeup_w_result kernel services, e_block_thread kernel servic,

e_sleep_thread kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

e_sleep Kernel Service

Purpose

Forces the calling kernel thread to wait for the occurrence of a shared event.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/sleep.h>

int e_sleep (event_word, flags)

tid_t *event_word;

int flags;

114 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 event_word Specifies the shared event word. The kernel uses the event_word parameter to anchor the list of

processes sleeping on this event. The event_word parameter must be initialized to EVENT_NULL

before its first use.

flags Specifies the flags that control action on occurrence of signals. These flags can be found in the

/usr/include/sys/sleep.h file. The flags parameter is used to control how signals affect waiting

for an event. The following flags are available to the e_sleep service:

EVENT_SIGRET

Indicates the termination of the wait for the event by an unmasked signal. The return

value is set to EVENT_SIG.

EVENT_SIGWAKE

Indicates the termination of the event by an unmasked signal. This flag results in the

transfer of control to the return from the last setjmpx service with the return value set to

EINTR.

EVENT_SHORT

Prohibits the wait from being terminated by a signal. This flag should only be used for

short, guaranteed-to-wakeup sleeps.

Description

The e_sleep kernel service is used to wait for the specified shared event to occur. The kernel places the

current kernel thread on the list anchored by the event_word parameter. This list is used by the e_wakeup

service to wake up all threads waiting for the event to occur.

The anchor for the event list, the event_word parameter, must be initialized to EVENT_NULL before its

first use. Kernel extensions must not alter this anchor while it is in use.

The e_wakeup service does not wake up a thread that is not currently sleeping in the e_sleep function.

That is, if an e_wakeup operation for an event is issued before the process calls the e_sleep service for

the event, the thread still sleeps, waiting on the next e_wakeup service for the event. This implies that

routines using this capability must ensure that no timing window exists in which events could be missed

due to the e_wakeup service being called before the e_sleep operation for the event has been called.

Note: The e_sleep service can be called with interrupts disabled only if the event or lock word is pinned.

Execution Environment

The e_sleep kernel service can be called from the process environment only.

Return Values

 EVENT_SUCC Indicates a successful operation.

EVENT_SIG Indicates that the EVENT_SIGRET flag is set and the wait is terminated by a signal.

Related Information

The e_sleepl kernel service, e_wakeup kernel service.

Process and Exception Management Kernel Services and Understanding Execution Environments in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 115

e_sleepl Kernel Service

Purpose

Forces the calling kernel thread to wait for the occurrence of a shared event.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/sleep.h>

int e_sleepl (lock_word, event_word, flags)

int *lock_word;

tid_t *event_word;

int flags;

Parameters

 lock_word Specifies the lock word for a conventional process lock.

event_word Specifies the shared event word. The kernel uses this word to anchor the list of kernel threads

sleeping on this event. This event word must be initialized to EVENT_NULL before its first use.

flags Specifies the flags that control action on occurrence of a signal. These flags are found in the

/usr/include/sys/sleep.h file.

Description

Note: The e_sleepl kernel service is provided for porting old applications written for previous versions of

the operating system. Use the e_sleep_thread kernel service when writing new applications.

The e_sleepl kernel service waits for the specified shared event to occur. The kernel places the current

kernel thread on the list anchored by the event_word parameter. The e_wakeup service wakes up all

threads on the list.

The e_wakeup service does not wake up a thread that is not currently sleeping in the e_sleepl function.

That is, if an e_wakeup operation for an event is issued before the thread calls the e_sleepl service for

the event, the thread still sleeps, waiting on the next e_wakeup operation for the event. This implies that

routines using this capability must ensure that no timing window exists in which events could be missed

due to the e_wakeup service being called before the e_sleepl service for the event has been called.

The e_sleepl service also unlocks the conventional lock specified by the lock_word parameter before

putting the thread to sleep. It also reacquires the lock when the thread wakes up.

The anchor for the event list, specified by the event_word parameter, must be initialized to EVENT_NULL

before its first use. Kernel extensions must not alter this anchor while it is in use.

Note: The e_sleepl service can be called with interrupts disabled, only if the event or lock word is pinned.

Values for the flags Parameter

The flags parameter controls how signals affect waiting for an event. There are three flags available to the

e_sleepl service:

 EVENT_SIGRET Indicates the termination of the wait for the event by an unmasked signal. The return value

is set to EVENT_SIG.

116 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

EVENT_SIGWAKE Indicates the termination of the event by an unmasked signal. This flag also indicates the

transfer of control to the return from the last setjmpx service with the return value set to

EINTR.

EVENT_SHORT Indicates that signals cannot terminate the wait. Use the EVENT_SHORT flag for only

short, guaranteed-to-wakeup sleeps.

Note: The EVENT_SIGRET flag overrides the EVENT_SIGWAKE flag.

Execution Environment

The e_sleepl kernel service can be called from the process environment only.

Return Values

 EVENT_SUCC Indicates successful completion.

EVENT_SIG Indicates that the EVENT_SIGRET flag is set and the wait is terminated by a signal.

Related Information

The e_sleep kernel service, e_wakeup kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

Interrupt Environment in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

e_sleep_thread Kernel Service

Purpose

Forces the calling kernel thread to wait for the occurrence of a shared event.

Syntax

#include <sys/sleep.h>

int e_sleep_thread (event_word, lock_word, flags)

tid_t *event_word;

void *lock_word;

int flags;

Parameters

 event_word Specifies the shared event word. The kernel uses the event_word parameter as the anchor to the

list of threads waiting on this shared event.

lock_word Specifies simple or complex lock to unlock.

flags Specifies lock and signal handling options.

Description

The e_sleep_thread kernel service forces the calling thread to wait until a shared event occurs. The

kernel places the calling thread on the event list anchored by the event_word parameter. This list is used

by the e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services to wakeup some or all

threads waiting for the event to occur.

Chapter 1. Kernel Services 117

A lock can be specified; it will be unlocked when the kernel service is entered, just before the thread

blocks. This lock can be a simple or a complex lock, as specified by the flags parameter. When the kernel

service exits, the lock is re-acquired.

Flags

The flags parameter specifies options for the kernel service. Several flags can be combined with the

bitwise OR operator. They are described below.

The four following flags specify the lock type. If the lock_word parameter is not NULL, exactly one of these

flags must be used.

 Flag Description

LOCK_HANDLER lock_word specifies a simple lock protecting a thread-interrupt or interrupt-interrupt critical

section.

LOCK_SIMPLE lock_word specifies a simple lock protecting a thread-thread critical section.

LOCK_READ lock_word specifies a complex lock in shared-read mode.

LOCK_WRITE lock_word specifies a complex lock in exclusive write mode.

The following flag specify the signal handling. By default, while the thread sleeps, signals are held pending

until it wakes up.

 INTERRUPTIBLE The signals must be checked while the kernel thread is sleeping. If a signal needs to be

delivered, the thread is awakened.

Return Values

The e_sleep_thread kernel service return a value that indicate how the kernel thread was awakened. The

following values are defined:

 THREAD_AWAKENED Denotes a normal wakeup; the event occurred.

THREAD_INTERRUPTED Denotes an interruption by a signal. This value can be returned even if the

INTERRUPTIBLE flag is not set since it may be also generated by the

e_clear_wait or e_wakeup_w_result kernel services.

THREAD_TIMED_OUT Denotes a timeout expiration. The e_sleep_thread has no timeout. However, the

e_clear_wait or e_wakeup_w_result kernel services may generate this return

value.

THREAD_OTHER Delineates the predefined system codes from those that need to be defined at the

subsystem level. Subsystem should define their own values greater than or equal

to this value.

Execution Environment

The e_sleep_thread kernel service can be called from the process environment only.

Related Information

The e_wakeup, e_wakeup_one, or e_wakeup_w_result kernel services, e_block_thread kernel service,

e_clear_wait kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

Understanding Locking in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts

118 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts

et_post Kernel Service

Purpose

Notifies a kernel thread of the occurrence of one or more events.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/sleep.h>

void et_post (events, tid)

unsigned long events;

tid_t tid;

Parameters

 events Identifies the masks of events to be posted.

tid Specifies the thread identifier of the kernel thread to be notified.

Description

The et_post kernel service is used to notify a kernel thread that one or more events occurred.

The et_post service provides the fastest method of interprocess communication, although only the event

numbers are passed.

The event numbers must be known by the cooperating components, either through programming

convention or the passing of initialization parameters.

The et_post service is performed automatically when sending a request to a device queue serviced by a

kernel thread or when sending an acknowledgment.

The EVENT_KERNEL mask defines the event bits reserved for use by the kernel. For example, a bit with

a value of 1 indicates an event bit reserved for the kernel. Kernel extensions should assign their events

starting with the most significant bits and working down. If threads using the et_post service are also

using the device queue management kernel extensions, care must be taken not to use the event bits

registered for device queue management.

The et_wait service does not sleep but returns immediately if a specified event has already been posted

by the et_post service.

Execution Environment

The et_post kernel service can be called from either the process or interrupt environment.

Return Values

The et_post service has no return values.

Related Information

The et_wait kernel service.

Chapter 1. Kernel Services 119

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

et_wait Kernel Service

Purpose

Forces the calling kernel thread to wait for the occurrence of an event.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/sleep.h>

unsigned long

et_wait (wait_mask, clear_mask, flags)

unsigned long wait_mask;

unsigned long clear_mask;

int flags;

Parameters

 wait_mask Specifies the mask of events to await.

clear_mask Specifies the mask of events to clear.

flags Specifies the flags controling actions on occurrence of a signal.

The flags parameter is used to control how signals affect waiting for an event. There are two flag

values:

EVENT_SIGRET

Causes the wait for the event to be ended by an unmasked signal and the return value

set to EVENT_SIG.

EVENT_SIGWAKE

Causes the event to be ended by an unmasked signal and control transferred to the

return from the last setjmpx call, with the return value set to EXSIG.

EVENT_SHORT

Prohibits the wait from being terminated by a signal. This flag should only be used for

short, guaranteed-to-wakeup sleeps.

Note: The EVENT_SIGRET flag overrides the EVENT_SIGWAKE flag.

Description

The et_wait kernel service forces the calling kernel thread to wait for specified events to occur.

The wait_mask parameter indicates a mask, where each bit set equal to 1 represents an event for which

the thread must wait. The clear_mask parameter indicates a mask of events that must clear when the wait

is complete. Subsequent calls to the et_wait service return immediately unless you clear the bits, which

ends the wait.

Note: The et_wait service can be called with interrupts disabled only if the event or lock word is pinned.

Strategies for Using et_wait

Calling the et_wait kernel service with the EVENT_SIGRET flag clears the the pending events field when

the signal is received. If et_wait is called again by the same kernel thread, the thread waits indefinitely for

an event that has already occurred. When this happens, the thread does not run to completion. This

problem occurs only if the event and signal are posted at the same time.

120 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

To avoid this problem, use one of the following programming methods:

v Use the EVENT_SHORT flag to prevent signals from waking the thread up.

v Mask signals prior to the call of et_wait by using the limit_sigs kernel service. Then call et_wait. Invoke

the sigprocmask call to restore the signal mask by using the mask returned previously by limit_sigs.

The et_wait service is also used to clear events without waiting for them to occur. This is accomplished by

doing one of the following:

v Set the wait_mask parameter to EVENT_NDELAY.

v Set the bits in the clear_mask parameter that correspond with the events to be cleared to 1.

Because the et_wait service returns an event mask indicating those events that were actually cleared,

these methods can be used to poll the events.

Execution Environment

The et_wait kernel service can be called from the process environment only.

Return Values

Upon successful completion, the et_wait service returns an event mask indicating the events that

terminated the wait. If an EVENT_NDELAY value is specified, the returned event mask indicates the

pending events that were cleared by this call. Otherwise, it returns the following error code:

 EVENT_SIG Indicates that the EVENT_SIGRET flag is set and the wait is terminated by a signal.

Related Information

The et_post kernel service, setjmpx kernel service.

e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service

Purpose

Notifies kernel threads waiting on a shared event of the event’s occurrence.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/sleep.h>

void e_wakeup (event_word)

tid_t *event_word;

void e_wakeup_one (event_word)

tid_t *event_word;

void e_wakeup_w_result (event_word, result)

tid_t *event_word;

int result;

Parameters

 event_word Specifies the shared event designator. The kernel uses the event_word parameter as the anchor

to the list of threads waiting on this shared event.

Chapter 1. Kernel Services 121

result Specifies the value returned to the awakened kernel thread. The following values can be used:

THREAD_AWAKENED

Indicates a normal wakeup. This is the value automatically generated by the e_wakeup

or e_wakeup_one kernel services.

THREAD_INTERRUPTED

Indicates an interrupted sleep. This value is usually generated by a signal delivery when

the INTERRUPTIBLE flag is set.

THREAD_TIMED_OUT

Indicates a timeout expiration.

THREAD_OTHER

Delineates the predefined system codes from those that need to be defined at the

subsystem level. Subsystem should define their own values greater than or equal to this

value.

Description

The e_wakeup and e_wakeup_w_result kernel services wake up all kernel threads sleeping on the event

list anchored by the event_word parameter. The e_wakeup_one kernel service wakes up only the most

favored thread sleeping on the event list anchored by the event_word parameter.

When threads are awakened, they return from a call to either the e_block_thread or e_sleep_thread

kernel service. The return value depends on the kernel service called to wake up the threads (the wake-up

kernel service):

v THREAD_AWAKENED is returned if the e_wakeup or e_wakeup_one kernel service is called

v The value of the result parameter is returned if the e_wakeup_w_result kernel service is called.

If a signal is delivered to a thread being awakened by one of the wake-up kernel services, and if the

thread specified the INTERRUPTIBLE flag, the signal delivery takes precedence. The thread is awakened

with a return value of THREAD_INTERRUPTED, regardless of the called wake-up kernel service.

The e_wakeup and e_wakeup_w_result kernel services set the event_word parameter to EVENT_NULL.

The e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services have no return values.

Execution Environment

The e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services can be called from either the

process environment or the interrupt environment.

When called by an interrupt handler, the event_word parameter must be located in pinned memory.

Related Information

The e_block_thread kernel service, e_clear_wait kernel service, e_sleep_thread kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

e_wakeup_w_sig Kernel Service

Purpose

Posts a signal to sleeping kernel threads.

122 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/sleep.h>

void e_wakeup_w_sig (event_word, sig)

tid_t *event_word;

int sig;

Parameters

 event_word Specifies the shared event word. The kernel uses the event_word parameter as the anchor to the

list of threads waiting on this shared event.

sig Specifies the signal number to post.

Description

The e_wakeup_w_sig kernel service posts the signal sig to each kernel thread sleeping interruptible on

the event list anchored by the event_word parameter.

The e_wakeup_w_sig kernel service has no return values.

Execution Environment

The e_wakeup_w_sig kernel service can be called from either the process environment or the interrupt

environment.

Related Information

The e_block_thread kernel service, e_clear_wait kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

eeh_broadcast Kernel Service

Purpose

This service is provided for device drivers to coordinate activities during an EEH event.

Syntax

void eeh_broadcast(handle, message)

eeh_handle_t handle;

unsigned long long message;

Parameters

 handle EEH handle obtained from eeh_init or eeh_init_multifunc

message User- or kernel-defined message

Description

Because single-function drivers do not have a need for coordination, this service is intended for

multifunction drivers only. If a single-function driver calls it, it is a NOP. There are two kinds of messages

that can be sent among the drivers: kernel-defined messages (such as EEH_DD_SUSPEND and

EEH_DD_DEAD) and the user-defined messages. See sys/eeh.h for help on how to define user

Chapter 1. Kernel Services 123

messages. Kernel messages have a higher priority than user messages. Therefore, if user messages and

kernel messages are both pending, the kernel messages are sent out before the user messages.

Note: Device drivers should only broadcast their own messages (that is, the user-defined message) and

not the kernel messages.

Within the kernel messages, EEH_DD_DEAD has the highest priority. Multiple messages of the same kind

may or may not be coalesced depending upon the relative timing. Messages are sent by invoking the

callback routines. The callback routines are invoked sequentially but not in any specific order except that

the last driver to receive a message will have the EEH_MASTER flag set to indicate that all other drivers

have finished processing the message. Only one message is broadcast at a time—that is, all registered

callback routines are called sequentially with the same message before moving on to the next message.

Finally, they are invoked asynchronously at INTIODONE priority. Because they are broadcast

asynchronously, a device driver must not assume on a specific timeout within which the message would

arrive.

The macro EEH_BROADCAST(handle, message) is provided for device drivers to call this service.

Execution Environment

This kernel service can be called from the process or interrupt environment.

Return Values

This service has no return value.

Related Information

“eeh_clear Kernel Service,” “eeh_disable_slot Kernel Service” on page 125, “eeh_enable_dma Kernel

Service” on page 126, “eeh_enable_pio Kernel Service” on page 127, “eeh_enable_slot Kernel Service” on

page 128, “eeh_init Kernel Service” on page 129, “eeh_init_multifunc Kernel Service” on page 131,

“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,

“eeh_slot_error Kernel Service” on page 136

eeh_clear Kernel Service

Purpose

This service unregisters a slot for an EEH function and removes resources allocated by the eeh_init or

eeh_init_multifunc kernel service.

Syntax

#include <sys/eeh.h>

void eeh_clear(handle)

eeh_handle_t handle;

Parameters

 handle EEH handle obtained from theeeh_init or eeh_init_multifunc kernel services

Description

Single-function Drivers: This service disables EEH function on the slot and frees its eeh_handle.

124 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Multifunction Drivers: For a multifunction adapter driver, this service removes the driver from a list of

registered drivers under the same parent bus. This service also disables EEH function on the slot if this is

the last driver to unregister and the state of the slot is NORMAL.

All device drivers are required to call eeh_clear before being removed from the system, so that there are

no hot plug conflicts. A subsequent adapter might fail in eeh_init_multifunc() on the slot if the eeh_clear

kernel service has not cleared the prior device drivers on that slot. A driver can unregister at

unconfigure/unload time. The kernel checks the state of the slot when this service is called. If the slot state

is neither NORMAL nor DEAD, eeh_clear sleeps until the state returns to one of them.

The macro EEH_CLEAR(handle) is provided for device drivers to call this service. This service is called by

a function pointer in the EEH handle.

Execution Environment

This kernel service can only be called from the process environment.

Return Values

This service has no return values.

Related Information

“eeh_broadcast Kernel Service” on page 123, “eeh_disable_slot Kernel Service,” “eeh_enable_dma Kernel

Service” on page 126, “eeh_enable_pio Kernel Service” on page 127, “eeh_enable_slot Kernel Service” on

page 128, “eeh_init Kernel Service” on page 129, “eeh_init_multifunc Kernel Service” on page 131,

“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,

“eeh_slot_error Kernel Service” on page 136

eeh_disable_slot Kernel Service

Purpose

This service disables a slot for the EEH operations.

Syntax

#include <sys/eeh.h>

long eeh_disable_slot(handle)

eeh_handle_t handle;

Parameters

 handle EEH handle obtained from theeeh_init kernel service

Description

This service disables EEH operation on a slot.

 CAUTION:

CAUTION: Disabling EEH operation on a slot is highly discouraged, because it can cause system

crash or worse, data corruption.

This service can only be called by the single-function adapter drivers. If the service fails for a hardware or

firmware reason, an error is logged.

Chapter 1. Kernel Services 125

Multifunction drivers call this service indirectly via eeh_clear(). It fails with EEH_FAIL if called directly by a

multifunction driver.

The macro EEH_DISABLE_SLOT(handle) is provided for device drivers to call this service.

Execution Environment

This kernel service can be called from the process or interrupt environment.

Return Values

 EEH_SUCC Slot successfully disabled

EEH_FAIL Unable to disable the slot

Related Information

“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_enable_dma

Kernel Service,” “eeh_enable_pio Kernel Service” on page 127, “eeh_enable_slot Kernel Service” on page

128, “eeh_init Kernel Service” on page 129, “eeh_init_multifunc Kernel Service” on page 131,

“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,

“eeh_slot_error Kernel Service” on page 136

eeh_enable_dma Kernel Service

Purpose

This service enables DMA operations to an adapter after an EEH event.

Syntax

#include <sys/eeh.h>

long eeh_enable_dma(handle)

eeh_handle_t handle;

Parameters

 handle EEH handle obtained from theeeh_init or eeh_init_multifunc kernel services

Description

When an EEH event occurs on a slot, all Direct Memory Access (DMA) operations on the slot are

inhibited. This service should be called to re-enable DMA after an EEH event. This service can only be

called from the dump context (that is, when the dump is in progress).

Single-function Drivers: This service enables the DMA operations on a slot. If this call fails with

EEH_FAIL, an error is logged by the kernel.

Multifunction Drivers: On the multifunction adapters, the slot state must be either SUSPEND or DEBUG,

and the caller must be an EEH_MASTER. This service is called only from a dump context. While a system

dump is in progress, all callbacks and broadcasts are suspended, and a multifunction adapter is treated

like a single-function adapter, because the system can no longer support the EEH multifunction kernel

services. If the service fails, EEH_FAIL is returned. If the failure is due to hardware or firmware, an error is

logged.

126 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

There are cases when this kernel service cannot succeed because of the platform state restrictions. In

such a case, if a driver calls it, the service would return EEH_FAIL. This causes the slot to be marked

permanently unavailable, which is not correct because the slot can be recovered. To avoid receiving

EEH_FAIL from this service, the driver should supply the EEH_ENABLE_NO_SUPPORT_RC flag at

eeh_init_multifunc() time. If the EEH_ENABLE_NO_SUPPORT_RC flag is supplied, eeh_enable_dma()

returns EEH_NO_SUPPORT, indicating to the drivers that they cannot collect debug data but must

continue with the next step in recovery.

The macro EEH_ENABLE_DMA(handle) is provided for device drivers to call this service.

Execution Environment

This kernel service can only be called from a process or interrupt environment.

Return Values

This kernel service has no return values.

Related Information

“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot

Kernel Service” on page 125, “eeh_enable_pio Kernel Service,” “eeh_enable_slot Kernel Service” on page

128, “eeh_init Kernel Service” on page 129, “eeh_init_multifunc Kernel Service” on page 131,

“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,

“eeh_slot_error Kernel Service” on page 136

eeh_enable_pio Kernel Service

Purpose

This kernel service enables programmed I/O (PIO or MMIO) to an adapter after an EEH event.

Syntax

#include <sys/eeh.h>

long eeh_enable_pio(handle)

eeh_handle_t handle;

Parameters

 handle EEH handle obtained from the eeh_init or eeh_init_multifunc kernel services

Description

When an EEH event occurs on a slot, all load and store operations (such as PIO) are inhibited. This

kernel service should be called to re-enable PIO after an EEH event.

Single-function Drivers: This kernel service enables the load and store operations on a slot. If this call

fails with EEH_FAIL, an error is logged by the kernel.

Multifunction Drivers: On the multifunction adapters, the state of the slot is checked for either SUSPEND

or DEBUG. The caller must be an EEH_MASTER. If the state is SUSPEND, a series of device driver

callback routines is executed with a command option of EEH_DD_DEBUG and flag set to

EEH_DD_PIO_ENABLED. The callbacks inform device drivers that PIO has been enabled and that further

debug procedures can be executed (such as reading command and status register). This service can be

called as a result of the EEH_DD_SUSPEND or EEH_DD_DEBUG callback message as many times as

Chapter 1. Kernel Services 127

needed by the EEH_MASTER. Additional calls to this service trigger a new set of callbacks. If this service

fails, EEH_FAIL is returned. If the failure is due to hardware or firmware, an error is logged.

There are cases when this kernel service cannot succeed due to the platform state restrictions. In such a

case, if a driver calls it, the kernel service would return EEH_FAIL followed by a EEH_DD_DEAD

message. This causes the slot to be marked permanently unavailable, which is not correct because the

slot can be recovered. To avoid receiving EEH_FAIL from this service, the driver should supply the

EEH_ENABLE_NO_SUPPORT_RC flag at eeh_init_multifunc() time. If the

EEH_ENABLE_NO_SUPPORT_RC flag is supplied, eeh_enable_pio() returns EEH_NO_SUPPORT,

indicating to the drivers that they cannot collect debug data but must continue with the next step in

recovery.

The macro EEH_CLEAR(handle) is provided for device drivers to call this service. This service is called

via a function pointer in the EEH handle.

Note: Enabling PIO is not the same as recovering the slot. In fact, this is an optional step in the recovery

procedure.

Execution Environment

This kernel service can be called from the process or interrupt environment.

Return Values

 EEH_SUCC PIO successfully enabled.

EEH_FAIL Invalid call or could not enable PIO.

EEH_NO_SUPPORT Call is valid according to AIX EEH state, but current platform state precludes

normal completion.

Related Information

“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot

Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_slot Kernel

Service,” “eeh_init Kernel Service” on page 129, “eeh_init_multifunc Kernel Service” on page 131,

“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,

“eeh_slot_error Kernel Service” on page 136

eeh_enable_slot Kernel Service

Purpose

This service enables a slot for the EEH operations.

Syntax

#include <sys/eeh.h>

long eeh_enable_slot(handle)

eeh_handle_t handle;

Parameters

 handle EEH handle obtained from theeeh_init kernel service

128 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

This service enables EEH operation on a slot so that when certain errors occur on a PCI bus, the slot will

freeze (that is, PIO and DMA are disabled, which prevents potential system crash, data corruption, and so

on). This service can only be called by the single-function adapter drivers. If the service fails for hardware

or firmware reasons, an error is logged.

Multifunction drivers call this service indirectly via eeh_init_multifunc(). It fails with EEH_FAIL if called

directly by a multifunction driver.

The macro EEH_ENABLE_SLOT(handle) is provided for device drivers to call this service.

Execution Environment

This kernel service can be called from the process or interrupt environment.

Return Values

 EEH_SUCC Slot successfully enabled

EEH_FAIL Unable to enable the slot

Related Information

“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot

Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel

Service” on page 127, “eeh_init Kernel Service,” “eeh_init_multifunc Kernel Service” on page 131,

“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,

“eeh_slot_error Kernel Service” on page 136

eeh_init Kernel Service

Purpose

This service registers a single-function adapter slot on a PCI/PCI-E bus for EEH function.

Syntax

#include <sys/eeh.h>

eeh_handle_t eeh_init(pbid, slot, flag)

long pbid;

long slot;

long flag;

Parameters

 pbid AIX parent bus identifier

slot device slot (device*8+function). This is same as ″connwhere″ property in CuDv.

flag flag that enables eeh

Description

The pbid argument identifies a bus type and number. The bus type is IO_PCI in the case of PCI and

PCI-X bus. If the bus type is IO_PCIE, the device is on PCI-E (PCI Express) bus. The bus number is a

unique identifier determined during bus configuration. The BID_VAL macro defined in ioacc.h is used to

generate the bid. The slot argument is the device/function combination ((device*8) + function) as in the

Chapter 1. Kernel Services 129

PCI addressing scheme. The flag argument of EEH_ENABLE enables the slot. The flag argument of

EEH_DISABLE does not enable the slot but still allocates an EEH handle. This service should be called

only by the single-function adapter drivers.

The macro EEH_INIT(pbid, slot, flag) is provided for the device drivers to call this service. The

eeh_handle is defined as follows in <sys/eeh.h>:

/*

 * This is the eeh_handle structure for the eeh_* services

 */

typedef struct eeh_handle * eeh_handle_t;

struct eeh_handle {

 struct eeh_handle *next;

 long bid; /* bus id passed to eeh_init */

 long slot; /* slot passed to eeh_init */

 long flag; /* flag passed to eeh_init */

 int config_addr; /* Configuration Space Address */

 int eeh_mode; /* Indicates safe mode */

 uint retry_delay; /* re-read the slot state after *

 * these many seconds. */

 int reserved1;

 int reserved2;

 int reserved3;

 long long PHB_Unit_ID; /* /pci@ */

 void (*eeh_clear)(eeh_handle_t);

 long (*eeh_enable_pio)(eeh_handle_t);

 long (*eeh_enable_dma)(eeh_handle_t);

 long (*eeh_reset_slot)(eeh_handle_t, int);

 long (*eeh_enable_slot)(eeh_handle_t);

 long (*eeh_disable_slot)(eeh_handle_t);

 long (*eeh_read_slot_state)(eeh_handle_t, long *, long *);

 long (*eeh_slot_error)(eeh_handle_t, int, char *, long);

 struct eeh_shared_domain *parent_sd; /* point back to the parent

 * shared domain structure if

 * in shared domain, NULL if singlefunc.

 */

 void (*eeh_configure_bridge)(eeh_handle_t);

 void (*eeh_broadcast)(eeh_handle_t, unsigned long long);

};

This is an exported kernel service.

Execution Environment

This service can only be called from the process environment.

Return Values

 EEH_FAIL Unable to allocate EEH handle.

EEH_NO_SUPPORT EEH not supported on this system, no handle allocated.

struct eeh_handle * If successful.

Related Information

“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot

Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel

Service” on page 127, “eeh_enable_slot Kernel Service” on page 128, “eeh_init_multifunc Kernel Service”

on page 131, “eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page

135, “eeh_slot_error Kernel Service” on page 136

130 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

eeh_init_multifunc Kernel Service

Purpose

This kernel service registers a multifunction adapter slot on a PCI/PCI-E bus for EEH function.

Syntax

#include <sys/eeh.h>

eeh_handle_t eeh_init_multifunc(gpbid, pbid, slot, flag, delay_seconds,

 callback_ptr, dds_ptr)

long gpbid;

long pbid;

long slot;

long flag;

long delay_seconds;

long (*callback_ptr)();

void *dds_ptr;

Parameters

 gpbid Bus identifier of grandparent bus.

pbid Bus identifier of parent bus.

slot Slot on the parent bus (device*8+function). This is same as ″connwhere″ property in

CuDv for the device.

flag Flag that enables eeh, checks if the slot is already taken, etc.

delay_seconds Time delay after a reset (in seconds).

callback_ptr Device driver callback routine.

dds_ptr Cookie to a target device driver that is usually a pointer to the adapter structure.

Description

This kernel service is provided for systems that support shared EEH domain, where one or more PCI

functions in one or more adapters could belong to the same EEH recovery domain. In the past, this was

called ″multifunction adapter″. The shared EEH domain is a more general concept than just a multifunction

adapter. It is also recommended that single function adapters use the shared EEH model. All PCI-E

devices, single or multifunction have to use the shared EEH model and hence this kernel service to

register for EEH (instead of eeh_init()). In a shared EEH domain, multiple instances of device drivers may

be operating. The instances are independent of each other and hence oblivious to each other’s existence.

Therefore, when recovering a slot from an EEH event, there is a need to coordinate the recovery

procedure among them. As with eeh_init(), this service also returns an eeh_handle to the calling device

driver.

There are two kinds of adapters: bridged and non-bridged. A bridged adapter has a bridge on the card

such as PCI-to-PCI or PCIX-to-PCIX or PCI-E switch. For PCI and PCI-X bridged-adapters, pbid is the bus

ID of the parent bus, and gpbid is the bus ID of the grandparent bus. The parent bus for a bridged adapter

is the bus generated by the bridge/switch on the adapter. A bid identifies a bus number and type. The bus

type is IO_PCI in the case of PCI and PCI-X bus, and IO_PCIE in the case of PCI-E bus. The bus number

is a unique identifier determined during bus configuration. The BID_VAL macro defined in ioacc.h is used

to generate the bid. For non-bridged adapters, pbid and gpbid are the same and are the bus IDs of the

parent bus. Thus, when pbid and gpbid have different values for a PCI or PCI-X device, the kernel knows

that this is a bridged adapter and needs to the bridge recovered as part of EEH recovery. It is not

necessary to know if a PCI-E device is bridged or not for the purposes of EEH. Therefore, pbid and gpbid

must be same and equal to the parent bus bid.

In summary, there are the following cases:

Chapter 1. Kernel Services 131

1. PCI/PCI-X non-bridged adapters and all PCI-E adapters: gpbid and pbid are same and equal to the

parent bus bid.

2. PCI/PCI-X bridged adapters, gpbid is grandparent bus bid, and pbid is parent bus bid.

The slot argument is the device/function combination ((device* 8) + function) as in the PCI addressing

scheme. This is the same as the connwhere ODM value of the device.

The following flag values are legal:

 EEH_ENABLE_FLAG/EEH_DISABLE_FLAG The slot is always enabled for EEH when this service is

called by the first driver on that slot. All subsequent

requests to enable the slot via the EEH_ENABLE flag are

ignored. Therefore, the flag argument of EEH_ENABLE is

optional, and a flag of EEH_DISABLE is ignored.

EEH_CHECK_SLOT The flag argument of EEH_CHECK_SLOT verifies whether

a given slot is already registered. A value of either

EEH_SLOT_ACTIVE or EEH_SLOT_FREE is returned. No

registration occurs with the EEH_CHECK_SLOT flag, and

it supersedes all other flags. This flag simply checks the

slot and returns without any other action.

EEH_ENABLE_NO_SUPPORT_RC If the flag is set to EEH_ENABLE_NO_SUPPORT_RC,

eeh_enable_pio() and eeh_enable_dma() return

EEH_NO_SUPPORT under certain conditions. See

“eeh_enable_dma Kernel Service” on page 126 and

“eeh_enable_pio Kernel Service” on page 127 for more

information.

Multiple flags can be logically ORed together.

The slot is always enabled for EEH when this service is called by the first driver on that slot. All

subsequent requests to enable the slot via the EEH_ENABLE flag are ignored. Therefore, the flag

argument of EEH_ENABLE is optional, and a flag of EEH_DISABLE is ignored. The flag argument of

EEH_CHECK_SLOT verifies whether a given slot is already registered. A value of either

EEH_SLOT_ACTIVE or EEH_SLOT_FREE is returned. No registration will occur with the

EEH_CHECK_SLOT flag, and it supersedes all other flags. This flag just checks the slot and returns

without any other action. If the flag is set to EEH_ENABLE_NO_SUPPORT_RC, eeh_enable_pio() and

eeh_enable_dma() returns EEH_NO_SUPPORT under certain conditions. See eeh_enable_pio() and

eeh_enable_dma() for more information. It is allowed to logically OR multiple flags together.

The delay_seconds argument allows the device driver to set a time delay between completion of PCI reset

and configuration of the bridge on the adapter. The delay is enforced even if the adapter is non-bridged. If

a value of 0 is specified for delay_seconds, a default delay time of 1 second is set. When several drivers

register on the same pbid (under a shared EEH domain), the highest delay time among all registered

drivers is used.

The callback_ptr argument is a function pointer to an EEH callback routine. The handler is defined by the

device driver and is called by the kernel in order to coordinate recovery among different drivers on the

same slot. The driver handles a variety of messages from the kernel in its callback routine. These

messages trigger the next step in recovery. The callback routines are called sequentially at INTIODONE

interrupt level.

The dds_ptr argument is a cookie that is passed to the driver when the callback routine is invoked. Drivers

normally specify a pointer to the device driver’s adapter structure.

EEH_SAFE mode: A bridged adapter needs to have its bridge reconfigured at the end of PCI reset.

However, if the platform firmware does not support reconfiguration of the bridge, the adapter is marked as

132 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

EEH_SAFE by the kernel. An EEH_SAFE adapter cannot finish error recovery after an EEH event

because of the unsatisfied firmware dependency. See eeh_reset_slot for information on how the error

recovery is handled in EEH_SAFE mode.

The macro EEH_INIT_MULTIFUNC(gpbid, pbid, slot, flag, delay_seconds, callback_ptr, dds_ptr) is

provided for the device drivers in order to call this service. This is an exported kernel service.

Execution Environment

This kernel service can only be called from the process environment.

Return Values

 EEH_FAIL Unable to allocate EEH handle.

EEH_NO_SUPPORT EEH is not supported on this system, no handle allocated.

EEH_SLOT_ACTIVE Given slot is already registered.

EEH_SLOT_FREE Given slot free.

EEH_BUSY Unable to continue, because the slot is in the middle of error recovery.

struct eeh_handle * Upon Success.

Related Information

“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot

Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel

Service” on page 127, “eeh_enable_slot Kernel Service” on page 128, “eeh_init Kernel Service” on page

129, “eeh_read_slot_state Kernel Service,” “eeh_reset_slot Kernel Service” on page 135, “eeh_slot_error

Kernel Service” on page 136

eeh_read_slot_state Kernel Service

Purpose

This service returns state and capabilities of a slot with respect to EEH operation.

Syntax

long eeh_read_slot_state(handle, state, support)

eeh_handle_t handle;

long *state;

long *support;

Parameters

 handle EEH handle obtained from eeh_init or eeh_init_multifunc

state State of a slot with respect to EEH

support Indicates if EEH is supported by this slot

Description

This service is used to query the hardware state of a slot and to determine whether a given slot supports

EEH. It should be called to confirm an EEH event if the driver suspects that the PIO data is invalid (for

example, getting all Fs from reading a register). This service returns the hardware state in state and

indicates whether the slot supports EEH in support. The state and support parameters are integer values

as shown below:

Chapter 1. Kernel Services 133

Valid state values are as follows:

 EEH_NSTOPPED_RST_DEA Reset deactivated and adapter is not in stopped state.

EEH_NSTOPPED_RST_ACT Reset activated and adapter is not in stopped state.

EEH_STOPPED_LS_DIS Adapter in stopped state with reset signal deactivated and

Load/Store disabled.

EEH_STOPPED_LS_ENA Adapter in stopped state with reset signal deactivated and

Load/Store enabled.

EEH_UNAVAILABLE Adapter is either permanently or temporarily unavailable.

Valid support values are as follows:

 0 EEH not supported.

1 EEH supported.

The driver should call this service and check for EEH_STOPPED_LS_DIS and EEH_STOPPED_LS_ENA

as the state values if it suspects an EEH event on the adapter. If the state is either of those values, the

slot is said to be frozen.

Single-function Driver: A single-function adapter driver calls this service to query the state of the slot. If

the service fails due to hardware or firmware reasons, an error is logged. If the service fails, state and

support values are undefined, and EEH_FAIL is returned.

Multifunction Driver: For a multifunction adapter driver, this service analyzes the state to determine if:

v The state is frozen, or

v it is permanently unavailable (that is, the slot is unusable from hereon), or

v it is temporarily unavailable.

If the slot is in either a frozen or temporarily unavailable state, the EEH_DD_SUSPEND message is

broadcast to all registered drivers on this slot. If the slot is permanently unavailable (that is, dead), the

EEH_DD_DEAD message is broadcast. Upon receiving this message, the drivers are expected to suspend

all further DMA, PIO, interrupt, configuration cycles, and so on until the slot is recovered. If the service

fails due to hardware or firmware reasons, an error is logged, EEH_DD_DEAD is broadcast, and

EEH_FAIL is returned.

Temporarily versus permanently unavailable state

In addition to state and support, this service also returns a valid retry_delay value in the eeh_handle

structure if the state is EEH_UNAVAILABLE. If retry_delay is 0, it is permanently unavailable. If retry_delay

is non-zero, it is temporarily unavailable. A permanently unavailable state means that the slot is unusable

until a hot-plug operation or partition reboot is performed. Therefore, the drivers mark their adapters as

unusable when they receive an EEH_UNAVAILABLE message (single-function) or when they receive an

EEH_DD_DEAD message (multifunction). A temporarily unavailable state means that the current state of a

slot is transient and might take a few minutes to settle down. Until that time, the device driver cannot begin

recovery because it does not know what the final state will be. The temporarily unavailable state is

handled differently by the single-function and multifunction drivers as follows:

Single-function Driver: Because a single-function driver drives its own recovery, it needs to check for

retry_delay if the state is set to EEH_UNAVAILABLE. If retry_delay is non-zero, it represents the number

of seconds that the driver should wait before calling this kernel service again. It continues to call this

service repeatedly as long as the state is EEH_UNAVAILABLE and retry_delay is non-zero. Eventually, the

state will end up in one of the following:

v EEH_NSTOPPED_RST_ACT

v EEH_STOPPED_LS_DIS

134 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

v EEH_UNAVAILABLE w/ ″retry_delay″ set to 0 (i.e. permanently unavailable)

At that point, the driver can continue with its normal course of action for a given state.

Multifunction Driver: A multifunction driver does not need to check for the retry_delay field when the state

is EEH_UNAVAILABLE, because EEH_UNAVAILABLE would only mean permanently unavailable. In the

case of temporarily unavailable, a multifunction driver would receive the EEH_DD_SUSPEND or

EEH_DD_DEAD message after some time, depending upon the final state of the slot. If the final state was

EEH_NSTOPPED_RST_ACT or EEH_STOPPED_LS_DIS, then EEH_DD_SUSPEND is broadcast; if it

was EEH_UNAVAILABLE, then EEH_DD_DEAD is broadcast. Thus, from the point-of-view of a

multifunction driver, there is no difference between frozen and temporarily unavailable.

The macro EEH_READ_SLOT_STATE(handle, state, support) is provided for device drivers to call this

service.

Execution Environment

This kernel service can be called from the process or interrupt environment.

Return Values

 EEH_SUCC Successfully read the slot state and capabilities

EEH_FAIL Unable to read the slot state and capabilities

Related Information

“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot

Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel

Service” on page 127, “eeh_enable_slot Kernel Service” on page 128, “eeh_init Kernel Service” on page

129, “eeh_init_multifunc Kernel Service” on page 131, “eeh_reset_slot Kernel Service,” “eeh_slot_error

Kernel Service” on page 136

eeh_reset_slot Kernel Service

Purpose

This service activates, deactivates, or toggles the reset line of a PCI slot.

Syntax

#include <sys/eeh.h>

long eeh_reset_slot(handle, flag)

eeh_handle_t handle;

long flag;

Parameters

 handle EEH handle obtained from theeeh_init or eeh_init_multifunc kernel services

flag Flag can be either EEH_ACTIVE or EEH_DEACTIVE.

Description

Single-function Drivers: This service activates and deactivates the reset line between the Terminal

Bridge and the adapter. The flag argument specifies whether to activate (EEH_ACTIVE) or deactivate

(EEH_DEACTIVE) depending upon the required action. To do the reset of a slot, the reset line should be

Chapter 1. Kernel Services 135

toggled by calling this service twice: once with EEH_ACTIVE followed by a second call with

EEH_DEACTIVE. There should be a minimum of 100 milliseconds delay between the activation and

deactivation of the signal. The minimum delay is specified by the PCI System Architecture and should be

enforced by the single-function driver.

Multifunction Drivers: On a multifunction adapter, the EEH_MASTER for the slot drives error recovery.

Therefore, only the EEH_MASTER can call this service. Unlike the single-function driver, the master calls

this service only once with the EEH_ACTIVE flag.

For the multi-function drivers, the service first activates and then deactivates the reset signal on the slot. It

enforces a 100–millisecond delay between the activation and deactivation as mandated by the PCI System

Architecture. After the reset signal is deactivated, the service attempts to reconfigure the bridge on the

adpater, if there is one (only applies to the bridged-adapters), after dd_trb_timer seconds specified in

eeh_init_multifunc(). At the end of a successful reset and optional bridge recovery, an

EEH_DD_RESUME message is broadcast to the slot’s multifunction drivers notifying them to resume

normal operation. If this service fails, the EEH_DD_DEAD message is broadcast. If failure is due to

hardware or firmware, an error is logged.

EEH_SAFE mode: If an EEH_SAFE adapter calls this service, the reset signal is activated but is never

deactivated, thereby leaving the adapter in a ″permanently unavailable″ state. Such an adapter becomes

available again if either the PCI hot-plug operation is performed on it or if the partition is rebooted. This

service returns EEH_FAIL for an EEH_SAFE driver.

The macro EEH_RESET_SLOT(handle, flag) is provided for device drivers to call this service.

Execution Environment

This kernel service can be called from the process or interrupt environment.

Return Values

 EEH_SUCC Slot reset activate/deactivate succeeded

EEH_FAIL Failed to activate/deactivate the reset line, nonmaster called the service, or

EEH_SAFE mode is active

EEH_BUSY Recovery is already in progress

Related Information

“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot

Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel

Service” on page 127, “eeh_enable_slot Kernel Service” on page 128, “eeh_init Kernel Service” on page

129, “eeh_init_multifunc Kernel Service” on page 131, “eeh_read_slot_state Kernel Service” on page 133,

“eeh_slot_error Kernel Service”

eeh_slot_error Kernel Service

Purpose

This service logs a temporary or permanent error and optionally marks the slot permanently unavailable.

Syntax

#include <sys/eeh.h>

long eeh_slot_error(handle, flag, dd_buf, dd_buf_length)

eeh_handle_t handle;

136 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int flag;

char *dd_buf;

long dd_buf_length;

Parameters

 handle EEH handle obtained from eeh_init or eeh_init_multifunc

flag EEH_RESET_TEMP or EEH_RESET_PERM

dd_buf Address of the device driver’s error log buffer

dd_buf_length Length of device driver’s error log buffer in bytes

Description

This service performs a number of tasks:

v It collects hardware data to help in understanding the nature and source of an EEH event

v It combines the device-driver-supplied debug data log with the hardware data log and creates an entry

in the error log

v It optionally marks the slot permanently unavailable so that subsequent eeh_read_slot_state() calls

return EEH_UNAVAILABLE with a retry_delay value of 0

The behavior of this kernel service is controlled by two flag values:

 EEH_RESET_TEMP This flag performs only the first two of the preceding tasks..

EEH_RESET_PERM This flag performs all three tasks.

Depending on the hardware state of the slot, this service might not be able to collect the hardware data.

Thus, the service succeeds but logs no data. If EEH_RESET_PERM was supplied, it still marks the slot

permanently unavailable.

The dd_buf and dd_buf_length parameters are used to combine the device driver error log with the

hardware log. The dd_buf argument is the address of an error log buffer containing the device driver’s

data. The dd_buf_length argument is the length of this buffer. If the length exceeds 1024 bytes in AIX

5.1/5.2 and MAX_DD_LOG_SIZE bytes in AIX 5.3 and above, the driver’s log data will be truncated. If

dd_buf is NULL, the error log will only contain hardware data, if any.

Single-function Driver: The kernel service works as in the preceding description. If it fails because of

hardware or firmware reasons, EEH_FAIL is returned and an error is logged.

Multifunction Driver: For the multifunction drivers, this service works as in the preceding description,

except that if EEH_RESET_PERM was supplied, the EEH_DD_DEAD message is broadcast.

The macro EEH_SLOT_ERROR(handle, flag, dd_buf, dd_buf_length) is provided for device drivers to call

this service.

Execution Environment

This kernel service can be called from the process or interrupt environment.

Return Values

 EEH_SUCC Successfully logged error

EEH_FAIL Failed to log the error and optionally mark the slot permanently unavailable

Chapter 1. Kernel Services 137

Related Information

“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot

Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel

Service” on page 127, “eeh_enable_slot Kernel Service” on page 128, “eeh_init Kernel Service” on page

129, “eeh_init_multifunc Kernel Service” on page 131, “eeh_read_slot_state Kernel Service” on page 133,

“eeh_reset_slot Kernel Service” on page 135

enque Kernel Service

Purpose

Sends a request queue element to a device queue.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/deviceq.h>

int enque (qe)

struct req_qe *qe;

Parameter

 qe Specifies the address of the request queue element.

Description

The enque kernel service is not part of the base kernel, but is provided by the device queue management

kernel extension. This queue management kernel extension must be loaded into the kernel before loading

any kernel extensions referencing these services.

The enque service places the queue element into a specified device queue. It is used for simple

process-to-process communication within the kernel. The requester builds a copy of the queue element,

indicated by the qe parameter, and passes this copy to the enque service. The kernel copies this queue

element into a queue element in pinned global memory and then enqueues it on the target device queue.

The path identifier in the request queue element indicates the device queue into which the element is

placed.

The enque service supports the sending of the following types of queue elements:

 Queue Element Description

SEND_CMD Send command.

START_IO Start I/O.

GEN_PURPOSE General purpose.

For simple interprocess communication, general purpose queue elements are used.

The queue element priority value can range from QE_BEST_PRTY to QE_WORST_PRTY. This value is

limited to the value specified when the queue was created.

The operation options in the queue element control how the queue element is processed. There are five

standard operation options:

138 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Operation Option Description

ACK_COMPLETE Acknowledge completion in all cases.

ACK_ERRORS Acknowledge completion if the operation results in an error.

SYNC_REQUEST Synchronous request.

CHAINED Chained control blocks.

CONTROL_OPT Kernel control operation.

Note: Only one of ACK_COMPLETE, ACK_ERRORS, or SYNC_REQUEST can be specified. Also, all of

these options are ignored if the path specifies that no acknowledgment (NO_ACK) should be sent.

With the SYNC_REQUEST synchronous request option, control does not return from the enque service

until the request queue element is acknowledged. This performs in one step what can also be achieved by

sending a queue element with the ACK_COMPLETE flag on, and then calling either the et_wait or waitq

kernel services.

The kernel calls the server’s check routine, if one is defined, before a queue element is placed on the

device queue. This routine can stop the operation if it detects an error.

The kernel notifies the device queue’s server, if necessary, after a queue element is placed on the device

queue. This is done by posting the server process (using the et_post kernel service) with an event control

bit.

Execution Environment

The enque kernel service can be called from the process environment only.

Return Values

 RC_GOOD Indicates a successful operation.

RC_ID Indicates a path identifier that is not valid.

All other error values represent errors returned by the server.

Related Information

The et_post kernel service, et_wait kernel service, waitq kernel service.

The check device queue management routine.

errresume Kernel Service

Purpose

Resumes error logging after an errlast command was issued.

Syntax

void errresume()

Description

When an error is logged with the errlast command, no more error logging will happen on the system until

an errresume call is issued.

Chapter 1. Kernel Services 139

Execution Environment

This can be called from either the process or an interrupt level.

Related Information

The “errsave or errlast Kernel Service.”

Error-Logging Facility in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs

errsave or errlast Kernel Service

Purpose

Allows the kernel and kernel extensions to write to the error log.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/errids.h>

void errsave (buf, cnt)
char *buf;
unsigned int cnt; void errlast (buf, cnt)
char *buf
unsigned int cnt;

Parameters

 buf Points to a buffer that contains an error record as described in the /usr/include/sys/err_rec.h file.

cnt Specifies the number of bytes in the error record contained in the buffer pointed to by the buf parameter.

Description

The errsave kernel service allows the kernel and kernel extensions to write error log entries to the error

device driver. The error record pointed to by the buf parameter includes the error ID resource name and

detailed data.

In addition, the errlast kernel service disables any future error logging, thus any error logged with errlast

will stay on NVRAM. This service is only for use prior to a pending system crash or stop. The errlast

service should only be used in extreme circumstances where the system can not continue, such as the

occurance of a machine check.

Execution Environment

The errsave kernel service can be called from either the process or interrupt environment.

Return Values

The errsave service has no return values.

Related Information

The errlog subroutine.

For more information on error device drivers, see Error Logging Special Files in AIX 5L Version 5.3 Files

Reference.

140 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

RAS Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

fetch_and_add Kernel Service

Purpose

Increments a single word variable atomically.

Syntax

#include <sys/atomic_op.h>

int fetch_and_add (word_addr, value)

atomic_p word_addr;

int value;

Parameters

 word_addr Specifies the address of the word variable to be incremented.

value Specifies the value to be added to the word variable.

Description

The fetch_and_add kernel service atomically increments a single word. This operation is useful when a

counter variable is shared between several kernel threads, since it ensures that the fetch, update, and

store operations used to increment the counter occur atomically (are not interruptible).

Note: The word variable must be aligned on a full word boundary.

Execution Environment

The fetch_and_add kernel service can be called from either the process or interrupt environment.

Return Values

The fetch_and_add kernel service returns the original value of the word.

Related Information

The fetch_and_and kernel service, fetch_and_or kernel service, compare_and_swap kernel service.

Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts

fetch_and_and or fetch_and_or Kernel Service

Purpose

Clears and sets bits in a single word variable atomically.

Syntax

#include <sys/atomic_op.h>
uint fetch_and_and (word_addr, mask)
atomic_p word_addr;
int mask;

Chapter 1. Kernel Services 141

uint fetch_and_or (word_addr, mask)
atomic_p word_addr;
int mask;

Parameters

 word_addr Specifies the address of the single word variable whose bits are to be cleared or set.

mask Specifies the bit mask which is to be applied to the single word variable.

Description

The fetch_and_and and fetch_and_or kernel services respectively clear and set bits in one word,

according to a bit mask, as a single atomic operation. The fetch_and_and service clears bits in the word

which correspond to clear bits in the bit mask, and the fetch_and_or service sets bits in the word which

correspond to set bits in the bit mask.

These operations are useful when a variable containing bit flags is shared between several kernel threads,

since they ensure that the fetch, update, and store operations used to clear or set a bit in the variable

occur atomically (are not interruptible).

Note: The word containing the bit flags must be aligned on a full word boundary.

Execution Environment

The fetch_and_and and fetch_and_or kernel services can be called from either the process or interrupt

environment.

Return Values

The fetch_and_and and fetch_and_or kernel services return the original value of the word.

Related Information

The fetch_and_add kernel service, compare_and_swap kernel service.

Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts

fidtovp Kernel Service

Purpose

Maps a file system structure to a file ID.

Maps a file identifier to a mode.

Syntax

#include <sys/types.h>

#include <sys/vnode.h>

int fidtovp(fsid, fid, vpp)

fsid_t *fsid;

struct fileid *fid;

struct vnode **vpp;

142 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 fsid Points to a file system ID structure. The system uses this structure to determine which virtual file system

(VFS) contains the requested file.

fid Points to a file ID structure. The system uses this pointer to locate the specific file within the VFS.

vpp Points to a location to store the file’s vnode pointer upon successful return of the fidtovp kernel service.

Description

The fidtovp kernel service returns a pointer to a vnode for the file identified by fsid and fid, and

increments the count on the vnode so the file is not removed. Subroutines that call the fidtovp kernel

service must call VNOP_RELE to release the vnode pointer.

This kernel service is designed for use by the server side of distributed file systems.

Execution Environment

The fidtovp kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

ESTALE Indicates the requested file or file system was removed or recreated since last access with the given file

system ID or file ID.

find_input_type Kernel Service

Purpose

Finds the given packet type in the Network Input Interface switch table and distributes the input packet

according to the table entry for that type.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/if.h>

int find_input_type (type, m, ac, header_pointer)
ushort type;
struct mbuf * m;
struct arpcom * ac;
caddr_t header_pointer;

Parameters

 type Specifies the protocol type.

m Points to the mbuf buffer containing the packet to distribute.

ac Points to the network common portion (arpcom) of the network interface on which the

packet was received. This common portion is defined as follows:

in net/if_arp.h

header_pointer Points to the buffer containing the input packet header.

Chapter 1. Kernel Services 143

Description

The find_input_type kernel service finds the given packet type in the Network Input table and distributes

the input packet contained in the mbuf buffer pointed to by the m value. The ac parameter is passed to

services that do not have a queued interface.

Execution Environment

The find_input_type kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the protocol type was successfully found.

ENOENT Indicates that the service could not find the type in the Network Input table.

Related Information

The add_input_type kernel service, del_input_type kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

fp_access Kernel Service

Purpose

Checks for access permission to an open file.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int fp_access (fp, perm)
struct file *fp;
int perm;

Parameters

 fp Points to a file structure returned by the fp_open or fp_opendev kernel service.

perm Indicates which read, write, and execute permissions are to be checked. The /usr/include/sys/mode.h file

contains pertinent values (IREAD, IWRITE, IEXEC).

Description

The fp_access kernel service is used to see if either the read, write, or exec bit is set anywhere in a file’s

permissions mode. Set perm to one of the following constants from mode.h:

IREAD
IWRITE
IEXEC

Execution Environment

The fp_access kernel service can be called from the process environment only.

144 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

 0 Indicates that the calling process has the requested permission.

EACCES Indicates all other conditions.

Related Information

The access subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_close Kernel Service

Purpose

Closes a file.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int fp_close (fp)

struct file *fp;

Parameter

 fp Points to a file structure returned by the fp_open, fp_getf, or fp_opendev kernel service.

Description

The fp_close kernel service is a common service for closing files used by both the file system and

routines outside the file system.

Execution Environment

The fp_close kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/error.h file is returned.

Related Information

The close subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Chapter 1. Kernel Services 145

fp_close Kernel Service for Data Link Control (DLC) Devices

Purpose

Allows kernel to close the generic data link control (GDLC) device manager using a file pointer.

Syntax

int fp_close(fp)

Parameters

 fp Specifies the file pointer of the GDLC being closed.

Description

The fp_close kernel service disables a GDLC channel. If this is the last channel to close on a port, the

GDLC device manager resets to an idle state on that port and the communications device handler is

closed. The fp_close kernel service may be called from the process environment only.

Return Values

 0 Indicates a successful completion.

ENXIO Indicates an invalid file pointer. This value is defined in the

/usr/include/sys/errno.h file.

Related Information

The fp_close kernel service.

The fp_open kernel service for data link control (DLC) devices.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

fp_fstat Kernel Service

Purpose

Gets the attributes of an open file.

Syntax

#include <sys/types.h>

#include <sys/errno.h>
int fp_fstat (fp, statbuf, statsz, segflag)
struct file * fp;
caddr_t statbuf;
unsigned int statsz;
unsigned int segflag;

Parameters

 fp Points to a file structure returned by the fp_open kernel service.

statbuf Points to a buffer defined to be of stat or fullstat type structure. The statsz parameter indicates the

buffer type.

146 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

statsz Indicates the size of the stat or fullstat structure to be returned. The /usr/include/sys/stat.h file

contains information about the stat structure.

segflag Specifies the flag indicating where the information represented by the statbuf parameter is located:

SYS_ADSPACE

Buffer is in kernel memory.

USER_ADSPACE

Buffer is in user memory.

Description

The fp_fstat kernel service is an internal interface to the function provided by the fstatx subroutine.

Execution Environment

The fp_fstat kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related Information

The fstatx subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_fsync Kernel Service

Purpose

Writes changes for a specified range of a file to permanent storage.

Syntax

#include <sys/fp_io.h>

int fp_fsync (fp, how, off, len)

struct file *fp;

int how;

offset_t off;

offset_t len;

Description

The fp_fsync kernel service is an internal interface to the function provided by the fsync_range

subroutine.

Parameters

 fp Points to a file structure returned by the fp_open kernel service.

Chapter 1. Kernel Services 147

how How to flush, FDATASYNC, or FFILESYNC:

FDATASYNC

Write file data and enough of the meta-data to retrieve the data for the specified range.

FFILESYNC

All modified file data and meta-data for the specified range.

off Starting file offset.

len Length, or zero for everything

Execution Environment

The fp_fsync kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

ERRNO Returns an error number from the /usr/include/sys/
errno.h file on failure.

Related Information

The fsync or fsync_range Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System

and Extensions Volume 1.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_getdevno Kernel Service

Purpose

Gets the device number or channel number for a device.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/file.h>
int fp_getdevno (fp, devp, chanp)
struct file *fp;
dev_t *devp;
chan_t *chanp;

Parameters

 fp Points to a file structure returned by the fp_open or fp_opendev service.

devp Points to a location where the device number is to be returned.

chanp Points to a location where the channel number is to be returned.

Description

The fp_getdevno service finds the device number and channel number for an open device that is

associated with the file pointer specified by the fp parameter. If the value of either devp or chanp

parameter is null, this service does not attempt to return any value for the argument.

148 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The fp_getdevno kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates that the pointer specified by the fp parameter does not point to a file structure for an open

device.

Related Information

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_getf Kernel Service

Purpose

Retrieves a pointer to a file structure.

Syntax

#include <sys/types.h>

#include <sys/errno.h>
int fp_getf (fd, fpp)
int fd;
struct file **fpp;

Parameters

 fd Specifies a file descriptor.

fpp Points to the location where the file pointer is to be returned.

Description

A process calls the fp_getf kernel service when it has a file descriptor for an open file, but needs a file

pointer to use other Logical File System services.

The fp_getf kernel service uses the file descriptor as an index into the process’s open file table. From this

table it extracts a pointer to the associated file structure.

As a side effect of the call to the fp_getf kernel service, the reference count on the file descriptor is

incremented. This count must be decremented when the caller has completed its use of the returned file

pointer. The file descriptor reference count is decremented by a call to the ufdrele kernel service.

Execution Environment

The fp_getf kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EBADF Indicates that either the file descriptor is invalid or not currently used in the process.

Chapter 1. Kernel Services 149

Related Information

The ufdrele kernel service.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_hold Kernel Service

Purpose

Increments the open count for a specified file pointer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void fp_hold (fp)

struct file *fp;

Parameter

 fp Points to a file structure previously obtained by calling the fp_open, fp_getf, or fp_opendev kernel service.

Description

The fp_hold kernel service increments the use count in the file structure specified by the fp parameter.

This results in the associated file remaining opened even when the original open is closed.

If this function is used, and access to the file associated with the pointer specified by the fp parameter is

no longer required, the fp_close kernel service should be called to decrement the use count and close the

file as required.

Execution Environment

The fp_hold kernel service can be called from the process environment only.

Related Information

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_ioctl Kernel Service

Purpose

Issues a control command to an open device or file.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int fp_ioctl (fp, cmd, arg, ext)

struct file * fp;

150 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

unsigned int cmd;

caddr_t arg;

int ext;

Parameters

 fp Points to a file structure returned by the fp_open or fp_opendev kernel service.

cmd Specifies the specific control command requested.

arg Indicates the data required for the command.

ext Specifies an extension argument required by some device drivers. Its content, form, and use are determined by

the individual driver.

Description

The fp_ioctl kernel service is an internal interface to the function provided by the ioctl subroutine.

Execution Environment

The fp_ioctl kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned. The ioctl

subroutine contains valid errno values.

Related Information

The ioctl subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_ioctl Kernel Service for Data Link Control (DLC) Devices

Purpose

Transfers special commands from the kernel to generic data link control (GDLC) using a file pointer.

Syntax

#include <sys/gdlextcb.h>

#include <fcntl.h>

int fp_ioctl (fp, cmd, arg, ext)

Parameters

 fp Specifies the file pointer of the target GDLC.

cmd Specifies the operation to be performed by GDLC. For a

listing of all possible operators, see ″ioctl Operations (op)

for DLC″AIX 5L Version 5.3 Technical Reference:

Communications Volume 1.

Chapter 1. Kernel Services 151

arg Specifies the address of the parameter block. The

argument for this parameter must be in the kernel space.

For a listing of possible values, see ″Parameter Blocks by

ioctl Operation for DLC″AIX 5L Version 5.3 Technical

Reference: Communications Volume 1.

ext Specifies the extension parameter. This parameter is

ignored by GDLC.

Description

Various GDLC functions can be initiated using the fp_ioctl kernel service, such as changing configuration

parameters, contacting the remote, and testing a link. Most of these operations can be completed before

returning to the user synchronously. Some operations take longer, so asynchronous results are returned

much later using the exception function handler. GDLC calls the kernel user’s exception handler to

complete these results. Each GDLC supports the fp_ioctl kernel service by way of its dlcioctl entry point.

The fp_ioctl kernel service may be called from the process environment only.

Note: The DLC_GET_EXCEP ioctl operation is not used since all exception conditions are passed to the

kernel user through the exception handler.

Return Values

 0 Indicates a successful completion.

ENXIO Indicates an invalid file pointer.

EINVAL Indicates an invalid value.

ENOMEM Indicates insufficient resources to satisfy the ioctl

subroutine.

These return values are defined in the /usr/include/sys/errno.h file.

Related Information

The fp_ioctl kernel service.

The ioctl subroutine.

The ioctl subroutine interface for DLC devices.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

fp_ioctlx Kernel Service

Purpose

Issues a control command to an open device.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <fcntl.h>

int fp_ioctlx (fp, cmd, arg, ext, flags, retval)

struct file *fp;

unsigned long cmd;

152 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

caddr_t arg;

ext_t ext;

unsigned long flags;

long *retval;

Description

The fp_ioctlx kernel service is an internal interface to the function provided by the ioctl subroutine.

The fp_ioctlx kernel service issues a control command to an open device. Some drivers need the return

value that is returned by the kernel service if there is no error. This value is not available through the

fp_ioctl kernel service. The fp_ioctlx kernel service allows this data to be passed.

Parameters

 fp Points to a file structure returned by the fp_open or fp_opendev kernel service.

cmd Specifies the specific control command requested.

arg Indicates the data required for the command.

ext Specifies an extension argument required by some device drivers. Its content, form, and use

are determined by the individual driver.

flags Indicates the address space of arg parameter. If the arg value is in kernel address space,

flags should be specified as FKERNEL. Otherwise, it should be zero (drivers pass data that

is in user space).

retval Points to the location where the return value will be stored on successful return from the call.

Execution Environment

The fp_ioctlx kernel service can be called only from the process environment.

Return Values

Upon successful completion, the fp_ioctlx kernel service returns 0. If unsuccessful, one of the values from

the /usr/include/sys/errno.h file is returned. The ioctl subroutine contains valid errno values. This value

will be stored in the retval parameter.

Related Information

The “fp_ioctl Kernel Service” on page 150.

The ioctl, ioctlx, ioctl32, or ioctl32x Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating

System and Extensions Volume 1.

fp_lseek, fp_llseek Kernel Service

Purpose

Changes the current offset in an open file.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int fp_lseek (fp, offset, whence)

struct file *fp;

off_t offset;

int whence;

Chapter 1. Kernel Services 153

int fp_llseek

(fp, offset, whence)

struct file *fp

offset_t offset;

int whence;

Parameters

 fp Points to a file structure returned by the fp_open kernel service.

offset Specifies the number of bytes (positive or negative) to move the file pointer.

whence Indicates how to use the offset value:

SEEK_SET

Sets file pointer equal to the number of bytes specified by the offset parameter.

SEEK_CUR

Adds the number of bytes specified by the offset parameter to current file pointer.

SEEK_END

Adds the number of bytes specified by the offset parameter to current end of file.

Description

The fp_lseek and fp_llseek kernel services are internal interfaces to the function provided by the lseek

and llseek subroutines.

Execution Environment

The fp_lseek and fp_llseek kernel services can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

ERRNO Returns an error number from the /usr/include/sys/errno.h file on failure.

Related Information

The lseek, llseek subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_open Kernel Service

Purpose

Opens special and regular files or directories.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int fp_open (path, oflags, cmode, ext, segflag, fpp)

char * path;

unsigned oflags;

unsigned cmode;

154 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int ext;

unsigned segflag;

struct file ** fpp;

Parameters

 path Points to the file name of the file to be opened.

oflags Specifies open mode flags as described in the open subroutine.

cmode Specifies the mode (permissions) value to be given to the file if the file is to be created.

ext Specifies an extension argument required by some device drivers. Individual drivers determine its

content, form, and use.

segflag Specifies the flag indicating where the pointer specified by the path parameter is located:

SYS_ADSPACE

The pointer specified by the path parameter is stored in kernel memory.

USER_ADSPACE

The pointer specified by the path parameter is stored in application memory.

fpp Points to the location where the file structure pointer is to be returned by the fp_open service.

Description

The fp_open kernel service provides a common service used by:

v The file system for the implementation of the open subroutine

v Kernel routines outside the file system that must open files

Execution Environment

The fp_open kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

Also, the fpp parameter points to an open file structure that is valid for use with the other Logical File

System services. If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

The discussion of the open subroutine contains possible errno values.

Related Information

The open subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_open Kernel Service for Data Link Control (DLC) Devices

Purpose

Allows kernel to open the generic data link control (GDLC) device manager by its device name.

Syntax

#include <sys/gdlextcb.h>

#include <fcntl.h>

Chapter 1. Kernel Services 155

fp_open (path, oflags, cmode, ext, segflag, fpp)

Parameters

 path Consists of a character string containing the /dev special

file name of the GDLC device manager, with the name of

the communications device handler appended. The format

is shown in the following example:

/dev/dlcether/ent0

oflags Specifies a value to set the file status flag. The GDLC

device manager ignores all but the following values:

O_RDWR

Open for reading and writing. This must be set

for GDLC or the open will not be successful.

O_NDELAY, O_NONBLOCK

Subsequent writes return immediately if no

resources are available. The calling process is

not put to sleep.

cmode Specifies the O_CREAT mode parameter. This is ignored

by GDLC.

ext Specifies the extended kernel service parameter. This is a

pointer to the dlc_open_ext extended I/O structure for

open subroutines. The argument for this parameter must

be in the kernel space. ″open Subroutine Extended

Parameters for DLC″AIX 5L Version 5.3 Technical

Reference: Communications Volume 1 provides more

information on the extension parameter.

segflag Specifies the segment flag indicating where the path

parameter is located:

FP_SYS

The path parameter is stored in kernel memory.

FP_USR

The path parameter is stored in application

memory.

fpp Specifies the returned file pointer. This parameter is

passed by reference and updated by the file I/O

subsystem to be the file pointer for this open subroutine.

Description

The fp_open kernel service allows the kernel user to open a GDLC device manager by specifying the

special file names of both the DLC and the communications device handler. Since the GDLC device

manager is multiplexed, more than one process can open it (or the same process multiple times) and still

have unique channel identifications.

Each open carries the communications device handler’s special file name so that the DLC knows which

port to transfer data on.

The kernel user must also provide functional entry addresses in order to obtain receive data and exception

conditions. Each GDLC supports the fp_open kernel service via its dlcopen entry point. The fp_open

kernel service may be called from the process environment only. ″Using GDLC Special Kernel Services″ in

AIX 5L Version 5.3 Communications Programming Concepts provides additional information.

156 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

Upon successful completion, this service returns a value of 0 and a valid file pointer in the fpp parameter.

 ECHILD Indicates that the service cannot create a kernel process.

EINVAL Indicates an invalid value.

ENODEV Indicates that no such device handler is present.

ENOMEM Indicates insufficient resources to satisfy the open.

EFAULT Indicates that the kernel service, such as the copyin or

initp service, has failed.

These return values are defined in the /usr/include/sys/errno.h file.

Related Information

The copyin kernel service, fp_open kernel service, initp kernel service.

The fp_close kernel service for data link control (DLC) devices.

open Subroutine Extended Parameters for DLC in AIX 5L Version 5.3 Technical Reference:

Communications Volume 1.

Generic Data Link Control (GDLC) Environment Overview and Using GDLC Special Kernel Services in AIX

5L Version 5.3 Communications Programming Concepts.

fp_opendev Kernel Service

Purpose

Opens a device special file.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int fp_opendev (devno, devflag, channame, ext, fpp)

dev_t devno;

int devflag;

char * channame;

int ext;

struct file** fpp;

Parameters

 devno Specifies the major and minor device number of device driver to open.

devflag Specifies one of the following values:

DREAD

The device is being opened for reading only.

DWRITE

The device is being opened for writing.

DNDELAY

The device is being opened in nonblocking mode.

channame Points to a channel specifying a character string or a null value.

ext Specifies an extension argument required by some device drivers. Its content, form, and use are

determined by the individual driver.

Chapter 1. Kernel Services 157

fpp Specifies the returned file pointer. This parameter is passed by reference and is updated by the

fp_opendev service to be the file pointer for this open instance. This file pointer is used as input to

other Logical File System services to specify the open instance.

Description

The kernel or kernel extension calls the fp_opendev kernel service to open a device by specifying its

device major and minor number. The fp_opendev kernel service provides the correct semantics for

opening the character or multiplexed class of device drivers.

If the specified device driver is nonmultiplexed:

v An in-core i-node is found or created for this device.

v The i-node reference count is incremented.

v The device driver’s ddopen entry point is called with the devno, devflag, and ext parameters. The

unused chan parameter on the call to the ddopen routine is set to 0.

If the device driver is a multiplexed character device driver (that is, its ddmpx entry point is defined), an

in-core i-node is created for this channel. The device driver’s ddmpx routine is also called with the

channame pointer to the channel identification string if non-null. If the channame pointer is null, the ddmpx

device driver routine is called with the pointer to a null character string.

If the device driver can allocate the channel, the ddmpx routine returns a channel ID, represented by the

chan parameter. If the device driver cannot allocate a channel, the fp_opendev kernel service returns an

ENXIO error code. If successful, the i-node reference count is incremented. The device driver’s ddopen

routine is also called with the devno, devflag, chan (provided by ddmpx routine), and ext parameters.

If the return value from the specified device driver’s ddopen routine is nonzero, it is returned as the return

code for the fp_opendev kernel service. If the return code from the device driver’s ddopen routine is 0,

the fp_opendev service returns the file pointer corresponding to this open of the device.

The fp_opendev kernel service can only be called in the process environment or device driver top half.

Interrupt handlers cannot call it. It is assumed that all arguments to the fp_opendev kernel service are in

kernel space.

The file pointer (fpp) returned by the fp_opendev kernel service is only valid for use with a subset of the

Logical File System services. These nine services can be called:

v fp_close

v fp_ioctl

v fp_poll

v fp_select

v fp_read

v fp_readv

v fp_rwuio

v fp_write

v fp_writev

Other services return an EINVAL return value if called.

Execution Environment

The fp_opendev kernel service can be called from the process environment only.

158 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

 0 Indicates a successful operation.

The *fpp field also points to an open file structure that is valid for use with the other Logical File System

services. If an error occurs, one of the following values from the /usr/include/sys/errno.h file is returned:

 EINVAL Indicates that the major portion of the devno parameter exceeds the maximum number allowed, or the

devflags parameter is not valid.

ENODEV Indicates that the device does not exist.

EINTR Indicates that the signal was caught while processing the fp_opendev request.

ENFILE Indicates that the system file table is full.

ENXIO Indicates that the device is multiplexed and unable to allocate the channel.

The fp_opendev service also returns any nonzero return code returned from a device driver ddopen

routine.

Related Information

The ddopen Device Driver Entry Point.

The fp_close kernel service, fp_ioctl kernel service, fp_poll kernel service, fp_read kernel service,

fp_readv kernel service, fp_rwuio kernel service, fp_select kernel service, fp_write kernel service,

fp_writev kernel service.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_poll Kernel Service

Purpose

Checks the I/O status of multiple file pointers, file descriptors, and message queues.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/poll.h>

int fp_poll (listptr, nfdsmsgs, timeout, flags)

void * listptr;

unsigned long nfdsmsgs;

long timeout;

uint flags;

Parameters

 listptr Points to an array of pollfd or pollmsg structures, or to a single pollist structure. Each structure

specifies a file pointer, file descriptor, or message queue ID. The events of interest for this file or

message queue are also specified.

nfdsmsgs Specifies the number of files and message queues to check. The low-order 16 bits give the number

of elements present in the array of pollfd structures. The high-order 16 bits give the number of

elements present in the array of pollmsg structures. If either half of the nfdsmsgs parameter is equal

to 0, then the corresponding array is presumed abse1e.

Chapter 1. Kernel Services 159

timeout Specifies how long the service waits for a specified event to occur. If the value of this parameter is

-1, the fp_poll kernel service does not return until at least one of the specified events has occurred.

If the time-out value is 0, the fp_poll kernel service does not wait for an event to occur. Instead, the

service returns immediately even if none of the specified events have occurred. For any other value

of the timeout parameter, the fp_poll kernel service specifies the maximum length of time (in

milliseconds) to wait for at least one of the specified events to occur.

flags Specifies the type of data in the listptr parameter:

POLL_FDMSG

Input is a file descriptor and/or message queue.

0 Input is a file pointer.

Description

Note: The fp_poll service applies only to character devices, pipes, message queues, and sockets. Not all

character device drivers support the fp_poll service.

The fp_poll kernel service checks the specified file pointers/descriptors and message queues to see if

they are ready for reading or writing, or if they have an exceptional condition pending.

The pollfd, pollmsg, and pollist structures are defined in the /usr/include/sys/poll.h file. These are the

same structures described for the poll subroutine. One difference is that the fd field in the pollfd structure

contains a file pointer when the flags parameter on the fp_poll kernel service equals 0 (zero). If the flags

parameter is set to a POLL_FDMSG value, the field is taken as a file descriptor in all processed pollfd

structures. If either the fd or msgid fields in their respective structures has a negative value, the

processing for that structure is skipped.

When performing a poll operation on both files and message queues, the listptr parameter points to a

pollist structure, which can specify both files and message queues. To construct a pollist structure, use

the POLLIST macro as described in the poll subroutine.

If the number of pollfd elements in the nfdsmsgs parameter is 0, then the listptr parameter must point to

an array of pollmsg structures.

If the number of pollmsg elements in the nfdsmsgs parameter is 0, then the listptr parameter must point

to an array of pollfd structures.

If the number of pollmsg and pollfd elements are both nonzero in the nfdsmsgs parameter, the listptr

parameter must point to a pollist structure as previously defined.

Execution Environment

The fp_poll kernel service can be called from the process environment only.

Return Values

Upon successful completion, the fp_poll kernel service returns a value that indicates the total number of

files and message queues that satisfy the selection criteria. The return value is similar to the nfdsmsgs

parameter in the following ways:

v The low-order 16 bits give the number of files.

v The high-order 16 bits give the number of message queue identifiers that have nonzero revents values.

Use the NFDS and NMSGS macros to separate these two values from the return value. A return code of 0

(zero) indicates that:

v The call has timed out.

160 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

v None of the specified files or message queues indicates the presence of an event.

In other words, all revents fields are 0 (zero).

When the return code from the fp_poll kernel service is negative, it is set to the following value:

 EINTR Indicates that a signal was caught during the fp_poll kernel service.

Related Information

The poll subroutine.

The selreg kernel service.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_read Kernel Service

Purpose

Performs a read on an open file with arguments passed.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int fp_read (fp, buf, nbytes, ext, segflag, countp)

struct file * fp;

char * buf;

int nbytes;

int ext;

int segflag;

int * countp;

Parameters

 fp Points to a file structure returned by the fp_open or fp_opendev kernel service.

buf Points to the buffer where data read from the file is to be stored.

nbytes Specifies the number of bytes to be read from the file into the buffer.

ext Specifies an extension argument required by some device drivers. Its content, form, and use are

determined by the individual driver.

segflag Indicates in which part of memory the buffer specified by the buf parameter is located:

SYS_ADSPACE

The buffer specified by the buf parameter is in kernel memory.

USER_ADSPACE

The buffer specified by the buf parameter is in application memory.

countp Points to the location where the count of bytes actually read from the file is to be returned.

Description

The fp_read kernel service is an internal interface to the function provided by the read subroutine.

Chapter 1. Kernel Services 161

Execution Environment

The fp_read kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related Information

The read subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_readv Kernel Service

Purpose

Performs a read operation on an open file with arguments passed in iovec elements.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int fp_readv

(fp, iov, iovcnt, ext,

segflag, countp)

struct file * fp;

char * iov;

int iovcnt;

int ext;

int segflag;

int * countp;

Parameters

 fp Points to a file structure returned by the fp_open kernel service.

iov Points to an array of iovec elements. Each iovec element describes a buffer where data to be read

from the file is to be stored.

iovcnt Specifies the number of iovec elements in the array pointed to by the iov parameter.

ext Specifies an extension argument required by some device drivers. Its content, form, and use are

determined by the individual driver.

segflag Indicates in which part of memory the array specified by the iov parameter is located:

SYS_ADSPACE

The array specified by the iov parameter is in kernel memory.

USER_ADSPACE

The array specified by the iov parameter is in application memory.

countp Points to the location where the count of bytes actually read from the file is to be returned.

162 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The fp_readv kernel service is an internal interface to the function provided by the readv subroutine.

Execution Environment

The fp_readv kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related Information

The readv subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_rwuio Kernel Service

Purpose

Performs read and write on an open file with arguments passed in a uio structure.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int fp_rwuio

(fp, rw, uiop, ext)

struct file *fp;

enum uio_rw rw;

struct uio *uiop;

int ext;

Parameters

 fp Points to a file structure returned by the fp_open or fp_opendev kernel service.

rw Indicates whether this is a read operation or a write operation. It has a value of UIO_READ or UIO_WRITE.

uiop Points to a uio structure, which contains information such as where to move data and how much to move.

ext Specifies an extension argument required by some device drivers. Its content, form, and use are determined

by the individual driver.

Description

The fp_rwuio kernel service is not the preferred interface for read and write operations. The fp_rwuio

kernel service should only be used if the calling routine has been passed a uio structure. If the calling

routine has not been passed a uio structure, it should not attempt to construct one and call the fp_rwuio

kernel service with it. Rather, it should pass the requisite uio components to the fp_read or fp_write

kernel services.

Chapter 1. Kernel Services 163

Execution Environment

The fp_rwuio kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related Information

The uio structure.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_select Kernel Service

Purpose

Provides for cascaded, or redirected, support of the select or poll request.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
int fp_select (fp, events, rtneventp, notify)
struct file *fp;
ushort events;
ushort *rtneventp;

void (*notify)();

Parameters

 fp Points to the open instance of the device driver, socket, or pipe for which the low-level select

operation is intended.

events Identifies the events that are to be checked. There are three standard event flags defined for the

poll and select functions and one informational flag. The /usr/include/sys/poll.h file details the

event bit definition. The four basic indicators are:

POLLIN

Input is present for the specified object.

POLLOUT

The specified file object is capable of accepting output.

POLLPRI

An exception condition has occurred on the specified object.

POLLSYNC

This is a synchronous request only. If none of the requested events are true, the selected

routine should not remember this request as pending. That is, the routine does not need to

call the selnotify service because of this request.

164 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

rtneventp Indicates the returned events pointer. This parameter, passed by reference, is used to indicate

which selected events are true at the current time. The returned event bits include the requested

events plus an additional error event indicator:

POLLERR

An error condition was indicated by the object’s select routine. If this flag is set, the

nonzero return code from the specified object’s select routine is returned as the return

code from the fp_select kernel service.

notify Points to a routine to be called when the specified object invokes the selnotify kernel service for

an outstanding asynchronous select or poll event request. If no routine is to be called, this

parameter must be NULL.

Description

The fp_select kernel service is a low-level service used by kernel extensions to perform a select operation

for an open device, socket, or named pipe. The fp_select kernel service can be used for both

synchronous and asynchronous select requests. Synchronous requests report on the current state of a

device, and asynchronous requests allow the caller to be notified of future events on a device.

Invocation from a Device Driver’s ddselect Routine

A device driver’s ddselect routine can call the fp_select kernel service to pass select/poll requests to

other device drivers. The ddselect routine for one device invokes the fp_select kernel service, which calls

the ddselect routine for a second device, and so on. This is required when event information for the

original device depends upon events occurring on other devices. A cascaded chain of select requests can

be initiated that involves more than two devices, or a single device can issue fp_select calls to several

other devices.

Each ddselect routine should preserve, in its call to the fp_select kernel service, the same POLLSYNC

indicator that it received when previously called by the fp_select kernel service.

Invocation from Outside a Device Driver’s ddselect Routine

If the fp_select kernel service is invoked outside of the device driver’s ddselect routine, the fp_select

kernel service sets the POLLSYNC flag, always making the request synchronous. In this case, no

notification of future events for the specified device occurs, nor is a notify routine called, if specified. The

fp_select kernel service can be used in this manner (unrelated to a poll or select request in progress) to

check an object’s current status.

Asynchronous Processing and the Use of the notify Routine

For asynchronous requests, the fp_select kernel service allows its callers to register a notify routine to be

called by the kernel when specified events become true. When the relevant device driver detects that one

or more pending events have become true, it invokes the selnotify kernel service. The selnotify kernel

service then calls the notify routine, if one has been registered. Thus, the notify routine is called at

interrupt time and must be programmed to run in an interrupt environment.

Use of a notify routine affects both the calling sequence at interrupt time and how the requested

information is actually reported. Generalized asynchronous processing entails the following sequence of

events:

1. A select request is initiated on a device and passed on (by multiple fp_select kernel service

invocations) to further devices. Eventually, a device driver’s ddselect routine that is not dependent on

other devices for information is reached. This ddselect routine finds that none of the requested events

are true, but remembers the asynchronous request, and returns to the caller. In this way, the entire

chain of calls is backed out, until the origin of the select request is reached. The kernel then puts the

originating process to sleep.

Chapter 1. Kernel Services 165

2. Later, one or more events become true for the device remembering the asynchronous request. The

device driver routine (possibly an interrupt handler) calls the selnotify kernel service.

3. If the events are still being waited on, the selnotify kernel service responds in one of two ways. If no

notify routine was registered when the select request was made for the device, then all processes

waiting for events on this device are awakened. If a notify routine exists for the device, then this

routine is called. The notify routine determines whether the original requested event should be

reported as true, and if so, calls the selnotify kernel service on its own.

The following example details a cascaded scenario involving several devices. Suppose that a request has

been made for Device A, and Device A depends on Device B, which depends on Device C. When

specified events become true at Device C, the selnotify kernel service called from Device C’s device

driver performs differently depending on whether a notify routine was registered at the time of the request.

Cascaded Processing without the Use of notify Routines

If no notify routine was registered from Device B, then the selnotify kernel service determines that the

specified events are to be considered true for the device driver at the head of the cascading chain. (The

head of the chain, in this case Device A, is the first device driver to issue the fp_select kernel service

from its select routine.) The selnotify kernel service awakens all processes waiting for events that have

occurred on Device A.

It is important to note that when no notify routine is used, any device driver in the calling chain that

reports an event with the selnotify kernel service causes that event to appear true for the first device in

the chain. As a result, any processes waiting for events that have occurred on that first device are

awakened.

Cascaded Processing with notify Routines

If, on the other hand, notify routines have been registered throughout the chain, then each interrupting

device (by calling the selnotify kernel service) invokes the notify routine for the device above it in the

calling chain. Thus in the preceding example, the selnotify kernel service for Device C calls the notify

routine registered when Device B’s ddselect routine invoked the fp_select kernel service. Device B’s

notify routine must then decide whether to again call the selnotify kernel service to alert Device A’s

notify routine. If so, then Device A’s notify routine is called, and makes its own determination whether to

call another selnotify routine. If it does, the selnotify kernel service wakes up all the processes waiting on

occurred events for Device A.

A variation on this scenario involves a cascaded chain in which only some device drivers have registered

notify routines. In this case, the selnotify kernel service at each level calls the notify routine for the level

above, until a level is encountered for which no notify routine was registered. At this point, all events of

interest are determined to be true for the device driver at the head of the cascading chain. If any notify

routines were registered in levels above the current level, they are never called.

Returning from the fp_select Kernel Service

The fp_select kernel service does not wait for any selected events to become true, but returns

immediately after the call to the object’s ddselect routine has completed.

If the object’s select routine is successfully called, the return code for the fp_select kernel service is set to

the return code provided by the object’s ddselect routine.

Execution Environment

The fp_select kernel service can be called from the process environment only.

166 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

 0 Indicates successful completion.

EAGAIN Indicates that the allocation of internal data structures failed. The rtneventp parameter is not updated.

EINVAL Indicates that the fp parameter is not a valid file pointer. The rtneventp parameter has the POLLNVAL

flag set.

The fp_select kernel service can also be set to the nonzero return code from the specified object’s

ddselect routine. The rtneventp parameter has the POLLERR flag set.

Related Information

The fp_poll kernel service, selnotify kernel service, selreg kernel service.

The fp_select kernel service notify routine.

The poll subroutine, select subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_select Kernel Service notify Routine

Purpose

Registers the notify routine.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void notify (id, sub_id, rtnevents, pid)
int id;
int sub_id ;
ushort rtnevents ;
pid_t pid;

Parameters

 id Indicates the selected function ID specified by the routine that made the call to the selnotify kernel

service to indicate the occurrence of an outstanding event. For device drivers, this parameter is

equivalent to the devno (device major and minor number) parameter.

sub_id Indicates the unique ID specified by the routine that made the call to the selnotify kernel service to

indicate the occurrence of an outstanding event. For device drivers, this parameter is equivalent to

the chan parameter: channel for multiplexed drivers; 0 for nonmultiplexed drivers.

rtnevents Specifies the rtnevents parameter supplied by the routine that made the call to the selnotify

service indicating which events are designated as true.

pid Specifies the process ID of a process waiting for the event corresponding to this call of the notify

routine.

When a notify routine is provided for a cascaded function, the selnotify kernel service calls the specified

notify routine instead of posting the process that was waiting on the event. It is up to this notify routine to

determine if another selnotify call should be made to notify the waiting process of an event.

The notify routine is not called if the request is synchronous (that is, if the POLLSYNC flag is set in the

events parameter) or if the original poll or select request is no longer outstanding.

Chapter 1. Kernel Services 167

Note: When more than one process has requested notification of an event and the fp_select kernel

service is used with a notify routine specified, the notification of the event causes the notify routine

to be called once for each process that is currently waiting on one or more of the occurring events.

Description

The fp_select kernel service notify routine is registered by the caller of the fp_select kernel service to be

called by the kernel when specified events become true. The option to register this notify routine is

available in a cascaded environment. The notify routine can be called at interrupt time.

Execution Environment

The fp_select kernel service notify routine can be called from either the process or interrupt environment.

Related Information

The fp_select kernel service, selnotify kernel service.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_write Kernel Service

Purpose

Performs a write operation on an open file with arguments passed.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
int fp_write (fp, buf, nbytes, ext, segflag, countp)
struct file * fp;
char * buf;
int nbytes,
int ext;
int segflag;
int * countp;

Parameters

 fp Points to a file structure returned by the fp_open or fp_opendev kernel service.

buf Points to the buffer where data to be written to a file is located.

nbytes Indicates the number of bytes to be written to the file.

ext Specifies an extension argument required by some device drivers. Its content, form, and use are

determined by the individual driver.

segflag Indicates in which part of memory the buffer specified by the buf parameter is located:

SYS_ADSPACE

The buffer specified by the buf parameter is in kernel memory.

USER_ADSPACE

The buffer specified by the buf parameter is in application memory.

countp Points to the location where count of bytes actually written to the file is to be returned.

Description

The fp_write kernel service is an internal interface to the function provided by the write subroutine.

168 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The fp_write kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

ERRNO Returns an error number from the /usr/include/sys/errno.h file on failure.

Related Information

The write subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

fp_write Kernel Service for Data Link Control (DLC) Devices

Purpose

Allows kernel data to be sent using a file pointer.

Syntax

#include <sys/gdlextcb.h>
#include <sys/fp_io.h>
int fp_write (fp, buf, nbytes, ext, segflag, countp)

Parameters

 fp Specifies file pointer returned from the fp_open kernel

service.

buf Points to a kernel mbuf structure.

nbytes Contains the byte length of the write data. It is not

necessary to set this field to the actual length of write

data, however, since the mbuf contains a length field.

Instead, this field can be set to any non-negative value

(generally set to 0).

ext Specifies the extended kernel service parameter. This is a

pointer to the dlc_io_ext extended I/O structure for writes.

The argument for this parameter must be in the kernel

space. For more information on this parameter, see ″write

Subroutine Extended Parameters for DLC″AIX 5L Version

5.3 Technical Reference: Communications Volume 1.

segflag Specifies the segment flag indicating where the path

parameter is located. The only valid value is:

FP_SYS

The path parameter is stored in kernel memory.

countp Points to the location where a count of bytes actually

written is to be returned (must be in kernel space). GDLC

does not provide this information for a kernel user since

mbufs are used, but the file system requires a valid

address and writes a copy of the nbytes parameter to that

location.

Chapter 1. Kernel Services 169

Description

Four types of data can be sent to generic data link control (GDLC). Network data can be sent to a service

access point (SAP), and normal, exchange identification (XID) or datagram data can be sent to a link

station (LS).

Kernel users pass a communications memory buffer (mbuf) directly to GDLC on the fp_write kernel

service. In this case, a uiomove kernel service is not required, and maximum performance can be

achieved by merely passing the buffer pointer to GDLC. Each write buffer is required to have the proper

buffer header information and enough space for the data link headers to be inserted. A write data offset is

passed back to the kernel user at start LS completion for this purpose.

All data must fit into a single packet for each write call. That is, GDLC does not separate the user’s write

data area into multiple transmit packets. A maximum write data size is passed back to the user at

DLC_ENABLE_SAP completion and at DLC_START_LS completion for this purpose.

Normally, a write subroutine can be satisfied immediately by GDLC by completing the data link headers

and sending the transmit packet down to the device handler. In some cases, however, transmit packets

can be blocked by the particular protocol’s flow control or a resource outage. GDLC reacts to this

differently, based on the system blocked/nonblocked file status flags (set by the file system and based on

the O_NDELAY and O_NONBLOCKED values passed on the fp_open kernel service). Nonblocked write

subroutines that cannot get enough resources to queue the communications memory buffer (mbuf) return

an error indication. Blocked write subroutines put the calling process to sleep until the resources free up or

an error occurs. Each GDLC supports the fp_write kernel service via its dlcwrite entry point. The

fp_write kernel service may be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EAGAIN Indicates that transmit is temporarily blocked, and the

calling process cannot be put to sleep.

 EINTR Indicates that a signal interrupted the kernel service

before it could complete successfully.

EINVAL Indicates an invalid argument, such as too much data for

a single packet.

ENXIO Indicates an invalid file pointer.

These return values are defined in the /usr/include/sys/errno.h file.

Related Information

The fp_open kernel service, fp_write kernel service.

The uiomove subroutine.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

Parameter Blocks by ioctl Operation for DLC.

read Subroutine Extended Parameters for DLC.

170 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

fp_writev Kernel Service

Purpose

Performs a write operation on an open file with arguments passed in iovec elements.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
int fp_writev (fp, iov, iovcnt, ext, segflag, countp)
struct file * fp;
struct iovec * iov;
int iovcnt;
int ext;
int segflag;
int * countp;

Parameters

 fp Points to a file structure returned by the fp_open kernel service.

iov Points to an array of iovec elements. Each iovec element describes a buffer containing data to be

written to the file.

iovcnt Specifies the number of iovec elements in an array pointed to by the iov parameter.

ext Specifies an extension argument required by some device drivers. Its content, form, and use are

determined by the individual driver.

segflag Indicates which part of memory the information designated by the iov parameter is located in:

SYS_ADSPACE

The information designated by the iov parameter is in kernel memory.

USER_ADSPACE

The information designated by the iov parameter is in application memory.

countp Points to the location where the count of bytes actually written to the file is to be returned.

Description

The fp_writev kernel service is an internal interface to the function provided by the writev subroutine.

Execution Environment

The fp_writev kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related Information

The writev subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Chapter 1. Kernel Services 171

fubyte Kernel Service

Purpose

Retrieves a byte of data from user memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
int fubyte (uaddr)
uchar *uaddr;

Parameter

 uaddr Specifies the address of the user data.

Description

The fubyte kernel service fetches, or retrieves, a byte of data from the specified address in user memory.

It is provided so that system calls and device heads can safely access user data. The fubyte service

ensures that the user has the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

The fubyte service should be called only while executing in kernel mode in the user process.

Execution Environment

The fubyte kernel service can be called from the process environment only.

Return Values

When successful, the fubyte service returns the specified byte.

 -1 Indicates a uaddr parameter that is not valid.

The access is not valid under the following circumstances:

v The user does not have sufficient authority to access the data.

v The address is not valid.

v An I/O error occurs while referencing the user data.

Related Information

The fuword kernel service, subyte kernel service, suword kernel service.

Accessing User-Mode Data while in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

fubyte64 Kernel Service

Purpose

Retrieves a byte of data from user memory.

172 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
int fubyte64 (uaddr64)
unsigned long long uaddr64;

Parameter

 uaddr64 Specifies the address of user data.

Description

The fubyte64 kernel service fetches, or retrieves, a byte of data from the specified address in user

memory. It is provided so that system calls and device heads can safely access user data. The fubyte64

service ensures that the user has the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

This service will operate correctly for both 32-bit and 64-bit user address spaces. The uaddr64 parameter

is interpreted as being a non-remapped 32-bit address for the case where the current user address space

is 32- bits. If the current user address space is 64-bits, then uaddr64 is treated as a 64-bit address.

The fubyte64 service should be called only while executing in kernel mode in the user process.

Execution Environment

The fubyte64 kernel service can be called from the process environment only.

Return Values

When successful, the fubyte64 service returns the specified byte.

-1 Indicates a uaddr64 parameter that is not valid.

 The access is not valid under the following circumstances:

v The user does not have sufficient authority to access the data.

v The address is not valid.

v An I/O error occurs while referencing the user data.

Related Information

The fuword64 kernel service, subyte64 kernel service, and suword64 kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

fuword Kernel Service

Purpose

Retrieves a word of data from user memory.

Chapter 1. Kernel Services 173

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int fuword (uaddr)

int *uaddr;

Parameter

 uaddr Specifies the address of user data.

Description

The fuword kernel service retrieves a word of data from the specified address in user memory. It is

provided so that system calls and device heads can safely access user data. The fuword service ensures

that the user had the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

The fuword service should be called only while executing in kernel mode in the user process.

Execution Environment

The fuword kernel service can be called from the process environment only.

Return Values

When successful, the fuword service returns the specified word of data.

 -1 Indicates a uaddr parameter that is not valid.

The access is not valid under the following circumstances:

v The user does not have sufficient authority to access the data.

v The address is not valid.

v An I/O error occurred while referencing the user data.

For the fuword service, a retrieved value of -1 and a return code of -1 are indistinguishable.

Related Information

The fubyte kernel service, subyte kernel service, suword kernel service.

Accessing User-Mode Data while in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

fuword64 Kernel Service

Purpose

Retrieves a word of data from user memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

174 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

#include <sys/uio.h>
int fuword64 (uaddr64)
unsigned long long uaddr64;

Parameter

 uaddr64 Specifies the address of user data.

Description

The fuword64 kernel service retrievesa word of data from the specified address in user memory. It is

provided so that system calls and device heads can safely access user data. The fuword64 service

ensures that the user has the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

This service will operate correctly for both 32-bit and 64-bit user address spaces. The uaddr64 parameter

is interpreted as being a non-remapped 32-bit address for the case where the current user address space

is 32- bits. If the current user address space is 64-bits, then uaddr64 is treated as a 64-bit address.

The fuword64 service should be called only while executing in kernel mode in the user process.

Execution Environment

The fuword64 kernel service can be called from the process environment only.

Return Values

When successful, the fuword64 service returns the word of data.

 -1 Indicates a uaddr64 parameter that is not valid.

The access is not valid under the following circumstances:

v The user does not have sufficient authority to access the data.

v The address is not valid.

v An I/O error occurs while referencing the user data.

Related Information

The fubyte64 kernel service, subyte64 kernel service, and suword64 kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

getadsp Kernel Service

Purpose

Obtains a pointer to the current process’s address space structure for use with the as_att and as_det

kernel services.

Chapter 1. Kernel Services 175

Syntax

#include <sys/types.h> #include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

adspace_t *getadsp ()

Description

The getadsp kernel service returns a pointer to the current process’s address space structure for use with

the as_att and as_det kernel services. This routine distinguishes between kernel processes (kprocs) and

ordinary processes. It returns the correct address space pointer for the current process.

Note: The getadsp kernel service is not supported on the 64-bit kernel.

Execution Environment

The getadsp kernel service can be called from the process environment only.

Return Values

The getadsp service returns a pointer to the current process’s address space structure.

Related Information

The as_att kernel service, as_det kernel service, as_geth kernel service, as_getsrval kernel service,

as_puth kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

getblk Kernel Service

Purpose

Assigns a buffer to the specified block.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

struct buf *getblk

(dev, blkno)

dev_t dev;

daddr_t blkno;

Parameters

 dev Specifies the device containing the block to be allocated.

blkno Specifies the block to be allocated.

Description

The getblk kernel service first checks whether the specified buffer is in the buffer cache. If the buffer

resides there, but is in use, the e_sleep service is called to wait until the buffer is no longer in use. Upon

waking, the getblk service tries again to access the buffer. If the buffer is in the cache and not in use, it is

176 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

removed from the free list and marked as busy. Its buffer header is then returned. If the buffer is not in the

buffer cache, another buffer is taken from the free list and returned.

Execution Environment

The getblk kernel service can be called from the process environment only.

Return Values

The getblk service returns a pointer to the buffer header. A nonzero value for B_ERROR in the b_flags

field of the buffer header (buf structure) indicates an error. If this occurs, the caller should release the

block’s buffer using the brelse kernel service.

Related Information

Block I/O Buffer Cache Kernel Services: Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts summarizes how the bread, brelse, and getblk services uniquely

manage the block I/O buffer cache.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

getc Kernel Service

Purpose

Retrieves a character from a character list.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <cblock.h>

int getc (header)

struct clist *header;

Parameter

 header Specifies the address of the clist structure that describes the character list.

Description

Attention: The caller of the getc service must ensure that the character list is pinned. This includes

the clist header and all the cblock character buffers. Otherwise, the system may crash.

The getc kernel service returns the character at the front of the character list. After returning the last

character in the buffer, the getc service frees that buffer.

Execution Environment

The getc kernel service can be called from either the process or interrupt environment.

Return Values

 -1 Indicates that the character list is empty.

Chapter 1. Kernel Services 177

Related Information

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

getcb Kernel Service

Purpose

Removes the first buffer from a character list and returns the address of the removed buffer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <cblock.h>

struct cblock *getcb

(header)

struct clist *header;

Parameter

 header Specifies the address of the clist structure that describes the character list.

Description

Attention: The caller of the getcb service must ensure that the character list is pinned. This includes

the clist header and all the cblock character buffers. Character buffers acquired from the getcf

service are pinned. Otherwise, the system may crash.

The getcb kernel service returns the address of the character buffer at the start of the character list and

removes that buffer from the character list. The user must free the buffer with the putcf service when

finished with it.

Execution Environment

The getcb kernel service can be called from either the process or interrupt environment.

Return Values

A null address indicates the character list is empty.

The getcb service returns the address of the character buffer at the start of the character list when the

character list is not empty.

Related Information

The getcf kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

getcbp Kernel Service

Purpose

Retrieves multiple characters from a character buffer and places them at a designated address.

178 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <cblock.h>

int getcbp (header, dest, n)

struct clist *header;

char *dest;

int n;

Parameters

 header Specifies the address of the clist structure that describes the character list.

dest Specifies the address where the characters obtained from the character list are to be placed.

n Specifies the number of characters to be read from the character list.

Description

Attention: The caller of the getcbp services must ensure that the character list is pinned. This

includes the clist header and all the cblock character buffers. Character buffers acquired from the

getcf service are pinned. Otherwise, the system may crash.

The getcbp kernel service retrieves as many as possible of the n characters requested from the character

buffer at the start of the character list. The getcbp service then places them at the address pointed to by

the dest parameter.

Execution Environment

The getcbp kernel service can be called from either the process or interrupt environment.

Return Values

The getcbp service returns the number of characters retrieved from the character buffer.

Related Information

The getcf kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

getcf Kernel Service

Purpose

Retrieves a free character buffer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <cblock.h

struct cblock *getcf ()

Description

The getcf kernel service retrieves a character buffer from the list of available ones and returns that

buffer’s address. The returned character buffer is pinned. If you use the getcf service to get a character

buffer, be sure to free the space when you have finished using it. The buffers received from the getcf

service should be freed by using the putcf kernel service.

Chapter 1. Kernel Services 179

Before starting the getcf service, the caller should request enough clist resources by using the pincf

kernel service. The proper use of the getcf service ensures that there are sufficient pinned buffers

available to the caller.

If the getcf service indicates that there is no available character buffer, the waitcfree service can be called

to wait until a character buffer becomes available.

The getcf service has no parameters.

Execution Environment

The getcf kernel service can be called from either the process or interrupt environment.

Return Values

Upon successful completion, the getcf service returns the address of the allocated character buffer.

A null pointer indicates no buffers are available.

Related Information

The pincf kernel service, putcf kernel service, waitcfree kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

getcx Kernel Service

Purpose

Returns the character at the end of a designated list.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <cblock.h>

int getcx (header)

struct clist *header;

Parameter

 header Specifies the address of the clist structure that describes the character list.

Description

Attention: The caller of the getcx service must ensure that the character list is pinned. This includes

the clist header and all the cblock character buffers. Character buffers acquired from the getcf

service are pinned.

The getcx kernel service is identical to the getc service, except that the getcx service returns the

character at the end of the list instead of the character at the front of the list. The character at the end of

the list is the last character in the first buffer, not in the last buffer.

Execution Environment

The getcx kernel service can be called from either the process or interrupt environment.

180 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

The getcx service returns the character at the end of the list instead of the character at the front of the

list.

Related Information

The getcf kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

geteblk Kernel Service

Purpose

Allocates a free buffer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

struct buf *geteblk ()

Description

Attention: The use of the geteblk service by character device drivers is strongly discouraged. As an

alternative, character device drivers can use the xmalloc service to allocate the memory space

directly, or the character I/O kernel services such as the getcb or getcf services.

The geteblk kernel service allocates a buffer and buffer header and returns the address of the buffer

header. If no free buffers are available, then the geteblk service waits for one to become available. Block

device drivers can retrieve buffers using the geteblk service.

In the header, the b_forw, b_back, b_flags, b_bcount, b_dev, and b_un fields are used by the system and

cannot be modified by the driver. The av_forw and av_back fields are available to the user of the geteblk

service for keeping a chain of buffers by the user of the geteblk service. (This user could be the kernel file

system or a device driver.) The b_blkno and b_resid fields can be used for any purpose.

The brelse service is used to free this type of buffer.

The geteblk service has no parameters.

Execution Environment

The geteblk kernel service can be called from the process environment only.

Return Values

The geteblk service returns a pointer to the buffer header. There are no error codes because the geteblk

service waits until a buffer header becomes available.

Related Information

The brelse kernel service, xmalloc kernel service.

Block I/O Buffer Cache Kernel Services: Overview, I/O Kernel Services, buf Structure, Device Driver

Concepts Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 181

geterror Kernel Service

Purpose

Determines the completion status of the buffer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

int geterror (bp)

struct buf *bp;

Parameter

 bp Specifies the address of the buffer structure whose status is to be checked.

Description

The geterror kernel service checks the specified buffer to see if the b_error flag is set. If that flag is not

set, the geterror service returns 0. Otherwise, it returns the nonzero B_ERROR value or the EIO value (if

b_error is 0).

Execution Environment

The geterror kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that no I/O error occurred on the buffer.

b_error value Indicates that an I/O error occurred on the buffer.

EIO Indicates that an unknown I/O error occurred on the buffer.

Related Information

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

getexcept Kernel Service

Purpose

Allows kernel exception handlers to retrieve additional exception information.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/except.h>

void getexcept

(exceptp)

struct except *exceptp;

182 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

 exceptp Specifies the address of an except structure, as defined in the /usr/include/sys/except.h file. The

getexcept service copies detailed exception data from the current machine-state save area into this

caller-supplied structure.

Description

The getexcept kernel service provides exception handlers the capability to retrieve additional information

concerning the exception from the machine-state save area.

The getexcept service should only be used by exception handlers when called to handle an exception.

The contents of the structure pointed at by the exceptp parameter is platform-specific, but is described in

the /usr/include/sys/except.h file for each type of exception that provides additional data. This data is

typically included in any error logging data for the exception. It can be also used to attempt to handle or

recover from the exception.

Execution Environment

The getexcept kernel service can be called from either the process or interrupt environment. It should be

called only when handling an exception.

Return Values

The getexcept service has no return values.

Related Information

Kernel Extension and Device Driver Management Kernel Services and in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

getfslimit Kernel Service

Purpose

Returns the maximum file size limit of the current process.

Syntax

#include <sys/types.h>

offset_t getfslimit (void)

Description

The getfslimit kernel service returns the file size limit of the current process as a 64 bit integer. This can

be used by file systems to implement the checks needed to enforce limits. The getfslimit kernel service is

called from the process environment.

Return Values

The getfslimit kernel service returns the the file size limit, there are no error values.

Related Information

The ulimit subroutine, getrlimit subroutine, setrlimit subroutine.

The ulimit command.

Chapter 1. Kernel Services 183

get_pag or get_pag64 Kernel Service

Purpose

Retrieves a Process Authentication Group (PAG) value for the current process.

Syntax

#include <sys/cred.h>

int get_pag (type, pag)

int type;

int *pag;

int get_pag64 (type, pag)

int type;

uint64_t *pag;

Parameters

 type PAG type to retrieve

pag Pointer to buffer where operating system returns the PAG

Description

The get_pag and get_pag64 kernel services copy the requested PAG from the current process into pag.

The value of type must be a defined PAG ID. The PAG ID for the Distributed Computing Environment

(DCE) is 0.

Execution Environment

The get_pag and get_pag64 kernel services can be called from the process environment only.

Return Values

A value of 0 is returned upon successful completion. If unsuccessful, errno is set to a value that explains

the error.

Error Codes

The get_pag kernel service fails if one or both of the following conditions are true:

 EINVAL Invalid PAG specification

EOVERFLOW PAG value is 64-bit (should be using get_pag64)

The get_pag64 kernel service fails if the following condition is true:

 EINVAL Invalid PAG specification

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

184 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

getpid Kernel Service

Purpose

Gets the process ID of the current process.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

pid_t getpid ()

Description

The getpid kernel service returns the process ID of the calling process.

The getpid service can also be used to check the environment that the routine is being executed in. If the

caller is executing in the interrupt environment, the getpid service returns a process ID of -1. If a routine is

executing in a process environment, the getpid service obtains the current process ID.

Execution Environment

The getpid kernel service can be called from either the process or interrupt environment.

Return Values

 -1 Indicates that the getpid service was called from an interrupt environment.

The getpid service returns the process ID of the current process if called from a process environment.

Related Information

Process and Exception Management Kernel Services and Understanding Execution Environments in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

getppidx Kernel Service

Purpose

Gets the parent process ID of the specified process.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

pid_t getppidx (ProcessID)

pid_t ProcessID;

Parameter

 ProcessID Specifies the process ID. If this parameter is 0, then the parent process ID of the calling process

will be returned.

Description

The getppidx kernel service returns the parent process ID of the specified process.

Chapter 1. Kernel Services 185

Execution Environment

The getppidx kernel service can be called from the process environment only.

Return Values

 -1 Indicates that the ProcessID parameter is invalid.

The getppidx service returns the parent process ID of the calling process.

Related Information

The getpid kernel service.

Process and Exception Management Kernel Services and Understanding Execution Environments in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

getuerror Kernel Service

Purpose

Allows kernel extensions to read the ut_error field for the current thread.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int getuerror ()

Description

The getuerror kernel service allows a kernel extension in a process environment to retrieve the current

value of the current thread’s ut_error field. Kernel extensions can use the getuerror service when using

system calls or other kernel services that return error information in the ut_error field.

For system calls, the system call handler copies the value of the ut_error field in the per thread uthread

structure to the errno global variable before returning to the caller. However, when kernel services use

available system calls, the system call handler is bypassed. The getuerror service must then be used to

obtain error information.

Execution Environment

The getuerror kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

When an error occurs, the getuerror kernel service returns the current value of the ut_error field in the

per thread uthread structure. Possible return values for this field are defined in the /usr/include/sys/
errno.h file.

Related Information

The setuerror kernel service.

186 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Kernel Extension and Device Driver Management Kernel Services and Understanding System Call

Execution in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

getufdflags and setufdflags Kernel Services

Purpose

Queries and sets file-descriptor flags.

Syntax

#include <sys/user.h>

int getufdflags(fd, flagsp)

int fd;

int *flagsp;
#include <sys/user.h>
int setufdflags(fd, flags)
int fd;
int flags;

Parameters

 fd Identifies the file descriptor.

flags Sets attribute flags for the specified file descriptor. Refer to the sys/user.h file for the list of valid flags.

flagsp Points to an integer field where the flags associated with the file descriptor are stored on successful

return.

Description

The setufdflags and getufdflags kernel services set and query the file descriptor flags. The file descriptor

flags are listed in fontl.h.

Execution Environment

These kernel services can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EBADF Indicates that the fd parameter is not a file descriptor for an open file.

Related Information

The ufdhold and ufdrele kernel services.

get_umask Kernel Service

Purpose

Queries the file mode creation mask.

Syntax

int get_umask(void)

Chapter 1. Kernel Services 187

Description

The get_umask service gets the value of the file mode creation mask currently set for the process.

Note: There is no corresponding kernel service to set the umask because kernel routines that need to set

the umask can call the umask subroutine.

Execution Environment

The get_umask kernel service can be called from the process environment only.

Return Values

The get_umask kernel service always completes successfully. Its return value is the current value of the

umask.

Related Information

The umask subroutine.

get64bitparm Kernel Service

Purpose

Obtains the value of a 64-bit parameter passed by a 64-bit process when it invokes a system call provided

by a 32-bit kernel extension.

Syntax

#include <sys/remap.h>

unsigned long long get64bitparm (parm, position)

unsigned long parm;

int position;

Parameters

 parm Specifies the system call parameter whose 64-bit value is desired. The value of parm must be the

low-order 32 bits of the system call argument used by the 64-bit caller.

position Specifies the 0-based parameter number of the desired system call parameter.

Description

In the 32-bit kernel, pointers and longs are 32-bit types. In 64-bit programs, pointers and longs are 64-bit

types. When a 64-bit program invokes a system call and passes 64-bit values, there is no direct way for a

kernel extension to obtain the full 64-bit value, because the kernel extension is running in 32-bit mode.

To allow 64-bit values to be passed to a system call, the system call handler saves the high-order word of

the 8 parameter registers. Then parameters are truncated to 32-bit values before the system call function

is invoked. The full 64-bit value can be retrieved by calling get64bitparm(), passing the original 32-bit

parameter and the 0-based parameter number as arguments.

Return Values

The full 64-bit argument value is returned as a long long. If called from a 32-bit process, the returned

value is unpredictable. If position is less than 0 or greater than 7, the panic kernel service is called.

188 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Examples

1. Suppose a subroutine takes 2 parameters, a number and a pointer. The subroutine could be written as

follows:

#include <sys/remap.h>

my_syscall(int count, void *user_data)

{

 __ptr64 user_ptr;

 if (IS64U)

 user_ptr = (__ptr64)get64bitparm((unsigned long)user_data, 1);

 else

 user_ptr = (__ptr64)user_data;

 ...

}

When my_syscall is called from a 64-bit process, user_data will have been truncated to 32 bits, if the

caller is a 64-bit process. The get64bitparm kernel service allows the full 64-bit value to be obtained.

When my_syscall is called from a 32-bit process, the user_data pointer can be used directly. The

count parameter can be used directly whether the current process is 32-bit or 64-bit, since the size of

an int is the same in both 32-bit mode and 64-bit mode.

The get64bitparm kernel service is not needed when the 64-bit kernel is running, because a pointer

parameter is already a 64-bit value. To allow for common code, the get64bitparm kernel service is

defined as a macro that returns its first argument, when a kernel extension is compiled in 64-bit mode.

Execution Environment

This kernel service can only be called from the process environment when the current process is in 64-bit

mode.

Implementation Specifics

The get64bitparm kernel service is only available on the 32–bit PowerPC kernel.

Related Information

The saveretval64 kernel service, as_remap64 kernel service.

gfsadd Kernel Service

Purpose

Adds a file system type to the gfs table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int gfsadd (gfsno, gfsp)

int gfsno;

struct gfs *gfsp;

Parameters

 gfsno Specifies the file system number. This small integer value is either defined in the /usr/include/sys/
vmount.h file or a user-defined number of the same order.

gfsp Points to the file system description structure.

Chapter 1. Kernel Services 189

Description

The gfsadd kernel service is used during configuration of a file system. The configuration routine for a file

system invokes the gfsadd kernel service with a gfs structure. This structure describes the file system

type.

The gfs structure type is defined in the /usr/include/sys/gfs.h file. The gfs structure must have the

following fields filled in:

 Field Description

gfs_type Specifies the integer type value. The predefined types are listed in the /usr/include/sys/vmount.h

file.

gfs_name Specifies the character string name of the file system. The maximum length of this field is 16 bytes.

Shorter names must be null-padded.

gfs_flags Specifies the flags that define the capabilities of the file system. The following flag values are

defined:

GFS_SYS5DIR

File system that uses the System V-type directory structure.

GFS_REMOTE

File system is remote (ie. NFS).

GFS_FUMNT

File system supports forced unmount.

GFS_NOUMASK

File system applies umask when creating new objects.

GFS_VERSION4

File system supports AIX Version 4 V-node interface.

GFS_VERSION42

File system supports AIX 4.2 V-node interface. (new vnode operation: vn_seek)

GFS_VERSION421

File system supports AIX 4.2.1 V-node interface.(new vnode operations: vn_sync_range,

vn_create_attr, vn_finfo, vn_map_lloff, vn_readdir_eofp, vn_rdwr_attr))

GFS_VERSION43

File system supports AIX 4.3 V-node interface. (new file flag for vn_sync_range:FMSYNC)

GFS_NAMED_OPEN

File system supports named open.

GFS_VERSION53

File system supports AIX 5.3 V-node interface (new vnode operations: vn_getxacl,

vn_setxacl) and AIX 5.3 VFS interface. (new vfs operation: vfs_aclxcntl)

GFS_STATFSVP

File system supports vfs_statfsvp VFS interface. (new vfs operation: vfs_statfsvp)

gfs_ops Specifies the array of pointers to vfs operation implementations.

gn_ops Specifies the array of pointers to v-node operation implementations.

The file system description structure can also specify:

 gfs_init Points to an initialization routine to be called by the gfsadd kernel service. This field must be null if

no initialization routine is to be called.

gfs_data Points to file system private data.

Execution Environment

The gfsadd kernel service can be called from the process environment only.

190 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

 0 Indicates successful completion.

EBUSY Indicates that the file system type has already been installed.

EINVAL Indicates that the gfsno value is larger than the system-defined maximum. The system-defined maximum

is indicated in the /usr/include/sys/vmount.h file.

Related Information

The gfsdel kernel service.

gfsdel Kernel Service

Purpose

Removes a file system type from the gfs table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int gfsdel (gfsno)

int gfsno;

Parameter

 gfsno Specifies the file system number. This value identifies the type of the file system to be deleted.

Description

The gfsdel kernel service is called to delete a file system type. It is not valid to mount any file system of

the given type after that type has been deleted.

Execution Environment

The gfsdel kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

ENOENT Indicates that the indicated file system type was not installed.

EINVAL Indicates that the gfsno value is larger than the system-defined maximum. The system-defined maximum

is indicated in the /usr/include/sys/vmount.h file.

EBUSY Indicates that there are active vfs structures for the file system type being deleted.

Related Information

Virtual File System Overview, Virtual File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

The gfsadd kernel service.

Chapter 1. Kernel Services 191

i_clear Kernel Service

Purpose

Removes an interrupt handler.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/intr.h>

void i_clear (handler)

struct intr *handler;

Parameter

 handler Specifies the address of the interrupt handler structure passed to the i_init service.

Description

The i_clear service removes the interrupt handler specified by the handler parameter from the set of

interrupt handlers that the kernel knows about. ″Coding an Interrupt Handler″ in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts contains a brief description of interrupt handlers.

The i_mask service is called by the i_clear service to disable the interrupt handler’s bus interrupt level

when this is the last interrupt handler for the bus interrupt level. The i_clear service removes the interrupt

handler structure from the list of interrupt handlers. The kernel maintains this list for that bus interrupt

level.

Execution Environment

The i_clear kernel service can be called from the process environment only.

Return Values

The i_clear service has no return values.

Related Information

The i_init kernel service.

I/O Kernel Services, Understanding Interrupts in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

i_disable Kernel Service

Purpose

Disables interrupt priorities.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/intr.h>

192 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int i_disable (new)

int new;

Parameter

 new Specifies the new interrupt priority.

Description

Attention: The i_disable service has two side effects that result from the replaceable and pageable

nature of the kernel. First, it prevents process dispatching. Second, it ensures, within limits, that the

caller’s stack is in memory. Page faults that occur while the interrupt priority is not equal to INTBASE

crash the system.

Note: The i_disable service is very similar to the standard UNIX spl service.

The i_disable service sets the interrupt priority to a more favored interrupt priority. The interrupt priority is

used to control which interrupts are allowed.

A value of INTMAX is the most favored priority and disables all interrupts. A value of INTBASE is the least

favored and disables only interrupts not in use. The /usr/include/sys/intr.h file defines valid interrupt

priorities.

The interrupt priority is changed only to serialize code executing in more than one environment (that is,

process and interrupt environments).

For example, a device driver typically links requests in a list while executing under the calling process. The

device driver’s interrupt handler typically uses this list to initiate the next request. Therefore, the device

driver must serialize updating this list with device interrupts. The i_disable and i_enable services provide

this ability. The I_init kernel service contains a brief description of interrupt handlers.

Note: When serializing such code in a multiprocessor-safe kernel extension, locking must be used as well

as interrupt control. For this reason, new code should call the disable_lock kernel service instead

of i_disable. The disable_lock service performs locking only on multiprocessor systems, and helps

ensure that code is portable between uniprocessor and multiprocessor systems.

The i_disable service must always be used with the i_enable service. A routine must always return with

the interrupt priority restored to the value that it had upon entry.

The i_mask service can be used when a routine must disable its device across a return.

Because of these side effects, the caller of the i_disable service should ensure that:

v The reference parameters are pinned.

v The code executed during the disable operation is pinned.

v The amount of stack used during the disable operation is less than 1KB.

v The called programs use less than 1KB of stack.

In general, the caller of the i_disable service should also call only services that can be called by interrupt

handlers. However, processes that call the i_disable service can call the e_sleep, e_wait, e_sleepl,

lockl, and unlockl services as long as the event word or lockword is pinned.

The kernel’s first-level interrupt handler sets the interrupt priority for an interrupt handler before calling the

interrupt handler. The interrupt priority for a process is set to INTBASE when the process is created and is

part of each process’s state. The dispatcher sets the interrupt priority to the value associated with the

process to be executed.

Chapter 1. Kernel Services 193

Execution Environment

The i_disable kernel service can be called from either the process or interrupt environment.

Return Value

The i_disable service returns the current interrupt priority that is subsequently used with the i_enable

service.

Related Information

The disable_lock kernel service, i_enable kernel service, i_mask kernel service.

I/O Kernel Services, Understanding Execution Environments, Understanding Interrupts in AIX 5L Version

5.3 Kernel Extensions and Device Support Programming Concepts.

i_enable Kernel Service

Purpose

Enables interrupt priorities.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/intr.h>

void i_enable (old)

int old;

Parameter

 old Specifies the interrupt priority returned by the i_disable service.

Description

The i_enable service restores the interrupt priority to a less-favored value. This value should be the value

that was in effect before the corresponding call to the i_disable service.

Note: When serializing a thread with an interrupt handler in a multiprocessor-safe kernel extension,

locking must be used as well as interrupt control. For this reason, new code should call the

unlock_enable kernel service instead of i_enable. The unlock_enable service performs locking

only on multiprocessor systems, and helps ensure that code is portable between uniprocessor and

multiprocessor systems.

Execution Environment

The i_enable kernel service can be called from either the process or interrupt environment.

Return Values

The i_enable service has no return values.

Related Information

The i_disable kernel service, unlock_enable kernel service.

194 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Understanding Interrupts, I/O Kernel Services, Understanding Execution Environments in AIX 5L Version

5.3 Kernel Extensions and Device Support Programming Concepts.

i_eoi Kernel Service

Purpose

Issues an End of Interrupt (EOI) for a given handler.

Syntax

int i_eoi(struct intr *handler)

Description

The i_eoi kernel service allows a device driver to issue an End of Interrupt (EOI) for its device explicitly.

For level-triggered interrupts, after the second level interrupt handler (SLIH) has completed, the kernel

issues an EOI on behalf of the device driver. For ISA (8259) edge-triggered interrupts, the kernel issues

the EOI on behalf of the device driver before calling the SLIH. However, in the case of some

edge-triggered interrupts (for example, PCI and PCI-E style edge-triggered interrupt), it is desirable that

the device driver checks for pending work before the EOI is issued, and the driver is required to check for

any additional work after the EOI is issued. The i_eoi kernel service facilitates such operations and issues

an EOI for an edge-triggered interrupt source. The i_eoi kernel service fails if called for a level-triggered

interrupt source.

Parameters

 handler Pointer to the interrupt handler

Execution Environment

The i_eoi kernel service can be called from process or interrupt environment.

Return Values

INTR_SUCC if successful

INTR_FAIL if unsuccessful (the INTR_EDGE flag was not set on i_init()).

Virtual device drivers’ interrupt services are similar to the PCI interrupt services. Interrupts are registered

with a bus_type of BUS_BID. The primary difference is that the edge flag should be set for vdevices. For

example:

Parent CuDv "bus_id" VDEVICE bus BID

Device CuAt "bus_intr_lvl" Adapter interrupt level

intr.flags |= INTR_EDGE

intr.bus_type = BUS_BID

intr.bid = Parent_CuDv.bus_id

intr.level = Device_CuAt.bus_intr_lvl

PCI-E interrupts are Message Signalled Interrupts, and hence, they are edge-triggered. Therefore,

INTR_EDGE flag should be specified.

ifa_ifwithaddr Kernel Service

Purpose

Locates an interface based on a complete address.

Chapter 1. Kernel Services 195

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/socket.h>

#include <net/if.h>

#include <net/af.h>

struct ifaddr * ifa_ifwithaddr (addr)

struct sockaddr *addr;

Parameter

 addr Specifies a complete address.

Description

The ifa_ifwithaddr kernel service is passed a complete address and locates the corresponding interface.

If successful, the ifa_ifwithaddr service returns the ifaddr structure associated with that address.

Execution Environment

The ifa_ifwithaddr kernel service can be called from either the process or interrupt environment.

Return Values

If successful, the ifa_ifwithaddr service returns the corresponding ifaddr structure associated with the

address it is passed. If no interface is found, the ifa_ifwithaddr service returns a null pointer.

Example

To locate an interface based on a complete address, invoke the ifa_ifwithaddr kernel service as follows:

ifa_ifwithaddr((struct sockaddr *)&ipaddr);

Related Information

The ifa_ifwithdstaddr kernel service, ifa_ifwithnet kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

ifa_ifwithdstaddr Kernel Service

Purpose

Locates the point-to-point interface with a given destination address.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/socket.h>

#include <net/if.h>

struct ifaddr * ifa_ifwithdstaddr (addr)

struct sockaddr *addr;

196 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

 addr Specifies a destination address.

Description

The ifa_ifwithdstaddr kernel service searches the list of point-to-point addresses per interface and locates

the connection with the destination address specified by the addr parameter.

Execution Environment

The ifa_withdstaddr kernel service can be called from either the process or interrupt environment.

Return Values

If successful, the ifa_ifwithdstaddr service returns the corresponding ifaddr structure associated with the

point-to-point interface. If no interface is found, the ifa_ifwithdstaddr service returns a null pointer.

Example

To locate the point-to-point interface with a given destination address, invoke the ifa_ifwithdstaddr kernel

service as follows:

ifa_ifwithdstaddr((struct sockaddr *)&ipaddr);

Related Information

The ifa_ifwithaddr kernel service, ifa_ifwithnet kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

ifa_ifwithnet Kernel Service

Purpose

Locates an interface on a specific network.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/socket.h>

#include <net/if.h>

struct ifaddr * ifa_ifwithnet (addr)

register struct sockaddr *addr;

Parameter

 addr Specifies the address.

Description

The ifa_ifwithnet kernel service locates an interface that matches the network specified by the address it

is passed. If more than one interface matches, the ifa_ifwithnet service returns the first interface found.

Chapter 1. Kernel Services 197

Execution Environment

The ifa_ifwithnet kernel service can be called from either the process or interrupt environment.

Return Values

If successful, the ifa_ifwithnet service returns the ifaddr structure of the correct interface. If no interface is

found, the ifa_ifwithnet service returns a null pointer.

Example

To locate an interface on a specific network, invoke the ifa_ifwithnet kernel service as follows:

ifa_ifwithnet((struct sockaddr *)&ipaddr);

Related Information

The ifa_ifwithaddr kernel service, ifa_ifwithdstaddr kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

if_attach Kernel Service

Purpose

Adds a network interface to the network interface list.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/if.h>

if_attach (ifp)

struct ifnet *ifp;

Parameter

 ifp Points to the interface network (ifnet) structure that defines the network interface.

Description

The if_attach kernel service registers a Network Interface Driver (NID) in the network interface list.

Execution Environment

The if_attach kernel service can be called from either the process or interrupt environment.

Return Values

The if_attach kernel service has no return values.

Related Information

The if_detach kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

198 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

if_detach Kernel Service

Purpose

Deletes a network interface from the network interface list.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/if.h>

if_detach (ifp)

struct ifnet *ifp;

Parameter

 ifp Points to the interface network (ifnet) structure that describes the network interface to delete.

Description

The if_detach kernel service deletes a Network Interface Driver (NID) entry from the network interface list.

Execution Environment

The if_detach kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the network interface was successfully deleted.

ENOENT Indicates that the if_detach kernel service could not find the NID in the network interface list.

Related Information

The if_attach kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

if_down Kernel Service

Purpose

Marks an interface as down.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/if.h>

void if_down (ifp)

register struct ifnet *ifp;

Parameter

 ifp Specifies the ifnet structure associated with the interface array.

Chapter 1. Kernel Services 199

Description

The if_down kernel service:

v Marks an interface as down by setting the flags field of the ifnet structure appropriately.

v Notifies the protocols of the transaction.

v Flushes the output queue.

The ifp parameter specifies the ifnet structure associated with the interface as the structure to be marked

as down.

Execution Environment

The if_down kernel service can be called from either the process or interrupt environment.

Return Values

The if_down service has no return values.

Example

To mark an interface as down, invoke the if_down kernel service as follows:

if_down(ifp);

Related Information

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

if_nostat Kernel Service

Purpose

Zeroes statistical elements of the interface array in preparation for an attach operation.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/if.h>

void if_nostat (ifp)

struct ifnet *ifp;

Parameter

 ifp Specifies the ifnet structure associated with the interface array.

Description

The if_nostat kernel service zeroes the statistic elements of the ifnet structure for the interface. The ifp

parameter specifies the ifnet structure associated with the interface that is being attached. The if_nostat

service is called from the interface attach routine.

Execution Environment

The if_nostat kernel service can be called from either the process or interrupt environment.

200 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

The if_nostat service has no return values.

Example

To zero statistical elements of the interface array in preparation for an attach operation, invoke the

if_nostat kernel service as follows:

if_nostat(ifp);

Related Information

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

ifunit Kernel Service

Purpose

Returns a pointer to the ifnet structure of the requested interface.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/if.h>

struct ifnet *

ifunit (name)

char *name;

Parameter

 name Specifies the name of an interface (for example, en0).

Description

The ifunit kernel service searches the list of configured interfaces for an interface specified by the name

parameter. If a match is found, the ifunit service returns the address of the ifnet structure for that

interface.

Execution Environment

The ifunit kernel service can be called from either the process or interrupt environment.

Return Values

The ifunit kernel service returns the address of the ifnet structure associated with the named interface. If

the interface is not found, the service returns a null value.

Example

To return a pointer to the ifnet structure of the requested interface, invoke the ifunit kernel service as

follows:

ifp = ifunit("en0");

Chapter 1. Kernel Services 201

Related Information

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

i_init Kernel Service

Purpose

Defines an interrupt handler.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/intr.h>

int i_init

(handler)

struct intr *handler;

Parameter

 handler Designates the address of the pinned interrupt handler structure.

Description

Attention: The interrupt handler structure must not be altered between the call to the i_init service to

define the interrupt handler and the call to the i_clear service to remove the interrupt handler. The

structure must also stay pinned. If this structure is altered at those times, a kernel panic may result.

The i_init service allows device drivers to define an interrupt handler to the kernel. The interrupt handler

intr structure pointed to by the handler parameter describes the interrupt handler. The caller of the i_init

service must initialize all the fields in the intr structure. The /usr/include/sys/intr.h file defines these fields

and their valid values.

The i_init service enables interrupts by linking the interrupt handler structure to the end of the list of

interrupt handlers defined for that bus level. If this is the first interrupt handler for the specified bus

interrupt level, the i_init service enables the bus interrupt level by calling the i_unmask service.

The interrupt handler can be called before the i_init service returns if the following two conditions are met:

v The caller of the i_init service is executing at a lower interrupt priority than the one defined for the

interrupt.

v An interrupt for the device or another device on the same bus interrupt level is already pending.

On multiprocessor systems, all interrupt handlers defined with the i_init kernel service run by default on

the first processor started when the system was booted. This ensures compatibility with uniprocessor

interrupt handlers. If the interrupt handler being defined has been designed to be multiprocessor-safe, or is

an EPOW (Early Power-Off Warning) or off-level interrupt handler, set the INTR_MPSAFE flag in the flags

field of the intr structure passed to the i_init kernel service. The interrupt handler will then run on any

available processor.

202 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Coding an Interrupt Handler

The kernel calls the interrupt handler when an enabled interrupt occurs on that bus interrupt level. The

interrupt handler is responsible for determining if the interrupt is from its own device and processing the

interrupt. The interface to the interrupt handler is as follows:

int interrupt_handler (handler)
struct intr *handler;

The handler parameter points to the same interrupt handler structure specified in the call to the i_init

kernel service. The device driver can pass additional parameters to its interrupt handler by declaring the

interrupt handler structure to be part of a larger structure that contains these parameters.

The interrupt handler can return one of two return values. A value of INTR_SUCC indicates that the

interrupt handler processed the interrupt and reset the interrupting device. A value of INTR_FAIL indicates

that the interrupt was not from this interrupt handler’s device.

Registering Early Power-Off Warning (EPOW) Routines

The i_init kernel service can also be used to register an EPOW (Early Power-Off Warning) notification

routine.

The return value from the EPOW interrupt handler should be INTR_SUCC, which indicates that the

interrupt was successfully handled. All registered EPOW interrupt handlers are called when an EPOW

interrupt is indicated.

Execution Environment

The i_init kernel service can be called from the process environment only.

Return Values

 INTR_SUCC Indicates a successful completion.

INTR_FAIL Indicates an unsuccessful completion. The i_init service did not define the interrupt handler.

An unsuccessful completion occurs when there is a conflict between a shared and a nonshared

bus interrupt level. An unsuccessful completion also occurs when more than one interrupt priority is

assigned to a bus interrupt level.

Related Information

Understanding Interrupts, I/O Kernel Services, in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

i_mask Kernel Service

Purpose

Disables a bus interrupt level.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/intr.h>

Chapter 1. Kernel Services 203

void i_mask (handler)

struct intr *handler;

Parameter

 handler Specifies the address of the interrupt handler structure that was passed to the i_init service.

Description

The i_mask service disables the bus interrupt level specified by the handler parameter.

The i_disable and i_enable services are used to serialize the execution of various device driver routines

with their device interrupts.

The i_init and i_clear services use the i_mask and i_unmask services internally to configure bus

interrupt levels.

Device drivers can use the i_disable, i_enable, i_mask, and i_unmask services when they must perform

off-level processing with their device interrupts disabled. Device drivers also use these services to allow

process execution when their device interrupts are disabled.

Execution Environment

The i_mask kernel service can be called from either the process or interrupt environment.

Return Values

The i_mask service has no return values.

Related Information

The i_unmask kernel service.

Understanding Interrupts, I/O Kernel Services, in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

init_heap Kernel Service

Purpose

Initializes a new heap to be used with kernel memory management services.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/xmalloc.h>

#include <sys/malloc.h>

heapaddr_t init_heap (area, size, heapp)

caddr_t area;

int size;

heapaddr_t *heapp;

Parameters

 area Specifies the virtual memory address used to define the starting memory area for the heap. This address

must be page-aligned.

204 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

size Specifies the size of the heap in bytes. This value must be an integral number of system pages.

heapp Points to the external heap descriptor. This must have a null value. The base kernel uses this field is used

to specify special heap characteristics that are unavailable to kernel extensions.

Description

The init_heap kernel service is most commonly used by a kernel process to initialize and manage an area

of virtual memory as a private heap. Once this service creates a private heap, the returned heapaddr_t

value can be used with the xmalloc or xmfree service to allocate or deallocate memory from the private

heap. Heaps can be created within other heaps, a kernel process private region, or even on a stack.

Few kernel extensions ever require the init_heap service because the exported global kernel_heap and

pinned_heap are normally used for memory allocation within the kernel. However, kernel processes can

use the init_heap service to create private nonglobal heaps within their process private region for

controlling kernel access to the heap and possibly for performance considerations.

Execution Environment

The init_heap kernel service can be called from the process environment only.

Related Information

The xmalloc kernel service, xmfree kernel service.

Memory Kernel Services and Using Kernel Processes in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

initp Kernel Service

Purpose

Changes the state of a kernel process from idle to ready.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int initp

(pid, func, init_parms,

parms_length, name)

pid_t pid;

void (func) (int

flag, void* init_parms, int parms_length);

void * init_parms;

int parms_length;

char * name;

Parameters

 pid Specifies the process identifier of the process to be initialized.

func Specifies the process’s initialization routine.

init_parm Specifies the pointer to the initialization parameters.

parms_length Specifies the length of the initialization parameters.

name Specifies the process name.

Chapter 1. Kernel Services 205

Description

The initp kernel service completes the transition of a kernel process from idle to ready. The idle state for a

process is represented by p_status == SIDL. Before calling the initp service, the creatp service is called

to create the process. The creatp service allocates and initializes a process table entry.

The initp service creates and initializes the process-private segment. The process is marked as a kernel

process by a bit set in the p_flag field in the process table entry. This bit, the SKPROC bit, signifies that

the process is a kernel process.

The process calling the initp service to initialize a newly created process must be the same process that

called the creatp service to create the new process.

″Using Kernel Processes″ in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts further explains how the initp kernel service completes the initialization process begun by the

creatp service.

The pid parameter identifies the process to be initialized. It must be valid and identify a process in the

SIDL (idle) state.

The name parameter points to a character string that names the process. The leading characters of this

string are copied to the user structure. The number of characters copied is implementation-dependent, but

at least four are always copied.

The func parameter indicates the main entry point of the process. The new process is made ready to run

this function. If the init_parms parameter is not null, it points to data passed to this routine. The parameter

structure must be agreed upon between the initializing and initialized process. The initp service copies the

data specified by the init_parm parameter (with the exact number of bytes specified by the parms_length

parameter) of data to the new process’s stack.

Execution Environment

The initp kernel service can be called from the process environment only.

Example

To initialize the kernel process running the function main_kproc, enter:

{

.

.

.

pid = creatp();

initp(pid, main_kproc, &node_num, sizeof(int), "tkproc");

.

.

}

void

main_kproc(int flag, void* init_parms, int parms_length)

{

 .

 .

 .

 int i;

 i = *((int *)init_parms);

 .

 .

 .

}

206 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

 0 Indicates a successful operation.

ENODEV The process could not be scheduled because it has a processor attachment that does not contain any

available processors. This can be caused by Dynamic Processor Deallocation.

ENOMEM Indicates that there was insufficient memory to initialize the process.

EINVAL Indicates an pid parameter that was not valid.

Related Information

The creatp kernel service.

The func subroutine.

Introduction to Kernel Processes , Process and Exception Management Kernel Services, and Dynamic

logical partitioning in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

initp Kernel Service func Subroutine

Purpose

Directs the process initialization routine.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void func (flag, init_parms, parms_length)

int flag;

void * init_parms;

int parms_length;

Parameters

 func Specifies the process’s initialization routine.

flag Has a 0 value if this subroutine is executed as a result of initializing a process with the initp

service.

init_parms Specifies the pointer to the initialization parameters.

parms_length Specifies the length of the initialization parameters.

Related Information

The initp kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

io_att Kernel Service

Purpose

Selects, allocates, and maps a region in the current address space for I/O access.

Chapter 1. Kernel Services 207

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

caddr_t io_att (iohandle, offset)

vmhandle_t iohandle;

caddr_t offset;

Parameters

 iohandle Specifies a handle for the I/O object to be mapped in the current address space.

offset Specifies the address offset in both the I/O space and the virtual memory region to be mapped.

Description

Attention: The io_att service will crash the kernel if there are no more free regions.

The io_att kernel service performs these four tasks:

v Selects an unallocated virtual memory region.

v Allocates it.

v Maps the I/O address space specified by the iohandle parameter with the access permission specified

in the handle.

v Constructs the address specified by the offset parameter in the current address space.

The io_att kernel service assumes an address space model of fixed-size I/O objects and virtual memory

address space regions.

Note: The io_att kernel service is not supported on the 64-bit kernel.

Execution Environment

The io_att kernel service can be called from either the process or interrupt environment.

Return Values

The io_att kernel service returns an address for the offset in the virtual memory address space.

Related Information

The io_det kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

io_det Kernel Service

Purpose

Unmaps and deallocates the region in the current address space at the given address.

208 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

void io_det (eaddr)

caddr_t eaddr;

Parameter

 eaddr Specifies the effective address for the virtual memory region that is to be detached. This address should be

the same address that was previously obtained by using the io_att kernel service to attach the virtual

memory region.

Description

The io_det kernel service unmaps the region containing the address specified by the eaddr parameter and

deallocates the region. This service then adds the region to the free list for the current address space.

The io_det service assumes an address space model of fixed-size I/O objects and address space regions.

Note: The io_det kernel service is not supported on the 64-bit kernel.

Execution Environment

The io_det kernel service can be called from either the process or interrupt environment.

Return Values

The io_det kernel service has no return values.

Related Information

The io_att kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

io_map Kernel Service

Purpose

Attach to an I/O mapping

Syntax

#include <sys/adspace.h>

void * io_map (io_handle)

io_handle_t io_handle;

Description

The io_map kernel service sets up addressibility to the I/O address space defined by the io_handle_t

structure. It returns an effective address representing the start of the mapped region.

Chapter 1. Kernel Services 209

This is a replacement call for iomem_att, however, it might replace multiple iomem_att calls depending

on the device, the driver, and whether multiple regions were mapped into a single virtual segment. Like

iomem_att, this service does not return any kind of failure. If something goes wrong, the system crashes.

There is a major difference between io_map and iomem_att. iomem_att takes an io_map structure

containing a bus address and returns a fully qualified effective address with any byte offset from the bus

address preserved and computed into the returned effective address. The io_map kernel service always

returns a segment-aligned effective address representing the beginning of the I/O segment corresponding

to io_handle_t. Manipulation of page and byte offsets within the segment are responsibilities of the device

driver.

The io_map kernel service is subject to nesting rules regarding the number of attaches allowed. A total

system number of active temporary attaches is 4. However, it is recommended that no more than one

active attach be owned by a driver calling the interrupt or DMA kernel services. It is also recommended

that no active attaches be owned by a driver when calling other kernel services.

Parameters

 io_handle Received on a prior successful call to io_map_init. Describes the I/O space to attach to.

Execution Environment

The io_map kernel service can be called from the process or interrupt environment.

Return Values

The io_map kernel service returns a segment-aligned effective address to access the I/O address spaces.

Related Information

“io_map_init Kernel Service” on page 211, “io_map_clear Kernel Service,” and “io_unmap Kernel Service”

on page 212.

Programmed I/O (PIO) Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

io_map_clear Kernel Service

Purpose

Removes an I/O mapping segment.

Syntax

#include <sys/adspace.h>

void io_map_clear (io_handle)

io_handle_t io_handle;

Description

This service destroys all mappings defined by the io_handle_t parameter.

There should be no active mappings (outstanding io_map calls) to this handle when io_map_clear is

called. The segment previously created by an io_map_init call or multiple io_map_init calls, is deleted.

210 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 io_handle Received on a prior successful call to io_map_init.

Describes the I/O space to be removed.

Execution Environment

The io_map_clear kernel service can be called from the process environment only.

Related Information

“io_map_init Kernel Service,” “io_map Kernel Service” on page 209, and “io_unmap Kernel Service” on

page 212.

Programmed I/O (PIO) Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

io_map_init Kernel Service

Purpose

Creates and initializes an I/O mapping segment.

Syntax

#include <sys/adspace.h>

#include <sys/vm_types.h>

io_handle_t io_map_init (io_map_ptr, page_offset, io_handle)

struct io_map *io_map_ptr;

vpn_t page_offset;

io_handle_t io_handle;

struct io_map {

 int key; /* structure version number */

 int flags; /* flags for mapping */

 int32long64_t size; /* size of address space needed */

 int bid; /* bus ID */

 long long busaddr; /* bus address */

};

Description

The io_map_init kernel service will create a segment to establish a cache-inhibited virtual-to-real

translation for the bus address region defined by the contents of the io_map struct. The flags parameter of

the io_map structure can be used to customize the mapping such as making the region read-only, using

the IOM_RDONLY flag.

The io_map_init kernel service returns a handle of an opaque type io_handle_t to be used on future

io_map or io_unmap calls. All services that use the io_handle returned by io_map_init must use the

handle from the most recent call. Using an old handle is a programming error.

The vpn_t type parameter represents the virtual page number offset to allow the caller to specify where, in

the virtual segment, to map this region. The offset must not conflict with a previous mapping in the

segment. The caller should map the most frequently accessed and performance critical I/O region at vpn_t

offset 0 into the segment. This is due to the fact that the subsequent io_map calls using this io_handle will

return an effective address representing the start of the segment (that is, page offset 0). The device driver

is responsible for managing various offsets into the segment. A single bus memory address page can be

mapped multiple times at different vpn_t offsets within the segment.

Chapter 1. Kernel Services 211

The io_handle_t parameter is useful when the caller wants to append a new mapping to an existing

segment. For the initial creation of a new I/O segment, this parameter must be NULL. For appended

mappings to the same segment, this parameter is the io_handle_t returned from the last successful

io_map_init call. If the mapping fails for any reason (offset conflicts with prior mapping, or no more room

in the segment), NULL is returned. In this case, the previous io_handle_t is still valid. If successful, the

io_handle_t returned should be used on all future calls. In this way, a device driver can manage multiple

I/O address spaces of a single adapter within a single virtual address segment, requiring the driver to do

only a single attach, io_map, to gain addressibility to all of the mappings.

Parameters

 io_map_ptr Pointer to io_map structure describing the address region

to map.

page_offset Page offset at which to map the specified region into the

virtual address segment.

io_handle For the first call, this parameter should be NULL. When

adding to an existing mapping, this parameter is the

io_handle received on a prior successful call to

io_map_init.

Execution Environment

The io_map_init kernel service can be called from the process environment only.

Return Values

 io_handle_t An opaque handle to the mapped I/O segment in the virtual memory that must be used in

subsequent calls to this service.

NULL Failed to create or append mapping.

Related Information

“io_map_clear Kernel Service” on page 210, “io_map Kernel Service” on page 209, and “io_unmap Kernel

Service.”

Programmed I/O (PIO) Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

io_unmap Kernel Service

Purpose

Detach from an I/O mapping

Syntax

#include <sys/adspace.h>

void io_unmap (eaddr)

void *eaddr;

Description

The io_unmap kernel service removes addressibility to the I/O address space defined by the eaddr

parameter. There must be a valid active mapping from a previous io_map call for this effective address.

The eaddr parameter can be any valid effective address within the segment, and it does not have to be

exactly the same as the address returned by io_map.

212 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

This is a replacement call for iomem_det, however, it might replace multiple iomem_det calls depending

on the device and driver and whether multiple regions were mapped into this single virtual segment

through io_map_init.

Parameters

 eaddr Received on a prior successful call to io_map. Effective address for the I/O space to detach from.

Execution Environment

The io_unmap kernel service can be called from the process or interrupt environment.

Related Information

“io_map_init Kernel Service” on page 211, “io_map_clear Kernel Service” on page 210, and “io_map

Kernel Service” on page 209.

Programmed I/O (PIO) Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

iodone Kernel Service

Purpose

Performs block I/O completion processing.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

void iodone (bp)

struct buf *bp;

Parameter

 bp Specifies the address of the buf structure for the buffer whose I/O has completed.

Description

A device driver calls the iodone kernel service when a block I/O request is complete. The device driver

must not reference or alter the buffer header or buffer after calling the iodone service.

The iodone service takes one of two actions, depending on the current interrupt level. Either it invokes the

caller’s individual iodone routine directly, or it schedules I/O completion processing for the buffer to be

performed off-level, at the INTIODONE interrupt level. The interrupt handler for this level then calls the

iodone routine for the individual device driver. In either case, the individual iodone routine is defined by the

b_iodone buffer header field in the buffer header. This iodone routine is set up by the caller of the device’s

strategy routine.

For example, the file I/O system calls set up a routine that performs buffered I/O completion processing.

The uphysio service sets up a routine that performs raw I/O completion processing. Similarly, the pager

sets up a routine that performs page-fault completion processing.

Chapter 1. Kernel Services 213

Setting up an iodone Routine

Under certain circumstances, a device driver can set up an iodone routine. For example, the logical

volume device driver can follow this procedure:

1. Take a request for a logical volume.

2. Allocate a buffer header.

3. Convert the logical volume request into a physical volume request.

4. Update the allocated buffer header with the information about the physical volume request. This

includes setting the b_iodone buffer header field to the address of the individual iodone routine.

5. Call the physical volume device driver strategy routine.

Here, the caller of the logical volume strategy routine has set up an iodone routine that is started when

the logical volume request is complete. The logical volume strategy routine in turn sets up an iodone

routine that is invoked when the physical volume request is complete.

The key point of this example is that only the caller of a strategy routine can set up an iodone routine and

even then, this can only be done while setting up the request in the buffer header.

The interface for the iodone routine is identical to the interface to the iodone service.

Execution Environment

The iodone kernel service can be called from either the process or interrupt environment.

Return Values

The iodone service has no return values.

Related Information

The iowait kernel service.

The buf structure.

Understanding Interrupts and I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

iomem_att Kernel Service

Purpose

Establishes access to memory-mapped I/O.

Syntax

#include <sys/types.h>

#include <sys/adspace.h>

void *iomem_att (io_map_ptr)

struct io_map *io_map_ptr;

struct io_map {

 int key;

 int flags;

 int size;

 int BID;

 long long busaddress;

}

214 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

The address of the io_map structure passes the following parameters to the iomem_att kernel service:

 key Set to IO_MEM_MAP.

flags Describes the mapping.

size Specifies the number of bytes to map.

bid Specifies the bus identifier.

busaddress Specifies the address of the bus.

Description

Note: The iomem_att kernel service is only supported on PowerPC machines. All mappings are done

with storage attributes: cache inhibited, guarded, and coherent. It is a violation of the PowerPC

architecture to access memory with multiple storage modes. The caller of iomem_att must ensure

no mappings using other storage attributes exist in the system.

The iomem_att kernel service provides temporary addressability to memory-mapped I/O. The iomem_att

kernel service does the following:

v Allocates one segment of kernel address space

v Establishes kernel addressability

v Maps a contiguous region of memory mapped I/O into that segment.

The addressability is valid only for the context that called iomem_att. The memory is addressable until

iomem_det is called. I/O memory must be mapped each time a context is entered and freed before

returning.

Note: Kernel address space is an exhaustible resource and when exhausted, the system crashes. A driver

must never map more than 2 I/O regions at once. No drivers or kernel service other than DMA,

interrupt, or PIO can be called with an iomem_att outstanding. DMA, interrupt and PIO kernel

services can be called with up to two I/O regions mapped.

The size parameter supports from 4096 bytes to 256 MB. The caller can specify a minimum of size bytes,

but may choose to map up to 256 MB. The caller must not reference memory beyond size bytes. The size

parameter should be set to the minimum value required to address the target device.

Specifying IOM_RDONLY in the flags parameter results in a read-only mapping. A store to memory,

mapped in this mode, results in a data storage interrupt. If the flag parameter is 0 (zero) the memory is

mapped read-write. All mappings are read-write on 601-based machines.

Note: The iomem_att kernel service is not supported on the 64-bit kernel.

Execution Environment

The iomem_att kernel service can be called from either the process or interrupt environment.

Return Values

The iomem_att kernel service returns the effective address that can be used to address the I/O memory.

Related Information

The iomem_det Kernel Service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

Chapter 1. Kernel Services 215

iomem_det Kernel Service

Purpose

Releases access to memory-mapped IO.

Syntax

#include <sys/types.h>

#include <sys/adspace.h>

void iomem_det (ioaddr)

void *ioaddr

Parameters

 ioaddr Specifies the effective address returned by the iomem_att kernel service.

Description

The iomem_det kernel service releases memory-mapped I/O addressability. A call to the iomem_det

kernel service must be made for every iomem_att call, with the address that iomem_att returned.

Note: The iomem_det kernel service is not supported on the 64-bit kernel.

Execution Evironment

The iomem_det kernel service can be called from either the process or interrupt environment.

Return Values

The iomem_det kernel service returns no return values.

Related Information

The iomem_att kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

iostadd Kernel Service

Purpose

Registers an I/O statistics structure used for updating I/O statistics reported by the iostat subroutine.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/iostat.h>

#include <sys/devinfo.h>

int iostadd (devtype, devstatp)

int devtype;

union {

 struct ttystat *ttystp;

216 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

struct dkstat *dkstp;

 } devstatp;

Description

The iostadd kernel service is used to register the I/O statistics structure required to maintain statistics on

a device. The iostadd service is typically called by a tty, disk, or CD-ROM device driver to provide the

statistical information used by the iostat subroutine. The iostat subroutine displays statistic information for

tty and disk devices on the system. The iostadd service should be used once for each configured device.

In AIX 5.2, support for Multi-Path I/O (MPIO) was added to the iostadd kernel service and the dkstat

structure. The dkstat structure was expanded to accomodate the MPIO data. The iostadd kernel service

was modified to handle the new version of the dkstat structure as well as older, legacy versions. For an

MPIO device, the anchor is the disk’s dkstat structure. This must be the first dkstat structure registered

using the iostadd kernel service. Any path dkstat structures that are registered subsequently must

reference the address of the anchor dkstat (disk) structure in the dkstat.dk_mpio_anchor field.

For tty devices, the devtype parameter has a value of DD_tty. In this case, the iostadd service uses the

devstatp parameter to return a pointer to a ttystat structure.

For disk or CD-ROM devices with a devtype value of DD_DISK or DD_CD-ROM, the caller must provide a

pinned and initialized dkstat structure as an input parameter. This structure is pointed to by the devstatp

parameter on entry to the iostadd kernel service.

If the device driver support for a device is terminated, the dkstat or ttystat structure registered with the

iostadd kernel service should be deregistered by calling the iostdel kernel service.

I/O Statistics Structures

The iostadd kernel service uses two structures that are found in the usr/include/sys/iostat.h file: the

ttystat structure and the dkstat structure.

The ttystat structure contains the following tty-related fields:

 Field Description

rawinch Count of raw characters received by the tty device

caninch Count of canonical characters generated from canonical processing

outch Count of the characters output to a tty device

The second structure used by the iostadd kernel service is the dkstat structure, which contains

information about disk devices. This structure contains the following fields:

 Field Description

diskname 32-character string name for the disk’s logical device

dknextp Pointer to the next dkstat structure in the chain

dk_status Disk entry-status flags

dk_time Time the disk is active

dk_bsize Number of bytes in a block

dk_xfers Number of transfers to or from the disk

dk_rblks Number of blocks read from the disk

dk_wblks Number of blocks written to the disk

dk_seeks Number of seek operations for disks

dk_version Version of the dkstat structure

dk_q_depth Que depth

Chapter 1. Kernel Services 217

Field Description

dk_mpio_anchor Pointer to the path data anchor (disk)

dk_mpio_next_path Pointer to the next path dkstat structure in the chain

dk_mpio_path_id Path ID

tty Device Driver Support

The rawinch field in the ttystat structure should be incremented by the number of characters received by

the tty device. The caninch field in the ttystat structure should be incremented by the number of input

characters generated from canonical processing. The outch field is increased by the number of characters

output to tty devices. These fields should be incremented by the device driver, but never be cleared.

Disk Device Driver Support

A disk device driver must perform these four tasks:

v Allocate and pin a dkstat structure during device initialization.

v Update the dkstat.diskname field with the device’s logical name.

v Update the dkstat.dk_bsize field with the number of bytes in a block on the device.

v Set all other fields in the structure to 0.

If a disk device driver supports MPIO, it must perform the following tasks:

v Allocate and pin a dkstat structure during device initialization.

v Update the dkstat.diskname field with the device’s logical name.

v Update the dkstat.dk_bsize field with the number of bytes in a block on the device.

v Set the value of dkstat.dk_version to dk_qd_mpio_magic.

v Set the value of dkstat.dk_mpio_anchor to 0 if the dkstat structure being added is the disk.

v Set the value of dkstat.dk_mpio_anchor to the address of the path’s anchor (disk) dkstat structure, and

set dkstat.dk_mpio_path_id to the path’s ID if the dkstat structure being added is a path.

v Set all other fields to 0.

If the device supports discrete seek commands, the dkstat.dk_xrate field in the structure should be set to

the transfer rate capability of the device (KB/sec). The device’s dkstat structure should then be registered

using the iostadd kernel service.

During drive operation update, the dkstat.dk_status field should show the busy/nonbusy state of the

device. This can be done by setting and resetting the IOST_DK_BUSY flag. The dkstat.dk_xfers field

should be incremented for each transfer initiated to or from the device. The dkstat.dk_rblks and

dkstat.dk_wblks fields should be incremented by the number of blocks read or written.

If the device supports discrete seek commands, the dkstat.dk_seek field should be incremented by the

number of seek commands sent to the device. If the device does not support discrete seek commands,

both the dkstat.dk_seek and dkstat.dk_xrate fields should be left with a value of 0.

The base kernel updates the dkstat.dk_nextp and dkstat.dk_time fields. They should not be modified by

the device driver after initialization. For MPIO devices, the base kernel also updates the

dkstat.dk_mpio_next_path field.

Note: The same dkstat structure must not be registered more than once.

218 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 devtype Specifies the type of device for which I/O statistics are kept. The various device types are defined in

the /usr/include/sys/devinfo.h file. Currently, I/O statistics are only kept for disks, CD-ROMs, and tty

devices. Possible values for this parameter are:

DD_DISK

For disks

DD_CD-ROM

For CD-ROMs

DD_TTY

For tty devices

devstatp Points to an I/O statistics structure for the device type specified by the devtype parameter. For a

devtype parameter of DD_tty, the address of a pinned ttystat structure is returned. For a devtype

parameter of DD_DISK or DD_CD-ROM, the parameter is an input parameter pointing to a dkstat

structure previously allocated by the caller.

Execution Environment

The iostadd kernel service can be called from the process environment only.

Return Values

 0 Indicates that no error has been detected.

EINVAL Indicates that the devtype parameter specified a device type that is not valid. For MPIO devices,

indicates that an anchor for a path dkstat structure was not found.

Related Information

The iostat command.

The iostdel kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

iostdel Kernel Service

Purpose

Removes the registration of an I/O statistics structure used for maintaining I/O statistics on a particular

device.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/iostat.h>

void iostdel (devstatp)

union {

 struct ttystat *ttystp;

 struct dkstat *dkstp;

 } devstatp;

Chapter 1. Kernel Services 219

Description

The iostdel kernel service removes the registration of an I/O statistics structure for a device being

terminated. The device’s ttystat or dkstat structure should have previously been registered using the

iostadd kernel service. Following a return from the iostdel service, the iostat command will no longer

display statistics for the device being terminated.

In AIX 5.2, support for Multi-Path I/O (MPIO) was added to the iostdel kernel service. For an MPIO

device, the anchor is the disk’s dkstat structure. An anchor (disk) may have several paths associated with

it. Each of these paths can have a dkstat structure registered using the iostadd kernel service. The

semantics for unregistering a dkstat structure for an MPIO device are more restrictive than for a

non-MPIO device. All paths must unregister before the anchor (disk) is unregistered. If the anchor (disk)

dkstat structure is unregistered before all of the paths associated with it are unregistered, the iostdel

kernel service will remove the registration of the anchor (disk) dkstat structure and all remaining registered

paths.

Parameters

 devstatp Points to an I/O statistics structure previously registered using the iostadd kernel service.

Execution Environment

The iostdel kernel service can be called from the process environment only.

Return Values

The iostdel service has no return values.

Related Information

The iostat command.

The iostadd kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

iowait Kernel Service

Purpose

Waits for block I/O completion.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

int iowait (bp)

struct buf *bp;

Parameter

 bp Specifies the address of the buf structure for the buffer with in-process I/O.

220 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The iowait kernel service causes a process to wait until the I/O is complete for the buffer specified by the

bp parameter. Only the caller of the strategy routine can call the iowait service. The B_ASYNC bit in the

buffer’s b_flags field should not be set.

The iodone kernel service must be called when the block I/O transfer is complete. The buf structure

pointed to by the bp parameter must specify an iodone routine. This routine is called by the iodone

interrupt handler in response to the call to the iodone kernel service. This iodone routine must call the

e_wakeup service with the bp->b_events field as the event. This action awakens all processes waiting on

I/O completion for the buf structure using the iowait service.

Execution Environment

The iowait kernel service can be called from the process environment only.

Return Values

The iowait service uses the geterror service to determine which of the following values to return:

 0 Indicates that I/O was successful on this buffer.

EIO Indicates that an I/O error has occurred.

b_error value Indicates that an I/O error has occurred on the buffer.

Related Information

The geterror kernel service, iodone kernel service.

The buf structure.

ip_fltr_in_hook, ip_fltr_out_hook, ipsec_decap_hook, inbound_fw,

outbound_fw Kernel Service

Purpose

Contains hooks for IP filtering.

Syntax

#define FIREWALL_OK 0 /* Accept IP packet */

#define FIREWALL_NOTOK 1 /* Drop IP packet */

#define FIREWALL_OK_NOTSEC 2 /* Accept non-encapsulated IP packet

 (ipsec_decap_hook only) */

#include <sys/mbuf.h>

#include <net/if.h>

int (*ip_fltr_in_hook)(struct mbuf **pkt, void **arg)

int (*ipsec_decap_hook)(struct mbuf **pkt, void **arg)

int (*ip_fltr_out_hook)(struct ifnet *ifp, struct mbuf **pkt, int flags)

#include <sys/types.h>

#include <sys/mbuf.h>

#include <netinet/ip_var.h>

void (*inbound_fw)(struct ifnet *ifp, struct mbuf *m, inbound_fw_args_t *args)

void ipintr_noqueue_post_fw(struct ifnet *ifp, struct mbuf *m, inbound_fw_args_t *args)

Chapter 1. Kernel Services 221

inbound_fw_args_t *inbound_fw_save_args(inbound_fw_args_t *args)

int (*outbound_fw)(struct ifnet *ifp, struct mbuf *m0, outbound_fw_args_t *args)

int ip_output_post_fw(struct ifnet *ifp, struct mbuf *m0, outbound_fw_args_t *args)

outbound_fw_args_t *outbound_fw_save_args(outbound_fw_args_t *args)

Parameters

 pkt Points to the mbuf chain containing the IP packet to be received (ip_fltr_in_hook, ipsec_decap_hook) or

transmitted (ip_fltr_out_hook). The pkt parameter may be examined and/or changed in any of the three

hook functions.

arg Is the address of a pointer to void that is locally defined in the function where ip_fltr_in_hook and

ipsec_decap_hook are called. The arg parameter is initially set to NULL, but the address of this pointer is

passed to the two hook functions, ip_fltr_in_hook and ipsec_decap_hook. The arg parameter may be set

by either of these functions, thereby allowing a void pointer to be shared between them.

ifp Is the outgoing interface on which the IP packet will be transmitted for the ip_fltr_out_hook function.

flags Indicates the ip_output flags passed by a transport layer protocol. Valid flags are currently defined in the

/usr/include/netinet/ip_var.h files. See the Flags section below.

Description

These routines provide kernel-level hooks for IP packet filtering enabling IP packets to be selectively

accepted, rejected, or modified during reception, transmission, and decapsulation. These hooks are initially

NULL, but are exported by the netinet kernel extension and will be invoked if assigned non-NULL values.

The ip_fltr_in_hook routine is used to filter incoming IP packets, the ip_fltr_out_hook routine filters

outgoing IP packets, and the ipsec_decap_hook routine filters incoming encapsulated IP packets.

The ip_fltr_in_hook function is invoked for every IP packet received by the host, whether addressed

directly to this host or not. It is called after verifying the integrity and consistency of the IP packet. The

function is free to examine or change the IP packet (pkt) or the pointer shared with ipsec_decap_hook

(arg). The return value of the ip_fltr_in_hook indicates whether pkt should be accepted or dropped. The

return values are described in Expected Return Values below. If pkt is accepted (a return value of

FIREWALL_OK) and it is addressed directly to the host, the ipsec_decap_hook function is invoked next.

If pkt is accepted, but is not directly addressed to the host, it is forwarded if IP forwarding is enabled. If

ip_fltr_in_hook indicates pkt should be dropped (a return value of FIREWALL_NOTOK), it is neither

delivered nor forwarded.

The ipsec_decap_hook function is called after reassembly of any IP fragments (the ip_fltr_in_hook

function will have examined each of the IP fragments) and is invoked only for IP packets that are directly

addressed to the host. The ipsec_decap_hook function is free to examine or change the IP packet (pkt)

or the pointer shared with ipsec_decap_hook (arg). The hook function should perform decapsulation if

necessary, back into pkt and return the proper status so that the IP packet can be processed appropriately.

See the Expected Return Values section below. For acceptable encapsulated IP packets (a return value of

FIREWALL_OK), the decapsulated packet is processed again by jumping to the beginning of the IP input

processing loop. Consequently, the decapsulated IP packet will be examined first by ip_fltr_in_hook and,

if addressed to the host, by ipsec_decap_hook. For acceptable non-encapsulated IP packets (a return

value of FIREWALL_OK_NOTSEC), IP packet delivery simply continues and pkt is processed by the

transport layer. A return value of FIREWALL_NOTOK indicates that pkt should be dropped.

The ip_fltr_out_hook function is called for every IP packet to be transmitted, provided the outgoing IP

packet’s destination IP address is NOT an IP multicast address. If it is, it is sent immediately, bypassing

the ip_fltr_out_hook function. This hook function is invoked after inserting the IP options from the upper

protocol layers, constructing the complete IP header, and locating a route to the destination IP address.

222 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The ip_fltr_out_hook function may modify the outgoing IP packet (pkt), but the interface and route have

already been assigned and may not be changed. The return value from the ip_fltr_out_hook function

indicates whether pkt should be transmitted or dropped. See the Expected Return Values section below. If

pkt is not dropped (FIREWALL_OK), it’s source address is verified to be local and, if pkt is to be

broadcast, the ability to broadcast is confirmed. Thereafter, pkt is enqueued on the interfaces (ifp) output

queue. If pkt is dropped (FIREWALL_NOTOK), it is not transmitted and EACCES is returned to the

process.

The inbound_fw and outbound_fw firewall hooks allow kernel extensions to get control of packets at the

place where IP receives them. If inbound_fw is set, ipintr_noqueue, the IP input routine, calls

inbound_fw and then exits. If not, ipintr_noqueue calls ipintr_noqueue_post_fw and then exits. If the

inbound_fw hook routine wishes to pass the packet into IP, it can call ipintr_noqueue_post_fw.

inbound_fw may copy its args parameter by calling inbound_fw_save_args, and may free its copy of its

args parameter by calling inbound_fw_free_args.

Similarly, ip_output calls outbound_fw if it is set, and calls ip_output_post_fw if not. The outbound_fw

hook can call ip_output_post_fw if it wants to send a packet. outbound_fw may copy its args parameter

by calling outbound_fw_save_args, and later free its copy of its args parameter by calling

outbound_fw_free_args.

Flags

 IP_FORWARDING Indicates that most of the IP headers exist.

IP_RAWOUTPUT Indicates that the raw IP header exists.

IP_MULTICAST_OPTS Indicates that multicast options are present.

IP_ROUTETOIF Contains bypass routing tables.

IP_ALLOWBROADCAST Provides capability to send broadcast packets.

IP_BROADCASTOPTS Contains broadcast options inside.

IP_PMTUOPTS Provides PMTU discovery options.

IP_GROUP_ROUTING Contains group routing gidlist.

Expected Return Values

 FIREWALL_OK Indicates that pkt is acceptable for any of the filtering functions. It will be

delivered, forwarded, or transmitted as appropriate.

FIREWALL_NOTOK Indicates that pkt should be dropped. It will not be received (ip_fltr_in_hook,

ipsec_decap_hook) or transmitted (ip_fltr_out_hook).

FIREWALL_OK_NOTSEC Indicates a return value only valid for the ipsec_decap_hook function. This

indicates that pkt is acceptable according to the filtering rules, but is not

encapsulated; pkt will be processed by the transport layer rather than processed

as a decapsulated IP packet.

Related Information

See Network Kernel Services AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

i_pollsched Kernel Service

Purpose

Queue a pseudo interrupt to an interrupt handler list.

Chapter 1. Kernel Services 223

Syntax

#include <sys/intr.h>

int i_pollsched (handler, pril)

struct intr *handler;

int pril;

Parameters

 handler Pointer to the intr structure for which the interrupt is to be queued.

pril Processor level to queue logical interrupt for.

Description

The i_pollsched service allows device drivers to queue a pseudo interrupt to another interrupt handler.

The calling arguements are mutually exclusive. If handler is not NULL then it is used to generate a pril

value, via pal_i_genplvl subroutine. If the handler is NULL then the value in pril represents the processor

level of the target interrupt handler.

This service will not queue an interrupt to a funneled, or nonMPSAFE interrupt handler, unless the service

is executing on the MPMASTER processor. INTR_FAIL will be returned if not executing on MPMASTER

processor and the target interrupt handler is not MPSAFE.

This service should only be called on an RSPC based platform (running AIX 5.1 or earlier). Calling this

service on a non-RSPC machine will always result in a failure return code.

Execution Environment

The i_pollsched kernel service can be called from either the process of interrupt environments.

Return Values

 INTR_SUCC Interrupted was queued.

INTR_FAIL Interrupt was not queued. This can be returned when the target list was NULL or the service was

called on an invalid platform.

i_reset Kernel Service

Purpose

Resets a bus interrupt level.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/intr.h>

void i_reset (handler)

struct intr *handler;

Parameter

 handler Specifies the address of an interrupt handler structure passed to the i_init service.

224 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The i_reset service resets the bus interrupt specified by the handler parameter. A device interrupt handler

calls the i_reset service after resetting the interrupt at the device on the bus. See i_init kernel service for

a brief description of interrupt handlers.

Execution Environment

The i_reset kernel service can be called from either the process or interrupt environment.

Return Values

The i_reset service has no return values.

Related Information

The i_init kernel service.

Understanding Interrupts, I/O Kernel Services, Processing Interrupts in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

i_sched Kernel Service

Purpose

Schedules off-level processing.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/intr.h>

void i_sched (handler)

struct intr *handler;

Parameter

 handler Specifies the address of the pinned interrupt handler structure.

Description

The i_sched service allows device drivers to schedule some of their work to be processed at a

less-favored interrupt priority. This capability allows interrupt handlers to run as quickly as possible,

avoiding interrupt-processing delays and overrun conditions. See the i_init kernel service for a brief

description of interrupt handlers.

Processing can be scheduled off-level in the following situations:

v The interrupt handler routine for a device driver must perform time-consuming processing.

v This work does not need to be performed immediately.

Attention: The caller cannot alter any fields in the intr structure from the time the i_sched service is

called until the kernel calls the off-level routine. The structure must also stay pinned. Otherwise, the

system may crash.

The interrupt handler structure pointed to by the handler parameter describes an off-level interrupt handler.

The caller of the i_sched service must set up all fields in the intr structure. The INIT_OFFLn macros in

Chapter 1. Kernel Services 225

the /usr/include/sys/intr.h file can be used to initialize the handler parameter. The n value represents the

priority class that the off-level handler should run at. Currently, classes from 0 to 3 are defined.

Use of the i_sched service has two additional restrictions:

First, the i_sched service will not re-register an intr structure that is already registered for off-level

handling. Since i_sched has no return value, the service will simply return normally without registering the

specified structure if it was already registered but not yet executed. The kernel removes the intr structure

from the registration list immediately prior to calling the off-level handler specified in the structure. It is

therefore possible for the off-level handler to use the structure again to register another off-level request.

Care must be taken when scheduling off-level requests from a second-level interrupt handler (SLIH). If the

off-level request is already registered but has not yet executed, a second registration will be ignored. If the

off-level handler is currently executing, or has already run, a new request will be registered. Users of this

service should be aware of these timing considerations and program accordingly.

Second, the kernel uses the flags field in the specified intr structure to determine if this structure is

already registered. This field should be initialized once before the first call to the i_sched service and

should remain unmodified for future calls to the i_sched service.

Note: Off-level interrupt handler path length should not exceed 5,000 instructions. If it does exceed this

number, real-time support is adversely affected.

Execution Environment

The i_sched kernel service can be called from either the process or interrupt environment.

Return Values

The i_sched service has no return values.

Related Information

The i_init kernel service.

Understanding Interrupts, I/O Kernel Services, Processing Interrupts in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

i_unmask Kernel Service

Purpose

Enables a bus interrupt level.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/intr.h>

void i_unmask (handler)

struct intr *handler;

Parameter

 handler Specifies the address of the interrupt handler structure that was passed to the i_init service.

226 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The i_unmask service enables the bus interrupt level specified by the handler parameter.

Execution Environment

The i_unmask kernel service can be called from either the process or interrupt environment.

Return Values

The i_unmask service has no return values.

Related Information

The i_init kernel service, i_mask kernel service.

Understanding Interrupts, I/O Kernel Services, Processing Interrupts in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

ldata_alloc Kernel Service

Purpose

Allocates a pinned storage element from an ldata pool.

Syntax

#include <sys/ldata.h>

void * ldata_alloc (ldatap)

ldata_t ldatap;

Description

The ldata_alloc kernel service allocates a pinned storage element from a ldata pool and returns the

address of the element. The ldata_alloc kernel service makes a pinned storage element from the ldata

pool available for use by the caller. The sub-pool from which the element is allocated corresponds to the

SRAD on which the call was made. If there are no free pinned elements, a new element cannot be

allocated and a NULL value is returned.

After it is allocated, the pinned storage element can be freed to the ldata pool through the ldata_free

kernel service.

Parameters

 ldatap Specifies the handle of the ldata pool.

Execution Environment

The ldata_alloc kernel service can be called from the process or interrupt environment.

Return Values

Returns a pointer to a pinned storage element allocated from an ldata pool or NULL if no element could

be allocated.

Implementation Specifics

The ldata_alloc kernel service is part of the Base Operating System (BOS) Runtime.

Chapter 1. Kernel Services 227

Related Information

The ldata_create, ldata_grow, ldata_free kernel services.

ldata_create Kernel Service

Purpose

Creates a SRAD-aware pinned storage element pool (ldata pool) and returns its handle.

Syntax

#include <sys/ldata.h>

int ldata_create (size, initcount, maxcount, flags, ldatap)

size_t size;

long initcount;

long maxcount;

ulong flags;

ldata_t * ldatap;

Description

The ldata_create kernel service creates a SRAD-aware pool (ldata pool) of pinned storage elements,

each of the specified size, and returns a handle to the newly-allocated pool. An ldata pool consists of a

number of sub-pools (one per SRAD). Each sub-pool is physically backed with memory local to its

corresponding SRAD. The size of each sub-pool is equal to the value of the maxcount parameter

multiplied by the value of the size parameter. The parameter (initcount) specifies the number of pinned

storage elements in each sub-pool that should be pre-allocated.

After an ldata pool is created, its handle can be used to allocate pinned storage elements from the pool

through the ldata_alloc kernel service and free these elements to the pool through the ldata_free kernel

services. Elements are allocated and freed to the sub-pool corresponding to the SRAD on which

ldata_alloc and ldata_free are called. If a sub-pool is exhausted of its pinned storage elements, it can be

grown by calling the ldata_grow kernel service up to maxcount.

An ldata pool created through the ldata_create service can be destroyed by the ldata_destroy kernel

service.

Parameters

 size Specifies the size, in bytes, of each pinned storage element of the ldata pool.

initcount Specifies the initial count of pinned storage elements, to be contained within the ldata

pool. Must be a positive integer.

maxcount Specifies the maximum count of pinned storage elements that can be contained with

the ldata pool. The value of maxcount must be positive and greater than or equal to

the value of initcount.

flags Specifies the options to be applied for the newly created ldata pool. The value must

be specified as 0.

ldatap Specifies an address to be set on successful completion with the handle for the newly

created ldata pool.

Execution Environment

The ldata_create kernel service can be called only from the process environment.

228 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

 0 Completed successfully. The handle for ldata storage is

returned in ldatap.

EINVAL Invalid input parameters given. Invalid initcount, maxcount

or flags. The ldatap parameter is undefined.

ENOMEM Error encountered. Insufficient memory to satisfy request.

The ldatap parameter is undefined.

Implementation Specifics

The ldata_create kernel service is part of the Base Operating System (BOS) Runtime.

Related Information

The ldata_destroy, ldata_grow, ldata_alloc, ldata_free kernel services.

ldata_destroy Kernel Service

Purpose

Destroys an ldata pool created by the ldata_create kernel service.

Syntax

#include <sys/ldata.h>

void ldata_destroy (ldatap)

ldata_t ldatap;

Description

The ldata_destroy kernel service destroys an ldata pool previously created by an ldata_create call. This

routine assumes that all elements allocated from the pool have been freed back to the pool and there are

no longer any active elements in the pool.

The ldata_destroy call unpins and frees all of the storage associated with the handle.

Parameters

 ldatap Specifies the handle of the ldata pool to be destroyed.

Execution Environment

The ldata_destroy kernel service can be called from the process environment only.

Return Values

None.

Implementation Specifics

The ldata_destroy kernel service is part of the Base Operating System (BOS) Runtime.

Related Information

The ldata_create, ldata_grow, ldata_alloc, ldata_free kernel services.

Chapter 1. Kernel Services 229

ldata_free Kernel Service

Purpose

Frees a storage element that is pinned to an ldata pool.

Syntax

#include <sys/ldata.h>

void ldata_free (ldatap, elementp)

ldata_t ldatap;

void * elementp;

Description

The ldata_free kernel service frees a pinned storage element that was previously allocated to an ldata

pool. The pinned storage element is identified through the elementp parameter. The element identified by

elementp is freed to the sub-pool corresponding to the SRAD that allocated the element.

Parameters

 ldatap Specifies the handle of the ldata pool.

elementp Specifies the address of the pinned storage element to be freed.

Execution Environment

The ldata_free kernel service can be called from the process or interrupt environment.

Return Values

None.

Implementation Specifics

The ldata_free kernel service is part of Base Operating System (BOS) Runtime.

Related Information

The ldata_alloc kernel service.

ldata_grow Kernel Service

Purpose

Expands the count of available pinned storage elements contained within an ldata pool.

Syntax

#include <sys/ldata.h>

int ldata_grow (ldatap, count)

ldata_t ldatap;

long count;

Description

The ldata_grow kernel service increases the number of pinned storage elements contained within a

per-SRAD sub-pool associated with the ldata handle ldatap, by count. If the ldata_alloc call fails because

230 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

there are no more free pinned storage elements in a sub-pool, use the ldata_grow kernel service. The

ldata_grow kernel service pins additional count elements from the sub-pool and makes them available for

the ldata_alloc call. All of the sub-pools associated with the handle are grown. If count elements are not

available or there is not enough pinned memory available, the ldata_grow kernel service fails.

Parameters

 ldatap Specifies the handle of the ldata pool.

count Specifies the additional number of storage elements to be pinned in the sub-pool. The

count value should be greater than 0 and should not increase the sub-pool size

beyond the value of maxcount specified with the ldata_create call.

Execution Environment

The ldata_grow kernel service can be called only from the process environment.

Return Values

 0 Success.

-1 Error encountered. Illegal parameters or insufficient

resources.

Implementation Specifics

The ldata_grow kernel service is part of the Base Operating System (BOS) Runtime.

Related Information

The ldata_create kernel service.

IS64U Kernel Service

Purpose

Determines if the current user-address space is 64-bit or not.

Syntax

#include <sys/types.h>

#include <sys/user.h>

int IS64U

Description

The IS64U kernel service returns 1 if the current user-address space is 64-bit. It returns 0 otherwise.

Execution Environment

The IS64U kernel service can be called from a process or interrupt handler environment. In either case, it

will operate only on the current user-address space.

Return Values

 0 The current user-address space is 32-bits.

1 The current user-address space is 64-bits.

Chapter 1. Kernel Services 231

Related Information

The as_att kernel service, as_det kernel service, as_geth kernel service, as_getsrval kernel service,

as_puth kernel service, getadsp kernel service, and as_att64 kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

kcap_is_set and kcap_is_set_cr Kernel Service

Purpose

Determines if the given capability is present in an effective capability set.

Syntax

kcap_is_set (capability)

cap_value_t capability;

kcap_is_set_cr (capability, cred)

cap_value_t capability;

struct ucred *cred;

Parameters

 capability Specifies the capability to be examined. Must be one of the capabilities named in the

sys/capabilities.h header file.

cred Pointer to the credentials to be examined.

Description

The kcap_is_set subroutine determines if the given capability is present in the current process’ effective

capability set. The kcap_is_set_cr subroutine determines if the given capability is present in the effective

capability set of the credentials structure referenced by the cred parameter. The cred parameter must be a

valid referenced credentials structure.

Return Values

The kcap_is_set and kcap_is_set_cr subroutines return 1 if the capability is present. Otherwise, they

return 0.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kcred_genpagvalue Kernel Service

Purpose

Generates a system-wide unique PAG value for a given PAG type.

Syntax

int kcred_genpagvalue(crp, pag_type, pag_value, pag_flags);

cred_t *crp;

int pag_type;

uint64_t * pag_value;

int pag_flags;

232 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The kcred_genpagvalue kernel service generates a new PAG value for a given PAG type. It is essential

that for this function to succeed the PAG type must have been previously registered with the operating

system using the kcred_setpagname kernel service. The scope of the kcred_genpagvalue kernel service

is limited to maintaining information about the last generated PAG number and accordingly generating a

new number. This service optionally stores the PAG value in the cred structure. It does not monitor the

PAG values stored in the cred structure by other means.

The caller must convert a PAG name to a PAG type using the kcred_getpagid kernel service prior to

invoking the kcred_genpagvalue kernel service.

The pag_flags parameter with the PAG_SET_VALUE value set causes the generated value to be

atomically stored in the process’s credentials.

The PAG value returned is of size 64 bits. The number of significant bits is determined by the requested

PAG type. 32-bit PAGs have 32 significant bits. 64-bit PAGs have 62 significant bits.

Parameters

 pag_type The pag_type parameter is the ID value associated with a PAG name.

pag_value This pointer points to a buffer where the OS will return the newly generated PAG value.

pag_flags This parameter must be 0 or the value PAG_SET_VALUE.

Return Values

A value of 0 is returned upon successful completion. A negative value is returned if unsuccessful.

Error Codes

 EINVAL The PAG value cannot be generated because the named PAG type does not exist as part of

the table.

EPERM The named PAG type is a 32-bit PAG and the caller does not have the SET_PROC_DAC

privilege.

Related Information

“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System

Call” on page 2, “__pag_setname System Call” on page 3, “__pag_setvalue System Call” on page 3,

“kcred_getpagid Kernel Service” on page 236, “kcred_getpagname Kernel Service” on page 237,

“kcred_setpagname Kernel Service” on page 241.

genpagvalue Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 1

kcred_getcap Kernel Service

Purpose

Copies a capability vector from a credentials structure.

Syntax

#include <sys/capabilities.h>

#include <sys/cred.h>

Chapter 1. Kernel Services 233

int kcred_getcap (crp, cap)

struct ucred * cr;

struct __cap_t * cap;

Parameters

 crp Pointer to a credentials structure

cap Capabilities set

Description

The kcred_getcap kernel service copies the capability set from the credentials structure referenced by crp

into cap. crp must be a valid, referenced credentials structure.

Execution Environment

The kcred_getcap kernel service can be called from the process environment only.

Return Values

 0 Success.

-1 An error has occurred.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kcred_getgroups Kernel Service

Purpose

Copies the concurrent group set from a credentials structure.

Syntax

#include <sys/cred.h>

int kcred_getgroups (crp, ngroups, groups)

struct ucred * cr;

int ngroups;

gid_t * groups;

Parameters

 crp Pointer to a credentials structure

ngroups Size of the array of group ID values

groups Array of group ID values

Description

The kcred_getgroups kernel service returns up to ngroups concurrent group set members from the

credentials structure pointed to by crp. crp must be a valid referenced credentials structure.

Execution Environment

The kcred_getgroups kernel service can be called from the process environment only.

234 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

 >= 0 The number of concurrent groups copied to groups.

-1 An error has occurred.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kcred_getpag or kcred_getpag64 Kernel Service

Purpose

Copies a process authentication group (PAG) ID from a credentials structure.

Syntax

#include <sys/cred.h>

int kcred_getpag (crp, which, pag)

struct ucred * cr;

int which;

int * pag;

int kcred_getpag64 (crp, which, pag)

struct ucred * cr;

int which;

uint64 * pag;

Parameters

 crp Pointer to a credentials structure

which PAG ID to get

pag Process authentication group

Description

The kcred_getpag or kcred_getpag64 kernel service copies the requested PAG from the credentials

structure referenced by crp into pag. The value of which must be a defined PAG ID. The PAG ID for the

Distributed Computing Environment (DCE) is 0. crp must be a valid, referenced credentials structure.

Execution Environment

The kcred_getpag or kcred_getpag64 kernel service can be called from the process environment only.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno

global variable is set to indicate the error.

Error Codes

Thekcred_getpag kernel service fails if the following condition is true:

 -EOVERFLOW PAG value is 64-bit (should be using kcred_getpag64)

Chapter 1. Kernel Services 235

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kcred_getpagid Kernel Service

Purpose

Returns the PAG identifier for a PAG name.

Syntax

int kcred_getpagid (name)

char *name;

Description

Given a PAG type name, the kcred_getpagid subroutine returns the PAG identifier for that PAG name.

Parameters

 name A pointer to the name of the PAG type whose integer PAG identifer is to be returned.

Return Values

A return value greater than or equal to 0 is the PAG identifier. A value less than 0 indicates an error.

Error Codes

 ENOENT The name parameter doesn’t refer to an existing PAG entry.

Related Information

“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System

Call” on page 2, “__pag_setname System Call” on page 3, “__pag_setvalue System Call” on page 3,

“kcred_getpagname Kernel Service” on page 237, and “kcred_setpagname Kernel Service” on page 241.

kcred_getpaginfo Kernel Service

Purpose

Returns a Process Authentication Group (PAG) flags for a given PAG type.

Syntax

#include <sys/cred.h>

int kcred_getpaginfo (type, infop, infosz)

int type;

struct paginfo * infop

int infosz;

Parameters

 type PAG for which the flags are returned

infop Pointer to PAG info structure

236 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

infosz Size of paginfo structure

Description

The kcred_getpaginfo kernel service retrieves the flags for the specific PAG type and stores them in a

PAG info structure. The value of type must be a defined PAG ID. The PAG ID for the Distributed

Computing Environment (DCE) is 0. The infop parameter must be a valid, referenced PAG info structure of

the size specified by infosz.

Execution Environment

The kcred_getpaginfo kernel service can be called from the process environment only.

Return Values

A value of 0 is returned upon successful completion. Upon failure, a -1 is returned and errno is set to a

value that explains the error.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kcred_getpagname Kernel Service

Purpose

Retrieves the name of a PAG.

Syntax

int kcred_getpagname (type, buf, size)

int type;

char *buf;

int size;

Description

The kcred_getpagname kernel service retrieves the name of a PAG type given its integer value.

Parameters

 type The integer valued identifier representing the PAG type.

buf A char * to where the PAG name is copied.

size An int that specifies the size of buf in bytes. The size of the buffer must be

PAG_NAME_LENGTH_MAX+1.

Return Values

If successful, a 0 is returned. If unsuccessful, an error code value less than 0 is returned. The PAG name

associated with type is copied into the caller-supplied buffer buf.

Error Codes

 EINVAL The value of id is less than 0 or greater than the maximum PAG identifier.

ENOENT There is no PAG associated with id.

ENOSPC The size parameter is insufficient to hold the PAG name.

Chapter 1. Kernel Services 237

Related Information

“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System

Call” on page 2, “__pag_setname System Call” on page 3, “__pag_setvalue System Call” on page 3,

“kcred_getpagid Kernel Service” on page 236, and “kcred_setpagname Kernel Service” on page 241.

kcred_getpriv Kernel Service

Purpose

Copies a privilege vector from a credentials structure.

Syntax

#include <sys/priv.h>

#include <sys/cred.h>

int kcred_getpriv (crp, which, priv)

struct ucred * cr;

int which;

priv_t * priv;

Parameters

 crp Pointer to a credentials structure

which Privilege set to get

priv Privilege set

Description

The kcred_getpriv kernel service returns a single privilege set from the credentials structure referenced

by crp. The which parameter is one of PRIV_BEQUEATH, PRIV_EFFECTIVE, PRIV_INHERITED, or

PRIV_MAXIMUM. The corresponding privilege set will be copied to priv. rp must be a valid, referenced

credentials structure.

Execution Environment

The kcred_getpriv kernel service can be called from the process environment only.

Return Values

 0 Success. to priv.

-1 An error has occurred.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kcred_setcap Kernel Service

Purpose

Copies a capabilities set into a credentials structure.

238 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/capabilities.h>

#include <sys/cred.h>

void kcred_setcap (crp, cap)

struct ucred * cr;

struct __cap_t * cap;

Parameters

 crp Pointer to a credentials structure

cap Capabilities set

Description

The kcred_setcap kernel service initializes the capability set in the credentials structure referenced by crp

with cap. rp must be a valid, referenced credentials structure and must not be the current credentials of

any process.

Execution Environment

The kcred_setcap kernel service can be called from the process environment only.

Return Values

The kcred_setcap kernel service has no return values.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kcred_setgroups Kernel Service

Purpose

Copies a concurrent group set into a credentials structure.

Syntax

#include <sys/cred.h>

int kcred_setgroups (crp, ngroups, groups)

struct ucred * cr;

int ngroups;

gid_t * groups;

Parameters

 crp Pointer to a credentials structure

ngroups Size of the array of group ID values

groups Array of group ID values

Chapter 1. Kernel Services 239

Description

The kcred_setgroups kernel service copies ngroups concurrent group set members into the credentials

structure pointed to by crp. crp must be a valid, referenced credentials structure and must not be the

current credentials of any process.

Execution Environment

The kcred_setgroups kernel service can be called from the process environment only.

Return Values

 0 The concurrent group set has been copied successfully.

-1 An error has occurred.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kcred_setpag or kcred_setpag64 Kernel Service

Purpose

Copies a process authentication group ID into a credentials structure.

Syntax

#include <sys/cred.h>

int kcred_setpag (crp, which, pag)

struct ucred * cr;

int which;

int pag;

int kcred_setpag64 (crp, which, pag)

struct ucred * cr;

int which;

uint64 * pag;

Parameters

 crp Pointer to a credentials structure

which PAG ID to set

pag Process authentication group

Description

The kcred_setpag or kcred_setpag64 kernel service initializes the specified PAG in the credentials

structure referenced by crp with pag. The value of which must be a defined PAG ID. The PAG ID for the

Distributed Computing Environment (DCE) is 0. Crp must be a valid, referenced credentials structure. crp

may be a reference to the current credentials of a process.

Execution Environment

The kcred_setpag or kcred_setpag64 kernel service can be called from the process environment only.

240 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

 0 Success.

-1 An error has occurred.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kcred_setpagname Kernel Service

Purpose

Copies a process authentication group ID into a credentials structure.

Syntax

int kcred_setpagname (name, flags, func)

char *name;

int flags;

Description

The kcred_setpagname kernel service registers the name of a PAG and returns the PAG type identifier. If

the PAG name has already been registered, the previously returned PAG type identifier is returned if the

flags and func parameters match their earlier values.

Parameters

 name The name parameter is a 1 to 4 character, NULL-terminated name for the PAG type. Typical values

might include ″afs″, ″dfs″, ″pki″ and ″krb5.″

flags The flags parameter indicates if each PAG value is unique (PAG_UNIQUEVALUE) or multivalued

(PAG_MULTIVALUED). A multivalued PAG type allows multiple calls to the kcred_setpag kernel

service to be made to store multiple values for a single PAG type.

func The func parameter is a pointer to an allocating and deallocating function. The flag parameter to that

function is either PAGVALUE_ALLOC or PAGVALUE_FREE. The value parameter is the actual PAG

value. The func parameter will be invoked by the crfree kernel service with a flag value of

PAGVALUE_FREE on the last free value of a credential. Whenever a credentials structure is

initialized with new PAG values, func will be invoked by that function with a value of

PAGVALUE_ALLOC. This parameter may be ignored and an error returned if the value of func is

non-NULL.

Return Values

A value of 0 or greater is returned upon successful completion. This value is the PAG type identifier which

is used with other kernel services, such as the kcred_getpag and kcred_setpag subroutines . A negative

value is returned if unsuccessful.

Error Codes

 ENOSPC The PAG table is full.

EEXISTS The named PAG type already exists in the table and the flags and func parameters do not match

their earlier values.

EINVAL The flags parameter is an invalid value.

Chapter 1. Kernel Services 241

Related Information

“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System

Call” on page 2, “__pag_setname System Call” on page 3, “__pag_setvalue System Call” on page 3,

“kcred_getpagid Kernel Service” on page 236, and “kcred_getpagname Kernel Service” on page 237.

kcred_setpriv Kernel Service

Purpose

Copies a privilege vector into a credentials structure.

Syntax

#include <sys/priv.h>

#include <sys/cred.h>

int kcred_setpriv (crp, which, priv)

struct ucred * cr;

int which;

priv_t * priv;

Parameters

 crp Pointer to a credentials structure

which Privilege set to set

priv Privilege set

Description

The kcred_setpriv kernel service sets one or more single privilege sets in the credentials structure

referenced by crp. The which parameter is one or more bit-wise ored values of PRIV_BEQUEATH,

PRIV_EFFECTIVE, PRIV_INHERITED, and PRIV_MAXIMUM. The corresponding privilege sets are

initialized from priv. crp must be a valid, referenced credentials structure and must not be the current

credentials of any process.

Execution Environment

The kcred_setpriv kernel service can be called from the process environment only.

Return Values

 0 Success. to priv.

-1 An error has occurred.

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kgethostname Kernel Service

Purpose

Retrieves the name of the current host.

242 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int

kgethostname (name, namelen)

char *name;

int *namelen;

Parameters

 name Specifies the address of the buffer in which to place the host name.

namelen Specifies the address of a variable in which the length of the host name will be stored. This parameter

should be set to the size of the buffer before the kgethostname kernel service is called.

Description

The kgethostname kernel service returns the standard name of the current host as set by the

sethostname subroutine. The returned host name is null-terminated unless insufficient space is provided.

Execution Environment

The kgethostname kernel service can be called from either the process or interrupt environment.

Return Value

 0 Indicates successful completion.

Related Information

The sethostname subroutine.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

kgetpname Kernel Service

Purpose

Provides the calling process’s base program name.

Syntax

#include <sys/encap.h>

int kgetpname (char * Buffer, size_t *BufferSize);

Description

The kgetpname kernel service copies the program name of the calling process into the buffer specified by

Buffer. Including the null terminator, the service copies no more than the lesser of *BufferSize,

MAXCOMLEN, or the actual size of the program name in bytes into the buffer. If Buffer is NULL, or

*BufferSize is 0, no copy is performed. If the full program name is copied into the buffer, the total number

of bytes copied is written to *BufferSize. If kgetpname cannot copy the full program name into the buffer,

the size in bytes of the full program name is written to *BufferSize, and ENAMETOOLONG is returned.

Chapter 1. Kernel Services 243

Execution Environment

The kgetpname kernel service can only be called from the process environment.

Return Values

 0 The full program name was successfully written to the buffer.

ENAMETOOLONG Only part of the full program name was written to the buffer, and kgetpname stored the

(positive) length in bytes (including the null character) of the full program name into

*BufferSize.

EINVAL Buffer is Null, BufferSize is NULL, or *BufferSize is 0.

ENOTSUP The kgetpname kernel service was called from inside an interrupt context.

kgettickd Kernel Service

Purpose

Retrieves the current status of the systemwide time-of-day timer-adjustment values.

Syntax

#include <sys/types.h>

int kgettickd (timed, tickd, time_adjusted)

int *timed;

int *tickd;

int *time_adjusted;

Parameters

 timed Specifies the current amount of time adjustment in microseconds remaining to be applied to

the systemwide timer.

tickd Specifies the time-adjustment rate in microseconds.

time_adjusted Indicates if the systemwide timer has been adjusted. A value of True indicates that the timer

has been adjusted by a call to the adjtime or settimer subroutine. A value of False

indicates that it has not. The use of the ksettimer kernel service has no effect on this flag.

This flag can be changed by the ksettickd kernel service.

Description

The kgettickd kernel service provides kernel extensions with the capability to determine if the adjtime or

settimer subroutine has adjusted or changed the systemwide timer.

The kgettickd kernel service is typically used only by kernel extensions providing time synchronization

functions. This includes coordinated network time (which is the periodic synchronization of all system

clocks to a common time by a time server or set of time servers on a network), where use of the adjtime

subroutine is insufficient.

Execution Environment

The kgettickd kernel service can be called from either the process or interrupt environment.

Return Values

The kgettickd service always returns a value of 0.

244 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The ksettimer kernel service.

The adjtime subroutine, settimer subroutine.

Timer and Time-of-Day Kernel Services and Using Fine Granularity Timer Services and Structures in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

klpar_get_info Kernel Service

Purpose

Retrieves the calling partition’s characteristics.

Syntax

#include <sys/dr.h>

int klpar_get_info (command, lparinfo, bufsize)

int command;

void *lparinfo;

size_t bufsize;

Parameters

 command Specifies whether the user wants format1 or format2 details.

lparinfo Pointer to the user-allocated buffer that is passed in.

bufsize Size of the structure that is passed in.

Description

The klpar_get_info kernel service retrieves LPAR and Micro-Partitioning attributes of both low-frequency

use and high-frequency use. Because the low-frequency attributes, as defined in the lpar_info_format1_t

structure, are static in nature, a reboot is required to effect any change. The high-frequncy attributes, as

defined in the lpar_info_format2_t structure, can be changed dynamically while the partition is running.

The signature of this kernel service, its parameter types, and the order of the member fields in both the

lpar_info_format1_t and lpar_info_format2_t structures are specific to the AIX platform.

To see the complete structures of lpar_info_format1_t and lpar_info_format2_t, refer to the dr.h header

file.

Return Values

Upon success, the klpar_get_info kernel service returns a value of 0. Upon failure, a value of -1 is

returned, and errno is set to indicate the appropriate error.

Error Codes

 EINVAL Invalid input parameter.

ENOTSUP The platform does not support this operation.

Related Information

The lpar_get_info subroutine.

Chapter 1. Kernel Services 245

kmod_entrypt Kernel Service

Purpose

Returns a function pointer to a kernel module’s entry point.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/ldr.h>

void (*(kmod_entrypt (kmid, flags)))()

mid_t kmid;

uint flags;

Parameters

 kmid Specifies the kernel module ID of the object file for which the entry point is requested. This parameter is

the kernel module ID returned by the kmod_load kernel service.

flags Flag specifying entry point options. The following flag is defined:

0 Returns a function pointer to the specified module’s entry point as specified in the module header.

Description

The kmod_entrypt kernel service obtains a function pointer to a specified module’s entry point. This

function pointer is typically used to invoke a routine in the module for initializing or terminating its

functions. Initialization and termination occurs after loading and before unloading. The module for which

the entry point is requested is specified by the kernel module ID represented by the kmid parameter.

Execution Environment

The kmod_entrypt kernel service can be called from the process environment only.

Return Values

A nonnull function pointer indicates a successful completion. This function pointer contains the module’s

entry point. A null function pointer indicates an error.

Related Information

The kmod_load kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

kmod_load Kernel Service

Purpose

Loads an object file into the kernel or queries for an object file already loaded.

Syntax

#include <sys/ldr.h>

#include <sys/types.h>

#include <sys/errno.h>

246 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int kmod_load (pathp,

flags,libpathp, kmidp)

caddr_t pathp;

uint flags;

caddr_t

 libpathp;

mid_t * kmidp;

Parameters

 pathp Points to a character string containing the path-name of the object file to load or query.

flags Specifies a set of loader flags describing which loader options to invoke. The following flags are

defined:

LD_USRPATH

The character strings pointed to by the pathp and libpathp parameters are in user address

space. If the LD_USRPATH flag is not set, the character strings are assumed to be in

kernel, or system, space.

LD_KERNELEX

Puts this object file’s exported symbols into the /usr/lib/boot/unix name space. Additional

object files loaded due to symbol resolution for the specified file do not have their exported

symbols placed in kernel name space.

LD_SINGLELOAD

When this flag is set, the object file specified by the pathp parameter is loaded into the

kernel only if an object file with the same path-name has not already been loaded. If an

object file with the same path-name has already been loaded, its module ID is returned

(using the kmidp parameter) and its load count incremented. If the object file is not yet

loaded, this service performs the load as if the flag were not set.

 This option is useful in supporting global kernel routines where only one copy of the routine

and its data can be present. Typically, routines that export symbols to be added to kernel

name space are of this type.

Note: A path-name comparison is done to determine whether the same object file has

already been loaded. This service will erroneously load a new copy of the object file into the

kernel if the path-name to the object file is expressed differently than it was on a previous

load request.

If neither this flag nor the LD_QUERY flag is set, this service loads a new copy of the object

file into the kernel. This occurs even if other copies of the object file have previously been

loaded.

LD_QUERY

This flag specifies that a query operation will determine if the object file specified by the

pathp parameter is loaded. If not loaded, a kernel module ID of 0 is returned using the

kmidp parameter. Otherwise, the kernel module ID assigned to the object file is returned.

 If multiple instances of this file have been loaded into the kernel, the kernel module ID of the

most recently loaded object file is returned.

 The libpathp parameter is not used for this option.

Note: A path-name comparison is done to determine whether the same object file has been

loaded. This service will erroneously return a not loaded condition if the path-name to the

object file is expressed differently than it was on a previous load request.

If this flag is set, no object file is loaded and the LD_SINGLELOAD and LD_KERNELEX

flags are ignored, if set.

libpathp Points to a character string containing the search path to use for finding object files required to

complete symbol resolution for this load. If the parameter is null, the search path is set from the

specification in the object file header for the object file specified by the pathp parameter.

Chapter 1. Kernel Services 247

kmidp Points to an area where the kernel module ID associated with this load of the specified module is to

be returned. The data in this area is not valid if the kmod_load service returns a nonzero return

code.

Description

The kmod_load kernel service loads into the kernel a kernel extension object file specified by the pathp

parameter. This service returns a kernel module ID for that instance of the module.

You can specify flags to request a single load, which ensures that only one copy of the object file is loaded

into the kernel. An additional option is simply to query for a given object file (specified by path-name). This

allows the user to determine if a module is already loaded and then access its assigned kernel module ID.

The kmod_load service also provides load-time symbol resolution of the loaded module’s imported

symbols. The kmod_load service loads additional kernel object modules if required for symbol resolution.

Loader Symbol Binding Support

Symbols imported from the kernel name space are resolved with symbols that exist in the kernel name

space at the time of the load. (Symbols are imported from the kernel name space by specifying the

#!/unix character string as the first field in an import list at link-edit time.)

Kernel modules can also import symbols from other kernel object modules. These other kernel object

modules are loaded along with the specified object module if they are needed to resolve the imported

symbols.

Any symbols exported by the specified kernel object module are added to the kernel name space if the

flags parameter has the LD_KERNELEX flag set. This makes the symbols available to other subsequently

loaded kernel object modules. Kernel object modules loaded on behalf of the specified kernel object

module (to resolve imported symbols) do not have their exported symbols added to the kernel name

space.

Kernel export symbols specified (at link-edit time) with the SYSCALL keyword in the primary module’s

export list are added to the system call table. These kernel export symbols are available to application

programs as system calls.

Finding Shared Object Modules for Resolving Symbol References

The search path search string is taken from the module header of the object module specified by the

pathp parameter if the libpathp parameter is null. The module header of the object module specified by the

pathp parameter is used.

If the module header contains an unqualified base file name for the symbol (no / [slash] characters in the

name), a search string is used to find the location of the shared object module required to resolve the

import. This search string can be taken from one of two places. If the libpathp parameter on the call to the

kmod_load service is not null, then it points to a character string specifying the search path to be used.

However, if the libpathp parameter is null, then the search path is to be taken from the module header for

the object module specified by the pathp parameter.

The search path specification found in object modules loaded to resolve imported symbols is not used.

The kernel loader service does not support deferred symbol resolution. The load of the kernel module is

terminated with an error if any imported symbols cannot be resolved.

Execution Environment

The kmod_load kernel service can be called from the process environment only.

248 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

If the object file is loaded without error, the module ID is returned in the location pointed to by the kmidp

parameter and the return code is set to 0.

Error Codes

If an error results, the module is not loaded, and no kernel module ID is returned. The return code is set to

one of the following return values:

 Return Value Description

EACCES Indicates that an object module to be loaded is not an ordinary file or that the mode of the

object module file denies read-only access.

EACCES Search permission is denied on a component of the path prefix.

EFAULT Indicates that the calling process does not have sufficient authority to access the data area

described by the pathp or libpathp parameters when the LD_USRPATH flag is set. This error

code is also returned if an I/O error occurs when accessing data in this area.

ENOEXEC Indicates that the program file has the appropriate access permission, but has an XCOFF

indicator that is not valid in its header. The kmod_load kernel service supports loading of

XCOFF (Extended Common Object File Format) object files only. This error code is also

returned if the loader is unable to resolve an imported symbol.

EINVAL Indicates that the program file has a valid XCOFF indicator in its header, but the header is

either damaged or incorrect for the machine on which the file is to be loaded.

ENOMEM Indicates that the load requires more kernel memory than allowed by the system-imposed

maximum.

ETXTBSY Indicates that the object file is currently open for writing by some process.

ENOTDIR Indicates that a component of the path prefix is not a directory.

ENOENT Indicates that no such file or directory exists or the path-name is null.

ESTALE Indicates that the caller’s root or current directory is located in a virtual file system that has

been unmounted.

ELOOP Indicates that too many symbolic links were encountered in translating the path or libpathp

parameter.

ENAMETOOLONG Indicates that a component of a path-name exceeded 255 characters, or an entire path-name

exceeded 1023 characters.

EIO Indicates that an I/O error occurred during the operation.

Related Information

The kmod_unload kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

kmod_unload Kernel Service

Purpose

Unloads a kernel object file.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/ldr.h>

int kmod_unload (kmid, flags)

mid_t kmid;

uint flags;

Chapter 1. Kernel Services 249

Parameters

 kmid Specifies the kernel module ID of the object file to be unloaded. This kernel module ID is returned when

using the kmod_load kernel service.

flags Flags specifying unload options. The following flag is defined:

0 Unloads the object module specified by its kmid parameter and any object modules that were

loaded as a result of loading the specified object file if this file is not still in use.

Description

The kmod_unload kernel service unloads a previously loaded kernel extension object file. The object to

be unloaded is specified by the kmid parameter. Upon successful completion, the following objects are

unloaded or marked unload pending:

v The specified object file

v Any imported kernel object modules that were loaded as a result of the loading of the specified module

Users of these exports or system calls are modules bound to this module’s exported symbols. If there are

no users of any of the module’s kernel exports or system calls, the module is immediately unloaded. If

there are users of this module, the module is not unloaded but marked unload pending.

Marking a module unload pending removes the module’s exported symbols from the kernel name space.

Any system calls exported by this module are also removed. This prohibits new users of these symbols.

The module is unloaded only when all current users have been unloaded.

If the unload is successfully completed or marked pending, a value of 0 is returned. When an error occurs,

the specified module and any imported modules are not unloaded. A nonzero return value indicates the

error.

Execution Environment

The kmod_unload kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EINVAL Indicates that the kmid parameter, which specifies the kernel module, is not valid or does not correspond

to a currently loaded module.

Related Information

The kmod_load kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

kmsgctl Kernel Service

Purpose

Provides message-queue control operations.

250 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int kmsgctl (msqid, cmd, buf)

int msqid, cmd;

struct msqid_ds *buf;

Parameters

 msqid Specifies the message queue ID, which indicates the message queue for which the control operation is

being requested for.

cmd Specifies which control operation is being requested. There are three valid commands.

buf Points to the msqid_ds structure provided by the caller of the kmsgctl service. Data is obtained either

from this structure or from status returned in this structure, depending on the cmd parameter. The

msqid_ds structure is defined in the /usr/include/sys/msg.h file.

Description

The kmsgctl kernel service provides a variety of message-queue control operations as specified by the

cmd parameter. The kmsgctl kernel service provides the same functions for user-mode processes in

kernel mode as the msgctl subroutine performs for kernel processes or user-mode processes in user

mode. The kmsgctl service can be called by a user-mode process in kernel mode or by a kernel process.

A kernel process can also call the msgctl subroutine to provide the same function.

The following three commands can be specified with the cmd parameter:

 IPC_STAT Sets only documented fields. See the msgctl subroutine.

IPC_SET Sets the value of the following fields of the data structure associated with the msqid parameter to the

corresponding values found in the structure pointed to by the buf parameter:

v msg_perm.uid

v msg_perm.gid

v msg_perm.mode (only the low-order 9 bits)

v msg_qbytes

To perform the IPC_SET operation, the current process must have an effective user ID equal to the

value of the msg_perm.uid or msg_perm.cuid field in the data structure associated with the msqid

parameter. To raise the value of the msg_qbytes field, the calling process must have the appropriate

system privilege.

IPC_RMID Removes from the system the message-queue identifier specified by the msqid parameter. This

operation also destroys both the message queue and the data structure associated with it. To

perform this operation, the current process must have an effective user ID equal to the value of the

msg_perm.uid or msg_perm.cuid field in the data structure associated with the msqid parameter.

Execution Environment

The kmsgctl kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

Chapter 1. Kernel Services 251

EINVAL Indicates either

v The identifier specified by the msqid parameter is not a valid message queue identifier.

v The command specified by the cmd parameter is not a valid command.

EACCES The command specified by the cmd parameter is equal to IPC_STAT and read permission is denied to

the calling process.

EPERM The command specified by the cmd parameter is equal to IPC_RMID, IPC_SET, and the effective user

ID of the calling process is not equal to that of the value of the msg_perm.uid field in the data structure

associated with the msqid parameter.

EPERM Indicates the following conditions:

v The command specified by the cmd parameter is equal to IPC_SET.

v An attempt is being made to increase to the value of the msg_qbytes field, but the calling process does

not have the appropriate system privilege.

Related Information

The msgctl subroutine.

Message Queue Kernel Services and Understanding System Call Execution in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

kmsgget Kernel Service

Purpose

Obtains a message queue identifier.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/stat.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int kmsgget (key, msgflg, msqid)

key_t key;

int msgflg;

int *msqid;

Parameters

 key Specifies either a value of IPC_PRIVATE or an IPC key constructed by the ftok subroutine (or a similar

algorithm).

252 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

msgflg Specifies that the msgflg parameter is constructed by logically ORing one or more of these values:

IPC_CREAT

Creates the data structure if it does not already exist.

IPC_EXCL

Causes the kmsgget kernel service to fail if IPC_CREAT is also set and the data structure

already exists.

S_IRUSR

Permits the process that owns the data structure to read it.

S_IWUSR

Permits the process that owns the data structure to modify it.

S_IRGRP

Permits the process group associated with the data structure to read it.

S_IWGRP

Permits the process group associated with the data structure to modify it.

S_IROTH

Permits others to read the data structure.

S_IWOTH

Permits others to modify the data structure.

 The values that begin with S_I... are defined in the /usr/include/sys/stat.h file. They are a

subset of the access permissions that apply to files.

msqid A reference parameter where a valid message-queue ID is returned if the kmsgget kernel service is

successful.

Description

The kmsgget kernel service returns the message-queue identifier specified by the msqid parameter

associated with the specified key parameter value. The kmsgget kernel service provides the same

functions for user-mode processes in kernel mode as the msgget subroutine performs for kernel

processes or user-mode processes in user mode. The kmsgget service can be called by a user-mode

process in kernel mode or by a kernel process. A kernel process can also call the msgget subroutine to

provide the same function.

Execution Environment

The kmsgget kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion. The msqid parameter is set to a valid message-queue identifier.

If the kmsgget kernel service fails, the msqid parameter is not valid and the return code is one of these

four values:

 EACCES Indicates that a message queue ID exists for the key parameter but operation permission as specified by

the msgflg parameter cannot be granted.

ENOENT Indicates that a message queue ID does not exist for the key parameter and the IPC_CREAT command

is not set.

ENOSPC Indicates that a message queue ID is to be created but the system-imposed limit on the maximum

number of allowed message queue IDs systemwide will be exceeded.

EEXIST Indicates that a message queue ID exists for the value specified by the key parameter, and both the

IPC_CREAT and IPC_EXCL commands are set.

Chapter 1. Kernel Services 253

Related Information

The msgget subroutine.

Message Queue Kernel Services and Understanding System Call Execution in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

kmsgrcv Kernel Service

Purpose

Reads a message from a message queue.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int kmsgrcv

(msqid, msgp, msgsz,

msgtyp, msgflg, flags, bytes)

int msqid;

struct msgxbuf * msgp;

 or struct msgbuf *msgp;

int msgsz;

mtyp_t msgtyp;

int msgflg;

int flags;

ssize_t * bytes;

Parameters

 msqid Specifies the message queue from which to read.

msgp Points to either an msgxbuf or an msgbuf structure where the message text is placed. The type of

structure pointed to is determined by the values of the flags parameter. These structures are defined in

the /usr/include/sys/msg.h file.

msgsz Specifies the maximum number of bytes of text to be received from the message queue. The received

message is truncated to the size specified by the msgsz parameter if the message is longer than this

size and MSG_NOERROR is set in the msgflg parameter. The truncated part of the message is lost and

no indication of the truncation is given to the calling process.

msgtyp Specifies the type of message requested as follows:

v If the msgtyp parameter is equal to 0, the first message on the queue is received.

v If the msgtyp parameter is greater than 0, the first message of the type specified by the msgtyp

parameter is received.

v If the msgtyp parameter is less than 0, the first message of the lowest type that is less than or equal

to the absolute value of the msgtyp parameter is received.

254 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

msgflg Specifies a value of 0, or is constructed by logically ORing one of several values:

MSG_NOERROR

Truncates the message if it is longer than the number of bytes specified by the msgsz

parameter.

IPC_NOWAIT

Specifies the action to take if a message of the desired type is not on the queue:

v If IPC_NOWAIT is set, then the kmsgrcv service returns an ENOMSG value.

v If IPC_NOWAIT is not set, then the calling process suspends execution until one of the

following occurs:

– A message of the desired type is placed on the queue.

– The message queue ID specified by the msqid parameter is removed from the system.

When this occurs, the kmsgrcv service returns an EIDRM value.

– The calling process receives a signal that is to be caught. In this case, a message is not

received and the kmsgrcv service returns an EINTR value.

flags Specifies a value of 0 if a normal message receive is to be performed. If an extended message receive is

to be performed, this flag should be set to an XMSG value. With this flag set, the kmsgrcv service

functions as the msgxrcv subroutine would. Otherwise, the kmsgrcv service functions as the msgrcv

subroutine would.

bytes Specifies a reference parameter. This parameter contains the number of message-text bytes read from

the message queue upon return from the kmsgrcv service.

If the message is longer than the number of bytes specified by the msgsz parameter bytes but

MSG_NOERROR is not set, then the kmsgrcv kernel service fails and returns an E2BIG return value.

Description

The kmsgrcv kernel service reads a message from the queue specified by the msqid parameter and

stores the message into the structure pointed to by the msgp parameter. The kmsgrcv kernel service

provides the same functions for user-mode processes in kernel mode as the msgrcv and msgxrcv

subroutines perform for kernel processes or user-mode processes in user mode.

The kmsgrcv service can be called by a user-mode process in kernel mode or by a kernel process. A

kernel process can also call the msgrcv and msgxrcv subroutines to provide the same functions.

Execution Environment

The kmsgrcv kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates that the ID specified by the msqid parameter is not a valid message queue ID.

EACCES Indicates that operation permission is denied to the calling process.

EINVAL Indicates that the value of the msgsz parameter is less than 0.

E2BIG Indicates that the message text is greater than the maximum length specified by the msgsz parameter

and MSG_NOERROR is not set.

ENOMSG Indicates that the queue does not contain a message of the desired type and IPC_NOWAIT is set.

EINTR Indicates that the kmsgrcv service received a signal.

EIDRM Indicates that the message queue ID specified by the msqid parameter has been removed from the

system.

Related Information

The msgrcv subroutine, msgxrcv subroutine.

Chapter 1. Kernel Services 255

Message Queue Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Understanding System Call Execution in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

kmsgsnd Kernel Service

Purpose

Sends a message using a previously defined message queue.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int kmsgsnd (msqid, msgp, msgsz, msgflg)

int msqid;

struct msgbuf * msgp;

int msgsz, msgflg;

Parameters

 msqid Specifies the message queue ID that indicates which message queue the message is to be sent on.

msgp Points to an msgbuf structure containing the message. The msgbuf structure is defined in the

/usr/include/sys/msg.h file.

msgsz Specifies the size of the message to be sent in bytes. The msgsz parameter can range from 0 to a

system-imposed maximum.

msgflg Specifies the action to be taken if the message cannot be sent for one of several reasons.

Description

The kmsgsnd kernel service sends a message to the queue specified by the msqid parameter. The

kmsgsnd kernel service provides the same functions for user-mode processes in kernel mode as the

msgsnd subroutine performs for kernel processes or user-mode processes in user mode. The kmsgsnd

service can be called by a user-mode process in kernel mode or by a kernel process. A kernel process

can also call the msgsnd subroutine to provide the same function.

There are two reasons why the kmsgsnd kernel service cannot send the message:

v The number of bytes already on the queue is equal to the msg_qbytes member.

v The total number of messages on all queues systemwide is equal to a system-imposed limit.

There are several actions to take when the kmsgsnd kernel service cannot send the message:

v If the msgflg parameter is set to IPC_NOWAIT, then the message is not sent, and the kmsgsnd service

fails and returns an EAGAIN value.

v If the msgflg parameter is 0, then the calling process suspends execution until one of the following

occurs:

– The condition responsible for the suspension no longer exists, in which case the message is sent.

– The message queue ID specified by the msqid parameter is removed from the system. When this

occurs, the kmsgsnd service fails and an EIDRM value is returned.

– The calling process receives a signal that is to be caught. In this case, the message is not sent and

the calling process resumes execution as described in the sigaction kernel service.

256 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The kmsgsnd kernel service can be called from the process environment only.

The calling process must have write permission to perform the kmsgsnd operation.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates that the msqid parameter is not a valid message queue ID.

EACCES Indicates that operation permission is denied to the calling process.

EAGAIN Indicates that the message cannot be sent for one of the reasons stated previously, and the msgflg

parameter is set to IPC_NOWAIT.

EINVAL Indicates that the msgsz parameter is less than 0 or greater than the system-imposed limit.

EINTR Indicates that the kmsgsnd service received a signal.

EIDRM Indicates that the message queue ID specified by the msqid parameter has been removed from the

system.

ENOMEM Indicates that the system does not have enough memory to send the message.

Related Information

The msgsnd subroutine.

Message Queue Kernel Services and Understanding System Call Execution in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

kra_attachrset Subroutine

Purpose

Attaches a work component to a resource set.

Syntax

#include <sys/rset.h>

int kra_attachrset (rstype, rsid, rset, flags)

rstype_t rstype;

rsid_t rsid;

rsethandle_t rset;

unsigned int flags;

Description

The kra_attachrset subroutine attaches a work component specified by the rstype and rsid parameters to

a resource set specified by the rset parameter.

The work component is an existing process identified by the process ID or an existing kernel thread

identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the

attachment applies to the current process or the current kernel thread, respectively.

The following conditions must be met to successfully attach a process to a resource set:

v The resource set must contain processors that are available in the system.

v The calling process must either have root authority or have CAP_NUMA_ATTACH capability.

v The calling process must either have root authority or the same effective userid as the target process.

v The target process must not contain any threads that have bindprocessor bindings to a processor.

v The resource set must be contained in (be a subset of) the target process’ partition resource set.

Chapter 1. Kernel Services 257

v The resource set must be a superset of all the thread’s rset in the target process.

The following conditions must be met to successfully attach a kernel thread to a resource set:

v The resource set must contain processors that are available in the system.

v The calling process must either have root authority or have CAP_NUMA_ATTACH capability.

v The calling process must either have root authority or the same effective userid as the target process.

v The target thread must not have bindprocessor bindings to a processor.

v The resource set must be contained in (be a subset of) the target thread’s process effective and

partition resource set.

If any of these conditions are not met, the attachment will fail.

Once a process is attached to a resource set, the threads in the process will only run on processors

contained in the resource set. Once a kernel thread is attached to a resource set, that thread will only run

on processors contained in the resource set.

The flags parameter can be set to indicate the policy for using the resources contained in the resource set

specified in the rset parameter. The only supported scheduling policy is R_ATTACH_STRSET, which is

useful only when the processors of the system are running in simultaneous multi-threading mode.

Processors like the POWER5 support simultaneous multi-threading, where each physical processor has

two execution engines, called hardware threads. Each hardware thread is essentially equivalent to a single

CPU, and each is identified as a separate CPU in a resource set. The R_ATTACH_STRSET flag indicates

that the process is to be scheduled with a single-threaded policy; namely, that it should be scheduled on

only one hardware thread per physical processor. If this flag is specified, then all of the available

processors indicated in the resource set must be of exclusive use. A new resource set, called an ST

resource set, is constructed from the specified resource set and attached to the process according to the

following rules:

v All offline processors are ignored.

v If all the hardware threads (CPUs) of a physical processor (when running in simultaneous

multi-threading mode, there will be more than one active hardware thread per physical processor) are

not included in the specified resource set, the other CPUs of the processor are ignored when

constructing the ST resource set.

v Only one CPU (hardware thread) resource per physical processor is included in the ST resource set.

Parameters

 rstype Specifies the type of work component to be attached to the resource set specified by the rset parameter.

The rstype parameter must be the following value, defined in rset.h:

v R_PROCESS: existing process

v R_THREAD: existing kernel thread

rsid Identifies the work component to be attached to the resource set specified by the rset parameter. The rsid

parameter must be the following:

v Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.

v Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel thread’s

thread ID.

rset Specifies which work component (specified by the rstype and rsid parameters) to attach to the resource

set.

flags Specifies the scheduling policy for the work component being attached.

The only supported value is R_ATTACH_STRSET value, which is only applicable if the rstype parameter is

set to R_PROCESS. The R_ATTACH_STRSET value indicates that the process is to be scheduled with a

single-threaded policy (only on one hardware thread per physical processor).

258 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

Upon successful completion, the kra_attachrset subroutine returns a 0. If unsuccessful, one or more of

the following are true:

 EINVAL One of the following is true:

v The flags parameter contains an invalid value.

v The rstype parameter contains an invalid type qualifier.

v The R_ATTACH_STRSET flags parameter is specified and one or more processors in the rset

parameter are not assigned for exclusive use.

ENODEV The resource set specified by the rset parameter does not contain any available processors, or the

R_ATTACH_STRSET flags parameter is specified and the constructed ST resource set does not have

any available processors.

ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.

EPERM One of the following is true:

v If the rstype is R_PROCESS, either the resource set specified by the rset parameter is not included

in the partition resource set of the process identified by the rstype and rsid parameters, or any of the

thread’s R_THREAD rset in this process is not a subset of the resource set specified by the rset

parameter.

v If the rstype is R_THREAD, the resource set specified by the rset parameter is not included in the

target thread’s process effective or partition (real) resource set.

v The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.

v The calling process has neither root authority nor the same effective user ID as the process

identified by the rstype and rsid parameters.

v The process or thread identified by the rstype and rsid parameters has one or more threads with a

bindprocessor processor binding.

Related Information

“kra_getrset Subroutine” on page 262, and “kra_detachrset Subroutine” on page 260.

For information on exclusive processors, see Exclusive use processor resource sets in Operating system

and device management.

kra_creatp Subroutine

Purpose

Creates a new kernel process and attaches it to a resource set.

Syntax

#include <sys/rset.h>

int kra_creatp (pid, rstype, rsid, flags)

pid_t *pid;

rstype_t rstype;

rsid_t rsid;

unsigned int flags;

Description

The kra_creatp kernel service creates a new kernel process and attaches it to a resource set. The

kra_creatp kernel service attaches the new kernel process to the resource set specified by the rstype and

rsid parameters.

The kra_creatp kernel service is similar to the creatp kernel service. See the “creatp Kernel Service” on

page 64 for details on creating a new kernel process.

Chapter 1. Kernel Services 259

The following conditions must be met to successfully attach a kernel process to a resource set:

v The resource set must contain processors that are available in the system.

v The calling process must either have root authority or have CAP_NUMA_ATTACH capability.

v The calling thread must not have a bindprocessor binding to a processor.

v The resource set must be contained in the calling process’ partition resource set.

Note: When the creatp kernel service is used, the new kernel process inherits its parent’s resource set

attachments.

Parameters

 pid Pointer to a pid_t field to receive the process ID of the new kernel process.

rstype Specifies the type of resource the new process will be attached to. This parameter must be the

following value, defined in rset.h.

v R_RSET: resource set.

rsid Identifies the resource set the new process will be attached to.

v Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process

ID.

flags Reserved for future use. Specify as 0.

Return Values

Upon successful completion, the kra_creatp kernel service returns a 0. If unsuccessful, one or more of the

following are true:

 EINVAL One of the following is true:

v The rstype parameter contains an invalid type identifier.

v The flags parameter contains an invalid flags value.

ENODEV The specified resource set does not contain any available processors.

EFAULT Invalid address.

EPERM One of the following is true:

v The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.

v The calling process contains one or more threads with a bindprocessor processor binding.

v The specified resource set is not included in the calling process’ partition resource set.

ENOMEM Memory not available.

Related Information

The “creatp Kernel Service” on page 64, “initp Kernel Service” on page 205, and “kra_attachrset

Subroutine” on page 257.

kra_detachrset Subroutine

Purpose

Detaches a work component from a resource set.

Syntax

#include <sys/rset.h>

int kra_detachrset (rstype, rsid, flags)

rstype_t rstype;

rsid_t rsid;

unsigned int flags;

260 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The kra_detachrset subroutine detaches a work component specified by rstype and rsid from a resource

set.

The work component is an existing process identified by the process ID or an existing kernel thread

identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the

detach command applies to the current process or the current kernel thread, respectively.

The following conditions must be met to detach a process or kernel thread from a resource set:

v The calling process must either have root authority or have CAP_NUMA_ATTACH capability.

v The calling process must either have root authority or the same effective userid as the target process.

If these conditions are not met, the operation will fail.

Once a process is detached from a resource set, the threads in the process can run on all available

processors contained in the process’ partition resource set. Once a kernel thread is detached from a

resource set, that thread can run on all available processors contained in its process effective or partition

resource set.

Parameters

 rstype Specifies the type of work component to be detached from to the resource set specified by rset. This

parameter must be the following value, defined in rset.h:

v R_PROCESS: existing process

v R_THREAD: existing kernel thread

rsid Identifies the work component to be attached to the resource set specified by rset. This parameter must be

the following:

v Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.

v Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel thread’s thread

ID.

flags For rstype of R_PROCESS, the R_DETACH_ALLTHRDS indicates that R_THREAD rsets are detached from

all threads in a specified process. The process’ effective rset is not detached in this case. Reserved for

future use. Specify as 0.

Return Values

Upon successful completion, the kra_detachrset subroutine returns a 0. If unsuccessful, one or more of

the following are true:

 EINVAL One of the following is true:

v The flags parameter contains an invalid value.

v The rstype contains an invalid type qualifier.

ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.

EPERM One of the following is true:

v The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.

v The calling process has neither root authority nor the same effective user ID as the process identified

by the rstype and rsid parameters.

Related Information

The “kra_attachrset Subroutine” on page 257.

Chapter 1. Kernel Services 261

kra_getrset Subroutine

Purpose

Gets the resource set to which a work component is attached.

Syntax

#include <sys/rset.h>

int kra_getrset (rstype, rsid, flags, rset, rset_type)

rstype_t rstype;

rsid_t rsid;

unsigned int flags;

rsethandle_t rset;

unsigned int *rset_type;

Description

The kra_getrset subroutine returns the resource set to which a specified work component is attached.

The work component is an existing process identified by the process ID or an existing kernel thread

identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the

resource set attached to the current process or the current kernel thread, respectively, is requested.

Upon successful completion, one of the following types of resource set is returned into the rset_type

parameter:

v A value of RS_EFFECTIVE_RSET indicates the process was explicitly attached to the resource set.

This may have been done with the kra_attachrset subroutine.

v A value of RS_PARTITION_RSET indicates the process was not explicitly attached to a resource set.

However, the process had an explicitly set partition resource set. This may be set with the

krs_setpartition subroutine or through the use of WLM work classes with resource sets.

v A value of RS_DEFAULT_RSET indicates the process was not explicitly attached to a resource set nor

did it have an explicitly set partition resource set. The system default resource set is returned.

v A value of RS_THREAD_RSET indicates the kernel thread was explicitly attached to the resource set.

This might have been done with the ra_attachrset subroutine.

Parameters

 rstype Specifies the type of the work component whose resource set attachment is requested. This parameter

must be the following value, defined in rset.h:

v R_PROCESS: existing process

v R_THREAD: existing kernel thread

rsid Identifies the work component whose resource set attachment is requested. This parameter must be the

following:

v Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.

v Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel thread’s

thread ID.

flags Reserved for future use. Specify as 0.

rset Specifies the resource set to receive the work component’s resource set.

rset_type Points to an unsigned integer field to receive the resource set type.

Return Values

Upon successful completion, the kra_getrset subroutine returns a 0. If unsuccessful, one or more of the

following are true:

262 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

EINVAL One of the following is true:

v The flags parameter contains an invalid value.

v The rstype parameter contains an invalid type qualifier.

EFAULT Invalid address.

ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.

Related Information

The “krs_getpartition Subroutine” on page 266.

krs_alloc Subroutine

Purpose

Allocates a resource set and returns its handle.

Syntax

#include <sys/rset.h>

int krs_alloc (rset, flags)

rsethandle_t *rset;

unsigned int flags;

Description

The krs_alloc subroutine allocates a resource set and initializes it according to the information specified

by the flags parameter. The value of the flags parameter determines how the new resource set is

initialized.

Parameters

 rset Points to an rsethandle_t where the resource set handle is stored on successful completion.

flags Specifies how the new resource set is initialized. It takes one of the following values, defined in rset.h:

v RS_EMPTY (or 0 value): The resource set is initialized to contain no resources.

v RS_SYSTEM: The resource set is initialized to contain available system resources.

v RS_ALL: The resource set is initialized to contain all resources.

v RS_PARTITION: The resource set is initialized to contain the resources in the caller’s process partition

resource set.

Return Values

Upon successful completion, the krs_alloc subroutine returns a 0. If unsuccessful, one or more of the

following is returned:

 EINVAL The flags parameter contains an invalid value.

ENOMEM There is not enough space to create the data structures related to the resource set.

Related Information

“krs_free Subroutine” on page 264, “krs_getinfo Subroutine” on page 265, and “krs_init Subroutine” on

page 268.

Chapter 1. Kernel Services 263

krs_free Subroutine

Purpose

Frees a resource set.

Syntax

#include <sys/rset.h>

void krs_free(rset)

rsethandle_t rset;

Description

The krs_free subroutine frees a resource set identified by the rset parameter. The resource set must have

been allocated by the krs_alloc subroutine.

Parameters

 rset Specifies the resource set whose memory will be freed.

Related Information

The “krs_alloc Subroutine” on page 263.

krs_getassociativity Subroutine

Purpose

Gets the hardware associativity values for a resource.

Syntax

#include <sys/rset.h>

int krs_getassociativity (type, id, assoc_array, array_size)

unsigned int type;

unsigned int id;

unsigned int *assoc_array;

unsigned int array_size;

Description

The krs_getassociativity subroutine returns the array of hardware associativity values for a specified

resource.

This is a special purpose subroutine intended for specialized root applications needing the hardware

associativity value information. The krs_getinfo, krs_getrad, and krs_numrads subroutines are provided

for typical applications to discover system hardware topology.

The calling process must have root authority to get hardware associativity values.

Parameters

 type Specifies the resource type whose associativity values are requested. The only value supported to

retrieve values for a processor is R_PROCS.

id Specifies the logical resource id whose associativity values are requested.

assoc_array Specifies the address of an array of unsigned integers to receive the associativity values.

array_size Specifies the number of unsigned integers in assoc_array.

264 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

Upon successful completion, the krs_getassociativity subroutine returns a 0. The assoc_array parameter

array contains the resource’s associativity values. The first entry in the array indicates the number of

associativity values returned. If the hardware system does not provide system topology data, a value of 0

is returned in the first array entry. If unsuccessful, one or more of the following are returned:

 EINVAL One of the following occurred:

v The array_size parameter was specified as 0.

v An invalid type parameter was specified.

ENODEV The resource specified by the id parameter does not exist.

EFAULT Invalid address.

EPERM The calling process does not have root authority.

Related Information

“krs_getinfo Subroutine,” “krs_getrad Subroutine” on page 267, and “krs_numrads Subroutine” on page

269.

krs_getinfo Subroutine

Purpose

Gets information about a resource set.

Syntax

#include <sys/rset.h>

int krs_getinfo(rset, info_type, flags, result)

rsethandle_t rset;

rsinfo_t info_type;

unsigned int flags;

int *result;

Description

The krs_getinfo subroutine retrieves information about the resource set identified by the rset parameter.

Depending on the value of the info_type parameter, the krs_getinfo subroutine returns information about

the number of available processors, the number of available memory pools, or the amount of available

memory contained in the resource rset.

The subroutine can also return global system information such as the maximum system detail level, the

symmetric multiprocessor (SMP) and multiple chip module (MCM) system detail levels, and the maximum

number of processor or memory pool resources in a resource set.

Parameters

 rset Specifies a resource set handle of a resource set the information should be retrieved from. This

parameter is not meaningful if the info_type parameter is R_MAXSDL, R_MAXPROCS,

R_MAXMEMPS, R_SMPSDL, or R_MCMSDL.

Chapter 1. Kernel Services 265

info_type Specifies the type of information being requested. One of the following values (defined in rset.h) can

be used:

v R_NUMPROCS: The number of available processors in the resource set is returned.

v R_NUMMEMPS: The number of available memory pools in the resource set is returned.

v R_MEMSIZE: The amount of available memory (in MB) contained in the resource set is returned.

v R_MAXSDL: The maximum system detail level of the system is returned.

v R_MAXPROCS: The maximum number of processors that may be contained in a resource set is

returned.

v R_MAXMEMPS: The maximum number of memory pools that may be contained in a resource set is

returned.

v R_SMPSDL: The system detail level that corresponds to the traditional notion of an SMP is

returned. A system detail level of 0 is returned if the hardware system does not provide system

topology data.

v R_MCMSDL: The system detail level that corresponds to resources packaged in an MCM is

returned. A system detail level of 0 is returned if the hardware system does not have MCMs or does

not provide system topology data.

flags Reserved for future use. Must be specified as 0.

result Points to an integer where the result is stored on successful completion.

Return Values

Upon successful completion, the krs_getinfo subroutine returns a 0, and the result field contains the

requested information. If unsuccessful, one or more of the following are returned:

 EINVAL One of the following is true:

v The info_type parameter specifies an invalid resource type value.

v The flags parameter was not specified as 0.

EFAULT Invalid address.

Related Information

The “krs_numrads Subroutine” on page 269.

krs_getpartition Subroutine

Purpose

Gets the partition resource set to which a process is attached.

Syntax

#include <sys/rset.h>

int krs_getpartition (pid, flags, rset, rset_type)

pid_t pid;

unsigned int flags;

rsethandle_t rset;

unsigned int *rset_type;

Description

The krs_getpartition subroutine returns the partition resource set attached to the specified process. A

process ID value of RS_MYSELF indicates the partition resource set attached to the current process is

requested.

Upon successful completion, the type of resource set is returned into the rset_type parameter.

266 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

A value of RS_PARTITION_RSET indicates the process has a partition resource set that is set explicitly.

This may be set with the krs_setpartition subroutine or through the use of WLM work classes with

resource sets.

A value of RS_DEFAULT_RSET indicates the process did not have an explicitly set partition resource set.

The system default resource set is returned.

Parameters

 pid Specifies the process ID whose partition rset is requested.

flags Reserved for future use. Specify as 0.

rset Specifies the resource set to receive the process’ partition resource set.

rset_type Points to an unsigned integer field to receive the resource set type.

Return Values

Upon successful completion, the krs_getpartition subroutine returns a 0. If unsuccessful, one or more of

the following are true:

 EFAULT Invalid address.

ESRCH The process identified by the pid parameter does not exist.

Related Information

The “kra_getrset Subroutine” on page 262.

krs_getrad Subroutine

Purpose

Returns a system resource allocation domain (RAD) contained in an input resource set.

Syntax

#include <sys/rset.h>

int krs_getrad (rad, sdl, index, flags)

rsethandle_t rad;

unsigned int sdl;

unsigned int index;

unsigned int flags;

Description

The krs_getrad subroutine returns a system RAD at a specified system detail level and index.

The system RAD is specified by system detail level sdl and index number index.

The rad parameter must be allocated (using the krs_alloc subroutine) prior to calling the krs_getrad

subroutine.

Parameters

 rad Specifies a resource set handle to receive the desired system RAD.

sdl Specifies the system detail level of the desired system RAD.

index Specifies the index of the system RAD that should be returned from among those at the specified sdl. This

parameter must belong to the [0, krs_numrads(rset, sdl, flags)- 1] interval.

flags Reserved for future use. Specify as 0.

Chapter 1. Kernel Services 267

Return Values

Upon successful completion, the krs_getrad subroutine returns a 0. If unsuccessful, one or more of the

following are true:

 EINVAL One of the following is true:

v The flags parameter contains an invalid value.

v The sdl parameter is greater than the maximum system detail level.

v The RAD specified by the index parameter does not exist at the system detail level specified by the

sdl parameter.

EFAULT Invalid address.

Related Information

“krs_numrads Subroutine” on page 269, “krs_getinfo Subroutine” on page 265, “krs_alloc Subroutine” on

page 263, and “krs_op Subroutine” on page 269.

krs_init Subroutine

Purpose

Initializes a previously allocated resource set.

Syntax

#include <sys/rset.h>

int krs_init (rset, flags)

rsethandle_t rset;

unsigned int flags;

Description

The krs_init subroutine initializes a previously allocated resource set. The resource set is initialized

according to information specified by the flags parameter.

Parameters

 rset Specifies the handle of the resource set to initialize.

flags Specifies how the resource set is initialized. It takes one of the following values, defined in rset.h:

v RS_EMPTY: The resource set is initialized to contain no resources.

v RS_SYSTEM: The resource set is initialized to contain available system resources.

v RS_ALL: The resource set is initialized to contain all resources.

v RS_PARTITION: The resource set is initialized to contain the resources in the caller’s process partition

resource set.

Return Values

Upon successful completion, the krs_init subroutine returns a 0. If unsuccessful, the following is returned:

 EINVAL The flags parameter contains an invalid value.

Related Information

The “krs_alloc Subroutine” on page 263.

268 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

krs_numrads Subroutine

Purpose

Returns the number of system resource allocation domains (RADs) that have available resources.

Syntax

#include <sys/rset.h>

int krs_numrads(rset, sdl, flags)

rsethandle_t rset;

unsigned int sdl;

unsigned int flags;

Description

The krs_numrads subroutine returns the number of system RADs at system detail level sdl, that have

available resources contained in the resource set identified by the rset parameter.

The number of atomic RADs contained in the rset parameter is returned if the sdl parameter is equal to

the maximum system detail level.

Parameters

 rset Specifies the resource set handle for the resource set being queried.

sdl Specifies the system detail level in which the caller is interested.

flags Reserved for future use. Specify as 0.

Return Values

Upon successful completion, the number of RADs is returned. If unsuccessful, a -1 is returned and one or

more of the following are true:

v The flags parameter contains an invalid value.

v The sdl parameter is greater than the maximum system detail level.

Related Information

“krs_getrad Subroutine” on page 267, and “krs_getinfo Subroutine” on page 265.

krs_op Subroutine

Purpose

Performs a set of operations on one or two resource sets.

Syntax

#include <sys/rset.h>

int krs_op (command, rset1, rset2, flags, id)

unsigned int command;

rsethandle_t rset1, rset2;

unsigned int flags;

unsigned int id;

Description

The krs_op subroutine performs the operation specified by the command parameter on resource set rset1,

or both resource sets rset1 and rset2.

Chapter 1. Kernel Services 269

Parameters

 command Specifies the operation to apply to the resource sets identified by rset1 and rset2. One of the following

values, defined in rset.h, can be used:

v RS_UNION: The resources contained in either rset1 or rset2 are stored in rset2.

v RS_INTERSECTION: The resources that are contained in both rset1 and rset2 are stored in rset2.

v RS_EXCLUSION: The resources in rset1 that are also in rset2 are removed from rset2. On

completion, rset2 contains all the resources that were contained in rset2 but were not contained in

rset1.

v RS_COPY: All resources in rset1 whose type is flags are stored in rset2. If rset1 contains no

resources of this type, rset2 will be empty. The previous content of rset2 is lost, while the content of

rset1 is unchanged.

v RS_ISEMPTY: Test if resource set rset1 is empty.

v RS_ISEQUAL: Test if resource sets rset1 and rset2 are equal.

v RS_ISCONTAINED: Test if all resources in resource set rset1 are also contained in resource set

rset2.

v RS_TESTRESOURCE: Test if the resource whose type is flags and index is id is contained in

resource set rset1.

v RS_ADDRESOURCE: Add the resource whose type is flags and index is id to resource set rset1.

v RS_DELRESOURCE: Delete the resource whose type is flags and index is id from resource set

rset1.

v RS_STSET: Constructs an ST resource set by including only one hardware thread per physical

processor included in rset1 and stores it in rset2. Only available processors are considered when

constructing the ST resource set.

rset1 Specifies the resource set handle for the first of the resource sets involved in the command operation.

rset2 Specifies the resource set handle for the second of the resource sets involved in the command

operation. This resource set is also used, on return, to store the result of the operation, and its previous

content is lost. The rset2 parameter is ignored on the RS_ISEMPTY, RS_TESTRESOURCE,

RS_ADDRESOURCE, and RS_DELRESOURCE commands.

flags When combined with the RS_COPY command, the flags parameter specifies the type of the resources

that will be copied from rset1 to rset2. This parameter is constructed by logically ORing one or more of

the following values, defined in rset.h:

v R_PROCS: processors

v R_MEMPS: memory pools

v R_ALL_RESOURCES: processors and memory pools

If none of the above are specified for flags, R_ALL_RESOURCES is assumed.

id On the RS_TESTRESOURCE, RS_ADDRESOURCE, and RS_DELRESOURCE commands, the id

parameter specifies the index of the resource to be tested, added, or deleted. This parameter is ignored

on the other commands.

Return Values

 0 Successful completion. The tested condition is not met for the RS_ISEMPTY, RS_ISEQUAL,

RS_ISCONTAINED, and RS_TESTRESOURCE commands.

1 Successful completion. The tested condition is met for the RS_ISEMPTY, RS_ISEQUAL, RS_ISCONTAINED,

and RS_TESTRESOURCE commands.

270 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

-1 Unsuccessful completion. One or more of the following are true:

v rset1 identifies an invalid resource set.

v rset2 identifies an invalid resource set.

v command identifies an invalid operation.

v flags identifies an invalid resource type.

v id specifies a resource index that is too large.

v Invalid address.

krs_setpartition Subroutine

Purpose

Sets the partition resource set of a process.

Syntax

#include <sys/rset.h>

int krs_setpartition(pid, rset, flags)

pid_t pid;

rsethandle_t rset;

unsigned int flags;

Description

The krs_setpartition subroutine sets a process’ partition resource set. The subroutine can also be used to

remove a process’ partition resource set.

The partition resource set limits the threads in a process to running only on the processors contained in

the partition resource set.

The work component is an existing process identified by process ID. A process ID value of RS_MYSELF

indicates the attachment applies to the current process.

The following conditions must be met to set a process’ partition resource set:

v The calling process must have root authority.

v The resource set must contain processors that are available in the system.

v The new partition resource set must be equal to, or a superset of the target process’ effective resource

set.

v The target process must not contain any threads that have bindprocessor bindings to a processor.

The flags parameter can be set to indicate the policy for using the resources contained in the resource set

specified in the rset parameter. The only supported scheduling policy is R_ATTACH_STRSET, which is

useful only when the processors of the system are running in simultaneous multi-threading mode.

Processors like the POWER5 support simultaneous multi-threading, where each physical processor has

two execution engines, called hardware threads. Each hardware thread is essentially equivalent to a single

CPU, and each is identified as a separate CPU in a resource set. The R_ATTACH_STRSET flag indicates

that the process is to be scheduled with a single-threaded policy; namely, that it should be scheduled on

only one hardware thread per physical processor. If this flag is specified, then all of the available

processors indicated in the resource set must be of exclusive use. A new resource set, called an ST

resource set, is constructed from the specified resource set and attached to the process according to the

following rules:

v All offline processors are ignored.

Chapter 1. Kernel Services 271

v If all the hardware threads (CPUs) of a physical processor (when running in simultaneous

multi-threading mode, there will be more than one active hardware thread per physical processor) are

not included in the specified resource set, the other CPUs of the processor are ignored when

constructing the ST resource set.

v Only one CPU (hardware thread) resource per physical processor is included in the ST resource set.

Parameters

 pid Specifies the process ID of the process whose partition resource set is to be set. A value of RS_MYSELF

indicates the current process’ partition resource set should be set.

rset Specifies the partition resource set to be set. A value of RS_DEFAULT indicates the process’ partition

resource set should be removed.

flags Specifies the policy to use for the process. A value of R_ATTACH_STRSET indicates that the process is to

be scheduled with a single-threaded policy (only on one hardware thread per physical processor).

Return Values

Upon successful completion, the krs_setpartition subroutine returns a 0. If unsuccessful, one or more of

the following are true:

 EINVAL The R_ATTACH_STRSET flags parameter is specified and one or more processors in the rset

parameter are not assigned for exclusive use.

ENODEV The resource set specified by the rset parameter does not contain any available processors, or the

R_ATTACH_STRSET flags parameter is specified and the constructed ST resource set does not have

any available processors.

ESRCH The process identified by the pid parameter does not exist.

EFAULT Invalid address.

ENOMEM Memory not available.

EPERM One of the following is true:

v The calling process does not have root authority.

v The process identified by the pid parameter has one or more threads with a bindprocessor

processor binding.

v The process identified by the pid parameter has an effective resource set and the new partition

resource set identified by the rset parameter does not contain all of the effective resource set’s

resources.

Related Information

“krs_getpartition Subroutine” on page 266 and “kra_attachrset Subroutine” on page 257.

For information about exclusive processors, see Exclusive use processor resource sets in Operating

system and device management.

ksettickd Kernel Service

Purpose

Sets the current status of the systemwide timer-adjustment values.

Syntax

#include <sys/types.h>

int ksettickd (timed, tickd, time_adjusted)

int *timed;

int *tickd;

int *time_adjusted;

272 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 timed Specifies the number of microseconds by which the systemwide timer is to be adjusted

unless set to a null pointer.

tickd Specifies the adjustment rate of the systemwide timer unless set to a null pointer. This rate

determines the number of microseconds that the systemwide timer is adjusted with each

timer tick. Adjustment continues until the time has been corrected by the amount specified

by the timed parameter.

time_adjusted Sets the kernel-maintained time adjusted flag to True or False. If the time_adjusted

parameter is a null pointer, calling the ksettickd kernel service always sets the kernel’s

time_adjusted parameter to False.

Description

The ksettickd kernel service provides kernel extensions with the capability to update the time_adjusted

parameter, and set or change the systemwide time-of-day timer adjustment amount and rate. The

timer-adjustment values indicated by the timed and tickd parameters are the same values used by the

adjtime subroutine. A call to the settimer or adjtime subroutine for the systemwide time-of-day timer sets

the time_adjusted parameter to True, as read by the kgettickd kernel service.

This kernel service is typically used only by kernel extensions providing time synchronization functions

such as coordinated network time where the adjtime subroutine is insufficient.

Note: The ksettickd service provides no serialization with respect to the adjtime and settimer

subroutines, the ksettimer kernel service, or the timer interrupt handler, all of which also use and

update these values. The caller of this kernel service must provide the necessary serialization to

ensure appropriate operation.

Execution Environment

The ksettickd kernel service can be called from either the process or interrupt environment.

Return Value

The ksettickd kernel service always returns a value of 0.

Related Information

The kgettickd kernel service, ksettimer kernel service.

The adjtime subroutine, settimer subroutine.

Timer and Time-of-Day Kernel Services and Using Fine Granularity Timer Services and Structures in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

ksettimer Kernel Service

Purpose

Sets the systemwide time-of-day timer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/time.h>

int ksettimer (nct)

struct timestruc_t *nct;

Chapter 1. Kernel Services 273

Parameter

 nct Points to a timestruc_t structure, which contains the new current time to be set. The nanoseconds member of

this structure is valid only if greater than or equal to 0, and less than the number of nanoseconds in a second.

Description

The ksettimer kernel service provides a kernel extension with the capability to set the systemwide

time-of-day timer. Kernel extensions typically use this kernel service to support network coordinated time,

which is the periodic synchronization of all system clocks to a common time by a time server or set of time

servers on a network. The newly set ″current″ time must represent the amount of time since 00:00:00

GMT, January 1, 1970.

Execution Environment

The ksettimer kernel service can be called from the process environment only.

Return Values

 0 Indicates success.

EINVAL Indicates that the new current time specified by the nct parameter is outside the range of the systemwide

timer.

EIO Indicates that an error occurred while this kernel service was accessing the timer device.

Related Information

Using Fine Granularity Timer Services and Structures andTimer and Time-of-Day Kernel Services in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

kthread_kill Kernel Service

Purpose

Posts a signal to a specified kernel-only thread.

Syntax

#include <sys/thread.h>

void kthread_kill (tid, sig)

tid_t tid;

int sig;

Parameters

 tid Specifies the target kernel-only thread. If its value is -1, the signal is posted to the calling thread.

sig Specifies the signal number to post.

Description

The kthread_kill kernel service posts the signal sig to the kernel thread specified by the tid parameter.

When the service is called from the process environment, the target thread must be in the same process

as the calling thread. When the service is called from the interrupt environment, the signal is posted to the

target thread, without a permission check.

274 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The kthread_kill kernel service can be called from either the process environment or the interrupt

environment.

Return Values

The kthread_kill kernel service has no return values.

Related Information

The sig_chk kernel service.

kthread_start Kernel Service

Purpose

Starts a previously created kernel-only thread.

Syntax

#include <sys/thread.h>

int kthread_start (tid, i_func, i_data_addr, i_data_len, i_stackaddr, i_sigmask)

tid_t tid;

int (*i_func) (void *);

void *i_data_addr;

size_t i_data_len;

void *i_stackaddr;

sigset_t *i_sigmask;

Parameters

 tid Specifies the kernel-only thread to start.

i_func Points to the entry-point routine of the kernel-only thread.

i_data_addr Points to data that will be passed to the entry-point routine.

i_data_len Specifies the length of the data chunk.

i_stackaddr Specifies the stack’s base address for the kernel-only thread.

i_sigmask Specifies the set of signal to block from delivery when the new kernel-only thread begins

execution.

Description

The kthread_start kernel service starts the kernel-only thread specified by the tid parameter. The thread

must have been previously created with the thread_create kernel service, and its state must be TSIDL.

This kernel service initializes and schedules the thread for the processor. Its state is changed to TSRUN.

The thread is initialized so that it begins executing at the entry point specified by the i_func parameter, and

that the signals specified by the i_sigmask parameter are blocked from delivery.

The thread’s entry point gets one parameter, a pointer to a chunk of data that is copied to the base of the

thread’s stack. The i_data_addr and i_data_len parameters specify the location and quantity of data to

copy. The format of the data must be agreed upon by the initializing and initialized thread.

The thread’s stack’s base address is specified by the i_stackaddr parameter. If a value of zero is specified,

the kernel will allocate the memory for the stack (96K). This memory will be reclaimed by the system when

Chapter 1. Kernel Services 275

the thread terminates. If a non-zero value is specified, then the caller should allocate the backing memory

for the stack. Since stacks grow from high addresses to lower addresses, the i_stackaddr parameter

specifies the highest address for the thread’s stack.

The thread will be automatically terminated when it returns from the entry point routine. If it is the last

thread in the process, then the process will be exited.

Execution Environment

The kthread_start kernel service can be called from the process environment only.

Return Values

The kthread_start kernel service returns one of the following values:

 0 Indicates a successful start.

ESRCH Indicates that the tid parameter is not valid.

Related Information

The thread_create kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

kvmgetinfo Kernel Service

Purpose

Retrieves Virtual Memory Manager (VMM) information.

Syntax

#include <sys/vminfo.h>

int kvmgetinfo (void *out, int command, int arg)

Description

The kvmgetinfo kernel service returns the current value of certain VMM parameters.

Parameters

 out Specifies the address where VMM information should be returned.

276 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

command Specifies which information should be returned. The valid values for the command

parameter are decribed below:

VMINFO

The content of vminfo structure (described in sys/vminfo.h) will be returned.

The out parameter should point to a vminfo structure and the arg parameter

should be the size of this structure. The smaller of the arg or sizeof (struct

vminfo) parameters will be copied.

VMINFO_ABRIDGED

The content of the vminfo structure (described in the sys/vminfo.h file) is

returned. For this command, only the non-time consuming statistics are updated,

so this command should be used in performance-critical applications rather than

the VMINFO command. The out parameter should point to a vminfo structure

and the arg parameter should be the size of this structure. The smaller of the arg

or sizeof (struct vminfo) parameters will be copied.

VM_PAGE_INFO

The size, in bytes, of the page backing the address specified in the addr field of

the vm_page_info structure (described in the sys/vminfo.h file) is returned. The

out parameter should point to a vm_page_info structure with the addr field set to

the desired address of which to query the page size. This address, addr, is

interpreted as an address in the address space of the current running process.

The arg parameter should be the size of the vm_page_info structure.

IPC_LIMITS

The content of the ipc_limits struct (described in the sys/vminfo.h file) is

returned. The out parameter should point to an ipc_limits structure and arg

should be the size of this structure. The smaller of the arg or sizeof (struct

ipc_limits) parameters will be copied. The ipc_limits struct contains the

inter-process communication (IPC) limits for the system.

VMINFO_GETPSIZES

Reports a system’s supported page sizes. When arg is 0, the out parameter is

ignored, and the number of supported page sizes is returned. When arg is

greater than 0, arg indicates the number of page sizes to report, and out must be

a pointer to an array with arg number of psize_t types. The array of psize_t types

is updated with the system’s supported page sizes in sorted order starting with

the smallest supported page size. The number of array entries updated with page

sizes is returned.

VMINFO_PSIZE

Reports detailed VMM statistics for a specified page size. The out parameter

must point to a vminfo_psize structure with the psize field set to a page size, in

bytes, for which to return statistics. The arg parameter should be the size of the

vminfo_psize structure.

arg An additional parameter that will depend upon the command parameter.

Execution Environment

The kvmgetinfo kernel service can be called from the process environment only.

Return Values

The following return values apply to all commands other than VMINFO_GETPSIZES:

 0 Indicates successful completion.

ENOSYS Indicates the command parameter is not valid (or not yet implemented).

EINVAL When VM_PAGE_INFO is the command, the adr field of the vm_page_info structure is an

invalid address.

Chapter 1. Kernel Services 277

When VMINFO_GETPSIZES is specified as the command, -1 is returned if the kvmgetinfo() kernel

service is unsuccessful. Otherwise, the kvmgetinfo() kernel service returns a number of page sizes when

the VMINFO_GETPSIZES command is specified.

Related Information

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

limit_sigs or sigsetmask Kernel Service

Purpose

Changes the signal mask for the calling kernel thread.

Syntax

#include <sys/encap.h>

void limit_sigs (

 siglist,

 old_mask)

sigset_t *siglist;

sigset_t *old_mask;

void sigsetmask (old_mask)

sigset_t *old_mask;

Parameters

 siglist Specifies the signal set to deliver.

old_mask Points to the old signal set.

Description

The limit_sigs kernel service changes the signal mask for the calling kernel thread such that only the

signals specified by the siglist parameter will be delivered, unless they are currently being blocked or

ignored.

The old signal mask is returned via the old_mask parameter. If the siglist parameter is NULL, the signal

mask is not changed; it can be used for getting the current signal mask.

The sigsetmask kernel service should be used to restore the set of blocked signals for the calling thread.

The typical usage of these services is the following:

sigset_t allowed = limited set of signals

sigset_t old;

/* limits the set of delivered signals */

limit_sigs (&allowed, &old);

 /* do something with a limited set of delivered signals */

/* restore the original set */

sigsetmask (&old);

Execution Environment

The limit_sigs and sigsetmask kernel services can be called from the process environment only.

278 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

The limit_sigs and sigsetmask kernel services have no return values.

Related Information

The kthread_kill kernel service.

lock_alloc Kernel Service

Purpose

Allocates system memory for a simple or complex lock.

Syntax

#include <sys/lock_def.h>

#include <sys/lock_alloc.h>

void lock_alloc (lock_addr, flags, class, occurrence)

void *lock_addr;

int flags;

short class;

short occurrence;

Parameters

 lock_addr Specifies a valid simple or complex lock address.

flags Specifies whether the memory allocated is to be pinned or pageable. Set this parameter as follows:

LOCK_ALLOC_PIN

Allocate pinned memory; use if it is not permissible to take a page fault while calling a

locking kernel service for this lock.

LOCK_ALLOC_PAGED

Allocate pageable memory; use if it is permissible to take a page fault while calling a

locking kernel service for this lock.

 class Specifies the family which the lock belongs to.

occurrence Identifies the instance of the lock within the family. If only one instance of the lock is defined, this

parameter should be set to -1.

Description

The lock_alloc kernel service allocates system memory for a simple or complex lock. The lock_alloc

kernel service must be called for each simple or complex before the lock is initialized and used. The

memory allocated is for internal lock instrumentation use, and is not returned to the caller; no memory is

allocated if instrumentation is not used.

Execution Environment

The lock_alloc kernel service can be called from the process environment only.

Return Values

The lock_alloc kernel service has no return values.

Related Information

The lock_free kernel service, lock_init kernel service, simple_lock_init kernel service.

Chapter 1. Kernel Services 279

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

lock_clear_recursive Kernel Service

Purpose

Prevents a complex lock from being acquired recursively.

Syntax

#include <sys/lock_def.h>

void lock_clear_recursive (lock_addr)

complex_lock_t lock_addr;

Parameter

 lock_addr Specifies the address of the lock word which is no longer to be acquired recursively.

Description

The lock_clear_recursive kernel service prevents the specified complex lock from being acquired

recursively. The lock must have been made recursive with the lock_set_recursive kernel service. The

calling thread must hold the specified complex lock in write-exclusive mode.

Execution Environment

The lock_clear_recursive kernel service can be called from the process environment only.

Return Values

The lock_clear_recursive kernel service has no return values.

Related Information

The lock_init kernel service, lock_done kernel service, lock_read kernel service, lock_read_to_write

kernel service, lock_write kernel service, lock_set_recursive kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

lock_done Kernel Service

Purpose

Unlocks a complex lock.

Syntax

#include <sys/lock_def.h>

void lock_done (lock_addr)

complex_lock_t lock_addr;

280 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

 lock_addr Specifies the address of the lock word to unlock.

Description

The lock_done kernel services unlocks a complex lock. The calling kernel thread must hold the lock either

in shared-read mode or exclusive-write mode. If one or more kernel threads are waiting to acquire the lock

in exclusive-write mode, one of these kernel threads (the one with the highest priority) is made runnable

and may compete for the lock. Otherwise, any kernel threads which are waiting to acquire the lock in

shared-read mode are made runnable. If there was at least one kernel thread waiting for the lock, the

priority of the calling kernel thread is recomputed.

If the lock is held recursively, it is not actually released until the lock_done kernel service has been called

once for each time that the lock was locked.

Execution Environment

The lock_done kernel service can be called from the process environment only.

Return Values

The lock_done kernel service has no return values.

Related Information

The lock_alloc kernel service, lock_free kernel service, lock_init kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

lock_free Kernel Service

Purpose

Frees the memory of a simple or complex lock.

Syntax

#include <sys/lock_def.h>

#include <sys/lock_alloc.h>

void lock_free (lock_addr)

void *lock_addr;

Parameter

 lock_addr Specifies the address of the lock word whose memory is to be freed.

Description

The lock_free kernel service frees the memory of a simple or complex lock. The memory freed is the

internal operating system memory which was allocated with the lock_alloc kernel service.

Note: It is only necessary to call the lock_free kernel service when the memory that the corresponding

lock was protecting is released. For example, if you allocate memory for an i-node which is to be

protected by a lock, you must allocate and initialize the lock before using it. The memory may be

Chapter 1. Kernel Services 281

used with several i-nodes, each taken from, and returned to, the free i-node pool; the lock_init

kernel service must be called each time this is done.The lock_free kernel service must be called

when the memory allocated for the inode is finally freed.

Execution Environment

The lock_free kernel service can be called from the process environment only.

Return Values

The lock_free kernel service has no return values.

Related Information

The lock_alloc kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

lock_init Kernel Service

Purpose

Initializes a complex lock.

Syntax

#include <sys/lock_def.h>

void lock_init (lock_addr, can_sleep)

complex_lock_t lock_addr;

boolean_t can_sleep;

Parameters

 lock_addr Specifies the address of the lock word.

can_sleep This parameter is ignored.

Description

The lock_init kernel service initializes the specified complex lock. This kernel service must be called for

each complex lock before the lock is used. The complex lock must previously have been allocated with the

lock_alloc kernel service. The can_sleep parameter is included for compatibility with OSF/1 1.1, but is

ignored. Using a value of TRUE for this parameter will maintain OSF/1 1.1 semantics.

Execution Environment

The lock_init kernel service can be called from the process environment only.

Return Values

The lock_init kernel service has no return values.

Related Information

The lock_alloc kernel service, lock_free kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

282 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

lock_islocked Kernel Service

Purpose

Tests whether a complex lock is locked.

Syntax

#include <sys/lock_def.h>

int lock_islocked (lock_addr)

complex_lock_t lock_addr;

Parameter

 lock_addr Specifies the address of the lock word to test.

Description

The lock_islocked kernel service determines whether the specified complex lock is free, or is locked in

either shared-read or exclusive-write mode.

Execution Environment

The lock_islocked kernel service can be called from the process environment only.

Return Values

 TRUE Indicates that the lock was locked.

FALSE Indicates that the lock was free.

Related Information

The lock_init kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

lockl Kernel Service

Purpose

Locks a conventional process lock.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/lockl.h>

int lockl (lock_word, flags)

lock_t *lock_word;

int flags;

Chapter 1. Kernel Services 283

Parameters

 lock _word Specifies the address of the lock word.

flags Specifies the flags that control waiting for a lock. The flags parameter is used to control how

signals affect waiting for a lock. The four flags are:

LOCK_NDELAY

Controls whether the caller waits for the lock. Setting the flag causes the request to be

terminated. The lock is assigned to the caller. Not setting the flag causes the caller to

wait until the lock is not owned by another process before the lock is assigned to the

caller.

LOCK_SHORT

Prevents signals from terminating the wait for the lock. LOCK_SHORT is the default flag

for the lockl Kernel Service. This flag causes non-preemptive sleep.

LOCK_SIGRET

Causes the wait for the lock to be terminated by an unmasked signal.

LOCK_SIGWAKE

Causes the wait for the lock to be terminated by an unmasked signal and control

transferred to the return from the last operation by the setjmpx kernel service.

Note: The LOCK_SIGRET flag overrides the LOCK_SIGWAKE flag.

Description

Note: The lockl kernel service is provided for compatibility only and should not be used in new code,

which should instead use simple locks or complex locks.

The lockl kernel service locks a conventional lock

The lock word can be located in shared memory. It must be in the process’s address space when the

lockl or unlockl services are called. The kernel accesses the lock word only while executing under the

caller’s process.

The lock_word parameter is typically part of the data structure that describes the resource managed by the

lock. This parameter must be initialized to the LOCK_AVAIL value before the first call to the lockl service.

Only the lockl and unlockl services can alter this parameter while the lock is in use.

The lockl service is nestable. The caller should use the LOCK_SUCC value for determining when to call

the unlockl service to unlock the conventional lock.

The lockl service temporarily assigns the owner the process priority of the most favored waiter for the

lock.

A process must release all locks before terminating or leaving kernel mode. Signals are not delivered to

kernel processes while those processes own any lock. ″Understanding System Call Execution″ in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts discusses how system calls

can use the lockl service when accessing global data.

Execution Environment

The lockl kernel service can be called from the process environment only.

284 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

 LOCK_SUCC Indicates that the process does not already own the lock or the lock is not owned by another

process when the flags parameter is set to LOCK_NDELAY.

LOCK_NEST Indicates that the process already owns the lock or the lock is not owned by another process when

the flags parameter is set to LOCK_NDELAY.

LOCK_FAIL Indicates that the lock is owned by another process when the flags parameter is set to

LOCK_NDELAY.

LOCK_SIG Indicates that the wait is terminated by a signal when the flags parameter is set to LOCK_SIGRET.

Related Information

The unlockl kernel service.

Understanding Locking in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts

lock_mine Kernel Service

Purpose

Checks whether a simple or complex lock is owned by the caller.

Syntax

#include <sys/lock_def.h>

boolean_t lock_mine (lock_addr)

void *lock_addr;

Parameter

 lock_addr Specifies the address of the lock word to check.

Description

The lock_mine kernel service checks whether the specified simple or complex lock is owned by the

calling kernel thread. Because a complex lock held in shared-read mode has no owner, the service returns

FALSE in this case. This kernel service is provided to assist with debugging.

Execution Environment

The lock_mine kernel service can be called from the process environment only.

Return Values

 TRUE Indicates that the calling kernel thread owns the lock.

FALSE Indicates that the calling kernel thread does not own the lock, or that a complex lock is held in shared-read

mode.

Chapter 1. Kernel Services 285

Related Information

The lock_init kernel service, lock_islocked kernel service, lock_read kernel service, lock_write kernel

service, simple_lock kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

lock_read or lock_try_read Kernel Service

Purpose

Locks a complex lock in shared-read mode.

Syntax

#include <sys/lock_def.h>

void lock_read (lock_addr)

complex_lock_t lock_addr;

boolean_t lock_try_read (lock_addr)

complex_lock_t lock_addr;

Parameter

 lock_addr Specifies the address of the lock word to lock.

Description

The lock_read kernel service locks the specified complex lock in shared-read mode; it blocks if the lock is

locked in exclusive-write mode. The lock must previously have been initialized with the lock_init kernel

service. The lock_read kernel service has no return values.

The lock_try_read kernel service tries to lock the specified complex lock in shared-read mode; it returns

immediately if the lock is locked in exclusive-write mode, otherwise it locks the lock in shared-read mode.

The lock must previously have been initialized with the lock_init kernel service.

Execution Environment

The lock_read and lock_try_read kernel services can be called from the process environment only.

Return Values

The lock_try_read kernel service has the following return values:

 TRUE Indicates that the lock was successfully acquired in shared-read mode.

FALSE Indicates that the lock was not acquired.

Related Information

The lock_init kernel service, lock_islocked kernel service, lock_done kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

286 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

lock_read_to_write or lock_try_read_to_write Kernel Service

Purpose

Upgrades a complex lock from shared-read mode to exclusive-write mode.

Syntax

#include <sys/lock_def.h>

boolean_t lock_read_to_write (lock_addr)

complex_lock_t lock_addr;

boolean_t lock_try_read_to_write (lock_addr)

complex_lock_t lock_addr;

Parameter

 lock_addr Specifies the address of the lock word to be converted from read-shared to write-exclusive mode.

Description

The lock_read_to_write and lock_try_read_to_write kernel services try to upgrade the specified

complex lock from shared-read mode to exclusive-write mode. The lock is successfully upgraded if no

other thread has already requested write-exclusive access for this lock. If the lock cannot be upgraded, it

is no longer held on return from the lock_read_to_write kernel service; it is still held in shared-read mode

on return from the lock_try_read_to_write kernel service.

The calling kernel thread must hold the lock in shared-read mode.

Execution Environment

The lock_read_to_write and lock_try_read_to_write kernel services can be called from the process

environment only.

Return Values

The following only apply to lock_read_to_write:

 TRUE Indicates that the lock was not upgraded and is no longer held.

FALSE Indicates that the lock was successfully upgraded to exclusive-write mode.

The following only apply to lock_try_read_to_write:

 TRUE Indicates that the lock was successfully upgraded to exclusive-write mode.

FALSE Indicates that the lock was not upgraded and is held in read mode.

Related Information

The lock_init kernel service, lock_islocked kernel service, lock_done kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

Chapter 1. Kernel Services 287

lock_set_recursive Kernel Service

Purpose

Prepares a complex lock for recursive use.

Syntax

#include <sys/lock_def.h>

void lock_set_recursive (lock_addr)

complex_lock_t lock_addr;

Parameter

 lock_addr Specifies the address of the lock word to be prepared for recursive use.

Description

The lock_set_recursive kernel service prepares the specified complex lock for recursive use. A complex

lock cannot be nested until the lock_set_recursive kernel service is called for it. The calling kernel thread

must hold the specified complex lock in write-exclusive mode.

When a complex lock is used recursively, the lock_done kernel service must be called once for each time

that the thread is locked in order to unlock the lock.

Only the kernel thread which calls the lock_set_recursive kernel service for a lock may acquire that lock

recursively.

Execution Environment

The lock_set_recursive kernel service can be called from process environment only.

Return Values

The lock_set_recursive kernel service has no return values.

Related Information

The lock_init kernel service, lock_done kernel service, lock_write kernel service, lock_clear_recursive

kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

lock_write or lock_try_write Kernel Service

Purpose

Locks a complex lock in exclusive-write mode.

Syntax

#include <sys/lock_def.h>

void lock_write (lock_addr)

complex_lock_t lock_addr;

288 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

boolean_t lock_try_write (lock_addr)

complex_lock_t lock_addr;

Parameter

 lock_addr Specifies the address of the lock word to lock.

Description

The lock_write kernel service locks the specified complex lock in exclusive-write mode; it blocks if the

lock is busy. The lock must have been previously initialized with the lock_init kernel service. The

lock_write kernel service has no return values.

The lock_try_write kernel service tries to lock the specified complex lock in exclusive-write mode; it

returns immediately without blocking if the lock is busy. The lock must have been previously initialized with

the lock_init kernel service.

Execution Environment

The lock_write and lock_try_write kernel services can be called from the process environment only.

Return Values

The lock_try_write kernel service has the following parameters:

 TRUE Indicates that the lock was successfully acquired.

FALSE Indicates that the lock was not acquired.

Related Information

The lock_init kernel service, lock_islocked kernel service, lock_done kernel service,

lock_read_to_write kernel service, lock_try_read_to_write kernel service, lock_write_to_read kernel

service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

lock_write_to_read Kernel Service

Purpose

Downgrades a complex lock from exclusive-write mode to shared-read mode.

Syntax

#include <sys/lock_def.h>

void lock_write_to_read (lock_addr)

complex_lock_t lock_addr;

Parameter

 lock_addr Specifies the address of the lock word to be downgraded from exclusive-write to shared-read

mode.

Chapter 1. Kernel Services 289

Description

The lock_write_to_read kernel service downgrades the specified complex lock from exclusive-write mode

to shared-read mode. The calling kernel thread must hold the lock in exclusive-write mode.

Once the lock has been downgraded to shared-read mode, other kernel threads will also be able to

acquire it in shared-read mode.

Execution Environment

The lock_write_to_read kernel service can be called from the process environment only.

Return Values

The lock_write_to_read kernel service has no return values.

Related Information

The lock_init kernel service, lock_islocked kernel service, lock_done kernel service,

lock_read_to_write kernel service, lock_try_read_to_write kernel service, lock_try_write kernel service,

lock_write kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

loifp Kernel Service

Purpose

Returns the address of the software loopback interface structure.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

struct ifnet *loifp ()

Description

The loifp kernel service returns the address of the ifnet structure associated with the software loopback

interface. The interface address can be used to examine the interface flags. This address can also be

used to determine whether the looutput kernel service can be called to send a packet through the

loopback interface.

Execution Environment

The loifp kernel service can be called from either the process or interrupt environment.

Return Values

The loifp service returns the address of the ifnet structure describing the software loopback interface.

Related Information

The looutput kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

290 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

longjmpx Kernel Service

Purpose

Allows exception handling by causing execution to resume at the most recently saved context.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int longjmpx (ret_val)

int ret_val;

Parameters

 ret_val Specifies the return value to be supplied on the return from the setjmpx kernel service for the resumed

context. This value normally indicates the type of exception that has occurred.

Description

The longjmpx kernel service causes the normal execution flow to be modified so that execution resumes

at the most recently saved context. The kernel mode lock is reacquired if it is necessary. The interrupt

priority level is reset to that of the saved context.

The longjmpx service internally calls the clrjmpx service to remove the jump buffer specified by the

jump_buffer parameter from the list of contexts to be resumed. The longjmpx service always returns a

nonzero value when returning to the restored context. Therefore, if the value of the ret_val parameter is 0,

the longjmpx service returns an EINTR value to the restored context.

If there is no saved context to resume, the system crashes.

Execution Environment

The longjmpx kernel service can be called from either the process or interrupt environment.

Return Values

A successful call to the longjmpx service does not return to the caller. Instead, it causes execution to

resume at the return from a previous setjmpx call with the return value of the ret_val parameter.

Related Information

The clrjmpx kernel service, setjmpx kernel service.

Understanding Exception Handling in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

lookupvp Kernel Service

Purpose

Retrieves the v-node that corresponds to the named path.

Chapter 1. Kernel Services 291

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int lookupvp (namep, flags, vpp, crp)

char *namep;

int flags;

struct vnode **vpp;

struct ucred *crp;

Parameters

 crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

namep Points to a character string path name.

flags Specifies lookup directives, including these six flags:

L_LOC The path-name resolution must not cross a mount point into another file system implementation.

L_NOFOLLOW

If the final component of the path name resolves to a symbolic link, the link is not to be traversed.

L_NOXMOUNT

If the final component of the path name resolves to a mounted-over object, the mounted-over

object, rather than the root of the next virtual file system, is to be returned.

L_CRT The object is to be created.

L_DEL The object is to be deleted.

L_EROFS

An error is to be returned if the object resides in a read-only file system.

vpp Points to the location where the v-node pointer is to be returned to the calling routine.

Description

The lookupvp kernel service provides translation of the path name provided by the namep parameter into

a virtual file system node. The lookupvp service provides a flexible interface to path-name resolution by

regarding the flags parameter values as directives to the lookup process. The lookup process is a

cooperative effort between the logical file system and underlying virtual file systems (VFS). Several v-node

and VFS operations are employed to:

v Look up individual name components

v Read symbolic links

v Cross mount points

The lookupvp kernel service determines the process’s current and root directories by consulting the

u_cdir and u_rdir fields in the u structure. Information about the virtual file system and file system

installation for transient v-nodes is obtained from each name component’s vfs or gfs structure.

Execution Environment

The lookupvp kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

errno Indicates an error. This number is defined in the /usr/include/sys/errno.h file.

292 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

Understanding Data Structures and Header Files for Virtual File Systems in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

Virtual File System Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Virtual File System (VFS) Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

looutput Kernel Service

Purpose

Sends data through a software loopback interface.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int looutput (ifp, m0, dst)

struct ifnet *ifp;

struct mbuf *m0;

struct sockaddr *dst;

Parameters

 ifp Specifies the address of an ifnet structure describing the software loopback interface.

m0 Specifies an mbuf chain containing output data.

dst Specifies the address of a sockaddr structure that specifies the destination for the data.

Description

The looutput kernel service sends data through a software loopback interface. The data in the m0

parameter is passed to the input handler of the protocol specified by the dst parameter.

Execution Environment

The looutput kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the data was successfully sent.

ENOBUFS Indicates that resource allocation failed.

EAFNOSUPPORT Indicates that the address family specified by the dst parameter is not supported.

Related Information

The loifp kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Chapter 1. Kernel Services 293

ltpin Kernel Service

Purpose

Pins the address range in the system (kernel) space and frees the page space for the associated pages.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/pin.h>

int ltpin (addr, length)

caddr_t addr;

int length;

Parameters

 addr Specifies the address of the first byte to pin.

length Specifies the number of bytes to pin.

Description

The ltpin (long term pin) kernel service pins the real memory pages touched by the address range

specified by the addr and length parameters in the system (kernel) address space. It pins the real-memory

pages to ensure that page faults do not occur for memory references in this address range. The ltpin

kernel service increments the long-term pin count for each real-memory page. While either the long-term

or short-term pin count is nonzero, the page cannot be paged out of real memory.

The ltpin kernel service pins either the entire address range or none of it. Only a limited number of pages

are pinned in the system. If there are not enough unpinned pages in the system, the ltpin kernel service

returns an error code. The ltpin kernel service is not a published interface.

Note: The operating system pins only whole pages at a time. Therfore, if the requested range is not

aligned on a page boundary, then memory outside this range is also pinned.

The ltpin kernel service can only be called for addresses within the system (kernel) address space.

Return Values

 0 Indicates successful completion.

EINVAL Indicates that the length parameter has a negative value. Otherwise, the area of memory beginning at

the address of the first byte to pin (the addr parameter) and extending for the number of bytes specified

by the length parameter is not defined.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates that the pin kernel service was unable to pin due to insufficient real memory or exceeding the

system-wide pin count.

ENOSPC Indicates insufficient file system or paging space.

Related Information

The ltunpin kernel service.

294 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

ltunpin Kernel Service

Purpose

Unpins the address range in system (kernel) address space and reallocates paging space for the specified

region.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/pin.h>

int ltunpin (addr, length)

caddr_t addr;

int length;

Parameters

 addr Specifies the address of the first byte to unpin.

length Specifies the number of bytes to unpin.

Description

The ltunpin kernel service decreases the long-term pin count of each page in the address range. When

the long-term pin count becomes 0, the backing storage (paging space) for the memory region is allocated

and assigned to the pages. When both the long-term and short-term pin counts are 0, the page is no

longer pinned and the ltunpin kernel service will assert. If allocating backing pages would put the system

below the low paging space threshold, the call waits until paging space becomes available.

The ltunpin kernel service can only be called with addresses in the system (kernel) address space from

the process environment.

Return Values

 0 Indicates successful completion.

EINVAL Indicates that the length parameter is a negative value.

EIO Indicates that a permanent I/O error occurred while referencing data.

Related Information

The ltpin kernel service.

m_adj Kernel Service

Purpose

Adjusts the size of an mbuf chain.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

void m_adj (m, diff)

struct mbuf *m;

int diff;

Chapter 1. Kernel Services 295

Parameters

 m Specifies the mbuf chain to be adjusted.

diff Specifies the number of bytes to be removed.

Description

The m_adj kernel service adjusts the size of an mbuf chain by the number of bytes specified by the diff

parameter. If the number specified by the diff parameter is nonnegative, the bytes are removed from the

front of the chain. If this number is negative, the alteration is done from back to front.

Execution Environment

The m_adj kernel service can be called from either the process or interrupt environment.

Return Values

The m_adj service has no return values.

Related Information

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

mbreq Structure for mbuf Kernel Services

Purpose

Contains mbuf structure registration information for the m_reg and m_dereg kernel services.

Syntax

#include <sys/mbuf.h>

struct mbreq {

 int low_mbuf;

 int low_clust;

 int initial_mbuf;

 int initial_clust;

}

Parameters

 low_mbuf Specifies the mbuf structure low-water mark.

low_clust Specifies the page-sized mbuf structure low-water mark.

initial_mbuf Specifies the initial allocation of mbuf structures.

initial_clust Specifies the initial allocation of page-sized mbuf structures.

Description

The mbreq structure specifies the mbuf structure usage expectations for a user of mbuf kernel services.

Related Information

The m_dereg kernel service, m_reg kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

296 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

mbstat Structure for mbuf Kernel Services

Purpose

Contains mbuf usage statistics.

Syntax

#include <sys/mbuf.h>

struct mbstat {

ulong m_mbufs;

ulong m_clusters;

ulong m_spare;

ulong m_clfree;

ulong m_drops;

ulong m_wait;

ulong m_drain;

short m_mtypes[256];

}

Parameters

 m_mbufs Specifies the number of mbuf structures allocated.

m_clusters Specifies the number of clusters allocated.

m_spare Specifies the spare field.

m_clfree Specifies the number of free clusters.

m_drops Specifies the times failed to find space.

m_wait Specifies the times waited for space.

m_drain Specifies the times drained protocols for space.

m_mtypes Specifies the type-specific mbuf structure allocations.

Description

The mbstat structure provides usage information for the mbuf services. Statistics can be viewed through

the netstat -m command.

Related Information

The netstat command.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_cat Kernel Service

Purpose

Appends one mbuf chain to the end of another.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

void m_cat (m, n)

struct mbuf *m;

struct mbuf *n;

Chapter 1. Kernel Services 297

Parameters

 m Specifies the mbuf chain to be appended to.

n Specifies the mbuf chain to append.

Description

The m_cat kernel service appends an mbuf chain specified by the n parameter to the end of mbuf chain

specified by the m parameter. Where possible, compaction is performed.

Execution Environment

The m_cat kernel service can be called from either the process or interrupt environment.

Return Values

The m_cat service has no return values.

Related Information

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_clattach Kernel Service

Purpose

Allocates an mbuf structure and attaches an external cluster.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

struct mbuf *

m_clattach(ext_buf, ext_free, ext_size, ext_arg, wait)

caddr_t ext_buf;

int (*ext_free)();

int ext_size;

int ext_arg;

int wait;

Parameters

 ext_buf Specifies the address of the external data area.

ext_free Specifies the address of a function to be called when this mbuf structure is freed.

ext_size Specifies the length of the external data area.

ext_arg Specifies an argument to pass to the above function.

wait Specifies either the M_WAIT or M_DONTWAIT value.

Description

The m_clattach kernel service allocates an mbuf structure and attaches the cluster specified by the

ext_buf parameter. This data is owned by the caller. The m_data field of the returned mbuf structure points

to the caller’s data. Interrupt handlers can call this service only with the wait parameter set to

M_DONTWAIT.

298 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Note: The m_clattach kernel service replaces the m_clgetx kernel service, which is no longer supported.

The calling function is required to fill out the mbuf structure sufficiently to support normal usage. This

includes support for the DMA functions during network transmission. To support DMA functions, the

ext_hasxm flag field needs to be set to true and the ext_xmemd structure needs to be filled out. For

buffers allocated from the kernel pinned heap, the ext_xmemd.aspace_id field should be set to

XMEM_GLOBAL.

Execution Environment

The m_clattach kernel service can be called from either the process or interrupt environment.

Return Values

The m_clattach kernel service returns the address of an allocated mbuf structure. If the wait parameter is

set to M_DONTWAIT and there are no free mbuf structures, the m_clattach service returns null.

Related Information

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_clget Macro for mbuf Kernel Services

Purpose

Allocates a page-sized mbuf structure cluster.

Syntax

#include <sys/mbuf.h>

int m_clget (m)

struct mbuf *m;

Parameter

 m Specifies the mbuf structure with which the cluster is to be associated.

Description

The m_clget macro allocates a page-sized mbuf cluster and attaches it to the given mbuf structure. If

successful, the length of the mbuf structure is set to CLBYTES.

Execution Environment

The m_clget macro can be called from either the process or interrupt environment.

Return Values

 1 Indicates successful completion.

0 Indicates an error.

Related Information

The m_clgetm kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 299

m_clgetm Kernel Service

Purpose

Allocates and attaches an external buffer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

#include <net/net_globals.h>

int

m_clgetm(m, how, size)

struct mbuf *m;

int how;

int size;

Parameters

 m Specifies the mbuf structure that the cluster will be associated with.

how Specifies either the M_DONTWAIT or M_WAIT value.

size Specifies the size of external cluster to attach. Any value less than MAXALLOCSAVE is valid. For larger

values, M_WAIT must be specified.

Description

The m_clgetm service allocates an mbuf cluster of the specified number of bytes and attaches it to the

mbuf structure indicated by the m parameter. If successful, the m_clgetm service sets the M_EXT flag.

Execution Environment

The m_clgetm kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values

 1 Indicates a successful operation.

If there are no free mbuf structures, the m_clgetm kernel service returns a null value.

Related Information

The m_free kernel service, m_freem kernel service, m_get kernel service.

The m_clget macro.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_collapse Kernel Service

Purpose

Guarantees that an mbuf chain contains no more than a given number of mbuf structures.

300 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

struct mbuf *m_collapse (m, size)

struct mbuf *m;

int size;

Parameters

 m Specifies the mbuf chain to be collapsed.

size Denotes the maximum number of mbuf structures allowed in the chain.

Description

The m_collapse kernel service reduces the number of mbuf structures in an mbuf chain to the number of

mbuf structures specified by the size parameter. The m_collapse service accomplishes this by copying

data into page-sized mbuf structures until the chain is of the desired length. (If required, more than one

page-sized mbuf structure is used.)

Execution Environment

The m_collapse kernel service can be called from either the process or interrupt environment.

Return Values

If the chain cannot be collapsed into the number of mbuf structures specified by the size parameter, a

value of null is returned and the original chain is deallocated. Upon successful completion, the head of the

altered mbuf chain is returned.

Related Information

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_copy Macro for mbuf Kernel Services

Purpose

Creates a copy of all or part of a list of mbuf structures.

Syntax

#include <sys/mbuf.h>

struct mbuf *m_copy (m, off, len)

struct mbuf *m;

int off;

int len;

Parameters

 m Specifies the mbuf structure, or the head of a list of mbuf structures, to be copied.

off Specifies an offset into data from which copying starts.

len Denotes the total number of bytes to copy.

Chapter 1. Kernel Services 301

Description

The m_copy macro makes a copy of the structure specified by the m parameter. The copy begins at the

specified bytes (represented by the off parameter) and continues for the number of bytes specified by the

len parameter. If the len parameter is set to M_COPYALL, the entire mbuf chain is copied.

Execution Environment

The m_copy macro can be called from either the process or interrupt environment.

Return Values

Upon successful completion, the address of the copied list (the mbuf structure that heads the list) is

returned. If the copy fails, a value of null is returned.

Related Information

The m_copydata kernel service, m_copym kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_copydata Kernel Service

Purpose

Copies data from an mbuf chain to a specified buffer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

void m_copydata (m, off, len, cp)

struct mbuf * m;

int off;

int len;

caddr_t cp;

Parameters

 m Indicates the mbuf structure, or the head of a list of mbuf structures, to be copied.

off Specifies an offset into data from which copying starts.

len Denotes the total number of bytes to copy.

cp Points to a data buffer into which to copy the mbuf data.

Description

The m_copydata kernel service makes a copy of the structure specified by the m parameter. The copy

begins at the specified bytes (represented by the off parameter) and continues for the number of bytes

specified by the len parameter. The data is copied into the buffer specified by the cp parameter.

Execution Environment

The m_copydata kernel service can be called from either the process or interrupt environment.

Return Values

The mcopydata service has no return values.

302 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The m_copy macro.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_copym Kernel Service

Purpose

Creates a copy of all or part of a list of mbuf structures.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

struct mbuf *

m_copym(m, off, len, wait)

struct mbuf m;

int off;

int len;

int wait;

Parameters

 m Specifies the mbuf structure to be copied.

off Specifies an offset into data from which copying will start.

len Specifies the total number of bytes to copy.

wait Specifies either the M_DONTWAIT or M_WAIT value.

Description

The m_copym kernel service makes a copy of the mbuf structure specified by the m parameter starting at

the specified offset from the beginning and continuing for the number of bytes specified by the len

parameter. If the len parameter is set to M_COPYALL, the entire mbuf chain is copied.

If the mbuf structure specified by the m parameter has an external buffer attached (that is, the M_EXT

flag is set), the copy is done by reference to the external cluster. In this case, the data must not be altered

or both copies will be changed. Interrupt handlers can specify the wait parameter as M_DONTWAIT only.

Execution Environment

The m_copym kernel service can be called from either the process or interrupt environment.

Return Values

The address of the copy is returned upon successful completion. If the copy fails, null is returned. If the

wait parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_copym kernel

service returns a null value.

Related Information

The m_copydata kernel service.

The m_copy macro.

Chapter 1. Kernel Services 303

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_dereg Kernel Service

Purpose

Deregisters expected mbuf structure usage.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

void m_dereg (mbp)

struct mbreq mbp;

Parameter

 mbp Defines the address of an mbreq structure that specifies expected mbuf usage.

Description

The m_dereg kernel service deregisters requirements previously registered with the m_reg kernel service.

The m_dereg service is mandatory if the m_reg service is called.

Execution Environment

The m_dereg kernel service can be called from the process environment only.

Return Values

The m_dereg service has no return values.

Related Information

The mbreq Structure for mbuf Kernel Services.

The m_reg kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_free Kernel Service

Purpose

Frees an mbuf structure and any associated external storage area.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

struct mbuf *m_free(m)

struct mbuf *m;

304 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

 m Specifies the mbuf structure to be freed.

Description

The m_free kernel service returns an mbuf structure to the buffer pool. If the mbuf structure specified by

the m parameter has an attached cluster (that is, a paged-size mbuf structure), the m_free kernel service

also frees the associated external storage.

Execution Environment

The m_free kernel service can be called from either the process or interrupt environment.

Return Values

If the mbuf structure specified by the m parameter is the head of an mbuf chain, the m_free service

returns the next mbuf structure in the chain. A null value is returned if the structure specified by the m

parameter is not part of an mbuf chain.

Related Information

The m_get kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_freem Kernel Service

Purpose

Frees an entire mbuf chain.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

void m_freem (m)

struct mbuf *m;

Parameter

 m Indicates the head of the mbuf chain to be freed.

Description

The m_freem kernel service starts the m_free kernel service for each mbuf structure in the chain headed

by the head specified by the m parameter.

Execution Environment

The m_freem kernel service can be called from either the process or interrupt environment.

Return Values

The m_freem service has no return values.

Chapter 1. Kernel Services 305

Related Information

The m_free kernel service, m_get kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_get Kernel Service

Purpose

Allocates a memory buffer (mbuf) from the mbuf pool.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

struct mbuf *m_get (wait, type)

int wait;

int type;

Parameters

 wait Indicates the action to be taken if there are no free mbuf structures. Possible values are:

M_DONTWAIT

Called from either an interrupt or process environment.

M_WAIT

Called from a process environment.

type Specifies a valid mbuf type, as listed in the /usr/include/sys/mbuf.h file.

Description

The m_get kernel service allocates an mbuf structure of the specified type. If the buffer pool is empty and

the wait parameter is set to M_WAIT, the m_get kernel service does not return until an mbuf structure is

available.

Execution Environment

The m_get kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values

Upon successful completion, the m_get service returns the address of an allocated mbuf structure. If the

wait parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_get kernel service

returns a null value.

Related Information

The m_free kernel service, m_freem kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

306 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

m_getclr Kernel Service

Purpose

Allocates and zeroes a memory buffer from the mbuf pool.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

struct mbuf *m_getclr (wait, type)

int wait;

int type;

Parameters

 wait This flag indicates the action to be taken if there are no free mbuf structures. Possible values are:

M_DONTWAIT

Called from either an interrupt or process environment.

M_WAIT

Called from a process environment only.

type Specifies a valid mbuf type, as listed in the /usr/include/sys/mbuf.h file.

Description

The m_getclr kernel service allocates an mbuf structure of the specified type. If the buffer pool is empty

and the wait parameter is set to M_WAIT value, the m_getclr service does not return until an mbuf

structure is available.

The m_getclr kernel service differs from the m_get kernel service in that the m_getclr service zeroes the

data portion of the allocated mbuf structure.

Execution Environment

The m_getclr kernel service can be called from either the process or interrupt environment. Interrupt

handlers can call the m_getclr service only with the wait parameter set to the M_DONTWAIT value.

Return Values

The m_getclr kernel service returns the address of an allocated mbuf structure. If the wait parameter is

set to the M_DONTWAIT value and there are no free mbuf structures, the m_getclr kernel service returns

a null value.

Related Information

The m_free kernel service, m_freem kernel service, m_get kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_getclust Macro for mbuf Kernel Services

Purpose

Allocates an mbuf structure from the mbuf buffer pool and attaches a page-sized cluster.

Chapter 1. Kernel Services 307

Syntax

#include <sys/mbuf.h>

struct mbuf *m_getclust (wait, type)

int wait;

int type;

Parameters

 wait Indicates the action to be taken if there are no available mbuf structures. Possible values are:

M_DONTWAIT

Called from either an interrupt or process environment.

M_WAIT

Called from a process environment only.

type Specifies a valid mbuf type from the /usr/include/sys/mbuf.h file.

Description

The m_getclust macro allocates an mbuf structure of the specified type. If the allocation succeeds, the

m_getclust macro then attempts to attach a page-sized cluster to the structure.

If the buffer pool is empty and the wait parameter is set to M_WAIT, the m_getclust macro does not

return until an mbuf structure is available.

Execution Environment

The m_getclust macro can be called from either the process or interrupt environment.

Return Values

The address of an allocated mbuf structure is returned on success. If the wait parameter is set to

M_DONTWAIT and there are no free mbuf structures, the m_getclust macro returns a null value.

Related Information

The m_getclustm kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_getclustm Kernel Service

Purpose

Allocates an mbuf structure and attaches a cluster of the specified size, both from the mbuf buffer pool.

Syntax

#include <sys/mbuf.h>

#include <net/net_globals.h>

struct mbuf *

m_getclustm(wait, type, size)

int wait;

int type;

int size;

308 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 wait Specifies either the M_DONTWAIT or M_WAIT value.

type Specifies a valid mbuf type from the /usr/include/sys/mbuf.h file.

size Specifies the size of the external cluster to attach. Any value less than MAXALLOCSAVE is valid. For larger

values, M_WAIT must be specified.

Description

The m_getclustm service allocates an mbuf structure of the specified type. If successful, the

m_getclustm service then attempts to attach a cluster of the indicated size (specified by the size

parameter) to the mbuf structure. If the buffer pool is empty and the wait parameter is set to M_WAIT, the

m_get service does not return until an mbuf structure is available. Interrupt handlers should call this

service only with the wait parameter set to M_DONTWAIT.

Execution Environment

The m_getclustm kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values

The m_getclustm kernel service returns the address of an allocated mbuf structure on success. If the

wait parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_getclustm kernel

service returns null.

Related Information

The m_clget kernel service, m_free kernel service, m_freem kernel service, m_get kernel service.

The m_getclust macro.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_gethdr Kernel Service

Purpose

Allocates a header memory buffer from the mbuf pool.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

struct mbuf *

m_gethdr (wait, type)

int wait;

int type;

Parameters

 wait Specifies either the M_DONTWAIT or M_WAIT value.

type Specifies the valid mbuf type from the /usr/include/sys/mbuf.h file.

Chapter 1. Kernel Services 309

Description

The m_gethdr kernel service allocates an mbuf structure of the specified type. If the buffer pool is empty

and the wait parameter is set to M_WAIT, the m_gethdr kernel service will not return until an mbuf

structure is available. Interrupt handlers should call this kernel service only with the wait parameter set to

M_DONTWAIT. The M_PKTHDR flag is set for the returned mbuf structure.

Execution Environment

The m_gethdr kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values

The address of an allocated mbuf structure is returned on success. If the wait parameter is set to

M_DONTWAIT and there are no free mbuf structure, the m_gethdr kernel service returns null.

Related Information

The m_free kernel service, m_freem kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

M_HASCL Macro for mbuf Kernel Services

Purpose

Determines if an mbuf structure has an attached cluster.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

struct mbuf * m;

M_HASCL (m);

Parameter

 m Indicates the address of the mbuf structure in question.

Description

The M_HASCL macro determines if an mbuf structure has an attached cluster.

Execution Environment

The M_HASCL macro can be called from either the process or interrupt environment.

Example

The M_HASCL macro can be used as in the following example:

struct mbuf *m;

if (M_HASCL(m))

 printf("mbuf has attached cluster");

310 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_pullup Kernel Service

Purpose

Adjusts an mbuf chain so that a given number of bytes is in contiguous memory in the data area of the

head mbuf structure.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

struct mbuf *m_pullup (m, size)

struct mbuf *m;

int size;

Parameters

 m Specifies the mbuf chain to be adjusted.

size Specifies the number of bytes to be contiguous.

Description

The m_pullup kernel service guarantees that the mbuf structure at the head of a chain has in contiguous

memory within its data area at least the number of data bytes specified by the size parameter.

Execution Environment

The m_pullup kernel service can be called from either the process or interrupt environment.

Return Values

Upon successful completion, the head structure in the altered mbuf chain is returned.

A value of null is returned and the original chain is deallocated under the following circumstances:

v The size of the chain is less than indicated by the size parameter.

v The number indicated by the size parameter is greater than the data portion of the head-size mbuf

structure.

Related Information

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

m_reg Kernel Service

Purpose

Registers expected mbuf usage.

Chapter 1. Kernel Services 311

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

void m_reg (mbp)

struct mbreq mbp;

Parameter

 mbp Defines the address of an mbreq structure that specifies expected mbuf usage.

Description

The m_reg kernel service lets users of mbuf services specify initial requirements. The m_reg kernel

service also allows the buffer pool low-water and deallocation marks to be adjusted based on expected

usage. Its use is recommended for better control of the buffer pool.

When the number of free mbuf structures falls below the low-water mark, the total mbuf pool is expanded.

When the number of free mbuf structures rises above the deallocation mark, the total mbuf pool is

contracted and resources are returned to the system.

Execution Environment

The m_reg kernel service can be called from the process environment only.

Return Values

The m_reg service has no return values.

Related Information

The mbreq structure for mbuf kernel services, the m_dereg kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

md_restart_block_read Kernel Service

Purpose

A copy of the RESTART_BLOCK structure in the NVRAM header will be placed in the caller’s buffer.

Syntax

#include <sys/mdio.h>

int md_restart_block_read (md)

 struct mdio *md;

312 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 md Specifies the address of the mdio structure. The mdio structure contains the following fields:

md_data

Pointer to the data buffer.

md_size

Number of bytes in the data buffer.

md_addr

Contains the value PMMode on return in the least significant byte.

Description

The RestartBlock which is in the NVRAM header will be copied to the user supplied buffer. This block is a

communication vehicle for the software and the firmware.

Return Values

Returns 0 for successful completion.

 ENOMEM Indicates that there was not enough room in the user supplied buffer to contain the RestartBlock.

EINVAL Indicates this is not a PowerPC reference platform.

Prerequisite Information

Kernel Extensions and Device Driver Management Kernel Services in Kernel Extensions and Device

Support Programming Concepts.

Related Information

Machine Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

md_restart_block_upd Kernel Service

Purpose

The caller supplied RestartBlock will be copied to the NVRAM header.

Syntax

#include <sys/mdio.h>

int md_restart_block_upd (md, pmmode)

 struct mdio *md;

 unsigned char pmmode;

Description

The 8-bit value in pmmode will be stored into the NVRAM header at the PMMode offset.The RestartBlock

which is in the caller’s buffer will be copied to the NVRAM after the RestartBlock checksum is calculated

and a new Crc1 value is computed.

Parameters

 md Specifies the address of the mdio structure. The mdio structure contains the following fields:

md_data

Pointer to the RestartBlock structure..

pmmode Value to be stored into PMMode in the NVRAM header.

Chapter 1. Kernel Services 313

Return Values

Returns 0 for successful completion.

 EINVAL Indicates this is not a PowerPC reference platform.

Prerequisite Information

Kernel Extensions and Device Driver Management Kernel Services in Kernel Extensions and Device

Support Programming Concepts.

Related Information

Machine Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

MTOCL Macro for mbuf Kernel Services

Purpose

Converts a pointer to an mbuf structure to a pointer to the head of an attached cluster.

Syntax

#include <sys/mbuf.h>

struct mbuf * m;

MTOCL (m);

Parameter

 m Indicates the address of the mbuf structure in question.

Description

The MTOCL macro converts a pointer to an mbuf structure to a pointer to the head of an attached cluster.

The MTOCL macro can be used as in the following example:

caddr_t attcls;

struct mbuf *m;

attcls = (caddr_t) MTOCL(m);

Execution Environment

The MTOCL macro can be called from either the process or interrupt environment.

Related Information

The M_HASCL macro for mbuf kernel services.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

314 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

MTOD Macro for mbuf Kernel Services

Purpose

Converts a pointer to an mbuf structure to a pointer to the data stored in that mbuf structure.

Syntax

#include <sys/mbuf.h>

MTOD (m, type);

Parameters

 m Identifies the address of an mbuf structure.

type Indicates the type to which the resulting pointer should be cast.

Description

The MTOD macro converts a pointer to an mbuf structure into a pointer to the data stored in the mbuf

structure. This macro can be used as in the following example:

char *bufp;

 bufp = MTOD(m, char *);

Execution Environment

The MTOD macro can be called from either the process or interrupt environment.

Related Information

The DTOM macro for mbuf Kernel Services.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

M_XMEMD Macro for mbuf Kernel Services

Purpose

Returns the address of an mbuf cross-memory descriptor.

Syntax

#include <sys/mbuf.h>

#include <sys/xmem.h>

struct mbuf * m;

M_XMEMD (m);

Parameter

 m Specifies the address of the mbuf structure in question.

Description

The M_XMEMD macro returns the address of an mbuf cross-memory descriptor.

Chapter 1. Kernel Services 315

Execution Environment

The M_XMEMD macro can be called from either the process or interrupt environment.

Example

The M_XMEMD macro can be used as in the following example:

struct mbuf *m;

struct xmem *xmemd;

xmemd = M_XMEMD(m);

Related Information

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

net_attach Kernel Service

Purpose

Opens a communications I/O device handler.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <aixif/net_if.h>

#include <sys/comio.h>

int net_attach (kopen_ext, device_req, netid, netfpp)

struct kopen_ext * kopen_ext;

struct device_req * device_req;

struct netid_list * netid;

struct file ** netfpp;

Parameters

 kopen_ext Specifies the device handler kernel open extension.

device_req Indicates the address of the device description structure.

netid Indicates the address of the network ID list.

netfpp Specifies the address of the variable that will hold the returned file pointer.

Description

The net_attach kernel service opens the device handler specified by the device_req parameter and then

starts all the network IDs listed in the address specified by the netid parameter. The net_attach service

then sleeps and waits for the asynchronous start completion notifications from the net_start_done

kernel service.

Execution Environment

The net_attach kernel service can be called from the process environment only.

Return Values

Upon success, a value of 0 is returned and a file pointer is stored in the address specified by the netfpp

parameter. Upon failure, the net_attach service returns either the error codes received from the

fp_opendev or fp_ioctl kernel service, or the value ETIMEDOUT. The latter value is returned when an

open operation times out.

316 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The net_detach kernel service, net_start kernel service, net_start_done kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

net_detach Kernel Service

Purpose

Closes a communications I/O device handler.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <aixif/net_if.h>

int net_detach (netfp)

struct file *netfp;

Parameter

 netfp Points to an open file structure obtained from the net_attach kernel service.

Description

The net_detach kernel service closes the device handler associated with the file pointer specified by the

netfp parameter.

Execution Environment

The net_detach kernel service can be called from the process environment only.

Return Values

The net_detach service returns the value it obtains from the fp_close service.

Related Information

The fp_close kernel service, net_attach kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

net_error Kernel Service

Purpose

Handles errors for communication network interface drivers.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/if.h>

#include <sys/comio.h>

Chapter 1. Kernel Services 317

net_error (ifp, error_code, netfp)

struct ifnet *ifp;

int error_code;

struct file *netfp;

Parameters

 error_code Specifies the error code listed in the /usr/include/sys/comio.h file.

ifp Specifies the address of the ifnet structure for the device with an error.

netfp Specifies the file pointer for the device with an error.

Description

The net_error kernel service provides generic error handling for communications network interface (if)

drivers. Network interface (if) kernel extensions call this service to trace errors and, in some instances,

perform error recovery.

Errors traced include those:

v Received from the communications adapter drivers.

v Occurring during input and output packet processing.

Execution Environment

The net_error kernel service can be called from either the process or interrupt environment.

Return Values

The net_error service has no return values.

Related Information

The net_attach kernel service, net_detach kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

net_sleep Kernel Service

Purpose

Sleeps on the specified wait channel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/pri.h>

net_sleep (chan, flags)

int chan;

int flags;

Parameters

 chan Specifies the wait channel to sleep upon.

flags Sleep flags described in the sleep kernel service.

318 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The net_sleep kernel service puts the caller to sleep waiting on the specified wait channel. If the caller

holds the network lock, the net_sleep kernel service releases the lock before sleeping and reacquires the

lock when the caller is awakened.

Execution Environment

The net_sleep kernel service can be called from the process environment only.

Return Values

 0 Indicates that the sleeping process was not awakened by a signal.

1 Indicates that the sleeper was awakened by a signal.

Related Information

The net_wakeup kernel service, sleep kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

net_start Kernel Service

Purpose

Starts network IDs on a communications I/O device handler.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <aixif/net_if.h>

#include <sys/comio.h>

struct file *net_start (netfp, netid)

struct file *netfp;

struct netid_list *netid;

Parameters

 netfp Specifies the file pointer of the device handler.

netid Specifies the address of the network ID list.

Description

The net_start kernel service starts all the network IDs listed in the list specified by the netid parameter.

This service then waits for the asynchronous notification of completion of starts.

Execution Environment

The net_start kernel service can be called from the process environment only.

Return Values

The net_start service uses the return value returned from a call to the fp_ioctl service requesting the

CIO_START operation.

Chapter 1. Kernel Services 319

ETIMEDOUT Indicates that the start for at least one network ID timed out waiting for start-done notifications from

the device handler.

Related Information

The fp_ioctl kernel service, net_attach kernel service, net_start_done kernel service,.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

net_start_done Kernel Service

Purpose

Starts the done notification handler for communications I/O device handlers.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <aixif/net_if.h>

#include <sys/comio.h>

void net_start_done (netid, sbp)

struct netid_list *netid;

struct status_block *sbp;

Parameters

 netid Specifies the address of the network ID list for the device being started.

sbp Specifies the status block pointer returned from the device handler.

Description

The net_start_done kernel service is used to mark the completion of a network ID start operation. When

all the network IDs listed in the netid parameter have been started, the net_attach kernel service returns

to the caller. The net_start_done service should be called when a CIO_START_DONE status block is

received from the device handler. If the status block indicates an error, the start process is immediately

aborted.

Execution Environment

The net_start_done kernel service can be called from either the process or interrupt environment.

Return Values

The net_start_done service has no return values.

Related Information

The net_attach kernel service, net_start kernel service.

The CIO_START_DONE status block.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

320 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

net_wakeup Kernel Service

Purpose

Wakes up all sleepers waiting on the specified wait channel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

net_wakeup (chan)

int chan;

Parameter

 chan Specifies the wait channel.

Description

The net_wakeup service wakes up all network processes sleeping on the specified wait channel.

Execution Environment

The net_wakeup kernel service can be called from either the process or interrupt environment.

Return Values

The net_wakeup service has no return values.

Related Information

The net_sleep kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

net_xmit Kernel Service

Purpose

Transmits data using a communications device handler .

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <aixif/net_if.h>

int net_xmit (ifp, m, netfp, lngth, m_ext)

struct ifnet * ifp;

struct mbuf * m;

struct file * netfp;

int lngth;

struct mbuf * m_ext;

Chapter 1. Kernel Services 321

Parameters

 ifp Indicates an address of the ifnet structure for this interface.

m Specifies the address of an mbuf structure containing the data to transmit.

netfp Indicates the open file pointer obtained from the net_attach kernel service.

lngth Indicates the total length of the buffer being transmitted.

m_ext Indicates the address of an mbuf structure containing a write extension.

Description

The net_xmit kernel service builds a uio structure and then invokes the fp_rwuio service to transmit a

packet. The net_xmit_trace kernel service is an alternative for network interfaces that choose not to use

the net_xmit kernel service.

Execution Environment

The net_xmit kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the packet was transmitted successfully.

ENOBUFS Indicates that buffer resources were not available.

The net_xmit kernel service returns a value from the fp_rwuio service when an error occurs during a call

to that service.

Related Information

The fp_rwuio kernel service, net_xmit_trace kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

net_xmit_trace Kernel Service

Purpose

Traces transmit packets.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int net_xmit_trace (ifp, mbuf)

struct ifnet *ifp;

struct mbuf *mbuf;

Parameters

 ifp Designates the address of the ifnet structure for this interface.

mbuf Designates the address of the mbuf structure to be traced.

322 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The net_xmit_trace kernel service traces the data pointed to by the mbuf parameter. This kernel service

was added for those network interfaces that choose not to use the net_xmit kernel service to transmit

packets. An application program (the iptrace command) reads the trace data and writes it to a file for the

ipreport command to interpret.

Execution Environment

The net_xmit_trace kernel service can be called from either the process or interrupt environment.

Return Values

The net_xmit_trace kernel service has no return values.

Related Information

The net_xmit kernel service.

The ipreport command.

The iptrace daemon.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

NLuprintf Kernel Service

Purpose

Submits a request to print an internationalized message to a process’ controlling terminal.

Syntax

#include <sys/uprintf.h>

int NLuprintf (Uprintf)

struct uprintf *Uprintf;

Parameters

 Uprintf Points to a uprintf request structure.

Description

The NLuprintf kernel service submits a internationalized kernel message request with the uprintf request

structure specified by the Uprintf parameter as input. Once the request has been successfully submitted,

the uprintfd daemon retrieves, converts, formats, and writes the message described by the uprintf

request structure to a process’ controlling terminal.

The caller must initialize the uprintf request structure before calling the NLuprintf kernel service. Fields in

the uprintf request structure use several constants. The following constants are defined in the

/usr/include/sys/uprintf.h file:

v UP_MAXSTR

v UP_MAXARGS

v UP_MAXCAT

v UP_MAXMSG

Chapter 1. Kernel Services 323

The uprintf request structure consists of the following fields:

 Field Description

Uprintf->upf_defmsg Points to a default message format. The default message

format is a character string that contains either or both of two

types of objects:

v Plain characters, which are copied to the message output

stream

v Conversion specifications, each of which causes zero or

more items to be fetched from the Uprintf->arg value

parameter array

Each conversion specification consists of a % (percent sign)

followed by a character that indicates the type of conversion

to be applied:

% Performs no conversion. Prints a % character.

d, i Accepts an integer value and converts it to signed

decimal notation.

u Accepts an integer value and converts it to unsigned

decimal notation.

o Accepts an integer value and converts it to unsigned

octal notation.

x Accepts an integer value and converts it to unsigned

hexadecimal notation.

c Accepts and prints a char value.

s Accepts a value as a string (character pointer).

Characters from the string are printed until a \0 (null

character) is encountered.

Field-width or precision conversion specifications are not

supported.

The maximum length of the default message-format string

pointed to by the Uprintf->upf_defmsg field is the number of

characters specified by the UP_MAXSTR constant. The

Uprintf->upf_defmsg field must be a nonnull character.

The default message format is used in constructing the kernel

message if the message format described by the

Uprintf->upf_NLsetno and Uprint->upf_NLmsgno fields cannot

be retrieved from the message catalog specified by

Uprintf->upf_NLcatname. The conversion specifications

contained within the default message format should match

those contained in the message format specified by the

upf_NLsetno and upf_NLmsgno fields.

Uprintf->upf_arg[UP_MAXARGS] Specifies from zero to the number of value parameters

specified by the UP_MAXARGS constant. A Value parameter

may be a integer value, a character value, or a string value

(character pointer). Strings are limited in length to the number

of characters specified by the UP_MAXSTR constant. String

value parameters must be nonnull characters. The number,

type, and order of items in the Value parameter array should

match the conversion specifications within the message

format string.

324 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Field Description

Uprintf->upf_NLcatname Points to the message catalog file name. If the catalog file

name referred to by the Uprintf->upf_NLcatname field begins

with a / (slash), it is assumed to be an absolute path name. If

the catalog file name is not an absolute path name, the

process environment determines the directory paths to search.

The maximum length of the catalog file name is limited to the

number of characters specified by the UP_MAXCAT constant.

The value of the Uprintf->upf_NLcatname field must be a

nonnull character.

Uprintf->upf_NLsetno Specifies the set ID.

Uprintf->upf_NLmsgno Specifies the message ID. The Uprintf->upf_NLsetno and

Uprintf->upf_NLmsgno fields specify a particular message

format string to be retrieved from the message catalog

specified by the Uprintf->upf_NLcatname field.

The maximum length of the constructed kernel message is

limited to the number of characters specified by the

UP_MAXMSG constant. Messages larger then the number of

characters specified by the UP_MAXMSG constant are

discarded.

Execution Environment

The NLuprintf kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

ENOMEM Indicates that memory is not available to buffer the request.

ENODEV Indicates that a controlling terminal does not exist for the process.

ESRCH Indicates the uprintfd daemon is not active. No requests may be submitted.

EINVAL Indicates that the message catalog file-name pointer is null or the catalog file name is greater than the

number of characters specified by the UP_MAXCAT constant.

EINVAL Indicates that a string-value parameter pointer is null or the string-value parameter is greater than the

number of characters specified by the UP_MAXCAT constant.

EINVAL Indicates one of the following:

v Default message format pointer is null.

v Number of characters in the default message format is greater than the number specified by the

UP_MAXSTR constant.

v Number of conversion specifications contained within the default message format is greater than the

number specified by the UP_MAXARGS constant.

Related Information

The uprintf kernel service.

The uprintfd daemon.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

Chapter 1. Kernel Services 325

ns_add_demux Network Kernel Service

Purpose

Adds a demuxer for the specified type of network interface.

Syntax

#include <sys/ndd.h>

#include <sys/cdli.h>

int ns_add_demux (ndd_type, demux)

 u_long ndd_type;

 struct ns_demuxer * demux;

Parameters

 ndd_type Specifies the interface type of the demuxer to be added.

demux Specifies the pointer to an ns_demux structure that defines the demuxer.

Description

The ns_add_demux network service adds the specified demuxer to the list of available network

demuxers. Only one demuxer per network interface type can exist. An interface type describes a certain

class of network devices that have the same characteristics (such as ethernet or token ring). The values of

the ndd_type parameter listed in the /usr/include/sys/ndd.h file are the numbers defined by Simple

Network Management Protocol (SNMP). If the desired type is not in the ndd.h file, the SNMP value should

be used if it is defined. Otherwise, any undefined type above NDD_MAX_TYPE may be used.

Note: The ns_demuxer structure must be allocated and pinned by the network demuxer.

Examples

The following example illustrates the ns_add_demux network service:

struct ns_demuxer demuxer;

bzero (&demuxer, sizeof (demuxer));

demuxer.nd_add_filter = eth_add_filter;

demuxer.nd_del_filter = eth_del_filter;

demuxer.nd_add_status = eth_add_status;

demuxer.nd_del_status = eth_del_status;

demuxer.nd_receive = eth_receive;

demuxer.nd_status = eth_status;

demuxer.nd_response = eth_response;

demuxer.nd_use_nsdnx = 1;

ns_add_demux(NDD_ISO88023, &demuxer);

Return Values

 0 Indicates the operation was successful.

EEXIST Indicates a demuxer already exists for the given type.

Related Information

The ns_del_demux network service.

326 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

ns_add_filter Network Service

Purpose

Registers a receive filter to enable the reception of packets.

Syntax

#include <sys/cdli.h>

#include <sys/ndd.h>

int ns_add_filter (nddp, filter, len, ns_user)

 struct ndd * nddp;

 caddr_t filter;

 int len;

 struct ns_user * ns_user;

Parameters

 nddp Specifies the ndd structure to which this add request applies.

filter Specifies the pointer to the receive filter.

len Specifies the length in bytes of the receive filter to which the filter parameter points.

ns_user Specifies the pointer to a ns_user structure that defines the user.

Description

The ns_add_filter network service registers a receive filter for the reception of packets and enables a

network demuxer to route packets to the appropriate users. The add request is passed on to the

nd_add_filter function of the demuxer for the specified NDD. The caller of the ns_add_filter network

service is responsible for relinquishing filters before calling the ns_free network service.

Examples

The following example illustrates the ns_add_filter network service:

struct ns_8022 dl;

struct ns_user ns_user;

dl.filtertype = NS_LLC_DSAP_SNAP;

dl.dsap = 0xaa;

dl.orgcode[0] = 0x0;

dl.orgcode[1] = 0x0;

dl.orgcode[2] = 0x0;

dl.ethertype = 0x0800;

ns_user.isr = NULL;

ns_user.isr_data = NULL;

ns_user.protoq = &ipintrq;

ns_user.netisr = NETISR_IP;

ns_user.ifp = ifp;

ns_user.pkt_format = NS_PROTO_SNAP;

ns_add_filter(nddp, &dl, sizeof(dl), &ns_user);

There are two ways a user (that is, the entity that is interested in receiving incoming packets) can be

invoked when a packet arrives. In the first method, a protocol queue can be defined in which incoming

packets are queued upon receipt, and the specified netisr is scheduled to let the user know that there are

new packets in the queue. For example, the preceding code assumes a network interrupt service request

(netisr) with the name NETISR_IP has been defined. When a packet arrives for the specified user, the

Chapter 1. Kernel Services 327

packet is queued on the specified protocol queue (in this case, ipintrq) and the NETISR_IP request is

scheduled to be executed. Because of its complexity, this mode is not currently being used by any network

user.

The preferred way of receiving incoming packets is by registering an interrupt service request (isr) function

that handles incoming packets; ns_user.isr points to the function that will get invoked whenever a packet

that matches the specified filter arrives. This function should expect the following four arguments:

void isr (ndd_t *nddp, mbuf *m, caddr_t macp, caddr_t extp)

where

 nddp Pointer to the ndd structure representing the adapter where the packet was received.

m Pointer to the mbuf structure representing the packet that was received.

macp Pointer to the start of the MAC header of the packet that was received.

extp Pointer to the (optional) structure specified in ns_user.isr_data, or NULL if none was specified.

In the following code, the function bpf_cdli_tap will be called when a new packet arrives; a pointer to the

bp structure will be passed as the fourth parameter when bpf_cdli_tap is called.

dl.filtertype = NS_TAP;

ns_user.isr = bpf_cdli_tap;

ns_user.isr_data = (caddr_t) bp;

ns_user.protoq = (struct ifqueue *) NULL;

ns_user.netisr = 0;

ns_user.ifp = (struct ifnet *) NULL;

ns_user.pkt_format = NS_INCLUDE_MAC;

Note: Both modes of receiving packets are mutually exclusive. In other words, if the ns_user.protoq

member is non-null, the protocol queue method is used; otherwise, the direct isr function method is

used, and the ns_user.isr function pointer must be a valid function pointer.

In both cases, ns_user.ifp can optionally point to the ifnet structure of the interface where the packets will

be received. If it is non-null, the state of the interface will be verified when a packet is received. If the

interface is not up, the packet will be dropped and it will not be delivered to the user. If the interface is up,

the statistics for the number of received packets will be incremented, and the ifp will be saved in the

packet’s mbuf structure’s m_pkthdr.rcvif field.

The ns_user.pkt_format member determines how much of the MAC header the user is interested in

receiving. Its possible values are:

 NS_PROTO Do not include the LLC header (but include the SNAP header, if there is one).

NS_PROTO_SNAP Do not include the LLC SNAP header (that is, remove the entire MAC header

and deliver only the data).

NS_INCLUDE_LLC Include the LLC header.

NS_INCLUDE_MAC Include the entire MAC header.

328 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

NS_HANDLE_HEADERS Instead of passing the specified ns_user.isr_data structure by itself, build an

isr_data_ext structure containing header information, as well as a pointer to the

specified ns_user.isr_data. These are the fields that will be set in the

isr_data_ext structure:

isr_data_ext.isr_data

Pointer to the structure passed as ns_user.isr_data.

isr_data_ext.dstp

Pointer to the destination MAC address.

isr_data_ext.dstlen

Length of the destination MAC address.

isr_data_ext.srcp

Pointer to the source MAC address.

isr_data_ext.seclen

Length of the source MAC address.

isr_data_ext.segp

Pointer to the routing segment.

isr_data_ext.seglen

Length of the routing segment.

isr_data_ext.llcp

Pointer to the LLC.

isr_data_ext.llclen

Length of the LLC.

It is possible to combine NS_HANDLE_HEADERS with one of the other flags by

means of a logical OR operator (for example, ns_user.pkt_format =

NS_INCLUDE_MAC | NS_HANDLE_HEADERS). The other flags, however, are mutually

exclusive.

Return Values

 0 Indicates the operation was successful.

The network demuxer may supply other return values.

Related Information

The ns_del_filter network service.

ns_add_status Network Service

Purpose

Adds a status filter for the routing of asynchronous status.

Syntax

#include <sys/cdli.h>

#include <sys/ndd.h>

int ns_add_status (nddp, statfilter, len, ns_statuser)

 struct ndd * nddp;

Chapter 1. Kernel Services 329

caddr_t statfilter;

 int len;

 struct ns_statuser * ns_statuser;

Parameters

 nddp Specifies a pointer to the ndd structure to which this add request applies.

statfilter Specifies a pointer to the status filter.

len Specifies the length, in bytes, of the value of the statfilter parameter.

ns_statuser Specifies a pointer to an ns_statuser structure that defines this user.

Description

The ns_add_status network service registers a status filter. The add request is passed on to the

nd_add_status function of the demuxer for the specified network device driver (NDD). This network

service enables the user to receive asynchronous status information from the specified device.

Note: The user’s status processing function is specified by the isr field of the ns_statuser structure. The

network demuxer calls the user’s status processing function directly when asynchronous status

information becomes available. Consequently; the status processing function cannot be a scheduled

routine. The caller of the ns_add_status network service is responsible for relinquishing status

filters before calling the ns_free network service.

Examples

The following example illustrates the ns_add_status network service:

struct ns_statuser user;

struct ns_com_status filter;

filter.filtertype = NS_STATUS_MASK;

filter.mask = NDD_HARD_FAIL;

filter.sid = 0;

user.isr = status_fn;

user.isr_data = whatever_makes_sense;

error = ns_add_status(nddp, &filter, sizeof(filter), &user);

Return Values

 0 Indicates the operation was successful.

The network demuxer may supply other return values.

Related Information

The ns_del_status network service.

ns_alloc Network Service

Purpose

Allocates use of a network device driver (NDD).

Syntax

#include <sys/ndd.h>

330 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int ns_alloc (nddname, nddpp)

 char * nddname;

 struct ndd ** nddpp;

Parameters

 nddname Specifies the device name to be allocated.

nddpp Indicates the address of the pointer to a ndd structure.

Description

The ns_alloc network service searches the Network Service (NS) device chain to find the device driver

with the specified nddname parameter. If the service finds a match, it increments the reference count for

the specified device driver. If the reference count is incremented to 1, the ndd_open subroutine specified

in the ndd structure is called to open the device driver.

Examples

The following example illustrates the ns_alloc network service:

struct ndd *nddp;

error = ns_alloc("en0", &nddp);

Return Values

If a match is found and the ndd_open subroutine to the device is successful, a pointer to the ndd

structure for the specified device is stored in the nddpp parameter. If no match is found or the open of the

device is unsuccessful, a non-zero value is returned.

 0 Indicates the operation was successful.

ENODEV Indicates an invalid network device.

ENOENT Indicates no network demuxer is available for this device.

The ndd_open routine may specify other return values.

Related Information

The ns_free network service.

ns_attach Network Service

Purpose

Attaches a network device to the network subsystem.

Syntax

#include <sys/ndd.h>

int ns_attach (nddp)

 struct ndd * nddp;

Parameters

 nddp Specifies a pointer to an ndd structure describing the device to be attached.

Chapter 1. Kernel Services 331

Description

The ns_attach network service places the device into the available network service (NS) device chain.

The network device driver (NDD) should be prepared to be opened after the ns_attach network service is

called.

Note: The ndd structure is allocated and initialized by the device. It should be pinned.

Examples

The following example illustrates the ns_attach network service:

struct ndd ndd;

ndd.ndd_name = "en0";

ndd.ndd_addrlen = 6;

ndd.ndd_hdrlen = 14;

ndd.ndd_mtu = ETHERMTU;

ndd.ndd_mintu = 60;

ndd.ndd_type = NDD_ETHER;

ndd.ndd_flags =

 NDD_BROADCAST | NDD_SIMPLEX;

ndd.ndd_open = entopen;

ndd.ndd_output = entwrite;

ndd.ndd_ctl = entctl;

ndd.ndd_close = entclose;

.

.

.

ns_attach(&ndd);

Return Values

 0 Indicates the operation was successful.

EEXIST Indicates the device is already in the available NS device chain.

Related Information

The ns_detach network service.

ns_del_demux Network Service

Purpose

Deletes a demuxer for the specified type of network interface.

Syntax

#include <sys/ndd.h>

int ns_del_demux (ndd_type)

 u_long ndd_type;

Parameters

 ndd_type Specifies the network interface type of the demuxer that is to be deleted.

332 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

If the demuxer is not currently in use, the ns_del_demux network service deletes the specified demuxer

from the list of available network demuxers. A demuxer is in use if a network device driver (NDD) is open

for the demuxer.

Examples

The following example illustrates the ns_del_demux network service:

ns_del_demux(NDD_ISO88023);

Return Values

 0 Indicates the operation was successful.

ENOENT Indicates the demuxer of the specified type does not exist.

Related Information

The ns_add_demux network service.

ns_del_filter Network Service

Purpose

Deletes a receive filter.

Syntax

#include <sys/cdli.h>

#include <sys/ndd.h>

int ns_del_filter (nddp, filter, len)

 struct ndd * nddp;

 caddr_t filter;

 int len;

Parameters

 nddp Specifies the ndd structure that this delete request is for.

filter Specifies the pointer to the receive filter.

len Specifies the length in bytes of the receive filter.

Description

The ns_del_filter network service deletes the receive filter from the corresponding network demuxer. This

disables packet reception for packets that match the filter. The delete request is passed on to the

nd_del_filter function of the demuxer for the specified network device driver (NDD).

Examples

The following example illustrates the ns_del_filter network service:

struct ns_8022 dl;

dl.filtertype = NS_LLC_DSAP_SNAP;

dl.dsap = 0xaa;

dl.orgcode[0] = 0x0;

Chapter 1. Kernel Services 333

dl.orgcode[1] = 0x0;

dl.orgcode[2] = 0x0;

dl.ethertype = 0x0800;

ns_del_filter(nddp, &dl, sizeof(dl));

Return Values

 0 Indicates the operation was successful.

The network demuxer may supply other return values.

Related Information

The ns_add_filter network service, ns_alloc network service.

ns_del_status Network Service

Purpose

Deletes a previously added status filter.

Syntax

#include <sys/cdli.h>

#include <sys/ndd.h>

int ns_del_status (nddp, statfilter, len)

 struct ndd * nddp;

 caddr_t statfilter;

 int len;

Parameters

 nddp Specifies the pointer to the ndd structure to which this delete request applies.

statfilter Specifies the pointer to the status filter.

len Specifies the length, in bytes, of the value of the statfilter parameter.

Description

The ns_del_status network service deletes a previously added status filter from the corresponding

network demuxer. The delete request is passed on to the nd_del_status function of the demuxer for the

specified network device driver (NDD). This network service disables asynchronous status notification from

the specified device.

Examples

The following example illustrates the ns_del_status network service:

error = ns_add_status(nddp, &filter,

sizeof(filter));

Return Values

 0 Indicates the operation was successful.

The network demuxer may supply other return values.

334 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The ns_add_status network service.

ns_detach Network Service

Purpose

Removes a network device from the network subsystem.

Syntax

#include <sys/ndd.h>

int ns_detach (nddp)

 struct ndd * nddp;

Parameters

 nddp Specifies a pointer to an ndd structure describing the device to be detached.

Description

The ns_detach service removes the ndd structure from the chain of available NS devices.

Examples

The following example illustrates the ns_detach network service:

ns_detach(nddp);

Return Values

 0 Indicates the operation was successful.

ENOENT Indicates the specified ndd structure was not found.

EBUSY Indicates the network device driver (NDD) is currently in use.

Related Information

The ns_attach network service.

ns_free Network Service

Purpose

Relinquishes access to a network device.

Syntax

#include <sys/ndd.h>

void ns_free (nddp)

 struct ndd * nddp;

Parameters

 nddp Specifies the ndd structure of the network device that is to be freed from use.

Chapter 1. Kernel Services 335

Description

The ns_free network service relinquishes access to a network device. The ns_free network service also

decrements the reference count for the specified ndd structure. If the reference count becomes 0, the

ns_free network service calls the ndd_close subroutine specified in the ndd structure.

Examples

The following example illustrates the ns_free network service:

struct ndd *nddp

ns_free(nddp);

Files

 net/cdli.c

Related Information

The ns_alloc network service.

panic Kernel Service

Purpose

Crashes the system.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

panic (s)

char *s;

Parameter

 s Points to a character string to be written to the error log.

Description

The panic kernel service is called when a catastrophic error occurs and the system can no longer

continue to operate. The panic service performs these two actions:

v Writes the character string pointed to by the s parameter to the error log.

v Performs a system dump.

The system halts after the dump. You should wait for the dump to complete, reboot the system, and then

save and analyze the dump.

Execution Environment

The panic kernel service can be called from either the process or interrupt environment.

Return Values

The panic kernel service has no return values.

336 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

RAS Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

pci_cfgrw Kernel Service

Purpose

Reads and writes PCI bus slot configuration registers.

Syntax

#include <sys/mdio.h>

int pci_cfgrw(bid, md, write_flag)

int bid;

struct mdio *md;

int write_flag;

Description

The pci_cfgrw kernel service provides serialized access to the configuration registers for a PCI bus. To

ensure data integrity in a multi-processor environment, a lock is required before accessing the

configuration registers. Depending on the value of the write_flag parameter, a read or write to the

configuration register is performed at offset md_addr for the device identified by md_sla.

The pci_cfgrw kernel service provides for kernel extensions the same services as the MIOPCFGET and

MIOPCFPUT ioctls provides for applications. The pci_cfgrw kernel service can be called from either the

process or the interrupt environment.

Parameters

 bid Specifies the bus identifier.

md Specifies the address of the mdio structure. The mdio structure contains the following fields:

md_addr

Starting offset of the configuration register to access (0 to 0xFF for PCI/PCI-X, and 0 to

0xFFF for PCI-E).

md_data

Pointer to the data buffer.

md_size

Number of items of size specified by the md_incr parameter. The maximum size is 256

bytes for PCI/PCI-X, and 4096 for PCI-E.

md_incr

Access types, MV_BYTE, MV_WORD, or MV_SHORT.

md_sla Device Number and Function Number.

 (Device Number * 8) + Function.

write_flag Set to 1 for write and 0 for read.

Return Values

Returns 0 for successful completion.

 ENOMEM Indicates no memory could be allocated.

EINVAL Indicated that the bus, device/function, or size is not valid.

EPERM Indicates that the platform does not allow the requested operation

Chapter 1. Kernel Services 337

Related Information

Machine Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2

pfctlinput Kernel Service

Purpose

Invokes the ctlinput function for each configured protocol.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/domain.h>

void pfctlinput (cmd, sa)

int cmd;

struct sockaddr *sa;

Parameters

 cmd Specifies the command to pass on to protocols.

sa Indicates the address of a sockaddr structure that is passed to the protocols.

Description

The pfctlinput kernel service searches through the protocol switch table of each configured domain and

invokes the protocol ctlinput function if defined. Both the cmd and sa parameters are passed as

parameters to the protocol function.

Execution Environment

The pfctlinput kernel service can be called from either the process or interrupt environment.

Return Values

The pfctlinput service has no return values.

Related Information

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

pffindproto Kernel Service

Purpose

Returns the address of a protocol switch table entry.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/domain.h>

338 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

struct protosw *pffindproto (family, protocol, type)

int family;

int protocol;

int type;

Parameters

 family Specifies the address family for which to search.

protocol Indicates the protocol within the address family.

type Specifies the type of socket (for example, SOCK_RAW).

Description

The pffindproto kernel service first searches the domain switch table for the address family specified by

the family parameter. If found, the pffindproto service then searches the protocol switch table for that

domain and checks for matches with the type and protocol parameters.

If a match is found, the pffindproto service returns the address of the protocol switch table entry. If the

type parameter is set to SOCK_RAW, the pffindproto service returns the first entry it finds with protocol

equal to 0 and type equal to SOCK_RAW.

Execution Environment

The pffindproto kernel service can be called from either the process or interrupt environment.

Return Values

The pffindproto service returns a null value if a protocol switch table entry was not found for the given

search criteria. Upon success, the pffindproto service returns the address of a protocol switch table entry.

Related Information

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Understanding Socket Header Files in AIX 5L Version 5.3 Communications Programming Concepts.

pgsignal Kernel Service

Purpose

Sends a signal to all of the processes in a process group.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void pgsignal (pid, sig)

pid_t pid;

int sig;

Parameters

 pid Specifies the process ID of a process in the group of processes to receive the signal.

sig Specifies the signal to send.

Chapter 1. Kernel Services 339

Description

The pgsignal kernel service sends a signal to each member in the process group to which the process

identified by the pid parameter belongs. The pid parameter must be the process identifier of the member

of the process group to be sent the signal. The sig parameter specifies which signal to send.

Device drivers can get the value for the pid parameter by using the getpid kernel service. This value is the

process identifier for the currently executing process.

The sigaction subroutine contains a list of the valid signals.

Execution Environment

The pgsignal kernel service can be called from either the process or interrupt environment.

Return Values

The pgsignal service has no return values.

Related Information

The getpid kernel service, pidsig kernel service.

The sigaction subroutine.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

pidsig Kernel Service

Purpose

Sends a signal to a process.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void pidsig (pid, sig)

pid_t pid;

int sig;

Parameters

 pid Specifies the process ID of the receiving process.

sig Specifies the signal to send.

Description

The pidsig kernel service sends a signal to a process. The pid parameter must be the process identifier of

the process to be sent the signal. The sig parameter specifies the signal to send. See the sigaction

subroutine for a list of the valid signals.

Device drivers can get the value for the pid parameter by using the getpid kernel service. This value is the

process identifier for the currently executing process.

340 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The pidsig kernel service can be called from an interrupt handler execution environment if the process ID

is known.

Execution Environment

The pidsig kernel service can be called from either the process or interrupt environment.

Return Values

The pidsig service has no return values.

Related Information

The getpid kernel service, pgsignal kernel service.

The sigaction subroutine.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

pin Kernel Service

Purpose

Pins the address range in the system (kernel) space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/pin.h>

int pin (addr, length)

caddr_t addr;

int length;

Parameters

 addr Specifies the address of the first byte to pin.

length Specifies the number of bytes to pin.

Description

The pin service pins the real memory pages touched by the address range specified by the addr and

length parameters in the system (kernel) address space. It pins the real-memory pages to ensure that

page faults do not occur for memory references in this address range. The pin service increments the pin

count for each real-memory page. While the pin count is nonzero, the page cannot be paged out of real

memory.

The pin routine pins either the entire address range or none of it. Only a limited number of pages can be

pinned in the system. If there are not enough unpinned pages in the system, the pin service returns an

error code.

Note: If the requested range is not aligned on a page boundary, then memory outside this range is also

pinned. This is because the operating system pins only whole pages at a time.

The pin service can only be called for addresses within the system (kernel) address space. The xmempin

service should be used for addresses within kernel or user space.

Chapter 1. Kernel Services 341

Execution Environment

The pin kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory

beginning at the address of the first byte to pin (the addr parameter) and extending for the number of

bytes specified by the length parameter is not defined.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates that the pin service was unable to pin due to insufficient real memory or exceeding the

systemwide pin count.

ENOSPC Indicates insufficient file system or paging space.

Related Information

The xmempin and xmemunpin kernel services.

Understanding Execution Environments and Memory Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

pincf Kernel Service

Purpose

Manages the list of free character buffers.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <cblock.h>

int pincf (delta)

int delta;

Parameter

 delta Specifies the amount by which to change the number of free-pinned character buffers.

Description

The pincf service is used to control the size of the list of free-pinned character buffers. A positive value for

the delta parameter increases the size of this list, while a negative value decreases the size.

All device drivers that use character blocks need to use the pincf service. These drivers must indicate with

a positive delta value the maximum number of character blocks they expect to be using concurrently.

Device drivers typically call this service with a positive value when the ddopen routine is called. They

should call the pincf service with a negative value of the same amount when they no longer need the

pinned character blocks. This occurs typically when the ddclose routine is called.

Execution Environment

The pincf kernel service can be called in the process environment only.

342 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

The pincf service returns a value representing the amount by which the service changed the number of

free-pinned character buffers.

Related Information

The waitcfree kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

pincode Kernel Service

Purpose

Pins the code and data associated with a loaded object module.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/pin.h>

int pincode (func)

int (*func) ();

Parameter

 func Specifies an address used to determine the object module to be pinned. The address is typically that of a

function exported by this object module.

Description

The pincode service uses the pin service to pin the specified object module. The loader entry for the

object module is used to determine the size of both the code and data.

Execution Environment

The pincode kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EINVAL Indicates that the func parameter is not a valid pointer to the function.

ENOMEM Indicates that the pincode service was unable to pin the module due to insufficient real memory.

When an error occurs, the pincode service returns without pinning any pages.

Related Information

The pin kernel service.

Understanding Execution Environments and Memory Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 343

pinu Kernel Service

Purpose

Pins the specified address range in user or system memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

int pinu (base, len, segflg)

caddr_t base;

int len;

short segflg;

Parameters

 base Specifies the address of the first byte to pin.

len Indicates the number of bytes to pin.

segflg Specifies whether the data to pin is in user space or system space. The values for this flag are defined in

the /usr/include/sys/uio.h file. This value can be one of the following:

UIO_SYSSPACE

Indicates the region is mapped into the kernel address space.

UIO_USERSPACE

Indicates the region is mapped into the user address space.

Description

The pinu kernel service is used to pin pages backing a specified memory region which is defined in either

system or user address space. Pinning a memory region prohibits the pager from stealing pages from the

pages backing the pinned memory region. Once a memory region is pinned, accessing that region does

not result in a page fault until the region is subsequently unpinned.

The pinu kernel service will not work on a mapped file.

If the caller has a valid cross-memory descriptor for the address range, the xmempin and xmemunpin

kernel services can be used instead of pinu and unpinu, and result in less pathlength.

Note: The pinu kernel service is not supported on the 64-bit kernel.

Execution Environment

The pinu kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EFAULT Indicates that the memory region as specified by the base and len parameters is not within the address

space specified by the segflg parameter.

 EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory

beginning at the byte specified by the base parameter and extending for the number of bytes specified by

the len parameter is not defined.

344 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

ENOMEM Indicates that the pinu service is unable to pin the region due to insufficient real memory or because it

has exceeded the systemwide pin count.

Related Information

The pin kernel service, unpinu kernel service, xmempin kernel service, xmemunpin kernel service.

Understanding Execution Environments and Memory Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

pio_assist Kernel Service

Purpose

Provides a standardized programmed I/O exception handling mechanism for all routines performing

programmed I/O.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int pio_assist (ioparms, iofunc, iorecov)

caddr_t ioparms;

int (*iofunc)();

int (*iorecov)();

Parameters

 ioparms Points to parameters for the I/O routine.

iofunc Specifies the I/O routine function pointer.

iorecov Specifies the I/O recovery routine function pointer.

Description

The pio_assist kernel service assists in handling exceptions caused by programmed I/O. Use of the

pio_assist service standardizes the programmed I/O exception handling for all routines performing

programmed I/O. The pio_assist service is built upon other kernel services that routines access to provide

their own exception handling if the pio_assist service should not be used.

Using the pio_assist Kernel Service

To use the pio_assist service, the device handler writer must provide a callable routine that performs the

I/O operation. The device handler writer can also optionally provide a routine that can recover and log I/O

errors. The mainline device handler code would then call the pio_assist service with the following

parameters:

v A pointer to the parameters needed by the I/O routine

v The function pointer for the routine performing I/O

v A pointer for the I/O recovery routine (or a null pointer, if there is no I/O recovery routine)

If the pointer for the I/O recovery routine is a null character, the iofunc routine is recalled to recover from

I/O exceptions. The I/O routine for error retry should only be re-used if the I/O routine can handle being

recalled when an error occurs, and if the sequence of I/O instructions can be reissued to recover from

typical bus errors.

Chapter 1. Kernel Services 345

The ioparms parameter points to the parameters needed by the I/O routine. It is passed to the I/O routine

when the pio_assist service calls the I/O routine. It is also passed to the I/O recovery routine when the

I/O recovery routine is invoked by the pio_assist service. If any of the parameters found in the structure

pointed to by the ioparms parameter are modified by the iofunc routine and needed by the iorecov or

recalled iofunc routine, they must be declared as volatile.

Requirements for Coding the Caller-Provided I/O Routine

The iofunc parameter is a function pointer to the routine performing the actual I/O. It is called by the

pio_assist service with the following parameters:

int iofunc (ioparms)

caddr_t ioparms; /* pointer to parameters */

The ioparms parameter points to the parameters used by the I/O routine that was provided on the call to

the pio_assist kernel service.

If the pio_assist kernel service is used with a null pointer to the iorecov I/O recovery routine, the iofunc

I/O routine is called to retry all programmed I/O exceptions. This is useful for devices that have I/O

operations that can be re-sent without concern for hardware state synchronization problems.

Upon return from the I/O, the return code should be 0 if no error was encountered by the I/O routine itself.

If a nonzero return code is presented, it is used as the return code from the pio_assist kernel service.

Requirements for Coding the Caller-Provided I/O Recovery Routine

The iorecov parameter is a function pointer to the device handler’s I/O recovery routine. This iorecov

routine is responsible for logging error information, if required, and performing the necessary recovery

operations to complete the I/O, if possible. This may in fact include calling the original I/O routine. The

iorecov routine is called with the following parameters when an exception is detected during execution of

the I/O routine:

int iorecov (parms, action, infop)

caddr_t parms;/* pointer to parameters passed to iofunc*/

int action; /* action indicator */

struct pio_except *infop; /* pointer to exception info */

The parms parameter points to the parameters used by the I/O routine that were provided on the call to

the pio_assist service.

The action parameter is an operation code set by the pio_assist kernel service to one of the following:

 PIO_RETRY Log error and retry I/O operations, if possible.

PIO_NO_RETRY Log error but do not retry the I/O operation.

The pio_except structure containing the exception information is platform-specific and defined in the

/usr/include/sys/except.h file. The fields in this structure define the type of error that occurred, the bus

address on which the error occurred, and additional platform-specific information to assist in the handling

of the exception.

The iorecov routine should return with a return code of 0 if the exception is a type that the routine can

handle. A EXCEPT_NOT_HANDLED return code signals that the exception is a type not handled by the

iorecov routine. This return code causes the pio_assist kernel service to invoke the next exception

handler on the stack of exception handlers. Any other nonzero return code signals that the iorecov routine

handled the exception but could not successfully recover the I/O. This error code is returned as the return

code from the pio_assist kernel service.

Return Codes by the pio_assist Kernel Service

The pio_assist kernel service returns a return code of 0 if the iofunc I/O routine does not indicate any

errors, or if programmed I/O exceptions did occur but were successfully handled by the iorecov I/O

346 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

recovery routine. If an I/O exception occurs during execution of the iofunc or iorecov routines and the

exception count has not exceeded the maximum value, the iorecov routine is called with an op value of

PIO_RETRY.

If the number of exceptions that occurred during this operation exceeds the maximum number of retries

set by the platform-specific value of PIO_RETRY_COUNT, the pio_assist kernel service calls the iorecov

routine with an op value of PIO_NO_RETRY. This indicates that the I/O operation should not be retried. In

this case, the pio_assist service returns a return code value of EIO indicating failure of the I/O operation.

If the exception is not an I/O-related exception or if the iorecov routine returns with the return code of

EXCEPT_NOT_HANDLED (indicating that it could not handle the exception), the pio_assist kernel

service does not return to the caller. Instead, it invokes the next exception handler on the stack of

exception handlers for the current process or interrupt handler. If no other exception handlers are on the

stack, the default exception handler is invoked. The normal action of the default exception handler is to

cause a system crash.

Execution Environment

The pio_assist kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that either no errors were encountered, or PIO errors were encountered and successfully handled.

EIO Indicates that the I/O operation was unsuccessful because the maximum number of I/O retry operations was

exceeded.

Related Information

Kernel Extension and Device Driver Management Kernel Services, User-Mode Exception Handling,

Kernel-Mode Exception Handling in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Process State-Change Notification Routine

Purpose

Allows kernel extensions to be notified of major process and thread state transitions.

Syntax

void prochadd_handler (term, type, id)

struct proch *term;

int type;

long id;

void proch_reg_handler (term, type, id)

struct prochr *term;

int type;

long id;

Parameters

 term Points to the proch structure used in the prochadd call or to the prochr structure used in the proch_reg

call.

Chapter 1. Kernel Services 347

type Defines the state change event being reported: process initialization, process termination, process exec,

thread initialization, or thread termination. These values are defined in the /usr/include/sys/proc.h file. The

values that may be passed as type also depend on how the callout is requested.

Possible prochadd_handler type values:

PROCH_INITIALIZE

Process is initializing.

PROCH_TERMINATE

Process is terminating.

PROCH_EXEC

Process is about to exec a new program.

THREAD_INITIALIZE

A new thread is created.

THREAD_TERMINATE

A thread is terminated.

Possible proch_reg_handler type values:

PROCHR_INITIALIZE

Process is initializing.

PROCHR_TERMINATE

Process is terminating.

PROCHR_EXEC

Process is about to exec a new program.

PROCHR_THREAD_INIT

A new thread is created.

PROCHR_THREAD_TERM

A thread is terminated.

id Defines either the process ID or the thread ID.

Description

The notification callout is set up by using either the prochadd or the proch_reg kernel service. If you

request the notification using the prochadd kernel service, the callout follows the syntax shown first as

prochadd_handler. If you request the notification using the proch_reg kernel service, the callout follows

the syntax shown second as proch_reg_handler.

For process initialization, the process state-change notification routine is called in the execution

environment of a parent process for the initialization of a newly created child process. For kernel

processes, the notification routine is called when the initp kernel service is called to complete initialization.

For process termination, the notification routines are called before the kernel handles default termination

procedures. The routines must be written so as not to allocate any resources under the terminating

process. The notification routine is called under the process image of the terminating process.

Related Information

The prochadd kernel service, prochdel kernel service, proch_reg kernel service, proch_unreg kernel

service.

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

348 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

proch_reg Kernel Service

Purpose

Registers a callout handler.

Syntax

#include <sys/proc.h>

int proch_reg(struct prochr *)

Note: The prochr structure contains the following elements that must be set prior to calling proch_reg:

void (* proch_handler)(struct prochr *, int, long)

unsigned int int prochr_mask

Parameters

 int prochr_mask Specifies the set of kernel events for which a callout is

requested. Unlike the old_style interface, the callout is

invoked only for the specified events. This mask is formed

by ORing together any of these defined values:

PROCHR_INITIALIZE

Process created.

PROCHR_TERMINATE

Process terminated

PROCHR_EXEC

Process has issued the exec system call

PROCHR_THREADINIT

Thread created

PROCHR_THREADTERM

Thread terminated

proch_handler Specifies the callout function to be called when specified

kernel events occur.

Description

If the same struct prochr * is registered more than once, only the most recently specified information is

retained in the kernel.

The struct prochr * is not copied to a new location in memory. As a result, if the structure is changed,

results are unpredictable. This structure does not need to be pinned.

The primary consideration for the new-style interface is to improve scalability. A lock is only acquired when

callouts are made. A summary mask of all currently registered callout event types is maintained. This

summary mask is updated every time proch_reg or proch_unreg is called, even when registering an

identical struct prochr *. Further, the lock is a complex lock, so once callouts have been registered, there

is no lock contention in invoking them because the lock is held read-only.

When a callout to a registered handler function is made, the parameters passed are:

v a pointer to the registered prochr structure

v a callout request value to indicate the reason for the callout

v a thread or process ID

Chapter 1. Kernel Services 349

Return Values

On successful completion, the proch_reg kernel service returns a value of 0. The only error (non-zero)

return is from trying to register with a NULL pointer.

Execution Environment

The proch_reg kernel service can be called from the process environment only.

Related Information

The proch_unreg kernel service.

The Process State-Change Notification Routine.

Kernel Extension and Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

proch_unreg Kernel Service

Purpose

Unregisters a callout handler that was previously registered using the proch_reg kernel service.

Syntax

#include <sys/proc.h>

int proch_unreg(struct prochr *old_prochr);

Parameter

 old_prochr Specifies the address of the proch structure to be unregistered.

Description

Unregisters an existing callout handler that was previously registered using the proch_reg() kernel

service.

Return Values

On successful completion, the proch_unreg kernel service returns a value of 0. An error (non-zero)

return occurs when trying to unregister a handler that is not presently registered.

Execution Environment

The proch_unreg kernel service can be called from the process environment only.

Related Information

The proch_reg kernel service.

Kernel Extension and Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

prochadd Kernel Service

Purpose

Adds a system-wide process state-change notification routine.

350 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/proc.h>

void prochadd (term)

struct proch *term;

Parameters

 term Points to a proch structure containing a notification routine to be added from the chain of systemwide

notification routines.

Description

The prochadd kernel service allows kernel extensions to register for notification of major process state

transitions. The prochadd service allows the caller to be notified when a process:

v Has just been created.

v Is about to be terminated.

v Is executing a new program.

The complete list of callouts is:

 Callout Description

PROCH_INITIALIZE Process (pid) created (initp, kforkx)

PROCH_TERMINATE Process (pid) terminated (kexitx)

PROCH_EXEC Process (pid) executing (execvex)

THREAD_INITIALIZE Thread (tid) created (kforkx, thread_create)

THREAD_TERMINATE Thread (tid) created (kexitx, thread_terminate)

The prochadd service is typically used to allow recovery or reassignment of resources when processes

undergo major state changes.

The caller should allocate a proch structure and update the proch.handler field with the entry point of a

caller-supplied notification routine before calling the prochadd kernel service. This notification routine is

called once for each process in the system undergoing a major state change.

The proch structure has the following form:

struct proch

{

 struct proch *next

 void *handler ();

}

Execution Environment

The prochadd kernel service can be called from the process environment only.

Related Information

The prochdel kernel service.

The Process State-Change Notification Routine.

Kernel Extension and Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

Chapter 1. Kernel Services 351

prochdel Kernel Service

Purpose

Deletes a process state change notification routine.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/proc.h>

void prochdel (term)

struct proch *term;

Parameter

 term Points to a proch structure containing a notification routine to be removed from the chain of system-wide

notification routines. This structure was previously registered by using the prochadd kernel service.

Description

The prochdel kernel service removes a process change notification routine from the chain of system-wide

notification routines. The registered notification routine defined by the handler field in the proch structure

is no longer to be called by the kernel when major process state changes occur.

If the proch structure pointed to by the term parameter is not found in the chain of structures, the

prochdel service performs no operation.

Execution Environment

The prochdel kernel service can be called from the process environment only.

Related Information

The prochadd kernel service.

The Process State-Change Notification Routine.

Kernel Extension and Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

probe or kprobe Kernel Service

Purpose

Logs errors with symptom strings.

Library (for probe)

Run-time Services Library.

Syntax

#include <sys/probe.h>

or

352 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

#include <sys/sysprobe.h>

int probe (probe_p)

probe_t *probe_p

int kprobe (probe_p)

probe_t *probe_p

Description

The probe subroutine logs an entry to the error log. The entry consists of an error log entry as defined in

the errlog subroutine and the err_rec.h header file, and a symptom string.

The probe subroutine is called from an application, while kprobe is called from the Kernel and Kernel

extensions. Both probe and kprobe have the same interfaces, except for return codes.

IBM software should use the sys/sysprobe.h header file while non-IBM programs should include the

sys/probe.h file. This is because IBM symptom strings must conform to different rules than non-IBM

strings. It also tells any electronic support application whether or not to route the symptom string to IBM’s

Retain database.

Parameters

 probe_p is a pointer to the data structure which contains the pointer and length of the error record, and the data

for the probe. The error record is described under the errlog subroutine and defined in err_rec.h.

The first word of the structure is a magic number to identify this version of the structure. The magic

number should be set to PROBE_MAGIC.

Note: PROBE_MAGIC is different between probe.h and sysprobe.h to distinguish an IBM symptom

string from a non-IBM string.

The probe data consists of flags which control probe handling, the number of symptom string

keywords, followed by an array consisting of one element for each keyword.

Flags

 SSNOSEND indicates this symptom string shouldn’t be forwarded to automatic problem opening facilities. An

example where SSNOSEND should be used is in symptom data used for debugging purposes.

nsskwd This gives the number of keywords specified (i.e.), the number of elements in the sskwds array.

Chapter 1. Kernel Services 353

sskwds This is an array of keyword/value pairs. The keywords and their values are in the following table. The

I/S value indicates whether the keyword and value are informational or are part of the logged

symptom string. The number in parenthesis indicates, where applicable, the maximum string length.

keyword I/S value type Description

SSKWD_LONGNAME I char * (30) Product’s long name

SSKWD_OWNER I char * (16) Product’s owner

SSKWD_PIDS S char * (11) product id.(required for IBM symptom strings)

SSKWD_LVLS S char * (5) product level (required for IBM symptom strings)

SSKWD_APPLID I char * (8) application id.

SSKWD_PCSS S char * (8) probe id (required for all symptom strings)

SSKWD_DESC I char * (80) problem description

SSKWD_SEV I int severity from 1 (highest) to 4 (lowest). 3 is the default.

SSKWD_AB S char * (5) abend code

SSKWD_ADRS S void * address. If used at all, this should be a relative address.

SSKWD_DEVS S char * (6) Device type

SSKWD_FLDS S char * (9) arbitrary character string. This is usually a field name and

 the SSKWD_VALUE keyword specifies the value.

SSKWD_MS S char * (11) Message number

SSKWD_OPCS S char * (8) OP code

SSKWD_OVS S char * (9) overwritten storage

SSKWD_PRCS S unsigned long return code

SSKWD_REGS S char * (4) Register name (e.g.) GR15 or LR unsigned long Value

SSKWD_VALU S

SSKWD_RIDS S char * (8) resource or module id.

SSKWD_SIG S . int Signal number

SSKWD_SN S char * (7) Serial Number

SSKWD_SRN S char * (9) Service Req. Number If specified, and no error is logged,

 a hardware error is assumed.

SSKWD_WS S char * (10) Coded wait

Note: The SSKWD_PCCS value is always required. This is the probe id. Additionally, for IBM symptom

strings, the SSKWD_PIDS and SSKWD_LVLS keywords are also required

If either the erecp or erecl fields in the probe_rec structure is 0 then no error logging record is being

passed, and one of the default templates for symptom strings is used. The default template indicating a

software error is used unless the SSKWD_SRN keyword is specified. If it is, the error is assumed to be a

hardware error. If you don’t wish to log your own error with a symptom string, and you wish to have a

hardware error, and don’t want to use the SSKWD_SRN value, then you can supply an error log record

using the error identifier of ERRID_HARDWARE_SYMPTOM, see the /usr/include/sys/errids.h file.

Return Values for probe Subroutine

 0 Successful

-1 Error. The errno variable is set to

EINVAL Indicates an invalid parameter

EFAULT Indicates an invalid address

Return Values for kprobe Kernal Service

 0 Successful

EINVAL Indicates an invalid parameter

Execution Environment

probe is executed from the application environment.

kprobe is executed from the Kernel and Kernel extensions. Currently, kprobe must not be called with

interrupts disabled.

354 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Files

 /usr/include/sys/probe.h Contains parameter definition.

Related Information

Error Logging Overview.

The errlog subroutines.

The errsave or errlast subroutines.

purblk Kernel Service

Purpose

Purges the specified block from the buffer cache.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

void purblk (dev, blkno)

dev_t dev;

daddr_t blkno;

Parameters

 dev Specifies the device containing the block to be purged.

blkno Specifies the block to be purged.

Description

The purblk kernel service purges (that is, makes unreclaimable by marking the block with a value of

STALE) the specified block from the buffer cache.

Execution Environment

The purblk kernel service can be called from the process environment only.

Return Values

The purblk service has no return values.

Related Information

The brelse kernel service, geteblk kernel service.

Block I/O Buffer Cache Kernel Services: Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 355

putc Kernel Service

Purpose

Places a character at the end of a character list.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <cblock.h>

int putc (c, header)

char c;

struct clist *header;

Parameters

 c Specifies the character to place on the character list.

header Specifies the address of the clist structure that describes the character list.

Description

Attention: The caller of the putc service must ensure that the character list is pinned. This includes

the clist header and all the cblock character buffers. Character blocks acquired from the getcf

service are also pinned. Otherwise, the system may crash.

The putc kernel service puts the character specified by the c parameter at the end of the character list

pointed to by the header parameter.

If the putc service indicates that there are no more buffers available, the waitcfree service can be used to

wait until a character block is available.

Execution Environment

The putc kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates successful completion.

-1 Indicates that the character list is full and no more buffers are available.

Related Information

The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service, putcfl kernel

service, waitcfree kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

putcb Kernel Service

Purpose

Places a character buffer at the end of a character list.

356 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <cblock.h>

void putcb (p, header)

struct cblock *p;

struct clist *header;

Parameters

 p Specifies the address of the character buffer to place on the character list.

header Specifies the address of the clist structure that describes the character list.

Description

Attention: The caller of the putcb service must ensure that the character list is pinned. This includes

the clist header and all the cblock character buffers. Character blocks acquired from the getcf

service are pinned. Otherwise, the system may crash.

The putcb kernel service places the character buffer pointed to by the p parameter on the end of the

character list specified by the header parameter. Before calling the putcb service, you must load this new

buffer with characters and set the c_first and c_last fields in the cblock structure. The p parameter is

the address returned by either the getcf or the getcb service.

Execution Environment

The putcb kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates successful completion.

-1 Indicates that the character list is full and no more buffers are available.

Related Information

The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service, putcfl kernel

service, waitcfree kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

putcbp Kernel Service

Purpose

Places several characters at the end of a character list.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <cblock.h>

Chapter 1. Kernel Services 357

int putcbp (header, source, n)

struct clist *header;

char *source;

int n;

Parameters

 header Specifies the address of the clist structure that describes the character list.

source Specifies the address from which characters are read to be placed on the character list.

n Specifies the number of characters to be placed on the character list.

Description

Attention: The caller of the putcbp service must ensure that the character list is pinned. This

includes the clist header and all of the cblock character buffers. Character blocks acquired from the

getcf service are pinned. Otherwise, the system may crash.

The putcbp kernel service operates on the characters specified by the n parameter starting at the address

pointed to by the source parameter. This service places these characters at the end of the character list

pointed to by the header parameter. The putcbp service then returns the number of characters added to

the character list. If the character list is full and no more buffers are available, the putcbp service returns

a 0. Otherwise, it returns the number of characters written.

Execution Environment

The putcbp kernel service can be called from either the process or interrupt environment.

Return Values

The putcbp service returns the number of characters written or a value of 0 if the character list is full, and

no more buffers are available.

Related Information

The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service, putcfl kernel

service, waitcfree kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

putcf Kernel Service

Purpose

Frees a specified buffer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <cblock.h>

void putcf (p)

struct cblock *p;

Parameter

 p Identifies which character buffer to free.

358 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The putcf kernel service unpins the indicated character buffer.

The putcf service returns the specified buffer to the list of free character buffers.

Execution Environment

The putcf kernel service can be called from either the process or interrupt environment.

Return Values

The putcf service has no return values.

Related Information

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

putcfl Kernel Service

Purpose

Frees the specified list of buffers.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <cblock.h>

void putcfl (header)

struct clist *header;

Parameter

 header Identifies which list of character buffers to free.

Description

The putcfl kernel service returns the specified list of buffers to the list of free character buffers. The putcfl

service unpins the indicated character buffer.

Note: The caller of the putcfl service must ensure that the header and clist structure are pinned.

Execution Environment

The putcfl kernel service can be called from either the process or interrupt environment.

Return Values

The putcfl service has no return values.

Related Information

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 359

putcx Kernel Service

Purpose

Places a character on a character list.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/cblock.h>

int putcx (c, header)

char c;

struct clist *header;

Parameters

 c Specifies the character to place at the front of the character list.

header Specifies the address of the clist structure that describes the character list.

Description

The putcx kernel service puts the character specified by the c parameter at the front of the character list

pointed to by the header parameter. The putcx service is identical to the putc service, except that it puts

the character at the front of the list instead of at the end.

If the putcx service indicates that there are no more buffers available, the waitcfree service can be used

to wait until a character buffer is available.

Note: The caller of the putcx service must ensure that the character list is pinned. This includes the clist

header and all the cblock character buffers. Character blocks acquired from the getcf service are

pinned.

Execution Environment

The putcx kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates successful completion.

-1 Indicates that the character list is full and no more buffers are available.

Related Information

The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service, putcfl kernel

service, waitcfree kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

RAS_BLOCK_NULL Exported Data Structure

Purpose

Allows for the silent failure of ras_register calls due to memory allocation errors.

360 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/ras.h>

extern const ras_block_t RAS_BLOCK_NULL

Description

The RAS_BLOCK_NULL data structure allows components to go through their normal code paths when

they receive an ENOMEM error from the ras_register kernel service. The presence of this data structure

does not need to be explicitly checked by callers of RAS functions. All RAS domain functions (such as

Component Tracing) are disabled by this control block.

Related Information

The ras_register and ras_unregister exported kernel services.

The ras_control exported kernel service.

The ras_customize exported kernel service.

The CT_HOOKx and CT_GEN macros.

The CT_TRCON macro.

ras_control Exported Kernel Service

Purpose

Controls component RAS characteristics.

Syntax

#include <sys/ras.h>

kerrno_t ras_control (

ras_block_t ras_blk,

ras_cmd_t command,

void * arg,

long argsize);

Description

The ras_control kernel service passes a command to the callback for the component referenced by the

ras_blk parameter. If the ras_blk parameter is not known, use the ras_path_control call.

Note: During the ras_control process, callbacks to the registrant of the component might be initiated for

changes that the RAS infrastructure makes to the component. The registrant should be aware of

this for locking purposes (for instance, the registrant should not hold any locks that the callback

needs).

If the ras_blk input parameter has a value of RAS_BLOCK_NULL, the ras_control kernel service returns

without errors and takes no action.

Parameters

 ras_blk The target control block pointer.

Chapter 1. Kernel Services 361

command Command passed to the callback. Commands are specific to a given RAS domain,

such as Component Trace.

arg Optional argument for the command.

argsize Size of the argument, if a buffer or structure.

Execution Environment

The calling environment of the ras_control kernel service varies by individual command. The calling

environment of a particular command is documented with the command itself.

Return Values

The ras_control kernel service returns 0 for success and a non-zero error code for failure.

Related Information

Component Trace Facility in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

The ras_callback registered callback.

The ras_register and ras_unregister exported kernel services.

The ras_customize exported kernel service.

The ras_path_control exported kernel service.

The RAS_BLOCK_NULL data structure.

ras_customize Exported Kernel Service

Purpose

Loads persistent customized properties for a RAS control block.

Syntax

#include <sys/ras.h>

kerrno_t ras_customize (ras_block_t ras_blk);

Description

The ras_customize kernel service checks for, and applies persistent customized properties for a given

ras_blk parameter. After applying any persistent properties, the ras_customize kernel service puts the

ras_blk parameter in a usable state. Registration is not complete without a call to the ras_customize

kernel service.

Note: During the ras_customize process, callbacks to the registrant might be initiated for changes that

the RAS infrastructure makes to the component. The registrant should be aware of this for locking

and initialization purposes (for example, the registrant should not be holding any locks that the

callback needs, and the private data for the callback should be initialized before ras_customize is

called).

If the ras_blk input parameter has a value of RAS_BLOCK_NULL, the ras_customize kernel service

returns without errors and takes no action.

362 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 ras_blk The control block to act on. Must be previously allocated by the ras_register kernel

service.

Execution Environment

The ras_customize kernel service must be called from the process environment.

Return Values

 0 Successful.

non-zero Unsuccessful.

Related Information

Component Trace Facility in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

The ras_callback registered callback.

The ras_register and ras_unregister exported kernel services.

The ras_control exported kernel service.

The RAS_BLOCK_NULL data structure.

ras_path_control Exported Kernel Services

Purpose

Controls component RAS characteristics.

Syntax

#include <sys/ras.h>

kerrno_t ras_path_control (

char * path,

ras_cmd_t command,

void * arg,

long argsize);

Description

The ras_path_control kernel service passes a command to the RAS component specified by the path

parameter.

Note: During the ras_path_control process, callbacks to the registrant of the component might be

initiated for changes that the RAS infrastructure makes to the component. The registrant should be

aware of this for locking purposes (for instance, the registrant should not be holding any locks the

callback needs).

Parameters

 path The pathname of the component to receive the command parameter.

Chapter 1. Kernel Services 363

command Command passed to the callback. Commands are specific to a given RAS domain,

such as Component Trace.

arg Optional argument for the command.

argsize Size of the argument, if a buffer or structure.

Execution Environment

The calling environment of the ras_path_control kernel service varies by individual command. The calling

environment of a particular command is documented with the command itself.

Return Values

 0 Successful.

non-zero Unsuccessful.

Related Information

Component Trace Facility in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

The ras_control exported kernel service.

The ras_register and ras_unregister exported kernel services.

The ras_customize exported kernel service.

ras_register and ras_unregister Exported Kernel Services

Purpose

Registers and unregisters a RAS component.

Syntax

#include <sys/ras.h>

kerrno_t ras_register (

ras_block_t * rasbp,

char * name,

ras_block_t parent,

ras_type_t typesubtype,

char * desc,

long flags,

ras_callback_t ras_callback,

void * private_data);

kerrno_t ras_unregister (ras_block_t ras_blk);

Description

The ras_register kernel service and the ras_unregister kernel service register and unregister RAS

handlers which are invoked by the kernel when the system needs to communicate various RAS

commands to each component.

The ras_register kernel service registers a component with the given name under the parent provided. If

the parent is NULL, the ras_register kernel service registers name as a base component, but the

364 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

typesubtype parameter must be provided. The name parameter specifies the name for the subcomponent

or base component (it is not a full component path). The flags field is used to specify what aspects of RAS

the component understands. The ras_callback is the mechanism by which the RAS subsystem

communicates various commands to the component, depending on what aspects of RAS the component

understands. The desc parameter provides a short description for the component as a service aid.

The ras_register kernel service allocates a ras_block_t member and returns the control block for the

component through the rasbp argument. This control block can be used in ras_control calls and further

ras_register calls (to allocate children, for instance).

If the registration fails due to the system being out of memory, the value of the rasbp argument is set to

RAS_BLOCK_NULL. All RAS functions for this component are disabled. RAS kernel services accept

RAS_BLOCK_NULL control blocks but take no action. If the control block is set to

RAS_BLOCK_NULLRAS, domain related functions (such as the CT_HOOKx and CT_GEN macros) run

correctly but take no action. This action allows the ENOMEM type failures from the ras_register kernel

service to be safely ignored. The value of the rasbp argument for all other types of errors is undefined.

The ras_unregister kernel service unregisters a component previously registered with the ras_register

kernel service. The ras_blk parameter should have no further children.

Parameters

 rasbp The newly allocated ras_block_t member.

name The name of the component, not its full pathname. Individual node names are limited

to the number of characters specified by the value of the RAS_NAME_MAX

parameter (including the terminating NULL character). The full component path (the

concatenated names of a child component and all of its ancestors) is limited to the

number of characters specified by the value of the RAS_PATH_MAX parameter

(including the terminating NULL character). The ras_register kernel service

reconstructs the full component path and rejects registrations for components whose

full path exceeds the value of the RAS_PATH_MAX parameter. Node names are

restricted to the character set “A-Z”,”a-z”,”0-9” and “_”.

parent An optional pointer to the parent component or NULL if none.

typesubtype If parent is NULL, mandatory parameter is used to categorize the component. The top

16-bits of the lower word of this field are the type, and the bottom 16-bits are the

subtype. The typesubtype is a ras_type_t member, which is an enum. See the

sys/ras_base.h file for a description of the types available. If parent is non-NULL, this

parameter is required to be the value of the RAS_TYPE_CHILD parameter.

desc A short description string for the component. The desc string is limited to the number

of characters specified by the value of the RAS_DESC_MAX parameter (including the

terminating null). The desc string has no character set restriction. Any static elements

of the string should be in U.S. English, but dynamic elements have no restriction.

flags Indicates what type of RAS systems this component is aware of. Valid choices are the

following:

v RASF_TRACE_AWARE: Component is Component Trace aware.

v RASF_ERROR_AWARE: Component is Error Checking aware.

These flags are defined in the sys/ras.h file.

ras_callback A function pointer provided by the registrant and called by the framework each time

an external event modifies a property of the component. See the ras_callback

interface specification.

private_data An optional pointer to a component private memory area passed to the ras_callback

function upon callback.

ras_blk The control block to remove.

Chapter 1. Kernel Services 365

Execution Environment

Both the ras_register kernel service and the ras_unregister kernel service must be called from the

process environment.

Return Values

The following are the return values of the ras_register kernel service.

 0 Successful.

non-zero Unsuccessful.

The following are the return values of the ras_unregister kernel service.

 0 Successful.

non-zero Unsuccessful.

Related Information

Component Trace Facility in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

The ras_callback registered callback.

The ras_customize exported kernel service.

The ras_control exported kernel service.

The RAS_BLOCK_NULL data structure.

raw_input Kernel Service

Purpose

Builds a raw_header structure for a packet and sends both to the raw protocol handler.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void raw_input (m0, proto, src, dst)

struct mbuf * m0;

struct sockproto * proto;

struct sockaddr * src;

struct sockaddr * dst;

Parameters

 m0 Specifies the address of an mbuf structure containing input data.

proto Specifies the protocol definition of data.

src Identifies the sockaddr structure indicating where data is from.

dst Identifies the sockaddr structure indicating the destination of the data.

366 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The raw_input kernel service accepts an input packet, builds a raw_header structure (as defined in the

/usr/include/net/raw_cb.h file), and passes both on to the raw protocol input handler.

Execution Environment

The raw_input kernel service can be called from either the process or interrupt environment.

Return Values

The raw_input service has no return values.

Related Information

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

raw_usrreq Kernel Service

Purpose

Implements user requests for raw protocols.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void raw_usrreq (so, req, m, nam, control)

struct socket * so;

int req;

struct mbuf * m;

struct mbuf * nam;

struct mbuf * control;

Parameters

 so Identifies the address of a raw socket.

req Specifies the request command.

m Specifies the address of an mbuf structure containing data.

nam Specifies the address of an mbuf structure containing the sockaddr structure.

control This parameter should be set to a null value.

Description

The raw_usrreq kernel service implements user requests for the raw protocol.

The raw_usrreq service supports the following commands:

 Command Description

PRU_ABORT Aborts (fast DISCONNECT, DETACH).

PRU_ACCEPT Accepts connection from peer.

PRU_ATTACH Attaches protocol to up.

PRU_BIND Binds socket to address.

PRU_CONNECT Establishes connection to peer.

PRU_CONNECT2 Connects two sockets.

PRU_CONTROL Controls operations on protocol.

Chapter 1. Kernel Services 367

Command Description

PRU_DETACH Detaches protocol from up.

PRU_DISCONNECT Disconnects from peer.

PRU_LISTEN Listens for connection.

PRU_PEERADDR Fetches peer’s address.

PRU_RCVD Have taken data; more room now.

PRU_RCVOOB Retrieves out of band data.

PRU_SEND Sends this data.

PRU_SENDOOB Sends out of band data.

PRU_SENSE Returns status into m.

PRU_SOCKADDR Fetches socket’s address.

PRU_SHUTDOWN Will not send any more data.

Any unrecognized command causes the panic kernel service to be called.

Execution Environment

The raw_userreq kernel service can be called from either the process or interrupt environment.

Return Values

 EOPNOTSUPP Indicates an unsupported command.

EINVAL Indicates a parameter error.

EACCES Indicates insufficient authority to support the PRU_ATTACH command.

ENOTCONN Indicates an attempt to detach when not attached.

EISCONN Indicates that the caller tried to connect while already connected.

Related Information

The panic kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

reconfig_register, reconfig_register_ext, reconfig_unregister, or

reconfig_complete Kernel Service

Purpose

Register and unregister reconfiguration handlers.

Syntax

#include <sys/dr.h>

int reconfig_register (handler, actions, h_arg, h_token, name)

int (*handler)(void *event, void *h_arg, int req, void *resource_info);

int actions;

void *h_arg;

ulong *h_token;

char *name;

int reconfig_register_ext (handler, actions, h_arg, h_token, name)

int (*handler)(void *event, void *h_arg, unsigned long long req, void *resource_info);

unsigned long long actions;

void *h_arg;

ulong *h_token;

368 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

char *name;

int reconfig_unregister (h_token)

ulong h_token;

void reconfig_complete (event, rc)

void *event;

int rc;

Description

The reconfig_register, reconfig_register_ext and reconfig_unregister kernel services register and

unregister reconfiguration handlers, which are invoked by the kernel both before and after DLPAR

operations depending on the set of events specified by the kernel extension when registering.

The reconfig_complete kernel service is used to indicate that the request has completed. If a kernel

extension expects that the operation is likely to take a long time (several seconds), the handler should

return DR_WAIT to the caller, but proceed with the request asynchronously. In this case, the handler must

indicate that it has completed the request by invoking the reconfig_complete kernel service.

Parameters

 handler Specifies the kernel extension function to be invoked.

Chapter 1. Kernel Services 369

actions Allows the kernel extension to specify which of the following events require notification:

v DR_PMIG_CHECK

v DR_PMIG_PRE

v DR_PMIG_POST

v DR_PMIG_POST_ERROR

v DR_CAP_ADD_CHECK

v DR_CAP_ADD_PRE

v DR_CAP_ADD_POST

v DR_CAP_ADD_POST_ERROR

v DR_CAP_REMOVE_CHECK

v DR_CAP_REMOVE_PRE

v DR_CAP_REMOVE_POST

v DR_CAP_REMOVE_POST_ERROR

v DR_CPU_ADD_CHECK

v DR_CPU_ADD_PRE

v DR_CPU_ADD_POST

v DR_CPU_ADD_POST_ERROR

v DR_CPU_REMOVE_CHECK

v DR_CPU_REMOVE_PRE

v DR_CPU_REMOVE_POST

v DR_CPU_REMOVE_POST_ERROR

v DR_MEM_ADD_CHECK

v DR_MEM_ADD_OP_POST

v DR_MEM_ADD_PRE

v DR_MEM_ADD_POST

v DR_MEM_ADD_POST_ERROR

v DR_MEM_REMOVE_CHECK

v DR_MEM_REMOVE_OP_POST

v DR_MEM_REMOVE_OP_PRE

v DR_MEM_REMOVE_PRE

v DR_MEM_REMOVE_POST

v DR_MEM_REMOVE_POST_ERROR

h_arg Specified by the kernel extension, remembered by the kernel along with the function descriptor

for the handler, and passed to the handler when it is invoked. It is not used directly by the

kernel, but is intended to support kernel extensions that manage multiple adapter instances.

This parameter points to an adapter control block.

h_token An output parameter that is used when unregistering the handler.

name Provided for information purposes and may be included within an error log entry, if the driver

returns an error. It is provided by the kernel extension and should be limited to 15 ASCII

characters.

event Passed to the handler and intended to be used only when calling the reconfig_complete

kernel service.

370 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

req Indicates the following DLPAR operation to be performed by the handler:

v DR_PMIG_CHECK

v DR_PMIG_PRE

v DR_PMIG_POST

v DR_PMIG_POST_ERROR

v DR_CAP_ADD_CHECK

v DR_CAP_ADD_PRE

v DR_CAP_ADD_POST

v DR_CAP_ADD_POST_ERROR

v DR_CAP_REMOVE_CHECK

v DR_CAP_REMOVE_PRE

v DR_CAP_REMOVE_POST

v DR_CAP_REMOVE_POST_ERROR

v DR_CPU_ADD_CHECK

v DR_CPU_ADD_PRE

v DR_CPU_ADD_POST

v DR_CPU_ADD_POST_EEROR

v DR_CPU_REMOVE_CHECK

v DR_CPU_REMOVE_PRE

v DR_CPU_REMOVE_POST

v DR_CPU_REMOVE_POST_ERROR

v DR_MEM_ADD_CHECK

v DR_MEM_ADD_OP_POST

v DR_MEM_ADD_PRE

v DR_MEM_ADD_POST

v DR_MEM_ADD_POST_ERROR

v DR_MEM_REMOVE_CHECK

v DR_MEM_REMOVE_OP_POST

v DR_MEM_REMOVE_OP_PRE

v DR_MEM_REMOVE_PRE

v DR_MEM_REMOVE_POST

v DR_MEM_REMOVE_POST_ERROR

resource_info Identifies the resource specific information for the current DLPAR request. If the request is cpu

based, the resource_info data is provided through a dri_cpu structure. Otherwise a dri_mem

structure is used.

On a Micro-Partitioning partition, if the request is CPU-capacity based, the resource_info data

is provided through a dri_cpu_capacity structure, which has the following format. The kernel

extensions are not notified of changes in variable capacity weight in an uncapped

Micro-Partitioning environment.

*/

struct dri_cpu_capacity {

 uint64_t ent_capacity; /* partition current entitled capacity*/

 int delta_ent_cap; /* delta capacity added/removed*/

 int status; /* capacity update constrained or not */

};

/*

 * dri_cpu_capacity.status flags.

 */

#define CAP_UPDATE_SUCCESS 0x0

#define CAP_UPDATE_CONSTRAINED 0x1

Note: The capacity update is constrained by the Hypervisor™.

Chapter 1. Kernel Services 371

rc Can be set to DR_FAIL or DR_SUCCESS.

Return Values

Upon successful completion, the reconfig_register, reconfig_register_ext and reconfig_unregister

kernel services return zero. If unsuccessful, the appropriate errno value is returned.

Execution Environment

The reconfig_register, reconfig_register_ext, reconfig_unregister, and handler interfaces are invoked

in the process environment only.

The reconfig_complete kernel service may be invoked in the process or interrupt environment.

Related Information

Making Kernel Extensions DLPAR-Aware in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

register_HA_handler Kernel Service

Purpose

Registers a High Availability Event Handler with the Kernel.

Syntax

#include <sys/high_avail.h>

int register_HA_handler (ha_handler)

ha_handler_ext_t * ha_handler;

Parameter

 ha_handler Specifies a pointer to a structure of the type

ha_handler_ext_t as defined in /usr/include/sys/
high_avail.h.

Description

The register_HA_handler kernel registers the High Availability Event Handler (HAEH) function to those

kernel extensions that need to be made aware of high availability events such as processor deallocation.

This function is called by the kernel, at base level, when a high availability event is initiated, due to some

hardware fault.

The ha_handler_ext_t structure has 3 fields:

 Field Description

_fun Contains a pointer to the high availability event handler

function.

_data Contains a user defined value which will be passed as an

argument by the kernel when calling the function.

_name Component name

When a high availability event is initiated, the kernel calls _fun() at base level (that is, process

environment) with 2 parameters:

372 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

v The first is the data the user passed in the _data field at registration time.

v The second is a pointer to a haeh_event_t structure defined in /usr/include/sys/high_avail.h.

The fields of interest in this structure are:

 Field Description

_magic Identifies the event type. The only possible value is HA_CPU_FAIL.

dealloc_cpu The logical number of the CPU being deallocated.

The high availability even handler, in addition to user specific functions, must unbind its threads bound to

dealloc_cpu and stop the timer request blocks (TRB) started by those bound threads when applicable.

The high availability event handler must return one of the following values:

 Value Description

HA_ACCEPTED The user processing of the event has succeeded.

HA_REFUSED The user processing of the event was not successful.

Any return value different from HA_ACCEPTED causes the kernel to abort the processing of the event. In

the case of a processor failure, the processor deallocation is aborted. In this case, a CPU_DEALLOC_ABORTED

error log entry is created, and the value passed in the _name field appears in the detailed data area of the

error log entry.

An extension may register the same HAEH N times (N > 1). Although it is considered as an incorrect

behaviour, no error is reported. The given HAEH is invoked N times for each HA event. This handler has

to be unregistered as many times as it was registered.

Since the kernel calls the HAEH in turn, it is possible for a HAEH to be called multiple times for the same

event. The kernel extensions should be ready to deal with this possibility. For example, two kernel

extensions K1 and K2 have registered HA Handlers. A CPU deallocation is initiated. The HAEH for K1

gets invoked, does its job and returns HA_ACCEPTED. K2 gets invoked next and for some reason returns

HA_REFUSED. The deallocation is aborted, and an error log entry reports K2 as the reason for failure. Later,

the system administer unloads K2 and restarts the deallocation by manually running ha_star. The result is

that the HAEH for K1 gets invoked again with the same parameters.

Execution Environment

The register_HA_handler kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

A non zero value indicates an error.

Related Information

The unregister_HA_handler kernel service.

The RAS Kernel Services in the AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Chapter 1. Kernel Services 373

rmalloc Kernel Service

Purpose

Allocates an area of memory from the real_heap heap.

Syntax

#include <sys/types.h>

caddr_t rmalloc (size, align)

int size

int align

Parameters

 size Specifies the number of bytes to allocate.

align Specifies alignment characteristics.

Description

The rmalloc kernel service allocates an area of memory from the contiguous real memory heap. This area

is the number of bytes in length specified by the size parameter and is aligned on the byte boundary

specified by the align parameter. The align parameter is actually the log base 2 of the desired address

boundary. For example, an align value of 4 requests that the allocated area be aligned on a 16-byte

boundary.

The contiguous real memory heap, real_heap, is a heap of contiguous real memory pages located in the

low 16MB of real memory. This heap is virtually mapped into the kernel extension’s address space. By

nature, this heap is implicitly pinned, so no explicit pinning of allocated regions is necessary.

The real_heap heap is useful for devices that require DMA transfers greater than 4K but do not provide a

scatter/gather capability. Such a device must be given contiguous bus addresses by its device driver. The

device driver should pass the DMA_CONTIGUOUS flag on its d_map_init call in order to obtain

contiguous mappings. On certain platforms it is possible that a d_map_init call using the

DMA_CONTIGUOUS flag could fail. In this case, the device driver can make use of the real_heap heap

(using rmalloc) to obtain contiguous bus addresses for its device driver. Because the real_heap heap is a

limited resource, device drivers should always attempt to use the DMA_CONTIGUOUS flag first.

On unsupported platforms, the rmalloc service returns NULL if the requested memory cannot be

allocated.

The rmfree kernel service should be called to free allocation from a previous rmalloc call. The rmalloc

kernel service can be called from the process environment only.

Return Values

Upon successful completion, the rmalloc kernel service returns the address of the allocated area. A NULL

pointer is returned if the requested memory cannot be allocated.

Related Information

The rmfree kernel service.

374 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

rmfree Kernel Service

Purpose

Frees memory allocated by the rmalloc kernel service.

Syntax

#include <sys/types.h>

int rmfree (pointer, size)

caddr_t pointer

int size

Parameters

 pointer Specifies the address of the area in memory to free.

size Specifies the size of the area in memory to free.

Description

The rmfree kernel service frees the area of memory pointed to by the pointer parameter in the contiguous

real memory heap. This area of memory must be allocated with the rmalloc kernel service, and the

pointer must be the pointer returned from the corresponding rmalloc kernel service call. Also, the size

must be the same size that was used on the corresponding rmalloc call.

Any memory allocated in a prior rmalloc call must be explicitly freed with an rmfree call. This service can

be called from the process environment only.

Return Values

 0 Indicates successful completion.

-1 Indicates one of the following:

v The area was not allocated by the rmalloc kernel service.

v The heap was not initialized for memory allocation.

Related Information

The rmalloc kernel service.

rmmap_create Kernel Service

Purpose

Defines an Effective Address [EA] to Real Address [RA] translation region.

Syntax

#include <sys/ioacc.h>

#include <sys/adspace.h>

int rmmap_create (eaddrp, iomp, flags)

void **eaddrp;

struct io_map *iomp;

int flags;

Chapter 1. Kernel Services 375

Parameters

 eaddr Desired process effective address of the mapping region.

iomp The bus memory to which the effective address described by the eaddr parameter should correspond. For

real memory, the bus id should be set to REALMEM_BID and the bus address should be set to the real

memory address. The size field must be at least PAGESIZE, no larger than SEGSIZE, and a multiple of

PAGESIZE. The key should be set to IO_MEM_MAP. The flags field is not used.

flags The flags select page and segment attributes of the translation. Not all page attribute flags are compatible.

See below for the valid combinations of page attribute flags.

RMMAP_PAGE_W

PowerPC ″Write Through″ page attribute. Write-through mode is not supported, and if this flag is

set, EINVAL is reported.

RMMAP_PAGE_I

PowerPC ″Cache Inhibited″ page attribute. This flag is valid for I/O mappings, but is not allowed

for real memory mappings.

RMMAP_PAGE_M

PowerPC ″Memory Coherency Required″ page attribute. This flag is optional for I/O mappings;

however, it is required for memory mappings. The default operating mode for real memory pages

has this bit set.

RMMAP_PAGE_G

PowerPC ″Guarded″ page attribute. This flag is optional for I/O mappings, and must be 0 for real

memory mappings. Note that although optional for I/O, it is strongly recommended that this be set

for I/O mappings. When set, the processor will not make unnecessary (speculative) references to

the page. This includes out of order read/write operations and branch fetching. When clear, normal

PowerPC speculative execution rules apply. This bit does not exist on the PowerPC 601 RISC

Microprocessor (running AIX 5.1 or earlier) and is ignored.

RMMAP_RDONLY

When set, the page protection bits used in the HTAB will not allow write operations regardless of

the setting of the key bit in the associated segment register. Exactly one of RMMAP_RDONLY

and RMMAP_RDWR must be specified.

RMMAP_RDWR

When set, the page protection bits used in the HTAB will allow read and write operations

regardless of the setting of the key bit in the associated segment register. Exactly one of:

RMMAP_RDONLY, and RMMAP_RDWR must be specified.

RMMAP_PRELOAD

When set, the protection attributes of this region will be entered immediately into the hardware

page table. This is very slow initially, but prevents each referenced page in the region from faulting

in separately. This is only advisory. The rmmap_create64 reserves the right to preload regions

which do not specify this flag and to ignore the flag on regions which do. This flag is not

maintained as an attribute of the map region, it is used only during the current call.

RMMAP_INHERIT

When set, this specifies that the translation region created by this rmmap_create invocation

should be inherited on a fork operation, to the child process. This inheritance is achieved with

copy-semantics. That is to say that the child will have its own private mapping to the same I/O or

real memory address range as the parent.

Description

The translation regions created with rmmap_create kernel service are maintained in I/O mapping

segments. Any single such segment may translate up to 256 Megabytes of real memory or memory

mapped I/O in a single region. The only granularity for which the rmmap_remove service may be invoked

is a single mapping created by a single call to the rmmap_create.

There are constraints on the size of the mapping and the flags parameter, described later, which will cause

the call to fail regardless of whether adequate effective address space exists.

376 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

If rmmap_create kernel service is called with the effective address of zero (0), the function attempts to

find free space in the process address space. If successful, an I/O mapping segment is created and the

effective address (which is passed by reference) is changed to the effective address which is mapped to

the first page of the iomp memory.

If rmmap_create kernel service is called with a non-zero effective address, it is taken as the desired

effective address which should translate to the passed iomp memory. This function verifies that the

requested range is free. If not, it fails and returns EINVAL. If the mapping at the effective address is not

contained in a single segment, the function fails and returns ENOSPC. Otherwise, the region is allocated

and the effective address is not modified. The effective address is mapped to the first page of the iomp

memory. References outside of the mapped regions but within the same segment are invalid.

The effective address (if provided) and the bus address must be a multiple of PAGESIZE or EINVAL is

returned.

I/O mapping segments are not inherited by child processes after a fork subroutine.

I/O mapping segments are not inherited by child processes after a fork subroutine, except when

RMMAP_INHERIT is specified. These segments are deleted by exec, exit, or rmmap_remove of the last

range in a segment.

Only certain combinations of flags are permitted, depending on the type of memory being mapped. For

real memory mappings, RMMAP_PAGE_M is required while RMMAP_PAGE_W, RMMAP_PAGE_I, and

RMMAP_PAGE_G are not allowed. For I/O mappings, it is valid to specify only RMMAP_PAGE_M, with

no other page attribute flags. It is also valid to specify RMMAP_PAGE_I and optionally, either or both of

RMMAP_PAGE_M, and RMMAP_PAGE_G. RMMAP_PAGE_W is never allowed.

The real address range described by the iomp parameter must be unique within this I/O mapping segment.

Execution Environment

The rmmap_create kernel service can only be called from the process environment.

Return Values

On successful completion, rmmap_create kernel service returns zero and modifies the effective address

to the value at which the newly created mapping region was attached to the process address space.

Otherwise, it returns one of:

 EINVAL Some type of parameter error occurred. These include, but are not limited to, size errors and mutually

exclusive flag selections.

ENOMEM The operating system could not allocate the necessary data structures to represent the mapping.

ENOSPC Effective address space exhausted in the region indicated by eaddr.

EPERM This hardware platform does not implement this service.

Implementation Specifics

This service only functions on PowerPC microprocessors.

Related Information

The rmmap_remove kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 377

rmmap_create64 Kernel Service

Purpose

Defines an Effective Address [EA] to Real Address [RA] translation region for either 64-bit or 32-bit

Effective Addresses.

Syntax

#include <sys/ioacc.h>

#include <sys/adspace.h>

int rmmap_create64(eaddrp, iomp, flags)

unsigned long long *eaddrp;

struct io_map *iomp;

int flags;

Parameters

 eaddrp Desired process effective address of the mapping region. This address is interpreted as a 64-bit quantity

if the current user address space is 64-bits, and is interpreted as a 32-bit (not remapped) quantity if the

current user address space is 32-bits.

iomp The bus memory to which the effective address described by the eaddr parameter should correspond.

For real memory, the bus id should be set to REALMEM_BID and the bus address should be set to the

real memory address. The size field must be at least PAGESIZE, no larger than SEGSIZE, and a

multiple of PAGESIZE. The key should be set to IO_MEM_MAP. The flags field is not used.

flags The flags select page and segment attributes of the translation. Not all page attribute flags are

compatible. See below for the valid combination of page attribute flags.

RMMAP_PAGE_W

PowerPC ″Write Through″ page attribute. Valid with all other flags. If set, page operates

write-through. If clear, operates write-back.

RMMAP_PAGE_W

PowerPC ″Write Through″ page attribute. Write-through mode is not supported, and if this flag is

set, EINVAL will be reported.

RMMAP_PAGE_I

PowerPC ″Cache Inhibited″ page attribute. Valid with all other flags. If set, page operates cache

inhibited. If clear, page is considered cacheable.

RMMAP_PAGE_I

PowerPC ″Cache Inhibited″ page attribute. This flag is valid for I/O mappings, but is not allowed

for real memory mappings.

RMMAP_PAGE_M

PowerPC ″Memory Coherency Required″ page attribute. Valid with all other flags. If set,

accesses to a location are serialized within the processor complex. Otherwise, there is no

guaranteed ordering. The default operating mode for real memory pages has this bit set.

RMMAP_PAGE_M

PowerPC ″Memory Coherency Required″ page attribute. This flag is optional for I/O mappings,

however, it is required for memory mappings. The default operating mode for real memory

pages has this bit set.

RMMAP_PAGE_G

PowerPC ″Guarded″ page attribute. Valid with all other flags. When set, the processor will not

make unnecessary (speculative) references to the page. This includes out of order read/write

operations and branch fetching. When clear, normal PowerPC speculative execution rules apply.

This bit does not exist on the PowerPC 601 RISC Microprocessor (running AIX 5.1 or earlier)

and is ignored.

378 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

RMMAP_PAGE_G

PowerPC ″Guarded″ page attribute. This flag is optional for I/O mappings, and must be 0 for

real memory mappings. Note that although optional for I/O, it is strongly recommended that this

be set for I/O mappings. When set, the processor will not make unnecessary (speculative)

references to the page. This includes out of order read/write operations and branch fetching.

When clear, normal PowerPC speculative execution rules apply. This bit does not exist on the

PowerPC 601 RISC Microprocessor (running AIX 5.1 or earlier) and is ignored.

RMMAP_RDONLY

When set, the page protection bits used in the HTAB will not allow write operations regardless

of the setting of the key bit in the associated segment register. Exactly one of:

RMMAP_RDONLY, and RMMAP_RDWR must be specified.

RMMAP_RDWR

When set, the page protection bits used in the HTAB will allow read and write operations

regardless of the setting of the key bit in the associated segment register. Exactly one of:

RMMAP_RDONLY, and RMMAP_RDWR must be specified.

RMMAP_PRELOAD

When set, the protection attributes of this region will be entered immediately into the hardware

page table. This is very slow initially, but prevents each referenced page in the region from

faulting in separately. This is only advisory. The rmmap_create64 reserves the right to preload

regions which do not specify this flag and to ignore the flag on regions which do. This flag is not

maintained as an attribute of the map region, it is used only during the current call.

RMMAP_INHERIT

When set, this specifies that the translation region created by this rmmap_create64 invocation

should be inherited on a fork operation, to the child process. This inheritance is achieved with

copy-semantics. That is to say that the child has its own private mapping to the same I/O or real

memory address range as the parent.

Description

The translation regions created with the rmmap_create64 kernel service are maintained in I/O mapping

segments. Any single such segment may translate up to 256 Megabytes of memory mapped I/O in a

single region. The only granularity for which the rmmap_remove64 service may be invoked is a single

mapping created by a single call to rmmap_create64.

There are constraints on the size of the mapping and the flags parameter, described later, which will cause

the call to fail regardless of whether adequate effective address space exists.

If the rmmap_create64 kernel service is called with the effective address of zero (0), the function will

attempt to find free space in the process address space. If successful, an I/O mapping segment is created

and the effective address (which is passed by reference) is changed to the effective address that is

mapped to the first page of the iomp memory.

If rmmap_create64 kernel service is called with a non-zero effective address, it is taken as the desired

effective address that should translate to the passed iomp memory. This function verifies that the

requested range is free. If not, it fails and returns EINVAL. If the mapping at the effective address is not

contained in a single segment, the function fails and returns ENOSPC. Otherwise, the region is allocated

and the effective address is not modified. The effective address is mapped to the first page of iomp

memory. References outside of the mapped regions but within the same segment are invalid.

The effective address (if provided) and the bus address (or real address for real memory mappings) must

be a multiple of PAGESIZE or EINVAL is returned.

The real address range described by the iomp parameter must be unique within this I/O mapping

segment.

Chapter 1. Kernel Services 379

If the rmmap_create64 kernel service is called with a length which is either not a multiple of PAGESIZE,

is less than PAGESIZE, or is greater than SEGSIZE, EINVAL is returned. This return code takes

precedence in cases where otherwise the segment would overflow and ENOSPC is returned.

I/O mapping segments are not inherited by child processes after a fork subroutine except when

RMMAP_INHERIT is specified. These segments are deleted by exec,exit, or rmmap_remove64 of the

last range in a segment.

Only certain combinations of page flags are permitted, depending on the type of memory being mapped.

For real memory mappings, RMMAP_PAGE_M is required while RMMAP_PAGE_W, RMMAP_PAGE_I,

and RMMAP_PAGE_G are not allowed. For I/O mappings, it is valid to specify only RMMAP_PAGE_M,

with no other page attribute flags. It is also valid to specify RMMAP_PAGE_I and optionally, either or both

of the RMMAP_PAGE_M, and RMMAP_PAGE_G. RMMAP_PAGE_W is never allowed.

Execution Environment

The rmmap_create64 kernel service can be called from the process environment only.

Return Values

On successful completion, the rmmap_create64 kernel service returns zero and modifies the effective

address to the value at which the newly created mapping region was attached to the process address

space. Otherwise, it returns one of:

 EINVAL Some type of parameter error occured. These include, but are not limited to, size errors and mutually

exclusive flag selections.

ENOMEM The operating system could not allocate the necessary data structures to represent the mapping.

ENOSPC Effective address space exhausted in the region indicated by eaddr.

EPERM This hardware platform does not implement this service.

Implementation Specifics

This service only functions on PowerPC microprocessors.

Related Information

The rmmap_remove64 kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

rmmap_getwimg Kernel Service

Purpose

Returns wimg information about a particular effective address range within an effective address to real

address translation region.

Syntax

#include <sys/adspace.h>

int rmmap_getwimg(eaddr, npages, results)

unsigned long long eaddr;

unsigned int npages;

char* results;

380 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 eaddr The process effective address of the start of the desired mapping region. This address should point

somewhere inside the first page of the range. This address is interpreted as a 64-bit quantity if the

current user address space is 64-bits, and is interpreted as a 32-bit (not remapped) quantity if the

current user address space is 32-bits.

npages The number of pages whose wimg information is returned, starting from the page indicated by eaddr.

results This is an array of bytes, where the wimg information is returned. The address of this is passed in by

the caller, and rmmap_getwimg stores the wimg information for each page in the range in each

successive byte in this array. The size of this array is indicated by npages as specified by the caller.

The caller is responsible for ensuring that the storage allocated for this array is large enough to hold

npage bytes.

Description

The wimg information corresponding to the input effective address range is returned.

This routine only works for regions previously mapped with an I/O mapping segment as created by

rmmap_create64 or rmmap_create.

npages should not be such that the range crosses a segment boundary. If it does, EINVAL is returned.

The wimg information is returned in the results array. Each element of the results array is a character.

Each character may be added with the following fields to examine wimg information: RMMAP_PAGE_W,

RMMAP_PAGE_I, RMMAP_PAGE_M or RMMAP_PAGE_G. The array is valid if the return value is 0.

Execution Environment

The rmmap_getwimg kernel service is called from the process environment only.

Return Values

 0 Successful completion. Indicates that the results array is valid and should be examined.

EINVAL An error occurred. Most likely the region was not mapped via rmmap_create64 or rmmap_create

previously.

EINVAL Input range crosses a certain boundary.

EINVAL The hardware platform does not implement this service.

Implementation Specifics

This service only functions on PowerPC microprocessors.

Related Information

The rmmap_create64 kernel service, the rmmap_remove64 kernel service, the rmmap_create kernel

service, the rmmap_remove kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

rmmap_remove Kernel Service

Purpose

Destroys an effective address to real address translation region.

Chapter 1. Kernel Services 381

Syntax

#include <sys/adspace.h>

int rmmap_remove (eaddrp);

void **eaddrp;

Parameters

 eaddrp Pointer to the process effective address of the desired mapping region.

Description

Destroys an effective address to real address translation region. If rmmap_remove kernel service is called

with the effective address within the region of a previously created I/O mapping segment, the region is

destroyed. This service must be called from the process level.

Execution Environment

The rmmap_remove kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL The provided eaddr does not correspond to a valid I/O mapping segment.

EINVAL This hardware platform does not implement this service.

Implementation Specifics

This service only functions on PowerPC microprocessors.

Related Information

The rmmap_create Kernel Service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

rmmap_remove64 Kernel Service

Purpose

Destroys an effective address to real address translation region.

Syntax

#include <sys/adspace.h>

int rmmap_remove64 (eaddr);

unsigned long long eaddr;

Parameter

 eaddr The process effective address of the desired mapping region. This address is interpreted as a 64-bit

quantity if the current user address space is 64-bits, and is interpreted as a 32-bit (not remapped) quantity

if the current user address space is 32-bits.

382 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

If rmmap_remove64 is called with the effective address within the region of a previously created I/O

mapping segment, the region is destroyed.

Execution Environment

The rmmap_remove64 kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL The provided eaddr does not correspond to a valid I/O mapping segment.

EINVAL This hardware platform does not implement this service.

Implementation Specifics

This service only functions on PowerPC microprocessors.

Related Information

The rmmap_create64 kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

rtalloc Kernel Service

Purpose

Allocates a route.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/route.h>

void rtalloc (ro)

register struct route *ro;

Parameter

 ro Specifies the route.

Description

The rtalloc kernel service allocates a route, which consists of a destination address and a reference to a

routing entry.

Execution Environment

The rtalloc kernel service can be called from either the process or interrupt environment.

Return Values

The rtalloc service has no return values.

Chapter 1. Kernel Services 383

Example

To allocate a route, invoke the rtalloc kernel service as follows:

rtalloc(ro);

Related Information

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

rtalloc_gr Kernel Service

Purpose

Allocates a route.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/route.h>

void rtalloc_gr (ro, gidlist)

register struct route *ro;

struct gidstruct *gidlist;

Parameter

 ro Specifies the route.

gidlist Points to the group list.

Description

The rtalloc_gr kernel service allocates a route, which consists of a destination address and a reference to

a routing entry.

A route can be allocated only if its group id restrictions specify that it can be used by a user with the gidlist

that is passed in.

Execution Environment

The rtalloc_gr kernel service can be called from either the process or interrupt environment.

Return Values

The rtalloc_gr service has no return values.

Example

To allocate a route, invoke the rtalloc_gr kernel service as follows:

rtalloc_gr (ro, gidlist);

Related Information

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

The rtalloc kernel service.

384 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

rtfree Kernel Service

Purpose

Frees the routing table entry.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/route.h>

int rtfree (rt)

register struct rtentry *rt;

Parameter

 rt Specifies the routing table entry.

Description

The rtfree kernel service frees the entry it is passed from the routing table. If the route does not exist, the

panic service is called. Otherwise, the rtfree service frees the mbuf structure that contains the route and

decrements the routing reference counters.

Execution Environment

The rtfree kernel service can be called from either the process or interrupt environment.

Return Values

The rtfree kernel service has no return values.

Example

To free a routing table entry, invoke the rtfree kernel service as follows:

rtfree(rt);

Related Information

The panic kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

rtinit Kernel Service

Purpose

Sets up a routing table entry typically for a network interface.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/socket.h>

#include <net/route.h>

Chapter 1. Kernel Services 385

int rtinit (ifa, cmd, flags)

struct ifaddr * ifa;

int cmd, flags;

Parameters

 ifa Specifies the address of an ifaddr structure containing destination address, interface address, and

netmask.

cmd Specifies a request to add or delete route entry.

flags Identifies routing flags, as defined in the /usr/include/net/route.h file.

Description

The rtinit kernel service creates a routing table entry for an interface. It builds an rtentry structure using

the values in the ifa and flags parameters.

The rtinit service then calls the rtrequest kernel service and passes the cmd parameter and the rtentry

structure to process the request. The cmd parameter contains either the value RTM_ADD (a request to

add the route entry) or the value RTM_DELETE (delete the route entry). Valid routing flags to set are

defined in the /usr/include/route.h file.

Execution Environment

The rtinit kernel service can be called from either the process or interrupt environment.

Return Values

The rtinit kernel service returns values from the rtrequest kernel service.

Example

To set up a routing table entry, invoke the rtinit kernel service as follows:

rtinit(ifa, RMT_ADD, flags (RTF_DYNAMIC);

Related Information

The rtrequest kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

rtredirect Kernel Service

Purpose

Forces a routing table entry with the specified destination to go through a given gateway.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

#include <net/route.h>

386 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

rtredirect (dst, gateway, netmask, flags, src, rtp)

struct sockaddr *dst, *gateway, *netmask, *src;

int flags;

struct rtentry **rtp;

Parameters

 dst Specifies the destination address.

gateway Specifies the gateway address.

netmask Specifies the network mask for the route.

flags Indicates routing flags as defined in the /usr/include/net/route.h file.

src Identifies the source of the redirect request.

rtp Indicates the address of a pointer to a rtentry structure. Used to return a constructed route.

Description

The rtredirect kernel service forces a routing table entry for a specified destination to go through the given

gateway. Typically, the rtredirect service is called as a result of a routing redirect message from the

network layer. The dst, gateway, and flags parameters are passed to the rtrequest kernel service to

process the request.

Execution Environment

The rtredirect kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates a successful operation.

If a bad redirect request is received, the routing statistics counter for bad redirects is incremented.

Example

To force a routing table entry with the specified destination to go through the given gateway, invoke the

rtredirect kernel service:

rtredirect(dst, gateway, netmask, flags, src, rtp);

Related Information

The rtinit kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

rtrequest Kernel Service

Purpose

Carries out a request to change the routing table.

Chapter 1. Kernel Services 387

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

#include <net/if.h>

#include <net/af.h>

#include <net/route.h>

int rtrequest (req, dst, gateway, netmask, flags, ret_nrt)

int req;

struct sockaddr *dst, *gateway, *netmask;

int flags;

struct rtentry **ret_nrt;

Parameters

 req Specifies a request to add or delete a route.

dst Specifies the destination part of the route.

gateway Specifies the gateway part of the route.

netmask Specifies the network mask to apply to the route.

flags Identifies routing flags, as defined in the /usr/include/net/route.h file.

ret_nrt Specifies to return the resultant route.

Description

The rtrequest kernel service carries out a request to change the routing table. Interfaces call the

rtrequest service at boot time to make their local routes known for routing table ioctl operations. Interfaces

also call the rtrequest service as the result of routing redirects. The request is either to add (if the req

parameter has a value of RMT_ADD) or delete (the req parameter is a value of RMT_DELETE) the route.

Execution Environment

The rtrequest kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates a successful operation.

ESRCH Indicates that the route was not there to delete.

EEXIST Indicates that the entry the rtrequest service tried to add already exists.

ENETUNREACH Indicates that the rtrequest service cannot find the interface for the route.

ENOBUFS Indicates that the rtrequest service cannot get an mbuf structure to add an entry.

Example

To carry out a request to change the routing table, invoke the rtrequest kernel service as follows:

rtrequest(RTM_ADD, dst, gateway, netmask, flags, &rtp);

Related Information

The rtinit kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

388 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

rtrequest_gr Kernel Service

Purpose

Carries out a request to change the routing table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/mbuf.h>

#include <net/if.h>

#include <net/af.h>

#include <net/route.h>

int rtrequest_gr (req, dst, gateway, gidlist, netmask, flags, ret_nrt)

int req;

struct sockaddr *dst, *gateway, *netmask;

int flags;

struct rtentry **ret_nrt;

struct gidstruct *gidlist;

Parameters

 req Specifies a request to add or delete a route.

dst Specifies the destination part of the route.

gateway Specifies the gateway part of the route.

gidlist Points to the group list.

netmask Specifies the network mask to apply to the route.

flags Identifies routing flags, as defined in the /usr/include/net/route.h file.

ret_nrt Specifies to return the resultant route.

Description

The rtrequest_gr kernel service carries out a request to change the routing table. Interfaces call the

rtrequest_gr service at boot time to make their local routes known for routing table ioctl operations.

Interfaces also call the rtrequest_gr service as the result of routing redirects. The request is either to add

(if the req parameter has a value of RMT_ADD) or delete (the req parameter is a value of RMT_DELETE)

the route.

The gidlist parameter specifies a list of group id restrictions. A route can be allocated only if its group id

restrictions specify that it can be used by the user on whose behalf the allocation is done. A route with a

NULL gidlist can be used by any user.

Execution Environment

The rtrequest_gr kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates a successful operation.

ESRCH Indicates that the route was not there to delete.

EEXIST Indicates that the entry the rtrequest_gr service tried to add already exists.

ENETUNREACH Indicates that the rtrequest_gr service cannot find the interface for the route.

ENOBUFS Indicates that the rtrequest_gr service cannot get an mbuf structure to add an entry.

Chapter 1. Kernel Services 389

Example

To carry out a request to change the routing table, invoke the rtrequest_gr kernel service as follows:

rtrequest_gr(RTM_ADD, dst, gateway, netmask, flags, &rtp);

Related Information

The rtinit kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

The rtrequest kernel service.

rusage_incr Kernel Service

Purpose

Increments a field of the rusage structure.

Syntax

#include <sys/encap.h>

void rusage_incr (field, amount)

int field;

int amount;

Parameters

 field Specifies the field to increment. It must have one of the following values:

RUSAGE_INBLOCK

Denotes the ru_inblock field. This field specifies the number of times the file system performed

input.

RUSAGE_OUTBLOCK

Denotes the ru_outblock field. This field specifies the number of times the file system performed

output.

RUSAGE_MSGRCV

Denotes the ru_msgrcv field. This field specifies the number of IPC messages received.

RUSAGE_MSGSENT

Denotes the ru_msgsnd field. This field specifies the number of IPC messages sent.

amount Specifies the amount to increment to the field.

Description

The rusage_incr kernel service increments the field specified by the field parameter of the calling process’

rusage structure by the amount amount.

Execution Environment

The rusage_incr kernel service can be called from the process environment only.

Return Values

The rusage_incr kernel service has no return values.

390 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The getrusage subroutine.

saveretval64 Kernel Service

Purpose

The saveretval64 kernel service allows a 64-bit value to be returned from a 32-bit kernel extension

function to a 64-bit process.

Syntax

#include <sys/remap.h>

unsigned long long saveretval64 (unsigned long long retval);

unsigned long long retval;

Parameters

 retval Specifies the 64-bit value to be returned as a pointer, long, unsigned long, long long, or unsigned

long long to a 64-bit process.

Description

In 64-bit programs, pointers and longs are 64-bit types, and a long long fits in a single general purpose

register. In the 32-bit kernel, the only 64-bit type is a long long, which occupies two general purpose

registers. In order to return a 64-bit value to a 64-bit process, the saveretval64 kernel service is called,

which saves the low-order word of the return value. The system call then returns the high-order word. The

system call handler combines the two halves of the return value before returning control to the 64-bit

application program.

Return Values

The retval parameter is returned. If the current process is a 32-bit process, the panic kernel service is

called.

Examples

1. Suppose a system call returns a 64-bit pointer. The system call could be written as follows:

#include <sys/user.h> /* For IS64U() */

#include <sys/types.h> /* For __ptr64 and __64BIT_KERNEL */

#include <sys/remap.h>

void *

my_syscall(int arg)

{

 __ptr64 retval = my_syscall_implementation(arg);

#ifndef __64BIT_KERNEL

 if (IS64U)

 {

 /* Return value must be shifted to return high-order word */

 return (void *)(saveretval64(retval)>>32);

 }

#endif

 return retval;

}

2. If the system call returns a long long (signed or unsigned), the code can be simplified.

Chapter 1. Kernel Services 391

#include <sys/user.h>

#include <sys/remap.h>

long long

my_syscall2(int arg)

{

 long long retval = my_syscall2_implementation(arg);

 if (IS64U)

 {

 /* High-order word of a long long is returned in

 general purpose register 3. No shifting is necessary. */

 return (long long)(saveretval64(retval));

 }

 return retval;

}

The saveretval64() kernel service is not needed when the 64-bit kernel is running, because 64-bit

values fit in a single general purpose register. To allow for common code, the saveretval64() kernel

service is defined as a macro that returns its argument, when a kernel extension is compiled in 64-bit

mode.

Execution Environment

This kernel service can only be called from the process environment when the current process is in 64-bit

mode.

Implementation Specifics

The saveretval64 kernel service is only available on the 32–bit PowerPC kernel.

Related Information

The get64bitparm kernel service, as_remap64 kernel service.

schednetisr Kernel Service

Purpose

Schedules or invokes a network software interrupt service routine.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/netisr.h>

int schednetisr (anisr)

int anisr;

Parameter

 anisr Specifies the software interrupt number to issue. Refer to netisr.h for the range of values of anisr that are

already in use. Also, other kernel extensions that are not AIX and that use network ISRs currently running

on the system can make use of additional values not mentioned in netisr.h.

Description

The schednetisr kernel service schedules or calls a network interrupt service routine. The add_netisr

kernel service establishes interrupt service routines. If the service was added with a service level of

392 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

NET_OFF_LEVEL, the schednetisr kernel service directly calls the interrupt service routine. If the service

level was NET_KPROC, a network kernel dispatcher is notified to call the interrupt service routine.

Execution Environment

The schednetisr kernel service can be called from either the process or interrupt environment.

Return Values

 EFAULT Indicates that a network interrupt service routine does not exist for the specified interrupt number.

EINVAL Indicates that the anisr parameter is out of range.

Related Information

The add_netisr kernel service, del_netisr kernel service.

Network Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

selnotify Kernel Service

Purpose

Wakes up processes waiting in a poll or select subroutine or in the fp_poll kernel service.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void selnotify (id, subid, rtnevents)

int id;

int subid;

ushort rtnevents;

Parameters

 id Indicates a primary resource identification value. This value along with the subidentifier (specified

by the subid parameter) is used by the kernel to notify the appropriate processes of the occurrence

of the indicated events. If the resource on which the event has occurred is a device driver, this

parameter must be the device major/minor number (that is, a dev_t structure that has been cast to

an int). The kernel has reserved values for the id parameter that do not conflict with possible

device major or minor numbers for sockets, message queues, and named pipes.

subid Helps identify the resource on which the event has occurred for the kernel. For a multiplexed

device driver, this is the number of the channel on which the requested events occurred. If the

device driver is nonmultiplexed, the subid parameter must be set to 0.

rtnevents Consists of a set of bits indicating the requested events that have occurred on the specified device

or channel. These flags have the same definition as the event flags that were provided by the

events parameter on the unsatisfied call to the object’s select routine.

Description

The selnotify kernel service should be used by device drivers that support select or poll operations. It is

also used by the kernel to support select or poll requests to sockets, named pipes, and message queues.

Chapter 1. Kernel Services 393

The selnotify kernel service wakes up processes waiting on a select or poll subroutine. The processes to

be awakened are those specifying the given device and one or more of the events that have occurred on

the specified device. The select and poll subroutines allow a process to request information about one or

more events on a particular device. If none of the requested events have yet happened, the process is put

to sleep and re-awakened later when the events actually happen.

The selnotify service should be called whenever a previous call to the device driver’s ddselect entry point

returns and both of the following conditions apply:

v The status of all requested events is false.

v Asynchronous notification of the events is requested.

The selnotify service can be called for other than these conditions but performs no operation.

Sequence of Events for Asynchronous Notification

The device driver must store information about the events requested while in the driver’s ddselect routine

under the following conditions:

v None of the requested events are true (at the time of the call).

v The POLLSYNC flag is not set in the events parameter.

The POLLSYNC flag, when not set, indicates that asynchronous notification is desired. In this case, the

selnotify service should be called when one or more of the requested events later becomes true for that

device and channel.

When the device driver finds that it can satisfy a select request, (perhaps due to new input data) and an

unsatisfied request for that event is still pending, the selnotify service is called with the following items:

v Device major and minor number specified by the id parameter

v Channel number specified by the subid parameter

v Occurred events specified by the rtnevents parameter

These parameters describe the device instance and requested events that have occurred on that device.

The notifying device driver then resets its requested-events flags for the events that have occurred for that

device and channel. The reset flags thus indicate that those events are no longer requested.

If the rtnevents parameter indicated by the call to the selnotify service is no longer being waited on, no

processes are awakened.

Execution Environment

The selnotify kernel service can be called from either the process or interrupt environment.

Return Values

The selnotify service has no return values.

Implementation Specifics

The selnotify kernel service is part of Base Operating System (BOS) Runtime.

Related Information

The ddselect device driver entry point.

The fp_poll kernel service, fp_select kernel service, selreg kernel service.

The poll subroutine, select subroutine.

394 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Kernel Extension and Device Driver Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

selreg Kernel Service

Purpose

Registers an asynchronous poll or select request with the kernel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/poll.h>

int selreg (corl, dev_id, unique_id, reqevents, notify)

int corl;

int dev_id;

int unique_id;

ushort reqevents;

void (*notify) ();

Parameters

 corl The correlator for the poll or select request. The corl parameter is used by the poll and select

subroutines to correlate the returned events in a specific select control block with a process’ file

descriptor or message queue.

dev_id Primary resource identification value. Along with the unique_id parameter, the dev_id parameter is

used to record in the select control block the resource on which the requested poll or select events

are expected to occur.

unique_id Unique resource identification value. Along with the dev_id parameter, the unique_id parameter

denotes the resource on which the requested events are expected to occur. For a multiplexed

device driver, this parameter specifies the number of the channel on which the requested events

are expected to occur. For a nonmultiplexed device driver, this parameter must be set to 0.

reqevents Requested events parameter. The reqevents parameter consists of a set of bit flags denoting the

events for which notification is being requested. These flags have the same definitions as the event

flags provided by the events parameter on the unsatisfied call to the object’s select subroutine (see

the sys/poll.h file for the definitions).

Note: The POLLSYNC bit flag should not be set in this parameter.

notify Notification routine entry point. This parameter points to a notification routine used for nested poll

and select calls.

Description

The selreg kernel service is used by select file operations in the top half of the kernel to register an

unsatisfied asynchronous poll or select event request with the kernel. This registration enables later calls

to the selnotify kernel service from resources in the bottom half of the kernel to correctly identify

processes awaiting events on those resources.

The event requests may originate from calls to the poll or select subroutine, from processes, or from calls

to the fp_poll or fp_select kernel service. A select file operation calls the selreg kernel service under the

following circumstances:

v The poll or select request is asynchronous (the POLLSYNC flag is not set for the requested event’s bit

flags).

v The poll or select request determines (by calling the underlying resource’s ddselect entry point) that the

requested events have not yet occurred.

Chapter 1. Kernel Services 395

A registered event request takes the form of a select control block. The select control block is a structure

containing the following:

v Requested event bit flags

v Returned event bit flags

v Primary resource identifier

v Unique resource identifier

v Pointer to a proc table entry

v File descriptor correlator

v Pointer to a notification routine that is non-null only for nested calls to the poll and select subroutines

The selreg kernel service allocates and initializes a select control block each time it is called.

When an event occurs on a resource that supports the select file operation, the resource calls the

selnotify kernel service. The selnotify kernel service locates all select control blocks whose primary and

unique identifiers match those of the resource, and whose requested event flags match the occurred

events on the resource. Then, for each of the matching control blocks, the selnotify kernel service takes

one of two courses of action, depending upon whether the control block’s notification routine pointer is

non-null (nested) or null (non-nested):

v In nested calls to the select or poll subroutines, the notification routine is called with the primary and

unique resource identifiers, the returned event bit flags, and the process identifiers.

v In non-nested calls to the select or poll subroutine (the usual case), the SSEL bit of the process

identified in the block is cleared, the returned event bit flags in the block are updated, and the process

is awakened. A process awakened in this manner completes the poll or select call in which it was

sleeping. The poll or select subroutine then collects the returned event bit flags in its processes’ select

control blocks for return to the user mode process, deallocates the control blocks, and returns tallys of

the numbers of requested events that occurred to the user process.

Execution Environment

The selreg kernel service can be called from the process environment only.

Returns Values

 0 Indicates successful completion.

EAGAIN Indicates the selreg kernel service was unable to allocate a select control block.

Related Information

The ddselect device driver entry point.

The fp_poll kernel service, fp_select kernel service, selnotify kernel service.

The poll subroutine, select subroutine.

Select and Poll Support and Kernel Extension and Device Driver Management Kernel Services in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts.

set_pag or set_pag64 Kernel Service

Purpose

Sets a Process Authentication Group (PAG) value for the current process.

396 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/cred.h>

int set_pag (type, pag)

int type;

int pag;

int set_pag64 (type, pag)

int type;

uint64_t *pag;

Parameters

 type PAG type to change

pag PAG value

Description

The set_pag or set_pag64 kernel service copies the requested PAG for the current process. The caller

must synchronize the set_pag and set_pag64 kernel services with validate_pag because set_pag and

set_pag64 do not lock process creation across the system. The value of type must be a defined PAG ID.

The PAG ID for the Distributed Computing Environment (DCE) is 0.

Execution Environment

The set_pag and set_pag64 kernel services can be called from the process environment only.

Return Values

A value of 0 is returned upon successful completion. Upon failure, a -1 is returned and errno is set to a

value that explains the error.

Error Codes

The set_pag and set_pag64 kernel services fails if one or both of the following conditions are true:

 EINVAL Invalid PAG specification

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

setjmpx Kernel Service

Purpose

Allows saving the current execution state or context.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int setjmpx (jump_buffer)

label_t *jump_buffer;

Chapter 1. Kernel Services 397

Parameter

 jump_buffer Specifies the address of the caller-supplied jump buffer that was specified on the call to the

setjmpx service.

Description

The setjmpx kernel service saves the current execution state, or context, so that a subsequent longjmpx

call can cause an immediate return from the setjmpx service. The setjmpx service saves the context with

the necessary state information including:

v The current interrupt priority.

v Whether the process currently owns the kernel mode lock.

Other state variables include the nonvolatile general purpose registers, the current program’s table of

contents and stack pointers, and the return address.

Calls to the setjmpx service can be nested. Each call to the setjmpx service causes the context at this

point to be pushed to the top of the stack of saved contexts.

Execution Environment

The setjmpx kernel service can be called from either the process or interrupt environment.

Return Values

 Nonzero value Indicates that a longjmpx call caused the setjmpx service to return.

0 Indicates any other circumstances.

Related Information

The clrjmpx kernel service, longjmpx kernel service.

Handling Signals While in a System Call, Exception Processing, Implementing Kernel Exception Handlers,

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

setpinit Kernel Service

Purpose

Sets the parent of the current kernel process to the initialization process.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/device.h>

int setpinit()

Description

The setpinit kernel service can be called by a kernel process to set its parent process to the init process.

This is done to redirect the death of child signal for the termination of the kernel process. As a result, the

init process is allowed to perform its default zombie process cleanup.

398 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The setpinit service is used by a kernel process that can terminate, but does not want the user-mode

process under which it was created to receive a death of child process notification.

Execution Environment

The setpinit kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates that the current process is not a kernel process.

Related Information

Using Kernel Processes and Process and Exception Management Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

setuerror Kernel Service

Purpose

Allows kernel extensions to set the ut_error field for the current thread.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int setuerror (errno)

int errno;

Parameter

 errno Contains a value found in the /usr/include/sys/errno.h file that is to be copied to the current thread

ut_error field.

Description

The setuerror kernel service allows a kernel extension in a process environment to set the ut_error field

in current thread’s uthread structure. Kernel extensions providing system calls available to user-mode

applications typically use this service. For system calls, the value of the ut_error field in the per thread

uthread structure is copied to the errno global variable by the system call handler before returning to the

caller.

Execution Environment

The setuerror kernel service can be called from the process environment only.

Return Codes

The setuerror kernel service returns the errno parameter.

Related Information

The getuerror kernel service.

Kernel Extension and Device Driver Management Kernel Services and Understanding System Call

Execution in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 399

shutdown_notify_reg Kernel Service

Purpose

Allows kernel extensions to register a shutdown notification.

Syntax

#include <sys/reboot.h>

int shutdown_notify_reg(sn)

shutdown_notify_t *sn;

typedef struct _shutdown_notify {

 struct _shutdown_notify *next; /* Next in the link-list */

 int version; /* Version of structure */

 int oper; /* Bit map of the operation being performed */

 int status; /* The current status of this notify */

 int padding; /* padding */

 long (*func)(); /* Function kernel calls to notify ext. */

 void *uaddr; /* Address to help extension identify the object this structure refers to */

} shutdown_notify_t;

/* Valid values for shutdown_notify_t->oper */

#define SHUTDOWN_NOTIFY_PREPARE 0x1 /* Shutdown has started */

#define SHUTDOWN_NOTIFY_REBOOT 0x2 /* Final notify that shutdown will be a reboot */

#define SHUTDOWN_NOTIFY_HALT 0x4 /* Final notify that shutdown will be a halt */

#define SHUTDOWN_NOTIFY_QUERY 0x8 /* Check to see if finished shutdown */

/* Valid values for shutdown_notify_t->status and for SHUTDOWN_NOTIFY_QUERY return code */

#define SHUTDOWN_STATUS_PREPARE 0x1 /* Preparing for shutdown */

#define SHUTDOWN_STATUS_COMMENCE 0x2 /* Commencing shutdown */

#define SHUTDOWN_STATUS_FINISH 0x4 /* Finished shutdown */

#define SHUTDOWN_NOTIFY_VERSION 1 /* Increment by 1

 * every time add more

 * variables to

 * shutdown_notify_t

 */

Description

The shutdown_notify_reg kernel service registers an extension to be notified in the event of a shutdown.

An extension can register multiple times. After the extension registers a shutdown_notify_t, the structure

cannot modified. Extensions must create a pinned shutdown_notify_t and fill out the function with a

function pointer that will be called to notify them on the shutdown event. The extension must fill out a

version number and can optionally store an address. The rest of the elements of the structure must be 0.

For every call to the shutdown_notify_reg kernel service a new shutdown_notify_t must be used. This

structure address must be unique. This function will fail if it is called after the

SHUTDOWN_NOTIFY_PREPARE process has started.

Parameters

 sn Pointer to a structure that the calling extension fills out when it registers.

next Pointer to next shutdown_notify_t structure in list.

version Version of structure. Set to 1.

oper Bit map of operation(s) being performed.

status Current status of notify.

padding Padding.

func Pointer to the function called to notify registered extension.

400 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

uaddr Place for extension to store an address to help it identify the object to

which this structure refers.

SHUTDOWN_NOTIFY_PREPARE Shutdown has started.

SHUTDOWN_NOTIFY_REBOOT A reboot is occurring.

SHUTDOWN_NOTIFY_HALT A halt is occurring.

SHUTDOWN_NOTIFY_QUERY Check to see if finished shutdown.

SHUTDOWN_STATUS_PREPARE Preparing for shutdown.

SHUTDOWN_STATUS_COMMENCE Wrap up shutdown.

SHUTDOWN_STATUS_FINISH Shutdown has completed.

SHUTDOWN_NOTIFY_VERSION Version number of structure.

Execution Environment

Process environment only.

Return Values

 0 Success.

EPERM Attempted to register after prepare notification has started.

EINVAL Invalid argument passed.

Related Information

“shutdown_notify_unreg Kernel Service.”

shutdown_notify_unreg Kernel Service

Purpose

Unregisters an extension from getting notified in the event of a shutdown.

Syntax

#include <sys/reboot.h>

int shutdown_notify_unreg(sn)

shutdown_notify_t *sn;

Description

The shutdown_notify_unreg kernel service unregisters an extension from getting notified in the event of

a shutdown. The extension passes in the shutdown_notify_t instance it wants to unregister. This function

will fail if it is called after the SHUTDOWN_NOTIFY_HALT and SHUTDOWN_NOTIFY_REBOOT

notification process has started.

Parameters

 sn Pointer to a structure that the calling extension wants to unregister.

Execution Environment

Process environment only.

Return Values

 0 Success

Chapter 1. Kernel Services 401

EPERM Attempted to unregister after final notification has started.

EINVAL Invalid argument passed.

Related Information

“shutdown_notify_reg Kernel Service” on page 400.

sig_chk Kernel Service

Purpose

Provides a kernel process the ability to poll for receipt of signals.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/signal.h>

int sig_chk ()

Description

Attention: A system crash will occur if the sig_chk service is not called by a kernel process.

The sig_chk kernel service can be called by a kernel thread in kernel mode to determine if any unmasked

signals have been received. Signals do not preempt threads because serialization of critical data areas

would be lost. Instead, threads must poll for signals, either periodically or after a long sleep has been

interrupted by a signal.

The sig_chk service checks for any pending signal that has a specified signal catch or default action. If

one is found, the service returns the signal number as its return value. It also removes the signal from the

pending signal mask. If no signal is found, this service returns a value of 0. The sig_chk service does not

return signals that are blocked or ignored. It is the responsibility of the kernel process to handle the signal

appropriately.

For kernel-only threads, the sig_chk kernel service clears the returned signal from the list of pending

signals. For other kernel threads, the signal is not cleared, but left pending. It will be delivered to the

kernel thread as soon as it returns to the user mode.

Understanding Kernel Threads in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts provides more information about kernel-only thread signal handling.

Execution Environment

The sig_chk kernel service can be called from the process environment only.

Return Values

Upon completion, the sig_chk service returns a value of 0 if no pending unmasked signal is found.

Otherwise, it returns a nonzero signal value indicating the number of the highest priority signal that is

pending. Signal values are defined in the /usr/include/sys/signal.h file.

Related Information

Introduction to Kernel Processes, Process and Exception Management Kernel Services, and Kernel

Process Signal and Exception Handling in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

402 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

simple_lock or simple_lock_try Kernel Service

Purpose

Locks a simple lock.

Syntax

#include <sys/lock_def.h>

void simple_lock (lock_addr)

simple_lock_t lock_addr;

boolean_t simple_lock_try (lock_addr)

simple_lock_t lock_addr;

Parameter

 lock_addr Specifies the address of the lock word to lock.

Description

The simple_lock kernel service locks the specified lock; it blocks if the lock is busy. The lock must have

been previously initialized with the simple_lock_init kernel service. The simple_lock kernel service has

no return values.

The simple_lock_try kernel service tries to lock the specified lock; it returns immediately without blocking

if the lock is busy. If the lock is free, the simple_lock_try kernel service locks it. The lock must have been

previously initialized with the simple_lock_init kernel service.

Note: When using simple locks to protect thread-interrupt critical sections, it is recommended that you use

the disable_lock kernel service instead of calling the simple_lock kernel service directly.

Execution Environment

The simple_lock and simple_lock_try kernel services can be called from the process environment only.

Return Values

The simple_lock_try kernel service has the following return values:

 TRUE Indicates that the simple lock has been successfully acquired.

FALSE Indicates that the simple lock is busy, and has not been acquired.

Related Information

The disable_lock kernel service, lock_mine kernel service, simple_lock_init kernel service,

simple_unlock kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

simple_lock_init Kernel Service

Purpose

Initializes a simple lock.

Chapter 1. Kernel Services 403

Syntax

#include <sys/lock_def.h>

void simple_lock_init (lock_addr)

simple_lock_t lock_addr;

Parameter

 lock_addr Specifies the address of the lock word.

Description

The simple_lock_init kernel service initializes a simple lock. This kernel service must be called before the

simple lock is used. The simple lock must previously have been allocated with the lock_alloc kernel

service.

Execution Environment

The simple_lock_init kernel service can be called from the process environment only.

The simple_lock_init kernel service may be called either the process or interrupt environments.

Return Values

The simple_lock_init kernel service has no return values.

Related Information

The lock_alloc kernel service, lock_free kernel service, simple_lock kernel service, simple_lock_try

kernel service, simple_unlock kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

simple_unlock Kernel Service

Purpose

Unlocks a simple lock.

Syntax

#include <sys/lock_def.h>

void simple_unlock (lock_addr)

simple_lock_t lock_addr;

Parameter

 lock_addr Specifies the address of the lock word to unlock.

Description

The simple_unlock kernel service unlocks the specified simple lock. The lock must be held by the thread

which calls the simple_unlock kernel service. Once the simple lock is unlocked, the highest priority thread

404 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

(if any) which is waiting for it is made runnable, and may compete for the lock again. If at least one kernel

thread was waiting for the lock, the priority of the calling kernel thread is recomputed.

Note: When using simple locks to protect thread-interrupt critical sections, it is recommended that you use

the unlock_enable kernel service instead of calling the simple_unlock kernel service directly.

Execution Environment

The simple_unlock kernel service can be called from the process environment only.

Return Values

The simple_unlock kernel service has no return values.

Related Information

The lock_mine kernel service, simple_lock_init kernel service, simple_lock kernel service,

simple_lock_try kernel service, unlock_enable kernel service.

Understanding Locking and Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts

sleep Kernel Service

Purpose

Forces the calling kernel thread to wait on a specified channel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/pri.h>

#include <sys/proc.h>

int sleep (chan, priflags)

void *chan;

int priflags;

Parameters

 chan Specifies the channel number. For the sleep service, this parameter identifies the channel to wait for

(sleep on).

priflags Specifies two conditions:

v The priority at which the kernel thread is to run when it is reactivated.

v Flags indicating how a signal is to be handled by the sleep kernel service.

The valid flags and priority values are defined in the /usr/include/sys/pri.h file.

Description

The sleep kernel service is provided for compatibility only and should not be invoked by new code. The

e_sleep_thread or et_wait kernel service should be used when writing new code.

The sleep service puts the calling kernel thread to sleep, causing it to wait for a wakeup to be issued for

the channel specified by the chan parameter. When the process is woken up again, it runs with the priority

specified in the priflags parameter. The new priority is effective until the process returns to user mode.

Chapter 1. Kernel Services 405

All processes that are waiting on the channel are restarted at once, causing a race condition to occur

between the activated threads. Thus, after returning from the sleep service, each thread should check

whether it needs to sleep again.

The channel specified by the chan parameter is simply an address that by convention identifies some

event to wait for. When the kernel or kernel extension detects such an event, the wakeup service is called

with the corresponding value in the chan parameter to start up all the threads waiting on that channel. The

channel identifier must be unique systemwide. The address of an external kernel variable (which can be

defined in a device driver) is generally used for this value.

If the SWAKEONSIG flag is not set in the priflags parameter, signals do not terminate the sleep. If the

SWAKEONSIG flag is set and the PCATCH flag is not set, the kernel calls the longjmpx kernel service to

resume the context saved by the last setjmpx call if a signal interrupts the sleep. Therefore, any system

call (such as those calling device driver ddopen, ddread, and ddwrite routines) or kernel process that

does an interruptible sleep without the PCATCH flag set must have set up a context using the setjmpx

kernel service. This allows the sleep to resume in case a signal is sent to the sleeping process.

Attention: The caller of the sleep service must own the kernel-mode lock specified by the

kernel_lock parameter. The sleep service does not provide a compatible level of serialization if the

kernel lock is not owned by the caller of the sleep service.

Execution Environment

The sleep kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

1 Indicates that a signal has interrupted a sleep with both the PCATCH and SWAKEONSIG flags set in the

priflags parameter.

Related Information

Locking Strategy in Kernel Mode in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

subyte Kernel Service

Purpose

Stores a byte of data in user memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int subyte (uaddr, c)

uchar *uaddr;

uchar c;

406 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 uaddr Specifies the address of user data.

c Specifies the character to store.

Description

The subyte kernel service stores a byte of data at the specified address in user memory. It is provided so

that system calls and device heads can safely access user data. The subyte service ensures that the user

has the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

The subyte service should only be called while executing in kernel mode in the user process.

Execution Environment

The subyte kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

-1 Indicates a uaddr parameter that is not valid for one of the following reasons:

v The user does not have sufficient authority to access the data.

v The address is not valid.

v An I/O error occurs when the user data is referenced.

Related Information

The fubyte kernel service, fuword kernel service, suword kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

subyte64 Kernel Service

Purpose

Stores a byte of data in user memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

int subyte64 (uaddr64, c)

unsigned long long uaddr64;

char c;

Parameter

 uaddr64 Specifies the address of user data.

c Specifies the character to store.

Chapter 1. Kernel Services 407

Description

The subyte64 kernel service stores a byte of data at the specified address in user memory. It is provided

so that system calls and device heads can safely access user data. The subyte64 service ensures that

the user has the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

This service will operate correctly for both 32-bit and 64-bit user address spaces. The uaddr64 parameter

is interpreted as being a non-remapped 32-bit address for the case where the current user address space

is 32- bits. If the current user address space is 64-bits, then uaddr64 is treated as a 64-bit address.

The subyte64 service should be called only while executing in kernel mode in the user process.

Execution Environment

The subyte64 kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

-1 Indicates a uaddr64 parameter that is not valid because:

 The user does not have sufficient authority to access the data, or

 The address is not valid, or

 An I/O error occurs while referencing the user data.

Related Information

The fubyte64 kernel service, fuword64 kernel service, and suword64 kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

suser Kernel Service

Purpose

Determines the privilege state of a process.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int suser (ep)

char *ep;

Parameter

 ep Points to a character variable where the EPERM value is stored on failure.

Description

The suser kernel service checks whether a process has any effective privilege (that is, whether the

process’s uid field equals 0).

408 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The suser kernel service can be called from the process environment only.

Return Values

 0 Indicates failure. The character pointed to by the ep parameter is set to the value of

EPERM. This indicates that the calling process does not have any effective privilege.

Nonzero value Indicates success (the process has the specified privilege).

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

suword Kernel Service

Purpose

Stores a word of data in user memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int suword (uaddr, w)

int *uaddr;

int w;

Parameters

 uaddr Specifies the address of user data.

w Specifies the word to store.

Description

The suword kernel service stores a word of data at the specified address in user memory. It is provided

so that system calls and device heads can safely access user data. The suword service ensures that the

user had the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

The suword service should only be called while executing in kernel mode in the user process.

Execution Environment

The suword kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

Chapter 1. Kernel Services 409

-1 Indicates a uaddr parameter that is not valid for one of these reasons:

v The user does not have sufficient authority to access the data.

v The address is not valid.

v An I/O error occurs when the user data is referenced.

Related Information

The fubyte kernel service, fuword kernel service, subyte kernel service.

Memory Kernel Services and Accessing User-Mode Data While in Kernel Mode in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

suword64 Kernel Service

Purpose

Stores a word of data in user memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

int suword64 (uaddr64, w)

unsigned long long uaddr64;

int w;

Parameter

 uaddr64 Specifies the address of user data.

w Specifies the word to store.

Description

The suword64 kernel service stores a word of data at the specified address in user memory. It is provided

so that system calls and device heads can safely access user data. The suword64 service ensures that

the user has the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

This service will operate correctly for both 32-bit and 64-bit user address spaces. The uaddr64 parameter

is interpreted as being a non-remapped 32-bit address for the case where the current user address space

is 32-bits. If the current user address space is 64-bits, then uaddr64 is treated as a 64-bit address.

The suword64 service should be called only while executing in kernel mode in the user process.

Execution Environment

The suword64 kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

-1 Indicates a uaddr64 parameter that is not valid because:

410 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The user does not have sufficient authority to access the data, or

 The address is not valid, or

 An I/O error occurs while referencing the user data.

Related Information

The fubyte64 kernel service, fuword64 kernel service, and subyte64 kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

talloc Kernel Service

Purpose

Allocates a timer request block before starting a timer request.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/timer.h>

struct trb *talloc()

Description

The talloc kernel service allocates a timer request block. The user must call it before starting a timer

request with the tstart kernel service. If successful, the talloc service returns a pointer to a pinned timer

request block.

Execution Environment

The talloc kernel service can be called from the process environment only.

Return Values

The talloc service returns a pointer to a timer request block upon successful allocation of a trb structure.

Upon failure, a null value is returned.

Related Information

The tfree kernel service, tstart kernel service, tstop kernel service.

Timer and Time-of-Day Kernel Services and Using Fine Granularity Timer Services and Structures in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

tfree Kernel Service

Purpose

Deallocates a timer request block.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/timer.h>

Chapter 1. Kernel Services 411

void tfree (t)

struct trb *t;

Parameter

 t Points to the timer request structure to be freed.

Description

The tfree kernel service deallocates a timer request block that was previously allocated with a call to the

talloc kernel service. The caller of the tfree service must first cancel any pending timer request associated

with the timer request block being freed before attempting to free the request block. Canceling the timer

request block can be done using the tstop kernel service.

Execution Environment

The tfree kernel service can be called from either the process or interrupt environment.

Return Values

The tfree service has no return values.

Related Information

The talloc kernel service, tstart kernel service, tstop kernel service.

Timer and Time-of-Day Kernel Services and Using Fine Granularity Timer Services and Structures in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

thread_create Kernel Service

Purpose

Creates a new kernel thread in the calling process.

Syntax

#include <sys/thread.h>

tid_t thread_create ()

Description

The thread_create kernel service creates a new kernel-only thread in the calling kernel process. The

thread’s ID is returned; it is unique system wide.

The new thread does not begin running immediately; its state is set to TSIDL. The execution will start after

a call to the kthread_start kernel service. If the process is exited prior to the thread being made runnable,

the thread’s resources are released immediately. The thread’s signal mask is inherited from the calling

thread; the set of pending signals is cleared. Signals sent to the thread are marked pending while the

thread is in the TSIDL state.

If the calling thread is bound to a specific processor, the new thread will also be bound to the processor.

Execution Environment

The thread_create kernel service can be called from the process environment only. This service cannot

be called directly from a kernel extension.

412 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

Upon successful completion, the new thread’s ID is returned. Otherwise, -1 is returned, and the error code

can be checked by calling the getuerror kernel service.

Error Codes

 EAGAIN The total number of kernel threads executing system wide or the maximum number of kernel threads per

process would be exceeded.

ENOMEM There is not sufficient memory to create the kernel thread.

ENOTSUP The thread_create service was called directly from a kernel extension.

Related Information

The kthread_start kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

thread_self Kernel Service

Purpose

Returns the caller’s kernel thread ID.

Syntax

#include <sys/thread.h>

tid_t thread_self ()

Description

The thread_self kernel service returns the thread process ID of the calling process.

The thread_self service can also be used to check the environment that the routine is being executed in.

If the caller is executing in the interrupt environment, the thread_self service returns a process ID of -1. If

a routine is executing in a process environment, the thread_self service obtains the thread process ID.

Execution Environment

The thread_self kernel service can be called from either the process or interrupt environment.

Return Values

 -1 Indicates that the thread_self service was called from an interrupt environment.

The thread_self service returns the thread process ID of the current process if called from a process

environment.

Related Information

Process and Exception Management Kernel Services and Understanding Execution Environments in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 413

thread_setsched Kernel Service

Purpose

Sets kernel thread scheduling parameters.

Syntax

#include <sys/thread.h>

#include <sys/sched.h>

int thread_setsched (tid, priority, policy)

tid_t tid;

int priority;

int policy;

Parameters

 tid Specifies the kernel thread.

priority Specifies the priority. It must be in the range from 0 to PRI_LOW; 0 is the most favored priority.

policy Specifies the scheduling policy. It must have one of the following values:

SCHED_FIFO

Denotes fixed priority first-in first-out scheduling.

SCHED_FIFO2

Allows a thread that sleeps for a relatively short amount of time to be requeued to the head,

rather than the tail, of its priority run queue.

SCHED_FIFO3

Causes threads to be enqueued to the head of their run queues.

SCHED_RR

Denotes fixed priority round-robin scheduling.

SCHED_OTHER

Denotes the default scheduling policy.

Description

The thread_setsched subroutine sets the scheduling parameters for a kernel thread. This includes both

the priority and the scheduling policy, which are specified in the priority and policy parameters. The calling

and the target thread must be in the same process.

When setting the scheduling policy to SCHED_OTHER, the system chooses the priority; the priority

parameter is ignored. The only way to influence the priority of a thread using the default scheduling policy

is to change the process nice value.

The calling thread must belong to a process with root authority to change the scheduling policy of a thread

to either SCHED_FIFO, SCHED_FIFO2, SCHED_FIFO3, or SCHED_RR.

Execution Environment

The thread_setsched kernel service can be called from the process environment only.

Return Values

Upon successful completion, 0 is returned. Otherwise, -1 is returned, and the error code can be checked

by calling the getuerror kernel service.

414 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Error Codes

 EINVAL The priority or policy parameters are not valid.

EPERM The calling kernel thread does not have sufficient privilege to perform the operation.

ESRCH The kernel thread tid does not exist.

Related Information

The thread_create kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

thread_terminate Kernel Service

Purpose

Terminates the calling kernel thread.

Syntax

#include <sys/thread.h>

void thread_terminate ()

Description

The thread_terminate kernel service terminates the calling kernel thread and cleans up its structure and

its kernel stack. If it is the last thread in the process, the process will exit.

The thread_terminate kernel service is automatically called when a thread returns from its entry point

routine (defined in the call to the kthread_start kernel service).

Execution Environment

The thread_terminate kernel service can be called from the process environment only.

Return Values

The thread_terminate kernel service never returns.

Related Information

The kthread_start kernel service.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

timeout Kernel Service

Attention: This service should not be used in AIX Version 4, because it is not multi-processor safe.

The base kernel timer and watchdog services should be used instead. See talloc and w_init for more

information.

Purpose

Schedules a function to be called after a specified interval.

Chapter 1. Kernel Services 415

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void timeout (func, arg, ticks)

void (*func)();

caddr_t *arg;

int ticks;

Parameters

 func Indicates the function to be called.

arg Indicates the parameter to supply to the function specified by the func parameter.

ticks Specifies the number of timer ticks that must occur before the function specified by the func parameter is

called. Many timer ticks can occur per second. The HZ label found in the /usr/include/sys/m_param.h file

can be used to determine the number of ticks per second.

Description

The timeout service is not part of the kernel. However, it is a compatibility service provided in the libsys.a

library. To use the timeout service, a kernel extension must have been bound with the libsys.a library.

The timeout service, like the associated kernel services untimeout and timeoutcf, can be bound and

used only in the pinned part of a kernel extension or the bottom half of a device driver because these

services use interrupt disable for serialization.

The timeout service schedules the function pointed to by the func parameter to be called with the arg

parameter after the number of timer ticks specified by the ticks parameter. Use the timeoutcf routine to

allocate enough callout elements for the maximum number of simultaneous active time outs that you

expect.

Note: The timeoutcf routine must be called before calling the timeout service.

Calling the timeout service without allocating a sufficient number of callout table entries can result in a

kernel panic because of a lack of pinned callout table elements. The value of a timer tick depends on the

hardware’s capability. You can use the restimer subroutine to determine the minimum granularity.

Multiple pending timeout requests with the same func and arg parameters are not allowed.

The func Parameter

The function specified by the func parameter should be declared as follows:

void func (arg)

void *arg;

Execution Environment

The timeout routine can be called from either the process or interrupt environment.

The function specified by the func parameter is called in the interrupt environment. Therefore, it must

follow the conventions for interrupt handlers.

Return Values

The timeout service has no return values.

416 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The untimeout kernel service.

The timeoutcf kernel subroutine.

The restimer subroutine.

Timer and Time-of-Day Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

timeoutcf Subroutine for Kernel Services

Attention: This service should not be used in AIX Version 4, because it is not multi-processor safe.

The base kernel timer and watchdog services should be used instead. See talloc and w_init for more

information.

Purpose

Allocates or deallocates callout table entries for use with the timeout kernel service.

Library

libsys.a (Kernel extension runtime routines)

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int timeoutcf (cocnt)

int cocnt;

Parameter

 cocnt Specifies the callout count. This value indicates the number of callout elements by which to increase or

decrease the current allocation. If this number is positive, the number of callout entries for use with the

timeout service is increased. If this number is negative, the number of elements is decreased by the

amount specified.

Description

The timeoutcf subroutine is not part of the kernel. It is a compatibility service provided in the libsys.a

library. To use the timeoutcf subroutine, a kernel extension must have been bound with the libsys.a

library. The timeoutcf subroutine, like the associated kernel libsys services untimeout and timeout, can

be bound and used only in the pinned part of a kernel extension or the bottom half of a device driver

because these services use interrupt disable for serialization.

The timeoutcf subroutine registers an increase or decrease in the number of callout table entries available

for the timeout subroutine to use. Before a subroutine can use the timeout kernel service, the timeoutcf

subroutine must increase the number of callout table entries available to the timeout kernel service. It

increases this number by the maximum number of outstanding time outs that the routine can have pending

at one time.

The timeoutcf subroutine should be used to decrease the amount of callout table entries by the amount it

was increased under the following conditions:

v The routine using the timeout subroutine has finished using it.

Chapter 1. Kernel Services 417

v The calling routine has no more outstanding time-out requests pending.

Typically the timeoutcf subroutine is called in a device driver’s open and close routine. It is called to

allocate and deallocate sufficient elements for the maximum expected use of the timeout kernel service

for that instance of the open device.

Attention: A kernel panic results under either of these two circumstances:

v A request to decrease the callout table allocation is made that is greater than the number of unused

callout table entries.

v The timeoutcf subroutine is called in an interrupt environment.

Execution Environment

The timeoutcf subroutine can be called from the process environment only.

Return Values

 0 Indicates a successful allocation or deallocation of the requested callout table entries.

-1 Indicates an unsuccessful operation.

Related Information

The timeout kernel service.

Timer and Time-of-Day Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

trc_ishookon Exported Kernel Service

Purpose

Checks if a given trace hook word is being traced by system trace.

Syntax

#include <sys/trcmacros.h>

int trc_ishookon (int chan, long hkwd);

Description

The trc_ishookon kernel service informs the user if tracing is on and the specified hook word is being

traced.

Parameters

 chan The channel to query with the range from 0 to 7.

hkwd The hook word to be traced by system trace.

Return Values

 1 The hook word is being traced.

0 Hook word is not being traced or system trace is off.

418 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The trace daemon.

trcgenk Kernel Service

Purpose

Records a trace event for a generic trace channel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/trchkid.h>

void trcgenk (chan, hk_word, data_word, len, buf)

unsigned int chan, hk_word, data_word, len;

char * buf;

Parameters

 chan Specifies the channel number for the trace session. This number is obtained from the trcstart

subroutine.

hk_word An integer containing a hook ID and a hook type:

hk_id A hook identifier is a 12-bit value.

hk_type

A 4-bit hook type. The trcgenk kernel service automatically records this information.

data_word Specifies a word of user-defined data.

len Specifies the length in bytes of the buffer specified by the buf parameter.

buf Points to a buffer of trace data. The maximum amount of trace data is 4096 bytes.

Description

The trcgenk kernel service records a trace event if a trace session is active for the specified trace

channel. If a trace session is not active, the trcgenk kernel service simply returns. The trcgenk kernel

service is located in pinned kernel memory.

The trcgenk kernel service is used to record a trace entry consisting of an hk_word entry, a data_word

entry, a variable number of bytes of trace data, and, in AIX 5L Version 5.3 with the 5300-05 Technology

Level and above, a time stamp.

Execution Environment

The trcgenk kernel service can be called from either the process or interrupt environment.

Return Values

The trcgenk kernel service has no return values.

Related Information

The trace daemon.

The trcgenkt kernel service.

The trcgen subroutine, trcgent subroutine, trchook subroutine, trcoff subroutine, trcon subroutine,

trcstart subroutine, trcstop subroutine.

Chapter 1. Kernel Services 419

RAS Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

trcgenkt Kernel Service

Purpose

Records a trace event, including a time stamp, for a generic trace channel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/trchkid.h>

void trcgenkt (chan, hk_word, data_word, len, buf)

unsigned int chan, hk_word, data_word, len;

char * buf;

Parameters

 chan Specifies the channel number for the trace session. This number is obtained from the trcstart

subroutine.

hk_word An integer containing a hook ID and a hook type:

hk_id A hook identifier is a 12-bit value.

hk_type

A 4-bit hook type. The trcgenkt service automatically records this information.

data_word Specifies a word of user-defined data.

len Specifies the length, in bytes, of the buffer identified by the buf parameter.

buf Points to a buffer of trace data. The maximum amount of trace data is 4096 bytes.

Description

The trcgenkt kernel service records a trace event if a trace session is active for the specified trace

channel. If a trace session is not active, the trcgenkt service simply returns. The trcgenkt kernel service

is located in pinned kernel memory.

The trcgenkt service records a trace entry consisting of an hk_word entry, a data_word entry, a variable

number of bytes of trace data, and a time stamp.

Execution Environment

The trcgenkt kernel service can be called from either the process or interrupt environment.

Return Values

The trcgenkt service has no return values.

Related Information

The trace daemon.

The trcgenk kernel service.

The trcgen subroutine, trcgent subroutine, trchook subroutine, trcoff subroutine, trcon subroutine,

trcstart subroutine, trcstop subroutine.

420 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

RAS Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

trcgenkt Kernel Service for Data Link Control (DLC) Devices

Purpose

Records a trace event, including a time stamp, for a DLC trace channel.

Syntax

#include <sys/trchkid.h>

void trcgenkt (chan, hk_word, data_word, len, buf)

unsigned int chan, hk_word, data_word, len;

char * buf;

Parameters

 chan Specifies the channel number for the trace session. This number is obtained from the trcstart

subroutine.

hk_word Contains the trace hook identifier defined in the /usr/include/sys/trchkid.h file. The types of link

trace entries registered using the hook ID include:

HKWD_SYSX_DLC_START

Start link station completions

HKWD_SYSX_DLC_TIMER

Time-out completions

HKWD_SYSX_DLC_XMIT

Transmit completions

HKWD_SYSX_DLC_RECV

Receive completions

HKWD_SYSX_DLC_HALT

Halt link station completions

Chapter 1. Kernel Services 421

data_word Specifies trace data format field. This field varies depending on the hook ID. Each of these

definitions are in the /usr/include/sys/gdlextcb.h file:

v The first half-word always contains the data link protocol field including one of these definitions:

DLC_DL_SDLC

SDLC

DLC_DL_HDLC

HDLC

DLC_DL_BSC

BISYNC

DLC_DL_ASC

ASYNC

DLC_DL_PCNET

PC Network

DLC_DL_ETHER

Standard Ethernet

DLC_DL_802_3

IEEE 802.3

DLC_DL_TOKEN

Token-Ring

 v On start or halt link station completion, the second half-word contains the physical link protocol

in use:

DLC_PL_EIA232

EIA-232D Telecommunications

DLC_PL_EIA366

EIA-366 Auto Dial

DLC_PL_X21

CCITT X.21 Data Network

DLC_PL_PCNET

PC Network Broadband

DLC_PL_ETHER

Standard Baseband Ethernet

DLC_PL_SMART

Smart Modem Auto Dial

DLC_PL_802_3

IEEE 802.3 Baseband Ethernet

DLC_PL_TBUS

IEEE 802.4 Token Bus

DLC_PL_TRING

IEEE 802.5 Token-Ring

DLC_PL_EIA422

EIA-422 Telecommunications

DLC_PL_V35

CCITT V.35 Telecommunications

DLC_PL_V25BIS

CCITT V.25 bis Autodial for Telecommunications

422 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

v On timeout completion, the second half-word contains the type of timeout occurrence:

DLC_TO_SLOW_POLL

Slow station poll

DLC_TO_IDLE_POLL

Idle station poll

DLC_TO_ABORT

Link station aborted

DLC_TO_INACT

Link station receive inactivity

DLC_TO_FAILSAFE

Command failsafe

DLC_TO_REPOLL_T1

Command repoll

DLC_TO_ACK_T2

I-frame acknowledgment

 v On transmit completion, the second half-word is set to the data link control bytes being sent.

Some transmit packets only have a single control byte; in that case, the second control byte is

not displayed.

v On receive completion, the second half-word is set to the data link control bytes that were

received. Some receive packets only have a single control byte; in that case, the second control

byte is not displayed.

len Specifies the length in bytes of the entry specific data specified by the buf parameter.

buf Specifies the pointer to the entry specific data that consists of:

Start Link Station Completions

Link station diagnostic tag and the remote station’s name and address.

Time-out Completions

No specific data is recorded.

Transmit Completions

Either the first 80 bytes or all the transmitted data, depending on the short/long trace

option.

Receive Completions

Either the first 80 bytes or all the received data, depending on the short/long trace option.

Halt Link Station Completions

Link station diagnostic tag, the remote station’s name and address, and the result code.

Description

The trcgenkt kernel service records a trace event if a trace session is active for the specified trace

channel. If a trace session is not active, the trcgenkt kernel service simply returns. The trcgenkt kernel

service is located in pinned kernel memory.

The trcgenkt kernel service is used to record a trace entry consisting of an hk_word entry, a data_word

entry, a variable number of bytes of trace data, and a time stamp.

Execution Environment

The trcgenkt kernel service can be called from either the process or interrupt environment.

Chapter 1. Kernel Services 423

Return Values

The trcgenkt kernel service has no return values.

Related Information

The trcgenk kernel service, trcgenkt kernel service.

The trace daemon.

Generic Data Link Control (GDLC) Environment Overview and RAS Kernel Services in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

tstart Kernel Service

Purpose

Submits a timer request.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/timer.h>

void tstart (t)

struct trb *t;

Parameter

 t Points to a timer request structure.

Description

The tstart kernel service submits a timer request with the timer request block specified by the t parameter

as input. The caller of the tstart kernel service must first call the talloc kernel service to allocate the timer

request structure. The caller must then initialize the structure’s fields before calling the tstart kernel

service.

Once the request has been submitted, the kernel calls the t->func timer function when the amount of time

specified by the t->timeout.it value has elapsed. The t->func timer function is called on an interrupt

level. Therefore, code for this routine must follow conventions for interrupt handlers.

The tstart kernel service examines the t->flags field to determine if the timer request being submitted

represents an absolute request or an incremental one. An absolute request is a request for a time out at

the time represented in the it_value structure. An incremental request is a request for a time out at the

time represented by now, plus the time in the it_value structure.

The caller should place time information for both absolute and incremental timers in the itimerstruc_t t.it

value substructure. The T_ABSOLUTE absolute request flag is defined in the /usr/include/sys/timer.h file

and should be ORed into the t->flag field if an absolute timer request is desired.

Modifications to the system time are added to incremental timer requests, but not to absolute ones.

Consider the user who has submitted an absolute timer request for noon on 12/25/88. If a privileged user

then modifies the system time by adding four hours to it, then the timer request submitted by the user still

occurs at noon on 12/25/88.

424 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

By contrast, suppose it is presently 12 noon and a user submits an incremental timer request for 6 hours

from now (to occur at 6 p.m.). If, before the timer expires, the privileged user modifies the system time by

adding four hours to it, the user’s timer request will then expire at 2200 (10 p.m.).

Execution Environment

The tstart kernel service can be called from either the process or interrupt environment.

Return Values

The tstart service has no return values.

Related Information

The talloc kernel service, tfree kernel service, tstop kernel service.

Timer and Time-of-Day Kernel Services and Using Fine Granularity Timer Services and Structures in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

tstop Kernel Service

Purpose

Cancels a pending timer request.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/timer.h>

int tstop (t)

struct trb *t;

Parameter

 t Specifies the pending timer request to cancel.

Description

The tstop kernel service cancels a pending timer request. The tstop kernel service must be called before

a timer request block can be freed with the tfree kernel service.

In a multiprocessor environment, the timer function associated with a timer request block may be active on

another processor when the tstop kernel service is called. In this case, the timer request cannot be

canceled. A multiprocessor-safe driver must therefore check the return code and take appropriate action if

the cancel request failed.

In a uniprocessor environment, the call always succeeds. This is untrue in a multiprocessor environment,

where the call will fail if the timer is being handled by another processor. Therefore, the function now has a

return value, which is set to 0 if successful, or -1 otherwise. Funnelled device drivers do not need to check

the return value since they run in a logical uniprocessor environment. Multiprocessor-safe and

multiprocessor-efficient device drivers need to check the return value in a loop. In addition, if a driver uses

locking, it must release and reacquire its lock within this loop. A delay should be used between the release

and reacquiring the lock as shown below:

Chapter 1. Kernel Services 425

while (tstop(&trp)) {

 release_any_lock;

 delay_some_time;

 reacquire_the_lock;

} /* null while loop if locks not used */

Execution Environment

The tstop kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates that the request was successfully canceled.

-1 Indicates that the request could not be canceled.

Related Information

The talloc kernel service, tfree kernel service, tstart kernel service.

Timer and Time-of-Day Kernel Services, Using Fine Granularity Timer Services and Structures, Using

Multiprocessor-Safe Timer Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

tuning Kernel Service

Purpose

Provides access to the kernel tunable variables through an easily accessible interface.

Syntax

typedef enum {

 TH_MORE,

 TH_EOF

} tmode_t;

#define TH_ABORT TH_EOF

typedef int (*tuning_read_t)(tmode_t mode, long *size, char **buf, void *context);

typedef int (*tuning_write_t)(tmode_t mode, long *size, char *buf, void *context);

tinode_t *tuning_register_handler (path, mode, readfunc, writefunc, context)

const char *path;

mode_t mode;

tuning_read_t readfunc;

tuning_write_t writefunc;

void * context;

tinode *tuning_register_bint32 (path, mode, variable, low, high)

const char *path;

mode_t mode;

int32 *variable;

int32 low;

int32 high;

tinode *tuning_register_bint32x (path, rfunc, wfunc, mode, low, high)

const char *path;

mode_t mode;

int32 (*rfunc)(void *);

int (*wfunc)(int32, void *);

void *context;

int32 low;

int32 high;

426 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

tinode *tuning_register_buint32 (path, mode,variable, low, high)

const char *path;

mode_t mode;

uint32 *variable;

uint32 low;

uint32 high;

tinode *tuning_register_buint32x (path, rfunc, wfunc, mode, low, high)

const char *path;

mode_t mode;

uint32 (*rfunc)(void *);

int (*wfunc)(uint32, void *);

void *context;

uint32 low;

uint32 high;

tinode *tuning_register_bint64 (path, mode, variable, low, high)

const char *path;

mode_t mode;

int64 *variable;

int64 low;

int64 high;

tinode *tuning_register_bint64x (path, rfunc, wfunc, mode, low, high)

const char *path;

mode_t mode;

int64 (*rfunc)(void *);

int (*wfunc)(int64, void *);

void *context;

in64 low;

in64 high;

tinode *tuning_register_buint64 (path, mode, variable, low, high)

const char *path;

mode_t mode;

uint64 *variable;

uint64 low;

uint64 high;

tinode *tuning_register_buint64x (path, rfunc, wfunc, mode, low, high)

const char *path;

mode_t mode;

uint64 (*rfunc)(void *);

int (*wfunc)(uint64, void *);

void *context;

uint64 low;

uint64 high;

void tuning_deregister (t)

tinode_t * t;

Description

The tuning_register_handler kernel service is used to add a file at the location specified by the path

parameter. When this file is read from or written to, one of the two callbacks passed as parameters to the

function is invoked.

Accesses to the file are viewed in terms of streams. A single stream is created by a sequence of one

open, one or more reads, and one close on the file. While the file is open by one process, attempts to

open the same file by other processes will be blocked unless O_NONBLOCK is passed in the flags to the

open subroutine.

The readfunc callback behaves like a producer function. The function is called when the user attempts to

read from the file. The mode parameter is equal to TH_MORE unless the user closes the file prematurely.

On entry, the size parameter is an integer containing the size of the buffer. The context parameter is the

context pointer passed to the registration function. Upon return, size should contain either the actual

amount of data returned, or a zero if an end-of-file condition should be returned to the user. The return

value of the function can also be used to signal end-of-file, as described below.

Chapter 1. Kernel Services 427

Note: It is expected that the readfunc callback has already done any necessary end-of-file cleanup when

it returns the end-of-file signal.

If the amount of data returned is nonzero, the buf parameter may be modified to point to a new buffer. If

this is done, the callback is responsible for freeing the new buffer.

If the buffer provided by the caller is too small, the caller may instead set buf to NULL. In this case, the

size parameter should be modified to indicate the size of the buffer needed. The caller will then re-invoke

the callback with a buffer of at least the requested size.

If the user closes the file before the callback indicates end-of-file, the callback will be invoked one last time

with mode equal to TH_ABORT. In this case, the size parameter is equal to 0 on entry, and any data

returned is discarded. The callback must reset its state because no further callbacks will be made for this

stream.

The writefunc callback behaves as a consumer function and is used when the user attempts to write to the

file. The mode parameter is set to TH_EOF if no further data can be expected on this stream (for example,

the user called the close subroutine on the file). Otherwise, mode is set to TH_MORE. The size parameter

contains the size of the data passed in the buffer. The buf parameter is the pointer to the buffer.

Note: There will be zero or more calls with the mode parameter set to TH_MORE and one call with the

mode parameter set to TH_EOF for every stream.
The buf parameter may change between invocations. Upon return from the callback, the size parameter

must be modified to reflect the amount of data consumed from the buffer, and the buffer must not be freed

even if all data is consumed. The function is expected to consume data in a linear (first in, first out)

fashion. Unconsumed data is present at the beginning of the buffer at the next invocation of the callback.

The size parameter will include the size of the unconsumed data.

Both callbacks’ return values are expected to be zero. If unsuccessful, a positive value will be placed into

the errno global variable (with the accompanying indication of an error return from the kernel service). If

the return value of a callback is less than 0, end-of-file will be signaled to the user, and the return value

will be treated as its unary negation (For example, -1 will be treated like 0). In this case, no further

callbacks will be made for this stream.

The tuning_register_bint32, tuning_register_buint32, tuning_register_bint64, and

tuning_register_buint64 kernel services are used to add a file at the location specified by the path

parameter that, when read from, will return the ASCII value of the integer variable pointed to by the

variable parameter. When written to, this file will set the integer variable to the value whose ASCII value

was written, unless that value does not satisfy the relation low <= value < high. In this case, the integer

variable is not modified, and an error is returned to the user through an error return of the kernel service

during which the invalid attempt is detected (probably either write or close).

The tuning_register_b*x functions operate similarly to their non-x variants, but they use a pair of

callbacks to retrieve (rfunc) and set (wfunc) the variable. The callback is passed the value (if setting) and

the context parameter. This permits more complex operations on read/write, such as serialization and

memory allocation and deallocation.

The tuning_get_context kernel service returns the context of the registration function used to create the

tinode_t structure referred to by the argument parameter.

The tuning_register kernel service is the basic interface by which a file can be added to the /proc/sys

directory hierarchy. This function is not exported to kernel extensions, and its direct use in the kernel is

strongly discouraged. The path parameter contains the path relative to the /proc/sys root at which the file

should appear. Intermediate path components are automatically created. The mode parameter contains the

UNIX permissions and the type of the file to be created (as per the st_mode field of the stat struct). If the

428 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

file type is not specified, it is assumed to be S_IFREG. In most cases this parameter will be 0644 or 0600.

The vnops parameter is used to dispatch all operations on the file.

The tuning_deregister kernel service is used to remove a file from the /proc/sys directory hierarchy. It is

exported to kernel extensions. It should only be used when a specific file’s implementation is no longer

available. The t parameter is a tinode_t structure as returned by tuning_register. If the file is currently

open, any further access to it after this call returns ESTALE.

Parameters

 mode Is set to either TH_EOF if no further data is expected from the user for this change, or TH_MORE if

further data is expected.

size Contains the size of the data passed in the buffer.

buf Points to the buffer.

context Points to the context passed to the registration function.

path Specifies the location of the file to be added.

readfunc Behaves as a producer function.

rfunc Retrieves the variable.

wfunc Sets the variable.

writefunc Behaves as a consumer function.

variable Specifies the variable.

high Specifies the maximum value that the variable parameter can contain.

low Specifies the minimum value that the variable parameter can contain.

t A tinode_t structure as returned by tuning_register.

Return Values

Upon successful completion, the tuning_register kernel service returns the newly created tinode_t

structure. If unsuccessful, a NULL value is returned.

Examples

A user of this interface might include the following line in their initialization routine:

tuning_var = tuning_register_buint64 ("fs/jfs2/max_readahead", 0644 &j2_max_read_ahead, 0, 1024);

In this example tuning_var is a global variable of type tinode_t *. This causes the fs and fs/jfs2

directories to be created, and a file (pipe) to be created as fs/jfs2/max_readahead. The file returns the

value of j2_max_readahead in ASCII when read. The variable is read at the time of the first read. A write

would set the value of the variable, but only at the time of either the first newline being written or a close

function being performed. In order to write the variable after reading it, one must close the file and reopen

it for write. This file is not seekable.

ue_proc_check Kernel Service

Purpose

Determines if a process is critical to the system.

Syntax

int ue_proc_check (pid)

pid_t pid;

Description

The ue_proc_check kernel service determines if a particular process is critical to the system. A critical

process is either a kernel process or a process registered as critical by the ue_proc_register system call.

Chapter 1. Kernel Services 429

A process that is critical will cause the system to terminate if that process has an unrecoverable hardware

error associated with the process. Unrecoverable hardware errors associated with a process are

determined by the kernel machine check handler on systems that support UE-Gard error processing.

The ue_proc_check kernel service should be called only while executing in kernel mode in the user

process.

Parameters

 pid Specifies the process’ ID to be checked as critical.

Execution Environment

The ue_proc_check kernel service can be called from the interrupt environment only.

Return Values

 0 Indicates that the pid is not critical.

EINVAL Indicates that the pid is critical.

-1 Indicates that the pid parameter is not valid or the process no longer exists.

Related Information

The “ue_proc_register Subroutine.”

ue_proc_register Subroutine

Purpose

Registers a process as critical to the system.

Syntax

int ue_proc_register (pid, argument)

pid_t pid;

int argument;

Description

The ue_proc_register system call registers a particular process as critical to the system. A process that is

critical will cause the system to terminate if that process has an unrecoverable hardware error associated

with the process. Unrecoverable hardware errors associated with a process are determined by the kernel

machine check handler on systems that support UE-Gard error processing.

An execed process from a critical process must register itself to be critical. A fork from a process inherits

the critical registration unless the argument is set to NONCRITFORK.

If the value of the pid parameter is equal to (pid_t) 0, the subroutine is registering the calling process.

The ue_proc_register system call should be called only while executing with root authority in the user

process.

Parameters

 pid Specifies the process’ ID to be registered critical.

430 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

argument Defined in the sys/proc.h header file. Can be the following value:

NONCRITFORK

The pid forks are not critical.

Execution Environment

The ue_proc_register system call can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EINVAL Indicates that the pid parameter is not valid or the process no longer exists.

EACCES Indicates that the caller does not have sufficient authority to alter the pid registration.

Related Information

The “ue_proc_unregister Subroutine.”

ue_proc_unregister Subroutine

Purpose

Unregisters a process from being critical to the system.

Syntax

int ue_proc_register (pid)

pid_t pid;

Description

The ue_proc_unregister system call unregisters a particular process as being no longer critical to the

system. A process that has been previously registered critical will cause the system to terminate if that

process has an unrecoverable hardware error associated with the process. Unrecoverable hardware errors

associated with a process are determined by the kernel machine check handler on systems that support

UE-Gard error processing.

If the value of the pid parameter is equal to (pid_t) 0, the subroutine is unregistering the calling process.

The ue_proc_unregister service should be called only while executing with root authority in the user

process.

Parameters

 pid Specifies the process’ ID to be unregistered.

Execution Environment

The ue_proc_unregister system call can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EINVAL Indicates that the pid parameter is not valid or the process no longer exists.

EACCES Indicates that the caller does not have sufficient authority to alter the pid registration.

Chapter 1. Kernel Services 431

Related Information

The “ue_proc_register Subroutine” on page 430.

uexadd Kernel Service

Purpose

Adds a systemwide exception handler for catching user-mode process exceptions.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/except.h>

void uexadd (exp)

struct uexcepth *exp;

Parameter

 exp Points to an exception handler structure. This structure must be pinned and is used for registering user-mode

process exception handlers. The uexcepth structure is defined in the /usr/include/sys/except.h file.

Description

The uexadd kernel service is typically used to install a systemwide exception handler to catch exceptions

occurring during execution of a process in user mode. The uexadd kernel service adds the exception

handler structure specified by the exp parameter, to the chain of exception handlers to be called if an

exception occurs while a process is executing in user mode. The last exception handler registered is the

first exception handler called for a user-mode exception.

The uexcepth structure has:

v A chain element used by the kernel to chain the registered user exception handlers.

v A function pointer defining the entry point of the exception handler being added.

Additional exception handler-dependent information can be added to the end of the structure, but must be

pinned.

Attention: The uexcepth structure must be pinned when the uexadd kernel service is called. It must

remain pinned and unmodified until after the call to the uexdel kernel service to delete the specified

exception handler. Otherwise, the system may crash.

Execution Environment

The uexadd kernel service can be called from the process environment only.

Return Values

The uexadd kernel service has no return values.

Related Information

The uexdel kernel service and User-Mode Exception Handler for the uexadd Kernel Service.

432 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

User-Mode Exception Handling and Kernel Extension and Device Driver Management Services in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts.

User-Mode Exception Handler for the uexadd Kernel Service

Purpose

Handles exceptions that occur while a kernel thread is executing in user mode.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/except.h>

int func (exp, type, tid, mst)

struct excepth * exp;

int type;

tid_t tid;

struct mstsave * mst;

Parameters

 exp Points to the excepth structure used to register this exception handler.

mst Points to the current mstsave area for the process. This pointer can be used to access the mstsave area to

obtain additional information about the exception.

 tid Specifies the thread ID of the kernel thread that was executing at the time of the exception.

type Denotes the type of exception that has occurred. This type value is platform-specific. Specific values are

defined in the /usr/include/sys/except.h file.

Description

The user-mode exception handler (exp->func) is called for synchronous exceptions that are detected while

a kernel thread is executing in user mode. The kernel exception handler saves exception information in the

mstsave area of the structure. For user-mode exceptions, it calls the first exception handler found on the

user exception handler list. The exception handler executes in an interrupt environment at the priority level

of either INTPAGER or INTIODONE.

If the registered exception handler returns a return code indicating that the exception was handled, the

kernel exits from the exception handler without calling additional exception handlers from the list. If the

exception handler returns a return code indicating that the exception was not handled, the kernel invokes

the next exception handler on the list. The last exception handler in the list is the default handler. This is

typically signalling the thread.

The kernel exception handler must not page fault. It should also register an exception handler using the

setjmpx kernel service if any exception-handling activity can result in an exception. This is important

particularly if the exception handler is handling the I/O. If the exception handler did not handle the

exception, the return code should be set to the EXCEPT_NOT_HANDLED value for user-mode exception

handling.

Execution Environment

The user-mode exception handler for the uexadd kernel service is called in the interrupt environment at

the INTPAGER or INTIODONE priority level.

Chapter 1. Kernel Services 433

Return Values

 EXCEPT_HANDLED Indicates that the exception was successfully handled.

EXCEPT_NOT_HANDLED Indicates that the exception was not handled.

Related Information

The uexadd kernel service.

User-Mode Exception Handling and Kernel Extension and Device Driver Management Kernel Services in

AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

uexblock Kernel Service

Purpose

Makes the currently active kernel thread nonrunnable when called from a user-mode exception handler.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/except.h>

void uexblock (tid)

tid_t *tid;

Parameter

 tid Specifies the thread ID of the currently active kernel thread to be put into a wait state.

Description

The uexblock kernel service puts the currently active kernel thread specified by the tid parameter into a

wait state until the uexclear kernel service is used to make the thread runnable again. If the uexblock

kernel service is called from the process environment, the tid parameter must specify the current active

thread; otherwise the system will crash with a kernel panic.

The uexblock kernel service can be used to lazily control user-mode threads access to a shared serially

usable resource. Multiple threads can use a serially used resource, but only one process at a time. When

a thread attempts to but cannot access the resource, a user-mode exception can be set up to occur. This

gives control to an exception handler registered by the uexadd kernel service. This exception handler can

then block the thread using the uexblock kernel service until the resource is made available. At this time,

the uexclear kernel service can be used to make the blocked thread runnable.

Execution Environment

The uexblock kernel service can be called from either the process or interrupt environment.

Return Values

The uexblock service has no return values.

Related Information

The uexclear kernel service.

434 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

User-Mode Exception Handling and Kernel Extension and Device Driver Management Services in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts.

uexclear Kernel Service

Purpose

Makes a kernel thread blocked by the uexblock service runnable again.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/except.h>

void uexclear (tid)

tid_t *tid;

Parameter

 tid Specifies the thread ID of the previously blocked kernel thread to be put into a run state.

Description

The uexclear kernel service puts a kernel thread specified by the tid parameter back into a runnable state

after it was made nonrunnable by the uexblock kernel service. A thread that has been sent a SIGSTOP

stop signal is made runnable again when it receives the SIGCONT continuation signal.

The uexclear kernel service can be used to lazily control user-mode thread access to a shared serially

usable resource. A serially used resource is usable by more than one thread, but only by one at a time.

When a thread attempts to access the resource but does not have access, a user-mode exception can be

setup to occur.

This setup gives control to an exception handler registered by the uexadd kernel service. Using the

uexblock kernel service, this exception handler can then block the thread until the resource is later made

available. At that time, the uexclear service can be used to make the blocked thread runnable.

Execution Environment

The uexclear kernel service can be called from either the process or interrupt environment.

Return Values

The uexclear service has no return values.

Related Information

The uexblock kernel service.

User-Mode Exception Handling and Kernel Extension and Device Driver Management Services in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts.

uexdel Kernel Service

Purpose

Deletes a previously added systemwide user-mode exception handler.

Chapter 1. Kernel Services 435

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/except.h>

void uexdel (exp)

struct uexcepth *exp;

Parameter

 exp Points to the exception handler structure used to add the exception handler with the uexadd kernel service.

Description

The uexdel kernel service removes a user-mode exception handler from the systemwide list of exception

handlers maintained by the kernel’s exception handler.

The uexdel kernel service removes the exception handler structure specified by the exp parameter from

the chain of exception handlers to be called if an exception occurs while a process is executing in user

mode. Once the uexdel kernel service has completed, the specified exception handler is no longer called.

In addition, the uexcepth structure can be modified, freed, or unpinned.

Execution Environment

The uexdel kernel service can be called from the process environment only.

Return Values

The uexdel kernel service has no return values.

Related Information

The uexadd kernel service.

User-Mode Exception Handling and Kernel Extension and Device Driver Management Services in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts.

ufdcreate Kernel Service

Purpose

Allocates and initializes a file descriptor.

Syntax

#include <fcntl.h>

#include <sys/types.h>

#include <sys/file.h>

int ufdcreate (flags, ops, datap, type, fdp, cnp)

int flags;

struct fileops * ops;

void * datap;

short type;

int * fdp;

 struct ucred *crp;

436 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 flags Specifies the flags to save in a file structure. The file structure is defined in the sys/file.h file. If a read or

write subroutine is called with the file descriptor returened by this routine, the FREAD and FWRITE flags

must be set appropriately. Valid flags are defined in the fcntl.h file.

ops Points to the list of subsystem-supplied routines to call for the file system operations: read/write, ioctl,

select, fstat, and close. The fileops structure is defined in the sys/file.h file. See ″File Operations″ for

more information.

datap Points to type-dependent structures. The system saves this pointer in the file structure. As a result, the

pointer is available to the file operations when they are called.

type Specifies the unique type value for the file structure. Valid types are listed in the sys/file.h file.

fdp Points to an integer field where the file descriptor is stored on successful return.

crp Points to a credentials structure. This pointer is saved in the file struct for use in subsequent operations. It

must be a valid ucred struct. The crref() kernel service can be used to obtain a ucred struct.

Description

The ufdcreate kernel service provides a file interface to kernel extensions. Kernel extensions use this

service to create a file descriptor and file structure pair. Also, this service allows kernel extensions to

provide their own file descriptor-based system calls, enabling read/write, ioctl, select, fstat, and close

operations on objects outside the file system. The ufdcreate kernel services does not require the

extension to understand or conform to the synchronization requirements of the logical file system (LFS).

The ufdcreate kernel service provides a file descriptor to the caller and creates the underlying file

structure. The caller must include pointers to subsystem-supplied routines for the read/write, ioctl, select,

fstat, and close operations. If any of the operations are not needed by the calling subsystem, then the

caller must provide a pointer to an appropriate errno value. Typically, the EOPNOTSUPP value is used for

this purpose. See ″File Operations″ for information about the requirements for the subsystem-supplied

routines.

Removing a File Descriptor

There is no corresponding operation to remove a file descriptor (and the attendant structures) created by

the ufdcreate kernel service. To remove a file descriptor, use a call to the close subroutine. The close

subroutine can be called from a routine or from within the kernel or kernel extension. If the close is not

called, the file is closed when the process exits.

Once a call is made to the ufdcreate kernel service, the file descriptor is considered open before the call

to the service returns. When a close or exit subroutine is called, the close file operation specified on the

call to the ufdcreate interface is called.

File Operations

The ufdcreate kernel service allows kernel extensions to provide their own file descriptor-based system

calls, enabling read/write, ioctl, select, fstat, and close operations on objects outside the file system. The

fileops structure defined in the sys/file.h file provides interfaces for these routines.

read/write Requirements

The read/write operation manages input and output to the object specified by the fp parameter. The

actions taken by this operation are dependent on the object type. The syntax for the operation is as

follows:

#include <sys/types.h>

#include <sys/uio.h>

int (*fo_rw) (fp, rw, uiop, ext)

Chapter 1. Kernel Services 437

struct file *fp;

enum uio_rw rw;

struct uio *uiop;

int ext;

The parameters have the following values:

 Value Description

fp Points to the file structure. This structure corresponds to the file descriptor used on the read or write

subroutine.

rw Contains a UIO_READ value for a read operation or UIO_WRITE value for a write operation.

uiop Points to a uio structure. This structure describes the location and size information for the input and output

requested. The uio structure is defined in the uio.h file.

ext Specifies subsystem-dependent information. If the readx or writex subroutine is used, the value passed by

the operation is passed through to this subroutine. Otherwise, the value is 0.

If successful, the fo_rw operation returns a value of 0. A nonzero return value should be programmed to

indicate an error. See the sys/errno.h file for a list of possible values.

Note: On successful return, the uiop->uio_resid field must be updated to include the number of bytes of

data actually transferred.

ioctl Requirements

The ioctl operation provides object-dependent special command processing. The ioctl subroutine performs

a variety of control operations on the object associated with the specified open file structure. This

subroutine is typically used with character or block special files and returns an error for ordinary files.

The control operation provided by the ioctl operation is specific to the object being addressed, as are the

data type and contents of the arg parameter.

The syntax for the ioctl operation is as follows:

#include <sys/types.h>

#include <sys/ioctl.h>

int (*fo_ioctl) (fp, cmd, arg, ext, kflag)

struct file *fp;

int cmd, ext, kflag;

caddr_t arg;

The parameters have the following values:

 Value Description

fp Points to the file structure. This structure corresponds to the file descriptor used by the ioctl subroutine.

cmd Defines the specific request to be acted upon by this routine.

arg Contains data that is dependent on the cmd parameter.

ext Specifies subsystem-specific information. If the ioctlx subroutine is used, the value passed by the

application is passed through to this subroutine. Otherwise, the value is 0.

kflag Determines where the call is made from. The kflag parameter has the value FKERNEL (from the fcntl.h

file) if this routine is called through the fp_ioctl interface. Otherwise, its value is 0.

If successful, the fo_ioctl operation returns a value of 0. For errors, the fo_ioctl operation should return a

nonzero return value to indicate an error. Refer to the sys/errno.h file for the list of possible values.

select Requirements

The select operation performs a select operation on the object specified by the fp parameter. The syntax

for this operation is as follows:

#include <sys/types.h>

438 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int (*fo_select) (fp, corl, reqevents, rtneventsp, notify)

struct file *fp;

int corl;

ushort reqevents, *rtneventsp;

void (notify) ();

The parameters have the following values:

 Value Description

fp Points to the file structure. This structure corresponds to the file descriptor used by the select

subroutine.

corl Specifies the ID used for correlation in the selnotify kernel service.

reqevents Identifies the events to check. The poll and select functions define three standard event flags and

one informational flag. The sys/poll.h file details the event bit definition. See the fp_select kernel

service for information about the possible flags.

rtneventsp Indicates the returned events pointer. This parameter, passed by reference, indicates the events

that are true at the current time. The returned event bits include the request events and an error

event indicator.

notify Points to a routine to call when the specified object invokes the selnotify kernel service for an

outstanding asynchronous select or poll event request. If no routine is to be called, this parameter

must be null.

If successful, the fo_select operation returns a value of 0. This operation should return a nonzero return

value to indicate an error. Refer to the sys/errno.h file for the list of possible values.

fstat Requirements

The fstat operation fills in an attribute structure. Depending on the object type specified by the fp

parameter, many fields in the structure may not be applicable. The value passed back from this operation

is dependent upon both the object type and what any routine that understands the type is expecting. The

syntax for this operation is as follows:

#include <sys/types.h>

int (*fo_fstat) (fp, sbp)

struct file *fp;

struct stat *sbp;

The parameters have the following values:

 Value Description

fp Points to the file structure. This structure corresponds to the file descriptor used by the stat subroutine.

sbp Points to the stat structure to be filled in by this operation. The address supplied is in kernel space.

If successful, the fo_fstat operation returns a value of 0. A nonzero return value should be programmed to

indicate an error. Refer to the sys/errno.h file for the list of possible values.

close Requirements

The close operation invalidates routine access to objects specified by the fp parameter and releases any

data associated with that access. This operation is called from the close subroutine code when the file

structure use count is decremented to 0. For example, if there are multiple accesses to an object (created

by the dup, fork, or other subsystem-specific operation), the close subroutine calls the close operation

when it determines that there is no remaining access through the file structure being closed.

A file descriptor is considered open once a file descriptor and file structure have been set up by the LFS.

The close file operation is called whenever a close or exit is specified. As a result, the close operation

must be able to close an object that is not fully open, depending on what the caller did before the file

structure was initialized.

Chapter 1. Kernel Services 439

The syntax for the close operation is as follows:

#include <sys/file.h>

int (*fo_close) (fp)

struct file *fp;

The parameter is:

 fp Points to the file structure. This structure corresponds to the file descriptor used by the close subroutine.

If successful, the fo_close operation returns a value of 0. This operation should return a nonzero return

value to indicate an error. Refer to the sys/errno.h file for the list of possible values.

Execution Environment

The ufdcreate kernel service can be called from the process environment only.

Return Values

If the ufdcreate kernel service succeeds, it returns a value of 0. If the kernel service fails, it returns a

nonzero value and sets the errno global variable.

Error Codes

The ufdcreate kernel service fails if one or more of the following errors occur:

 Error Description

EINVAL The ops parameter is null, or the fileops structure does not have entries for for every operation.

EMFILE All file descriptors for the process have already been allocated.

ENFILE The system file table is full.

Related Information

The selnotify kernel service.

The close subroutine, exit, atexit, or _exit subroutine, ioctl subroutine, open subroutine, read subroutine,

select subroutine, write subroutine, fp_select subroutine.

Logical File System Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

ufdgetf Kernel Service

Purpose

Returns a pointer to a file structure associated with a file descriptor.

Syntax

#include <sys/file.h>

int ufdgetf(fd, fpp)

int fd;

struct file **fpp;

Parameters

 fd Identifies the file descriptor. The descriptor must be for an open file.

440 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

fpp Points to a location to store the file pointer.

Description

The ufdgetf kernel service returns a pointer to a file structure associated with a file descriptor. The calling

routine must have a use count on the file descriptor. To obtain a use count on the file descriptor, the caller

must first call the ufdhold kernel service.

Execution Environment

The ufdget kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EBADF Indicates that the fd parameter is not a file descriptor for an open file.

Related Information

The ufdhold kernel service.

ufdhold and ufdrele Kernel Service

Purpose

Increment or decrement a file descriptor reference count.

Syntax

int ufdhold(fd)

int fd;

int ufdrele(fd)

int fd;

Parameter

 fd Identifies the file descriptor.

Description

Attention: It is extremely important that the calls to ufdhold and ufdrele kernel service are

balanced. If a file descriptor is held more times than it is released, the close subroutine on the

descriptor never completes. The process hangs and cannot be killed. If the descriptor is released

more times than it is held, the system panics.

The ufdhold and ufdrele kernel services increment and decrement a file-descriptor reference count.

Together, these kernel services maintain the file descriptor reference count. The ufdhold kernel service

increments the count. The ufdrele kernel service decrements the count.

These subroutines are supported for kernel extensions that provide their own file-descriptor-based system

calls. This support is required for synchronization with the close subroutine.

When a thread is executing a file-descriptor-based system call, it is necessary that the logical file system

(LFS) be aware of it. The LFS uses the count in the file descriptor to monitor the number of system calls

currently using any particular file descriptor. To keep the count accurately, any thread using the file

Chapter 1. Kernel Services 441

descriptor must increment the count before performing any operation and decrement the count when all

activity using the file descriptor is completed for that system call.

Execution Environment

These kernel services can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EBADF Indicates that the fd parameter is not a file descriptor for an open file.

Related Information

The ufdgetf kernel service.

The close subroutine.

uiomove Kernel Service

Purpose

Moves a block of data between kernel space and a space defined by a uio structure.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

int uiomove (cp, n, rw, uiop)

caddr_t cp;

int n;

uio_rw rw;

struct uio *uiop;

Parameters

 cp Specifies the address in kernel memory to or from which data is moved.

n Specifies the number of bytes to move.

rw Indicates the direction of the move:

UIO_READ

Copies data from kernel space to space described by the uio structure.

UIO_WRITE

Copies data from space described by the uio structure to kernel space.

uiop Points to a uio structure describing the buffer used in the data transfer.

Description

The uiomove kernel service moves the specified number of bytes of data between kernel space and a

space described by a uio structure. Device driver top halves, especially character device drivers,

frequently use the uiomove service to transfer data into or out of a user area. The uio_resid and

uio_iovcnt fields in the uio structure describing the data area must be greater than 0 or an error is

returned.

442 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The uiomove service moves the number of bytes of data specified by either the n or uio_resid parameter,

whichever is less. If either the n or uio_resid parameter is 0, no data is moved. The uio_segflg field in the

uio structure is used to indicate if the move is accessing a user- or kernel-data area, or if the caller

requires cross-memory operations and has provided the required cross-memory descriptors. If a

cross-memory operation is indicated, there must be a cross-memory descriptor in the uio_xmem array for

each iovec element.

If the move is successful, the following fields in the uio structure are updated:

 Field Description

uio_iov Specifies the address of current iovec element to use.

uio_xmem Specifies the address of the current xmem element to use.

uio_iovcnt Specifies the number of remaining iovec elements.

uio_iovdcnt Specifies the number of already processed iovec elements.

uio_offset Specifies the character offset on the device performing the I/O.

uio_resid Specifies the total number of characters remaining in the data area described by the uio

structure.

iov_base Specifies the address of the data area described by the current iovec element.

iov_len Specifies the length of remaining data area in the buffer described by the current iovec

element.

Execution Environment

The uiomove kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

ENOMEM Indicates there was no room in the buffer.

EIO Indicates a permanent I/O error file space.

ENOSPC Indicates insufficient disk space.

EFAULT Indicates a user location that is not valid.

Related Information

The uphysio kernel service, ureadc kernel service, uwritec kernel service.

unlock_enable Kernel Service

Purpose

Unlocks a simple lock if necessary, and restores the interrupt priority.

Syntax

#include <sys/lock_def.h>

void unlock_enable (int_pri, lock_addr)

int int_pri;

simple_lock_t lock_addr;

Parameters

 int_pri Specifies the interrupt priority to restore. This must be set to the value returned by the

corresponding call to the disable_lock kernel service.

lock_addr Specifies the address of the lock word to unlock.

Chapter 1. Kernel Services 443

Description

The unlock_enable kernel service unlocks a simple lock if necessary, and restores the interrupt priority, in

order to provide optimized thread-interrupt critical section protection for the system on which it is

executing. On a multiprocessor system, calling the unlock_enable kernel service is equivalent to calling

the simple_unlock and i_enable kernel services. On a uniprocessor system, the call to the

simple_unlock service is not necessary, and is omitted. However, you should still pass the valid lock

address which was used with the corresponding call to the disable_lock kernel service. Never pass a

NULL lock address.

Execution Environment

The unlock_enable kernel service can be called from either the process or interrupt environment.

Return Values

The unlock_enable kernel service has no return values.

Related Information

The disable_lock kernel service, i_enable kernel service, simple_unlock kernel service.

Understanding Locking, Locking Kernel Services, Understanding Interrupts, I/O Kernel Services, Interrupt

Environment in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

unlockl Kernel Service

Purpose

Unlocks a conventional process lock.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void unlockl (lock_word)

lock_t *lock_word;

Parameter

 lock_word Specifies the address of the lock word.

Description

Note: The unlockl kernel service is provided for compatibility only and should not be used in new code,

which should instead use simple locks or complex locks.

The unlockl kernel service unlocks a conventional lock. Only the owner of a lock can unlock it. Once a

lock is unlocked, the highest priority thread (if any) which is waiting for the lock is made runnable and may

compete again for the lock. If there was at least one process waiting for the lock, the priority of the caller

is recomputed. Preempting a System Call discusses how system calls can use locking kernel services

when accessing global data.

444 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The lockl and unlockl services do not maintain a nesting level count. A single call to the unlockl service

unlocks the lock for the caller. The return code from the lockl service should be used to determine when

to unlock the lock.

Note: The unlockl kernel service can be called with interrupts disabled, only if the event or lock word is

pinned.

Execution Environment

The unlockl kernel service can be called from the process environment only.

Return Values

The unlockl service has no return values.

Example

A call to the unlockl service can be coded as follows:

int lock_ret; /* return code from lockl() */

extern int lock_word; /* lock word that is external

 and was initialized to

 LOCK_AVAIL */

...

/* get lock prior to using resource */

lock_ret = lockl(lock_word, LOCK_SHORT)

/* use resource for which lock was obtained */

...

/* release lock if this was not a nested use */

if (lock_ret != LOCK_NEST)

 unlockl(lock_word);

Related Information

The lockl kernel service.

Understanding Locking in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Locking Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts

Preempting a System Call in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Interrupt Environment in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

unpin Kernel Service

Purpose

Unpins the address range in system (kernel) address space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/pin.h>

Chapter 1. Kernel Services 445

int unpin (addr, length)

caddr addr;

int length;

Parameters

 addr Specifies the address of the first byte to unpin in the system (kernel) address space.

length Specifies the number of bytes to unpin.

Description

The unpin kernel service decreases the pin count of each page in the address range. When the pin count

is 0, the page is not pinned and can be paged out of real memory. Upon finding an unpinned page, the

unpin service returns the EINVAL error code and leaves any remaining pinned pages still pinned.

The unpin service can only be called with addresses in the system (kernel) address space. The

xmemunpin service should be used where the address space might be in either user or kernel space.

Execution Environment

The unpin kernel service can be called from either the process or interrupt environment.

Return Values

 0 Indicates successful completion.

EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory

beginning at the byte specified by the base parameter and extending for the number of bytes specified by

the len parameter is not defined. If neither cause is responsible, an unpinned page was specified.

Related Information

The pin, xmempin, and xmemunpin kernel services.

Understanding Execution Environments and Memory Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

unpincode Kernel Service

Purpose

Unpins the code and data associated with a loaded object module.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/pin.h>

int unpincode (func)

int (*func) ();

Parameter

 func Specifies an address used to determine the object module to be unpinned. The address is typically that of a

function that is exported by this object module.

446 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The unpincode kernel service uses the ltunpin kernel service to decrement the pin count for the pages

associated with the following items:

v Code associated with the object module

v Data area of the object module that contains the function specified by the func parameter

The loader entry for the module is used to determine the size of both the code and the data area.

Execution Environment

The unpincode kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EINVAL Indicates that the func parameter is not a valid pointer to the function.

EFAULT Indicates that the calling process does not have access to the area of memory that is associated with the

module.

Related Information

The unpin kernel service.

Understanding Execution Environments and Memory Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

unpinu Kernel Service

Purpose

Unpins the specified address range in user or system memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

int unpinu (base, len, segflg)

caddr_t base;

int len;

short segflg;

Parameters

 base Specifies the address of the first byte to unpin.

len Indicates the number of bytes to unpin.

segflg Specifies whether the data to unpin is in user space or system space. The values for this flag are defined

in the /usr/include/sys/uio.h file. This value can be one of the following:

UIO_SYSSPACE

The region is mapped into the kernel address space.

UIO_USERSPACE

The region is mapped into the user address space.

Chapter 1. Kernel Services 447

Description

The unpinu service unpins a region of memory previously pinned by the pinu kernel service. When the

pin count is 0, the page is not pinned and can be paged out of real memory. Upon finding an unpinned

page, the unpinu service returns the EINVAL error code and leaves any remaining pinned pages still

pinned.

The unpinu service should be used where the address space might be in either user or kernel space.

If the caller has a valid cross-memory descriptor for the address range, the xmempin and xmemunpin

kernel services can be used instead of pinu and unpinu, and result in less pathlength.

Note: The unpinu kernel service is not currently supported on the 64-bit kernel.

Execution Environment

The unpinu service can be called in the process environment when unpinning data that is in either user

space or system space. It can be called in the interrupt environment only when unpinning data that is in

system space.

Return Values

 0 Indicates successful completion.

EFAULT Indicates that the memory region as specified by the base and len parameters is not within the address

specified by the segflg parameter.

 EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory

beginning at the byte specified by the base parameter and extending for the number of bytes specified by

the len parameter is not defined. If neither cause is responsible, an unpinned page was specified.

Related Information

The pin kernel service, unpin kernel service, xmempin kernel service, xmemunpin kernel service.

Understanding Execution Environments and Memory Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

unregister_HA_handler Kernel Service

Purpose

Removes from the kernel the registration of a High Availability Event Handler.

Syntax

#include <sys/high_avail.h>

int register_HA_handler (ha_handler)

ha_handler_ext_t * ha_handler;

448 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

 ha_handler Specifies a pointer to a structure of the type

ha_handler_ext_t defined in /usr/include/sys/
high_avail.h. This structure must be identical to the one

passed to register_HA_handler at the time of

registration.

Description

The unregister_HA_handler kernel service cancels an unconfigured kernel extensions that have

registered a high availability event handler, done by the register_HA_handler kernel service, so that the

kernel extension can be unloaded.

Failure to do so may cause a system crash when a high availability event such as a processor

deallocation is initiated due to some hardware fault.

Execution Environment

The unregister_HA_handler kernel service can be called from the process environment only.

An extension may register the same HAEH N times (N > 1). Although this is considered an incorrect

behaviour, no error is reported. The given HAEH will be invoked N times for each HA event. This handler

has to be unregistered as many times as it was registered.

Return Values

 0 Indicates a successful operation.

A non-zero value indicates an error.

Related Information

The register_HA_handler kernel service.

The RAS Kernel Services in the AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

untimeout Kernel Service

Attention: This service should not be used in AIX Version 4, because it is not multi-processor safe.

The base kernel timer and watchdog services should be used instead. See talloc and w_init for more

information.

Purpose

Cancels a pending timer request.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void untimeout (func, arg)

void (*func)();

caddr_t *arg;

Chapter 1. Kernel Services 449

Parameters

 func Specifies the function associated with the timer to be canceled.

arg Specifies the function argument associated with the timer to be canceled.

Description

The untimeout kernel service is not part of the kernel. However, it is a compatibility service provided in

the libsys.a library. To use the untimeout service, a kernel extension must have been bound with the

libsys.a library. The untimeout service, like the associated kernel libsys services timeoutcf and timeout,

can be bound and used only in the pinned part of a kernel extension or the bottom half of a device driver

because these services use interrupt disable for serialization.

The untimeout kernel service cancels a specific request made with the timeout service. The func and arg

parameters must match those used in the timeout kernel service request that is to be canceled.

Upon return, the specified timer request is canceled, if found. If no timer request matching func and arg is

found, no operation is performed.

Execution Environment

The untimeout kernel service can be called from either the process or interrupt environment.

Return Values

The untimeout kernel service has no return values.

Related Information

The timeout kernel service.

Timer and Time-of-Day Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

uphysio Kernel Service

Purpose

Performs character I/O for a block device using a uio structure.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

#include <sys/uio.h>

int uphysio (uiop, rw, buf_cnt, devno, strat, mincnt, minparms)

struct uio * uiop;

int rw;

uint buf_cnt;

dev_t devno;

int (* strat)();

int (* mincnt)();

void * minparms;

450 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 uiop Points to the uio structure describing the buffer of data to transfer

using character-to-block I/O.

rw Indicates either a read or write operation. A value of B_READ for

this flag indicates a read operation. A value of B_WRITE for this flag

indicates a write operation.

buf_cnt Specifies the maximum number of buf structures to use when

calling the strategy routine specified by the strat parameter. This

parameter is used to indicate the maximum amount of concurrency

the device can support and minimize the I/O redrive time. The value

of the buf_cnt parameter can range from 1 to 64.

devno Specifies the major and minor device numbers. With the uphysio

service, this parameter specifies the device number to be placed in

the buf structure before calling the strategy routine specified by the

strat parameter.

strat Represents the function pointer to the ddstrategy routine for the

device.

mincnt

 Represents the function pointer to a routine used to reduce the data

transfer size specified in the buf structure, as required by the device

before the strategy routine is started. The routine can also be used

to update extended parameter information in the buf structure

before the information is passed to the strategy routine.

minparms Points to parameters to be used by the mincnt parameter.

Description

The uphysio kernel service performs character I/O for a block device. The uphysio service attempts to

send to the specified strategy routine the number of buf headers specified by the buf_cnt parameter.

These buf structures are constructed with data from the uio structure specified by the uiop parameter.

The uphysio service initially transfers data area descriptions from each iovec element found in the uio

structure into individual buf headers. These headers are later sent to the strategy routine. The uphysio

kernel service tries to process as many data areas as the number of buf headers permits. It then invokes

the strategy routine with the list of buf headers.

Preparing Individual buf Headers

The routine specified by the mincnt parameter is called before the buf header, built from an iovec

element, is added to the list of buf headers to be sent to the strategy routine. The mincnt parameter is

passed a pointer to the buf header along with the minparms pointer. This arrangement allows the mincnt

parameter to tailor the length of the data transfer described by the buf header as required by the device

performing the I/O. The mincnt parameter can also optionally modify certain device-dependent fields in the

buf header.

When the mincnt parameter returns with no error, an attempt is made to pin the data buffer described by

the buf header. If the pin operation fails due to insufficient memory, the data area described by the buf

header is reduced by half. The buf header is again passed to the mincnt parameter for modification before

trying to pin the reduced data area.

This process of downsizing the transfer specified by the buf header is repeated until one of the three

following conditions occurs:

v The pin operation succeeds.

v The mincnt parameter indicates an error.

v The data area size is reduced to 0.

Chapter 1. Kernel Services 451

When insufficient memory indicates a failed pin operation, the number of buf headers used for the

remainder of the operation is reduced to 1. This is because trying to pin multiple data areas

simultaneously under these conditions is not desirable.

If the user has not already obtained cross-memory descriptors, further processing is required. (The

uio_segflg field in the uio structure indicates whether the user has already initialized the cross-memory

descriptors. The usr/include/sys/uio.h file contains information on possible values for this flag.)

When the data area described by the buf header has been successfully pinned, the uphysio service

verifies user access authority for the data area. It also obtains a cross-memory descriptor to allow the

device driver interrupt handler limited access to the data area.

Calling the Strategy Routine

After the uphysio kernel service obtains a cross-memory descriptor to allow the device driver interrupt

handler limited access to the data area, the buf header is then put on a list of buf headers to be sent to

the strategy routine specified by the strat parameter.

The strategy routine specified by the strat parameter is called with the list of buf headers when:

v The list reaches the number of buf structures specified by the buf_cnt parameter.

v The data area described by the uio structure has been completely described by buf headers.

The buf headers in the list are chained together using the av_back and av_forw fields before they are sent

to the strategy routine.

Waiting for buf Header Completion

When all available buf headers have been sent to the strategy routine, the uphysio service waits for one

or more of the buf headers to be marked complete. The IODONE handler is used to wake up the uphysio

service when it is waiting for completed buf headers from the strategy routine.

When the uphysio service is notified of a completed buf header, the associated data buffer is unpinned

and the cross-memory descriptor is freed. (However, the cross-memory descriptor is freed only if the user

had not already obtained it.) An error is detected on the data transfer under the following conditions:

v The completed buf header has a nonzero b_resid field.

v The b_flags field has the B_ERROR flag set.

When an error is detected by the uphysio service, no new buf headers are sent to the strategy routine.

The uphysio service waits for any buf headers already sent to the strategy routine to be completed and

then returns an error code to the caller. If no errors are detected, the buf header and any other completed

buf headers are again used to send more data transfer requests to the strategy routine as they become

available. This process continues until all data described in the uio structure has been transferred or until

an error has been detected.

The uphysio service returns to the caller when:

v All buf headers have been marked complete by the strategy routine.

v All data specified by the uio structure has been transferred.

The uphysio service also returns an error code to the caller if an error is detected.

452 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Error Detection by the uphysio Kernel Service

When it detects an error, the uphysio kernel service reports the error that was detected closest to the

start of the data area described by the uio structure. No additional buf headers are sent to the strategy

routine. The uphysio kernel service waits for all buf headers sent to the strategy routine to be marked

complete.

However, additional buf headers may have been sent to the strategy routine between these two events:

v After the strategy routine detects the error.

v Before the uphysio service is notified of the error condition in the completed buf header.

When errors occur, various fields in the returned uio structure may or may not reflect the error. The

uio_iov and uio_iovcnt fields are not updated and contain their original values.

The uio_resid and uio_offset fields in the returned uio structure indicate the number of bytes transferred

by the strategy routine according to the sum of all (the b_bcount field minus the b_resid fields) fields in the

buf headers processed by the strategy routine. These headers include the buf header indicating the error

nearest the start of the data area described by the original uio structure. Any data counts in buf headers

completed after the detection of the error are not reflected in the returned uio structure.

Execution Environment

The uphysio kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

ENOMEM Indicates that no memory is available

for the required buf headers.

EAGAIN Indicates that the operation fails due to

a temporary insufficient resource

condition.

EFAULT Indicates that the uio_segflg field

indicated user space and that the user

does not have authority to access the

buffer.

EIO or the b_error field in a buf header Indicates an I/O error in a buf header

processed by the strategy routine.

Return code from the mincnt parameter Indicates that the return code from the

mincnt parameter if the routine

returned with a nonzero return code.

Related Information

The ddstrategy device driver entry point.

The geterror kernel service, iodone kernel service.

The mincnt routine.

The buf structure, uio structure.

Chapter 1. Kernel Services 453

uphysio Kernel Service mincnt Routine

Purpose

Tailors a buf data transfer request to device-dependent requirements.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

int mincnt (bp, minparms)

struct buf *bp;

void *minparms;

Parameters

 bp Points to the buf structure to be tailored.

minparms Points to parameters.

Description

Only the following fields in the buf header sent to the routine specified by the uphysio kernel service

mincnt parameter can be modified by that routine:

v b_bcount

v b_work

v b_options

The mincnt parameter cannot modify any other fields without the risk of error. If the mincnt parameter

determines that the buf header cannot be supported by the target device, the routine should return a

nonzero return code. This stops the buf header and any additional buf headers from being sent to the

ddstrategy routine.

The uphysio kernel service waits for all buf headers already sent to the strategy routine to complete and

then returns with the return code from the mincnt parameter.

Related Information

The uphysio kernel service.

uprintf Kernel Service

Purpose

Submits a request to print a message to the controlling terminal of a process.

Syntax

#include <sys/uprintf.h>

int uprintf (Format [, Value, ...])

char *Format;

454 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 Format Specifies a character string containing either or both of two types of objects:

v Plain characters, which are copied to the message output stream.

v Conversion specifications, each of which causes 0 or more items to be retrieved from the Value

parameter list. Each conversion specification consists of a % (percent sign) followed by a character

that indicates the type of conversion to be applied:

% Performs no conversion. Prints %.

d, i Accepts an integer Value and converts it to signed decimal notation.

u Accepts an integer Value and converts it to unsigned decimal notation.

o Accepts an integer Value and converts it to unsigned octal notation.

x Accepts an integer Value and converts it to unsigned hexadecimal notation.

s Accepts a Value as a string (character pointer), and characters from the string are printed

until a \ 0 (null character) is encountered. Value must be non-null and the maximum length of

the string is limited to UP_MAXSTR characters.

Field width or precision conversion specifications are not supported.

The following constants are defined in the /usr/include/sys/uprintf.h file:

– UP_MAXSTR

– UP_MAXARGS

– UP_MAXCAT

– UP_MAXMSG

The Format string may contain from 0 to the number of conversion specifications specified by the

UP_MAXARGS constant. The maximum length of the Format string is the number of characters

specified by the UP_MAXSTR constant. Format must be non-null.

The maximum length of the constructed kernel message is limited to the number of characters

specified by the UP_MAXMSG constant. Messages larger then the number of characters specified by

the UP_MAXMSG constant are discarded.

Value Specifies, as an array, the value to be converted. The number, type, and order of items in the Value

parameter list should match the conversion specifications within the Format string.

Description

The uprintf kernel service submits a kernel message request. Once the request has been successfully

submitted, the uprintfd daemon constructs the message based on the Format and Value parameters of

the request. The uprintfd daemon then writes the message to the process’ controlling terminal.

Execution Environment

The uprintf kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

ENOMEM Indicates that memory is not available to buffer the request.

ENODEV Indicates that a controlling terminal does not exist for the process.

ESRCH Indicates that the uprintfd daemon is not active. No requests may be submitted.

EINVAL Indicates that a string Value string pointer is null or the string Value parameter is greater than the number

of characters specified by the UP_MAXSTR constant.

Chapter 1. Kernel Services 455

EINVAL Indicates one of the following:

v Format string pointer is null.

v Number of characters in the Format string is greater than the number specified by the UP_MAXSTR

constant.

v Number of conversion specifications contained within the Format string is greater than the number

specified by the UP_MAXARGS constant.

Related Information

The NLuprintf kernel service.

The uprintfd daemon.

Process and Exception Management Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

ureadc Kernel Service

Purpose

Writes a character to a buffer described by a uio structure.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

int ureadc (c, uiop)

int c;

struct uio *uiop;

Parameters

 c Specifies a character to be written to the buffer.

uiop Points to a uio structure describing the buffer in which to place a character.

Description

The ureadc kernel service writes a character to a buffer described by a uio structure. Device driver top

half routines, especially character device drivers, frequently use the ureadc kernel service to transfer data

into a user area.

The uio_resid and uio_iovcnt fields in the uio structure describing the data area must be greater than 0.

If these fields are not greater than 0, an error is returned. The uio_segflg field in the uio structure is used

to indicate whether the data is being written to a user- or kernel-data area. It is also used to indicate if the

caller requires cross-memory operations and has provided the required cross-memory descriptors. The

values for the flag are defined in the /usr/include/sys/uio.h file.

If the data is successfully written, the following fields in the uio structure are updated:

 Field Description

uio_iov Specifies the address of current iovec element to use.

uio_xmem Specifies the address of current xmem element to use (used for cross-memory copy).

uio_iovcnt Specifies the number of remaining iovec elements.

456 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Field Description

uio_iovdcnt Specifies the number of iovec elements already processed.

uio_offset Specifies the character offset on the device from which data is read.

uio_resid Specifies the total number of characters remaining in the data area described by the uio

structure.

iov_base Specifies the address of the next available character in the data area described by the current

iovec element.

iov_len Specifies the length of remaining data area in the buffer described by the current iovec

element.

Execution Environment

The ureadc kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

ENOMEM Indicates that there is no room in the buffer.

EFAULT Indicates that the user location is not valid for one of these reasons:

v The uio_segflg field indicates user space and the base address (iov_base field) points to a location

outside of the user address space.

v The user does not have sufficient authority to access the location.

v An I/O error occurs while accessing the location.

Related Information

The uiomove kernel service, uphysio kernel service, uwritec kernel service.

The uio structure.

Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

uwritec Kernel Service

Purpose

Retrieves a character from a buffer described by a uio structure.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

int uwritec (uiop)

struct uio *uiop;

Parameter

 uiop Points to a uio structure describing the buffer from which to read a character.

Chapter 1. Kernel Services 457

Description

The uwritec kernel service reads a character from a buffer described by a uio structure. Device driver top

half routines, especially character device drivers, frequently use the uwritec kernel service to transfer data

out of a user area. The uio_resid and uio_iovcnt fields in the uio structure must be greater than 0 or an

error is returned.

The uio_segflg field in the uio structure indicates whether the data is being read out of a user- or

kernel-data area. This field also indicates whether the caller requires cross-memory operations and has

provided the required cross-memory descriptors. The values for this flag are defined in the

/usr/include/sys/uio.h file.

If the data is successfully read, the following fields in the uio structure are updated:

 Field Description

uio_iov Specifies the address of the current iovec element to use.

uio_xmem Specifies the address of the current xmem element to use (used for cross-memory copy).

uio_iovcnt Specifies the number of remaining iovec elements.

uio_iovdcnt Specifies the number of iovec elements already processed.

uio_offset Specifies the character offset on the device to which data is written.

uio_resid Specifies the total number of characters remaining in the data area described by the uio

structure.

iov_base Specifies the address of the next available character in the data area described by the current

iovec element.

iov_len Specifies the length of the remaining data in the buffer described by the current iovec element.

Execution Environment

The uwritec kernel service can be called from the process environment only.

Return Values

Upon successful completion, the uwritec service returns the character it was sent to retrieve.

 -1 Indicates that the buffer is empty or the user location is not valid for one of these three reasons:

v The uio_segflg field indicates user space and the base address (iov_base field) points to a location outside

of the user address space.

v The user does not have sufficient authority to access the location.

v An I/O error occurred while the location was being accessed.

Related Information

The uiomove kernel service, uphysio kernel service, ureadc kernel service.

validate_pag or validate_pag64 Kernel Service

Purpose

Validates the Process Authentication Group (PAG) value.

Syntax

#include <sys/cred.h>

int validate_pag (type, pg, npags)

int type;

struct paglist pg[];

int npags;

458 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int validate_pag64 (type, pg, npags)

int type;

struct paglist64 pg[];

int npags;

Parameters

 type PAG type to validate

pg PAG list (must be in pinned memory)

npags Number of PAGs to validate

Description

The validate_pag or validate_pag64 kernel service validates the PAGs specified in pg. These services

support the garbage collection of data structures by kernel extensions associated with PAGs. These

structures are associated with a set_pag interface process. PAG values are inherited from parent to child

across the fork system call, so one kernel extension structure can map to many processes. This routine is

required to synchronize the execution of forks so that the process table can be scanned to identify a

particular PAG. The validate_pag and validate_pag64 kernel services cannot be used simultaneously

with the set_pag interface. The application is required to provide this synchronization.

The value of type must be a defined PAG ID. The PAG ID for the Distributed Computing Environment

(DCE) is 0. The pg parameter must be a valid, referenced PAG list in pinned memory.

Execution Environment

The validate_pag and validate_pag64 kernel services can be called from the process environment only.

Return Values

A value of 0 is returned upon successful completion. Upon failure, a -1 is returned and errno is set to a

value that explains the error.

Error Codes

The validate_pag and validate_pag64 kernel services fail if the following condition is true:

 EINVAL Invalid PAG specification

Related Information

Security Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

vec_clear Kernel Service

Purpose

Removes a virtual interrupt handler.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

void vec_clear (levsublev)

int levsublev;

Chapter 1. Kernel Services 459

Parameter

 levsublev Represents the value returned by vec_init kernel service when the virtual interrupt handler was

defined.

Description

The vec_clear kernel service is not part of the base kernel but is provided by the device queue

management kernel extension. This queue management kernel extension must be loaded into the kernel

before loading any kernel extensions referencing these services.

The vec_clear kernel service removes the association between a virtual interrupt handler and the virtual

interrupt level and sublevel that was assigned by the vec_init kernel service. The virtual interrupt handler

at the sublevel specified by the levsublev parameter no longer registers upon return from this routine.

Execution Environment

The vec_clear kernel service can be called from the process environment only.

Return Values

The vec_clear kernel service has no return values. If no virtual interrupt handler is registered at the

specified sublevel, no operation is performed.

Related Information

The vec_init kernel service.

vec_init Kernel Service

Purpose

Defines a virtual interrupt handler.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int vec_init (level, routine, arg)

int level;

void (*routine) ();

int arg;

Parameters

 level Specifies the virtual interrupt level. This level value is not used by the vec_init kernel service and

implies no relative priority. However, it is returned with the sublevel assigned for the registered virtual

interrupt handler.

routine Identifies the routine to call when a virtual interrupt occurs on a given interrupt sublevel.

arg Specifies a value that is passed to the virtual interrupt handler.

Description

The vec_init kernel service is not part of the base kernel but provided by the device queue management

kernel extension. This queue management kernel extension must be loaded into the kernel before loading

any kernel extensions referencing these services.

460 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The vec_init kernel service associates a virtual interrupt handler with a level and sublevel. This service

searches the available sublevels to find the first unused one. The routine and arg parameters are used to

initialize the open sublevel. The vec_init kernel service then returns the level and assigned sublevel.

There is a maximum number of available sublevels. If this number is exceeded, the vec_init service halts

the system. This service should be called to initialize a virtual interrupt before any device queues using the

virtual interrupt are created.

The level parameter is not used by the vec_init service. It is provided for compatibility reasons only.

However, its value is passed back intact with the sublevel.

Execution Environment

The vec_init kernel service can be called from the process environment only.

Return Values

The vec_init kernel service returns a value that identifies the virtual interrupt level and assigned sublevel.

The low-order 8 bits of this value specify the sublevel, and the high-order 8 bits specify the level. The

attchq kernel service uses the same format. This level value is the same value as that supplied by the

level parameter.

vfsrele Kernel Service

Purpose

Releases all resources associated with a virtual file system.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int vfsrele (vfsp)

struct vfs *vfsp;

Parameter

 vfsp Points to a virtual file system structure.

Description

The vfsrele kernel service releases all resources associated with a virtual file system.

When a file system is unmounted, the VFS_UNMOUNTED flag is set in the vfs structure, indicating that it

is no longer valid to do path name-related operations within the file system. When this flag is set and a

VN_RELE v-node operation releases the last active v-node within the file system, the VN_RELE v-node

implementation must call the vfsrele kernel service to complete the deallocation of the vfs structure.

Execution Environment

The vfsrele kernel service can be called from the process environment only.

Return Values

The vfsrele kernel service always returns a value of 0.

Chapter 1. Kernel Services 461

Related Information

Virtual File System Overview, Virtual File System (VFS) Kernel Services, Understanding Virtual Nodes

(V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

vm_att Kernel Service

Purpose

Maps a specified virtual memory object to a region in the current address space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

caddr_t vm_att (vmhandle, offset)

vmhandle_t vmhandle;

caddr_t offset;

Parameters

 vmhandle Specifies the handle for the virtual memory object to be mapped.

offset Specifies the offset in the virtual memory object and region.

Description

The vm_att kernel service performs the following tasks:

v Selects an unallocated region in the current address space and allocates it.

v Maps the virtual memory object specified by the vmhandle parameter with the access permission

specified in the handle.

v Constructs the address in the current address space corresponding to the offset in the virtual memory

object and region.

The vm_att kernel service assumes an address space model of fixed-size virtual memory objects and

address space regions.

Attention: If there are no more free regions, this call cannot complete and calls the panic kernel

service.

Execution Environment

The vm_att kernel service can be called from either the process or interrupt environment.

Return Values

The vm_att kernel service returns the address that corresponds to the offset parameter in the address

space.

Related Information

The as_geth kernel service, as_getsrval kernel service, as_puth kernel service, vm_det kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

462 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

vm_cflush Kernel Service

Purpose

Flushes the processor’s cache for a specified address range.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

void vm_cflush (eaddr, nbytes)

caddr_t eaddr;

int nbytes;

Parameters

 eaddr Specifies the starting address of the specified range.

nbytes Specifies the number of bytes in the address range. If this parameter is negative or 0, no lines are

invalidated.

Description

The vm_cflush kernel service writes to memory all modified cache lines that intersect the address range

(eaddr, eaddr + nbytes -1). The eaddr parameter can have any alignment in a page.

The vm_cflush kernel service can only be called with addresses in the system (kernel) address space.

Execution Environment

The vm_cflush kernel service can be called from both the interrupt and the process environment.

Return Values

The vm_cflush kernel service has no return values.

Related Information

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_det Kernel Service

Purpose

Unmaps and deallocates the region in the current address space that contains a given address.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

void vm_det (eaddr)

caddr_t eaddr;

Chapter 1. Kernel Services 463

Parameter

 eaddr Specifies the effective address in the current address space. The region containing this address is to be

unmapped and deallocated.

Description

The vm_det kernel service unmaps the region containing the eaddr parameter and deallocates the region,

adding it to the free list for the current address space.

The vm_det kernel service assumes an address space model of fixed-size virtual memory objects and

address space regions.

Attention: If the region is not mapped, or a system region is referenced, the system will halt.

Execution Environment

The vm_det kernel service can be called from either the process or interrupt environment.

Related Information

The vm_att kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_galloc Kernel Service

Purpose

Allocates a region of global memory in the 64-bit kernel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_galloc (int type, vmsize_t size, ulong * eaddr)

Description

The vm_galloc kernel service allocates memory from the kernel global memory pool on the 64-bit kernel.

The allocation size is rounded up to the nearest 4K boundary. The default page protection key for global

memory segments is 00 unless overridden with the V_UREAD flag.

The type field may have the following values, which may be combined:

 V_WORKING Required. Creates a working storage segment.

V_SYSTEM The new allocation is a global system area that does not

belong to any application. Storage reference errors to this

area will result in system crashes.

V_UREAD Overrides the default page protection of 00 and creates

the new region with a default page protection of 01.

V_NOEXEC Pages in the region will have no-execute protection by

default. Only supported on POWER4 and later hardware.

464 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The vm_galloc kernel service is intended for subsystems that have large data structures for which

xmalloc is not the best choice for management. The kernel xmalloc heap itself does reside in global

memory.

Parameters

 type Flags that may be specified to control the allocation.

size Specifies the size, in bytes, of the desired allocation.

eaddr Pointer to where vm_galloc will return the start address of

the allocated storage.

Execution Environment

The vm_galloc kernel service can be called from the process environment only.

Return Values

 0 Successful completion. A new region was allocated, and

its start address is returned at the address specified by

the eaddr parameter.

EINVAL Invalid size or type specified.

ENOSPC Not enough space in the galloc heap to perform the

allocation.

ENOMEM Insufficient resources available to satisfy the request.

Related Information

The vm_gfree kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_gfree Kernel Service

Purpose

Frees a region of global memory in the kernel previously allocated with the vm_galloc kernel service.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_gfree (ulong eaddr, vmsize_t size)

Description

The vm_gfree kernel service frees up a global memory region previously allocated with the vm_galloc

kernel service. The start address and size must exactly match what was previously allocated by the

vm_galloc kernel service. It is not valid to free part of a previously allocated region in the vm_galloc

area.

Any I/O to or from the region being freed up must be quiesced before calling the vm_gfree kernel service.

Chapter 1. Kernel Services 465

Parameters

 eaddr Start address of the region to free.

size Size in bytes of the region to free.

Execution Environment

The vm_gfree kernel service can be called from the process environment only.

Return Values

 0 Successful completion. The region was freed.

EINVAL Invalid size or start address specified. This could mean

that the region is out of range of the vm_galloc heap,

was not previously allocated with vm_galloc, or does not

exactly match a previous allocation from vm_galloc.

Related Information

The vm_galloc kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_guatt Kernel Service

Purpose

Attaches an area of global kernel memory to the current process’s address space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_guatt (kaddr, size, key, flags, uaddr)

void * kaddr;

vmsize_t size;

vmkey_t key;

long flags;

void ** uaddr;

Parameters

 kaddr Kernel address to be attached (returned from vm_galloc when the global memory was allocated).

size Length of the region to be inserted into the process address space, in bytes.

key Protection key that the process will use when accessing the attached region.

flags Type of vm_guatt operation; must be set to VU_ANYWHERE.

uaddr Pointer to user space address where the region was attached by vm_guatt. The location pointed to

by uaddr (*uaddr) must be null when the vm_guatt call is made.

Description

vm_guatt is a kernel service used to attach a region of global kernel memory that was allocated with

vm_galloc to a process’s address space. If the call is successful, the address in the process address

space where the memory was attached is returned in the location pointed to by uaddr.

466 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

key can be set to VM_PRIV or VM_UNPRIV. If it is set to VM_PRIV, the process will be able to read and

write the attached region. If it is set to VM_UNPRIV, the process will not be able to write the region and

will only be able to read it if the vm_galloc of the region was done with the V_UREAD flag on.

vm_guatt attachments are not inherited across a process fork.

Execution Environment

The vm_guatt kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates one of the following errors:

v flags or key is not set to a valid value, size is 0, or the value pointed to by uaddr is non-NULL.

v Region indicated by kaddr and size does not lie within a region previously allocated by

vm_galloc.

Implementation Specifics

The vm_guatt kernel service is part of Base Operating System (BOS) Runtime.

Related Information

“vm_galloc Kernel Service” on page 464, “vm_gudet Kernel Service,” Memory Kernel Services

vm_gudet Kernel Service

Purpose

Removes a region attached with vm_guatt from the current process’s address space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_gudet (kaddr, uaddr, size, flags)

void * kaddr;

void * uaddr;

vmsize_t size;

long flags;

Parameters

 kaddr Kernel address attached by vm_guatt.

uaddr Location in the process address space where the kernel region was attached.

size Length of the attached region, in bytes.

flags Type of vm_gudet operation, must be VU_ANYWHERE.

Description

vm_gudet is a kernel service that detaches a region of global kernel memory that was attached by

vm_guatt. This memory must still be allocated, detaching a region after it has been deallocated with

vm_gfree is an error. If the detach is successful, the global kernel memory region at kaddr will no longer

be addressable at uaddr by the calling process.

Chapter 1. Kernel Services 467

Execution Environment

The vm_gudet kernel service can be called from the process environment only.

Return Values

 0 User address detached successfully.

EINVAL Indicates one of the following errors:

v Invalid flags.

v Region indicated by kaddr and size does not lie within a region allocated by vm_galloc.

Implementation Specifics

The vm_gudet kernel service is part of Base Operating System (BOS) Runtime.

Related Information

“vm_galloc Kernel Service” on page 464, “vm_gfree Kernel Service” on page 465, “vm_guatt Kernel

Service” on page 466, Memory Kernel Services

vm_handle Kernel Service

Purpose

Constructs a virtual memory handle for mapping a virtual memory object with a specified access level.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

vmhandle_t vm_handle (vmid, key)

vmid_t vmid;

int key;

Parameters

 vmid Specifies a virtual memory object identifier, as returned by the vms_create kernel service.

key Specifies an access key. This parameter has a 1 value for limited access and a 0 value for unlimited access,

respectively.

Description

The vm_handle kernel service constructs a virtual memory handle for use by the vm_att kernel service.

The handle identifies the virtual memory object specified by the vmid parameter and contains the access

key specified by the key parameter.

A virtual memory handle is used with the vm_att kernel service to map a virtual memory object into the

current address space.

The vm_handle kernel service assumes an address space model of fixed-size virtual memory objects and

address space regions.

Execution Environment

The vm_handle kernel service can be called from the process environment only.

468 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

The vm_handle kernel service returns a virtual memory handle type.

Related Information

The vm_att kernel service, vms_create kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_makep Kernel Service

Purpose

Makes a page in client storage.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_makep (vmid, pno)

vmid_t vmid;

int pno;

Parameters

 vmid Specifies the ID of the virtual memory object.

pno Specifies the page number in the virtual memory object.

Description

The vm_makep kernel service makes the page specified by the pno parameter addressable in the virtual

memory object without requiring a page-in operation. The vm_makep kernel service is restricted to client

storage.

The page is not initialized to any particular value. It is assumed that the page is completely overwritten. If

the page is already in memory, a value of 0, indicating a successful operation, is returned.

Execution Environment

The vm_makep kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates a virtual memory object type or page number that is not valid.

EFBIG Indicates that the page number exceeds the file-size limit.

Related Information

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 469

vm_mount Kernel Service

Purpose

Adds a file system to the paging device table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_mount (type, ptr, nbufstr)

int type;

int (*ptr)();

int nbufstr;

Parameters

 type Specifies the type of device. The type parameter must have a value of D_REMOTE.

ptr Points to the file system’s strategy routine.

nbufstr Specifies the number of buf structures to use.

Description

The vm_mount kernel service allocates an entry in the paging device table for the file system. This

service also allocates the number of buf structures specified by the nbufstr parameter for the calls to the

strategy routine.

Execution Environment

The vm_mount kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

ENOMEM Indicates that there is no memory for the buf structures.

EINVAL Indicates that the file system strategy pointer is already in the paging device table.

Related Information

The vm_umount kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_move Kernel Service

Purpose

Moves data between a virtual memory object and a buffer specified in the uio structure.

470 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/uio.h>

int vm_move (vmid, offset, limit, rw, uio)

vmid_t vmid;

caddr_t offset;

int limit;

enum uio_rw rw;

struct uio * uio;

Parameters

 vmid Specifies the virtual memory object ID.

offset Specifies the offset in the virtual memory object.

limit Indicates the limit on the transfer length. If this parameter is negative or 0, no bytes are transferred.

rw Specifies a read/write flag that gives the direction of the move. The possible values for this parameter

(UIO_READ, UIO_WRITE) are defined in the /usr/include/sys/uio.h file.

uio Points to the uio structure.

Description

The vm_move kernel service moves data between a virtual memory object and the buffer specified in a

uio structure.

This service determines the virtual addressing required for the data movement according to the offset in

the object.

The vm_move kernel service is similar to the uiomove kernel service, but the address for the trusted

buffer is specified by the vmid and offset parameters instead of as a caddr_t address. The offset size is

also limited to the size of a caddr_t address since virtual memory objects must be smaller than this size.

Note: The vm_move kernel service does not support use of cross-memory descriptors.

I/O errors for paging space and a lack of paging space are reported as signals.

Execution Environment

The vm_move kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EFAULT Indicates a bad address.

ENOMEM Indicates insufficient memory.

ENOSPC Indicates insufficient disk space.

EIO Indicates an I/O error.

Other file system-specific errno global variables are returned by the virtual file system involved in the

move function.

Related Information

The uiomove kernel service.

Chapter 1. Kernel Services 471

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_protectp Kernel Service

Purpose

Sets the page protection key for a page range.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_protectp (vmid, pfirst, npages, key)

vmid_t vmid;

int pfirst;

int npages;

int key;

Description

The vm_protectp kernel service is called to set the storage protect key for a given page range. The key

parameter specifies the value to which the page protection key is set. The protection key is set for all

pages touched by the specified page range that are resident in memory. The vm_protectp kernel service

applies only to client storage.

If a page is not in memory, no state information is saved from a particular call to the vm_protectp service.

If the page is later paged-in, it receives the default page protection key.

Note: The vm_protectp subroutine is not supported for use on large pages.

Parameters

 vmid Specifies the identifier for the virtual memory object for which the page protection key is to be set.

pfirst Specifies the first page number in the designated page range.

npages Specifies the number of pages in the designated page range.

key Specifies the value to be used in setting the page protection key for the designated page range.

Execution Environment

The vm_protectp kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates one of the following errors:

v Invalid virtual memory object ID.

v The starting page in the designated page range is negative.

v The number of pages in the page range is negative.

v The designated page range exceeds the size of virtual memory object.

v The target page range does not exist.

v One or more large pages lie in the target page range.

472 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_qmodify Kernel Service

Purpose

Determines whether a mapped file has been changed.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_qmodify (vmid)

vmid_t vmid;

Parameter

 vmid Specifies the ID of the virtual memory object to check.

Description

The vm_qmodify kernel service performs two tests to determine if a mapped file has been changed:

v The vm_qmodify kernel service first checks the virtual memory object modified bit, which is set

whenever a page is written out.

v If the modified bit is 0, the list of page frames holding pages for this virtual memory object are examined

to see if any page frame has been modified.

If both tests are false, the vm_qmodify kernel service returns a value of False. Otherwise, this service

returns a value of True.

If the virtual memory object modified bit was set, it is reset to 0. The page frame modified bits are not

changed.

Execution Environment

The vm_qmodify kernel service can be called from the process environment only.

Return Values

 FALSE Indicates that the virtual memory object has not been modified.

TRUE Indicates that the virtual memory object has been modified.

Related Information

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 473

vm_release Kernel Service

Purpose

Releases virtual memory resources for the specified address range.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_release (vaddr, nbytes)

caddr_t vaddr;

int nbytes;

Description

The vm_release kernel service releases pages that intersect the specified address range from the vaddr

parameter to the vaddr parameter plus the number of bytes specified by the nbytes parameter. The value

in the nbytes parameter must be nonnegative and the caller must have write access to the pages specified

by the address range.

Each page that intersects the byte range is logically reset to 0, and any page frame is discarded. A page

frame in I/O state is marked for discard at I/O completion. That is, the page frame is placed on the free list

when the I/O operation completes.

Note: All of the pages to be released must be in the same virtual memory object.

Note: The vm_release subroutine is not supported for use on large pages.

Parameters

 vaddr Specifies the address of the first byte in the address range to be released.

nbytes Specifies the number of bytes to be released.

Execution Environment

The vm_release kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EACCES Indicates that the caller does not have write access to the specified pages.

EINVAL Indicates one of the following errors:

v The specified region is not mapped.

v The specified region is an I/O region.

v The length specified in the nbytes parameter is negative.

v The specified address range crosses a virtual memory object boundary.

v One or more large pages lie in the target page range.

Related Information

The vm_releasep kernel service.

474 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_releasep Kernel Service

Purpose

Releases virtual memory resources for the specified page range.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_releasep (vmid, pfirst, npages)

vmid_t vmid;

int pfirst;

int npages;

Description

The vm_releasep kernel service releases pages for the specified page range in the virtual memory object.

The values in the pfirst and npages parameters must be nonnegative.

Each page of the virtual memory object that intersects the page range (pfirst, pfirst + npages -1) is

logically reset to 0, and any page frame is discarded. A page frame in the I/O state is marked for discard

at I/O completion.

For working storage, paging-space disk blocks are freed and the storage-protect key is reset to the default

value.

Note: All of the pages to be released must be in the same virtual memory object.

Note: The vm_releasep subroutine is not supported for use on large pages.

Parameters

 vmid Specifies the virtual memory object identifier.

pfirst Specifies the first page number in the specified page range.

npages Specifies the number of pages in the specified page range.

Execution Environment

The vm_releasep kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates one of the following errors:

v An invalid virtual memory object ID.

v The starting page is negative.

v Number of pages is negative.

v Page range crosses a virtual memory object boundary.

v One or more large pages lie in the target page range.

Chapter 1. Kernel Services 475

Related Information

The vm_release kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vms_create Kernel Service

Purpose

Creates a virtual memory object of the specified type, size, and limits.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vms_create (vmid, type, gn, size, uplim, downlim)

vmid_t * vmid;

int type;

struct gnode * gn;

int size;

int uplim;

int downlim;

Parameters

 vmid Points to the variable in which the virtual memory object identifier is to be stored.

type Specifies the virtual memory object type and options as an OR of bits. The type parameter must have

the value of V_CLIENT. The V_INTRSEG flag specifies if the process can be interrupted from a page

wait on this object.

gn Specifies the address of the g-node for client storage.

size Specifies the current size of the file (in bytes). This can be any valid file size. If the V_LARGE is

specified, it is interpreted as number of pages.

uplim Ignored. The enforcement of file size limits is done by comparing with the u_limit value in the u block.

downlim Ignored.

Description

The vms_create kernel service creates a virtual memory object. The resulting virtual memory object

identifier is passed back by reference in the vmid parameter.

The size parameter is used to determine the size in units of bytes of the virtual memory object to be

created. This parameter sets an internal variable that determines the virtual memory range to be

processed when the virtual memory object is deleted.

An entry for the file system is required in the paging device table when the vms_create kernel service is

called.

Execution Environment

The vms_create kernel service can be called from the process environment only.

476 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

 0 Indicates a successful operation.

ENOMEM Indicates that no space is available for the virtual memory object.

ENODEV Indicates no entry for the file system in the paging device table.

EINVAL Indicates incompatible or bad parameters.

Related Information

The vms_delete kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vms_delete Kernel Service

Purpose

Deletes a virtual memory object.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vms_delete (vmid)

vmid_t vmid;

Parameter

 vmid Specifies the ID of the virtual memory object to be deleted.

Description

The vms_delete kernel service deallocates the temporary resources held by the virtual memory object

specified by the vmid parameter and then frees the control block. This delete operation can complete

asynchronously, but the caller receives a synchronous return code indicating success or failure.

Releasing Resources

The completion of the delete operation can be delayed if paging I/O is still occurring for pages attached to

the object. All page frames not in the I/O state are released.

If there are page frames in the I/O state, they are marked for discard at I/O completion and the virtual

memory object is placed in the iodelete state. When an I/O completion occurs for the last page attached to

a virtual memory object in the iodelete state, the virtual memory object is placed on the free list.

Execution Environment

The vms_delete kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EINVAL Indicates that the vmid parameter is not valid.

Chapter 1. Kernel Services 477

Related Information

The vms_create kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vms_iowait Kernel Service

Purpose

Waits for the completion of all page-out operations for pages in the virtual memory object.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vms_iowait (vmid)

vmid_t vmid;

Parameter

 vmid Identifies the virtual memory object for which to wait.

Description

The vms_iowait kernel service performs two tasks. First, it determines the I/O level at which all currently

scheduled page-outs are complete for the virtual memory object specified by the vmid parameter. Then,

the vms_iowait service places the current process in a wait state until this I/O level has been reached.

The I/O level value is a count of page-out operations kept for each virtual memory object.

The I/O level accounts for out-of-order processing by not incrementing the I/O level for new page-out

requests until all previous requests are complete. Because of this, processes waiting on different I/O levels

can be awakened after a single page-out operation completes.

If the caller holds the kernel lock, the vms_ iowait service releases the kernel lock before waiting and

reacquires it afterwards.

Execution Environment

The vms_iowait kernel service can be called from the process environment only.

Return Values

 0 Indicates that the page-out operations completed.

EIO Indicates that an error occurred while performing I/O.

Related Information

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

478 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

vm_uiomove Kernel Service

Purpose

Moves data between a virtual memory object and a buffer specified in the uio structure.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/uio.h>

int vm_uiomove (vmid, limit, rw, uio)

vmid_t vmid;

int limit;

enum uio_rw rw;

struct uio *uio;

Parameters

 vmid Specifies the virtual memory object ID.

limit Indicates the limit on the transfer length. If this parameter is negative or 0, no bytes are transferred.

rw Specifies a read/write flag that gives the direction of the move. The possible values for this parameter

(UIO_READ, UIO_WRITE) are defined in the /usr/include/sys/uio.h file.

uio Points to the uio structure.

Description

The vm_uiomove kernel service moves data between a virtual memory object and the buffer specified in

a uio structure.

This service determines the virtual addressing required for the data movement according to the offset in

the object.

The vm_uiomove kernel service is similar to the uiomove kernel service, but the address for the trusted

buffer is specified by the vmid parameter and the uio_offset field of offset parameters instead of as a

caddr_t address. The offset size is a 64 bit offset_t, which allows file offsets in client segments which are

greater than 2 gigabytes. vm_uiomove must be used instead of vm_move if the client filesystem supports

files which are greater than 2 gigabytes.

Note: The vm_uiomove kernel service does not support use of cross-memory descriptors.

I/O errors for paging space and a lack of paging space are reported as signals.

Execution Environment

The vm_uiomove kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

EFAULT Indicates a bad address.

ENOMEM Indicates insufficient memory.

ENOSPC Indicates insufficient disk space.

EIO Indicates an I/O error.

Chapter 1. Kernel Services 479

Other file system-specific errno global variables are returned by the virtual file system involved in the

move function.

Related Information

The uiomove kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_umount Kernel Service

Purpose

Removes a file system from the paging device table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_umount (type, ptr)

int type;

int (*ptr)();

Parameters

 type Specifies the type of device. The type parameter must have a value of D_REMOTE.

ptr Points to the strategy routine.

Description

The vm_umount kernel service waits for all I/O for the device scheduled by the pager to finish. This

service then frees the entry in the paging device table. The associated buf structures are also freed.

Execution Environment

The vm_umount kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EINVAL Indicates that a file system with the strategy routine designated by the ptr parameter is not in the paging

device table.

Related Information

The vm_mount kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

480 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

vm_write Kernel Service

Purpose

Initiates page-out for a page range in the address space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_write (vaddr, nbytes, force)

int vaddr;

int nbytes;

int force;

Description

The vm_write kernel service initiates page-out for pages that intersect the address range (vaddr, vaddr +

nbytes).

If the force parameter is nonzero, modified pages are written to disk regardless of how recently they have

been written.

Page-out is initiated for each modified page. An unchanged page is left in memory with its reference bit set

to 0. This makes the unchanged page a candidate for the page replacement algorithm.

The caller must have write access to the specified pages.

The initiated I/O is asynchronous. The vms_iowait kernel service can be called to wait for I/O completion.

Note: The vm_write subroutine is not supported for use on large pages.

Parameters

 vaddr Specifies the address of the first byte of the page range for which a page-out is desired.

nbytes Specifies the number of bytes starting at the byte specified by the vaddr parameter. This parameter must

be nonnegative. All of the bytes must be in the same virtual memory object.

force Specifies a flag indicating that a modified page is to be written regardless of when it was last written.

Execution Environment

The vm_write kernel service can be called from the process environment only.

Return Values

 0 Indicates a successful completion.

EINVAL Indicates one of these four errors:

v A region is not defined.

v A region is an I/O region.

v The length specified by the nbytes parameter is negative.

v The address range crosses a virtual memory object boundary.

v One or more large pages lie in the target page range.

EACCES Indicates that access does not permit writing.

EIO Indicates a permanent I/O error.

Chapter 1. Kernel Services 481

Related Information

The vm_writep kernel service, vms_iowait kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vm_writep Kernel Service

Purpose

Initiates page-out for a page range in a virtual memory object.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

int vm_writep (vmid, pfirst, npages)

vmid_t vmid;

int pfirst;

int npages;

Description

The vm_writep kernel service initiates page-out for the specified page range in the virtual memory object.

I/O is initiated for modified pages only. Unchanged pages are left in memory, but their reference bits are

set to 0.

The caller can wait for the completion of I/O initiated by this and prior calls by calling the vms_iowait

kernel service.

Note: The vm_writep subroutine is not supported for use on large pages.

Parameters

 vmid Specifies the identifier for the virtual memory object.

pfirst Specifies the first page number at which page-out is to begin.

npages Specifies the number of pages for which the page-out operation is to be performed.

Execution Environment

The vm_writep kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EINVAL Indicates any one of the following errors:

v The virtual memory object ID is not valid.

v The starting page is negative.

v The number of pages is negative.

v The page range exceeds the size of virtual memory object.

v One or more large pages lie in the target page range.

482 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The vm_write kernel service, vms_iowait kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.3

Kernel Extensions and Device Support Programming Concepts.

vn_free Kernel Service

Purpose

Frees a v-node previously allocated by the vn_get kernel service.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

int vn_free (vp)

struct vnode *vp;

Parameter

 vp Points to the v-node to be deallocated.

Description

The vn_free kernel service provides a mechanism for deallocating v-node objects used within the virtual

file system. The v-node specified by the vp parameter is returned to the pool of available v-nodes to be

used again.

Execution Environment

The vn_free kernel service can be called from the process environment only.

Return Values

The vn_free service always returns 0.

Related Information

The vn_get kernel service.

Virtual File System Overview and Virtual File System (VFS) Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

vn_get Kernel Service

Purpose

Allocates a virtual node.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

Chapter 1. Kernel Services 483

int vn_get (vfsp, gnp, vpp)

struct vfs *vfsp;

struct gnode *gnp;

struct vnode **vpp;

Parameters

 vfsp Points to a vfs structure describing the virtual file system that is to contain the v-node. Any returned v-node

belongs to this virtual file system.

gnp Points to the g-node for the object. This pointer is stored in the returned v-node. The new v-node is added to

the list of v-nodes in the g-node.

vpp Points to the place in which to return the v-node pointer. This is set by the vn_get kernel service to point to

the newly allocated v-node.

Description

The vn_get kernel service provides a mechanism for allocating v-node objects for use within the virtual file

system environment. A v-node is first allocated from an effectively infinite pool of available v-nodes.

Upon successful return from the vn_get kernel service, the pointer to the v-node pointer provided

(specified by the vpp parameter) has been set to the address of the newly allocated v-node.

The fields in this v-node have been initialized as follows:

 Field Initial Value

v_count Set to 1.

v_vfsp Set to the value in the vfsp parameter.

v_gnode Set to the value in the gnp parameter.

v_next Set to list of others v-nodes with the same g-node.

All other fields in the v-node are zeroed.

Execution Environment

The vn_get kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

ENOMEM Indicates that the vn_get kernel service could not allocate memory for the v-node. (This is a highly

unlikely occurrence.)

Related Information

The vn_free kernel service.

Virtual File System Overview and Virtual File System (VFS) Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

waitcfree Kernel Service

Purpose

Checks the availability of a free character buffer.

484 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/cblock.h>

#include <sys/sleep.h>

int waitcfree ()

Description

The waitcfree kernel service is used to wait for a buffer which was allocated by a previous call to the

pincf kernel service. If one is not available, the waitcfree kernel service waits until either a character

buffer becomes available or a signal is received.

The waitcfree kernel service has no parameters.

Execution Environment

The waitfree kernel service can be called from the process environment only.

Return Values

 EVENT_SUCC Indicates a successful operation.

EVENT_SIG Indicates that the wait was terminated by a signal.

Related Information

The pincf kernel service, putc kernel service, putcb kernel service, putcbp kernel service, putcf kernel

service, putcfl kernel service, putcx kernel service.

I/O Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

waitq Kernel Service

Purpose

Waits for a queue element to be placed on a device queue.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/deviceq.h>

struct req_qe *waitq (queue_id)

cba_id queue_id;

Parameter

 queue_id Specifies the device queue identifier.

Description

The waitq kernel service is not part of the base kernel but is provided by the device queue management

kernel extension. This queue management kernel extension must be loaded into the kernel before loading

any kernel extensions referencing these services.

Chapter 1. Kernel Services 485

The waitq kernel service waits for a queue element to be placed on the device queue specified by the

queue_id parameter. This service performs these two actions:

v Waits on the event mask associated with the device queue.

v Calls the readq kernel service to make the most favored queue element the active one.

Processes can only use the waitq kernel service to wait for a single device queue. Use the et_wait

service to wait on the occurrence of more than one event, such as multiple device queues.

The waitq kernel service uses the EVENT_SHORT form of the et_wait kernel service. Therefore, a signal

does not terminate the wait. Use the et _wait kernel service if you want a signal to terminate the wait.

The readq kernel service can be used to read the active queue element from a queue. It does not wait for

a queue element if there are none in the queue.

Attention: The server must not alter any fields in the queue element or the system may halt.

Execution Environment

The waitq kernel service can be called from the process environment only.

Return Values

The waitq service returns the address of the active queue element in the device queue.

Related Information

The et_wait kernel service.

w_clear Kernel Service

Purpose

Removes a watchdog timer from the list of watchdog timers known to the kernel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/watchdog.h>

int w_clear (w)

struct watchdog *w;

Parameter

 w Specifies the watchdog timer structure.

Description

The watchdog timer services, including the w_clear kernel service, are typically used to verify that an I/O

operation completes in a reasonable time.

When the w_clear kernel service removes the watchdog timer, the w->count watchdog count is no longer

decremented. In addition, the w->func watchdog timer function is no longer called.

In a uniprocessor environment, the call always succeeds. This is untrue in a multiprocessor environment,

where the call will fail if the watchdog timer is being handled by another processor. Therefore, the function

486 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

now has a return value, which is set to 0 if successful, or -1 otherwise. Funnelled device drivers do not

need to check the return value since they run in a logical uniprocessor environment. Multiprocessor-safe

and multiprocessor-efficient device drivers need to check the return value in a loop. In addition, if a driver

uses locking, it must release and reacquire its lock within this loop, as shown below:

while (w_clear(&watchdog))

 release_then_reacquire_dd_lock;

 /* null statement if locks not used */

Execution Environment

The w_clear kernel service can be called from the process environment only.

Return Values

 0 Indicates that the watchdog timer was successfully removed.

-1 Indicates that the watchdog timer could not be removed.

Related Information

The w_init kernel service, w_start kernel service, w_stop kernel service.

Timer and Time-of-Day Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

w_init Kernel Service

Purpose

Registers a watchdog timer with the kernel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/watchdog.h>

int w_init (w)

struct watchdog *w;

Parameter

 w Specifies the watchdog timer structure.

Description

The watchdog structure must be initialized prior to calling the w_init kernel service as follows:

v Set the next and prev fields to NULL.

v Set the func and restart fields to the appropriate values.

v Set the count field to 0.

Attention: The watchdog structure must be pinned when the w_init service is called. It must remain

pinned until after the call to the w_clear service. During this time, the watchdog structure must not

be altered except by the watchdog services.

Chapter 1. Kernel Services 487

The watchdog timer services, including the w_init kernel service, are typically used to verify that an I/O

operation completes in a reasonable time. The watchdog timer is initialized to the stopped state and must

be started using the w_start service.

In a uniprocessor environment, the call always succeeds. This is untrue in a multiprocessor environment,

where the call will fail if the watchdog timer is being handled by another processor. Therefore, the function

now has a return value, which is set to 0 if successful, or -1 otherwise. Funnelled device drivers do not

need to check the return value since they run in a logical uniprocessor environment.

The calling parameters for the watchdog timer function are:

void func (w)

struct watchdog *w;

Execution Environment

The w_init kernel service can be called from the process environment only.

Return Values

 0 Indictates that the watchdog structure was successfully initialized.

-1 Indicates that the watchdog structure could not be initialized.

Related Information

The w_clear kernel service, w_start kernel service, w_stop kernel service.

Timer and Time-of-Day Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

w_start Kernel Service

Purpose

Starts a watchdog timer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/watchdog.h>

void w_start (w)

struct watchdog *w;

Parameter

 w Specifies the watchdog timer structure.

Description

The watchdog timers, including the w_start kernel service, are typically used to verify that an I/O operation

completes in a reasonable time. The w_start and w_stop kernel services are designed to allow the timer

to be started and stopped efficiently. The kernel decrements the w->count watchdog count every second.

The kernel calls the w->func watchdog timer function when the w->count watchdog count reaches 0. A

watchdog timer is ignored when the w->count watchdog count is less than or equal to 0.

488 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The w_start kernel service sets the w->count watchdog count to a value of w->restart.

Attention: The watchdog structure must be pinned when the w_start kernel service is called. It must

remain pinned until after the call to the w_clear kernel service. During this time, the watchdog

structure must not be altered except by the watchdog services.

Execution Environment

The w_start kernel service can be called from the process and interrupt environments.

Return Values

The w_start kernel service has no return values.

Related Information

The w_clear kernel service, w_init kernel service, w_stop kernel service.

Timer and Time-of-Day Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

w_stop Kernel Service

Purpose

Stops a watchdog timer.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/watchdog.h>

void w_stop (w)

struct watchdog *w;

Parameter

 w Specifies the watchdog timer structure.

Description

The watchdog timer services, including the w_stop kernel service, are typically used to verify that an I/O

operation completes in a reasonable time. The w_start and w_stop kernel services are designed to allow

the timer to be started and stopped efficiently. The kernel decrements the w->count watchdog count every

second. The kernel calls the w->func watchdog timer function when the w->count watchdog count

reaches 0. A watchdog timer is ignored when w->count is less than or equal to 0.

Attention: The watchdog structure must be pinned when the w_stop kernel service is called. It must

remain pinned until after the call to the w_clear kernel service. During this time, the watchdog

structure must not be altered except by the watchdog services.

Execution Environment

The w_stop kernel service can be called from the process and interrupt environments.

Return Values

The w_stop kernel service has no return values.

Chapter 1. Kernel Services 489

Related Information

The w_clear kernel service, w_init kernel service, w_start kernel service.

Timer and Time-of-Day Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

xlate_create Kernel Service

Purpose

Creates pretranslation data structures.

Syntax

int xlate_create (dp, baddr, count, flags)

struct xmem*dp;

caddr_t baddr;

int count;

uint flags;

Description

The xlate_create kernel service creates pretranslation data structures capable of pretranslating all pages

of the virtual buffer indicated by the baddr parameter for length of count into a list of physical page

numbers, appended to the cross memory descriptor pointed to by dp.

If the XLATE_ALLOC flag is set, only the data structures are created and no pretranslation is done. If the

flag is not set, in addition to the data structures being created, each page of the buffer is translated and

the access permissions verified, requiring read-write access to each page. The XLATE_ALLOC flag is

useful when the buffer will be pinned and utilized later, through the xlate_pin and xlate_unpin kernel

services.

The XLATE_SPARSE flag can be used to indicate that only selected portions of a pretranslated region

may be valid (pinned and pretranslated) at any given time. The XLATE_SPARSE flag can be used in

conjunction with the XLATE_ALLOC flag to preallocate the pretranslation data structures for an address

region that will be dynamically managed.

The xlate_create kernel service is primarily for use when memory buffers will be reused for I/O. The use

of this service to create a pretranslation for the memory buffer avoids page translation and access

checking overhead for all future DMAs involving the memory buffer until the xlate_remove kernel service

is called.

Parameters

 dp Points to the cross memory descriptor.

baddr Points to the virtual buffer.

count Specifies the length of the virtual buffer.

490 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

flags Specifies the operation. Valid values are as follows:

XLATE_PERSISTENT

Indicates that the pretranslation data structures should be persistent across calls to

pretranslation services.

XLATE_ALLOC

Indicates that the pretranslation data structures should be allocated only, and no translation

should be performed.

XLATE_SPARSE

Indicates that the pretranslation information will be sparse, allowing for the coexistence of

valid (active) pretranslation regions and invalid (inactive) pretranslation regions.

Return Values

 ENOMEM Unable to allocate memory

XMEM_FAIL No physical translation, or No Access to a Page

XMEM_SUCC Successful pretranslation created

Execution Environment

The xlate_create kernel service can only be called from the process environment. The entire buffer must

be pinned (unless the XLATE_ALLOC flag is set), and the cross memory descriptor valid.

Related Information

“xlate_remove Kernel Service” on page 492, “xm_mapin Kernel Service” on page 494, “xm_det Kernel

Service” on page 493, “xlate_pin Kernel Service,” or “xlate_unpin Kernel Service” on page 493.

xlate_pin Kernel Service

Purpose

Pins all pages of a virtual buffer.

Syntax

int xlate_pin (dp, baddr, count, rw)

struct xmem *dp;

caddr_t baddr;

int count;

int rw;

Description

The xlate_pin kernel service pins all pages of the virtual buffer indicated by the baddr parameter for

length of count and also appends pretranslation information to the cross memory descriptor pointed to by

the dp parameter.

The xlate_pin kernel service results in a short-term pin, which will support mmap and shmatt allocated

memory buffers.

In addition to pinning and translating each page, the access permissions to the page are verified according

to the desired access (as specified by the rw parameter). For a setting of B_READ, write access to the

page must be allowed. For a setting of B_WRITE, only read access to the page must be allowed.

The caller can preallocate pretranslation data structures and append them to the cross memory descriptor

prior to the call (through a call to the xlate_create kernel service) , or have this service allocate the

Chapter 1. Kernel Services 491

necessary data structures. If the cross memory descriptor is already of type XMEM_XLATE, it is assumed

that the data structures are already allocated. If callers wish to have the pretranslation data structures

persist across the subsequent xlate_unpin call, they should also set the XLATE_PERSISTENT flag on the

call to the xlate_create kernel service.

Parameters

 dp Points to the cross memory descriptor.

baddr Points to the virtual buffer.

count Specifies the length of the virtual buffer.

rw Specifies the access permissions for each page.

Return Values

If successful, the xlate_pin kernel service returns 0. If unsuccessful, one of the following is returned:

 EINVAL Invalid cross memory descriptor or parameters.

ENOMEM Unable to allocate memory.

ENOSPC Out of Paging Resources.

XMEM_FAIL Page Access violation.

Execution Environment

The xlate_pin kernel service is only callable from the process environment, and the cross memory

descriptor must be valid.

Related Information

“xlate_create Kernel Service” on page 490, “xlate_remove Kernel Service,” “xm_det Kernel Service” on

page 493, “xm_mapin Kernel Service” on page 494, or “xlate_unpin Kernel Service” on page 493.

xlate_remove Kernel Service

Purpose

Removes physical translation information from an xmem descriptor from a prior xlate_create call.

Syntax

caddr_t xlate_remove (dp)

struct xmem *dp;

Description

See the xlate_create kernel service.

Parameters

 dp Points to the cross memory descriptor.

Return Values

 XMEM_FAIL No pretranslation information present in the xmem descriptor.

XMEM_SUCC Pretranslation successfully removed.

492 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The xlate_remove kernel service can only be called from the process environment.

Related Information

“xlate_create Kernel Service” on page 490, “xm_mapin Kernel Service” on page 494, “xm_det Kernel

Service,” “xlate_pin Kernel Service” on page 491, or “xlate_unpin Kernel Service.”

xlate_unpin Kernel Service

Purpose

Unpins all pages of a virtual buffer.

Syntax

int xlate_unpin (dp, baddr, count)

struct xmem *dp;

caddr_t baddr;

int count;

Description

The xlate_unpin kernel service unpins pages from a prior call to the xlate_pin kernel service based on

the baddr and count parameters. It does this by utilizing the pretranslated real page numbers appended to

the cross memory descriptor pointed to by dp.

If the XLATE_PERSISTENT flag is not set in the prexflags flag word of the pretranslation data structure,

the pretranslation data structures are also freed.

Parameters

 dp Points to the cross memory descriptor.

baddr Points to the virtual buffer.

count Specifies the length of the virtual buffer.

Return Values

If successful, the xlate_unpin kernel service returns 0. If unsuccessful, one of the following is returned:

 EINVAL Invalid cross memory descriptor or parameters.

ENOSPC Unable to allocate paging space (case of mmap segment).

ENOSPC Out of Paging Resources.

XMEM_FAIL Page Access violation.

Related Information

“xlate_create Kernel Service” on page 490, “xlate_remove Kernel Service” on page 492, “xm_det Kernel

Service,” “xm_mapin Kernel Service” on page 494, or “xlate_pin Kernel Service” on page 491.

xm_det Kernel Service

Purpose

Releases the addressability to the address space described by an xmem descriptor.

Chapter 1. Kernel Services 493

Syntax

void xm_det (baddr, dp)

caddr_t baddr;

struct xmem *dp;

Description

See the xm_mapin Kernel Service for more information.

Parameters

 baddr Specifies the effective address previously returned from the xm_mapin kernel service.

dp Cross memory descriptor that describes the above memory object.

Related Information

“xlate_create Kernel Service” on page 490, “xlate_remove Kernel Service” on page 492, “xm_mapin Kernel

Service,” “xlate_pin Kernel Service” on page 491, or “xlate_unpin Kernel Service” on page 493.

xm_mapin Kernel Service

Purpose

Sets up addressability in the current process context.

Syntax

#include <sys/adspace.h>

int xm_mapin (dp, baddr, count, eaddr)

struct xmem *dp;caddr_t baddr;

size_t count;

caddr_t *eaddr;

Description

The xm_mapin kernel service sets up addressability in the current process context to the address space

indicated by the cross memory descriptor pointed to by the dp parameter for the addresses [baddr, baddr

+ count - 1].

This service is created specifically for Client File Systems, or others who need to setup addressability to

an address space defined by an xmem descriptor.

If the requested mapping spans a segment boundary, no mapping will be performed, and a return code of

EAGAIN is returned to indicate that individual calls to the xm_mapin kernel service are necessary to map

the portions of the buffer in each segment. The xm_mapin kernel service must be called again with the

original baddr and a count indicating the number of bytes to the next segment. (The number of bytes to

the next segment boundary can be obtained using the xm_maxmap kernel service.) This will provide an

effective address to use for accessing this portion of the buffer. Then, iteratively, xm_mapin must be

called with the segment boundary address (previous baddr + count), and a new count indicating the

remainder of the buffer or the next segment boundary, whichever is smaller. This will provide another

effective address to use for accessing the next portion of the buffer.

Each address set up by the xm_mapin kernel service must be undone with the xm_det kernel service

when it is no longer needed because the xm_mapin kernel service currently uses the vm_att kernel

service.

494 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

 dp Points to the cross memory descriptor.

baddr Points to the virtual buffer.

count Specifies the length of the virtual buffer to map.

eaddr Points to where the effective address to access the data buffer is returned.

Return Values

 0 Successful. (Reference Parameter eaddr contains the

address to use)

XMEM_FAIL Invalid cross memory descriptor.

EAGAIN Segment boundary crossing encountered. Caller should

make separate xm_mapin calls to map each segments

worth.

Execution Environment

The xm_mapin kernel service can be called from the process or interrupt environments.

Related Information

“xlate_create Kernel Service” on page 490, “xlate_remove Kernel Service” on page 492, “xlate_pin Kernel

Service” on page 491, “xlate_unpin Kernel Service” on page 493, “xm_det Kernel Service” on page 493,

“vm_att Kernel Service” on page 462 and “xm_maxmap Kernel Service.”

xm_maxmap Kernel Service

Purpose

Determines the maximum permissible count value for a subsequent call to xm_mapin.

Syntax

#include <sys/adspace.h>

int xm_maxmap (dp, uaddr, len)

 struct xmem *dp;

 void *uaddr;

 size_t *len;

Parameters

 dp Points to the cross memory descriptor.

uaddr Points to the virtual buffer.

len Points to where the maximum permissible count is returned.

Description

The xm_maxmap kernel service determines the maximum permissible count value (in bytes) for a

subsequent xm_mapin call. The value is determined based on the input cross-memory descriptor dp and

the starting address uaddr, and it is returned in the len parameter. There is no guarantee that xm_mapin

will succeed; however, it is guaranteed that uaddr + *len - 1 is in the same segment as uaddr, and

therefore xm_mapin will not return EAGAIN.

Chapter 1. Kernel Services 495

Execution Environment

The xm_maxmap interface can be called from the process or interrupt environment.

Return Values

 XMEM_SUCC Successful (Reference parameter len contains the maximum permissible value for a

subsequent xm_mapin call)

XMEM_FAIL Invalid cross memory descriptor.

EAGAIN Segment boundary crossing encountered. Caller should make separate xm_mapin calls to

map each segment’s worth.

Related Information

The “xm_mapin Kernel Service” on page 494.

xmalloc Kernel Service

Purpose

Allocates memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/malloc.h>

caddr_t xmalloc (size, align, heap)

int size;

int align;

caddr_t heap;

Parameters

 size Specifies the number of bytes to allocate.

align Specifies the alignment characteristics for the allocated memory.

heap Specifies the address of the heap from which the memory is to be allocated.

Description

The xmalloc kernel service allocates an area of memory out of the heap specified by the heap parameter.

This area is the number of bytes in length specified by the size parameter and is aligned on the byte

boundary specified by the align parameter. The align parameter is actually the log base 2 of the desired

address boundary. For example, an align value of 4 requests that the allocated area be aligned on a 2^4

(16) byte boundary.

There are multiple heaps provided by the kernel for use by kernel extensions. Two primary kernel heaps

are kernel_heap and pinned_heap. Kernel extensions should use the kernel_heap value when allocating

memory that is not pinned, and should use the pinned_heap value when allocating memory that should

always be pinned or pinned for long periods of time. When allocating from the pinned_heap heap, the

xmalloc kernel service will pin the memory before a successful return. The pin and unpin kernel services

should be used to pin and unpin memory from the kernel_heap heap when the memory should only be

pinned for a limited amount of time. Memory from the kernel_heap heap must be unpinned before freeing

it. Memory from the pinned_heap heap should not be unpinned.

496 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The kernel_heap heap points to one of the following heaps: kernel_heap_4K_64K and

kernel_heap_16M. The pinned_heap heap points to one of the following heaps: pinned_heap_4K_64K

and pinned_heap_16M. Each of the target heaps differ in the size of the pages that back them.

kernel_heap_4K_64K or pinned_heap_4K_64K will be backed by either medium (64 KB) or regular (4

KB) pages, depending on the page size supported by the machine. kernel_heap_16M or

pinned_heap_16M will return memory backed by large pages if large page heaps are enabled. If large

page heaps are not enabled, kernel_heap or pinned_heap will point to the default heap. If the size of the

backing pages are not important, use the kernel_heap value and the pinned_heap value. They will point

to the heap that you prefer. For more information about large page heap support, see vmo.

Kernel extensions can use these services to allocate memory out of the kernel heaps. For example, the

xmalloc (128,3,kernel_heap) kernel service allocates a 128-byte double word aligned area out of the

kernel heap.

A kernel extension must use the xmfree kernel service to free the allocated memory. If it does not,

subsequent allocations eventually are unsuccessful.

The xmalloc kernel service has two compatibility interfaces: malloc and palloc.

The following additional interfaces to the xmalloc kernel service are provided:

v malloc (size) is equivalent to xmalloc (size, 0, kernel_heap).

v palloc (size, align) is equivalent to xmalloc (size, align, kernel_heap).

Execution Environment

The xmalloc kernel service can be called from the process environment only.

Return Values

Upon successful completion, the xmalloc kernel service returns the address of the allocated area. A null

pointer is returned under the following circumstances:

v The requested memory cannot be allocated.

v The heap has not been initialized for memory allocation.

Related Information

The xmfree kernel service.

Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

xmattach Kernel Service

Purpose

Attaches to a user buffer for cross-memory operations.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/xmem.h>

int xmattach (addr, count, dp, segflag)

char * addr;

Chapter 1. Kernel Services 497

int count;

struct xmem * dp;

int segflag;

Parameters

 addr Specifies the address of the user buffer to be accessed in a cross-memory operation.

count Indicates the size of the user buffer to be accessed in a cross-memory operation.

dp Specifies a cross-memory descriptor. The dp->aspace_id variable must be set to a value of

XMEM_INVAL.

segflag Specifies a segment flag. This flag is used to determine the address space of the memory that the

cross-memory descriptor applies to, as well as for other purposes. The valid values for this flag can be

found in the /usr/include/xmem.h file.

Description

The xmattach kernel service prepares the user buffer so that a device driver can access it without

executing under the process that requested the I/O operation. A device top-half routine calls the xmattach

kernel service. The xmattach kernel service allows a kernel process or device bottom-half routine to

access the user buffer with the xmemin or xmemout kernel services. The device driver must use the

xmdetach kernel service to inform the kernel when it has finished accessing the user buffer.

The kernel remembers which segments are attached for cross-memory operations. Resources associated

with these segments cannot be freed until all cross-memory descriptors have been detached. ″Cross

Memory Kernel Services″ in Memory Kernel Services in in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts describes how the cross-memory kernel services use

cross-memory descriptors.

Note: When the xmattach kernel service remaps user memory containing the cross-memory buffer, the

effects are machine-dependent. Also, cross-memory descriptors are not inherited by a child

process.

Execution Environment

The xmattach kernel service can be called from the process environment only.

Return Values

 XMEM_SUCC Indicates a successful operation.

XMEM_FAIL Indicates one of the following errors:

v The buffer size indicated by the count parameter is less than or equal to 0.

v The cross-memory descriptor is in use (dp->aspace_id != XMEM_INVAL).

v The area of memory indicated by the addr and count parameters is not defined.

Related Information

The uphysio kernel service, xmdetach kernel service, xmattach64 kernel service, xmemin kernel

service, and xmemout kernel service.

Cross Memory Kernel Services, and Memory Kernel Services.

498 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

xmattach64 Kernel Service

Purpose

Attaches to a user buffer for cross-memory operations.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/xmem.h>

int xmattach64 (addr64, count, dp, segflag)

unsigned long long addr64 ;
int count;
struct xmem *dp;
int segflags;

Parameters

 addr64 Specifies the address of the user buffer to be accessed in a cross-memory operation.

count Indicates the size of the user buffer to be accessed in a cross-memory operation.

dp Specifies a cross-memory descriptor. The dp->aspace_id variable must be set to a value of

XMEM_INVAL.

segflag Specifies a segment flag. This flag is used to determine the address space of the memory that the

cross-memory descriptor applies to. The valid values for this flag can be found in the

/usr/include/xmem.h file.

Description

The xmattach64 kernel service prepares the user buffer so that a device driver can access it without

executing under the process that requested the I/O operation. A device top-half routine calls the

xmattach64 kernel service. The xmattach64 kernel service allows a kernel process or device bottom-half

routine to access the user buffer with the xmemin or xmemout kernel services. The device driver must

use the xmdetach kernel service to inform the kernel when it has finished accessing the user buffer. The

kernel remembers which segments are attached for cross-memory operations. Resources associated with

these segments cannot be freed until all cross-memory descriptors have been detached. See ″Cross

Memory Kernel Services″ in Memory Kernel Services

The address of the buffer to attach to: addr64, is interpreted as being either a 64-bit unremapped address,

or a 32-bit unremapped address, as a function of both whether the current user-address space is 64 or

32-bits, and the input segflag parameter.

The input addr64 is interpreted to be a 64-bit address (in user space), if and only if, all of the following

conditions apply:

v Input segflag is USER_ADSPACE or USERI_ADSPACE (and)

v Current user process address space is 64-bits.

In all other cases, the input address (addr64), is treated as a 32-bit unremapped address.

Execution Environment

The xmattach64 kernel service can be called from the process environment only.

Return Values

 XMEM_SUCC Indicates a successful operation.

Chapter 1. Kernel Services 499

XMEM_FAIL Indicates one of the following errors:

1. The buffer size indicated by the count parameter is less than or equal to 0.

2. The cross-memory descriptor is in use (dp->aspace_id != XMEM_INVAL).

3. The area of memory indicated by the addr64 and count parameters is not defined.

4. The buffer crosses more than one segment boundary.

Related Information

The uphysio kernel service, xmdetach kernel service, xmattach kernel service, xmemin kernel service,

and xmemout kernel service. Cross Memory Kernel Services

 and Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

xmdetach Kernel Service

Purpose

Detaches from a user buffer used for cross-memory operations.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/xmem.h>

int xmdetach (dp)

struct xmem *dp;

Parameter

 dp Points to a cross-memory descriptor initialized by the xmattach kernel service.

Description

The xmdetach kernel service informs the kernel that a user buffer can no longer be accessed. This

means that some previous caller, typically a device driver bottom half or a kernel process, is no longer

permitted to do cross-memory operations on this buffer. Subsequent calls to either the xmemin or

xmemout kernel service using this cross-memory descriptor result in an error return. The cross-memory

descriptor is set to dp->aspace_id = XMEM_INVAL so that the descriptor can be used again. ″Cross

Memory Kernel Services″ in Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts describes how the cross-memory kernel services use cross-memory

descriptors.

Execution Environment

The xmdetach kernel service can be called from either the process or interrupt environment.

Return Values

 XMEM_SUCC Indicates successful completion.

XMEM_FAIL Indicates that the descriptor was not valid or the buffer was not defined.

500 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The xmattach kernel service, xmemin kernel service, xmemout kernel service.

Cross Memory Kernel Services and Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

xmemdma Kernel Service

Purpose

Prepares a page for direct memory access (DMA) I/O or processes a page after DMA I/O is complete.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/xmem.h>

int xmemdma (xp, xaddr, flag)

struct xmem *xp;

caddr_t xaddr;

int flag;

Parameters

 xp Specifies a cross-memory descriptor.

xaddr Identifies the address specifying the page for transfer.

flag Specifies whether to prepare a page for DMA I/O or process it after DMA I/O is complete. Possible values

are:

XMEM_ACC_CHK

Performs access checking on the page. When this flag is set, the page protection attributes are

verified.

XMEM_DR_SAFE

Indicates that the use of the real memory address is DLPAR safe.

XMEM_HIDE

Prepares the page for DMA I/O. For cache-inconsistent platforms, this preparation includes hiding

the page by making it inaccessible.

XMEM_UNHIDE

Processes the page after DMA I/O. Also, this flag reveals the page and makes it accessible for

cache-inconsistent platforms.

XMEM_WRITE_ONLY

Marks the intended transfer as outbound only. This flag is used with XMEM_ACC_CHK to indicate

that read-only access to the page is sufficient.

Description

The xmemdma kernel service operates on the page specified by the xaddr parameter in the region

specified by the cross-memory descriptor. If the cross-memory descriptor is for the kernel, the xaddr

parameter specifies a kernel address. Otherwise, the xaddr parameter specifies the offset in the region

described in the cross-memory descriptor.

The xmemdma kernel service is provided for machines that have processor-memory caches, but that do

not perform DMA I/O through the cache. Device handlers for Micro Channel DMA devices use the

d_master service and d_complete kernel service instead of the xmemdma kernel service.

Chapter 1. Kernel Services 501

If the flag parameter indicates XMEM_HIDE (that is, XMEM_UNHIDE is not set) and this is the first hide

for the page, the xmemdma kernel service prepares the page for DMA I/O by flushing the cache and

making the page invalid. When the XMEM_UNHIDE bit is set and this is the last unhide for the page, the

following events take place:

1. The page is made valid.

If the page is not in pager I/O state:

2. Any processes waiting on the page are readied.

3. The modified bit for the page is set unless the page has a read-only storage key.

The page is made not valid during DMA operations so that it is not addressable with any virtual address.

This prevents any process from reading or loading any part of the page into the cache during the DMA

operation.

The page specified must be in memory and must be pinned.

If the XMEM_ACC_CHK bit is set, then the xmemdma kernel service also verifies access permissions to

the page. If the page access is read-only, then the XMEM_WRITE_ONLY bit must be set in the flag

parameter.

Note:

1. The xmemdma kernel service does not hide or reveal the page nor does it perform any cache

flushing. The service’s primary function is for real-address translation.

2. This service is not supported for large-memory systems with greater than 4GB of physical

memory addresses. For such systems, xmemdma64 should be used.

Execution Environment

The xmemdma kernel service can be called from either the process or interrupt environment.

Return Values

On successful completion, the xmemdma service returns the real address corresponding to the xaddr and

xp parameters.

Error Codes

The xmemdma kernel service returns a value of XMEM_FAIL if one of the following are true:

v The descriptor was invalid.

v The page specified by the xaddr or xp parameter is invalid.

v Access is not allowed to the page.

Related Information

Cross Memory Kernel Services and Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

Understanding Direct Memory Access (DMA) Transfer.

Dynamic Logical Partitioning in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

xmemdma64 Kernel Service

Purpose

Prepares a page for direct memory access (DMA) I/O or processes a page after DMA I/O is complete.

502 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/xmem.h>

unsigned long long xmemdma64 (

struct xmem *dp,

caddr_t xaddr,>

int flags)

Parameters

 dp Specifies a cross-memory

descriptor.

xaddr Identifies the address specifying the page for transfer.

flags Specifies whether to prepare a page for DMA I/O or process it after DMA I/O is

complete. Possible values are:

XMEM_HIDE

Prepares the page for DMA I/O. If cache-inconsistent, then the data cache is

flushed, the memory page is hidden, and the real page address is returned. If

cache-consistent, then the modified bit is set and the real address of the page

is returned.

XMEM_UNHIDE

Processes the page after DMA I/O. Also, this flag reveals the page, readies any

processes waiting on the page, and sets the modified bit accordingly.

XMEM_ACC_CHK

Performs access checking on the page. When this flag is set, the page

protection attributes are verified.

XMEM_WRITE_ONLY

Marks the intended transfer as outbound only. This flag is used with

XMEM_ACC_CHK to indicate that read-only access to the page is sufficient.

Description

The xmemdma64 kernel service operates on the page specified by thexaddr parameter in the region

specified by the cross-memory descriptor. If the cross-memory descriptor is for the kernel, the xaddr

parameter specifies a kernel address. Otherwise, the xaddr parameter specifies the offset in the region

described in the cross-memory descriptor.

The xmemdma64 kernel service is provided for machines that have processor-memory caches, but that

do not perform DMA I/O through the cache. Device handlers for Micro Channel DMA devices (running AIX

5.1 or earlier) use the d_master service and d_complete kernel service instead of the xmemdma64

kernel service.

If the flag parameter indicates XMEM_HIDE (that is, XMEM_UNHIDE is not set) and this is the first hide

for the page, the xmemdma64 kernel service prepares the page for DMA I/O by flushing the cache and

making the page invalid. When the XMEM_UNHIDE bit is set and this is the last unhide for the page, the

following events take place:

1. The page is made valid.

If the page is not in pager I/O state:

2. Any processes waiting on the page are readied.

3. The modified bit for the page is set unless the page has a read-only storage key.

Chapter 1. Kernel Services 503

The page is made not valid during DMA operations so that it is not addressable with any virtual address.

This prevents any process from reading or loading any part of the page into the cache during the DMA

operation.

The page specified must be in memory and must be pinned.

If the XMEM_ACC_CHK bit is set, then the xmemdma64 kernel service also verifies access permissions

to the page. If the page access is read-only, then the XMEM_WRITE_ONLY bit must be set in the flag

parameter.

Note: The xmemdma64 kernel service does not hide or reveal the page, nor does it perform any cache

flushing. The service’s primary function is for real-address translation.

Execution Environment

The xmemdma64 kernel service can be called from either the process or interrupt environment.

Return Values

On successful completion, the xmemdma64 service returns the real address corresponding to the xaddr

and xp parameters.

Error Codes

The xmemdma64 kernel service returns a value of XMEM_FAIL if one of the following are true:

v The descriptor was invalid.

v The page specified by the xaddr or xp parameter is invalid.

v Access is not allowed to the page.

Related Information

Cross Memory Kernel Services and Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

Understanding Direct Memory Access (DMA) Transfer.

xmempin Kernel Service

Purpose

Pins the specified address range in user or system memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

int xmempin(base, len, xd)

caddr_t base;

int len;

struct xmem *xd;

Parameters

 base Specifies the address of the first byte to pin.

len Indicates the number of bytes to pin.

504 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

xd Specifies the cross-memory descriptor.

Description

The xmempin kernel service is used to pin pages backing a specified memory region which is defined in

either system or user address space. Pinning a memory region prohibits the pager from stealing pages

from the pages backing the pinned memory region. Once a memory region is pinned, accessing that

region does not result in a page fault until the region is subsequently unpinned.

The pinu kernel service will not work on a mapped file.

The cross-memory descriptor must have been filled in correctly prior to the xmempin call (for example, by

calling the xmattach kernel service). If the caller does not have a valid cross-memory descriptor, the pinu

and unpinu kernel services must be used. The xmempin and xmemunpin kernel services have shorter

pathlength than the pinu and unpinu kernel services.

Execution Environment

The xmempin kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

EFAULT Indicates that the memory region as specified by the base and len parameters is not within the address

space specified by the xd parameter.

EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory

beginning at the byte specified by the base parameter and extending for the number of bytes specified by

the len parameter is not defined.

ENOMEM Indicates that the xmempin kernel service is unable to pin the region due to insufficient real memory or

because it has exceeded the systemwide pin count.

Related Information

The pin kernel service, unpin kernel service, pinu kernel service, xmemunpin kernel service.

Understanding Execution Environments and Memory Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

xmemunpin Kernel Service

Purpose

Unpins the specified address range in user or system memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/uio.h>

int xmemunpin (base, len, xd)

caddr_t base;

int len;

struct xmem *xd;

Chapter 1. Kernel Services 505

Parameters

 base Specifies the address of the first byte to unpin.

len Indicates the number of bytes to unpin.

xd Specifies the cross-memory descriptor.

Description

The xmemunpin kernel service unpins a region of memory previously pinned by the pinu kernel service.

When the pin count is 0, the page is not pinned and can be paged out of real memory. Upon finding an

unpinned page, the xmemunpin kernel service returns the EINVAL error code and leaves any remaining

pinned pages still pinned.

The xmemunpin service should be used where the address space might be in either user or kernel

space.

The cross-memory descriptor must have been filled in correctly prior to the xmempin call (for example, by

calling the xmattach kernel service). If the caller does not have a valid cross-memory descriptor, the pinu

and unpinu kernel services must be used. The xmempin and xmemunpin kernel services have shorter

pathlength than the pinu and unpinu kernel services.

Execution Environment

The xmemunpin kernel service can be called in the process environment when unpinning data that is in

either user space or system space. It can be called in the interrupt environment only when unpinning data

that is in system space.

Return Values

 0 Indicates successful completion.

EFAULT Indicates that the memory region as specified by the base and len parameters is not within the address

specified by the xd parameter.

EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory

beginning at the byte specified by the base parameter and extending for the number of bytes specified by

the len parameter is not defined. If neither cause is responsible, an unpinned page was specified.

Related Information

The pin kernel service, unpin kernel service, pinu kernel service, unpinu kernel service, xmempin kernel

service.

Understanding Execution Environments and Memory Kernel Services in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

xmemin Kernel Service

Purpose

Performs a cross-memory move by copying data from the specified address space to kernel global

memory.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/xmem.h>

506 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int xmemin (uaddr, kaddr, count, dp)

caddr_t * uaddr;

caddr_t * kaddr;

int count;

struct xmem * dp;

Parameters

 uaddr Specifies the address in memory specified by a cross-memory descriptor.

kaddr Specifies the address in kernel memory.

count Specifies the number of bytes to copy.

dp Specifies the cross-memory descriptor.

Description

The xmemin kernel service performs a cross-memory move. A cross-memory move occurs when data is

moved to or from an address space other than the address space that the program is executing in. The

xmemin kernel service copies data from the specified address space to kernel global memory.

The xmemin kernel service is provided so that kernel processes and interrupt handlers can safely access

a buffer within a user process. Calling the xmattach kernel service prepares the user buffer for the

cross-memory move.

The xmemin kernel service differs from the copyin and copyout kernel services in that it is used to

access a user buffer when not executing under the user process. In contrast, the copyin and copyout

kernel services are used only to access a user buffer while executing under the user process.

Execution Environment

The xmemin kernel service can be called from either the process or interrupt environment.

Return Values

 XMEM_SUCC Indicates successful completion.

XMEM_FAIL Indicates one of the following errors:

v The user does not have the appropriate access authority for the user buffer.

v The user buffer is located in an address range that is not valid.

v The segment containing the user buffer has been deleted.

v The cross-memory descriptor is not valid.

v A paging I/O error occurred while the user buffer was being accessed.

If the user buffer is not in memory, the xmemin kernel service also returns an XMEM_FAIL error

when executing on an interrupt level.

Related Information

The xmattach kernel service, xmdetach kernel service, xmemout kernel service.

Cross Memory Kernel Services and Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

xmemout Kernel Service

Purpose

Performs a cross-memory move by copying data from kernel global memory to a specified address space.

Chapter 1. Kernel Services 507

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/xmem.h>

int xmemout (kaddr, uaddr, count, dp)

caddr_t * kaddr;

caddr_t * uaddr;

int count;

struct xmem * dp;

Parameters

 kaddr Specifies the address in kernel memory.

uaddr Specifies the address in memory specified by a cross-memory descriptor.

count Specifies the number of bytes to copy.

dp Specifies the cross-memory descriptor.

Description

The xmemout kernel service performs a cross-memory move. A cross-memory move occurs when data is

moved to or from an address space other than the address space that the program is executing in. The

xmemout kernel service copies data from kernel global memory to the specified address space.

The xmemout kernel service is provided so that kernel processes and interrupt handlers can safely

access a buffer within a user process. Calling the xmattach kernel service prepares the user buffer for the

cross-memory move.

The xmemout kernel service differs from the copyin and copyout kernel services in that it is used to

access a user buffer when not executing under the user process. In contrast, the copyin and copyout

kernel services are only used to access a user buffer while executing under the user process.

Execution Environment

The xmemout kernel service can be called from either the process or interrupt environment.

Return Values

 XMEM_SUCC Indicates successful completion.

XMEM_FAIL Indicates one of the following errors:

v The user does not have the appropriate access authority for the user buffer.

v The user buffer is located in an address range that is not valid.

v The segment containing the user buffer has been deleted.

v The cross-memory descriptor is not valid.

v A paging I/O error occurred while the user buffer was being accessed.

If the user buffer is not in memory, the xmemout service also returns an XMEM_FAIL error

when executing on an interrupt level.

Related Information

The xmattach kernel service, xmdetach kernel service, xmemin kernel service.

Cross Memory Kernel Services and Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

508 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

xmempsize Kernel Service

Purpose

Reports the page size being used for a specified address range on the 64-bit kernel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/xmem.h>

long long xmempsize (dp, uaddr, count)

struct xmem * dp;

void * uaddr;

size_t count;

Description

The xmempsize kernel service returns the size, in bytes, of the virtual memory pages contained in the

memory range starting at uaddr and continuing for count number of bytes. If the memory range consists of

virtual memory pages of different sizes, the size of the smallest pages contained in the range is returned.

The cross-memory descriptor, dp, must have been previously initialized to describe the buffer containing

the specified range of memory. The xmattach() kernel service prepares a buffer and cross-memory

descriptor for use with the xmempsize() kernel service.

Parameters

 dp Specifies the cross-memory descriptor.

uaddr Specifies the starting address of the memory range.

count Specifies the number of bytes.

Execution Environment

The xmempsize kernel service can be called from either the process or interrupt environment.

The xmempsize kernel service is only supported on the 64-bit kernel.

Return Values

On successful completion, the xmempsize() kernel service returns a page size in bytes.

Otherwise, the xmempsize() kernel service returns XMEM_FAIL.

Related Information

The xmattach kernel service.

Cross Memory Kernel Services and Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and

Device Support Programming Concepts.

xmfree Kernel Service

Purpose

Frees allocated memory.

Chapter 1. Kernel Services 509

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/malloc.h>

int xmfree (ptr, heap)

caddr_t ptr;

caddr_t heap;

Parameters

 ptr Specifies the address of the area in memory to free.

heap Specifies the address of the heap from which the memory was allocated.

Description

The xmfree kernel service frees the area of memory pointed to by the ptr parameter in the heap specified

by the heap parameter. This area of memory must be allocated with the xmalloc kernel service. In

addition, the ptr pointer must be the pointer returned from the corresponding xmalloc call.

For example, the xmfree (ptr, kernel_heap) kernel service frees the area in the kernel heap allocated by

ptr=xmalloc (size, align, kernel_heap).

A kernel extension must explicitly free any memory it allocates. If it does not, eventually subsequent

allocations are unsuccessful. Pinned memory must also be unpinned before it is freed if allocated from the

kernel_heap. The kernel does not keep track of which kernel extension owns various allocated areas in

the heap. Therefore, the kernel never automatically frees these allocated areas on process termination or

device close.

An additional interface to the xmfree kernel service is provided. The free (ptr) is equivalent to xmfree (ptr,

kernel_heap).

Execution Environment

The xmfree kernel service can be called from the process environment only.

Return Values

 0 Indicates successful completion.

-1 Indicates one of the following errors:

v The area to be freed was not allocated with the xmalloc kernel service.

v The heap was not initialized for memory allocation.

Related Information

The xmalloc kernel service.

Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

510 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Chapter 2. Device Driver Operations

Standard Parameters to Device Driver Entry Points

Purpose

Provides a description of standard device driver entry points parameters.

Description

There are three parameters passed to device driver entry points that always have the same meanings: the

devno parameter, the chan parameter, and the ext parameter.

The devno Parameter

This value, defined to be of type dev_t, specifies the device or subdevice to which the operation is

directed. For convenience and portability, the /usr/include/sys/sysmacros.h file defines the following

macros for manipulating device numbers:

 Macro Descriptionf

major(devno) Returns the major device number.

minor(devno) Returns the minor device number.

makedev(maj, min). Constructs a composite device number in the format of devno from the major and

minor device numbers given.

The chan Parameter

This value, defined to be of type chan_t, is the channel ID for a multiplexed device driver. If the device

driver is not multiplexed, chan has the value of 0. If the driver is multiplexed, then the chan parameter is

the chan_t value returned from the device driver’s ddmpx routine.

The ext Parameter

The ext parameter, or extension parameter, is defined to be of type int. It is meaningful only with calls to

such extended subroutines as the openx, readx, writex, and ioctlx subroutines. These subroutines allow

applications to pass an extra, device-specific parameter to the device driver. This parameter is then

passed to the ddopen, ddread, ddwrite, and ddioctl device driver entry points as the ext parameter. If

the application uses one of the non-extended subroutines (for example, the read instead of the readx

subroutine), then the ext parameter has a value of 0.

Note: Using the ext parameter is highly discouraged because doing so makes an application program less

portable to other operating systems.

Related Information

The ddioctl device driver entry point, ddmpx device driver entry point, ddopen device driver entry point,

ddread device driver entry point, ddwrite device driver entry point.

The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine, write

subroutine.

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

© Copyright IBM Corp. 1997, 2007 511

Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

buf Structure

Purpose

Describes buffering data transfers between a program and the peripheral device

Introduction to Kernel Buffers

For block devices, kernel buffers are used to buffer data transfers between a program and the peripheral

device. These buffers are allocated in blocks of 4096 bytes. At any given time, each memory block is a

member of one of two linked lists that the device driver and the kernel maintain:

 List Description

Available buffer queue (avlist) A list of all buffers available for use. These buffers do

not contain data waiting to be transferred to or from a

device.

Busy buffer queue (blist) A list of all buffers that contain data waiting to be

transferred to or from a device.

Each buffer has an associated buffer header called the buf structure pointing to it. Each buffer header has

several parts:

v Information about the block

v Flags to show status information

v Busy list forward and backward pointers

v Available list forward and backward pointers

The device driver maintains the av_forw and av_back pointers (for the available blocks), while the kernel

maintains the b_forw and b_back pointers (for the busy blocks).

512 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

buf Structure Variables for Block I/O

The buf structure, which is defined in the /usr/include/sys/buf.h file, includes the following fields:

 b_flags Flag bits. The value of this field is constructed by logically ORing 0 or more of the following

values:

B_WRITE

This operation is a write operation.

B_READ

This operation is a read data operation, rather than write.

B_DONE

I/O on the buffer has been done, so the buffer information is more current than other

versions.

B_ERROR

A transfer error has occurred and the transaction has aborted.

B_BUSY

The block is not on the free list.

B_INFLIGHT

This I/O request has been sent to the physical device driver for processing.

B_AGE

The data is not likely to be reused soon, so prefer this buffer for reuse. This flag

suggests that the buffer goes at the head of the free list rather than at the end.

B_ASYNC

Asynchronous I/O is being performed on this block. When I/O is done, release the

block.

B_DELWRI

The contents of this buffer still need to be written out before the buffer can be reused,

even though this block may be on the free list. This is used by the write subroutine

when the system expects another write to the same block to occur soon.

B_NOHIDE

Indicates that the data page should not be hidden during direct memory access (DMA)

transfer.

B_STALE

The data conflicts with the data on disk because of an I/O error.

B_MORE_DONE

When set, indicates to the receiver of this buf structure that more structures are

queued in the IODONE level. This permits device drivers to handle all completed

requests before processing any new requests.

B_SPLIT

When set, indicates that the transfer can begin anywhere within the data buffer.

b_forw The forward busy block pointer.

b_back The backward busy block pointer.

av_forw The forward pointer for a driver request queue.

av_back The backward pointer for a driver request queue.

b_iodone Anyone calling the strategy routine must set this field to point to their I/O done routine. This

routine is called on the INTIODONE interrupt level when I/O is complete.

b_dev The major and minor device number.

b_bcount The byte count for the data transfer.

b_un.b_addr The memory address of the data buffer.

b_blkno The block number on the device.

b_resid Amount of data not transferred after error.

b_event Anchor for event list.

b_xmemd Cross-memory descriptor.

Chapter 2. Device Driver Operations 513

Related Information

The ddstrategy device driver entry point.

The write subroutine.

The bufx structure.

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

Cross Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

bufx Structure

Purpose

Extends the buf structure to accommodate new fields as needed for performance and RAS reasons.

Description

The bufx structure is available for use by the 64-bit kernel and 64-bit kernel extensions. The 32-bit kernel

and 32-bit kernel extensions only have the option of using the buf structure.

514 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

bufx Structure Variables for Block I/O

The bufx structure, which is defined in the /usr/include/sys/buf.h file, includes the following fields:

 b_flags Flag bits. The value of this field is constructed by the logical OR operation with 0 or more of the

following values:

B_WRITE

This operation is a write operation.

B_READ

This operation is a read data operation.

B_DONE

I/O on the buffer is done, so the buffer information is more current than other versions.

B_ERROR

A transfer error occurred and the transaction aborted.

B_BUSY

The block is not on the free list.

B_INFLIGHT

This I/O request was sent to the physical device driver for processing.

B_AGE

The data is not likely to be reused soon, so prefer this buffer for reuse. This flag

suggests that the buffer goes at the head of the free list rather than at the end.

B_ASYNC

Asynchronous I/O is being performed on this block. When I/O is done, release the

block.

B_DELWRI

The contents of this buffer still need to be written out before the buffer can be reused,

even though this block may be on the free list. This is used by the write subroutine

when the system expects another write to the same block to occur soon.

B_NOHIDE

Indicates that the data page should not be hidden during direct memory access (DMA)

transfer.

B_STALE

The data conflicts with the data on disk because of an I/O error.

B_MORE_DONE

When set, indicates to the receiver of this bufx structure that more structures are

queued in the IODONE level. This permits device drivers to handle all completed

requests before processing any new requests.

B_SPLIT

When set, indicates that the transfer can begin anywhere within the data buffer.

B_BUFX

A buffer is identified as an extended buf structure if all of the following conditions are

met:

v B_BUFX bit is set in the b_flags field.

v The pointer obtained by recombining the bx_refptrtop field and the bx_refptrbot

field points to the beginning of the structure.

v The bx_eyecatcher field, which identifies whether the buf structure is extended or

not, is equal to the ASCII string ″bufx″.

B_BUFX_INITIAL

When set, indicates that the buf is extended.

b_forw The forward busy block pointer.

b_back The backward busy block pointer.

av_forw The forward pointer for a driver request queue.

Chapter 2. Device Driver Operations 515

av_back The backward pointer for a driver request queue.

b_iodone Anyone calling the strategy routine must set this field to point to their I/O done routine. This

routine is called on the INTIODONE interrupt level when I/O is complete.

b_dev The major and minor device number.

b_bcount The byte count for the data transfer.

b_un.b_addr The memory address of the data buffer.

b_blkno The block number on the device.

b_resid The amount of data not transferred after error.

b_event The anchor for event list.

b_xmemd The cross-memory descriptor.

bx_refptrtop The top half of the reference pointer.

bx_refptrbot The bottom half of the reference pointer.

bx_version The version of the bufx structure.

bx_eyecatcher The field contains the string ″bufx″, allowing for easy identification of the bufx structure in KDB

when dumping data and for structure verification in addition to using the BUFX_VALIDATE

macro.

bx_flags Bufx flags with a 64-bit field that can be used for bufx-specific flags that are yet to be defined.

bx_io_priority If the underlying storage devices do not support I/O priority, this value is ignored. The

bx_io_priority must be either the value of IOPRIORITY_UNSET (0) or a value from 1 to 15.

Lower I/O priority values are considered to be more important than higher values. For example,

a value of 1 is considered the highest priority and a value of 15 is considered the lowest

priority. The value of IOPRIORITY_UNSET is defined in the sys/extendio.h file.

bx_io_cache_hint If the underlying storage devices do not support I/O cache hints, this value is ignored. The

bx_io_cache_hint must be either the value of CH_AGE_OUT_FAST or the value of CH_PAGE_WRITE

(defined in the sys/extendio.h file). These values are mutually exclusive. If CH_AGE_OUT_FAST is

set, the I/O buffer can be aged out quickly from the storage device buffer cache. This is useful

in the situations where the application is already caching the I/O buffer and redundant caching

within the storage layer can be avoided. If CH_PAGE_WRITE is set, the I/O buffer is written only to

the storage device cache and not to the disk.

Related Information

The buf structure.

Character Lists Structure

Character device drivers, and other character-oriented support that can perform character-at-a-time I/O,

can be implemented by using a common set of services and data buffers to handle characters in the form

of character lists. A character list is a list or queue of characters. Some routines put characters in a list,

and others remove the characters from the list.

Character lists, known as clists, contain a clist header and a chain of one or more data buffers known as

character blocks. Putting characters on a queue allocates space (character blocks) from the common pool

and links the character block into the data structure defining the character queue. Obtaining characters

from a queue returns the corresponding space back to the pool.

A character list can be used to communicate between a character device driver top and bottom half. The

clist header and the character blocks that are used by these routines must be pinned in memory, since

they are accessed in the interrupt environment.

Users of the character list services must register (typically in the device driver ddopen routine) the number

of character blocks to be used at any one time. This allows the kernel to manage the number of pinned

character blocks in the character block pool. Similarly, when usage terminates (for example, when the

device driver is closed), the using routine should remove its registration of character blocks. The pincf

kernel service provides registration for character block usage.

516 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The kernel provides four services for obtaining characters or character blocks from a character list: the

getc, getcb, getcbp, and getcx kernel services. There are also four services that add characters or

character blocks to character lists: the putc, putcb, putcbp, and putcx kernel services. The getcf kernel

services allocates a free character block while the putcf kernel service returns a character block to the

free list. Additionally, the putcfl kernel service returns a list of character buffers to the free list. The

waitcfree kernel service determines if any character blocks are on the free list, and waits for one if none

are available.

Using a Character List

For each character list you use, you must allocate a clist header structure. This clist structure is defined

in the /usr/include/sys/cblock.h file.

You do not need to be concerned with maintaining the fields in the clist header, as the character list

services do this for you. However, you should initialize the c_cc count field to 0, and both character block

pointers (c_cf and c_cl) to null before using the clist header for the first time. The clist structure defines

these fields.

Each buffer in the character list is a cblock structure, which is also defined in the /usr/include/sys/
cblock.h file.

A character block data area does not need to be completely filled with characters. The c_first and c_last

fields are zero-based offsets within the c_data array, which actually contains the data.

Only a limited amount of memory is available for character buffers. All character drivers share this pool of

buffers. Therefore, you must limit the number of characters in your character list to a few hundred. When

the device is closed, the device driver should make certain all of its character lists are flushed so the

buffers are returned to the list of free buffers.

Related Information

The getc kernel service, getcb kernel service, getcbp kernel service, getcf kernel service, getcx kernel

service, pincf kernel service, putc kernel service, putcb kernel service, putcbp kernel service, putcf

kernel service, putcfl kernel service, putcx kernel service, waitcfree kernel service.

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

uio Structure

Purpose

Describes a memory buffer to be used in a data transfer.

Introduction

The user I/O or uio structure is a data structure describing a memory buffer to be used in a data transfer.

The uio structure is most commonly used in the read and write interfaces to device drivers supporting

character or raw I/O. It is also useful in other instances in which an input or output buffer can exist in

different kinds of address spaces, and in which the buffer is not contiguous in virtual memory.

The uio structure is defined in the /usr/include/sys/uio.h file.

Chapter 2. Device Driver Operations 517

Description

The uio structure describes a buffer that is not contiguous in virtual memory. It also indicates the address

space in which the buffer is defined. When used in the character device read and write interface, it also

contains the device open-mode flags, along with the device read/write offset.

The kernel provides services that access data using a uio structure. The ureadc, uwritec, uiomove, and

uphysio kernel services all perform data transfers into or out of a data buffer described by a uio structure.

The ureadc kernel service writes a character into the buffer described by the uio structure. The uwritec

kernel service reads a character from the buffer. These two services have names opposite from what you

would expect, since they are named for the user action initiating the operation. A read on the part of the

user thus results in a device driver writing to the buffer, while a write results in a driver reading from the

buffer.

The uiomove kernel service copies data to or from a buffer described by a uio structure from or to a

buffer in the system address space. The uphysio kernel service is used primarily by block device drivers

providing raw I/O support. The uphysio kernel service converts the character read or write request into a

block read or write request and sends it to the ddstrategy routine.

The buffer described by the uio structure can consist of multiple noncontiguous areas of virtual memory of

different lengths. This is achieved by describing the data buffer with an array of elements, each of which

consists of a virtual memory address and a byte length. Each element is defined as an iovec element. The

uio structure also contains a field specifying the total number of bytes in the data buffer described by the

structure.

Another field in the uio structure describes the address space of the data buffer, which can either be

system space, user space, or cross-memory space. If the address space is defined as cross memory, an

additional array of cross-memory descriptors is specified in the uio structure to match the array of iovec

elements.

The uio structure also contains a byte offset (uio_offset). This field is a 64 bit integer (offset_t); it

allows the file system to send I/O requests to a device driver’s read & write entry points which have logical

offsets beyond 2 gigabytes. Device drivers must use care not to cause a loss of significance by assigning

the offset to a 32 bit variable or using it in calculations that overflow a 32 bit variable.

The called routine (device driver) is permitted to modify fields in the uio and iovec structures as the data

transfer progresses. The final uio_resid count is in fact used to determine how much data was

transferred. Therefore this count must be decremented, with each operation, by the number of bytes

actually copied.

The uio structure contains the following fields:

 Field Description

uio_iov A pointer to an array of iovec structures describing the user buffer for the data transfer.

uio_xmem A pointer to an array of xmem structures containing the cross-memory descriptors for the iovec

array.

uio_iovcnt The number of yet-to-be-processed iovec structures in the array pointed to by the uio_iov

pointer. The count must be at least 1. If the count is greater than 1, then a scatter-gather of the

data is to be performed into or out of the areas described by the iovec structures.

uio_iovdcnt The number of already processed iovec structures in the iovec array.

uio_offset The file offset established by a previous lseek, llseek subroutine call. Most character devices

ignore this variable, but some, such as the /dev/mem pseudo-device, use and maintain it.

uio_segflg A flag indicating the type of buffer being described by the uio structure. This flag typically

describes whether the data area is in user or kernel space or is in cross-memory. Refer to the

/usr/include/sys/uio.h file for a description of the possible values of this flag and their

meanings.

518 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Field Description

uio_fmode The value of the file mode that was specified on opening the file or modified by the fcntl

subroutine. This flag describes the file control parameters. The /usr/include/sys/fcntl.h file

contains specific values for this flag.

uio_resid The byte count for the data transfer. It must not exceed the sum of all the iov_len values in the

array of iovec structures. Initially, this field contains the total byte count, and when the

operation completes, the value must be decremented by the actual number of bytes

transferred.

The iovec structure contains the starting address and length of a contiguous data area to be used in a

data transfer. The iovec structure is the element type in an array pointed to by the uio_iov field in the uio

structure. This array can contain any number of iovec structures, each of which describes a single unit of

contiguous storage. Taken together, these units represent the total area into which, or from which, data is

to be transferred. The uio_iovcnt field gives the number of iovec structures in the array.

The iovec structure contains the following fields:

 Field Description

iov_base A variable in the iovec structure containing the base address of the contiguous data area in the

address space specified by the uio_segflag field. The length of the contiguous data area is specified

by the iov_len field.

iov_len A variable in the iovec structure containing the byte length of the data area starting at the address

given in the iov_base variable.

Related Information

The ddread device driver entry point, ddwrite device driver entry point.

The uiomove kernel service, uphysio kernel service, ureadc kernel service, uwritec kernel service.

The fcntl subroutine, lseek subroutine.

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Programming In the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

Cross Memory Kernel Services in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

ddclose Device Driver Entry Point

Purpose

Closes a previously open device instance.

Syntax

#include <sys/device.h>

#include <sys/types.h>

int ddclose (devno, chan)

dev_t devno;

chan_t chan;

Chapter 2. Device Driver Operations 519

Parameters

 devno Specifies the major and minor device numbers of the device instance to close.

chan Specifies the channel number.

Description

The ddclose entry point is called when a previously opened device instance is closed by the close

subroutine or fp_close kernel service. The kernel calls the routine under different circumstances for

non-multiplexed and multiplexed device drivers.

For non-multiplexed device drivers, the kernel calls the ddclose routine when the last process having the

device instance open closes it. This causes the g-node reference count to be decremented to 0 and the

g-node to be deallocated.

For multiplexed device drivers, the ddclose routine is called for each close associated with an explicit

open. In other words, the device driver’s ddclose routine is invoked once for each time its ddopen routine

was invoked for the channel.

In some instances, data buffers should be written to the device before returning from the ddclose routine.

These are buffers containing data to be written to the device that have been queued by the device driver

but not yet written.

Non-multiplexed device drivers should reset the associated device to an idle state and change the device

driver device state to closed. This can involve calling the fp_close kernel service to issue a close to an

associated open device handler for the device. Returning the device to an idle state prevents the device

from generating any more interrupt or direct memory access (DMA) requests. DMA channels and interrupt

levels allocated for this device should be freed, until the device is re-opened, to release critical system

resources that this device uses.

Multiplexed device drivers should provide the same device quiescing, but not in the ddclose routine.

Returning the device to the idle state and freeing its resources should be delayed until the ddmpx routine

is called to deallocate the last channel allocated on the device.

In all cases, the device instance is considered closed once the ddclose routine has returned to the caller,

even if a nonzero return code is returned.

Execution Environment

The ddclose routine is executed only in the process environment. It should provide the required

serialization of its data structures by using the locking kernel services in conjunction with a private lock

word defined in the driver.

Return Values

The ddclose entry point can indicate an error condition to the user-mode application program by returning

a nonzero return code. This causes the subroutine call to return a value of -1. It also makes the return

code available to the user-mode application in the errno global variable. The return code used should be

one of the values defined in the /usr/include/sys/errno.h file.

The device is always considered closed even if a nonzero return code is returned.

When applicable, the return values defined in the POSIX 1003.1 standard for the close subroutine should

be used.

520 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The ddopen device driver entry point.

The fp_close kernel service, i_clear kernel service, i_disable kernel service.

The close subroutine, open subroutine.

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

ddconfig Device Driver Entry Point

Purpose

Performs configuration functions for a device driver.

Syntax

#include <sys/device.h>

#include <sys/types.h>

int ddconfig (devno, cmd, uiop)

dev_t devno;

int cmd;

struct uio *uiop;

Parameters

 devno Specifies the major and minor device numbers.

cmd Specifies the function to be performed by the ddconfig routine.

uiop Points to a uio structure describing the relevant data area for configuration information.

Description

The ddconfig entry point is used to configure a device driver. It can be called to do the following tasks:

v Initialize the device driver.

v Terminate the device driver.

v Request configuration data for the supported device.

v Perform other device-specific configuration functions.

The ddconfig routine is called by the device’s Configure, Unconfigure, or Change method. Typically, it is

called once for each device number (major and minor) to be supported. This is, however,

device-dependent. The specific device method and ddconfig routine determines the number of times it is

called.

The ddconfig routine can also provide additional device-specific functions relating to configuration, such

as returning device vital product data (VPD). The ddconfig routine is usually invoked through the

sysconfig subroutine by the device-specific Configure method.

Chapter 2. Device Driver Operations 521

Device drivers and their methods typically support these values for the cmd parameter:

 Value Description

CFG_INIT Initializes the device driver and internal data areas. This typically involves the minor number specified

by the devno parameter, for validity. The device driver’s ddconfig routine also installs the device

driver’s entry points in the device switch table, if this was the first time called (for the specified major

number). This can be accomplished by using the devswadd kernel service along with a devsw

structure to add the device driver’s entry points to the device switch table for the major device

number supplied in the devno parameter.

The CFG_INIT command parameter should also copy the device-dependent information (found in the

device-dependent structure provided by the caller) into a static or dynamically allocated save area for

the specified device. This information should be used when the ddopen routine is later called.

The device-dependent structure’s address and length are described in the uio structure pointed to by

the uiop parameter. The uiomove kernel service can be used to copy the device-dependent structure

into the device driver’s data area.

When the ddopen routine is called, the device driver passes device-dependent information to the

routines or other device drivers providing the device handler role in order to initialize the device. The

delay in initializing the device until the ddopen call is received is useful in order to delay the use of

valuable system resources (such as DMA channels and interrupt levels) until the device is actually

needed.

CFG_TERM Terminates the device driver associated with the specified device number, as represented by the

devno parameter.The ddconfig routine determines if any opens are outstanding on the specified

devno parameter. If none are, the CFG_TERM command processing marks the device as terminated,

disallowing any subsequent opens to the device. All dynamically allocated data areas associated with

the specified device number should be freed.

If this termination removes the last minor number supported by the device driver from use, the

devswdel kernel service should be called to remove the device driver’s entry points from the device

switch table for the specified devno parameter.

If opens are outstanding on the specified device, the terminate operation is rejected with an

appropriate error code returned. The Unconfigure method can subsequently unload the device driver

if all uses of it have been terminated.

To determine if all the uses of the device driver have been terminated, a device method can make a

sysconfig subroutine call. By using the sysconfig SYS_QDVSW operation, the device method can

learn whether or not the device driver has removed itself from the device switch table.

CFG_QVPD Queries device-specific vital product data (VPD).

For this function, the calling routine sets up a uio structure pointed at by the uiop parameter to the

ddconfig routine. This uio structure defines an area in the caller’s storage in which the ddconfig

routine is to write the VPD. The uiomove kernel service can be used to provide the data copy

operation.

The data area pointed at by the uiop parameter has two different purposes, depending on the cmd

function. If the CFG_INIT command has been requested, the uiop structure describes the location and

length of the device-dependent data structure (DDS) from which to read the information. If the CFG_QVPD

command has been requested, the uiop structure describes the area in which to write vital product data

information. The content and format of this information is established by the specific device methods in

conjunction with the device driver.

The uiomove kernel service can be used to facilitate copying information into or out of this data area. The

format of the uio structure is defined in the /usr/include/sys/uio.h file and described further in the uio

structure.

522 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The ddconfig routine and its operations are called in the process environment only.

Return Values

The ddconfig routine sets the return code to 0 if no errors are detected for the operation specified. If an

error is to be returned to the caller, a nonzero return code should be provided. The return code used

should be one of the values defined in the /usr/include/sys/errno.h file.

If this routine was invoked by a sysconfig subroutine call, the return code is passed to its caller (typically

a device method). It is passed by presenting the error code in the errno global variable and providing a -1

return code to the subroutine.

Related Information

The sysconfig subroutine.

The ddopen device driver entry point.

The devswadd kernel service, devswdel kernel service, uiomove kernel service.

The uio structure.

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

dddump Device Driver Entry Point

Purpose

Writes system dump data to a device.

Syntax

#include <sys/device.h>

int dddump (devno, uiop, cmd, arg, chan, ext)

dev_t devno;

struct uio * uiop;

int cmd, arg;

chan_t chan;

int ext;

Parameters

 devno Specifies the major and minor device numbers.

uiop Points to the uio structure describing the data area or areas to be dumped.

cmd The parameter from the kernel dump function that specifies the operation to be performed.

arg The parameter from the caller that specifies the address of a parameter block associated with the kernel

dump command.

chan Specifies the channel number.

ext Specifies the extension parameter.

Chapter 2. Device Driver Operations 523

Description

The kernel dump routine calls the dddump entry point to set up and send dump requests to the device.

The dddump routine is optional for a device driver. It is required only when the device driver supports a

device as a target for a possible kernel dump.

If this is the case, it is important that the system state change as little as possible when performing the

dump. As a result, the dddump routine should use the minimal amount of services in writing the dump

data to the device.

The cmd parameter can specify any of the following dump commands:

 Dump Command Description

DUMPINIT Initialization a device in preparation for supporting a system dump. The specified device instance

must have previously been opened. The arg parameter points to a dumpio_stat structure,

defined in /usr/include/sys/dump.h. This is used for returning device-specific status in case of

an error.

The dddump routine should pin all code and data that the device driver uses to support dump

writing. This is required to prevent a page fault when actually performing a write of the dump

data. (Pinned code should include the dddump routine.) The pin or pincode kernel service can

be used for this purpose.

DUMPQUERY Determines the maximum and minimum number of bytes that can be transferred to the device in

one DUMPWRITE command. For network dumps, the address of the write routine used in

transferring dump data to the network dump device is also sent. The uiop parameter is not used

and is null for this command. The arg parameter is a pointer to a dmp_query structure, as

defined in the /usr/include/sys/dump.h file.

The dmp_query structure contains the following fields:

min_tsize

Minimum transfer size (in bytes).

max_tsize

Maximum transfer size (in bytes).

dumpwrite

Address of the write routine.

Note: Communications device drivers providing remote dump support must supply the address

of the write routine used in transferring dump data to the device. The kernel dump function uses

logical link control (LLC) to transfer the dump data to the device using the dumpwrite field.

The DUMPQUERY command returns the data transfer size information in the dmp_query

structure pointed to by the arg parameter. The kernel dump function then uses a buffer between

the minimum and maximum transfer sizes (inclusively) when writing dump data.

If the buffer is not the size found in the max_tsize field, then its size must be a multiple of the

value in the min_tsize field. The min_tsize field and the max_tsize field can specify the same

value.

DUMPSTART Suspends current device activity and provide whatever setup of the device is needed before

receiving a DUMPWRITE command. The arg parameter points to a dumpio_stat structure,

defined in /usr/include/sys/dump.h. This is used for returning device-specific status in case of

an error.

524 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Dump Command Description

DUMPWRITE Writes dump data to the target device. The uio structure pointed to by the uiop parameter

specifies the data area or areas to be written to the device and the starting device offset. The arg

parameter points to a dumpio_stat structure, defined in /usr/include/sys/dump.h. This is used

for returning device-specific status in case of an error. Code for the DUMPWRITE command

should minimize its reliance on system services, process dispatching, and such interrupt services

as the INTIODONE interrupt priority or device hardware interrupts.

Note: The DUMPWRITE command must never cause a page fault. This is ensured on the part

of the caller, since the data areas to be dumped have been determined to be in memory. The

device driver must ensure that all of its code, data and stack accesses are to pinned memory

during its DUMPINIT command processing.

DUMPEND Indicates that the kernel dump has been completed. Any cleanup of the device state should be

done at this time.

DUMPTERM Indicates that the specified device is no longer a selected dump target device. If no other devices

supported by this dddump routine have a DUMPINIT command outstanding, the DUMPTERM

code should unpin any resources pinned when it received the DUMPINIT command. (The unpin

kernel service is available for unpinning memory.) The DUMPTERM command is received before

the device is closed.

DUMPREAD Receives the acknowledgment packet for previous DUMPWRITE operations to a communications

device driver. If the device driver receives the acknowledgment within the specified time, it returns

a 0 and the response data is returned to the kernel dump function in the uiop parameter. If the

device driver does not receive the acknowledgment within the specified time, it returns a value of

ETIMEDOUT.

The arg parameter contains a timeout value in milliseconds.

Execution Environment

The DUMPINIT dddump operation is called in the process environment only. The DUMPQUERY,

DUMPSTART, DUMPWRITE, DUMPEND, and DUMPTERM dddump operations can be called in both the

process environment and interrupt environment.

Return Values

The dddump entry point indicates an error condition to the caller by returning a nonzero return code.

Related Information

The devdump kernel service, dmp_add kernel service, dmp_del kernel service, dmp_prinit kernel

service, pin kernel service, pincode kernel service, unpin kernel service.

The dump special file.

The uio structure.

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

ddioctl Device Driver Entry Point

Purpose

Performs the special I/O operations requested in an ioctl or ioctlx subroutine call.

Chapter 2. Device Driver Operations 525

Syntax

#include <sys/device.h>

int ddioctl (devno, cmd, arg, devflag, chan, ext)

dev_t devno;

int cmd;

void *arg;

ulong devflag;

chan_t chan;

int ext;

Description

When a program issues an ioctl or ioctlx subroutine call, the kernel calls the ddioctl routine of the

specified device driver. The ddioctl routine is responsible for performing whatever functions are requested.

In addition, it must return whatever control information has been specified by the original caller of the ioctl

subroutine. The cmd parameter contains the name of the operation to be performed.

Most ioctl operations depend on the specific device involved. However, all ioctl routines must respond to

the following command:

 IOCINFO Returns a devinfo structure (defined in the /usr/include/sys/devinfo.h file) that describes the device.

(Refer to the description of the special file for a particular device in the Application Programming

Interface.) Only the first two fields of the data structure need to be returned if the remaining fields of

the structure do not apply to the device.

The devflag parameter indicates one of several types of information. It can give conditions in which the

device was opened. (These conditions can subsequently be changed by the fcntl subroutine call.)

Alternatively, it can tell which of two ways the entry point was invoked:

v By the file system on behalf of a using application

v Directly by a kernel routine using the fp_ioctl kernel service

Thus flags in the devflag parameter have the following definitions, as defined in the /usr/include/sys/
device.h file:

 DKERNEL Entry point called by kernel routine using the fp_ioctl service.

DREAD Open for reading.

DWRITE Open for writing.

DAPPEND Open for appending.

DNDELAY Device open in nonblocking mode.

Parameters

 devno Specifies the major and minor device numbers.

cmd The parameter from the ioctl subroutine call that specifies the operation to be performed.

arg The parameter from the ioctl subroutine call that specifies an additional argument for the cmd

operation.

devflag Specifies the device open or file control flags.

chan Specifies the channel number.

ext Specifies the extension parameter.

526 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The ddioctl routine is executed only in the process environment. It should provide the required

serialization of its data structures by using the locking kernel services in conjunction with a private lock

word defined in the driver.

Return Values

The ddioctl entry point can indicate an error condition to the user-mode application program by returning

a nonzero return code. This causes the ioctl subroutine to return a value of -1 and makes the return code

available to the user-mode application in the errno global variable. The error code used should be one of

the values defined in the /usr/include/sys/errno.h file.

When applicable, the return values defined in the POSIX 1003.1 standard for the ioctl subroutine should

be used.

Related Information

The fp_ioctl kernel service.

The fcntl subroutine, ioctl or ioctlx subroutine, open subroutine.

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Virtual File System Kernel Extensions Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

Special Files Overview in AIX 5L Version 5.3 Files Reference.

Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

ddmpx Device Driver Entry Point

Purpose

Allocates or deallocates a channel for a multiplexed device driver.

Syntax

#include <sys/device.h>

#include <sys/types.h>

int ddmpx (devno, chanp, channame)

dev_t devno;

chan_t *chanp;

char *channame;

Parameters

 devno Specifies the major and minor device numbers.

chanp Specifies the channel ID, passed by reference.

channame Points to the path name extension for the channel to be allocated.

Chapter 2. Device Driver Operations 527

Description

Only multiplexed character class device drivers can provide the ddmpx routine, and every multiplexed

driver must do so. The ddmpx routine cannot be provided by block device drivers even when providing

raw read/write access.

A multiplexed device driver is a character class device driver that supports the assignment of channels to

provide finer access control to a device or virtual subdevice. This type of device driver has the capability to

decode special channel-related information appended to the end of the path name of the device’s special

file. This path name extension is used to identify a logical or virtual subdevice or channel.

When an open or creat subroutine call is issued to a device instance supported by a multiplexed device

driver, the kernel calls the device driver’s ddmpx routine to allocate a channel.

The kernel calls the ddmpx routine when a channel is to be allocated or deallocated. Upon allocation, the

kernel dynamically creates g-nodes (in-core i-nodes) for channels on a multiplexed device to allow the

protection attributes to differ for various channels.

To allocate a channel, the ddmpx routine is called with a channame pointer to the path name extension.

The path name extension starts after the first / (slash) character that follows the special file name in the

path name. The ddmpx routine should perform the following actions:

v Parse this path name extension.

v Allocate the corresponding channel.

v Return the channel ID through the chanp parameter.

If no path name extension exists, the channame pointer points to a null character string. In this case, an

available channel should be allocated and its channel ID returned through the chanp parameter.

If no error is returned from the ddmpx routine, the returned channel ID is used to determine if the channel

was already allocated. If already allocated, the g-node for the associated channel has its reference count

incremented. If the channel was not already allocated, a new g-node is created for the channel. In either

case, the device driver’s ddopen routine is called with the channel number assigned by the ddmpx

routine. If a nonzero return code is returned by the ddmpx routine, the channel is assumed not to have

been allocated, and the device driver’s ddopen routine is not called.

If a close of a channel is requested so that the channel is no longer used (as determined by the channel’s

g-node reference count going to 0), the kernel calls the ddmpx routine. The ddmpx routine deallocates

the channel after the ddclose routine was called to close the last use of the channel. If a nonzero return

code is returned by the ddclose routine, the ddmpx routine is still called to deallocate the channel. The

ddclose routine’s return code is saved, to be returned to the caller. If the ddclose routine returned no

error, but a nonzero return code was returned by the ddmpx routine, the channel is assumed to be

deallocated, although the return code is returned to the caller.

To deallocate a channel, the ddmpx routine is called with a null channame pointer and the channel ID

passed by reference in the chanp parameter. If the channel g-node reference count has gone to 0, the

kernel calls the ddmpx routine to deallocate the channel after invoking the ddclose routine to close it. The

ddclose routine should not itself deallocate the channel.

Execution Environment

The ddmpx routine is called in the process environment only.

Return Values

If the allocation or deallocation of a channel is successful, the ddmpx routine should return a return code

of 0. If an error occurs on allocation or deallocation, this routine returns a nonzero value.

528 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The return code should conform to the return codes described for the open and close subroutines in the

POSIX 1003.1 standard, where applicable. Otherwise, the return code should be one defined in the

/usr/include/sys/errno.h file.

Related Information

The ddclose device driver entry point, ddopen device driver entry point.

The close subroutine, open or creat subroutine.

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

ddopen Device Driver Entry Point

Purpose

Prepares a device for reading, writing, or control functions.

Syntax

#include <sys/device.h>

int ddopen (devno, devflag, chan, ext)

dev_t devno;

ulong devflag;

chan_t chan;

int ext;

Parameters

 devno Indicates major and minor device numbers.

devflag Specifies open file control flags.

chan Specifies the channel number.

ext Specifies the extension parameter.

Description

The kernel calls the ddopen routine of a device driver when a program issues an open or creat

subroutine call. It can also be called when a system call, kernel process, or other device driver uses the

fp_opendev or fp_open kernel service to use the device.

The ddopen routine must first ensure exclusive access to the device, if necessary. Many character

devices, such as printers and plotters, should be opened by only one process at a time. The ddopen

routine can enforce this by maintaining a static flag variable, which is set to 1 if the device is open and 0 if

not.

Each time the ddopen routine is called, it checks the value of the flag. If the value is other than 0, the

ddopen routine returns with a return code of EBUSY to indicate that the device is already open.

Otherwise, the ddopen routine sets the flag and returns normally. The ddclose entry point later clears the

flag when the device is closed.

Chapter 2. Device Driver Operations 529

Since most block devices can be used by several processes at once, a block driver should not try to

enforce opening by a single user.

The ddopen routine must initialize the device if this is the first open that has occurred. Initialization

involves the following steps:

1. The ddopen routine should allocate the required system resources to the device (such as DMA

channels, interrupt levels, and priorities). It should, if necessary, register its device interrupt handler for

the interrupt level required to support the target device. (The i_init and d_init kernel services are

available for initializing these resources.)

2. If this device driver is providing the head role for a device and another device driver is providing the

handler role, the ddopen routine should use the fp_opendev kernel service to open the device

handler.

Note: The fp_opendev kernel service requires a devno parameter to identify which device handler to

open. This devno value, taken from the appropriate device dependent structure (DDS), should

have been stored in a special save area when this device driver’s ddconfig routine was called.

Flags Defined for the devflag Parameter

The devflag parameter has the following flags, as defined in the /usr/include/sys/device.h file:

 DKERNEL Entry point called by kernel routine using the fp_opendev or fp_open kernel service.

DREAD Open for reading.

DWRITE Open for writing.

DAPPEND Open for appending.

DNDELAY Device open in nonblocking mode.

Execution Environment

The ddopen routine is executed only in the process environment. It should provide the required

serialization of its data structures by using the locking kernel services in conjunction with a private lock

word defined in the driver.

Return Values

The ddopen entry point can indicate an error condition to the user-mode application program by returning

a nonzero return code. Returning a nonzero return code causes the open or creat subroutines to return a

value of -1 and makes the return code available to the user-mode application in the errno global variable.

The return code used should be one of the values defined in the /usr/include/errno.h file.

If a nonzero return code is returned by the ddopen routine, the open request is considered to have failed.

No access to the device instance is available to the caller as a result. In addition, for nonmultiplexed

drivers, if the failed open was the first open of the device instance, the kernel calls the driver’s ddclose

entry point to allow resources and device driver state to be cleaned up. If the driver was multiplexed, the

kernel does not call the ddclose entry point on an open failure.

When applicable, the return values defined in the POSIX 1003.1 standard for the open subroutine should

be used.

Related Information

The ddclose device driver entry point, ddconfig device driver entry point.

The fp_open kernel service, fp_opendev kernel service, i_enable kernel service, i_init kernel service.

The close subroutine, creat subroutine, open subroutine.

530 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

ddread Device Driver Entry Point

Purpose

Reads in data from a character device.

Syntax

#include <sys/device.h>

#include <sys/types.h>

int ddread (devno, uiop, chan, ext)

dev_t devno;

struct uio *uiop;

chan_t chan;

int ext;

Parameters

 devno Specifies the major and minor device numbers.

uiop Points to a uio structure describing the data area or areas in which to be written.

chan Specifies the channel number.

ext Specifies the extension parameter.

Description

When a program issues a read or readx subroutine call or when the fp_rwuio kernel service is used, the

kernel calls the ddread entry point.

This entry point receives a pointer to a uio structure that provides variables used to specify the data

transfer operation.

Character device drivers can use the ureadc and uiomove kernel services to transfer data into and out of

the user buffer area during a read subroutine call. These services receive a pointer to the uio structure

and update the fields in the structure by the number of bytes transferred. The only fields in the uio

structure that cannot be modified by the data transfer are the uio_fmode and uio_segflg fields.

For most devices, the ddread routine sends the request to the device handler and then waits for it to

finish. The waiting can be accomplished by calling the e_sleep kernel service. This service suspends the

driver and the process that called it and permits other processes to run until a specified event occurs.

When the I/O operation completes, the device usually issues an interrupt, causing the device driver’s

interrupt handler to be called. The interrupt handler then calls the e_wakeup kernel service specifying the

awaited event, thus allowing the ddread routine to resume.

The uio_resid field initially contains the total number of bytes to read from the device. If the device driver

supports it, the uio_offset field indicates the byte offset on the device from which the read should start.

Chapter 2. Device Driver Operations 531

The uio_offset field is a 64 bit integer (offset_t); this allows the file system to send I/O requests to a

device driver’s read & write entry points which have logical offsets beyond 2 gigabytes. Device drivers

must use care not to cause a loss of significance by assigning the offset to a 32 bit variable or using it in

calculations that overflow a 32 bit variable.

If no error occurs, the uio_resid field should be 0 on return from the ddread routine to indicate that all

requested bytes were read. If an error occurs, this field should contain the number of bytes remaining to

be read when the error occurred.

If a read request starts at a valid device offset but extends past the end of the device’s capabilities, no

error should be returned. However, the uio_resid field should indicate the number of bytes not transferred.

If the read starts at the end of the device’s capabilities, no error should be returned. However, the

uio_resid field should not be modified, indicating that no bytes were transferred. If the read starts past the

end of the device’s capabilities, an ENXIO return code should be returned, without modifying the

uio_resid field.

When the ddread entry point is provided for raw I/O to a block device, this routine usually translates

requests into block I/O requests using the uphysio kernel service.

Execution Environment

The ddread routine is executed only in the process environment. It should provide the required

serialization of its data structures by using the locking kernel services in conjunction with a private lock

word defined in the driver.

Return Values

The ddread entry point can indicate an error condition to the caller by returning a nonzero return code.

This causes the subroutine call to return a value of -1. It also makes the return code available to the

user-mode program in the errno global variable. The error code used should be one of the values defined

in the /usr/include/sys/errno.h file.

When applicable, the return values defined in the POSIX 1003.1 standard for the read subroutine should

be used.

Related Information

The ddwrite device driver entry point.

The e_sleep kernel service, e_wakeup kernel service, fp_rwuio kernel service, uiomove kernel service,

uphysio kernel service, ureadc kernel service.

The uio structure.

The read, readx subroutines.

Select/Poll Logic for ddwrite and ddread Routines.

Device Driver Kernel Extension Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

532 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

ddrevoke Device Driver Entry Point

Purpose

Ensures that a secure path to a terminal is provided.

Syntax

#include <sys/device.h>

#include <sys/types.h>

int ddrevoke (devno, chan, flag)

dev_t devno;

chan_t chan;

int flag;

Parameters

 devno Specifies the major and minor device numbers.

chan Specifies the channel number. For a multiplexed device driver, a value of -1 in this parameter means

access to all channels is to be revoked.

flag Currently defined to have the value of 0. (Reserved for future extensions.)

Description

The ddrevoke entry point can be provided only by character class device drivers. It cannot be provided by

block device drivers even when providing raw read/write access. A ddrevoke entry point is required only

by device drivers supporting devices in the Trusted Computing Path to a terminal (for example, by the

/dev/ lft and /dev/tty files for the low function terminal and teletype device drivers). The ddrevoke routine

is called by the frevoke and revoke subroutines.

The ddrevoke routine revokes access to a specific device or channel (if the device driver is multiplexed).

When called, the ddrevoke routine should terminate all processes waiting in the device driver while

accessing the specified device or channel. It should terminate the processes by sending a SIGKILL signal

to all processes currently waiting for a specified device or channel data transfer. The current process is not

to be terminated.

If the device driver is multiplexed and the channel ID in the chan parameter has the value -1, all channels

are to be revoked.

Execution Environment

The ddrevoke routine is called in the process environment only.

Return Values

The ddrevoke routine should return a value of 0 for successful completion, or a value from the

/usr/include/errno.h file on error.

Files

 /dev/lft Specifies the path of the LFT special file.

/dev/tty Specifies the path of the tty special file.

Related Information

The frevoke subroutine, revoke subroutine.

Chapter 2. Device Driver Operations 533

LFT Subsystem Component Structure Overview , Device Driver Kernel Extension Overview, Programming

in the Kernel Environment Overview, in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

The TTY Subsystem Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

ddselect Device Driver Entry Point

Purpose

Checks to see if one or more events has occurred on the device.

Syntax

#include <sys/device.h>

#include <sys/poll.h>

int ddselect (devno, events, reventp, chan)

dev_t devno;

ushort events;

ushort *reventp;

int chan;

Parameters

 devno Specifies the major and minor device numbers.

events Specifies the events to be checked.

reventp Returned events pointer. This parameter, passed by reference, is used by the ddselect routine to

indicate which of the selected events are true at the time of the call. The returned events location

pointed to by the reventp parameter is set to 0 before entering this routine.

chan Specifies the channel number.

Description

The ddselect entry point is called when the select or poll subroutine is used, or when the fp_select

kernel service is invoked. It determines whether a specified event or events have occurred on the device.

Only character class device drivers can provide the ddselect routine. It cannot be provided by block

device drivers even when providing raw read/write access.

Requests for Information on Events

The events parameter represents possible events to check as flags (bits). There are three basic events

defined for the select and poll subroutines, when applied to devices supporting select or poll operations:

 Event Description

POLLIN Input is present on the device.

POLLOUT The device is capable of output.

POLLPRI An exceptional condition has occurred on the device.

A fourth event flag is used to indicate whether the ddselect routine should record this request for later

notification of the event using the selnotify kernel service. This flag can be set in the events parameter if

the device driver is not required to provide asynchronous notification of the requested events:

534 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Event Description

POLLSYNC This request is a synchronous request only. The routine need not call the selnotify kernel service for

this request even if the events later occur.

Additional event flags in the events parameter are left for device-specific events on the poll subroutine

call.

Select Processing

If one or more events specified in the events parameter are true, the ddselect routine should indicate this

by setting the corresponding bits in the reventp parameter. Note that the reventp returned events

parameter is passed by reference.

If none of the requested events are true, then the ddselect routine sets the returned events parameter to

0. It is passed by reference through the reventp parameter. It also checks the POLLSYNC flag in the

events parameter. If this flag is true, the ddselect routine should just return, since the event request was a

synchronous request only.

However, if the POLLSYNC flag is false, the ddselect routine must notify the kernel when one or more of

the specified events later happen. For this purpose, the routine should set separate internal flags for each

event requested in the events parameter.

When any of these events become true, the device driver routine should use the selnotify service to notify

the kernel. The corresponding internal flags should then be reset to prevent re-notification of the event.

Sometimes the device can be in a state in which a supported event or events can never be satisfied (such

as when a communication line is not operational). In this case, the ddselect routine should simply set the

corresponding reventp flags to 1. This prevents the select or poll subroutine from waiting indefinitely. As a

result however, the caller will not in this case be able to distinguish between satisfied events and

unsatisfiable ones. Only when a later request with an NDELAY option fails will the error be detected.

Note: Other device driver routines (such as the ddread, ddwrite routines) may require logic to support

select or poll operations.

Execution Environment

The ddselect routine is executed only in the process environment. It should provide the required

serialization of its data structures by using the locking kernel services in conjunction with a private lock

word defined in the driver.

Return Values

The ddselect routine should return with a return code of 0 if the select or poll operation requested is valid

for the resource specified. Requested operations are not valid, however, if either of the following is true:

v The device driver does not support a requested event.

v The device is in a state in which poll and select operations are not accepted.

In these cases, the ddselect routine should return with a nonzero return code (typically EINVAL), and

without setting the relevant reventp flags to 1. This causes the poll subroutine to return to the caller with

the POLLERR flag set in the returned events parameter associated with this resource. The select

subroutine indicates to the caller that all requested events are true for this resource.

When applicable, the return values defined in the POSIX 1003.1 standard for the select subroutine should

be used.

Chapter 2. Device Driver Operations 535

Related Information

The ddread device driver entry point, ddwrite device driver entry point.

The fp_select kernel service, selnotify kernel service.

The poll subroutine, select subroutine.

Programming in the Kernel Environment Overview and Device Driver Kernel Extension Overview in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts.

ddstrategy Device Driver Entry Point

Purpose

Performs block-oriented I/O by scheduling a read or write to a block device.

Syntax

void ddstrategy (bp)

struct buf *bp;

Parameter

 bp Points to a buf structure describing all information needed to perform the data transfer.

Description

When the kernel needs a block I/O transfer, it calls the ddstrategy strategy routine of the device driver for

that device. The strategy routine schedules the I/O to the device. This typically requires the following

actions:

v The request or requests must be added on the list of I/O requests that need to be processed by the

device.

v If the request list was empty before the preceding additions, the device’s start I/O routine must be

called.

Required Processing

The ddstrategy routine can receive a single request with multiple buf structures. However, it is not

required to process requests in any specific order.

The strategy routine can be passed a list of operations to perform. The av_forw field in the buf header

describes this null-terminated list of buf headers. This list is not doubly linked: the av_back field is

undefined.

Block device drivers must be able to perform multiple block transfers. If the device cannot do multiple

block transfers, or can only do multiple block transfers under certain conditions, then the device driver

must transfer the data with more than one device operation.

Kernel Buffers and Using the buf Structure

An area of memory is set aside within the kernel memory space for buffering data transfers between a

program and the peripheral device. Each kernel buffer has a header, the buf structure, which contains all

necessary information for performing the data transfer. The ddstrategy routine is responsible for updating

fields in this header as part of the transfer.

536 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The caller of the strategy routine should set the b_iodone field to point to the caller’s I/O done routine.

When an I/O operation is complete, the device driver calls the iodone kernel service, which then calls the

I/O done routine specified in the b_iodone field. The iodone kernel service makes this call from the

INTIODONE interrupt level.

The value of the b_flags field is constructed by logically ORing zero or more possible b_flags field flag

values.

Attention: Do not modify any of the following fields of the buf structure passed to the ddstrategy

entry point: the b_forw, b_back, b_dev, b_un, or b_blkno field. Modifying these fields can cause

unpredictable and disastrous results.

Attention: Do not modify any of the following fields of a buf structure acquired with the geteblk

service: the b_flags, b_forw, b_back, b_dev, b_count, or b_un field. Modifying any of these fields can

cause unpredictable and disastrous results.

Execution Environment

The ddstrategy routine must be coded to execute in an interrupt handler execution environment (device

driver bottom half). That is, the routine should neither touch user storage, nor page fault, nor sleep.

Return Values

The ddstrategy routine, unlike other device driver routines, does not return a return code. Any error

information is returned in the appropriate fields within the buf structure pointed to by the bp parameter.

When applicable, the return values defined in the POSIX 1003.1 standard for the read and write

subroutines should be used.

Related Information

The geteblk kernel service, iodone kernel service.

The buf structure.

The read subroutine, write subroutine.

Device Driver Kernel Extension Overview, Understanding Device Driver Structure and Understanding

Device Driver Classes, Programming in the Kernel Environment Overview in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

ddwrite Device Driver Entry Point

Purpose

Writes out data to a character device.

Syntax

#include <sys/device.h>

#include <sys/types.h>

int ddwrite (devno, uiop, chan, ext)

dev_t devno;

struct uio * uiop;

chan_t chan;

int ext;

Chapter 2. Device Driver Operations 537

Parameters

 devno Specifies the major and minor device numbers.

uiop Points to a uio structure describing the data area or areas from which to be written.

chan Specifies the channel number.

ext Specifies the extension parameter.

Description

When a program issues a write or writex subroutine call or when the fp_rwuio kernel service is used, the

kernel calls the ddwrite entry point.

This entry point receives a pointer to a uio structure, which provides variables used to specify the data

transfer operation.

Character device drivers can use the uwritec and uiomove kernel services to transfer data into and out of

the user buffer area during a write subroutine call. These services are passed a pointer to the uio

structure. They update the fields in the structure by the number of bytes transferred. The only fields in the

uio structure that are not potentially modified by the data transfer are the uio_fmode and uio_segflg fields.

For most devices, the ddwrite routine queues the request to the device handler and then waits for it to

finish. The waiting is typically accomplished by calling the e_sleep kernel service to wait for an event. The

e_sleep kernel service suspends the driver and the process that called it and permits other processes to

run.

When the I/O operation is completed, the device usually causes an interrupt, causing the device driver’s

interrupt handler to be called. The interrupt handler then calls the e_wakeup kernel service specifying the

awaited event, thus allowing the ddwrite routine to resume.

The uio_resid field initially contains the total number of bytes to write to the device. If the device driver

supports it, the uio_offset field indicates the byte offset on the device from where the write should start.

The uio_offset field is a 64 bit integer (offset_t); this allows the file system to send I/O requests to a

device driver’s read & write entry points which have logical offsets beyond 2 gigabytes. Device drivers

must use care not to cause a loss of significance by assigning the offset to a 32 bit variable or using it in

calculations that overflow a 32 bit variable.

If no error occurs, the uio_resid field should be 0 on return from the ddwrite routine to indicate that all

requested bytes were written. If an error occurs, this field should contain the number of bytes remaining to

be written when the error occurred.

If a write request starts at a valid device offset but extends past the end of the device’s capabilities, no

error should be returned. However, the uio_resid field should indicate the number of bytes not transferred.

If the write starts at or past the end of the device’s capabilities, no data should be transferred. An error

code of ENXIO should be returned, and the uio_resid field should not be modified.

When the ddwrite entry point is provided for raw I/O to a block device, this routine usually uses the

uphysio kernel service to translate requests into block I/O requests.

Execution Environment

The ddwrite routine is executed only in the process environment. It should provide the required

serialization of its data structures by using the locking kernel services in conjunction with a private lock

word defined in the driver.

538 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

The ddwrite entry point can indicate an error condition to the caller by returning a nonzero return value.

This causes the subroutine to return a value of -1. It also makes the return code available to the

user-mode program in the errno global variable. The error code used should be one of the values defined

in the /usr/include/sys/errno.h file.

When applicable, the return values defined in the POSIX 1003.1 standard for the write subroutine should

be used.

Related Information

The ddread device driver entry point.

The CIO_GET_FASTWRT ddioctl.

The e_sleep kernel service, e_wakeup kernel service, fp_rwuio kernel service, uiomove kernel service,

uphysio kernel service, uwritec kernel service.

The uio structure.

The write and writex subroutines.

Device Driver Kernel Extension Overview, Understanding Device Driver Roles, Understanding Interrupts,

Understanding Locking in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

Select/Poll Logic for ddwrite and ddread Routines

Description

The ddread and ddwrite entry points require logic to support the select and poll operations. Depending

on how the device driver is written, the interrupt routine may also need to include this logic as well.

The select/poll logic is required wherever code checks on the occurrence of desired events. At each point

where one of the selection criteria is found to be true, the device driver should check whether a notification

is due for that selection. If so, it should call the selnotify kernel service to notify the kernel of the event.

The devno, chan, and revents parameters are passed to the selnotify kernel service to indicate which

device and which events have become true.

Related Information

The ddread device driver entry point, ddselect device driver entry point, ddwrite device driver entry point.

The selnotify kernel service.

The poll subroutine, select subroutine.

Device Driver Kernel Extension Overview and Programming in the Kernel Environment Overview in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Chapter 2. Device Driver Operations 539

540 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Chapter 3. File System Operations

List of Virtual File System Operations

The following entry points are specified by the virtual file system interface for performing operations on vfs

structures:

 Entry Point Description

vfs_aclxcntl Issues ACL related control operations for a file system.

vfs_cntl Issues control operations for a file system.

vfs_init Initializes a virtual file system.

vfs_mount Mounts a virtual file system.

vfs_root Finds the root v-node of a virtual file system.

vfs_statfs Obtains virtual file system statistics.

vfs_sync Forces file system updates to permanent storage.

vfs_umount Unmounts a virtual file system.

vfs_vget Gets the v-node corresponding to a file identifier.

The following entry points are specified by the Virtual File System interface for performing operations on

v-node structures:

 Entry Point Description

vn_access Tests a user’s permission to access a file.

vn_close Releases the resources associated with a v-node.

vn_create Creates and opens a new file.

vn_fclear Releases portions of a file (by zeroing bytes).

vn_fid Builds a file identifier for a v-node.

vn_fsync Flushes in-memory information and data to permanent storage.

vn_ftrunc Decreases the size of a file.

vn_getacl Gets information about access control, by retrieving the access control list.

vn_getattr Gets the attributes of a file.

vn_getxacl Gets information about access control by retrieving the ACL. Provides an advanced interface

when compared to vn_getacl.

vn_hold Assures that a v-node is not destroyed, by incrementing the v-node’s use count.

vn_ioctl Performs miscellaneous operations on devices.

vn_link Creates a new directory entry for a file.

vn_lockctl Sets, removes, and queries file locks.

vn_lookup Finds an object by name in a directory.

vn_map Associates a file with a memory segment.

vn_mkdir Creates a directory.

vn_mknod Creates a file of arbitrary type.

vn_open Gets read and/or write access to a file.

vn_rdwr Reads or writes a file.

vn_readdir Reads directory entries in standard format.

vn_readlink Reads the contents of a symbolic link.

vn_rele Releases a reference to a virtual node (v-node).

vn_remove Unlinks a file or directory.

vn_rename Renames a file or directory.

vn_revoke Revokes access to an object.

vn_rmdir Removes a directory.

vn_select Polls a v-node for pending I/O.

vn_setacl Sets information about access control for a file.

vn_setattr Sets attributes of a file.

© Copyright IBM Corp. 1997, 2007 541

Entry Point Description

vn_setxacl Sets information about access control for a file. Provides an advanced interface compared to

vn_setacl.

vn_strategy Reads or writes blocks of a file.

vn_symlink Creates a symbolic link.

vn_unmap Destroys a file or memory association.

vfs_aclxcntl Entry Point

Purpose

Implements access-control-specific control operations for a file system.

Syntax

int vfs_aclxcntl (vfsp, vp, cmd, uiop, argsize, crp)

struct vfs *vfsp;

struct vnode *vp;

int cmd;

struct uio *uiop;

size_t *argsize;

struct ucred *crp;

Description

The vfs_aclxcntl entry point is invoked to perform various ACL-specific control operations on the

underlying physical file system. If a file system is implemented to support this interface, it needs to adhere

to the various commands and arguments defined for the interface. A file system implementation can define

cmd parameter values and corresponding control functions that are specific to the file system. The cmd

parameter for these functions has values defined globally for all the physical file systems. These control

operations can be issued with the ACL library interfaces.

Parameters

 vfsp Points to the file system for which the control operation is to be issued.

vp Points to the virtual node pointer to the file path of the file system for which the control operation is

being requested.

542 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

cmd Specifies which control operation to perform. Has one of the following values:

ACLCNTL_GETACLXTYPES

Returns the various ACL types supported for the file system instance. This area is of the

following structure type:

typedef struct _acl_types_list_t {

 uint32_t num_entries; // in the buffer to follow

 uint32_t pad; // reserved space

 acl_type_t entries[MAX_ACL_TYPES]; // Array of ACL types

} acl_types_list_t ;

If the buffer space is not enough to accommodate ACL types supported by the physical file

system, errno is set to ENOSPC and the necessary size of the buffer is returned in argsize.

ACLCNTL_GETACLXTYPEINFO

Returns the characteristics information related to an ACL type for the file system instance.

This area is of the following structure type:

typedef struct _acl_type_info_t {

 acl_type_t acl_type; // ACL type for which info is needed

 uint8_t acl_type_info; // Start of ACL characteristics data

} _acl_type_info_t ;

acl_type_info is the start byte of the ACL-related characteristics information. ACL

characteristics information depends on the ACL type. ACL characteristics for NFS4 ACL type

have the following structure:

typedef struct _nfs4_acl_type_info_t {

 uint32_t version; // Version of this structure

 uint32_t acl_suport; // Support of Access control entry types.

} nfs4_acl_type_info_t ;

If the buffer space is not enough to accommodate the ACL types supported by the physical

file system, errno is set to ENOSPC and the necessary size of the buffer is returned in

argsize.

uiop Identifies data specific to the control operation. If the cmd parameter has a value of

ACLCNTL_GETACLXTYPES, uiop points to a buffer area where the file system stores the supported

ACL types. If the cmd parameter has a value of ACLCNTL_GETACLXTYPEINFO, uiop points to a

buffer area where the file system stores the ACL characteristics information.

argsize Identifies the length of the data specified by the arg parameter. This buffer is used to return the

necessary buffer size, in case the buffer size provided by the user is not enough.

crp Points to the cred structure. This structure contains data that the file system can use to validate

access permission.

Execution Environment

The vfs_aclxcntl entry point can be called from the process environment only.

Return Values

Upon successful completion, the vfs_aclxcntl entry point returns 0. Nonzero return values are returned

from the /usr/include/sys/errno.h file to indicate failure.

 EACCES The cmd parameter requires a privilege that the current process does not have.

EINVAL Indicates that the cmd parameter is not a supported control, or the arg parameter is not a

valid argument for the command.

ENOSPC The input buffer was not sufficient for storing the requested information.

Chapter 3. File System Operations 543

Related Information

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vfs_cntl Entry Point

Purpose

Implements control operations for a file system.

Syntax

int vfs_cntl (vfsp, cmd, arg, argsize, crp)

struct vfs * vfsp;

int cmd;

caddr_t arg;

unsigned long argsize;

struct ucred * crp;

Parameters

 vfsp Points to the file system for which the control operation is to be issued.

cmd Specifies which control operation to perform.

arg Identifies data specific to the control operation.

argsize Identifies the length of the data specified by the arg parameter.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vfs_cntl entry point is invoked by the logical file system to request various control operations on the

underlying file system. A file system implementation can define file system-specific cmd parameter values

and corresponding control functions. The cmd parameter for these functions should have a minimum value

of 32768. These control operations can be issued with the fscntl subroutine.

Note: The only system-supported control operation is FS_EXTENDFS. This operation increases the file

system size and accepts an arg parameter that specifies the new size. The FS_EXTENDFS

operation ignores the argsize parameter.

Execution Environment

The vfs_cntl entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Non-zero return values are returned from the /usr/include/sys/errno.h file to indicate failure. Typical

values include:

 EINVAL Indicates that the cmd parameter is not a supported control, or the arg parameter is not a valid argument

for the command.

EACCES Indicates that the cmd parameter requires a privilege that the current process does not have.

544 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The fscntl subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vfs_hold or vfs_unhold Kernel Service

Purpose

Holds or releases a vfs structure.

Syntax

#include <sys/vfs.h>

void vfs_hold(vfsp)

struct vfs *vfsp;

void vfs_unhold(vfsp)

struct vfs *vfsp;

Parameter

 vfsp Points to a vfs structure.

Description

The vfs_hold kernel service holds a vfs structure and the vfs_unhold kernel service releases it. These

routines manage a use count for a virtual file system (VFS). A use count greater than 1 prevents the virtual

file system from being unmounted.

Execution Environment

These kernel services can be called from the process environment only.

Return Values

None

vfs_init Entry Point

Purpose

Initializes a virtual file system.

Syntax

int vfs_init (gfsp)

struct gfs *gfsp;

Parameter

 gfsp Points to a file system’s attribute structure.

Chapter 3. File System Operations 545

Description

The vfs_init entry point is invoked to initialize a file system. It is called when a file system implementation

is loaded to perform file system-specific initialization.

The vfs_init entry point is not called through the virtual file system switch. Instead, it is called indirectly by

the gfsadd kernel service when the vfs_init entry point address is stored in the gfs structure passed to

the gfsadd kernel service as a parameter. (The vfs_init address is placed in the gfs_init field of the gfs

structure.) The gfs structure is defined in the /usr/include/sys/gfs.h file.

Note: The return value for the vfs_init entry point is passed back as the return value from the gfsadd

kernel service.

Execution Environment

The vfs_init entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The gfsadd kernel service.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

vfs_mount Entry Point

Purpose

Mounts a virtual file system.

Syntax

int vfs_mount (vfsp)

struct vfs *vfsp;

struct ucred * crp;

Parameter

 vfsp Points to the newly created vfs structure.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vfs_mount entry point is called by the logical file system to mount a new file system. This entry point

is called after the vfs structure is allocated and initialized. Before this structure is passed to the

vfs_mount entry point, the logical file system:

v Guarantees the syntax of the vmount or mount subroutines.

v Allocates the vfs structure.

v Resolves the stub to a virtual node (v-node). This is the vfs_mntdover field in the vfs structure.

546 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

v Initializes the following virtual file system fields:

 Field Description

vfs_flags Initialized depending on the type of mount. This field takes the following values:

VFS_MOUNTOK

The user has write permission in the stub’s parent directory and is the owner of the

stub.

VFS_SUSER

The user has root user authority.

VFS_NOSUID

Execution of setuid and setgid programs from this mount are not allowed.

VFS_NODEV

Opens of devices from this mount are not allowed.

vfs_type Initialized to the / (root) file system type when the mount subroutine is used. If the vmount

subroutine is used, the vfs_type field is set to the type parameter supplied by the user. The

logical file system verifies the existence of the type parameter.

vfs_ops Initialized according to the vfs_type field.

vfs_mntdover Identifies the v-node that refers to the stub path argument. This argument is supplied by the

mount or vmount subroutine.

vfs_date Holds the time stamp. The time stamp specifies the time to initialize the virtual file system.

vfs_number Indicates the unique number sequence representing this virtual file system.

vfs_mdata Initialized with the vmount structure supplied by the user. The virtual file system data is

detailed in the /usr/include/sys/vmount.h file. All arguments indicated by this field are

copied to kernel space.

Execution Environment

The vfs_mount entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The mount subroutine, vmount subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

vfs_root Entry Point

Purpose

Returns the root v-node of a virtual file system (VFS).

Syntax

int vfs_root (vfsp, vpp, crp)

struct vfs *vfsp;

struct vnode **vpp;

struct ucred *crp;

Chapter 3. File System Operations 547

Parameters

 vfsp Points to the vfs structure.

vpp Points to the place to return the v-node pointer.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vfs_root entry point is invoked by the logical file system to get a pointer to the root v-node of the file

system. When successful, the vpp parameter points to the root virtual node (v-node) and the v-node hold

count is incremented.

Execution Environment

The vfs_root entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Understanding Data

Structures and Header Files for Virtual File Systems, Logical File System Overview, Understanding Virtual

Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

vfs_search Kernel Service

Purpose

Searches the vfs list.

Syntax

int vfs_search (vfs_srchfcn, srchargs)

(int (*vfs_srchfcn)(struct vfs *caddr_t);

caddr_t srchargs;

Parameters

 vfs_srchfcn Points to a search function. The search function is identified by the vfs_srchfcn parameter. This

function is used to examine or modify an entry in the vfs list. The search function is called once

for each currently active VFS. If the search function returns a value of 0, iteration through the

vfs list continues to the next entry. If the return value is nonzero, vfs_search kernel service

returns to its caller, passing back the return value from the search function.

 When the system invokes this function, the system passes it a pointer to a virtual file system

(VFS) and the srchargs parameter.

srchargs Points to data to be used by the serach function. This pointer is not used by the vfs_search

kernel service but is passed to the search function.

548 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The vfs_search kernel service searches the vfs list. This kernel service allows a process outside the file

system to search the vfs list. The vfs_search kernel service locks out all activity in the vfs list during a

search. Then, the kernel service iterates through the vfs list and calls the search function on each entry.

The search function must not request locks that could result in deadlock. In particular, any attempt to do

lock operations on the vfs list or on other VFS structures could produce deadlock.

The performance of the vfs_search kernel service may not be acceptable for functions requiring quick

response. Iterating through the vfs list and making an indirect function call for each structure is inherently

slow.

Execution Environment

The vfs_search kernel service can be called from the process environment only.

Return Values

This kernel service returns the value returned by the last call to the search function.

vfs_statfs Entry Point

Purpose

Returns virtual file system statistics.

Syntax

int vfs_stafs (vfsp, stafsp, crp)

struct vfs *vfsp;

struct statfs *stafsp;

struct ucred *crp;

Parameters

 vfsp Points to the vfs structure being queried. This structure is defined in the /usr/include/sys/vfs.h file.

stafsp Points to a statfs structure. This structure is defined in the /usr/include/sys/statfs.h file.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vfs_stafs entry point is called by the logical file system to obtain file system characteristics. Upon

return, the vfs_statfs entry point has filled in the following fields of the statfs structure:

 Field Description

f_blocks Specifies the number of blocks.

f_files Specifies the total number of file system objects.

f_bsize Specifies the file system block size.

f_bfree Specifies the number of free blocks.

f_ffree Specifies the number of free file system objects.

f_fname Specifies a 32-byte string indicating the file system name.

f_fpack Specifies a 32-byte string indicating a pack ID.

f_name_max Specifies the maximum length of an object name.

Fields for which a vfs structure has no values are set to 0.

Chapter 3. File System Operations 549

Execution Environment

The vfs_statfs entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The statfs subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Understanding Data

Structures and Header Files for Virtual File Systems, Logical File System Overview, Understanding Virtual

Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

vfs_sync Entry Point

Purpose

Requests that file system changes be written to permanent storage.

Syntax

int vfs_sync (* gfsp)

struct gfs *gfsp;

Parameter

 gfsp Points to a gfs structure. The gfs structure describes the file system type. This structure is defined in the

/usr/include/sys/gfs.h file.

Description

The vfs_sync entry point is used by the logical file system to force all data associated with a particular

virtual file system type to be written to its storage. This entry point is used to establish a known consistent

state of the data.

Note: The vfs_sync entry point is called once per file system type rather than once per virtual file system.

Execution Environment

The vfs_sync entry point can be called from the process environment only.

Return Values

The vfs_sync entry point is advisory. It has no return values.

Related Information

The sync subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

550 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

vfs_umount Entry Point

Purpose

Unmounts a virtual file system.

Syntax

int vfs_umount (vfsp, crp)

struct vfs *vfsp;

struct ucred *crp;

Parameters

 vfsp Points to the vfs structure being unmounted. This structure is defined in the /usr/include/sys/vfs.h file.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vfs_umount entry point is called to unmount a virtual file system. The logical file system performs

services independent of the virtual file system that initiate the unmounting. The logical file system services:

v Guarantee the syntax of the uvmount subroutine.

v Perform permission checks:

– If the vfsp parameter refers to a device mount, then the user must have root user authority to

perform the operation.

– If the vfsp parameter does not refer to a device mount, then the user must have root user authority

or write permission in the parent directory of the mounted-over virtual node (v-node), as well as write

permission to the file represented by the mounted-over v-node.

v Ensure that the virtual file system being unmounted contains no mount points for other virtual file

systems.

v Ensure that the root v-node is not in use except for the mount. The root v-node is also referred to as

the mounted v-node.

v Clear the v_mvfsp field in the stub v-node. This prevents lookup operations already in progress from

traversing the soon-to-be unmounted mount point.

The logical file system assumes that, if necessary, successful vfs_umount entry point calls free the root

v-node. An error return from the vfs_umount entry point causes the mount point to be re-established. A 0

(zero) returned from the vfs_umount entry point indicates the routine was successful and that the vfs

structure was released.

Execution Environment

The vfs_umount entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The umount subroutine, uvmount subroutine, vmount subroutine.

Chapter 3. File System Operations 551

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Virtual File System Kernel

Extensions Overview, Understanding Data Structures and Header Files for Virtual File Systems, Logical

File System Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts.

vfs_vget Entry Point

Purpose

Converts a file identifier into a virtual node (v-node).

Syntax

int vfs_vget (vfsp, vpp, fidp, crp)

struct vfs *vfsp;

struct vnode **vpp;

struct fileid *fidp;

struct ucred *crp;

Parameters

 vfsp Points to the virtual file system that is to contain the v-node. Any returned v-node should belong to this virtual

file system.

vpp Points to the place to return the v-node pointer. This is set to point to the new v-node. The fields in this

v-node should be set as follows:

v_vntype

The type of v-node dependent on private data.

v_count

Set to at least 1 (one).

v_pdata

If a new file, set to the private data for this file system.

fidp Points to a file identifier. This is a file system-specific file identifier that must conform to the fileid structure.

Note: If the fidp parameter is invalid, the vpp parameter should be set to a null value by the vfs_vget entry

point.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vfs_vget entry point is called to convert a file identifier into a v-node. This entry point uses

information in the vfsp and fidp parameters to create a v-node or attach to an existing v-node. This v-node

represents, logically, the same file system object as the file identified by the fidp parameter.

If the v-node already exists, successful operation of this entry point increments the v-node use count and

returns a pointer to the v-node. If the v-node does not exist, the vfs_vget entry point creates it using the

vn_get kernel service and returns a pointer to the new v-node.

Execution Environment

The vfs_vget entry point can be called from the process environment only.

Return Values

 0 Indicates success.

552 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A typical

value includes:

 EINVAL Indicates that the remote virtual file system specified by the vfsp parameter does not support chained

mounts.

Related Information

The vn_get kernel service.

The access subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_access Entry Point

Purpose

Requests validation of user access to a virtual node (v-node).

Syntax

int vn_access (vp, mode, who, crp)

struct vnode *vp;

int mode;

int who;

struct ucred *crp;

Parameters

 vp Points to the v-node.

mode Identifies the access mode.

who Specifies the IDs for which to check access. This parameter should be one of the following values, which are

defined in the /usr/include/sys/access.h file:

ACC_SELF

Determines if access is permitted for the current process. The effective user and group IDs and the

supplementary group ID of the current process are used for the calculation.

ACC_ANY

Determines if the specified access is permitted for any user, including the object owner. The mode

parameter must contain only one of the valid modes.

ACC_OTHERS

Determines if the specified access is permitted for any user, excluding the owner. The mode

parameter must contain only one of the valid modes.

ACC_ALL

Determines if the specified access is permitted for all users. (This is a useful check to make when

files are to be written blindly across networks.) The mode parameter must contain only one of the

valid modes.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Chapter 3. File System Operations 553

Description

The vn_access entry point is used by the logical volume file system to validate access to a v-node. This

entry point is used to implement the access subroutine. The v-node is held for the duration of the

vn_access entry point. The v-node count is unchanged by this entry point.

In addition, the vn_access entry point is used for permissions checks from within the file system

implementation. The valid types of access are listed in the /usr/include/sys/access.h file. Current modes

are read, write, execute, and existence check.

Note: The vn_access entry point must ensure that write access is not requested on a read-only file

system.

Execution Environment

The vn_access entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A typical

value includes:

 EACCES Indicates no access is allowed.

Related Information

The access subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_close Entry Point

Purpose

Closes a file associated with a v-node (virtual node).

Syntax

int vn_close (vp, flag, vinfo, crp)

struct vnode *vp;

int flag;

caddr_t vinfo;

struct ucred *crp;

Parameters

 vp Points to the v-node.

flag Identifies the flag word from the file pointer.

vinfo This parameter is not used.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

554 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The vn_close entry point is used by the logical file system to announce that the file associated with a

given v-node is now closed. The v-node continues to remain active but will no longer receive read or write

requests through the vn_rdwr entry point.

A vn_close entry point is called only when the use count of an associated file structure entry goes to 0

(zero).

Note: The v-node is held over the duration of the vn_close entry point.

Execution Environment

The vn_close entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Note: The vn_close entry point may fail and an error will be returned to the application. However, the

v-node is considered closed.

Related Information

The close subroutine.

The vn_open entry point, vn_rele entry point.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_create Entry Point

Purpose

Creates a new file.

Syntax

int vn_create (dp, vpp, flag, pname, mode, vinfop, crp)

struct vnode * dp;

struct vnode ** vpp;

int flag;

char * pname;

int mode;

caddr_t * vinfop;

struct ucred * crp;

Parameters

 dp Points to the virtual node (v-node) of the parent directory.

vpp Points to the place in which the pointer to a v-node for the newly created file is returned.

flag Specifies an integer flag word. The vn_create entry point uses this parameter to open the file.

Chapter 3. File System Operations 555

pname Points to the name of the new file.

mode Specifies the mode for the new file.

vinfop This parameter is unused.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_create entry point is invoked by the logical file system to create a regular (v-node type VREG) file

in the directory specified by the dp parameter. (Other v-node operations create directories and special

files.) Virtual node types are defined in the /usr/include/sys/vnode.h file. The v-node of the parent

directory is held during the processing of the vn_create entry point.

To create a file, the vn_create entry point does the following:

v Opens the newly created file.

v Checks that the file system associated with the directory is not read-only.

Note: The logical file system calls the vn_lookup entry point before calling the vn_create entry point.

Execution Environment

The vn_create entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The vn_lookup entry point.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_create_attr Entry Point

Purpose

Creates a new file.

Syntax

int
vn_create_attr (dvp, vpp, flags, name, vap, vcf, finfop, crp)
struct vnode *dvp;
struct vnode *vpp;
int flags;
char *name;
struct vattr *vap;

556 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

int vcf;
caddr_t finfop;
struct ucred *crp;

Parameters

 dvp Points to the directory vnode.

vpp Points to the newly created vnode pointer.

flags Specifies file creation flags.

name Specifies the name of the file to create.

vattr Points to the initial attributes.

vcf Specifies create flags.

finfop Specifies address of finfo field.

crp Specifies user’s credentials.

Description

The vn_create_attr entry point is used to create a new file. This operation is similar to the vn_create entry

point except that the initial file attributes are passed in a vattr structure.

The va_mask field in the vattr structure identifies which attributes are to be applied. For example, if the

AT_SIZE bit is set, then the file system should use va_size for the initial file size. For all vn_create_attr

calls, at least AT_TYPE and AT_MODE must be set.

The vcf parameter controls how the new vnode is to be activated. If vcf is set to VC_OPEN, then the new

object should be opened. If vcf is VC_LOOKUP, then the new object should be created, but not opened. If

vcf is VC_DEFAULT, then the new object should be created, but the vnode for the object is not activated.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a

vn_create_attr entry point. The logical file system will funnel all creation requests through the old

vn_create entry point.

Execution Environment

The vn_create_attr entry point can be called from the process environment only.

Return Values

 Zero Indicates a successful operation; *vpp contains a pointer to the new vnode.

Nonzero Indicates that the operation failed; return values should be chosen from the /usr/include/sys/errno.h

file.

Related Information

The open subroutine, mknod subroutine.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes), and

Virtual File System Kernel Extensions Overview.

List of Virtual File System Operations.

vn_fclear Entry Point

Purpose

Releases portions of a file.

Chapter 3. File System Operations 557

Syntax

int vn_fclear (vp, flags, offset, len, vinfo, crp)

struct vnode * vp;

int flags;

offset_t offset;

offset_t len;

caddr_t vinfo;

struct ucred * crp;

Parameters

 vp Points to the virtual node (v-node) of the file.

flags Identifies the flags from the open file structure.

offset Indicates where to start clearing in the file.

len Specifies the length of the area to be cleared.

vinfo This parameter is unused.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_fclear entry point is called from the logical file system to clear bytes in a file, returning whole free

blocks to the underlying file system. This entry point performs the clear regardless of whether the file is

mapped.

Upon completion of the vn_fclear entry point, the logical file system updates the file offset to reflect the

number of bytes cleared.

Execution Environment

The vn_fclear entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The fclear subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_fid Entry Point

Purpose

Builds a file identifier for a virtual node (v-node).

558 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

int vn_fid (vp, fidp, crp)

struct vnode *vp;

struct fileid *fidp;

struct ucred *crp;

Parameters

 vp Points to the v-node that requires the file identifier.

fidp Points to where to return the file identifier.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_fid entry point is invoked to build a file identifier for the given v-node. This file identifier must

contain sufficient information to find a v-node that represents the same file when it is presented to the

vfs_get entry point.

Execution Environment

The vn_fid entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_finfo Entry Point

Purpose

Returns information about a file.

Syntax

int
vn_finfo (vp, cmd, bufp, length, crp)
struct vnode *vp;
int cmd;
void *bufp;
int length;
struct ucred *crp;

Parameters

 vp Points to the vnode to be queried.

Chapter 3. File System Operations 559

cmd Specifies the command parameter.

bufp Points to the buffer for the information.

length Specifies the length of the buffer.

crp Specifies user’s credentials.

Description

The vn_finfo entry point is used to query a file system. It is used primarily to implement the pathconf and

fpathonf subroutines. The command parameter defines what type of query is being done. The query

commands and the associated data structures are defined in <sys/finfo.h>. If the file system does not

support the particular query, it should return ENOSYS.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a vn_finfo

entry point. If the command is FI_PATHCONF, then the logical file system returns generic pathconf

information. If the query is other than FI_PATHCONF, then the request fails with EINVAL.

Execution Environment

The vn_finfo entry point can be called from the process environment only.

Return Values

 Zero Indicates a successful operation.

Nonzero Indicates that the operation failed; return values should be chosen from the /usr/include/sys/errno.h

file.

Related Information

The pathconf, fpathconf subroutine.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes) in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts, and Virtual File System

Kernel Extensions Overview.

vn_fsync Entry Point

Purpose

Flushes information in memory and data to disk.

Syntax

int vn_fsync (vp, flags, crp)

struct vnode *vp;

int flags;

struct ucred *crp;

Parameters

 vp Points to the virtual node (v-node) of the file.

flags Identifies flags from the open file.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

560 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The vn_fsync entry point is called by the logical file system to request that all modifications associated

with a given v-node be flushed out to permanent storage. This must be synchronously so that the caller

can be assured that all I/O has completed successfully.

Execution Environment

The vn_fsync entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The fsync subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_fsync_range Entry Point

Purpose

Flushes file data to disk.

Syntax

int
vn_fsync_range (vp, flags, fd, offset, length, crp)
struct vnode *vp;
int flags;
int fd;
offset_t offset;
offset_t length;
struct ucred *crp;

Parameters

 vp Points to the vnode.

flags Specifies the File flags.

fd Specifies the File descriptor.

length Specifies the length of the flush request.

crp Specifies user’s credentials.

Description

The vn_fsync_range entry point is used to flush file data and meta-data to disk. The offset and length

parameters define the range that needs to be flushed. If length is given as zero, then the entire file past

offset should be flushed.

Chapter 3. File System Operations 561

The flags parameter controls how the flushing should be done. If the O_SYNC flag is set, then the flush

should be done according to the synchronized file I/O integrity completion rules. If O_DSYNC is set, then

the flush should be done according to the synchronized data I/O integrity completion rules.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a

vn_fsync_range entry point. The logical file system will funnel all fsync requests through the old vn_fsync

entry point.

Execution Environment

The vn_fsync_range entry points can be called from the process environment only.

Return Values

 Zero Indicates a successful operation.

Nonzero Indicates that the operation failed; return values should be chosen from the /usr/include/sys/errno.h

file.

Related Information

The fsync, fdatasync, fsync_range subroutines.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes) in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts, and Virtual File System

Kernel Extensions Overview.

vn_ftrunc Entry Point

Purpose

Truncates a file.

Syntax

int vn_ftrunc (vp, flags, length, vinfo, crp)

struct vnode * vp;

int flags;

offset_t length;

caddr_t vinfo;

struct ucred * crp;

Parameters

 vp Points to the virtual node (v-node) of the file.

flags Identifies flags from the open file structure.

length Specifies the length to which the file should be truncated.

vinfo This parameter is unused.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_ftrunc entry point is invoked by the logical file system to decrease the length of a file by

truncating it. This operation is unsuccessful if any process other than the caller has locked a portion of the

file past the specified offset.

562 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment

The vn_ftrunc entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The ftruncate subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_getacl Entry Point

Purpose

Retrieves the access control list (ACL) for a file.

Syntax

#include <sys/acl.h>

int vn_getacl (vp, uiop, crp)

struct vnode *vp;

struct uio *uiop;

struct ucred *crp;

Description

The vn_getacl entry point is used by the logical file system to retrieve the access control list (ACL) for a

file to implement the getacl subroutine.

Parameters

 vp Specifies the virtual node (v-node) of the file system object.

uiop Specifies the uio structure that defines the storage for the ACL.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Execution Environment

The vn_getacl entry point can be called from the process environment only.

Return Values

 0 Indicates a successful operation.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A valid value

includes:

Chapter 3. File System Operations 563

ENOSPC Indicates that the buffer size specified in the uiop parameter was not large enough to hold the ACL. If this

is the case, the first word of the user buffer (data in the uio structure specified by the uiop parameter) is

set to the appropriate size.

Related Information

The chacl subroutine, chmod subroutine, chown subroutine, statacl subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_getattr Entry Point

Purpose

Gets the attributes of a file.

Syntax

int vn_getattr (vp, vap, crp)

struct vnode *vp;

struct vattr *vap;

struct ucred *crp;

Parameters

 vp Specifies the virtual node (v-node) of the file system object.

vap Points to a vattr structure.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_getattr entry point is called by the logical file system to retrieve information about a file. The vattr

structure indicated by the vap parameter contains all the relevant attributes of the file. The vattr structure

is defined in the /usr/include/sys/vattr.h file. This entry point is used to implement the stat, fstat, and

lstat subroutines.

Note: The indicated v-node is held for the duration of the vn_getattr subroutine.

Execution Environment

The vn_getattr entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The statx subroutine.

564 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_getxacl Entry Point

Purpose

Retrieves the access control list (ACL) for a file. This is an advanced version of vn_getacl interface.

Syntax

#include <sys/acl.h>

int vn_getxacl (vp, ctl_flags, acl_type, uiop, acl_len, mode_info, crp)

struct vnode *vp;

uint64_t ctl_flags;

acl_type_t *acl_type;

struct uio *uiop;

size_t *acl_len;

mode_t *mode_info;

struct ucred *crp;

Description

The vn_getxacl entry point retrieves the access control list (ACL) for a file system object. It is an

advanced version of vn_getacl interface and provides for ACL-type-based operations. Note that this

interface can be used to obtain the ACL type and length information, without actually retrieving the ACL

data (see the ctl_flags description for more details).

Parameters

 vp Specifies the virtual node (v-node) of the file system object.

acl_type Points to buffer space for file systems to return the ACL type associated with the file

system object. The value should normally be set to ACL_ANY or 0 when the call is

made. Some physical file systems can solicit ACL requests for a particular ACL

type. In such cases, the caller provides the ACL type requested in this buffer.

Note: The latter issue is file system implementation specific. For example, when

ACL information is requested with an input ACL type, a physical file system might

return an error if the existing ACL associated with the file system object is of a

different ACL type. Or, the file system might emulate an ACL of the type requested

and return.

acl_len Pointer to a length variable. The space pointed to is used as an input, as well as

output, parameter. As input, the value will indicate the size of buffer uiop. When the

call returns, this space holds the actual length of the ACL (true for when the call is

successful or when the call fails with errno set to ENOSPC).

ctl_flags A 64-bit bit mask that provides control over the ACL retrieval and for any future

variations in the interface. The following value is defined for these flags:

GET_ACLINFO_ONLY

Gets only the ACL type and length information from the underlying file

system. When this bit is set, arguments such as mode_info can be set to

NULL. All other cases must be valid buffer pointers or else an error is

returned. If this bit is not specified, all the other information about the ACL

(such as ACL data and mode information) is returned.

uiop Specifies the uio structure that provides space for the store of the ACL.

mode_info This value indicates any mode word information that needs to be retrieved for the

file system object as part of this ACL get operation.

Chapter 3. File System Operations 565

crp Points to the cred structure. This structure contains data that the file system can

use to validate access permission.

Execution Environment

The vn_getxacl entry point can be called from the process environment only.

Return Values

Upon successful completion, the vn_getxacl entry point returns 0. Nonzero return values are returned

from the /usr/include/sys/errno.h file to indicate failure.

 ENOSPC Indicates that the buffer size specified in the uiop parameter was not large enough to hold

the ACL.

Note: This list of error numbers is not complete and is dependent on the particular physical file system

implementation supporting the ACL.

Related Information

The chacl subroutine, chown subroutine, chmod subroutine, statacl subroutine, “vn_getacl Entry Point”

on page 563, “vn_setxacl Entry Point” on page 590.

The uio structure.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_hold Entry Point

Purpose

Assures that a virtual node (v-node) is not destroyed.

Syntax

int vn_hold (vp)

struct vnode *vp;

Parameter

 vp Points to the v-node.

Description

The vn_hold entry point increments the v_count field, the hold count on the v-node, and the v-node’s

underlying g-node (generic node). This incrementation assures that the v-node is not deallocated.

Execution Environment

The vn_hold entry point can be called from the process environment only.

Return Values

The vn_hold entry point cannot fail and therefore has no return values.

566 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes), Understanding Generic I-nodes (G-nodes) in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts.

vn_ioctl Entry Point

Purpose

Requests I/O control operations on special files.

Syntax

int vn_ioctl (vp, cmd, arg, flags, ext, crp)

struct vnode * vp;

int cmd;

caddr_t arg;

int flags, ext;

struct ucred * crp;

Parameters

 vp Points to the virtual node (v-node) on which to perform the operation.

cmd Identifies the specific command. Common operations for the ioctl subroutine are defined in the

/usr/include/sys/ioctl.h file. The file system implementation can define other ioctl operations.

arg Defines a command-specific argument. This parameter can be a single word or a pointer to an argument

(or result structure).

flags Identifies flags from the open file structure.

ext Specifies the extended parameter passed by the ioctl subroutine. The ioctl subroutine always sets the ext

parameter to 0.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_ioctl entry point is used by the logical file system to perform miscellaneous operations on special

files. If the file system supports special files, the information is passed down to the ddioctl entry point of

the device driver associated with the given v-node.

Execution Environment

The vn_ioctl entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A valid value

includes:

 EINVAL Indicates the file system does not support the entry point.

Chapter 3. File System Operations 567

Related Information

The ioctl subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_link Entry Point

Purpose

Requests a hard link to a file.

Syntax

int vn_link (vp, dp, name, crp)

struct vnode *vp;

struct vnode *dp;

caddr_t *name;

struct ucred *crp;

Parameters

 vp Points to the virtual node (v-node) to link to. This v-node is held for the duration of the linking process.

dp Points to the v-node for the directory in which the link is created. This v-node is held for the duration of the

linking process.

name Identifies the new name of the entry.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_link entry point is invoked to create a new hard link to an existing file as part of the link

subroutine. The logical file system ensures that the dp and vp parameters reside in the same virtual file

system, which is not read-only.

Execution Environment

The vn_link entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

568 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

vn_lockctl Entry Point

Purpose

Sets, checks, and queries record locks.

Syntax

int vn_lockctl (vp, offset, lckdat, cmd, retry_fn, retry_id, crp)

struct vnode * vp;

offset_t offset;

struct eflock * lckdat;

int cmd;

int (* retry_fn)();

caddr_t retry_id;

struct ucred * crp;

Parameters

 vp Points to the file’s virtual node (v-node).

offset Indicates the file offset from the open file structure. This parameter is used to establish where the

lock region begins.

lckdat Points to the elock structure. This structure describes the lock operation to perform.

cmd Identifies the type of lock operation the vn_lockctl entry point is to perform. It is a bit mask that

takes the following lock-control values:

SETFLCK

If set, performs a lock set or clear. If clear, returns the lock information. The l_type field in

the eflock structure indicates whether a lock is set or cleared.

SLPFLCK

If the lock is unavailable immediately, wait for it. This is only valid when the SETFLCK flag is

set.

retry_fn Points to a subroutine that is called when a lock is retried. This subroutine is not used if the lock is

granted immediately.

Note: If the retry_fn parameter is not a null value, the vn_lockctl entry point will not sleep,

regardless of the SLPFLCK flag.

retry_id Points to the location where a value can be stored. This value can be used to correlate a retry

operation with a specific lock or set of locks. The retry value is only used in conjunction with the

retry_fn parameter.

Note: This value is an opaque value and should not be used by the caller for any purpose other

than a lock correlation. (This value should not be used as a pointer.)

crp Points to the cred structure. This structure contains data that the file system can use to validate

access permission.

Description

The vn_lockctl entry point is used to request record locking. This entry point uses the information in the

eflock structure to implement record locking.

If a requested lock is blocked by an existing lock, the vn_lockctl entry point should establish a sleeping

lock with the retry subroutine address (specified by the retry_fn parameter) stored in the entry point. The

vn_lockctl entry point then returns a correlating ID value to the caller (in the retry_id parameter), along

with an exit value of EAGAIN. When the sleeping lock is later awakened, the retry subroutine is called with

the retry_id parameter as its argument.

Chapter 3. File System Operations 569

eflock Structure

The eflock structure is defined in the /usr/include/sys/flock.h file and includes the following fields:

 Field Description

l_type Specifies type of lock. This field takes the following values:

F_RDLCK

Indicates read lock.

F_WRLCK

Indicates write lock.

F_UNLCK

Indicates unlock this record. A value of F_UNLCK starting at 0 until 0 for a length of 0

means unlock all locks on this file. Unlocking is done automatically when a file is closed.

l_whence Specifies location that the l_start field offsets.

l_start Specifies offset from the l_whence field.

l_len Specifies length of record. If this field is 0, the remainder of the file is specified.

l_vfs Specifies virtual file system that contains the file.

l_sysid Specifies value that uniquely identifies the host for a given virtual file system. This field must be filled

in before the call to the vn_lockctl entry point.

l_pid Specifies process ID (PID) of the lock owner. This field must be filled in before the call to the

vn_lockctl entry point.

Execution Environment

The vn_lockctl entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. Valid values

include:

 EAGAIN Indicates a blocking lock exists and the caller did not use the SLPFLCK flag to request that the operation

sleep.

ERRNO Returns an error number from the /usr/include/sys/errno.h file on failure.

Related Information

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_lookup Entry Point

Purpose

Returns a v-node for a given name in a directory.

Syntax

int vn_lookup (dvp, vpp, name, vattrp , crp)

struct vnode * dvp;

struct vnode ** vpp;

570 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

char * name;

struct vattr * vattrp;

struct ucred * crp;

Parameters

 dvp Points to the virtual node (v-node) of the directory to be searched. The logical file system verifies that this

v-node is of a VDIR type.

name Points to a null-terminated character string containing the file name to look up.

vattrp Points to a vattr structure. If this pointer is NULL, no action is required of the file system implementation.

If it is not NULL, the attributes of the file specified by the name parameter are returned at the address

passed in the vattrp parameter.

vpp Points to the place to which to return the v-node pointer, if the pointer is found. Otherwise, a null

character should be placed in this memory location.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_lookup entry point is invoked by the logical file system to find a v-node. It is used by the kernel to

convert application-given path names to the v-nodes that represent them.

The use count in the v-node specified by the dvp parameter is incremented for this operation, and it is not

decremented by the file system implementation.

If the name is found, a pointer to the desired v-node is placed in the memory location specified by the vpp

parameter, and the v-node hold count is incremented. (In this case, this entry point returns 0.) If the file

name is not found, a null character is placed in the vpp parameter, and the function returns a ENOENT

value. Errors are reported with a return code from the /usr/include/sys/errno.h file. Possible errors are

usually specific to the particular virtual file system involved.

Execution Environment

The vn_lookup entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_map Entry Point

Purpose

Validates file mapping requests.

Chapter 3. File System Operations 571

Syntax

int vn_map (vp, addr, length, offset, flags, crp)

struct vnode * vp;

caddr_t addr;

uint length;

uint offset;

uint flags;

struct ucred * crp;

Parameters

Note: The addr, offset, and length parameters are unused in the current implementation. The file system

is expected to store the segment ID with the file in the gn_seg field of the g-node for the file.

 vp Points to the virtual node (v-node) of the file.

addr Identifies the location within the process address space where the mapping is to begin.

length Specifies the maximum size to be mapped.

offset Specifies the location within the file where the mapping is to begin.

flags Identifies what type of mapping to perform. This value is composed of bit values defined in the

/usr/include/sys/shm.h file. The following values are of particular interest to file system implementations:

SHM_RDONLY

The virtual memory object is read-only.

SHM_COPY

The virtual memory object is copy-on-write. If this value is set, updates to the segment are

deferred until an fsync operation is performed on the file. If the file is closed without an fsync

operation, the modifications are discarded. The application that called the vn_map entry point is

also responsible for calling the vn_fsync entry point.

Note: Mapped segments do not reflect modifications made to a copy-on-write segment.

crp Points to the cred structure. This structure contains data that applications can use to validate access

permission.

Description

The vn_map entry point is called by the logical file system to validate mapping requests resulting from the

mmap or shmat subroutines. The logical file system creates the virtual memory object (if it does not

already exist) and increments the object’s use count.

Execution Environment

The vn_map entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The shmat subroutine, vn_fsync entry point.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

572 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

vn_map_lloff Entry Point

Purpose

Announces intention to map a file.

Syntax

int
vn_map_lloff (vp, addr, offset, length, mflags, fflags, crp)
struct vnode *vp;
caddr_t addr;
offset_t offset;
offset_t length;
int mflags;
int fflags;
struct ucred *crp;

Parameters

 vp Points to the vnode to be queried.

addr Unused.

offset Specifies the starting offset for the map request.

length Specifies the length of the mapping request.

mflags Specifies the mapping flags.

fflags Specifies the file flags.

crp Specifies user’s credentials.

Description

The vn_map_lloff entry point is used to tell the file system that the file is going to be accessed by

memory mapped loads and stores. The file system should fail the request if it does not support memory

mapping. This interface allows applications to specify starting offsets that are larger than 2 gigabytes.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a vn_map_lloff

entry point.

Execution Environment

The vn_map_lloff entry point can be called from the process environment only.

Return Values

 Zero Indicates a successful operation.

Nonzero Indicates that the operation failed; return values should be chosen from the /usr/include/sys/errno.h

file.

Related Information

The shmat and mmap subroutines.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes) in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts, and Virtual File System

Kernel Extensions Overview.

Chapter 3. File System Operations 573

vn_mkdir Entry Point

Purpose

Creates a directory.

Syntax

int vn_mkdir (dp, name, mode, crp)

struct vnode *dp;

caddr_t name;

int mode;

struct ucred *crp;

Parameters

 dp Points to the virtual node (v-node) of the parent directory of a new directory. This v-node is held for the

duration of the entry point.

name Specifies the name of a new directory.

mode Specifies the permission modes of a new directory.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_mkdir entry point is invoked by the logical file system as the result of the mkdir subroutine. The

vn_mkdir entry point is expected to create the named directory in the parent directory associated with the

dp parameter. The logical file system ensures that the dp parameter does not reside on a read-only file

system.

Execution Environment

The vn_mkdir entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The mkdir subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_mknod Entry Point

Purpose

Creates a special file.

574 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

int vn_mknod (dvp, name, mode, dev, crp)

struct vnode * dvp;

caddr_t * name;

int mode;

dev_t dev;

struct ucred * crp;

Parameters

 dvp Points to the virtual node (v-node) for the directory to contain the new file. This v-node is held for the

duration of the vn_mknod entry point.

name Specifies the name of a new file.

mode Identifies the integer mode that indicates the type of file and its permissions.

dev Identifies an integer device number.

crp Points to the cred structure. This structure contains data that applications can use to validate access

permission.

Description

The vn_mknod entry point is invoked by the logical file system as the result of a mknod subroutine. The

underlying file system is expected to create a new file in the given directory. The file type bits of the mode

parameter indicate the type of file (regular, character special, or block special) to be created. If a special

file is to be created, the dev parameter indicates the device number of the new special file.

The logical file system verifies that the dvp parameter does not reside in a read-only file system.

Execution Environment

The vn_mknod entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The mknod subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_open Entry Point

Purpose

Requests that a file be opened for reading or writing.

Syntax

int vn_open (vp, flag, ext, vinfop, crp)

struct vnode * vp;

int flag;

Chapter 3. File System Operations 575

caddr_t ext;

caddr_t vinfop;

struct ucred * crp;

Parameters

 vp Points to the virtual node (v-node) associated with the desired file. The v-node is held for the duration of

the open process.

flag Specifies the type of access. Access modes are defined in the /usr/include/sys/fcntl.h file.

Note: The vn_open entry point does not use the FCREAT mode.

ext Points to external data. This parameter is used if the subroutine is opening a device.

vinfop This parameter is not currently used.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_open entry point is called to initiate a process access to a v-node and its underlying file system

object. The operation of the vn_open entry point varies between virtual file system (VFS) implementations.

A successful vn_open entry point must leave a v-node count of at least 1.

The logical file system ensures that the process is not requesting write access (with the FWRITE or

FTRUNC mode) to a read-only file system.

Execution Environment

The vn_open entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The open subroutine.

The vn_close entry point.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_rdwr Entry Point

Purpose

Requests file I/O.

Syntax

int vn_rdwr (vp, op, flags, uiop, ext, vinfo, vattrp, crp)

struct vnode * vp;

enum uio_rw op;

int flags;

576 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

struct uio * uiop;

int ext;

caddr_t vinfo;

struct vattr * vattrp;

struct ucred * crp;

Parameters

 vp Points to the virtual node (v-node) of the file.

op Specifies a number that indicates a read or write operation. This parameter has a value of either

UIO_READ or UIO_WRITE. These values are found in the /usr/include/sys/uio.h file.

flags Identifies flags from the open file structure.

uiop Points to a uio structure. This structure describes the count, data buffer, and other I/O information.

ext Provides an extension for special purposes. Its use and meaning are specific to virtual file systems, and it

is usually ignored except for devices.

vinfo This parameter is currently not used.

 vattrp Points to a vattr structure. If this pointer is NULL, no action is required of the file system implementation.

If it is not NULL, the attributes of the file specified by the vp parameter are returned at the address

passed in the vattrp parameter.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_rdwr entry point is used to request that data be read or written from an object represented by a

v-node. The vn_rdwr entry point does the indicated data transfer and sets the number of bytes not

transferred in the uio_resid field. This field is 0 (zero) on successful completion.

Execution Environment

The vn_rdwr entry point can be called from the process environment only.

Return Values

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. The vn_rdwr

entry point returns an error code if an operation did not transfer all the data requested. The only exception

is if an end of file is reached on a read request. In this case, the operation still returns 0.

Related Information

The vn_create entry point, vn_open entry point.

The read subroutine, write subroutine.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes), and

Virtual File System Kernel Extensions Overview in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_rdwr_attr Entry Point

Purpose

Reads or writes data to or from a file.

Chapter 3. File System Operations 577

Syntax

int
vn_rdwr_attr (vp, rw, fflags, uiop, vinfo, prevap, postvap, crp)
struct vnode *vp;
enum uio_rw rw;
int fflags;
struct uio *uiop;
int ext;
caddr_t vinfo;
struct vattr*prevap;
struct vattr*postvap;
struct ucred *crp;

Parameters

 vp Points to the vnode to be read or written.

rw Specifies a flag indicating read or write.

fflags Specifies the file flags.

uiop Points to the uiop structure describing the operation.

ext Specifies the extension parameter passed to readx or writex.

vinfo Specifies the vinfo parameter from the file table entry.

prevap Points to an attributes structure for pre-operation attributes.

postvap Points to an attributes structure for post-operation attributes.

crp Specifies user’s credentials.

Description

The vn_rdwr_attr entry point is used to read and write files. The arguments are identical to the vn_rdwr

entry point. The prevap and postvap pointers are used to return file attributes before and after the

operation.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a vn_rdwr_attr

entry point.

Execution Environment

The vn_rdwr_attr entry point can be called from the process environment only.

Return Values

 Zero Indicates a successful operation.

Nonzero Indicates that the operation failed; return values should be chosen from the /usr/include/sys/errno.h

file.

Related Information

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes) in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts, and Virtual File System

Kernel Extensions Overview.

vn_readdir Entry Point

Purpose

Reads directory entries in standard format.

578 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

int vn_readdir (vp, uiop, crp)

struct vnode *vp;

struct uio *uiop;

struct ucred *crp;

Parameters

 vp Points to the virtual node (v-node) of the directory.

uiop Points to the uio structure that describes the data area into which to put the block of dirent structures. The

starting directory offset is found in the uiop->uio_offset field and the size of the buffer area is found in the

uiop->uio_resid field.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_readdir entry point is used to access directory entries in a standard way. These directories should

be returned as an array of dirent structures. The /usr/include/sys/dir.h file contains the definition of a

dirent structure.

The vn_readdir entry point does the following:

v Copies a block of directory entries into the buffer specified by the uiop parameter.

v Sets the uiop->uio_resid field to indicate the number of bytes read.

The End-of-file character should be indicated by not reading any bytes (not by a partial read). This

provides directories with the ability to have some hidden information in each block.

The virtual file system-specific implementation is also responsible for setting the uio_offset field to the

offset of the next whole block to be read.

Execution Environment

The vn_readdir entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The readdir subroutine.

The uio structure.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Virtual File System Kernel

Extensions Overview, Logical File System Overview, and Understanding Virtual Nodes (V-nodes) in AIX 5L

Version 5.3 Kernel Extensions and Device Support Programming Concepts.

vn_readdir_eofp Entry Point

Chapter 3. File System Operations 579

Purpose

Returns directory entries.

Syntax

int
vn_readdirr_eofp (vp, uiop, eofp, crp)
struct vnode *vp;
struct uio *uiop;
int *eofp;
struct ucred *crp;

Parameters

 vp Points to the directory vnode to be processed.

uiop Points to the uiop structure describing the user’s buffer.

eofp Points to a word that places the eop structure.

crp Specifies user’s credentials.

Description

The vn_readdir_eofp entry point is used to read directory entries. It is similar to vn_readdir except that it

takes the additional parameter, eofp. The location pointed to by the eofp parameter should be set to 1 if

the readdir request reached the end of the directory. Otherwise, it should be set to 0.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a

vn_readdir_eofp entry point.

Execution Environment

The vn_readdir_eofp entry point can be called from the process environment only.

Return Values

 Zero Indicates a successful operation.

Nonzero Indicates that the operation failed; return values should be chosen from the /usr/include/sys/errno.h

file.

Related Information

The readdir subroutine.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes) in AIX

5L Version 5.3 Kernel Extensions and Device Support Programming Concepts, and Virtual File System

Kernel Extensions Overview.

vn_readlink Entry Point

Purpose

Reads the contents of a symbolic link.

580 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

int vn_readlink (vp, uio, crp)

struct vnode *vp;

struct uio *uio;

struct ucred *crp;

Parameters

 vp Points to a virtual node (v-node) structure. The vn_readlink entry point holds this v-node for the duration of the

routine.

uio Points to a uio structure. This structure contains the information required to read the link. In addition, it

contains the return buffer for the vn_readlink entry point.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_readlink entry point is used by the logical file system to get the contents of a symbolic link, if the

file system supports symbolic links. The logical file system finds the v-node (virtual node) for the symbolic

link, so this routine simply reads the data blocks for the symbol link.

Execution Environment

The vn_readlink entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_rele Entry Point

Purpose

Releases a reference to a virtual node (v-node).

Syntax

int vn_rele (vp,)

struct vnode *vp;

Parameter

 vp Points to the v-node.

Chapter 3. File System Operations 581

Description

The vn_rele entry point is used by the logical file system to release the object associated with a v-node. If

the object was the last reference to the v-node, the vn_rele entry point then calls the vn_free kernel

service to deallocate the v-node.

If the virtual file system (VFS) was unmounted while there were open files, the logical file system sets the

VFS_UNMOUNTING flag in the vfs structure. If the flag is set and the v-node to be released is the last

v-node on the chain of the vfs structure, then the virtual file system must be deallocated with the vn_rele

entry point.

Execution Environment

The vn_rele entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The vn_free kernel service.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_remove Entry Point

Purpose

Unlinks a file or directory.

Syntax

int vn_remove (vp, dvp, name, crp)

struct vnode *vp;

struct vnode *dvp;

char *name;

struct ucred *crp;

Parameters

 vp Points to a virtual node (v-node). The v-node indicates which file to remove and is held over the duration of

the vn_remove entry point.

dvp Points to the v-node of the parent directory. This directory contains the file to be removed. The directory’s

v-node is held for the duration of the vn_remove entry point.

name Identifies the name of the file.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_remove entry point is called by the logical file system to remove a directory entry (or link) as the

result of a call to the unlink subroutine.

582 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

The logical file system assumes that the vn_remove entry point calls the vn_rele entry point. If the link is

the last reference to the file in the file system, the disk resources that the file is using are released.

The logical file system ensures that the directory specified by the dvp parameter does not reside in a

read-only file system.

Execution Environment

The vn_remove entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The unlink subroutine.

The vn_rele entry point.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_rename Entry Point

Purpose

Renames a file or directory.

Syntax

int vn_rename (srcvp, srcdvp, oldname, destvp, destdvp, newname, crp)

struct vnode * srcvp;

struct vnode * srcdvp;

char * oldname;

struct vnode * destvp;

struct vnode * destdvp;

char * newname;

struct ucred * crp;

Parameters

 srcvp Points to the virtual node (v-node) of the object to rename.

srcdvp Points to the v-node of the directory where the srcvp parameter resides. The parent directory for the

old and new object can be the same.

oldname Identifies the old name of the object.

destvp Points to the v-node of the new object. This pointer is used only if the new object exists. Otherwise,

this parameter is the null character.

destdvp Points to the parent directory of the new object. The parent directory for the new and old objects can

be the same.

newname Points to the new name of the object.

crp Points to the cred structure. This structure contains data that applications can use to validate access

permission.

Chapter 3. File System Operations 583

Description

The vn_rename entry point is invoked by the logical file system to rename a file or directory. This entry

point provides the following renaming actions:

v Renames an old object to a new object that exists in a different parent directory.

v Renames an old object to a new object that does not exist in a different parent directory.

v Renames an old object to a new object that exists in the same parent directory.

v Renames an old object to a new object that does not exist in the same parent directory.

To ensure that this entry point routine executes correctly, the logical file system guarantees the following:

v File names are not renamed across file systems.

v The old and new objects (if specified) are not the same.

v The old and new parent directories are of the same type of v-node.

Execution Environment

The vn_rename entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The rename subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_revoke Entry Point

Purpose

Revokes all access to an object.

Syntax

int vn_revoke (vp, cmd, flag, vinfop, crp)

struct vnode * vp;

int cmd;

int flag;

caddr_t vinfop;

struct ucred * crp;

Parameters

 vp Points to the virtual node (v-node) containing the object.

584 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

cmd Indicates whether the calling process holds the file open. This parameter takes the following values:

0 The process did not have the file open.

1 The process had the file open.

2 The process had the file open and the reference count in the file structure was greater than 1.

flag Identifies the flags from the file structure.

vinfop This parameter is currently unused.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_revoke entry point is called to revoke further access to an object.

Execution Environment

The vn_revoke entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The frevoke subroutine, revoke subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_rmdir Entry Point

Purpose

Removes a directory.

Syntax

int vn_rmdir (vp, dp, pname, crp)

struct vnode *vp;

struct vnode *dp;

char *pname;

struct ucred *crp;

Parameters

 vp Points to the virtual node (v-node) of the directory.

dp Points to the parent of the directory to remove.

pname Points to the name of the directory to remove.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Chapter 3. File System Operations 585

Description

The vn_rmdir entry point is invoked by the logical file system to remove a directory object. To remove a

directory, the directory must be empty (except for the current and parent directories). Before removing the

directory, the logical file system ensures the following:

v The vp parameter is a directory.

v The vp parameter is not the root of a virtual file system.

v The vp parameter is not the current directory.

v The dp parameter does not reside on a read-only file system.

Note: The vp and dp parameters’ v-nodes (virtual nodes) are held for the duration of the routine.

Execution Environment

The vn_rmdir entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The rmdir subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_seek Entry Point

Purpose

Validates file offsets.

Syntax

int vn_seek (vp, offsetp, crp)

struct vnode * vp;

offset_t * offp;

struct ucred * crp;

Parameters

 vp Points to the virtual node (v-node) of the file.

offp Points to the location of the new offset to validate.

crp Points to the user’s credential.

Description

Note: The vn_seek Entry Point applies to AIX 4.2 and later releases.

The vn_seek entry point is called by the logical file system to validate a new offset that has been

computed by the lseek, llseek, and lseek64 subroutines. The file system implementation should check the

586 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

offset pointed to by offp and if it is acceptable for the file, return zero. If the offset is not acceptable, the

routine should return a non-zero value. EINVAL is the suggested error value for invalid offsets.

File systems which do not wish to do offset validation can simply return 0. File systems which do not

provide the vn_seek entry point will have a maximum offset of OFF_MAX (2 gigabytes minus 1) enforced

by the logical file system.

Execution Environment

The vn_seek entry point is be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero Return values are returned the /usr/include/sys/errno.h file to indicate failure.

Related Information

The lseek, llseek, and, lseek64 subroutines.

The Large File Enabled Programming Environment Overview.

vn_select Entry Point

Purpose

Polls a virtual node (v-node) for immediate I/O.

Syntax

int vn_select (vp, correl, e, re, notify, vinfo, crp)

struct vnode * vp;

int correl;

int e;

int re;

int (* notify)();

caddr_t vinfo;

struct ucred * crp;

Parameters

 vp Points to the v-node to be polled.

correl Specifies the ID used for correlation in the selnotify kernel service.

e Identifies the requested event.

re Returns an events list. If the v-node is ready for immediate I/O, this field should be set to indicate the

requested event is ready.

notify Specifies the subroutine to call when the event occurs. This parameter is for nested polls.

vinfo Is currently unused.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_select entry point is invoked by the logical file system to poll a v-node to determine if it is

immediately ready for I/O. This entry point is used to implement the select and poll subroutines.

Chapter 3. File System Operations 587

File system implementation can support constructs, such as devices or pipes, that support the select

semantics. The fp_select kernel service provides more information about select and poll requests.

Execution Environment

The vn_select entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The poll subroutine, select subroutine.

The fp_select kernel service, selnotify kernel service.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_setacl Entry Point

Purpose

Sets the access control list (ACL) for a file.

Syntax

#include <sys/acl.h>

int vn_setacl (vp, uiop, crp)

struct vnode *vp;

struct uio *uiop;

struct ucred *crp;

Parameters

 vp Specifies the virtual node (v-node) of the file system object.

uiop Specifies the uio structure that defines the storage for the call arguments.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_setacl entry point is used by the logical file system to set the access control list (ACL) on a file.

Execution Environment

The vn_setacl entry point can be called from the process environment only.

Return Values

 0 Indicates success.

588 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. Valid values

include:

 ENOSPC Indicates that the space cannot be allocated to hold the new ACL information.

EPERM Indicates that the effective user ID of the process is not the owner of the file and the process is not

privileged.

Related Information

The uio structure.

The chacl subroutine, chown subroutine, chmod subroutine, statacl subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_setattr Entry Point

Purpose

Sets attributes of a file.

Syntax

int vn_setattr (vp, cmd, arg1, arg2, arg3, crp)

struct vnode * vp;

int cmd;

int arg1;

int arg2;

int arg3;

struct ucred * crp;

Parameters

 vp Points to the virtual node (v-node) of the file.

cmd Defines the setting operation. This parameter takes the following values:

V_OWN

Sets the user ID (UID) and group ID (GID) to the UID and GID values of

the new file owner. The flag argument indicates which ID is affected.

V_UTIME

Sets the access and modification time for the new file. If the flag

parameter has the value of T_SETTIME, then the specific values have not

been provided and the access and modification times of the object should

be set to current system time. If the T_SETTIME value is not specified, the

values are specified by the atime and mtime variables.

V_MODE

Sets the file mode.

 The /usr/include/sys/vattr.h file contains the definitions for the three

command values.

arg1, arg2, arg3 Specify the command arguments. The values of the command arguments depend

on which command calls the vn_setattr entry point.

crp Points to the cred structure. This structure contains data that the file system can

use to validate access permission.

Chapter 3. File System Operations 589

Description

The vn_setattr entry point is used by the logical file system to set the attributes of a file. This entry point

is used to implement the chmod, chownx, and utime subroutines.

The values that the arg parameters take depend on the value of the cmd parameter. The vn_setattr entry

point accepts the following cmd values and arg parameters:

 Possible cmd Values for the vn_setattr Entry Point

Command V_OWN V_UTIME V_MODE

arg1 int flag; int flag; int mode;

arg2 int uid; timestruc_t *atime; Unused

arg3 int gid; timestruc_t *mtime; Unused

Note: For V_UTIME, if arg2 or arg3 is NULL, then the corresponding time field, atime and mtime, of the

file should be left unchanged.

Execution Environment

The vn_setattr entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The chmod subroutine, chownx subroutine, utime subroutine.

Virtual File System Kernel Extensions Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version

5.3 Kernel Extensions and Device Support Programming Concepts.

vn_setxacl Entry Point

Purpose

Sets the access control list (ACL) for a file system object. This is an advanced interface compared to

vn_setacl and provides for ACL-type-based operations.

Syntax

#include <sys/acl.h>

int vn_setxacl (vp, ctl_flags, acl_type, uiop, mode_info, crp)

struct vnode *vp;

uint64_t ctl_flags;

acl_type_t acl_type;

struct uio *uiop;

mode_t mode_info;

struct ucred *crp;

590 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Description

The vn_setxacl entry point sets the access control list (ACL) on a file. It is an advanced version of

vn_setacl interface and provides for ACL-type-based operations. This interface can also be used to

manage special bits in mode word (such as SUID, SGID and SVTX) in case the ACL type does not

support these bits through ACL. For more details about the various ACL types, refer to Security.

Parameters

 vp Specifies the virtual node (v-node) of the file system object for which the ACL needs

to be set.

acl_type Specifies the ACL type of the ACL information that needs to be set for the file

system object.

Note: If the underlying physical file system does not support the ACL type being

requested, the system could return an error.

acl_len Pointer to a length variable. The space pointed to is used as an input, as well as

output, parameter. As input, the value will indicate the size of buffer uiop. When the

call returns, this space holds the actual length of the ACL (true for when the call is

successful or when the call fails with errno set to ENOSPC).

ctl_flags This 64-bit bit mask provides for control over the ACL setting and for any future

variations in the interface. The following flag values have been defined:

SET_MODE_S_BITS

Indicates that the mode_info value is set by the caller and the ACL put

operation must consider this value to complete the ACL put operation.

SET_ACL

Indicates that the ACL arguments point to valid ACL data that must be

considered while the ACL put operation is being performed.

Note: Both of the preceding values can be specified by the caller by ORing the two

masks.

uiop Specifies the uio structure that defines the storage for the call arguments.

mode_info This value indicates any mode word information that needs to be set for the file

system object as part of this ACL put operation. When mode bits are altered by

specifying the SET_MODE_S_BITS flag (in ctl_flags), the entire ACL put operation

will fail if the caller does not have the required privileges.

crp Points to the cred structure. This structure contains data that the file system can

use to validate access permission.

Execution Environment

The vn_setxacl entry point can be called from the process environment only.

Return Values

Upon successful completion, the vn_setxacl entry point returns 0. Nonzero return values are returned

from the /usr/include/sys/errno.h file to indicate failure.

 EPERM Indicates that the effective user ID of the process is not authorized to change the ACL on

the specified file system object.

EINVAL Invalid operation. File system might not support the ACL type being set.

Note: This list of error numbers is not complete and is dependent on the particular physical file system

implementation supporting the ACL.

Chapter 3. File System Operations 591

Related Information

The chacl subroutine, chown subroutine, chmod subroutine, statacl subroutine, “vn_setacl Entry Point”

on page 588, “vn_getxacl Entry Point” on page 565.

The uio structure.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

List of Virtual File System Operations.

vn_strategy Entry Point

Purpose

Accesses blocks of a file.

Syntax

int vn_strategy (vp, bp, crp)

struct vnode *vp;

struct buf *bp;

struct ucred *crp;

Parameters

 vp Points to the virtual node (v-node) of the file.

bp Points to a buf structure that describes the buffer.

crp Points to the cred structure. This structure contains data that applications can use to validate access

permission.

Description

Note: The vn_strategy entry point is not implemented in Version 3.2 of the operating system.

The vn_strategy entry point accesses blocks of a file. This entry point is intended to provide a

block-oriented interface for servers for efficiency in paging.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

592 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

vn_symlink Entry Point

Purpose

Creates a symbolic link.

Syntax

int vn_symlink (vp, linkname, target, crp)

struct vnode *vp;

char *linkname;

char *target;

struct ucred *crp;

Parameters

 vp Points to the virtual node (v-node) of the parent directory where the link is created.

linkname Points to the name of the new symbolic link. The logical file system guarantees that the new link

does not already exit.

target Points to the name of the object to which the symbolic link points. This name need not be a fully

qualified path name or even an existing object.

crp Points to the cred structure. This structure contains data that the file system can use to validate

access permission.

Description

The vn_symlink entry point is called by the logical file system to create a symbolic link. The path name

specified by the linkname parameter is the name of the new symbolic link. This symbolic link points to the

object named by the target parameter.

Execution Environment

The vn_symlink entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

The symlink subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

vn_unmap Entry Point

Purpose

Unmaps a file.

Chapter 3. File System Operations 593

Syntax

int vn_unmap (vp, flag, crp)

struct vnode *vp;

ulong flag;

struct ucred *crp;

Parameters

 vp Points to the v-node (virtual node) of the file.

flag Indicates how the file was mapped. This flag takes the following values:

SHM_RDONLY

The virtual memory object is read-only.

SHM_COPY

The virtual memory object is copy-on-write.

crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description

The vn_unmap entry point is called by the logical file system to unmap a file. When this entry point

routine completes successfully, the use count for the memory object should be decremented and (if the

use count went to 0) the memory object should be destroyed. The file system implementation is required

to perform only those operations that are unique to the file system. The logical file system handles

virtual-memory management operations.

Execution Environment

The vn_unmap entry point can be called from the process environment only.

Return Values

 0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System

Overview, Understanding Virtual Nodes (V-nodes) in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

594 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Dept. LRAS/Bldg. 003

11400 Burnet Road

Austin, TX 78758-3498

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1997, 2007 595

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AIX

 AIX 5L

 Hypervisor

 IBM

 Micro Channel

 POWER4

 PowerPC

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

596 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Index

Special characters
__pag_getid system call 1

__pag_getname System Call 1

__pag_getvalue system call 2

__pag_setname System Call 3

__pag_setvalue system call 3

A
access control lists

retrieving 563, 565

setting 542, 588, 590

acct_add_LL Kernel Service 4

acct_get_projid Kernel Service 5

acct_get_usage Kernel Service 5

acct_interval_register Kernel Service 7

acct_interval_unregister Kernel Service 7

acct_put Kernel Service 8

acct_zero_LL Kernel Service 4

add_domain_af kernel service 10

add_input_type kernel service 11

add_netisr kernel service 13

add_netopt macro 14

address families
adding 10

deleting 74

searching for 338

address ranges
pinning 294, 341, 344, 504

setting storage protect key for 472

unpinning 295, 445, 447, 505

address space
kernel memory

allocating 14, 16

deallocating 17, 18

mapping 14, 16, 30, 31

obtaining handles 19, 20, 21

releasing 27

remapping 29, 32

unmapping 17, 18

pointer to current 176

addresses
unmapping 208

advanced accounting
acct_add_LL Kernel Service 4

acct_get_projid Kernel Service 5

acct_get_usage Kernel Service 5

acct_interval_register Kernel Service 7

acct_interval_unregister Kernel Service 7

acct_put Kernel Service 8

acct_zero_LL Kernel Service 4

allocate memory
rmalloc 374

allocated memory
freeing 509

allocating memory
rmfree 375

as_att kernel service
described 14

support for 176

as_att64 kernel service
described 16

as_det kernel service
described 17

support for 175

as_det64 kernel service 18

as_geth kernel service 19

as_geth64 kernel service 20

as_getsrval kernel service 21

as_getsrval64 kernel service 21

as_lw_att64 Kernel Service 23

as_lw_det64 Kernel Service 24

as_lw_pool_init Kernel Service 25

as_puth kernel service 27

as_puth64 kernel service 27

as_remap64 kernel service 29

as_seth kernel service 30

as_seth64 kernel service 31

as_unremp64 kernel service 32

asynchronous processing
notify routine and 165

asynchronous requests
registering 395

attach-device queue management routine 32

audit records
appending to 33

completing 34

initiating 35

writing 34

audit_svcbcopy kernel service 33

audit_svcfinis kernel service 34

audit_svcstart kernel service 35

B
bawrite kernel service 36

bdwrite kernel service 37

bflush kernel service 37

binding a process to a processor 38

bindprocessor kernel service 38

binval kernel service 39

blkflush kernel service 40

block I/O
buf headers

completion of 452

preparing 451

buf structures 512

calling 452

character I/O for blocks
performing 450

completion
waiting for 220

requests
completing 213

© Copyright IBM Corp. 1997, 2007 597

block I/O buffer cache
assigning blocks 41

assigning buffer 176

buf structures 512

buffers
header address 181

purging block from 355

clearing 52

flushing 40

freeing 43

nonreclaimable blocks 39

read-ahead block 42

reading blocks into 41, 42

releasing 37

write-behind blocks 37

writing 46

writing contents asynchronously 36

zeroing-out 52

blocked processes
clearing 435

blocking a process 434

blocks
purging from buffer 355

bread kernel service 41

breada kernel service 42

brelse kernel service 43

bsr_alloc Kernel Service 44

bsr_free Kernel Service 45

bsr_query Kernel Service 45

buf headers
completion of 452

preparing 451

sending to a routine 454

buf structures 512

buffer cache 36

buffers 179

allocating 181

determining status 182

freeing 358

freeing buffer lists 359

header address of 181

bufx structure 514

bus interrupt levels
disabling 203

enabling 226

resetting 224

bwrite kernel service 46

bytes
retrieving 172

storing 406, 407

C
caller’s buffer

md_restart_block_read 312

callout table entries
registering changes in 417

cancel pending timer requests 449

cancel-queue-element queue management routine 47

cascade processing 166

cfgnadd kernel service 48

cfgncb control block
adding 48

removing 50

cfgncb kernel service 49

cfgndel kernel service 50

chan parameter 511

channel numbers
finding 148

character data
reading from device 531

character device driver
character lists 516

clist structure 516

character I/O
freeing buffers 179

getting buffer addresses 178

performing for blocks 450

placing character buffers 356

placing characters 357, 360

placing characters in list 356

retrieving a character 177

retrieving from buffers 457

retrieving last character 180

retrieving multiple characters 178

uio structures 518

writing to buffers 456

character lists
removing first buffer 178

structure of 516

using 516

check-parameters queue management routine 51

close subroutine
device driver 519

clrbuf kernel service 52

clrjmpx kernel service 53

common_reclock kernel service 54

communication I/O device handler
opening 316

communications device handlers
closing 317

transmitting data to 321

compare_and_swap kernel service 56

configuration notification control block 49

contexts
saving 397

conventional locks
locking 283

copyin kernel service 56

copyin64 kernel service 57

copying to NVAM header
md_restart_block_upd Kernel Service 313

copyinstr kernel service 58, 59

copyout kernel service 60

copyout64 kernel service 61

creatp kernel service 64

cross-memory move
performing 507

ctlinput function
invoking 338

curtime kernel service 70

598 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

D
d_align kernel service 71

d_alloc_dmamem kernel service 71

d_cflush kernel service 72

d_free_dmamem kernel service 86

d_map_clear kernel service 89

d_map_disable kernel service 90

d_map_enable 90

d_map_init kernel service 91

d_map_list kernel service 92

d_map_page kernel service 94

d_map_slave 95

d_roundup kernel service 104

d_sync_mem kernel service 105

d_unmap_list kernel service 106

d_unmap_page kernel service 108

d_unmap_slave 107

data
memory

moving to kernel global memory 506

moving
from kernel global memory 507

moving between VMO and buffer 470

retrieving a byte 172

sending to DLC 169

word
retrieving 173, 174

data blocks
moving 442

ddclose entry point 519

ddconfig entry point 521

dddump entry point
calling 78

writing to a device 523

ddioctl entry point 525

ddmpx entry point 527

ddopen entry point 529

ddread entry point
reading data from a character device 531

ddrevoke entry point 533

ddselect entry point
occurring on a device 534

ddselect routine
calling fp_select kernel service 165

ddstrategy entry point
block-oriented I/O 536

calling 80

ddwrite entry point
writing to a character device 537

de-allocate resource
d_unmap_slave 107

deallocates resources
d_map_clear 89

d_unmap_list 106

del_domain_af kernel service 74

del_input_type kernel service 75

del_netisr kernel service 76

delay kernel service 73

destination addresses
locating 196

devdump kernel service 78

device driver 511

access
revoking 533

buf structures 512

character data
reading 531

closing 519

configuration data
requesting 521

configuring 521

data
writing 537

events
checking for 534

iodone kernel service 213

memory buffers 518

multiplexed
allocating channels 527

deallocating channels 527

performing block-oriented I/O 536

performing special operations 525

preparing for control functions 529

preparing for reading 529

preparing for writing 529

read logic
reads and writes 539

select logic
reads and writes 539

terminating 521

uio structures 517

device driver entry points
ddclose 519

ddconfig
writing to a device 521

dddump
writing to a device 523

ddioctl 525

ddmpx 527

ddopen 529

ddread 531

ddrevoke 533

ddselect 534

ddstrategy 536

ddwrite 537

standard parameters 511

device driver management
allocating virtual memory 207

dddump entry point
calling 78

ddstrategy entry point
calling 80

device entry
status 85

disk driver tasks 218

dkstat structure 217

entry points
adding 81

deleting 83

function pointers 246

exception handlers
deleting system-wide 435

Index 599

device driver management (continued)
exception handlers (continued)

system-wide 432

exception information
retrieving 182

kernel object files
loading 246

unloading 249

notification routines
adding 350

deleting 352

poll request
support for 393

processes
blocking 434

clearing blocked 435

programmed I/O
exceptions caused by 345

registering asynchronous requests 395

registering notification routine 48

removing control blocks 50

select request
support for 393

statistics structures
registering 216

removal 219

symbol binding support 248

ttystat structure 217

u_error fields 186

ut_error field
setting 399

device handlers
ending a start 320

pio_assist kernel service 345

starting network ID on 319

device numbers
finding 148

device queue management
attchq kernel service support 32

control block structure 49

detchq kernel service support 78

queue elements
placing into queue 138

waiting for 485

virtual interrupt handlers
defining 460

removing 459

device switch table
altering a 82

devices
select request on 164

devno parameter 511

devstrat kernel service 80

devswadd kernel service 81

devswchg kernel service 82

devswdel kernel service 83

devswqry kernel service 85

direct memory access 71

directories
creating 574

directories (continued)
entries

reading 578

removing 585

renaming 583

unlinking 582

disable DMA
d_map_disable 90

disable_lock kernel service 87

disablement_checking_resume Kernel Service 88

disablement_checking_suspend Kernel Service 88

disk driver support 218

dkstat structure 217

DLC kernel services
fp_ioctl 151

fp_open 155

fp_write 169

trcgenkt 421

DLC management
channel

disabling 146

device manager
opening 155

file pointers
sending kernel data to 169

trace channels
recording events 421

transferring commands to 151

DMA
disable

d_map_disable 90

enable
d_map_enable 90

DMA management
address ranges

pinning 341, 504

unpinning 505

buffer cache
maintaining 104

cache
flushing 72

cache-line size 71

processor cache
flushing 463

DMA master devices
deallocates resources

d_unmap_page 108

mapping
d_map_page 94

DMA operations
allocates and initializes resources

d_map_init 91

dmp_add kernel service 97

dmp_ctl kernel service 98

dmp_del kernel service 103

dmp_prinit kernel service 104

dr_reconfig system call 109

DTOM kernel service 106

600 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

E
e_assert_wait kernel service 112

e_block_thread kernel service 113

e_clear_wait kernel service 113

e_sleep kernel service 114

e_sleep_thread kernel service 117

e_sleepl kernel service 116

e_wakeup kernel service 121

e_wakeup_one kernel service 121

e_wakeup_w_result kernel service 121

e_wakeup_w_sig kernel service 122

EEH Kernel Services
eeh_broadcast 123

eeh_clear 124

eeh_disable_slot 125

eeh_enable_dma 126

eeh_enable_pio 127

eeh_enable_slot 128

eeh_init 129

eeh_init_multifunc 131

eeh_read_slot_state 133

eeh_reset_slot 135

eeh_slot_error 136

eeh_broadcast Kernel Service 123

eeh_clear Kernel Service 124

eeh_disable_slot Kernel Service 125

eeh_enable_dma Kernel Service 126

eeh_enable_pio Kernel Service 127

eeh_enable_slot Kernel Service 128

eeh_init Kernel Service 129

eeh_init_multifunc Kernel Service 131

eeh_read_slot_state Kernel Service 133

eeh_reset_slot Kernel Service 135

eeh_slot_error Kernel Service 136

enable DMA
d_map_enable 90

End of Interrupt (EOI) kernel services
i_eoi 195

enque kernel service 138

entry points
function pointers

obtaining 246

error logs
writing entries 140

error logs, writing entries 352

errresume kernel service 139

errsave kernel service 140

et_post kernel service 119

et_wait kernel service 120

event management
shared events

waiting for 114

exception handlers
system-wide

deleting 435

systemwide 432

exception information
retrieving 182

exception management
contexts

saving 397

exception management (continued)
creating a process 64

execution flows
modifying 291

internationalized kernel message requests
submitting 323

locking 283

parent
setting to init process 398

putting process to sleep 405

sending a signal 339

states
saving 397

unmasked signals
determining if received 402

exceptions 64

execution flows
modifying 291

execution states
saving 397

ext parameter 511

external storage
freeing 304

F
fetch_and_add kernel service 141

fetch_and_and kernel service 141

fetch_and_or kernel service 141

fidtovp kernel service 142

file attributes
getting 146

file operation requirements 437

file systems 149, 191

file-mode creation mask 187

files 157

access control lists
retrieving 563

setting 588

accessing blocks 592

attributes
getting 564

checking access permission 144

closing 145

creating 555

descriptor flags 187

descriptors 440, 441

determining if changed 473

hard links
requesting 568

interface to kernel services 436

mappings
validating 571

opening 150, 152, 154

opening for reading 575

opening for writing 575

pointers
retrieving 149

read subroutine 161

reading 161, 162, 163

readv subroutine 162

Index 601

files (continued)
releasing portions of 557

renaming 583

size limit
retrieving 183

truncating 562

unlinking 582

unmapping 593

writing 163, 168

find_input_type kernel service 143

fp_access kernel service 144

fp_close kermel service
GDLC 146

fp_close kernel service 145

device driver 519

fp_fstat kernel service 146

fp_fsync kernel service 147

fp_getdevno kernel service 148

fp_getf kernel service 149

fp_hold kernel service 150

fp_ioctl kernel service 150, 151

fp_ioctlx kernel service 152

fp_lseek kernel service 153

fp_open kernel service
opening GDLC 155

opening regular files 154

fp_opendev kernel service 157

fp_poll kernel service 159

fp_read kernel service 161

fp_readv kernel service 162

fp_rwuio kernel service 163

fp_select kernel service
cascaded support 164

invoking 165

notify routine and 165

returning from 166

fp_select kernel service notify routine 167

fp_write kernel service
data sent to DLC 169

open files 168

fp_writev kernel service 171

free-pinned character buffers
sizing 342

fstatx subroutine
fp_fstat kernel service 146

fubyte kernel service 172

fubyte64 kernel service 172

func subroutine 207

fuword kernel service 173

G
GDLC channels

disabling 146

get_pag Kernel Service 184

get_pag64 Kernel Service 184

get_umask kernel service 187

getblk kernel service 176

getc kernel service 177

getcb kernel service 178

getcbp kernel service 178

getcf kernel service 179

getcx kernel service 180

geteblk kernel service 181

geterror kernel service 182

getexcept kernel service 182

getfslimit kernel service 183

getpid kernel service 185

getppidx kernel service 185

getuerror kernel service 186

getufdflags kernel service 187

gfsadd kernel service 189

gfsdel kernel service 191

H
heaps

initializing virtual memory 204

host names
obtaining 242

I
i_clear kernel service 192

i_disable kernel service 192

i_enable kernel service 194

i_eoi Kernel Service 195

i_init kernel service 202

i_mask kernel service 203

i_pollsched kernel service 223

i_reset kernel service 224

i_sched kernel service 225

i_unmask kernel service 226

I/O 177, 182, 192, 203, 207

buffer cache
purging block from 355

buffers
freeing 358

character
retrieving 180

character buffer
waiting for free 484

character lists
using 516

characters
placing 356, 360

completion
waiting for 220

early power-off warning 203

free-pinned character buffers 342

freeing buffer lists 359

header memory buffers
allocating 309

interrupt handler
coding an 203

mbreq structures 296

mbuf chains
adjusting 311

appending 297

copying data from 302

freeing 305

602 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

I/O (continued)
mbuf clusters

allocating 300

allocating a page-sized 299

mbuf structures
allocating 298, 306, 307, 308, 309

attaching 308

clusters 310

converting pointers 315

creating 303

cross-memory descriptors 315

deregistering 304

freeing 304

initial requirements 311

pointers 314

removing 301

usage statistics 297

off-level processing
enabling 225

placing character buffers 356

placing characters 357

I/O levels
waiting on 478

identifiers
message queue 252

idle to ready 205

IDs
getting current process 185

getting parent 185

if_attach kernel service 198

if_detach kernel service 199

if_down kernel service 199

if_nostat kernel service 200

ifa_ifwithaddr kernel service 195

ifa_ifwithdstaddr kernel service 196

ifa_ifwithnet kernel service 197

ifnet structures
address of 290

ifunit kernel service 201

init_heap kernel service 204

initp kernel service 205

initp kernel service func subroutine 207

input packets
building header for 366

input types
adding new 11

interface 197

interface drivers
error handling 317

interfaces
files 436

network
adding 198

internationalized kernel message requests
submitting 323

interrupt environment services
d_cflush 72

getcx 180

if_attach 198

net_start_done 320

tstart 424

interrupt handlers 459

avoiding delays 225

coding 203

defining 202

queuing pseudo interrupts to 223

removing 192

interrupt priorities
disabling 192

enabling 194

io_att kernel service 207

io_det kernel service 208

io_map kernel service 209

io_map_clear kernel service 210

io_map_init kernel service 211

io_unmap kernel service 212

iodone kernel service 213

iodone routine
setting up 214

iomem_att kernel service 214

iomem_det kernel service 216

iostadd kernel service 216

iostdel kernel service 219

iowait kernel service 220

ip filtering hooks 221

ip_fltr_in_hook, ip_fltr_out, ipsec_decap_hook kernel

service 221

ipthreadsn 576, 578

IS64U kernel service 231

K
kcap_is_set kernel service 232

kcap_is_set_cr kernel service 232

kcred_genpagvalue Kernel Service 232

kcred_getpag Kernel Service 235

kcred_getpag64 Kernel Service 235

kcred_getpagid kernel service 236

kcred_getpaginfo Kernel Service 236

kcred_getpagname kernel service 237

kcred_setpag Kernel Service 240

kcred_setpag64 Kernel Service 240

kcred_setpagname kernel service 241

kernel buffers 512

kernel memory
address ranges

pinning 294, 341, 344, 504

releasing intersecting pages 474

setting storage protect key for 472

unpinning 295, 445, 447, 505

address space
allocating 14, 16

deallocating 17, 18

deselecting 17, 18

mapping 14, 16, 30, 31

obtaining handles 19, 20, 21

pointer to current 175

releasing 27

remapping 29, 32

selecting 14, 16

unmapping 17, 18

Index 603

kernel memory (continued)
addresses

unmapping 208

bytes
retrieving 172

character data
copying into 58, 59

characters
retrieving from buffers 457

writing to buffers 456

copying from 60, 61

copying into 56, 57

data
moving between VMO and buffer 470

retrieving a byte 172

retrieving a word 173, 174

storing bytes 406, 407

files
determining if changed 473

header memory buffers
allocating 309

heaps
initializing 204

I/O levels
waiting on 478

mbuf chains
adjusting 311

adjusting size of 295

appending 297

copying data from 302

freeing 305

reducing structures in 300

mbuf clusters
allocating 300

allocating a page-sized 299

mbuf structures
allocating 298, 306, 307, 308, 309

attaching 308

clusters 310

converting addresses in 106

converting pointers 315

copying 301

creating 303

cross-memory descriptors 315

deregistering 304

freeing 304

initial requirements 311

pointers 314

removing 301

object modules
pinning 343

page ranges
initiating page-out 481

page-out
determining I/O level 478

page-ranges
initiating page-out 482

pages
making without page-in 469

releasing several 475

kernel memory (continued)
paging device tables

adding file system to 470

freeing entries in 480

pin counts
decrementing 446

storing words 409, 410

user buffer
preparing for access 497, 499

user-address space, 64-bit det 231

virtual memory handles
constructing 468

virtual memory manager 276

virtual memory objects
creating 476

deleting 477

mapping to a region 462

virtual memory resources
releasing 475

words
retrieving 173, 174

kernel messages
printing to terminals 454

kernel object files
loading 246

unloading 249

kernel process state
changing 205

kernel processes
creation support 207

kernel services
as_att kernel service 14

as_att64 kernel service 16

as_det kernel service 17

as_det64 kernel service 18

as_geth kernel service 19

as_geth64 kernel service 20

as_getsrval kernel service 21

as_getsrval64 kernel service 21

as_puth kernel service 27

as_puth64 kernel service 27

as_remap64 kernel service 29

as_seth kernel service 30

as_seth64 kernel service 31

as_unremp64 kernel service 32

bindprocessor 38

compare_and_swap 56

disable_lock 87

e_assert_wait 112

e_block_thread 113

e_clear_wait 113

e_sleep_thread 117

e_wakeup 121

e_wakeup_one 121

e_wakeup_w_result 121

e_wakeup_w_sig 122

et_post 119

et_wait 120

fetch_and_add 141

fetch_and_and 141

fetch_and_or 141

604 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

kernel services (continued)
file interface to 436

IS64U 231

kcred_getpagid 236

kcred_getpagname 237

kcred_setpagname 241

kthread_kill 274

kthread_start 275

limit_sigs 278

lock_addr 285

lock_alloc 279

lock_clear_recursive 280

lock_done 280

lock_free 281

lock_init 282

lock_islocked 283

lock_read 286

lock_read_to_write 287

lock_set_recursive 288

lock_try_read 286

lock_try_read_to_write 287

lock_try_write 288

lock_write 288

lock_write_to_read 289

ltpin 294

ltunpin 295

rusage_incr 390

simple_lock 403

simple_lock_init 403

simple_lock_try 403

simple_unlock 404

thread_create 412

thread_setsched 414

thread_terminate 415

tstop 425

tuning 426

ufdgetf 440

ufdhold 441

ufdrele 441

unlock_enable 443

user-mode exception handler for uexadd 433

kgethostname kernel service 242

kgetpname Kernel Service 243

kgettickd kernel service 244

klpar_get_info kernel service 245

kmod_entrypt kernel service 246

kmod_load kernel service 246

kmod_unload kernel service 249

kmsgctl kernel service 250

kmsgget kernel service 252

kmsgsnd kernel service 256

kmsrcv kernel service 254

kprobe kernel service 352

kra_attachrset Subroutine 257

kra_creatp subroutine 259

kra_detachrset Subroutine 260

kra_getrset Subroutine 262

krs_alloc Subroutine 263

krs_free Subroutine 264

krs_getassociativity Subroutine 264

krs_getinfo Subroutine 265

krs_getpartition Subroutine 266

krs_getrad Subroutine 267

krs_init Subroutine 268

krs_numrads Subroutine 269

krs_op Subroutine 269

krs_setpartition Subroutine 271

ksettickd kernel service 272

ksettimer kernel service 273

kthread_kill kernel service 274

kthread_start kernel service 275

kvmgetinfo kernel service 276

L
ldata_alloc Kernel Service 227

ldata_create Kernel Service 228

ldata_destroy Kernel Service 229

ldata_free Kernel Service 230

ldata_grow Kernel Service 230

limit_sigs kernel service 278

lock_addr kernel service 285

lock_alloc kernel service 279

lock_clear_recursive kernel service 280

lock_done kernel service 280

lock_free kernel service 281

lock_init kernel service 282

lock_islocked kernel service 283

lock_read kernel service 286

lock_read_to_write kernel service 287

lock_set_recursive kernel service 288

lock_try_read kernel service 286

lock_try_read_to_write kernel service 287

lock_try_write kernel service 288

lock_write kernel service 288

lock_write_to_read kernel service 289

locking 54

lockl kernel service 283

logical file system
channel numbers

finding 148

device numbers
finding 148

file attributes
getting 146

file descriptors
status of 159

file pointers
retrieving 149

status of 159

files
checking access permissions 144

closing 145

opening 150, 152, 154

reading 162, 163

writing 163, 168, 171

message queues
status of 159

notify routine
registering 167

offsets
changing 153

Index 605

logical file system (continued)
open subroutine

support for 154

poll request 164

read subroutine
interface to 161

readv subroutine
interface to 162

select operation 164

special files
opening 157

use count
incrementing 150

write subroutine 168

writev subroutine
interface to 171

loifp kernel service 290

longjmpx kernel service 291

lookupvp kernel service 291

looutput kernel service 293

ltpin kernel service 294

ltunpin kernel service 295

M
m_adj kernel service 295

m_cat kernel service 297

m_clattach kernel service 298

m_clget macro 299

m_clgetm kernel service 300

m_collapse kernel service 300

m_copy macro 301

m_copydata kernel service 302

m_copym kernel service 303

m_dereg kernel service 304

m_freem kernel service 305

m_get kernel service 306

m_getclr kernel service 307

m_getclust macro 307

m_getclustm kernel service 308

m_gethdr kernel service 309

M_HASCL kernel service 310

m_pullup kernel service 311

m_reg kernel service 311

M_XMEMD macro 315

macros
add_netopt 14

del_netopt 77

DTOM 106

m_clget 299

m_getclust 307

M_HASCL 310

MTOCL 314

MTOD 315

maps DMA master devices
d_map_page 94

mbreq structure
format of 296

mbuf chains
adjusting 311

adjusting size of 295

mbuf chains (continued)
appending 297

copying 302

freeing 305

removing structures from 301

mbuf clusters
allocating 300

allocating a page-sized 299

page-sized
attaching 308

mbuf structures
address to header 106

allocating 298, 306, 307, 308, 309

attaching a cluster 308

clusters
determining presence of 310

converting pointers 315

copying 301, 303

cross-memory descriptors
obtaining address of 315

deregistering 304

freeing 304

initial requirements 311

mbreq structure 296

mbstat structure 297

pointers
converting 314

registration information 296

removing 301

usage statistics 297

memory
allocating 496

buffers (device drivers) 517

freeing 509

pages
preparing for DMA 501, 502

processing after DMA I/O 501, 502

performing a cross-memory move 506, 507

rmfree 375

uio structures 518

user buffer
detaching from 500

memory allocation
rmalloc 374

memory manager
kvmgetinfo 276

memory mapped I/O
iomem_att 214

iomem_det 216

rmmap_create 375

rmmap_create64 378

rmmap_remove 381

rmmap_remove64 382

message queues
control operations

providing 250

identifiers
obtaining 252

messages
reading 254

sending 256

606 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Micro-Partitioning
lpar_get_info kernel service 245

MTOCL macro 314

MTOD macro 315

multiplexed device driver
allocating 527

deallocating 527

N
net_attach kernel service 316

net_detach kernel service 317

net_error kernel service 317

net_sleep kernel service 318

net_start kernel service 319

net_start_done kernel service 320

net_wakeup kernel service 321

net_xmit kernel service 321

net_xmit_trace kernel service 322

network
ctlinput function

invoking 338

current host name 242

demuxers
adding 326

deleting 332

disabling 333

enabling 327

destination addresses
locating 196

device drivers
allocating 330

relenquishing 335

device handlers
closing 317

ending a start 320

opening 316

starting ID on 319

devices
attaching 331

detaching 335

ID
ending a start 320

ifnet structures
address of 290

input packets
building header for 366

interface
adding 198

interface drivers
error handling 317

putting caller to sleep 318

raw protocols
implementing user requests for 367

raw_header structures
building 366

receive filters
adding 327

deletiing 333

routes
allocating 383, 384

network (continued)
routing table entries

changing 387, 389

creating 385

forcing through gateway 386

freeing 385

software interrupt service routines
invoking 392

scheduling 392

start operation
ending 320

status filters
adding 329

deleting 334

transmit packets
tracing 322

waking sleeping processes 321

network address families
adding 10

deleting 74

searching for 338

network device handlers
transmitting packets 321

network input types
adding 11

deleting 75

network interfaces
deleting 199

locating 195, 197

marking as down 199

pointers
obtaining 201

software loopback
obtaining address 290

sending data through 293

zeroing statistic elements 200

network option structures
adding 14

deleting 77

network packet types
finding 143

network software interrupt service
adding 13

deleting 76

NLuprint kernel service 323

notify routine
registering 167

from fp_select kernel service 165

ns_add_demux network service 326

ns_add_filter network service 327

ns_add_status network service 329

ns_alloc network service 330

ns_attach network service 331

ns_del_demux network service 332

ns_del_filter network service 333

ns_del_status network service 334

ns_detach network service 335

ns_free network service 335

Index 607

O
object modules

pinning 343

off-level processing 225

offset
changing 153

open subroutine
support for 154

P
packet types

finding 143

packets
transmitting 321

page-out
determining I/O level 478

page-ranges
initiating page-out 481

pages
making without page-in 469

releasing several 475

paging device tables
adding file system to 470

freeing entries in 480

panic kernel service 336

PCI bus slot configuration registers 337

pci_cfgrw kernel service 337

pfctlinput kernel service 338

pffindproto kernel service 338

pgsignal kernel service 339

pidsig kernel service 340

pin counts
decrementing 446

pin kernel service 341

pincf kernel service 342

pincode kernel service 343

pinu kernel service 344

pio_assist kernel service 345

pipes
select request on 164

poll request
registering asynchronous 395

support for 393

power-off warnings
registering early 203

privileges
checking effective 408

probe kernel service 352

process 64

process environment services
d_cflush 72

ddread entry point 531

getcx 180

i_disable 192

if_attach 198

iostdel 219

net_attach 316

net_start_done 320

tstart 424

process management
blocking a process 434

calling process IDs 185

checking effective privileges 408

clearing blocked processes 435

contexts
removing 53

saving 397

creating a process 64

execution flows
modifying 291

forcing a wait 114

idle to ready
transition of 205

internationalized kernel message requests
submitting 323

locking 283

parent
setting to init process 398

parent process IDs
getting 185

process initialization routine
directing 207

process state-change notification routine 350

putting process to sleep 405

shared events
waiting for 116

signals
sending 339, 340

signals, sending 340

state transition notification 347

state-change notification routine
deleting 352

states
saving 397

suspending processing 73

unlocking
conventional processes 444

unmasked signals
determining if received 402

wait
for shared event 116

waking up processes 393

process state-change notification routine 347

processor cache
flushing 463

proch structure 351

proch_unreg kernel service 350

prochadd kernel service 350

prochdel kernel service 352

programmed I/O
exceptions caused by 345

purblk kernel service 355

putc kernel service 356

putcb kernel service 356

putcbp kernel service 357

putcf kernel service 358

putcfl kernel service 359

putcx kernel service 360

608 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Q
queue elements

checking validity 51

cleanup 47

placing into queue 138

waiting for 485

queue management routines
attach-device 32

cancel-queue-element 47

detach-device 78

parameter checking 51

R
RAS kernel services

error logs
writing entries in 140

master dump table
deleting entry from 103

remote dumps
initializing protocol 104

RAS services
system crash

performing system dump of 336

trace events
recording 419, 420

RAS_BLOCK_NULL Exported Data Structure 360

ras_control Exported Kernel Service 361

ras_customize Exported Kernel Service 362

ras_path_control Exported Kernel Service 363

ras_register Exported Kernel Service 364

ras_unregister Exported Kernel Service 364

raw protocols
implementing user requests for 367

raw_header structures
building 366

raw_input kernel service 366

raw_usrreq kernel service 367

rawinch field 218

read subroutine
interface to 161

read-ahead block
starting I/O on 42

readv subroutine
interface to 162

ready to idle 205

reconfig_complete kernel service 368

reconfig_register kernel service 368

reconfig_register_ext kernel service 368

reconfig_unregister kernel service 368

record locking 54

record locks
controlling 569

regions
unmapping virtual memory 463

Reliability, Availability, and Serviceability kernel

services 104

Resource Set APIs
kra_attachrset 257

kra_creatp 259

Resource Set APIs (continued)
kra_detachrset 260

kra_getrset 262

krs_alloc 263

krs_free 264

krs_getassociativity 264

krs_getinfo 265

krs_getpartition 266

krs_getrad 267

krs_init 268

krs_numrads 269

krs_op 269

krs_setpartition 271

resources
virtual file system

releasing 461

rmalloc kernel service 374

rmfree kernel service 375

rmmap_create kernel service 375

rmmap_create64 kernel service 378

rmmap_remove kernel service 381

rmmap_remove64 kernel service 382

routes
allocating 383, 384

routing table entries
changing 387, 389

creating 385

forcing through gateway 386

freeing 385

rtalloc kernel service 383, 384

rtfree kernel service 385

rtinit kernel service 385

rtredirect kernel service 386

rtrequest kernel service 387, 389

rusage_incr kernel service 390

S
schednetisr kernel service 392

scheduling functions 415

security subroutines
kcred_genpagvalue 232

select request
registering asynchronous 395

support for 393

selnotify kernel service 393

selreg kernel service 395

set_pag Kernel Service 396

set_pag64 Kernel Service 396

setjmpx kernel service 397

setpinit kernel service 398

setuerror kernel service 399

setufdflags kernel service 187

shared events
waiting for 116

shared memory
controlling access to 283

shared object modules
symbol resolution 248

shutdown kernel services
shutdown_notify_reg 400

Index 609

shutdown kernel services (continued)
shutdown_notify_unreg 401

shutdown_notify_reg kernel kervice 400

shutdown_notify_unreg kernel service 401

sig_chk kernel service 402

signals
sending 339

simple_lock kernel service 403

simple_lock_init kernel service 403

simple_lock_try kernel service 403

simple_unlock kernel service 404

sleep kernel service 405

sockets
select request on 164

software interrupt service routines
invoking 392

scheduling 392

software loopback interfaces
obtaining address of 290

sending data through 293

software-interrupt level 13

special files
creating 574

opening 157

requesting I/O control operations 567

standard parameters
device driver 511

statistics structures
registering 216

removal 219

strategy routine
calling 452

subyte kernel service 406

subyte64 kernel service 407

suser kernel service 408

suword kernel service 409

suword64 kernel service 410

switch table 85

symbol binding support 248

symbol resolution and shared object modules 248

symbolic links
reading contents of 580

synchronization functions
providing 244

system call events
auditing 35

system calls
__pag_getid 1

__pag_getname 1

__pag_getvalue 2

__pag_setname 3

__pag_setvalue 3

system dump kernel services
dmp_add 97

dmp_ctl 98

system dumps
adding and removing master dump table entries 98

adding to master dump table 97

performing 336

specifying contents 97

systemwide time
setting 273

T
talloc kernel service 411

tfree kernel service 411

thread_create kernel service 412

thread_self subroutine 413

thread_setsched kernel service 414

thread_terminate kernel service 415

time
allocating time request blocks 411

callout table entries
registering changes in 417

canceling pending timer requests 449

current
reading 70

scheduling functions 415

submitting timer request 424

suspending processing 73

synchronization functions
providing 244

systemwide
setting 273

time request blocks
deallocating 411

time-adjustment value 244

updating 272

watchdog timers
registering 487

removing 486

stopping 489

timeout kernel service 415

timeoutcf kernel subroutine 417

timer
watchdog timers

starting 488

trace events
recording 419, 420, 421

transfer requests
tailoring 454

transmit packets
tracing 322

trc_ishookon Exported Kernel Service 418

trcgenk kernel service 419

trcgenkt kernel service
DLC 421

recording for a generic trace channel 420

tstart kernel service 424

tstop kernel service 425

tty device driver support 218

ttystat structure 217

tuning kernel service 426

U
ue_proc_check kernel service 429

ue_proc_register subroutine 430

ue_proc_unregister subroutine 431

610 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

uexadd kernel service
adding an exception handler 432

uexblock kernel service 434

uexclear kernel service 435

uexdel kernel service 435

ufdcreate kernel service 436

ufdgetf kernel service 440

ufdhold kernel service 441

ufdrele kernel service 441

uio structures 321, 517

uiomove kernel service 442

unlock_enable kernel service 443

unlocking conventional processes 444

unlockl kernel service 444

unpin kernel service 445

unpincode kernel service 446

unpinu kernel service 447

untimeout kernel service 449

uphysio kernel mincnt service 454

uphysio kernel service
described 450

error detection by 453

mincnt routine 454

uprintf kernel service 454

uprintf structure 324

ureadc kernel service 456

use count
incrementing 150

user buffer
detaching from 500

preparing for access 497, 499

user-address space 231

user-mode exception handler for uexadd kernel

service 433

ut_error field
retrieving 186

ut_error fields
setting 399

uwritec kernel service 457

V
v-node operations 564, 567, 570, 574, 584, 585

retrieving 291

v-nodes 564

allocating 483

closing associated files 554

count
incrementing 566

file identifier conversion to 552

file identifiers
building 558

finding by name 570

freeing 483

modifications
flushing to storage 560

obtaining root 547

polling 587

releasing references 581

validating access to 553

validate_pag Kernel Service 458

validate_pag64 Kernel Service 458

vec_clear kernel service 459

vec_init kernel service 460

VFS 564

access control lists
retrieving 563

allocating virtual nodes 483

building file identifiers 558

changes
writing to storage 550

checking record locks 569

control operations
implementing 544

creating directories 574

creating special files 574

file attributes
getting 564

file system types
adding 189

removing 191

files
accessing blocks 592

converting identifiers 552

creating 555

hard links 568

opening 575

releasing portions of 557

renaming 583

requesting I/O 576

setting access control 588

setting attributes 589

truncating 562

validating mapping requests 571

finding v-nodes by name 570

flushing v-node modifications 560

freeing virtual nodes 483

incrementing v-node counts 566

initializing 545

mounting 546

nodes
pointer to root 547

retrieving 291

polling v-nodes 587

querying record locks 569

reading directory entries 578

releasing v-node references 581

removing directories 585

renaming directories 583

resources
releasing 461

revoking access 584

searching 548

setting record locks 569

special files
I/O control operations on 567

statistics
obtaining 549

structures, holding and releasing 545

unmounting 551

VFS operations
vfs_cntl 544

Index 611

VFS operations (continued)
vfs_hold 545

vfs_init 545

vfs_mount 546

vfs_root 547

vfs_search 548

vfs_statfs 549

vfs_sync 550

vfs_umount 551

vfs_unhold 545

vfs_vget 552

vn_access 553

vn_close 554

vn_create 555

vn_fclear 557

vn_fid 558

vn_fsync 560

vn_ftrunc 562

vn_getacl 563

vn_hold 566

vn_link 568

vn_lockctl 569

vn_mknod 574

vn_open 575

vn_rdwr 576

vn_readdir 578

vn_readlink 580

vn_remove 582

vn_rename 583

vn_select 587

vn_setacl 588

vn_setattr 589

vn_strategy 592

vn_symlink 593

vn_unmap 593

vfs_aclxcntl entry point 542

vfsrele kernel service 461

virtual file system 189, 563

virtual interrupt handlers
defining 460

removing 459

virtual memory
allocating 207

regions
unmapping 463

virtual memory handles
constructing 468

virtual memory objects
creating 476

deleting 477

managing addresses 14, 16

mapping 30, 31

mapping to a region 462

obtaining handles 19, 20, 21

page-out for range in 482

releasing 27

remapping 29, 32

unmapping 17, 18

virtual memory resources
releasing 474

vm_att kernel service 462

vm_cflush kernel service 463

vm_det kernel service 463

vm_guatt Kernel Service 466

vm_gudet Kernel Service 467

vm_handle kernel service 468

vm_makep kernel service 469

vm_mount kernel service 470

vm_protectp kernel service 472

vm_qmodify kernel service 473

vm_release kernel service 474

vm_releasep kernel service 475

vm_umount kernel service 480

vm_write kernel service 481

vm_writep kernel service 482

vms_create kernel service 476

vms_delete kernel service 477

vms_iowait kernel service 478

vn_free kernel service 483

vn_get kernel service 483

vn_getxacl entry point 565

vn_ioctl entry point 567

vn_seek Entry Point 586

vn_setxacl entry point 590

vn_symlink entry point 593

W
w_clear kernel service 486

w_init kernel service 487

w_start kernel service 488

w_stop kernel service 489

wait channels
putting caller to sleep on 318

waitcfree kernel service 484

waiting for free buffer 484

waitq kernel service 485

waking sleeping processes 321

watchdog timers
registering 487

removing 486

starting 488

stopping 489

words
retrieving 173, 174

storing in kernel memory 409, 410

write subroutine
interface to 168

writev subroutine
interface to 171

X
xlate_create kernel service 490

xlate_pin kernel service 491

xlate_remove kernel service 492

xlate_unpin kernel service 493

xm_det kernel service 493

xm_mapin 494

xm_maxmap Kernel Service 495

xmalloc kernel service
described 496

612 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

xmattach kernel service 497

xmattach64 kernel service 499

xmdetach kernel service 500

xmemdma kernel service 501

xmemdma64 kernel service 502

xmemin kernel service 506

xmemout kernel service 507

xmempin kernel service 504

xmempsize Kernel Service 509

xmemunpin kernel service 505

xmfree kernel service 509

Index 613

614 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 1

Readers’ Comments — We’d Like to Hear from You

AIX 5L Version 5.3

Technical Reference: Kernel and Subsystems, Volume 1

 Publication No. SC23-4917-04

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: aix6koub@austin.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-4917-04

SC23-4917-04

���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department 04XA-905-6C006

11501 Burnet Road

Austin, TX 78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U.S.A.

SC23-4917-04

	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	32-Bit and 64-Bit Support for the Single UNIX Specification
	Related Publications

	Chapter 1. Kernel Services
	__pag_getid System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	__pag_getname System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	__pag_getvalue System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	__pag_setname System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	__pag_setvalue System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	acct_add_LL or acct_zero_LL Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	acct_get_projid Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	acct_get_usage Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	acct_interval_register or acct_interval_unregister Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	acct_put Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	add_domain_af Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	add_input_type Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Examples
	Related Information

	add_netisr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	add_netopt Macro
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	as_att Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_att64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_det Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_det64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_geth Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_geth64 Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	as_getsrval Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_getsrval64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_lw_att64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	as_lw_det64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	as_lw_pool_init Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	as_puth Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_puth64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_remap64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_seth Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_seth64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_unremap64 Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	attach Device Queue Management Routine
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	audit_svcbcopy Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	audit_svcfinis Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	audit_svcstart Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	bawrite Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	bdwrite Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	bflush Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	bindprocessor Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes
	Execution Environment
	Related Information

	binval Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	blkflush Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	bread Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	breada Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	brelse Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	bsr_alloc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	bsr_free Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	bsr_query Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	bwrite Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	cancel Device Queue Management Routine
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment

	cfgnadd Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	cfgncb Configuration Notification Control Block
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	cfgndel Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	check Device Queue Management Routine
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	clrbuf Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	clrjmpx Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	common_reclock Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	compare_and_swap Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	copyin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	copyin64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	copyinstr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	copyinstr64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	copyout Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	copyout64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	crcopy Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crdup Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	creatp Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	CRED_GETEUID, CRED_GETRUID, CRED_GETSUID, CRED_GETLUID, CRED_GETEGID, CRED_GETRGID, CRED_GETSGID and CRED_GETNGRPS Macros
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	crexport Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crfree Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crget Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crhold Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crref Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crset Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	curtime Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	d_align Kernel Service
	Purpose
	Library
	Syntax
	Description
	Execution Environment
	Related Information

	d_alloc_dmamem Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	d_cflush Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	delay Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	del_domain_af Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Value
	Example
	Related Information

	del_input_type Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Examples
	Related Information

	del_netisr Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	del_netopt Macro
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	detach Device Queue Management Routine
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	devdump Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	devstrat Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	devswadd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	devswchg Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	devswdel Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	devswqry Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	d_free_dmamem Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	disable_lock Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	disablement_checking_resume Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	disablement_checking_suspend Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	d_map_clear Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	d_map_disable Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	d_map_enable Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	d_map_init Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	d_map_list Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	d_map_page Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	d_map_slave Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	dmp_add Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	dmp_ctl Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	dmp_del Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	dmp_prinit Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	d_roundup Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	d_sync_mem Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	DTOM Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Example
	Related Information

	d_unmap_list Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	d_unmap_slave Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	d_unmap_page Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	dr_reconfig System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	e_assert_wait Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	e_block_thread Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	e_clear_wait Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	e_sleep Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	e_sleepl Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	e_sleep_thread Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Flags
	Return Values
	Execution Environment
	Related Information

	et_post Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	et_wait Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	e_wakeup_w_sig Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	eeh_broadcast Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_clear Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_disable_slot Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_enable_dma Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_enable_pio Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_enable_slot Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_init Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_init_multifunc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_read_slot_state Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_reset_slot Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_slot_error Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	enque Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	errresume Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Related Information

	errsave or errlast Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fetch_and_add Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fetch_and_and or fetch_and_or Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fidtovp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	find_input_type Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_access Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_close Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	fp_close Kernel Service for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	fp_fstat Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_fsync Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	fp_getdevno Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_getf Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_hold Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	fp_ioctl Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_ioctl Kernel Service for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	fp_ioctlx Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	fp_lseek, fp_llseek Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_open Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_open Kernel Service for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	fp_opendev Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_poll Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_read Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_readv Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_rwuio Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_select Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_select Kernel Service notify Routine
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	fp_write Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_write Kernel Service for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	fp_writev Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fubyte Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	fubyte64 Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	fuword Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	fuword64 Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getadsp Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	getblk Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	getc Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getcb Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getcbp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	getcf Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	getcx Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	geteblk Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	geterror Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getexcept Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getfslimit Kernel Service
	Purpose
	Syntax
	Description
	Return Values
	Related Information

	get_pag or get_pag64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	getpid Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	getppidx Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getuerror Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	getufdflags and setufdflags Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	get_umask Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	get64bitparm Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Examples
	Execution Environment
	Implementation Specifics
	Related Information

	gfsadd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	gfsdel Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_clear Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_disable Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Value
	Related Information

	i_enable Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_eoi Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values

	ifa_ifwithaddr Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	ifa_ifwithdstaddr Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	ifa_ifwithnet Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	if_attach Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	if_detach Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	if_down Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	if_nostat Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	ifunit Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	i_init Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_mask Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	init_heap Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	initp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Example
	Return Values
	Related Information

	initp Kernel Service func Subroutine
	Purpose
	Syntax
	Parameters
	Related Information

	io_att Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	io_det Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	io_map Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	io_map_clear Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Related Information

	io_map_init Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	io_unmap Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Related Information

	iodone Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	iomem_att Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	iomem_det Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Evironment
	Return Values
	Related Information

	iostadd Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	iostdel Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	iowait Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	ip_fltr_in_hook, ip_fltr_out_hook, ipsec_decap_hook, inbound_fw, outbound_fw Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Flags
	Expected Return Values
	Related Information

	i_pollsched Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	i_reset Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_sched Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_unmask Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	ldata_alloc Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	ldata_create Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	ldata_destroy Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	ldata_free Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	ldata_grow Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	IS64U Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	kcap_is_set and kcap_is_set_cr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	kcred_genpagvalue Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	kcred_getcap Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_getgroups Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_getpag or kcred_getpag64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kcred_getpagid Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	kcred_getpaginfo Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_getpagname Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	kcred_getpriv Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_setcap Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_setgroups Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_setpag or kcred_setpag64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_setpagname Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	kcred_setpriv Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kgethostname Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Value
	Related Information

	kgetpname Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values

	kgettickd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	klpar_get_info Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes
	Related Information

	kmod_entrypt Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kmod_load Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kmod_unload Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kmsgctl Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kmsgget Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kmsgrcv Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kmsgsnd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kra_attachrset Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	kra_creatp Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	kra_detachrset Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	kra_getrset Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_alloc Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_free Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	krs_getassociativity Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_getinfo Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_getpartition Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_getrad Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_init Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_numrads Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_op Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	krs_setpartition Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ksettickd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Value
	Related Information

	ksettimer Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	kthread_kill Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kthread_start Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kvmgetinfo Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	limit_sigs or sigsetmask Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	lock_alloc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	lock_clear_recursive Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_done Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_free Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_init Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	lock_islocked Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lockl Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	lock_mine Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_read or lock_try_read Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_read_to_write or lock_try_read_to_write Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_set_recursive Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_write or lock_try_write Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_write_to_read Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	loifp Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	longjmpx Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	lookupvp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	looutput Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ltpin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	ltunpin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	m_adj Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	mbreq Structure for mbuf Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	mbstat Structure for mbuf Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	m_cat Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_clattach Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_clget Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	m_clgetm Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_collapse Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_copy Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_copydata Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_copym Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_dereg Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	m_free Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	m_freem Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	m_get Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_getclr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_getclust Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_getclustm Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_gethdr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	M_HASCL Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Example
	Related Information

	m_pullup Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_reg Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	md_restart_block_read Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Prerequisite Information
	Related Information

	md_restart_block_upd Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Prerequisite Information
	Related Information

	MTOCL Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	MTOD Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	M_XMEMD Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Example
	Related Information

	net_attach Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_detach Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	net_error Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_sleep Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_start Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_start_done Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_wakeup Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	net_xmit Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_xmit_trace Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	NLuprintf Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ns_add_demux Network Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_add_filter Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_add_status Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_alloc Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_attach Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_del_demux Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_del_filter Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_del_status Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_detach Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_free Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Files
	Related Information

	panic Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	pci_cfgrw Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pfctlinput Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pffindproto Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pgsignal Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pidsig Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pincf Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	pincode Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	pinu Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pio_assist Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	Process State-Change Notification Routine
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	proch_reg Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Execution Environment
	Related Information

	proch_unreg Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Return Values
	Execution Environment
	Related Information

	prochadd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	prochdel Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	probe or kprobe Kernel Service
	Purpose
	Library (for probe)
	Syntax
	Description
	Parameters
	Flags
	Return Values for probe Subroutine
	Return Values for kprobe Kernal Service
	Execution Environment
	Files
	Related Information

	purblk Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	putc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	putcb Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	putcbp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	putcf Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	putcfl Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	putcx Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	RAS_BLOCK_NULL Exported Data Structure
	Purpose
	Syntax
	Description
	Related Information

	ras_control Exported Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ras_customize Exported Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ras_path_control Exported Kernel Services
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ras_register and ras_unregister Exported Kernel Services
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	raw_input Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	raw_usrreq Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	reconfig_register, reconfig_register_ext, reconfig_unregister, or reconfig_complete Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Execution Environment
	Related Information

	register_HA_handler Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	rmalloc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	rmfree Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	rmmap_create Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	rmmap_create64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	rmmap_getwimg Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	rmmap_remove Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	rmmap_remove64 Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	rtalloc Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtalloc_gr Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtfree Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtinit Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtredirect Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtrequest Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtrequest_gr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rusage_incr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	saveretval64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Examples
	Execution Environment
	Implementation Specifics
	Related Information

	schednetisr Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	selnotify Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	selreg Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Returns Values
	Related Information

	set_pag or set_pag64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	setjmpx Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	setpinit Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	setuerror Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Codes
	Related Information

	shutdown_notify_reg Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	shutdown_notify_unreg Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	sig_chk Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	simple_lock or simple_lock_try Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	simple_lock_init Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	simple_unlock Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	sleep Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	subyte Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	subyte64 Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	suser Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	suword Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	suword64 Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	talloc Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	tfree Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	thread_create Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	thread_self Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	thread_setsched Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	thread_terminate Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	timeout Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	timeoutcf Subroutine for Kernel Services
	Purpose
	Library
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	trc_ishookon Exported Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	trcgenk Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	trcgenkt Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	trcgenkt Kernel Service for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tstart Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	tstop Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	tuning Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples

	ue_proc_check Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ue_proc_register Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ue_proc_unregister Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	uexadd Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	User-Mode Exception Handler for the uexadd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	uexblock Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	uexclear Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	uexdel Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	ufdcreate Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Removing a File Descriptor
	File Operations
	Execution Environment
	Return Values
	Error Codes
	Related Information

	ufdgetf Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ufdhold and ufdrele Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	uiomove Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	unlock_enable Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	unlockl Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	unpin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	unpincode Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	unpinu Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	unregister_HA_handler Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	untimeout Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	uphysio Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	uphysio Kernel Service mincnt Routine
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	uprintf Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ureadc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	uwritec Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	validate_pag or validate_pag64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	vec_clear Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vec_init Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	vfsrele Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vm_att Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_cflush Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_det Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	vm_galloc Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_gfree Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_guatt Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	vm_gudet Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	vm_handle Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_makep Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_mount Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_move Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_protectp Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_qmodify Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vm_release Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_releasep Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vms_create Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vms_delete Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vms_iowait Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vm_uiomove Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_umount Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_write Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_writep Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vn_free Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vn_get Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	waitcfree Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	waitq Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	w_clear Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	w_init Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	w_start Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	w_stop Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	xlate_create Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Execution Environment
	Related Information

	xlate_pin Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Execution Environment
	Related Information

	xlate_remove Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Execution Environment
	Related Information

	xlate_unpin Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xm_det Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	xm_mapin Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Execution Environment
	Related Information

	xm_maxmap Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmalloc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmattach Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmattach64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmdetach Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	xmemdma Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	xmemdma64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	xmempin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmemunpin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmemin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmemout Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmempsize Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	xmfree Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	Chapter 2. Device Driver Operations
	Standard Parameters to Device Driver Entry Points
	Purpose
	Description
	The devno Parameter
	The chan Parameter
	The ext Parameter
	Related Information

	buf Structure
	Purpose
	Introduction to Kernel Buffers
	buf Structure Variables for Block I/O
	Related Information

	bufx Structure
	Purpose
	Description
	bufx Structure Variables for Block I/O
	Related Information

	Character Lists Structure
	Using a Character List
	Related Information

	uio Structure
	Purpose
	Introduction
	Description
	Related Information

	ddclose Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddconfig Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	dddump Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddioctl Device Driver Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ddmpx Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddopen Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddread Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddrevoke Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Files
	Related Information

	ddselect Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddstrategy Device Driver Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	ddwrite Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	Select/Poll Logic for ddwrite and ddread Routines
	Description
	Related Information

	Chapter 3. File System Operations
	List of Virtual File System Operations
	vfs_aclxcntl Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vfs_cntl Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_hold or vfs_unhold Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values

	vfs_init Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_mount Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_root Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_search Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	vfs_statfs Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_sync Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_umount Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_vget Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_access Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_close Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_create Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_create_attr Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_fclear Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_fid Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_finfo Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_fsync Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_fsync_range Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_ftrunc Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_getacl Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vn_getattr Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_getxacl Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vn_hold Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vn_ioctl Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_link Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_lockctl Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_lookup Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_map Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_map_lloff Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_mkdir Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_mknod Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_open Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_rdwr Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_rdwr_attr Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_readdir Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_readdir_eofp Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_readlink Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_rele Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vn_remove Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_rename Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_revoke Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_rmdir Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_seek Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_select Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_setacl Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_setattr Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_setxacl Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vn_strategy Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	vn_symlink Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vn_unmap Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

