
AIX 5L Version 5.3

Technical Reference: Communications,

Volume 1

SC23-4915-03

���

AIX 5L Version 5.3

Technical Reference: Communications,

Volume 1

SC23-4915-03

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 327.

Fourth Edition (July 2006)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in

new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address

comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas

78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any

information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . ix

Highlighting . ix

Case-Sensitivity in AIX . ix

ISO 9000 . ix

32-Bit and 64-Bit Support for the Single UNIX Specification x

Related Publications . x

Chapter 1. Data Link Controls . 1

dlcclose Entry Point of the GDLC Device Manager . 1

dlcconfig Entry Point of the GDLC Device Manager . 2

dlcioctl Entry Point of the GDLC Device Manager . 3

dlcmpx Entry Point of the GDLC Device Manager . 4

dlcopen Entry Point of the GDLC Device Manager . 5

dlcread Entry Point of the GDLC Device Manager . 7

dlcselect Entry Point of the GDLC Device Manager . 8

dlcwrite Entry Point of the GDLC Device Manager . 10

close Subroutine Interface for Data Link Control (DLC) Devices 11

ioctl Subroutine Interface for Data Link Control (DLC) Devices 12

open Subroutine Interface for Data Link Control (DLC) Devices 13

readx Subroutine Interface for Data Link Control (DLC) Devices 15

select Subroutine Interface for Data Link Control (DLC) Devices 16

writex Subroutine Interface for Data Link Control (DLC) Devices 17

open Subroutine Extended Parameters for DLC . 19

read Subroutine Extended Parameters for DLC . 20

write Subroutine Extended Parameters for DLC . 23

Datagram Data Received Routine for DLC . 25

Exception Condition Routine for DLC . 25

I-Frame Data Received Routine for DLC . 26

Network Data Received Routine for DLC . 27

XID Data Received Routine for DLC . 28

ioctl Operations (op) for DLC . 29

Parameter Blocks by ioctl Operation for DLC . 30

DLC_ADD_FUNC_ADDR ioctl Operation for DLC . 31

DLC_ADD_GRP ioctl Operation for DLC . 32

DLC_ALTER ioctl Operation for DLC . 32

DLC_CONTACT ioctl Operation for DLC . 36

DLC_DEL_FUNC_ADDR ioctl Operation for DLC . 36

DLC_DEL_GRP ioctl Operation for DLC . 37

DLC_DISABLE_SAP ioctl Operation for DLC . 37

DLC_ENABLE_SAP ioctl Operation for DLC . 38

DLC_ENTER_LBUSY ioctl Operation for DLC . 41

DLC_ENTER_SHOLD ioctl Operation for DLC . 41

DLC_EXIT_LBUSY ioctl Operation for DLC . 41

DLC_EXIT_SHOLD ioctl Operation for DLC . 42

DLC_GET_EXCEP ioctl Operation for DLC . 42

DLC_HALT_LS ioctl Operation for DLC . 47

DLC_QUERY_LS ioctl Operation for DLC . 47

DLC_QUERY_SAP ioctl Operation for DLC . 50

DLC_START_LS ioctl Operation for DLC . 51

DLC_TEST ioctl Operation for DLC . 53

DLC_TRACE ioctl Operation for DLC . 54

IOCINFO ioctl Operation for DLC . 54

© Copyright IBM Corp. 1997, 2006 iii

Chapter 2. Data Link Provider Interface (DLPI) . 55

DL_ATTACH_REQ Primitive . 55

DL_BIND_ACK Primitive . 56

DL_BIND_REQ Primitive . 57

DL_CONNECT_CON Primitive . 60

DL_CONNECT_IND Primitive . 61

DL_CONNECT_REQ Primitive . 63

DL_CONNECT_RES Primitive . 64

DL_DATA_IND Primitive . 66

DL_DATA_REQ Primitive . 66

DL_DETACH_REQ Primitive . 67

DL_DISABMULTI_REQ Primitive . 68

DL_DISCONNECT_IND Primitive . 69

DL_DISCONNECT_REQ Primitive . 71

DL_ENABMULTI_REQ Primitive . 73

DL_ERROR_ACK Primitive . 74

DL_GET_STATISTICS_ACK Primitive . 75

DL_GET_STATISTICS_REQ . 76

DL_INFO_ACK Primitive . 77

DL_INFO_REQ Primitive . 79

DL_OK_ACK Primitive . 80

DL_PHYS_ADDR_ACK Primitive . 81

DL_PHYS_ADDR_REQ Primitive . 81

DL_PROMISCOFF_REQ Primitive . 82

DL_PROMISCON_REQ Primitive . 84

DL_RESET_CON Primitive . 86

DL_RESET_IND Primitive . 86

DL_RESET_REQ Primitive . 87

DL_RESET_RES Primitive . 88

DL_SUBS_BIND_ACK Primitive . 89

DL_SUBS_BIND_REQ Primitive . 90

DL_SUBS_UNBIND_REQ Primitive . 92

DL_TEST_CON Primitive . 93

DL_TEST_IND Primitive . 94

DL_TEST_REQ Primitive . 95

DL_TEST_RES Primitive . 96

DL_TOKEN_ACK Primitive . 97

DL_TOKEN_REQ Primitive . 98

DL_UDERROR_IND Primitive . 99

DL_UNBIND_REQ Primitive . 100

DL_UNITDATA_IND Primitive . 101

DL_UNITDATA_REQ Primitive . 102

DL_XID_CON Primitive . 103

DL_XID_IND Primitive . 104

DL_XID_REQ Primitive . 105

DL_XID_RES Primitive . 107

Chapter 3. eXternal Data Representation . 109

xdr_accepted_reply Subroutine . 109

xdr_array Subroutine . 109

xdr_bool Subroutine . 110

xdr_bytes Subroutine . 111

xdr_callhdr Subroutine . 112

xdr_callmsg Subroutine . 112

xdr_char Subroutine . 113

xdr_destroy Macro . 114

iv Technical Reference: Communications, Volume 1

xdr_enum Subroutine . 114

xdr_float Subroutine . 115

xdr_free Subroutine . 115

xdr_getpos Macro . 116

xdr_inline Macro . 117

xdr_int Subroutine . 117

xdr_long Subroutine . 118

xdr_opaque Subroutine . 119

xdr_opaque_auth Subroutine . 119

xdr_pmap Subroutine . 120

xdr_pmaplist Subroutine . 121

xdr_pointer Subroutine . 121

xdr_reference Subroutine . 122

xdr_rejected_reply Subroutine . 123

xdr_replymsg Subroutine . 124

xdr_setpos Macro . 124

xdr_short Subroutine . 125

xdr_string Subroutine . 126

xdr_u_char Subroutine . 126

xdr_u_int Subroutine . 127

xdr_u_long Subroutine . 128

xdr_u_short Subroutine . 128

xdr_union Subroutine . 129

xdr_vector Subroutine . 130

xdr_void Subroutine . 131

xdr_wrapstring Subroutine . 131

xdr_authunix_parms Subroutine . 132

xdr_double Subroutine . 132

xdrmem_create Subroutine . 133

xdrrec_create Subroutine . 134

xdrrec_endofrecord Subroutine . 135

xdrrec_eof Subroutine . 135

xdrrec_skiprecord Subroutine . 136

xdrstdio_create Subroutine . 137

Chapter 4. AIX 3270 Host Connection Program (HCON) 139

cfxfer Function . 139

fxfer Function . 141

g32_alloc Function . 144

g32_close Function . 147

g32_dealloc Function . 148

g32_fxfer Function . 150

g32_get_cursor Function . 157

g32_get_data Function . 159

g32_get_status Function . 161

g32_notify Function . 163

g32_open Function . 166

g32_openx Function . 169

g32_read Function . 175

g32_search Function . 177

g32_send_keys Function . 180

g32_write Function . 182

G32ALLOC Function . 184

G32DLLOC Function . 185

G32READ Function . 186

G32WRITE Function . 187

Contents v

Chapter 5. Network Computing System (NCS) . 189

lb_$lookup_interface Library Routine (NCS) . 189

lb_$lookup_object Library Routine (NCS) . 190

lb_$lookup_object_local Library Routine . 191

lb_$lookup_range Library Routine . 193

lb_$lookup_type Library Routine . 194

lb_$register Library Routine (NCS) . 196

lb_$unregister Library Routine . 197

pfm_$cleanup Library Routine . 198

pfm_$enable Library Routine . 199

pfm_$enable_faults Library Routine . 199

pfm_$inhibit Library Routine . 200

pfm_$inhibit_faults Library Routine . 200

pfm_$init Library Routine . 201

pfm_$reset_cleanup Library Routine . 202

pfm_$rls_cleanup Library Routine . 203

pfm_$signal Library Routine (NCS) . 203

rpc_$alloc_handle Library Routine . 204

rpc_$bind Library Routine . 205

rpc_$clear_binding Library Routine . 206

rpc_$clear_server_binding Library Routine . 207

rpc_$dup_handle Library Routine . 208

rpc_$free_handle Library Routine . 209

rpc_$inq_binding Library Routine (NCS) . 210

rpc_$inq_object Library Routine (NCS) . 211

rpc_$listen Library Routine . 211

rpc_$name_to_sockaddr Library Routine . 212

rpc_$register Library Routine . 213

rpc_$set_binding Library Routine . 214

rpc_$sockaddr_to_name Library Routine . 215

rpc_$unregister Library Routine . 216

rpc_$use_family Library Routine . 217

rpc_$use_family_wk Library Routine . 218

uuid_$decode Library Routine (NCS) . 219

uuid_$encode Library Routine (NCS) . 220

uuid_$gen Library Routine (NCS) . 221

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 223

nis_add_entry (NIS+ API) . 223

nis_first_entry (NIS+ API) . 226

nis_list (NIS+ API) . 230

nis_local_directory (NIS+ API) . 235

nis_lookup (NIS+ API) . 236

nis_modify_entry (NIS+ API) . 240

nis_next_entry (NIS+ API) . 244

nis_perror (NIS+ API) . 247

nis_remove_entry (NIS+ API) . 248

nis_sperror (NIS+ API) . 252

yp_all Subroutine . 253

yp_bind Subroutine . 254

yp_first Subroutine . 255

yp_get_default_domain Subroutine . 256

yp_master Subroutine . 257

yp_match Subroutine . 258

yp_next Subroutine . 259

yp_order Subroutine . 260

vi Technical Reference: Communications, Volume 1

yp_unbind Subroutine . 261

yp_update Subroutine . 262

yperr_string Subroutine . 263

ypprot_err Subroutine . 264

Chapter 7. New Database Manager (NDBM) . 265

dbm_close Subroutine . 265

dbm_delete Subroutine . 265

dbm_fetch Subroutine . 266

dbm_firstkey Subroutine . 267

dbm_nextkey Subroutine . 267

dbm_open Subroutine . 268

dbm_store Subroutine . 269

dbmclose Subroutine . 269

dbminit Subroutine . 270

delete Subroutine . 271

fetch Subroutine . 271

firstkey Subroutine . 272

nextkey Subroutine . 272

store Subroutine . 273

Chapter 8. Remote Procedure Calls (RPC) . 275

auth_destroy Macro . 275

authdes_create Subroutine . 275

authdes_getucred Subroutine . 276

authnone_create Subroutine . 277

authunix_create Subroutine . 278

authunix_create_default Subroutine . 279

callrpc Subroutine . 279

cbc_crypt, des_setparity, or ecb_crypt Subroutine . 280

clnt_broadcast Subroutine . 282

clnt_call Macro . 283

clnt_control Macro . 284

clnt_create Subroutine . 285

clnt_destroy Macro . 286

clnt_freeres Macro . 286

clnt_geterr Macro . 287

clnt_pcreateerror Subroutine . 287

clnt_perrno Subroutine . 288

clnt_perror Subroutine . 289

clnt_spcreateerror Subroutine . 290

clnt_sperrno Subroutine . 290

clnt_sperror Subroutine . 291

clntraw_create Subroutine . 292

clnttcp_create Subroutine . 293

clntudp_create Subroutine . 294

get_myaddress Subroutine . 295

getnetname Subroutine . 296

host2netname Subroutine . 296

key_decryptsession Subroutine . 297

key_encryptsession Subroutine . 298

key_gendes Subroutine . 299

key_setsecret Subroutine . 300

netname2host Subroutine . 300

netname2user Subroutine . 301

pmap_getmaps Subroutine . 302

Contents vii

pmap_getport Subroutine . 303

pmap_rmtcall Subroutine . 304

pmap_set Subroutine . 305

pmap_unset Subroutine . 305

registerrpc Subroutine . 306

rtime Subroutine . 307

svc_destroy Macro . 308

svc_exit Subroutine . 308

svc_freeargs Macro . 309

svc_getargs Macro . 309

svc_getcaller Macro . 310

svc_getreqset Subroutine . 311

svc_register Subroutine . 312

svc_run Subroutine . 313

svc_sendreply Subroutine . 313

svc_unregister Subroutine . 314

svcerr_auth Subroutine . 314

svcerr_decode Subroutine . 315

svcerr_noproc Subroutine . 316

svcerr_noprog Subroutine . 316

svcerr_progvers Subroutine . 317

svcerr_systemerr Subroutine . 317

svcerr_weakauth Subroutine . 318

svcfd_create Subroutine . 318

svcraw_create Subroutine . 319

svctcp_create Subroutine . 320

svcudp_create Subroutine . 321

user2netname Subroutine . 322

xprt_register Subroutine . 323

xprt_unregister Subroutine . 323

Data Link Provider Interface (DLPI) . 324

Appendix. Notices . 327

Trademarks . 328

Index . 329

viii Technical Reference: Communications, Volume 1

About This Book

This book provides experienced C programmers with complete detailed information about data link

controls, the Data Link Provider Interface, eXternal Data Representation, the AIX 3270 Host Connection

Program, the Network Computing System, Network Information Services and Network Information

Services+, the New Database Manager, and remote procedure calls for the AIX operating system. To use

the book effectively, you should be familiar with commands, system calls, subroutines, file formats, and

special files. This publication is also available on the documentation CD that is shipped with the operating

system.

This book is part of the six-volume technical reference set, AIX 5L Version 5.3 Technical Reference, that

provides information on system calls, kernel extension calls, and subroutines in the following volumes:

v AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 1 and AIX 5L

Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2 provide information

on system calls, subroutines, functions, macros, and statements associated with base operating system

runtime services.

v AIX 5L Version 5.3 Technical Reference: Communications Volume 1 and AIX 5L Version 5.3 Technical

Reference: Communications Volume 2 provide information on entry points, functions, system calls,

subroutines, and operations related to communications services.

v AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1 and AIX 5L Version 5.3

Technical Reference: Kernel and Subsystems Volume 2 provide information about kernel services,

device driver operations, file system operations, subroutines, the configuration subsystem, the

communications subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem,

the M-audio capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and

the serial DASD subsystem.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files,

structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects

such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to

be supplied by the user.

Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of

portions of program code similar to what you might write

as a programmer, messages from the system, or

information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between

uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,

always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 1997, 2006 ix

32-Bit and 64-Bit Support for the Single UNIX Specification

Beginning with Version 5.2, the operating system is designed to support The Open Group’s Single UNIX

Specification Version 3 (UNIX 03) for portability of UNIX-based operating systems. Many new interfaces,

and some current ones, have been added or enhanced to meet this specification, making Version 5.2 even

more open and portable for applications, while remaining compatible with previous releases of AIX.

To determine the proper way to develop a UNIX 03-portable application, you may need to refer to The

Open Group’s UNIX 03 specification, which can be accessed online or downloaded from

http://www.unix.org/ .

Related Publications

The following books contain information about or related to application programming interfaces:

v Operating system and device management

v Networks and communication management

v AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

v AIX 5L Version 5.3 Communications Programming Concepts

v AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts

v AIX 5L Version 5.3 Files Reference

x Technical Reference: Communications, Volume 1

Chapter 1. Data Link Controls

dlcclose Entry Point of the GDLC Device Manager

Purpose

Closes a generic data link control (GDLC) channel.

Syntax

#include <sys/device.h>

int dlcclose (devno, chan)

Note: The dlc prefix is replaced with the three-digit prefix for the specific GDLC device manager being

closed.

Description

Each GDLC supports the dlcclose entry point as its switch table entry for the close subroutine. The file

system calls this entry point from the process environment only.The dlcclose entry point is called when a

user’s application program invokes the close subroutine or when a kernel user calls the fp_close kernel

service. This routine disables a GDLC channel for the user. If this is the last channel to close on the port,

the GDLC device manager issues a close to the network device handler and deletes the kernel process

that serviced device handler events on behalf of the user.

Parameters

 devno Indicates major and minor device numbers. This is a dev_t device number that specifies both

the major and minor device numbers of the GDLC device manager. There is one dev_t device

number for each type of GDLC, such as Ethernet, Token-Ring, or SDLC.

chan Specifies the channel ID assigned by GDLC in the dlcmpx routine at open time.

Return Values

 0 Indicates a successful operation.

EBADF Indicates a bad file number. This value is defined in the

/usr/include/sys/errno.h file.

Related Information

The close subroutine.

The ddclose device entry point.

The dlcmpx entry point of the GDLC device manager, dlcopen entry point of the GDLC device manager.

The fp_close kernel service.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

© Copyright IBM Corp. 1997, 2006 1

dlcconfig Entry Point of the GDLC Device Manager

Purpose

Configures the generic data link control (GDLC) device manager.

Syntax

#include <sys/uio.h>

#include <sys/device.h>

int dlcconfig (devno, op, uiop)

Note: The dlc prefix is replaced with the three-digit prefix for the specific GDLC device manager being

configured.

Description

The dlcconfig entry point is called during the kernel startup procedures to initialize the GDLC device

manager with its device information. The operating system also calls this routine when the GDLC is being

terminated or queried for vital product data.

Each GDLC supports the dlcconfig entry point as its switch table entry for the sysconfig subroutine. The

file system calls this entry point from the process environment only.

Parameters

 devno Indicates major and minor device numbers. This is a dev_t device number that specifies both the major

and minor device numbers of the GDLC device manager. One dev_t device number exists for each type of

GDLC, such as Ethernet, Token-Ring, or SDLC.

op Specifies the operation code that indicates the function to be performed:

CFG_INIT

Initializes the GDLC device manager.

CFG_TERM

Terminates the GDLC device manager.

CFG_QVPD

Queries GDLC vital product data. This operation code is optional.

uiop Points to the uio structure specifying the location and length of the caller’s data area for the CFG_INIT and

CFG_QVPD operation codes. No data areas are specifically defined for GDLC, but DLCs can define the

data areas for a particular network.

Return Values

The following return values are defined in the /usr/include/sys/errno.h file:

 0 Indicates a successful operation.

EINVAL Indicates an invalid value.

ENODEV Indicates that no such device handler is present.

EFAULT Indicates that a kernel service, such as the uiomove or devswadd kernel service, has failed.

Related Information

The ddconfig device entry point.

The uiomove kernel service.

2 Technical Reference: Communications, Volume 1

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

dlcioctl Entry Point of the GDLC Device Manager

Purpose

Issues specific commands to generic data link control (GDLC).

Syntax

#include <sys/device.h>

#include <sys/gdlextcb.h>

int dlcioctl (devno, op, arg, devflag, chan, ext)

Note: The dlc prefix is replaced with the three-digit prefix for the specific GDLC device manager being

controlled.

Description

The dlcioctl entry point is called when an application program invokes the ioctl subroutine or when a

kernel user calls the fp_ioctl kernel service. The dlcioctl routine decodes commands for special functions

in the GDLC.

Each GDLC supports the dlcioctl entry point as its switch table entry for the ioctl subroutine. The file

system calls this entry point from the process environment only.

Parameters

 devno Indicates major and minor device numbers. This is a dev_t device number that specifies

both the major and minor device numbers of the GDLC device manager. One dev_t

device number exists for each type of GDLC, such as Ethernet, Token-Ring, or SDLC.

op Specifies the parameter from the subroutine that specifies the operation to be performed.

See ″ioctl Operations (op) for DLC″ for a list of all possible operators.

arg Indicates the parameter from the subroutine that specifies the address of a parameter

block. See ″Parameter Blocks by ioctl Operation for DLC″ for a list of all possible

arguments.

devflag Specifies the flag word with the following flags defined:

DKERNEL

Entry point called by kernel routine using the fp_open kernel service. This

indicates that the arg parameter points to kernel space.

DREAD

Open for reading. This flag is ignored.

DWRITE

Open for writing. This flag is ignored.

DAPPEND

Open for appending. This flag is ignored.

DNDELAY

Device open in nonblocking mode. This flag is ignored.

chan Specifies the channel ID assigned by GDLC in the dlcmpx routine at open time.

ext Specifies the extended subroutine parameter. This parameter is ignored by GDLC.

Chapter 1. Data Link Controls 3

Return Values

The following return values are defined in the /usr/include/sys/errno.h file.

 Value Description

0 Indicates a successful operation.

EBADF Indicates a bad file number.

EINVAL Indicates an invalid value.

ENOMEM Indicates insufficient resources to satisfy the ioctl

subroutine.

Related Information

The ioctl subroutine.

The ddioctl device driver entry point.

The dlcmpx entry point of the GDLC device manager.

ioctl Operations (op) for DLC.

The fp_ioctl kernel service, fp_open kernel service.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

dlcmpx Entry Point of the GDLC Device Manager

Purpose

Decodes the device handler’s special file name appended to the open call.

Syntax

#include <sys/device.h>

int dlcmpx (devno, chanp, channame)

Note: The dlc prefix is replaced with the three-digit prefix for the specific GDLC device manager being

opened.

Description

The operating system calls the dlcmpx entry point when a generic data link control (GDLC) channel is

allocated. This routine decodes the name of the device handler appended to the end of the GDLC special

file name at open time. GDLC allocates the channel and returns the value in the chanp parameter.

This routine is also called following a close subroutine to deallocate the channel. In this case the chanp

parameter is passed to GDLC to identify the channel being deallocated. Since GDLC allocates a new

channel for each open subroutine, a dlcmpx routine follows each call to the dlcclose routine.

Each GDLC supports the dlcmpx entry point as its switch table entry for the open and close subroutines.

The file system calls this entry point from the process environment only.

4 Technical Reference: Communications, Volume 1

Parameters

 devno Indicates major and minor device numbers. This is a dev_t device number that specifies both the

major and minor device numbers of the GDLC device manager. There is one dev_t device number

for each type of GDLC, such as Ethernet, Token-Ring, or SDLC.

chanp Specifies the channel ID returned if a valid path name exists for the device handler, and the

openflag is set. If no channel ID is allocated, this parameter is set to a value of -1 by GDLC.

channame Points to the appended path name (path name extension) of the device handler that is used by

GDLC to attach to the network. If this is null, the channel is deallocated.

Return Values

The following return values are defined in the /usr/include/sys/errno.h file:

 Value Description

0 Indicates a successful operation.

EBADF Indicates a bad file number.

EINVAL Indicates an invalid value.

Related Information

The close subroutine, open subroutine.

The ddmpx device entry point.

The dlcclose entry point for the GDLC device manager, dlcopen entry point for the GDLC device

manager.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

dlcopen Entry Point of the GDLC Device Manager

Purpose

Opens a generic data link control (GDLC) channel.

Syntax

#include <sys/device.h>

#include <sys/gdlextcb.h>

int dlcopen (devno, devflag, chan, ext)

Note: The dlc prefix is replaced with the three-digit prefix for the specific GDLC device manager being

opened.

Description

The dlcopen entry point is called when a user’s application program invokes the open or openx

subroutine, or when a kernel user calls the fp_open kernel service. The GDLC device manager opens the

specified communications device handler and creates a kernel process to catch posted events from that

port. Additional opens to the same port share both the device handler open and the GDLC kernel process

created on the original open.

Each GDLC supports the dlcopen entry point as its switch table entry for the open and openx

subroutines. The file system calls this entry point from the process environment only.

Chapter 1. Data Link Controls 5

Note: It may be more advantageous to handle the actual device handler open and kernel process creation

in the dlcmpx routine. This is left as a specific DLC’s option.

Parameters

 devno Indicates major and minor device numbers. This is a dev_t device number that specifies both

the major and minor device numbers of the GDLC device manager. One dev_t device number

exists for each type of GDLC, such as Ethernet, Token-Ring, or SDLC.

devflag Specifies the flag word with the following flags defined:

DKERNEL

Entry point called by kernel routine using the fp_open kernel service. All command

extensions and ioctl arguments are in kernel space.

DREAD

Open for reading. This flag is ignored.

DWRITE

Open for writing. This flag is ignored.

DAPPEND

Open for appending. This flag is ignored.

DNDELAY

Device open in nonblocking mode. This flag is ignored.

chan Specifies the channel ID assigned by GDLC in the dlcmpx routine.

ext Specifies the extended subroutine parameter. This is a pointer to the dlc_open_ext extended

I/O structure for the open subroutine.

Return Values

The following return values are defined in the /usr/include/sys/errno.h file.

 Value Description

0 Indicates a successful operation.

ECHILD Indicates that the device manager cannot create a kernel process.

EINVAL Indicates an invalid value.

ENODEV Indicates that no such device handler is present.

ENOMEM Indicates insufficient resources to satisfy the open subroutine.

EFAULT Indicates that a kernel service, such as the copyin or initp kernel service was

unsuccessful.

Related Information

The open or openx subroutine.

The ddopen device entry point.

The dlcclose entry point of the GDLC device manager, dlcmpx entry point of the GDLC device manager.

The fp_open kernel service, copyin kernel service, initp kernel service.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

6 Technical Reference: Communications, Volume 1

dlcread Entry Point of the GDLC Device Manager

Purpose

Reads receive data from generic data link control (GDLC).

Syntax

#include <sys/device.h>

#include <sys/gdlextcb.h>

int dlcread (devno, uiop, chan, ext)

Note: The dlc prefix is replaced with the three-digit prefix for the specific GDLC device manager being

read.

Description

The dlcread entry point is called when a user application program invokes the readx subroutine. Kernel

users do not call an fp_read kernel service. All receive data is returned to the user in the same order as

received. The type of data that was read is indicated, as well as the service access point (SAP) and link

station (LS) identifiers.

The following fields in the uio and iov structures are used to control the read-data transfer operation:

 Field Description

uio_iov Points to an iovec structure.

uio_iovcnt Indicates the number of elements in the iovec structure. This must be set to a value

of 1. Vectored read operations are not supported.

uio_offset Indicates the file offset established by a previous fp_lseek kernel service. This field

is ignored by GDLC.

uio_segflag Indicates whether the data area is in application or kernel space. This is set to the

UIO_USERSPACE value by the file I/O subsystem to indicate application space.

uio_fmode Contains the value of the file mode set with the open applications subroutine to

GDLC.

uio_resid Specifies initially the total byte count of the receive data area. GDLC decrements this

count for each packet byte received using the uiomove kernel service.

iovec structure Contains the starting address and length of the received data.

iov_base Specifies where GDLC writes the address of the received data. This field is a

variable in the iovec structure.

iov_len Contains the byte length of the data. This field is a variable in the iovec structure.

Each GDLC supports the dlcread entry point as its switch table entry for the readx subroutine. The file

system calls this entry point from the process environment only.

Parameters

 devno Indicates major and minor device numbers. This is a dev_t device number that specifies both

the major and minor device numbers of the GDLC device manager. One dev_t device number

exists for each type of GDLC, such as Ethernet, Token-Ring, or SDLC.

uiop Points to the uio structure containing the read parameters.

chan Specifies the channel ID assigned by GDLC in the dlcmpx routine at open time.

ext Specifies the extended subroutine parameter. This is a pointer to the extended I/O structure.

The argument to this parameter must always be in the application space. See the ″read

Subroutine Extended Parameters for DLC″ for more information on this parameter.

Chapter 1. Data Link Controls 7

Return Values

Successful read operations and those truncated due to limited user data space each return a value of 0

(zero). If more data is received from the media than will fit into the application data area, the DLC_OFLO

value indicator is set in the command extension area (dlc_io_ext) to indicate that the read is truncated. All

excess data is lost.

The following return values are defined in the /usr/include/sys/errno.h file:

 Value Description

EBADF Indicates a bad file number.

EINTR Indicates that a signal interrupted the routine before it received data.

EINVAL Indicates an invalid value.

ENOMEM Indicates insufficient resources to satisfy the read operation.

Related Information

The open subroutine, readx subroutine.

The ddread device entry point.

The dlcmpx entry point of the GDLC device manager, dlcwrite entry point of the GDLC device manager.

The fp_lseek kernel service, fp_read kernel service, uiomove kernel service.

read Subroutine Extended Parameters for DLC.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

dlcselect Entry Point of the GDLC Device Manager

Purpose

Selects for asynchronous criteria from generic data link control (GDLC), such as receive data completion

and exception conditions.

Syntax

#include <sys/device.h>

#include <sys/poll.h>

#include <sys/gdlextcb.h>

int dlcselect (devno, events, reventp, chan)

Note: The dlc prefix is replaced with the three-digit prefix for the specific GDLC device manager being

selected.

Description

The dlcselect entry point is called when a user application program invokes a select or poll subroutine.

This allows the user to select receive data or exception conditions. The POLLOUT write-availability criteria

is not supported. If no results are available at the time of a select subroutine, the user process is put to

sleep until an event occurs.

If one or more events specified in the events parameter are true, the dlcselect routine updates the

reventp (returned events) parameter (passed by reference) by setting the corresponding event bits that

indicate which events are currently true.

8 Technical Reference: Communications, Volume 1

If none of the requested events are true, the dlcselect routine sets the returned events parameter to a

value of 0 (passed by reference using the reventp parameter) and checks the POLLSYNC flag in the

events parameter. If this flag is true, the routine returns because the event request was a synchronous

request. If the POLLSYNC flag is false, an internal flag is set for each event requested in the events

parameter.

When one or more of the requested events become true, GDLC issues the selnotify kernel service to

notify the kernel that a requested event or events have become true. The internal flag indicating that the

event was requested is then reset to prevent renotification of the event.

If the port in use is in a closed state, implying that the requested event or events can never be satisfied,

GDLC sets the returned events flags to a value of 1 for each event that can never be satisfied. This is

done so that the select or poll subroutine does not wait indefinitely.

Kernel users do not call an fp_select kernel service since their receive data and exception notification

functions are called directly by GDLC. ″open Subroutine Extended Parameters for DLC″ details how these

function handlers are specified.

Each GDLC supports the dlcselect entry point as its switch table entry for the select or poll subroutines.

The file system calls this entry point from the process environment only.

Parameters

 devno Indicates major and minor device numbers. This is a dev_t device number that specifies both

the major and minor device numbers of the GDLC device manager. One dev_t device number

exists for each type of GDLC, such as Ethernet, Token-Ring, or SDLC.

events Identifies the events to check. The following events are:

POLLIN

Read selection.

POLLOUT

Write selection. This is not supported by GDLC.

POLLPRI

Exception selection.

POLLSYNC

This request is a synchronous request only. The routine should not perform a

selnotify kernel service routine due to this request if the events occur later.

reventp Identifies a returned events pointer. This is a parameter passed by reference to indicate which

of the selected events are true at the time of the call. See the preceding events parameter for

possible values.

chan Specifies the channel ID assigned by GDLC in the dlcmpx routine at open time.

Return Values

The following return values are defined in the /usr/include/sys/errno.h file:

 Value Description

0 Indicates a successful operation.

EBADF Indicates a bad file number.

EINTR Indicates that a signal interrupted the subroutine before it found any of the selected

events.

EINVAL Indicates that the specified POLLOUT write selection is not supported.

Chapter 1. Data Link Controls 9

Related Information

The select subroutine, poll subroutine.

The ddselect device entry point, dlcmpx entry point.

The fp_select kernel service.

open Subroutine Extended Parameters for DLC.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

dlcwrite Entry Point of the GDLC Device Manager

Purpose

Writes transmit data to generic data link control (GDLC).

Syntax

#include <sys/uio.h>

#include <sys/device.h>

#include <sys/gdlextcb.h>

int dlcwrite (devno, uiop, chan, ext)

Note: The dlc prefix is replaced with the three-digit prefix for the specific GDLC device manager being

written.

Description

The dlcwrite entry point is called when a user application program invokes a writex subroutine or when a

kernel user calls the fp_write kernel service. An extended write is used in order to specify the type of data

being sent, as well as the service access point (SAP) and link station (LS) identifiers.

The following fields in the uio and iov structures are used to control the write data transfer operation:

 Field Description

uio_iov Points to an iovec structure.

uio_iovcnt Indicates the number of elements in the iovec structure. This must be set to a value

of 1 for the kernel user, indicating that there is a single communications memory

buffer (mbuf) chain associated with the write subroutine.

uio_offset Specifies the file offset established by a previous fp_lseek kernel service. This field

is ignored by GDLC.

uio_segflag Indicates whether the data area is in application or kernel space. This field is set to

the UIO_USERSPACE value by the file I/O subsystem if the data area is in

application space. The field must be set to the UIO_SYSSPACE value by the kernel

user to indicate kernel space.

uio_fmode Contains the value of the file mode set during an application open subroutine to

GDLC or can be set directly during a fp_open kernel service to GDLC.

uio_resid Contains the total byte count of the transmit data area for application users. For

kernel users, GDLC ignores this field since the communications memory buffer

(mbuf) also carries this information.

iovec structure Contains the starting address and length of the transmit. (See the iov_base and

iov_len fields.)

iov_base Specifies a variable in the iovec structure where GDLC gets the address of the

application user’s transmit data area or the address of the kernel user’s transmit

mbuf.

10 Technical Reference: Communications, Volume 1

Field Description

iov_len Specifies a variable in the iovec structure that contains the byte length of the

application user’s transmit data area. This variable is ignored by GDLC for kernel

users, since the transmit mbuf contains a length field.

Each GDLC supports the dlcwrite entry point as its switch table entry for the writex subroutine. The file

system calls this entry point from the process environment only.

Parameters

 devno Indicates major and minor device numbers. This is a dev_t device number that specifies both

the major and minor device numbers of the GDLC device manager. One dev_t device

number exists for each type of GDLC, such as Ethernet, Token-Ring, or SDLC.

uiop Points to the uio structure containing the write parameters.

chan Specifies the channel ID assigned by GDLC in the dlcmpx routine at open time.

ext Specifies the extended subroutine parameter. This is a pointer to the extended I/O structure.

This data must be in the application space if the uio_fmode field indicates an application

subroutine or in the kernel space if the uio_fmode field indicates a kernel subroutine. See the

″write Subroutine Extended Parameters for DLC″ for more information on this parameter.

Return Values

The following return values are defined in the /usr/include/sys/errno.h file:

 Value Description

0 Indicates a successful operation.

EAGAIN Indicates that transmit is temporarily blocked and a sleep cannot be issued.

EBADF Indicates a bad file number (application).

EINTR Indicates that a signal interrupted the routine before it could complete successfully.

EINVAL Indicates an invalid value, such as too much data for a single packet.

ENOMEM Indicates insufficient resources to satisfy the write subroutine, such as a lack of

communications memory buffers (mbufs).

ENXIO Indicates an invalid file pointer (kernel).

Related Information

The open subroutine, writex subroutine.

The dlcmpx entry point of the GDLC device manager, dlcread entry point of the GDLC device manager,

ddwrite device entry point.

The fp_lseek kernel service, fp_open kernel service, fp_write kernel service.

write Subroutine Extended Parameters for DLC.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

close Subroutine Interface for Data Link Control (DLC) Devices

Purpose

Closes the generic data link control (GDLC) device manager using a file descriptor.

Chapter 1. Data Link Controls 11

Syntax

int close (fildes)

Description

The close subroutine disables a GDLC channel. If this is the last channel to close on a port, the GDLC

device manager is reset to an idle state on that port and the communications device handler is closed.

Each GDLC supports the close subroutine interface by way of its dlcclose and dlcmpx entry points. This

subroutine can be called from the process environment only.

Parameters

 fildes Specifies the file descriptor of the GDLC being closed.

Return Values

 0 Indicates a successful operation.

EBADF Indicates a bad file number. This value is defined in the /usr/include/sys/errno.h file.

If an error occurs, a value of -1 is also returned.

Related Information

The close subroutine.

open Subroutine Interface for DLC Devices .

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

ioctl Subroutine Interface for Data Link Control (DLC) Devices

Purpose

Transfers special commands to generic data link control (GDLC) using a file descriptor.

Syntax

#include <sys/ioctl.h>

#include <sys/devinfo.h>

#include <sys/gdlextcb.h>

int ioctl (fildes, op, arg);

Description

The ioctl subroutine initiates various GDLC functions, such as changing configuration parameters,

contacting a remote link, and testing a link. Most of these operations can be completed before returning to

the user (synchronously). Since some operations take longer, asynchronous results are returned later

using the exception condition notification. Application users can obtain these exceptions using the

DLC_GET_EXCEP ioctl operation. For more information on the functions that can be initiated using the

ioctl subroutine, see ″ioctl Operations (op) for DLC″ and ″Parameter Blocks by ioctl Operation for DLC″.

Each GDLC supports the ioctl subroutine interface via its dlcioctl entry point. This subroutine may be

called from the process environment only.

12 Technical Reference: Communications, Volume 1

Parameters

 fildes Specifies the file descriptor of the target GDLC.

op Specifies the operation to be performed by GDLC. See ″ioctl Operations (op) for DLC″ for a

listing of all possible operators.

arg Specifies the address of the parameter block. See ″Parameter Blocks by ioctl Operations for

DLC″ for a listing of possible values.

Return Values

 0 Indicates a successful operation.

If an error occurs, a value of -1 is returned with one of the following error values available using the errno

global variable, as defined in the /usr/include/sys/errno.h file:

 Value Description

EBADF Indicates a bad file number.

EINVAL Indicates an invalid argument.

ENOMEM Indicates insufficient resources to satisfy the ioctl

subroutine.

Related Information

The ioctl subroutine.

ioctl Operations (op) for DLC.

Parameter Blocks by ioctl Operation for DLC.

Generic Data Link Control (GDLC) Environment Introduction in AIX 5L Version 5.3 Communications

Programming Concepts.

open Subroutine Interface for Data Link Control (DLC) Devices

Purpose

Opens the generic data link control (GDLC) device manager by special file name.

Syntax

#include <fcntl.h>

#include <sys/gdlextcb.h>

int open (path, oflag, mode)

or

int openx (path, oflag, mode, ext)

Description

The open subroutine allows the application user to open a GDLC device manager by specifying the DLC

special file name and the target device handler special file name. Since the GDLC device manager is

multiplexed, more than one process can open it (or the same process many times) and still have unique

channel identifications.

Chapter 1. Data Link Controls 13

Each open carries the communications device handler’s special file name so that the DLC knows on which

port to transfer data. This name must directly follow the DLC’s special file name. For example, in the

/dev/dlcether/ent0 character string, ent0 is the special file name of the Ethernet device handler. GDLC

obtains this name using its dlcmpx routine.

Each GDLC supports the open subroutine interface by way of its dlcopen and dlcmpx entry points. This

subroutine may be called from the process environment only.

Parameters

 path Consists of a character string containing the /dev special file name of the GDLC device

manager, with the name of the communications device handler appended as follows:

/dev/dlcether/ent0

oflag Specifies a value for the file status flag. The GDLC device manager ignores all but the

following flags:

O_RDWR

Open for reading and writing. This must be set for GDLC or the open will fail.

O_NDELAY, O_NONBLOCK

Subsequent reads with no data present and writes that cannot get enough resources

will return immediately. The calling process is not put to sleep.

mode Specifies the O_CREAT mode parameter. This is ignored by GDLC.

ext Specifies the extended subroutine parameter. This is a pointer to the dlc_open_ext extended

I/O structure for the open subroutines. See ″open Subroutine Extended Parameters for DLC″

for more information on this parameter.

Return Values

Upon successful completion, the open subroutine returns a valid file descriptor that identifies the opened

GDLC channel.

If an error occurs, a value of -1 is returned with one of the following error values available using the errno

global variable, as defined in the /usr/include/sys/errno.h file:

 Value Description

ECHILD Indicates that the device manager cannot create a kernel process.

EINVAL Indicates an invalid value.

ENODEV Indicates that no such device handler is present.

ENOMEM Indicates insufficient resources to satisfy the open subroutine.

EFAULT Indicates that a kernel service, such as the copyin or initp kernel service, has failed.

Related Information

The dlcmpx entry point.

The copyin kernel service, initp kernel service.

close Subroutine Interface for Data Link Control (DLC) Devices, open Subroutine Extended Parameters for

DLC.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

14 Technical Reference: Communications, Volume 1

readx Subroutine Interface for Data Link Control (DLC) Devices

Purpose

Allows receive application data to be read using a file descriptor.

Syntax

#include <sys/gdlextcb.h>

#include <sys/uio.h>

int readx (fildes, buf, len, ext)

Description

The receive queue for this application user is interrogated for any pending data. The oldest data packet is

copied to user space, with the type of data, the link station correlator, and the service access point (SAP)

correlator written to the extension area. When attempting to read an empty receive data queue, the default

action is to delay until data is available. If the O_NDELAY or O_NONBLOCK flags are specified in the

open subroutine, the readx subroutine returns immediately to the caller.

Data is transferred using the uiomove kernel service between the user space and kernel communications

memory buffers (mbufs). A complete receive packet must fit into the user’s read data area. Generic data

link control (GDLC) does not break up received packets into multiple user data areas.

Each GDLC supports the readx subroutine interface via its dlcread entry point. This subroutine can be

called from the process environment only.

Parameters

 fildes Specifies the file descriptor returned from the open

subroutine.

buf Points to the user data area.

len Contains the byte count of the user data area.

ext Specifies the extended subroutine parameter. This is a

pointer to the dlc_io_ext extended I/O structure for the

readx subroutine. ″read Subroutine Extended Parameters

for DLC″ provides more information on this parameter.

Note: It is the user’s responsibility to set the ext

parameter area to 0 (zero) before issuing the readx

subroutine to insure valid entries when no data is

available.

Return Values

Upon successful completion, the readx subroutine returns the number of bytes read and placed into the

application data area. If more data is received from the media than will fit into the application data area,

the DLC_OFLO flag is set in the dlc_io_ext command extension area to indicate that the read is

truncated. All excess data is lost.

If no data is available and the application user has specified the O_NDELAY or O_NONBLOCK flags at

open time, a 0 (zero) is returned.

If an error occurs, a value of -1 is returned with one of the following error numbers available using the

errno global variable, as defined in the /usr/include/sys/errno.h file:

 Value Description

EBADF Indicates a bad file number.

Chapter 1. Data Link Controls 15

Value Description

EINTR Indicates that a signal interrupted the subroutine before it

received data.

EINVAL Indicates an invalid value.

ENOMEM Indicates insufficient resources to satisfy the read

operation.

Related Information

The open subroutine, readx subroutine.

The uiomove kernel service.

read Subroutine Extended Parameters for DLC, writex Subroutine Interface for DLC Devices.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

select Subroutine Interface for Data Link Control (DLC) Devices

Purpose

Allows data to be sent using a file descriptor.

Syntax

#include <sys/select.h>

int select (nfdsmsgs, readlist, writelist, exceptlist, timeout)

Description

The select subroutine checks the specified file descriptor and message queues to see if they are ready for

reading (receiving) or writing (sending), or if they have an exception condition pending.

Note: Generic data link control (GDLC) does not support transmit for nonblocked notification in the full

sense. If the writelist parameter is specified in the select call, GDLC always returns as if transmit is

available. There is no checking to see if internal buffering is available or if internal control-block

locks are free. These resources are much too dynamic, and tests for their availability can be done

reasonably only at the time of use.

The readlist and exceptlist parameters are fully supported. Whenever the selection criteria specified by the

SelType parameter is true, the file system returns a value that indicates the total number of file descriptors

and message queues that satisfy the selection criteria. The fdsmask bit masks are modified so that bits

set to a value of 1 indicate file descriptors that meet the criteria. The msgids arrays are altered so that

message queue identifiers that do not meet the criteria are replaced with a value of -1. If the selection is

not satisfied, the calling process is put to sleep waiting on a selwakeup subroutine at a later time.

Each GDLC supports the select subroutine interface via its dlcselect entry point. This subroutine can be

called from the process environment only.

Parameters

 nfdsmsgs Specifies the number of file descriptors and message

queues to check.

16 Technical Reference: Communications, Volume 1

sellist The readlist, writelist, and exceptlist parameters specify

what to check for during reading, writing, and exceptions,

respectively. Each sellist is a structure that contains a file

descriptor bit mask (fdsmask) and message queue

identifiers (msgids).

The writelist criterion is always set to True by GDLC.

timeout Points to a structure that specifies the maximum length of

time to wait for at least one of the selection criteria to be

met (if the timeout parameter is not a null pointer).

Return Values

Upon successful completion, the select subroutine returns a value that indicates the total number of file

descriptors and message queues that satisfy the selection criteria. The return value is similar to the

nfdsmsgs parameter in that the low-order 16 bits give the number of file descriptors. Also, the high-order

16 bits give the number of message queue identifiers. These values indicate the sum total that meet each

of the read and exception criteria.

If the time limit specified by the timeout parameter expires, then the select subroutine returns a value of 0

(zero).

If an error occurs, a value of -1 is returned with one of the following error values available using the errno

global variable, as defined in the /usr/include/sys/errno.h file:

 EBADF Indicates a bad file number.

EINTR Indicates that a signal interrupted the subroutine before it

found any of the selected events.

EINVAL Indicates that one of the parameters contained an invalid

value.

Related Information

The select subroutine.

Select/Poll Logic for ddwrite and ddread Routines in AIX 5L Version 5.3 Technical Reference: Kernel and

Subsystems Volume 1.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

writex Subroutine Interface for Data Link Control (DLC) Devices

Purpose

Allows application data to be sent using a file descriptor.

Syntax

#include <sys/gdlextcb.h>

#include <sys/uio.h>

int writex (fildes, buf, len, ext)

Description

Four types of data can be sent to generic data link control (GDLC). Network data can be sent to a service

access point (SAP), while normal, Exchange Identification (XID) or datagram data can be sent to a link

Chapter 1. Data Link Controls 17

station (LS). Data is transferred using the uiomove kernel service between the application user space and

kernel communications I/O buffers (mbufs). All data must fit into a single packet for each write subroutine.

The generic data link control does not separate the user’s write data area into multiple transmit packets. A

maximum write data size is passed back to the user at DLC_ENABLE_SAP completion and at

DLC_START_LS completion for this purpose. See DLC_SAPE_RES and DLC_STAS_RES for further

information.

Normally, GDLC can immediately satisfy a write subroutine by completing the data link headers and

sending the transmit packet down to the device handler. In some cases, however, transmit packets can be

blocked by the particular protocol’s flow control or by a resource outage. GDLC reacts to this differently,

based on the system blocked or nonblocked file status flags. These are set for each channel using the

O_NDELAY and O_NONBLOCK values passed on open or fcntl subroutines with the F_SETFD

parameter.

GDLC only looks at the uio_fmode field on each write subroutine to determine whether the operation is

blocked or nonblocked. Nonblocked writes that cannot get enough resources to queue the data return an

error indication. Blocked write subroutines put the calling process to sleep until the resources free up or

an error occurs.

Each GDLC supports the writex subroutine interface via its dlcwrite entry point. This subroutine may be

called from the process environment only.

Note: GDLC does not support nonblocked transmit users based on resource availability using the

selwakeup subroutine. Internal resources such as communications I/O buffers and control block

locks are very dynamic. Any write subroutines that fail with errors (such as EAGAIN or ENOMEM)

should be retried at the user’s discretion.

Parameters

 fildes Specifies the file descriptor returned from the open

subroutine.

buf Points to the user data area.

len Contains the byte count of the user data area.

ext Specifies the extended subroutine parameter. This is a

pointer to the dlc_io_ext extended I/O structure for the

writex subroutine. ″write Subroutine Extended Parameters

for DLC″ provides more information on this parameter.

Return Values

Upon successful completion, this service returns the number of bytes that were written into a

communications packet from the user data area.

If an error occurs, a value of -1 is returned with one of the following error values available using the errno

global variable, as defined in the /usr/include/sys/errno.h file.

 Value Description

EAGAIN Indicates insufficient resources to satisfy the write. For

example, the routine was unable to obtain a necessary

lock. The user can try again later.

EBADF Indicates a bad file number.

EINTR Indicates that a signal interrupted the subroutine before it

completed successfully.

EINVAL Indicates an invalid value, such as too much data for a

single packet.

18 Technical Reference: Communications, Volume 1

Value Description

EIO Indicates that an I/O error has occurred, such as loss of

the port.

ENOMEM Indicates insufficient resources to satisfy the write

operation. For example, a lack of communications memory

buffers (mbufs). The user can try again later.

Related Information

The fcntl subroutine, open subroutine, writex subroutine.

The uiomove kernel service.

Parameter Blocks by ioctl Operation for DLC.

readx Subroutine Interface for DLC Devices, write Subroutine Extended Parameters for DLC.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

open Subroutine Extended Parameters for DLC

Purpose

Alters certain defaulted parameters for an extended open (openx) subroutine.

Syntax

struct dlc_open_ext

{

 __ulong32_t maxsaps;

 int (* rcvi_fa)();

 int (* rcvx_fa)();

 int (* rcvd_fa)();

 int (* rcvn_fa)();

 int (* excp_fa)();

};

Description

An extended open or openx subroutine can be issued to alter certain defaulted parameters, such as

maximum service access points (SAPs) and ring queue depths. Kernel users may change these normally

defaulted parameters, but are required to provide additional parameters to notify the dlcopen routine that

these callers are to be treated as kernel processes and not as application processes. Additional

parameters passed include functional addresses that generic data link control (GDLC) calls to notify about

asynchronous events, such as receive data available.

The maxsaps parameter is optional for both the application and the kernel user. The other five parameters

are mandatory for kernel users but are ignored by GDLC for application users. There are no default

values. Each field must be filled in by the kernel user. All functional entry addresses must be valid. That is,

entry points that the kernel user does not wish to support must at least point to a routine which frees the

communication’s memory buffer (mbuf) passed on the call.

These DLC extended parameters for the open subroutine are part of the data link control in BOS

Extensions 2 for the device manager you are using.

Chapter 1. Data Link Controls 19

See the /usr/include/sys/gdlextcb.h file for more details on GDLC structures.

Parameters

 maxsaps Specifies the maximum number of SAPs the user channel

uses to start and run concurrently. Any value from 1 to

127 can be specified. If the default value of 1 is desired,

the user must set the field to 0 (zero) before issuing the

open subroutine.

rcvi_fa Points to the address of a user I-Frame Data Received

routine that handles the sequenced receive data

completions. This field is valid for kernel users only and

must be set to 0 (zero) by application users.

rcvx_fa Points to the address of a user XID Data Received routine

that handles the exchange ID receive data completions.

rcvd_fa Points to the address of a user Datagram Data Received

routine that handles the datagram receive data

completions.

rcvn_fa Points to the address of a user Network Data Received

routine that handles the network receive data completions.

excp_fa Points to the address of a user Exception Condition

routine that handles the exception conditions, such as

DLC_SAPE_RES (SAP-enabled) or DLC_CONT_RES

(LS-contacted).

Related Information

The open or openx subroutine.

The dlcopen entry point.

List of Kernel Routines for DLC.

Parameter Blocks by ioctl Operation for DLC.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

read Subroutine Extended Parameters for DLC

Purpose

Provide generic data link control (GDLC) with a structure to return data types and service access point

(SAP) and link station (LS) correlators.

Syntax

#define DLC_INFO 0x80000000

#define DLC_XIDD 0x40000000

#define DLC_DGRM 0x20000000

#define DLC_NETD 0x10000000

20 Technical Reference: Communications, Volume 1

#define DLC_OFLO 0x00000002

#define DLC_RSPP 0x00000001

struct dlc_io_ext

{

 __ulong32_t sap_corr;

 __ulong32_t ls_corr;

 __ulong32_t flags;

 __ulong32_t dlh_len;

};

Description

An extended read or readx subroutine must be issued by an application user to provide GDLC with a

structure to return the type of data and the SAP and LS correlators.

Parameters

 sap_corr Specifies the user’s SAP identifier of the received data.

ls_corr Specifies the user’s LS identifier of the received data.

Chapter 1. Data Link Controls 21

flags Specifies flags for the readx subroutine. The following flags are supported:

DLC_INFO

Indicates that normal sequenced data has been received for a link station using an I-Frame

Data Received routine. If buffer overflow (OFLO) is indicated, the received data has been

truncated because the received data length exceeds either the maximum I-field size derived at

completion of DLC_START_LS ioctl operation or the application user’s buffer size.

DLC_XIDD

Indicates that exchange identification (XID) data has been received for a link station using an

XID Data Received routine. If buffer overflow (OFLO) is indicated, the received XID has been

truncated because the received data length exceeds either the maximum I-field size derived at

DLC_START_LS completion or the application user’s buffer size. If response pending (RSPP) is

indicated, an XID response is required and must be provided to GDLC using a write XID as

soon as possible to avoid repolling and possible termination of the remote LS.

DLC_DGRM

Indicates that a datagram has been received for an LS using a Datagram Data Received

routine. If buffer overflow (OFLO) is indicated, the received data has been truncated because

the received data length exceeds either the maximum I-field size derived at DLC_START_LS

completion or the application user’s buffer size.

DLC_NETD

Indicates that data has been received from the network for a service access point using a

Network Data Received routine. This may be link-establishment data such as X.21 call-progress

signals or Smartmodem command responses. It can also be data destined for the user’s SAP

when no link station has been started that fits the addressing of the packet received. If buffer

overflow (OFLO) is indicated, the received data has been truncated because the received data

length exceeds either the maximum packet size derived at DLC_ENABLE_SAP completion or

the application user’s buffer size.

 Network data contains the entire MAC layer packet, excluding any fields stripped by the adapter

such as Preamble or CRC.

DLC_OFLO

Indicates that overflow of the user data area has occurred and the data was truncated. This

error does not set a u.u_error indication.

DLC_RSPP

Indicates that the XID received requires an XID response to be sent back to the remote link

station.

dlh_len Specifies data link header length. This field has a different meaning depending on whether the extension

is for a readx subroutine call to GDLC or a response from GDLC.

On the application readx subroutine, this field indicates whether the user wishes to have datalink header

information prefixed to the data. If this field is set to 0 (zero), the data link header is not to be copied

(only the I-field is copied). If this field is set to any nonzero value, the data link header information is

included in the read operation.

On the response to an application readx subroutine, this field contains the number of data link header

bytes received and copied into the data link header information field.

On asynchronous receive function handlers to the kernel user, this field contains the length of the data

link header within the communications memory buffer (mbuf).

These DLC extended parameters for the read subroutine are part of the data link control in BOS

Extensions 2 for the device manager you are using.

Related Information

The read, readx, readv, or readvx subroutine.

List of Kernel Routines for DLC.

22 Technical Reference: Communications, Volume 1

Parameter Blocks by ioctl Operation for DLC.

write Subroutine Extended Parameters for DLC.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

write Subroutine Extended Parameters for DLC

Purpose

Provide generic data link control (GDLC) with data types, service access points (SAPs), and link station

(LS) correlators.

Syntax

#define DLC_INFO 0x80000000

#define DLC_XIDD 0x40000000

#define DLC_DGRM 0x20000000

#define DLC_NETD 0x10000000

__ulong32_t sap_corr;

__ulong32_t ls_corr;

__ulong32_t flags;

__ulong32_t dlh_len;

};

Description

An extended write or writex subroutine must be issued by an application or kernel user to provide GDLC

with data types, SAPs, and LS correlators.

These DLC extended parameters for the write subroutine are part of the data link control in BOS

Extensions 2 for the device manager you are using.

Parameters

 sap_corr Specifies the GDLC SAP correlator of the write data. This

field must contain the same correlator value passed back

form GDLC in the gdlc_sap_corr field when the SAP was

enabled.

dlh_len Not used for writes.

ls_corr Specifies the GDLC LS correlator of the write data. This

field must contain the same correlator value passed back

from GDLC in the gdlc_ls_corr field when the LS was

started.

Chapter 1. Data Link Controls 23

flags Specifies flags for the writex subroutine. The following

flags are supported:

DLC_INFO

Requests a sequenced data class of information

to be sent (generally called I-frames).

 This request is valid any time the target link

station has been started and contacted.

DLC_XIDD

Requests an exchange identification (XID)

non-sequenced command or response packet to

be sent.

 This request is valid any time the target link

station has been started with the following rules:

 GDLC sends the XID as a command as long as

no DLC_TEST, DLC_CONTACT,

DLC_HALT_LS, or DLC_XIDD write subroutine

is already in progress, and no received XID is

waiting for a response. If a received XID is

waiting for a response, GDLC automatically

sends the write XID as that response. If no

response is pending and a command is already

in progress, the write is rejected by GDLC.

DLC_DGRM

Requests a datagram packet to be sent. A

datagram is an unnumbered information (UI)

response.

 This request is valid any time the target link

station has been started.

DLC_NETD

Requests that network data be sent.

 Examples of network data include special modem

control data or user-generated medium access

control (MAC) and logical link control (LLC)

headers.

 Network data must contain the entire MAC layer

packet headers so that the packet can be sent

without the data link control (DLC)’s intervention.

GDLC only provides a pass-through function for

this type of write.

 This request is valid any time the SAP is open.

Related Information

The write or writex subroutine.

List of Kernel Routines for DLC.

read Subroutine Extended Parameters for DLC.

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

24 Technical Reference: Communications, Volume 1

Datagram Data Received Routine for DLC

Purpose

Receives a datagram packet each time it is coded by the kernel user and called by generic data link

control (GDLC).

Syntax

#include <sys/gdlextcb.h>

int (*dlc_open_ext.rcvd_fa)(m, ext)

struct mbuf *m;

struct dlc_io_ext *ext;

Description

The DLC Datagram Data Received routine receives a datagram packet each time it is coded by the kernel

user and called by GDLC.

Each GDLC supports a subset of the data-received routines. It is critical to performance that the Datagram

Data Received routine be coded to minimize the amount of time spent prior to returning to the GDLC that

called it.

Parameters

 m Points to a communications memory buffer (mbuf).

ext Specifies the receive extension parameter. This is a pointer to the dlc_io_ext extended I/O structure for read

operations.

Return Values

 DLC_FUNC_OK Indicates that the received datagram mbuf data has been accepted.

DLC_FUNC_RETRY Indicates that the received datagram mbuf data cannot be accepted at this time. GDLC

should retry this function later. The actual retry wait period depends on the DLC in use.

Excessive retries may close the link station.

Related Information

read Subroutine Extended Parameters for DLC .

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

Exception Condition Routine for DLC

Purpose

Notifies the kernel user each time an asynchronous event occurs in generic data link control (GDLC).

Syntax

#include <sys/gdlextcb.h>

int (*dlc_open_ext.excp_fa)(ext)

struct dlc_getx_arg *ext;

Chapter 1. Data Link Controls 25

Description

The DLC Exception Condition routine notifies the kernel user each time an asynchronous event occurs,

such as DLC_SAPD_RES (SAP-disabled) or DLC_CONT_RES (contacted), in GDLC.

Each GDLC supports a subset of the data-received routines. It is critical to performance that the Exception

Condition routine for DLC be coded to minimize the amount of time spent prior to returning to the GDLC

that called it.

Parameters

 ext Specifies the same structure for a dlc_getx_arg (get exception) ioctl subroutine.

Return Values

 DLC_FUNC_OK Indicates that the exception has been accepted.

Note: The function call above has a hidden parameter extension for internal use only, defined as int

*chanp, the channel pointer.

Related Information

The ioctl subroutine.

Parameter Blocks by ioctl Operation for DLC .

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

I-Frame Data Received Routine for DLC

Purpose

Receives a normal sequenced data packet each time it is coded by the kernel user and called by generic

data link control (GDLC).

Syntax

#include <sys/gdlextcb.h>

int (*dlc_open_ext.rcvi_fa)(m, ext)

struct mbuf *m;

struct dlc_io_ext *ext;

Description

The DLC I-Frame Data Received routine receives a normal sequenced data packet each time it is coded

by the kernel user and called by GDLC.

Each GDLC supports a subset of the data-received routines. It is critical to performance that the I-Frame

Data Received routine be coded to minimize the amount of time spent prior to returning to the GDLC that

called it.

Parameters

 m Points to a communications memory buffer (mbuf).

26 Technical Reference: Communications, Volume 1

ext Specifies the receive extension parameter. This is a pointer to the dlc_io_ext extended I/O structure for reads.

The argument to this parameter must be in the kernel space.

Return Values

 DLC_FUNC_OK Indicates that the received I-frame function call is accepted.

DLC_FUNC_BUSY Indicates that the received I-frame function call cannot be accepted at this time. The ioctl

command operation DLC_EXIT_LBUSY must be issued later using the ioctl subroutine.

DLC_FUNC_RETRY Indicates that the received I-frame function call cannot be accepted at this time. GDLC

should retry this function call later. The actual retry wait period depends on the DLC in

use. Excessive retries can be subject to a halt of the link station.

Related Information

The ioctl subroutine.

Parameter Blocks by ioctl Operation for DLC .

read Subroutine Extended Parameters for DLC .

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

Network Data Received Routine for DLC

Purpose

Receives network-specific data each time it is coded by the kernel user and called by generic data link

control (GDLC).

Syntax

#include <sys/gdlextcb.h>

int (*dlc_open_ext.rcvn_fa)(m, ext)

struct mbuf *m;

struct dlc_io_ext *ext;

Description

The DLC Network Data Received routine receives network-specific data each time the routine is coded by

the kernel user and called by GDLC.

Each GDLC supports a subset of the data-received routines. It is critical to performance that the Network

Data Received routine be coded to minimize the amount of time spent prior to returning to the GDLC that

called it.

Parameters

 m Points to a communications memory buffer (mbuf).

ext Specifies the receive extension parameter. This is a pointer to the dlc_io_ext extended I/O structure for read

operations.

Chapter 1. Data Link Controls 27

Return Values

 DLC_FUNC_OK Indicates that the received network mbuf data has been accepted.

DLC_FUNC_RETRY Indicates that the received network mbuf data cannot be accepted at this time. GDLC

should retry this function call later. The actual retry wait period depends on the DLC in

use. Excessive retries can cause a disabling of the service access point.

Related Information

read Subroutine Extended Parameters for DLC .

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

XID Data Received Routine for DLC

Purpose

Receives an exchange identification (XID) packet each time it is coded by the kernel user and called by

generic data link control (GDLC).

Syntax

#include <sys/gdlextcb.h>

int (*dlc_open_ext.rcvx_fa)(m, ext)

struct mbuf *m;

struct dlc_io_ext *ext;

Description

The DLC XID Data Received routine receives an XID packet each time the routine is coded by the kernel

user and called by GDLC.

Each GDLC supports a subset of the data-received routines. It is performance critical that the XID Data

Received routine be coded to minimize the amount of time spent prior to returning to the GDLC that called

it.

Parameters

 m Points to a communication memory buffer (mbuf).

ext Specifies the receive extension parameter. This is a pointer to the dlc_io_ext extended I/O structure for reads.

The argument to this parameter must be in the kernel space.

Return Values

 DLC_FUNC_OK Indicates that the received XID mbuf data has been accepted.

DLC_FUNC_RETRY Indicates that the received XID mbuf data cannot be accepted at this time. GDLC should

retry this function call later. The actual retry wait period depends on the DLC in use.

Excessive retries may close the link station.

Related Information

read Subroutine Extended Parameters for DLC .

28 Technical Reference: Communications, Volume 1

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

ioctl Operations (op) for DLC

Syntax

#define DLC_ENABLE_SAP 1

#define DLC_DISABLE_SAP 2

#define DLC_START_LS 3

#define DLC_HALT_LS 4

#define DLC_TRACE 5

#define DLC_CONTACT 6

#define DLC_TEST 7

#define DLC_ALTER 8

#define DLC_QUERY_SAP 9

#define DLC_QUERY_LS 10

#define DLC_ENTER_LBUSY 11

#define DLC_EXIT_LBUSY 12

#define DLC_ENTER_SHOLD 13

#define DLC_EXIT_SHOLD 14

#define DLC_GET_EXCEP 15

#define DLC_ADD_GRP 16

#define DLC_ADD_FUNC_ADDR 17

#define DLC_DEL_FUNC_ADDR 18

#define DLC_DEL_GRP 19

#define IOCINFO /* see /usr/include/sys/ioctl.h */

Description

Note: If the operation’s notification is returned asynchronously to the user by way of exception, application

users should refer to ″DLC_GET_EXCEP ioctl Operation for DLC″ and kernel users should refer to

″Exception Condition Routine for DLC″ for more information.

Each GDLC supports a subset of ioctl subroutine operations. These ioctl operations are selectable through

the fp_ioctl kernel service or the ioctl subroutine. They may be called from the process environment only.

The following ioctl command operations are supported for generic data link control (GDLC):

 Operation Description

DLC_ADD_FUNC_ADDR Adds a group or multicast receive functional address to a port. This command

allows additional functional address bits to be added to the current receive

functional address mask, as supported by the individual device handlers. See

device handler specifications to determine which address values are supported.

Note: Currently, token ring is the only local area network (LAN) protocol supporting

functional addresses.

DLC_ADD_GRP Adds a group or multicast receive address to a port. This command allows

additional address values to be filtered in receive as supported by the individual

communication device handlers. See device handler specifications to determine

which address values are supported.

DLC_ALTER Alters link station (LS) configuration.

DLC_CONTACT Contacts the remote LS. This ioctl operation does not complete processing before

returning to the user. The DLC_CONTACT notification is returned asynchronously

to the user by way of exception.

DLC_DEL_GRP Removes a group or multicast address that was previously added to a port with a

DLC_ENABLE_SAP or DLC_ADD_GRP ioctl operation.

Chapter 1. Data Link Controls 29

Operation Description

DLC_DEL_FUNC_ADDR Removes a group or multicast receive functional address from a port. This

command removes functional address bits from the current receive functional

address mask, as supported by the individual device handlers. See device handler

specifications to determine which address values are supported.

Note: Currently, token ring is the only local area network protocol supporting

functional addresses.

DLC_DISABLE_SAP Disables a service access point (SAP). This ioctl operation does not fully complete

the disable SAP processing before returning to the user. The DLC_DISABLE_SAP

notification is returned asynchronously to the user later by way of exception.

DLC_ENABLE_SAP Enables an SAP. This ioctl operation does not fully complete the enable SAP

processing before returning to the user. The DLC_ENABLE_SAP notification is

returned asynchronously to the user later by way of exception.

DLC_ENTER_LBUSY Enters local busy mode on an LS.

DLC_ENTER_SHOLD Enters short hold mode on an LS.

DLC_EXIT_LBUSY Exits local busy mode on an LS.

DLC_EXIT_SHOLD Exits short hold mode on an LS.

DLC_GET_EXCEP Returns asynchronous exception notifications to the application user.

Note: This ioctl command operation is not used by the kernel user since all

exception conditions are passed to the kernel user by their exception handler

routine.

DLC_HALT_LS Halts an LS. This ioctl operation does not complete processing before returning to

the user. Notification of the ioctl operation, DLC_HALT_LS, is returned

asynchronously to the user by way of exception.

DLC_QUERY_LS Queries an LS.

DLC_QUERY_SAP Queries an SAP.

DLC_START_LS Starts an LS. This ioctl operation does not complete processing before returning to

the user. Notification of the ioctl operation, DLC_START_LS, is returned

asynchronously to the user by way of exception.

DLC_TEST Tests LS connectivity. This ioctl operation does not complete processing before

returning to the user. Notification of the ioctl operation, DLC_TEST completion, is

returned asynchronously to the user by way of exception.

DLC_TRACE Traces LS activity.

IOCINFO Returns a structure that describes the device. Refer to the description of the

/usr/include/sys/devinfo.h file. The first byte is set to an ioctype of DD_DLC. The

subtype and data are defined by the individual DLC devices.

Related Information

Parameter Blocks by ioctl Operation for DLC .

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

Parameter Blocks by ioctl Operation for DLC

Description

Each command operation has a specific parameter block associated with the command pointed to by the

arg pointer. Some parameters are sent to the generic data link control (GDLC) and others are returned.

The ioctl command operations for DLC are:

v DLC_ADD_FUNC_ADDR ioctl Operation for DLC

v DLC_ADD_GRP ioctl Operation for DLC

v DLC_ALTER ioctl Operation for DLC

v DLC_CONTACT ioctl Operation for DLC

30 Technical Reference: Communications, Volume 1

v DLC_DEL_FUNC_ADDR ioctl Operation for DLC

v DLC_DEL_GRP ioctl Operation for DLC

v DLC_DISABLE_SAP ioctl Operation for DLC

v DLC_ENABLE_SAP ioctl Operation for DLC

v DLC_ENTER_LBUSY ioctl Operation for DLC

v DLC_ENTER_SHOLD ioctl Operation for DLC

v DLC_EXIT_LBUSY ioctl Operation for DLC

v DLC_EXIT_SHOLD ioctl Operation for DLC

v DLC_GET_EXCEP ioctl Operation for DLC

v DLC_HALT_LS ioctl Operation for DLC

v DLC_QUERY_LS ioctl Operation for DLC

v DLC_QUERY_SAP ioctl Operation for DLC

v DLC_START_LS ioctl Operation for DLC

v DLC_TEST ioctl Operation for DLC

v DLC_TRACE ioctl Operation for DLC

v IOCINFO ioctl Operation for DLC

DLC_ADD_FUNC_ADDR ioctl Operation for DLC

The DLC_ADD_FUNC_ADDR ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block adds a functional address mask any time a service access point (SAP) has

been enabled via DLC_ENA_SAP ioctl. Multiple functional address bits may be specified.

struct dlc_func_addr

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t len_func_addr_mask; /* length of functional */

 /* address mask */

 uchar_t func_addr_mask[DLC_MAX_ADDR]; /* functional address */

 /* mask */

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains the generic data link control (GDLC) service

access point (SAP) correlator being requested to delete a

functional address from a port.

len_func_addr_mask Contains the byte length of the functional address mask to

be added.

func_addr_mask Contains the functional address mask value to be ORed

with the functional address on the adapter. See the

individual DLC interface documentation to determine the

length and format of this field.

Chapter 1. Data Link Controls 31

DLC_ADD_GRP ioctl Operation for DLC

The DLC_ADD_GRP ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block adds a group or multicast receive address:

struct dlc_add_grp

{

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t grp_addr_len; /* group address length */

 uchar_t grp_addr[DLC_MAX_ADDR]; /* grp addr to be added */

};

The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains the generic data link control (GDLC) service

access point (SAP) Correlator being requested to add a

group or multicast address to a port.

grp_addr_len Contains the byte length of the group or multicast address

to be added.

grp_addr Contains the group or multicast address value to be

added.

DLC_ALTER ioctl Operation for DLC

The DLC_ALTER ioctl operation is selectable through the fp_ioctl kernel service or the ioctl subroutine. It

can be called from the process environment only.

The following parameter block alters a link station’s (LS) configuration parameters:

#define DLC_MAX_ROUT 20 /* Maximum Size of Routing Info */

struct dlc_alter_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* GDLC link station correlator */

 __ulong32_t flags; /* Alter Flags */

 __ulong32_t repoll_time; /* New Repoll Timeout */

 __ulong32_t ack_time; /* New Acknowledge Timeout */

 __ulong32_t inact_time; /* New Inactivity Timeout */

 __ulong32_t force_time; /* New Force Timeout */

 __ulong32_t maxif; /* New Maximum I-Frame Size */

 __ulong32_t xmit_wind; /* New Transmit Value */

 __ulong32_t max_repoll; /* New Max Repoll Value */

 __ulong32_t routing_len; /* Routing Length */

 u_char_t routing[DLC_MAX_ROUT]; /* New Routing Data */

 __ulong32_t result_flags; /* Returned flags */

 };

The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Indicates the generic data link control (GDLC) service access point (SAP) correlator of the

target LS.

gdlc_ls_corr Indicates the GDLC LS correlator to be altered.

32 Technical Reference: Communications, Volume 1

Field Description

flags Specifies alter flags. The following flags are supported:

DLC_ALT_RTO

Alter repoll timeout:

 0 = Do not alter repoll timeout.

 1 = Alter configuration with value specified.

 Alters the length of time the LS waits for a response before repolling the remote

station. When specified, the repoll timeout value specified in the LS configuration is

overridden by the value supplied in the repoll timeout field of the Alter command.

This new value remains in effect until another value is specified or the LS is halted.

DLC_ALT_AKT

Alter acknowledgment timeout:

 0 = Do not alter the acknowledgment timeout.

 1 = Alter configuration with value specified.

 Alters the length of time the LS delays the transmission of an acknowledgment for a

received I-frame. When specified, the acknowledgment timeout value specified in the

LS configuration is overridden by the value supplied in the acknowledgment timeout

field of the Alter command. This new value remains in effect until another value is

specified or the LS is halted.

DLC_ALT_ITO

Alter inactivity timeout:

 0 = Do not alter inactivity timeout.

 1 = Alter configuration with value specified.

 Alters the maximum length of time allowed without receive link activity from the

remote station. When specified, the inactivity timeout value specified in the LS

configuration is overridden by the value supplied in the inactivity timeout field of the

Alter command. This new value remains in effect until another value is specified or

the LS is halted.

DLC_ALT_FHT

Alter force halt timeout:

 0 = Do not alter force halt timeout.

 1 = Alter configuration with value specified.

 Alters the period to wait for a normal disconnection before forcing the halt LS to

occur. When specified, the force halt timeout value specified in the LS configuration

is overridden by the value supplied in the force halt timeout field of the Alter

command. This new value remains in effect until another value is specified or the LS

is halted.

Chapter 1. Data Link Controls 33

Field Description

DLC_ALT_MIF

Maximum I-field length:

 0 = Do not alter maximum I-field length.

 1 = Alter configuration with value specified.

 Sets the value for the maximum length of transmit or receive data in one I-field. If

received data exceeds this length, a buffer overflow indication set by GDLC in the

receive extension. When specified, the maximum I-field length value specified in the

LS configuration is overridden by the value supplied in the maximum I-field length

specified in the Alter command. This new value remains in effect until another value

is specified or the LS is halted.

DLC_ALT_XWIN

Alter transmit window:

 0 = Do not alter transmit window.

 1 = Alter configuration with value specified.

 Alters the maximum number of information frames that can be sent in one transmit

burst. When specified, the transmit window count value specified in the LS

configuration is overridden by the value supplied in the transmit window field of the

Alter command. This new value remains in effect until another value is specified or

the LS is halted.

DLC_ALT_MXR

Alter maximum repoll:

 0 = Do not alter maximum repoll.

 1 = Alter configuration with value specified.

 Alters the maximum number of retries for an acknowledged command frame, or in

the case of an I-frame timeout, the number of times the nonresponding remote LS

will be polled with a supervisory command frame. When specified, the maximum

repoll count value specified in the LS configuration is overridden by the value

supplied in the maximum repoll count field of the Alter command. This new value

remains in effect until another value is specified or the LS is halted.

DLC_ALT_RTE

Alter routing:

 0 = Do not alter routing.

 1 = Alter configuration with value specified.

 Alters the route that subsequent transmit packets take when transferring data across

a local area network bridge. When specified, the routing length and routing data

values specified in the LS configuration are overridden by the values supplied in the

routing fields of the Alter command. These new values remain in effect until another

route is specified or the LS is halted.

34 Technical Reference: Communications, Volume 1

Field Description

DLC_ALT_SM1

Set primary SDLC Control mode:

 0 = Do not alter SDLC Control mode.

 1 = Set SDLC Control mode to primary.

 Sets the local station to a primary station in NDM, waiting for a command from PU

services to write an XID or TEST, or a command to contact the secondary for NRM

data phase. This control can only be issued if not already in NRM, and no XID,

TEST, or SNRM is in progress. This flag cannot be set if the DLC_ALT_SM2 flag is

set.

DLC_ALT_SM2

Set secondary SDLC Control mode:

 0 = Do not alter SDLC Control mode.

 1 = Set SDLC Control mode to secondary.

 Sets the local station to a secondary station in NDM, waiting for XID, TEST, or

SNRM from the primary station. This control can only be issued if not already in

NRM, and no XID, TEST, or SNRM is in progress. This flag cannot be set if the

DLC_ALT_SM1 flag is set.

DLC_ALT_IT1

Set notification for Inactivity Time-Out mode:

 0 = Do not alter Inactivity Time-Out mode.

 1 = Set Inactivity Time-Out mode to notification only.

 Inactivity does not cause the LS to be halted, but notifies the user of inactivity

without termination.

DLC_ALT_IT2

Set automatic halt for Inactivity Time-Out mode:

 0 = Do not alter Inactivity Time-Out mode.

 1 = Set Inactivity Time-Out mode to automatic halt.

repoll_time Provides a new value to replace the LS repoll time-out value whenever the DLC_ALT_RTO

flag is set.

ack_time Provides a new value to replace the LS acknowledgment time-out value whenever the

DLC_ALT_AKT flag is set.

inact_time Provides a new value to replace the LS inactivity time-out value whenever the alter

DLC_ALT_ITO flag is set.

force_time Provides a new value to replace the LS force halt time-out value whenever the

DLC_ALT_FHT flag is set.

maxif Provides a new value to replace the LS-started result value for the maximum I-field size

whenever the DLC_ALT_MIF flag is set. GDLC does not allow this value to exceed the

capacity of the receive buffer and only increases the internal value to the allowed maximum.

xmit_wind Provides a new value to replace the LS transmit window count value whenever the

DLC_ALT_XWIN flag is set.

max_repoll Provides the new value that is to replace the LS maximum repoll count value whenever the

DLC_ALT_MXR flag is set.

routing_len Provides a new value to replace the LS routing field length whenever the DLC_ALT_RTE flag

is set.

routing Provides a new value to replace the LS routing data whenever the DLC_ALT_RTE flag is set.

Chapter 1. Data Link Controls 35

Field Description

result_flags Returns the following result indicators at the completion of the alter operation, depending on

the command:

DLC_MSS_RES

Indicates mode set secondary. Set to 1, this bit indicates that the station mode has

been set to secondary as a result of the user issuing an Alter (set mode secondary)

command.

DLC_MSSF_RES

Indicates mode set secondary was unsuccessful. Set to 1, this bit indicates that the

station mode has been not set to secondary as a result of the user issuing an Alter

(set mode secondary) command. This occurs whenever an SDLC LS is already in

data phase or an SDLC primary command sequence has not yet completed.

DLC_MSP_RES

Indicates mode set primary. Set to 1, this bit indicates that the station mode has

been set to primary as a result of the user issuing an Alter (set mode primary)

command.

DLC_MSPF_RES

Indicates mode set primary was unsuccessful. Set to 1, this bit indicates that the

station mode has not been set to primary as a result of the user issuing an Alter

(set mode primary) command. This occurs whenever an SDLC LS is already in data

phase.

The protocol-dependent area allows additional fields to be provided by a specific protocol type.

Corresponding flags may be necessary to support additional fields. This optional data area must directly

follow (or append to) the end of the dlc_alter_arg structure.

DLC_CONTACT ioctl Operation for DLC

The DLC_CONTACT ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block contacts a remote station for a particular local link station (LS):

struct dlc_corr_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* GDLC link station correlator */

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains the GDLC SAP correlator of the target LS.

gdlc_ls_corr Contains the GDLC LS correlator to be contacted.

DLC_DEL_FUNC_ADDR ioctl Operation for DLC

The DLC_DEL_FUNC_ADDR ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block deletes a previously defined functional address mask any time a service

access point (SAP) has been enabled with a DLC_ENA_SAP ioctl. Multiple functional address bits can be

specified.

36 Technical Reference: Communications, Volume 1

struct dlc_func_addr

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t len_func_addr_mask; /* length of functional */

 /* address mask */

 uchar_t func_addr_mask[DLC_MAX_ADDR]; /*functional add. mask */

 };

The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Indicates the generic data link control (GDLC) service

access point (SAP) identifier being requested to delete a

functional address from a port.

len_func_addr_mask Contains the byte length of the functional address mask to

be deleted.

func_addr_mask Contains the functional address mask value to be deleted

from with the functional address on the adapter. See the

individual DLC interface documentation to determine the

length and format of this field.

DLC_DEL_GRP ioctl Operation for DLC

The DLC_DEL_GRP ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter removes a previously defined group or multicast address:

struct dlc_add_grp

 {

 __ulong32_t gdlc_sap_corr; /*GDLC SAP correlator */

 __ulong32_t grpaddr_len; /*group address length */

 uchar_t grp_addr[DLC_MAX_ADDR]; /*group address to be

 removed */

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Indicates the generic data link control (GDLC) service

access point (SAP) identifier being requested to remove a

group or multicast address from a port. This field is known

as the GDLC SAP Correlator field.

grp_addr_len Contains the byte length of the group or multicast address

to be removed.

grp_addr Contains the group or multicast address to be removed.

DLC_DISABLE_SAP ioctl Operation for DLC

The DLC_DISABLE_SAP ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block disables a service access point (SAP):

Chapter 1. Data Link Controls 37

struct dlc_corr_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* <not used for disabling a SAP> */

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains GDLC SAP correlator. The field indicates the

GDLC SAP identifier to be disabled.

gdlc_ls_corr Contains GDLC LS correlator. The GDLC LS identifier is

returned to the user as soon as resources are determined

to be available. This correlator must accompany all

commands associated with this LS.

DLC_ENABLE_SAP ioctl Operation for DLC

The DLC_ENABLE_SAP ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block enables a service access point (SAP):

#define DLC_MAX_NAME 20

#define DLC_MAX_GSAPS 7

#define DLC_MAX_ADDR 8

#define DLC_ESAP_NTWK 0x40000000

#define DLC_ESAP_LINK 0x20000000

#define DLC_ESAP_PHYC 0x10000000

#define DLC_ESAP_ANSW 0x08000000

#define DLC_ESAP_ADDR 0x04000000

struct dlc_esap_arg

 {

 __ulong32_t gdlc_sap_corr;

 __ulong32_t user_sap_corr;

 __ulong32_t len_func_addr_mask;

 uchar_t func_addr_mask [DLC_MAX_ADDR];

 __ulong32_t len_grp_addr;

 uchar_t grp_addr [DLC_MAX_ADDR];

 __ulong32_t max_ls;

 __ulong32_t flags;

 __ulong32_t len_laddr_name;

 u_char_t laddr_name [DLC_MAX_NAME];

 u_char_t num_grp_saps;

 u_char_t grp_sap [DLC_MAX_GSAPS];

 u_char_t res1[3];

 u_char_t local_sap;

 };

38 Technical Reference: Communications, Volume 1

The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Specifies the generic data link control’s (GDLC) SAP

identifier that is returned to the user. This correlator must

accompany all subsequent commands associated with this

SAP.

user_sap_corr Specifies an identifier or correlator the user wishes to

have returned on all SAP results from GDLC. It allows the

user of multiple SAPs to choose a correlator to route the

SAP-specific results.

len_func_addr_mask Specifies the byte length of the following functional

address mask. This field must be set to 0 if no functional

address is required. Length values of 0 through 8 are

supported.

func_addr_mask Specifies the functional address mask to be ORed with

the functional address on the adapter. This address mask

allows packets that are destined for specified functions to

be received by the local adapter. See individual DLC

interface documentation to determine the format and

length of this field.

Note: GDLC does not distinguish whether a received

packet was accepted by the adapter due to a pre-set

network, group, or functional address. If the SAP address

matches and the packet is otherwise valid (no protocol

errors, for instance), the received packet is passed to the

user.

len_grp_addr Specifies the byte length of the following group address.

This field must be set to 0 (zero) if no group address is

required. Length values of 0 through 8 are supported.

grp_addr Specifies the group address value to be written to the

adapter. It allows packets that are destined for a specific

group to be received by the local adapter.

Note: Most adapters allow only one group address to be

active at a time. If this field is nonzero and the adapter

rejects the group address because it is already in use, the

enable SAP call fails with an appropriate error code.

max_ls Specifies the maximum number of link stations (LSs)

allowed to operate concurrently on a particular SAP. The

protocol used determines the values for this field.

Chapter 1. Data Link Controls 39

Field Description

flags Supports the following flags of the DLC_ENABLE_SAP

ioctl operation:

DLC_ESAP_NTWK

Teleprocessing network type:

 0 = Switched (default)

 1 = Leased

DLC_ESAP_LINK

Teleprocessing link type:

 0 = Point to point (default)

 1 = Multipoint

DLC_ESAP_PHYC

Physical network call (teleprocessing):

 0 = Listen for incoming call

 1 = Initiate call

DLC_ESAP_ADDR

Local address or name indicator. Specifies

whether the local address or name field contains

an address or a name:

 0 = Local name specified (default)

 1 = Local address specified

DLC_ESAP_ANSW

Teleprocessing autocall or autoanswer:

 0 = Manual call and answer (default)

 1 = Automatic call and answer

len_laddr_name Specifies the byte length of the following local address or

name. Length values of 1 through 20 are supported.

laddr_name Contains the unique network name or address of the user

local SAP as indicated by the DLC_ESAP_ADDR flag.

Some protocols allow the local SAP to be identified by

name (for example, Name-Discovery Services) and others

by address (for example, Address Resolve Procedures).

Other protocols such as Synchronous Data Link Control

(SDLC) do not identify the local SAP. Check the individual

DLC’s usage of this field for the protocol you are

operating.

num_grp_saps Specifies the number of group SAPs to which the user’s

local SAP responds. If no group SAPs are needed, this

field must contain a 0. Up to seven group SAPs can be

specified.

grp_sap Contains the specific group SAP values to which the user

local SAP responds (seven maximum).

local_sap Specifies the local SAP address opened. Receive packets

with this LSAP value indicated in the destination SAP field

are routed to the LSs opened under this particular SAP.

The protocol-specific data area allows parameters to be defined by the specific GDLC device manager,

such as X.21 call-progress signals or Smartmodem call-establishment data. This optional data area must

directly follow (or append to) the end of the dlc_esap_arg structure.

40 Technical Reference: Communications, Volume 1

DLC_ENTER_LBUSY ioctl Operation for DLC

The DLC_ENTER_LBUSY ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block enters local busy mode on a particular link station (LS):

struct dlc_corr_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* GDLC link station correlator */

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains the GDLC SAP correlator of the target LS.

gdlc_ls_corr Contains the GDLC LS correlator to enter local busy mode.

DLC_ENTER_SHOLD ioctl Operation for DLC

The DLC_ENTER_SHOLD ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block enters short hold mode on a particular link station (LS):

struct dlc_corr_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* GDLC link station correlator */

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains the generic data link control (GDLC) service

access point (SAP) correlator of the target LS.

gdlc_ls_corr Contains the GDLC LS correlator to enter short hold

mode.

DLC_EXIT_LBUSY ioctl Operation for DLC

The DLC_EXIT_LBUSY ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block exits local busy mode on a particular link station (LS):

struct dlc_corr_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* GDLC link station correlator */

 };

Chapter 1. Data Link Controls 41

The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains the GDLC SAP correlator of the target LS.

gdlc_ls_corr Contains the GDLC LS correlator to exit local busy mode.

DLC_EXIT_SHOLD ioctl Operation for DLC

The DLC_EXIT_SHOLD ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block exits short hold mode on a particular link station (LS):

struct dlc_corr_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* GDLC link station correlator */

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains the generic data link control (GDLC) service

access point (SAP) correlator of the target LS.

gdlc_ls_corr Contains the GDLC LS correlator to exit short hold mode.

DLC_GET_EXCEP ioctl Operation for DLC

The DLC_GET_EXCEP ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block returns asynchronous exception notifications to the application user:

struct dlc_getx_arg

 {

 __ulong32_t user_sap_corr; /* user SAP corr - RETURNED */

 __ulong32_t user_ls_corr; /* user ls corr - RETURNED */

 __ulong32_t result_ind; /* the flags identifying the type */

 /* of excep*/

 int result_code; /* the manner of excep */

 u_char_t result_ext[DLC_MAX_EXT];/* excep specific ext */

 };

 The fields of this ioctl operation are:

 Field Description

user_sap_corr Indicates the user service access point (SAP) correlator for this exception.

user_ls_corr Indicates the user link station (LS) correlator for this exception.

42 Technical Reference: Communications, Volume 1

Field Description

result_ind Result indicators:

DLC_TEST_RES

Test complete: a nonextended result. Set to 1, this bit indicates that the link test has

completed as indicated in the result code.

DLC_SAPE_RES

SAP enables: an extended result. Set to 1, this bit indicates that the SAP is active and

ready for LSs to be started. See DLC_SAPE_RES operation for the format of the

extension area.

DLC_SAPD_RES

SAP disabled: a nonextended result. Set to 1, this bit indicates that the SAP has been

terminated as indicated in the result code.

DLC_STAS_RES

Link station started: an extended result. Set to 1, this bit indicates that the link station is

connected to the remote station in asynchronous or normal disconnected mode. GDLC

is waiting for link receive data from the device driver or additional commands from the

user such as the DLC_CONTACT ioctl operation. See the DLC_STAS_RES operation

for the format of the extension area.

DLC_STAH_RES

Link station halted: a nonextended result. Set to 1, this bit indicates that the LS has

terminated due to a DLC_HALT_LS ioctl operation from the user, a remote discontact,

or an error condition indicated in the result code.

DLC_DIAL_RES

Dial the phone: a nonextended result. Set to 1, this bit indicates that the user can now

manually dial an outgoing call to the remote station.

DLC_IWOT_RES

Inactivity without termination: a nonextended result. Set to 1, this bit indicates that the

LS protocol activity from the remote station has terminated for the length of time

specified in the configuration (receive inactivity timeout). The local station remains active

and notifies the user if the remote station begins to respond. Additional notifications of

inactivity without termination are suppressed until the inactivity condition clears up.

DLC_IEND_RES

Inactivity ended: a nonextended result. Set to 1, this bit indicates that the LS protocol

activity from the remote station has restarted after a condition of inactivity without

termination.

DLC_CONT_RES

Contacted: a nonextended result. Set to 1, this bit indicates that GDLC has either

received a Set Mode, or has received a positive response to a Set Mode initiated by the

local LS. GDLC is now able to send and receive normal sequenced data on this LS.

DLC_RADD_RES

Remote address/name change: an extended result. Set to 1, this bit indicates that the

remote LS address (or name) has been changed from the previous value. This can

occur on synchronous data link control (SDLC) links when negotiating a point-to-point

connection, for example. See the DLC_RADD_RES operation for the format of the

extension area.

Chapter 1. Data Link Controls 43

Field Description

result_code Indicates the result code. The following values specify the result codes for GDLC. Negative

return codes that are even indicate that the error condition can be remedied by restarting the LS

returning the error. Return codes that are odd indicate that the error is catastrophic, and, at the

minimum, the SAP must be restarted. Additional error data may be obtained from the GDLC error

log and link trace entries.

DLC_SUCCESS

The result indicated was successful.

DLC_PROT_ERR

Protocol error.

DLC_BAD_DATA

A bad data compare on a TEST.

DLC_NO_RBUF

No remote buffering on test.

DLC_RDISC

Remote initiated discontact.

DLC_DISC_TO

Discontact abort timeout.

DLC_INACT_TO

Inactivity timeout.

DLC_MSESS_RE

Mid session reset.

DLC_NO_FIND

Cannot find the remote name.

DLC_INV_RNAME

Invalid remote name.

DLC_SESS_LIM

Session limit exceeded.

DLC_LST_IN_PRGS

Listen already in progress.

DLC_LS_NT_COND

LS unusual network condition.

DLC_LS_ROUT

Link station resource outage.

DLC_REMOTE_BUSY

Remote station found, but busy.

DLC_REMOTE_CONN

Specified remote is already connected.

DLC_NAME_IN_USE

Local name already in use.

DLC_INV_LNAME

Invalid local name.

44 Technical Reference: Communications, Volume 1

Field Description

DLC_SAP_NT_COND

SAP network unusual network condition.

DLC_SAP_ROUT

SAP resource outage.

DLC_USR_INTRF

User interface error.

DLC_ERR_CODE

Error in the code has been detected.

DLC_SYS_ERR

System error.

result_ext Indicates result extension. Several results carry extension areas to provide additional information

about them. The user must provide a full-sized area for each result requested since there is no

way to tell if the next result is extended or nonextended. The extended result areas are

described by type below.

DLC_SAPE_RES SAP Enabled Result Extension

The following parameter block enables a service access point (SAP) result extension:

struct dlc_sape_res

 {

 __ulong32_t max_net_send; /* maximum write network data length */

 __ulong32_t lport_addr_len; /* local port network address length */

 u_char_t lport_addr[DLC_MAX_ADDR];/* the local port address */

 };

 The fields of this extension are:

 Field Description

max_net_send Indicates the maximum number of bytes that the user can

write for each packet when writing network data. This is

generally based on a communications mbuf/mbufs page

cluster size, but is not necessarily limited to a single mbuf

structure since mbuf clusters can be linked.

lport_addr_len Indicates the byte length of the local port network address.

lport_addr Indicates the hexadecimal value of the local port network

address.

DLC_STAS_RES Link Station Started Result Extension

The following parameter block starts a link station (LS) result extension:

struct dlc_stas_res

 {

 ulong32_t maxif; /* max size of the data sent */

 /* on a write */

 ulong32_t rport_addr_len; /* remote port network address */

 /* length */

 u_char_t rport_addr[DLC_MAX_ADDR]; /* remote port address */

 ulong32_t rname_len; /* remote network name length */

 u_char_t rname[DLC_MAX_NAME]; /* remote network name */

 uchar_t res[3]; /* reserved */

Chapter 1. Data Link Controls 45

uchar_t rsap; /* remote SAP */

 ulong32_t max_data_off; /* the maximum data offsets for sends*/

 };

 The fields of this extension are:

 Field Description

maxif Contains the maximum byte size allowable for user data.

This value is derived from the value supplied by the user

at the start link station (DLC_START_LS) and the actual

number of bytes that can be handled by the GDLC and

device handler on a single transmit or receive. Generally

this value is less than the size of a communications mbuf

page cluster. However, some communications devices

may be able to link page clusters together, so the

maximum I-field receivable may exceed the length of a

single mbuf cluster. The returned value never exceeds the

value supplied by the user, but may be smaller if buffering

is not large enough to hold the specified value.

rport_addr_len Contains the byte length of the remote port network

address.

rport_addr Contains the hexadecimal value of the remote port

network address.

rname_len Contains the byte length of the remote port network name.

This is returned only when name discovery procedures

are used to locate the remote station. Otherwise this field

is set to 0 (zero). Network names can be 1 to 20

characters in length.

rname Contains the name used by the remote SAP. This field is

valid only if name-discovery procedures were used to

locate the remote station.

rsap Contains the hexadecimal value of the remote SAP

address.

max_data_off Contains the write data offset in bytes of a

communications mbuf cluster where transmit data must

minimally begin. This allows ample room for the DLC and

MAC headers to be inserted if needed. Some DLCs may

be able to prepend additional mbuf clusters for their

headers, and in this case will set this field to 0 (zero).

This field is only valid for kernel users that pass in a

communications mbuf structure on write operations.

Note: To align the data moves to a particular byte

boundary, the kernel user may wish to choose a value

larger than the minimum value returned.

DLC_STAH_RES Link Station Halted Result Extension

The following parameter block halts the link station (LS) result extension:

struct dlc_stah_res

 {

 __ulong32_t conf_ls_corr; /* conflicting link station corr */

 };

46 Technical Reference: Communications, Volume 1

The field of this extension is:

 Field Description

conf_ls_corr Indicates conflicting link station correlator. Contains the

user’s link station identifier that already has the specified

remote station attached.

This extension is valid only if the result code value indicates -936 (specified remote is already connected).

DLC_RADD_RES Remote Address/Name Change Result Extension

The following parameter block changes the remote address or name of the result extension:

struct dlc_radd_res

 {

 __ulong32_t rname_len; /* remote network name/addr length */

 u_char rname[DLC_MAX_NAME];/* remote network name/addr */

 };

 The fields of this extension are:

 Field Description

rname_len Indicates the remote network address or name length.

Contains the byte length of the updated remote SAP’s

network address or name.

rname Contains the updated address or name being used by the

remote SAP.

DLC_HALT_LS ioctl Operation for DLC

The DLC_HALT_LS ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block halts a link station (LS):

struct dlc_corr_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* GDLC link station correlator */

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains the GDLC SAP correlator: The GDLC SAP identifier of the target LS.

gdlc_ls_corr Contains the GDLC LS correlator: The GDLC LS identifier to be halted.

DLC_QUERY_LS ioctl Operation for DLC

The DLC_QUERY_LS ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block queries statistics of a particular link station (LS):

Chapter 1. Data Link Controls 47

struct dlc_qls_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* GDLC ls correlator */

 __ulong32_t user_sap_corr; /* user’s SAP correlator - RETURNED */

 __ulong32_t user_ls_corr; /* user’s link station corr-RETURNED */

 u_char_t ls_diag[DLC_MAX_DIAG]; /* the char name of the ls */

 __ulong32_t ls_state; /* current ls state */

 __ulong32_t ls_sub_state; /* further clarification of state */

 struct dlc_ls_counters counters;

 __ulong32_t protodd_len; /*protocol dependent data byte length*/

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Specifies the generic data link control (GDLC) service

access point (SAP) correlator of the target LS.

gdlc_ls_corr Specifies the GDLC LS correlator to be queried.

user_sap_corr Specifies the user SAP correlator returned for routing

purposes.

user_ls_corr Specifies the user LS correlator, that is the user LS

identifier returned for routing purposes.

ls_diag Contains the link station (LS) diagnostic tag. Indicates the

ASCII character string tag passed to GDLC at the

DLC_START_LS ioctl operation to identify the station

being queried. For example, SNA services puts the

attachment profile name in this field.

ls_state Contains the current state of this LS:

DLC_OPENING

Indicates

the SAP or link station is in the process of

opening.

DLC_OPENED

Indicates the SAP or link station has been

opened.

DLC_CLOSING

Indicates the SAP or link station is the process of

closing.

DLC_INACTIVE

Indicates the link station is currently inactive.

ls_sub_state Contains the current substate of this LS. Several

indicators may be active concurrently.

DLC_CALLING

Indicates the link station is calling.

DLC_LISTENING

Indicates the link station is listening.

DLC_CONTACTED

Indicates the link station is contacted into

sequenced data mode.

DLC_LOCAL_BUSY

Indicates the local link station is currently busy.

DLC_REMOTE_BUSY

Indicates the remote link station is currently busy.

48 Technical Reference: Communications, Volume 1

Field Description

counters Contains link station reliability/availability/serviceability

counters. These 14 reliability/availability/serviceability

counters are shown as an example only. Each GDLC

device manager provides as many of these counters as

necessary to diagnose specific network problems for its

protocol type.

test_cmds_sent

Specifies the number of test commands sent.

test_cmds_fail

Specifies the number of test commands failed.

test_cmds_rec

Specifies the number of test commands received.

data_pkt_sent

Specifies the number of sequenced data packets

sent.

data_pkt_resent

Specifies the number of sequenced data packets

resent.

max_cont_resent

Specifies the maximum number of contiguous

resendings.

data_pkt_rec

Indicates data packets received.

inv_pkt_rec

Specifies the number of invalid packets received.

adp_rec_err

Specifies the number of data-detected receive

errors.

adp_send_err

Specifies the number of data-detected transmit

errors.

rec_inact_to

Specifies the number of received inactivity

timeouts.

cmd_polls_sent

Specifies the number of command polls sent.

cmd_repolls_sent

Specifies the number of command repolls sent.

cmd_cont_repolls

Specifies the maximum number of continuous

repolls sent.

protodd_len Indicates length of protocol-dependent data. This field

contains the byte length of the following area.

The protocol-dependent data contains any additional statistics that a particular GDLC device manager

might provide. See the individual GDLC specifications for information on the specific fields returned. This

optional data area must directly follow (or append to) the end of the dlc_qls_arg structure.

Chapter 1. Data Link Controls 49

DLC_QUERY_SAP ioctl Operation for DLC

The DLC_QUERY_SAP ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block queries statistics of a particular service access point (SAP):

#define DLC_MAX_DIAG 16 /* the max string of chars in the */

 /* diag name */

struct dlc_qsap_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t user_sap_corr; /* user SAP correlator (returned) */

 __ulong32_t sap_state; /* state of the SAP,returned by kernel*

 uchar_t dev[DLC_MAX_DIAG]; /* the returned device handler’s */

 /* device name */

 __ulong32_t devdd_len; /* device driver dependent data */

 /* byte length */

 };

The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains the generic data link control (GDLC) SAP

correlator to be queried.

user_sap_corr Contains the user SAP correlator returned for routing

purposes.

sap_state Contains the current SAP state:

DLC_OPENING

Indicates

the SAP or link station is in the process of

opening.

DLC_OPENED

Indicates the SAP or link station has been

opened.

DLC_CLOSING

Indicates the SAP or link station is the process of

closing.

dev Contains the /dev directory name of the communications

I/O device handler being used by this SAP.

devdd_len Contains the byte length of the expected device driver

statistics that will be appended to the dlc_qsap_arg

structure.

The device driver- dependent data contains the device statistics of the attached network device handler.

This is generally the query device statistics (reliability/availability/serviceability log area) returned from an

ioctl operation issued to the device handler by the Data Link Control (DLC). See the individual GDLC

device manager specifications, discussed in the Generic Data Link Control (GDLC) Environment Overview,

for information on the particular fields returned.

The optional data area must directly follow or append to the end of the dlc_qsap_arg structure.

50 Technical Reference: Communications, Volume 1

DLC_START_LS ioctl Operation for DLC

The DLC_START_LS ioctl operation is selectable through the fp_ioctl kernel service or the ioctl

subroutine. It can be called from the process environment only.

The following parameter block starts a link station (LS) on a particular SAP as a caller or listener:

#define DLC_MAX_DIAG 16 /* the maximum string of chars */

 /* in the diag name */

struct dlc_sls_arg

 {

 __ulong32_t gdlc_ls_corr; /* GDLC User link station correlator */

 u_char_t ls_diag[DLC_MAX_DIAG]; /* the char name of the ls */

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t user_ls_corr; /* User’s SAP correlator */

 __ulong32_t flags; /* Start Link Station flags */

 __ulong32_t trace_chan; /* Trace Channel (rc of trcstart)*/

 __ulong32_t len_raddr_name; /* Length of the remote name/addr*/

 u_char_t raddr_name[DLC_MAX_NAME]; /* The Remote addr/name */

 __ulong32_t maxif; /* Maximum number of bytes in an */

 /* I-field */

 __ulong32_t rcv_wind; /* Maximum size of receive window */

 __ulong32_t xmit_wind; /* Maximum size of transmit window */

 u_char_t rsap; /* Remote SAP value */

 u_char_t rsap_low; /* Remote SAP low range value */

 u_char_t rsap_high; /* Remote SAP high range value */

 u_char_t res1; /* Reserved */

 __ulong32_t max_repoll; /* Maximum Repoll count */

 __ulong32_t repoll_time; /* Repoll timeout value */

 __ulong32_t ack_time; /* Time to delay trans of an ack */

 __ulong32_t inact_time; /* Time before inactivity times out */

 __ulong32_t force_time; /* Time before a forced disconnect */

 };

The fields of this ioctl operation are:

 Field Description

gdlc_ls_corr Contains GDLC LS correlator. The GDLC LS identifier returned to the user as soon as

resources are determined to be available. This correlator must accompany all commands

associated with this LS.

ls_diag Contains LS diagnostic tag. Any ASCII 1 to 16-character name written to GDLC trace, error

log, and status entries for LS identification. (The end-of-name delimiter is the AIX null

character.)

gdlc_sap_corr Contains GDLC LS correlator. Specifies the SAP with which to associate this link station. This

field must contain the same correlator value passed to the user in the gdlc_sap_corr field by

GDLC when the SAP was enabled.

user_ls_corr Contains user LS correlator. Specifies an identifier or correlator that the user wishes to have

returned on all LS results and data from GDLC. It allows the user of multiple link stations to

route the station-specific results based on a correlator.

Chapter 1. Data Link Controls 51

Field Description

flags Contains common LS flags. The following flags are supported:

DLC_TRCO

Trace control on:

 0 = Disable link trace.

 1 = Enable link trace.

DLC_TRCL

Trace control long:

 0 = Link trace entries are short (80 bytes).

 1 = Link trace entries are long (full packet).

DLC_SLS_STAT

Station type for SDLC:

 0 = Secondary (default)

 1 = Primary

DLC_SLS_NEGO

Negotiate station type for SDLC:

 0 = No (default)

 1 = Yes

DLC_SLS_HOLD

Hold link on inactivity:

 0 = No (default). Terminate the LS.

 1 = Yes, hold it active.

DLC_SLS_LSVC

LS virtual call:

 0 = Listen for incoming call.

 1 = Initiate call.

DLC_SLS_ADDR

Address indicator:

 0 = Remote is identified by name (discovery).

 1 = Remote is identified by address (resolve, SDLC).

 Field Description

trace_chan Specifies the channel number obtained from the trcstart subroutine. This field is valid only if

the DLC_TRCO indicator is set active.

len_raddr_name Specifies the byte length of the remote address or name. This field must be set to 0 if no

remote address or name is required to start the LS. Length values of 0 through 20 are

supported.

raddr_name Contains the unique network address of the remote node if the DLC_SLS_ADDR indicator is

set active. Contains the unique network name of the remote node if the DLC_SLS_ADDR

indicator is reset. Addresses are entered in hexadecimal notation, and names are entered in

character notation. This field is only valid if the previous length field is nonzero.

maxif Specifies the maximum number of I-field bytes that can be in one packet. This value is

reduced by GDLC if the device handler buffer sizes are too small to hold the maximum I-field

specified here. The resultant size is returned from GDLC when the link station has been

started.

rcv_wind The receive window specifies the maximum number of sequentially numbered receive

I-frames the local station can accept before sending an acknowledgment.

52 Technical Reference: Communications, Volume 1

Field Description

xmit_wind Specifies the transmit window and the maximum number of sequentially numbered

transmitted I-frames that can be outstanding at any time.

rsap Specifies the remote SAP address being called. This field is valid only if the DLC_SLS_LSVC

indicator or the DLC_SLS_ADDR indicator is set active.

rsap_low Specifies the lowest value in the range of remote SAP address values that the local SAP

responds to when listening for a remote-initiated attachment. This value cannot be the null

SAP (0x00) or the discovery SAP (0xFC), and must have the low-order bit set to 0

(B`nnnnnnn0’) to indicate an individual address.

rsap_high Specifies the highest value in the range of remote SAP address values that the local SAP

responds to, when listening for a remote-initiated attachment. This value cannot be the null

SAP (0x00) or the discovery SAP (0xFC), and must have the low-order bit set to 0

(B`nnnnnnn0’) to indicate an individual address.

max_repoll Specifies the maximum number of retries for an unacknowledged command frame, or in the

case of an I-frame timeout, the number of times the nonresponding remote link station is

polled with a supervisory command frame.

repoll_time Contains the timeout value (in increments defined by the specific GDLC) used to specify the

amount of time allowed prior to retransmitting an unacknowledged command frame.

ack_time Contains the timeout value (in increments defined by the specific GDLC) used to specify the

amount of time to delay the transmission of an acknowledgment for a received I-frame.

inact_time Contains the timeout value (in increments of 1 second) used to specify the maximum amount

of time allowed before receive inactivity returns an error.

force_time Contains the timeout value (in increments of 1 second) specifying the period to wait for a

normal disconnection. Once the timeout occurs, the disconnection is forced and the link

station is halted.

The protocol-specific data area allows parameters to be defined by a specific GDLC device manager, such

as Token-Ring dynamic window increment or SDLC primary slow poll. This optional data area must directly

follow (or append to) the end of the dlc_sls_arg structure.

DLC_TEST ioctl Operation for DLC

The DLC_TEST ioctl operation is selectable through the fp_ioctl kernel service or the ioctl subroutine. It

can be called from the process environment only.

The following parameter block tests the link to a remote for a particular local link station (LS):

struct dlc_corr_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* GDLC link station correlator */

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Indicates the GDLC SAP correlator of the target LS.

gdlc_ls_corr Indicates the GDLC LS correlator to be tested.

Chapter 1. Data Link Controls 53

DLC_TRACE ioctl Operation for DLC

The DLC_TRACE ioctl operation is selectable through the fp_ioctl kernel service or the ioctl subroutine. It

can be called from the process environment only.

The following parameter block traces link station (LS) activity for short or long activities:

struct dlc_trace_arg

 {

 __ulong32_t gdlc_sap_corr; /* GDLC SAP correlator */

 __ulong32_t gdlc_ls_corr; /* GDLC link station correlator */

 __ulong32_t trace_chan; /* Trace Channel (rc of trcstart) */

 __ulong32_t flags; /* Trace Flags */

 };

 The fields of this ioctl operation are:

 Field Description

gdlc_sap_corr Contains the GDLC SAP correlator. The correlator

returned by GDLC when the SAP was enabled by the

user. This correlator identifies the user SAP to the GDLC

protocol process.

gdlc_ls_corr Contains the GDLC LS correlator. The correlator returned

by GDLC when the LS was started by the user. This

correlator identifies the user LS to the GDLC protocol

process.

trace_chan Specifies the trace channel number obtained from the

trcstart subroutine. This field is only valid if the

DLC_TRCO indicator is set active.

flags Specifies trace flags. The following flags are supported:

DLC_TRCO

Trace control on:

 0 = Disable link trace.

 1 = Enable link trace.

DLC_TRCL

Trace control long:

 0 = Link trace entries are short (80 bytes).

 1 = Link trace entries are long (full packet).

IOCINFO ioctl Operation for DLC

This operation returns a structure that describes the device. The first byte is set to an ioctype of DD_DLC.

The subtype and data are defined by the individual DLC devices. See the /usr/include/sys/devinfo.h file

for details.

The IOCINFO ioctl operation is selectable through the fp_ioctl kernel service or the ioctl subroutine. It

can be called from the process environment only.

Related Information

Generic Data Link Control (GDLC) Environment Overview in AIX 5L Version 5.3 Communications

Programming Concepts.

54 Technical Reference: Communications, Volume 1

Chapter 2. Data Link Provider Interface (DLPI)

DL_ATTACH_REQ Primitive

Purpose

Requests that the data link service (DLS) provider associate a physical point of attachment (PPA) with a

stream.

Structure

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct

 {

 ulong dl_primitive;

 ulong dl_ppa;

} dl_attach_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_ATTACH_REQ primitive requests that the DLS provider associate a PPA with a stream. The

DL_ATTACH_REQ primitive is needed for style 2 DLS providers to identify the physical medium over

which communication is to transpire.

Parameters

 dl_primitive Specifies the DL_ATTACH_REQ message.

dl_ppa Specifies the identifier of the PPA to be associated with the stream. The dlpi driver is

implemented a style 2 provider

The value of the dl_ppa parameter must include identification of the communication medium.

For media that multiplex multiple channels over a single physical medium, this identifier

should also specify a specific communication channel (where each channel on a physical

medium is associated with a separate PPA).

Note: Because of the provider-specific nature of this value, DLS user software that is to be

protocol independent should avoid hard-coding the PPA identifier. The DLS user should

retrieve the necessary PPA identifier from some other entity (such as a management entity)

and insert it without inspection into the DL_ATTACH_REQ primitive.

States

 Valid The primitive is valid in the DL_UNATTACHED state.

New The resulting state is DL_ATTACH_PENDING.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user resulting in the DL_UNBOUND state.

Unsuccessful The DL_ERROR_ACK primitive is returned and the resulting state is unchanged.

© Copyright IBM Corp. 1997, 2006 55

Error Codes

 DL_ACCESS Indicates the DLS user does not have proper permission to use the requested PPA.

DL_BADPPA Indicates the specified PPA is invalid.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

Related Information

The DL_BIND_REQ primitive, DL_OK_ACK primitive, DL_ERROR_ACK primitive.

DL_BIND_ACK Primitive

Purpose

Reports the successful bind of a data link service access point (DLSAP) to a stream.

Structure

The message consists of one M_PCPROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_sap;

 ulong dl_addr_length;

 ulong dl_addr_offset;

 ulong dl_max_conind;

 ulong dl_xidtest_flg;

} dl_bind_ack_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_BIND_ACK primitive reports the successful bind of a DLSAP to a stream and returns the bound

DLSAP address to the data link service (DLS) user. This primitive is generated in response to a

DL_BIND_REQ primitive.

Parameters

 dl_primitive Specifies the DL_BIND_ACK primitive.

dl_sap Specifies the DLSAP address information associated with the bound DLSAP. It

corresponds to the dl_sap parameter of the associated DL_BIND_REQ primitive, which

contains part or all of the DLSAP address. For the portion of the DLSAP address

conveyed in the DL_BIND_REQ primitive, this parameter contains the corresponding

portion of the address for the DLSAP that was actually bound.

dl_addr_length Specifies the length of the complete DLSAP address that was bound to the Data Link

Provider Interface (DLPI) stream. The bound DLSAP is chosen according to the

guidelines presented under the description of the DL_BIND_REQ primitive.

dl_addr_offset Specifies where the DLSAP address begins. The value of this parameter is the offset

from the beginning of the M_PCPROTO block.

56 Technical Reference: Communications, Volume 1

dl_max_conind Specifies whether a DL_CODLS stream will allow incoming connection idications

(DL_CONNECT_IND). If the value is zero, the stream cannot accept any

DL_CONNECT_IND messages; the stream will only accept DL_CONNECT_REQ. If the

value is greater than zero, then this stream is a listening stream, and indicates how many

DL_CONNECT_IND’s can be pending at one time.

dl_xidtest_flg Specifies the XID and test responses supported by the provider. Valid values are:

0 The DLS user will be handling all XID and TEST traffic.

DL_AUTO_XID

Automatically handles XID responses.

DL_AUTO_TEST

Automatically handles test responses.

DL_AUTO_XID|DL_AUTO_TEST

Automatically handles both XID and TEST responses.

States

 Valid The primitive is valid in the DL_BIND_PENDING state.

New The resulting state is DL_IDLE.

Related Information

The DL_BIND_REQ primitive.

DL_BIND_REQ Primitive

Purpose

Requests that the data link service (DLS) provider bind a data link service access point (DLSAP) to a

stream.

Structure

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_sap;

 ulong dl_max_conind;

 ushort dl_service_mode;

 ushort dl_conn_mgmt;

 ulong dl_xidtest_flg;

} dl_bind_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

A stream is active when the DLS provider can transmit and receive protocol data units destined to or

originating from the stream. The physical point of attachment (PPA) associated with each stream must be

initialized when the DL_BIND_REQ primitive has been processed.The PPA is initialized when the

DL_BIND_ACK primitive is received. If the PPA cannot be initialized, the DL_BIND_REQ primitive fails.

Chapter 2. Data Link Provider Interface (DLPI) 57

Parameters

 dl_primitive Specifies the DL_BIND_REQ primitive.

dl_sap Identifies the DLSAP to be bound to the Data Link Provider Interface (DLPI) stream.

This parameter can contain either the full DLSAP address or a portion of the address

sufficient to uniquely identify the DLSAP. The DL_BIND_ACK primitive returns the full

address of the bound DLSAP. The dl_sap parameter is a ulong containing and

ethertype for DL_ETHER, or a single byte SAP for 802.2 networks.

The DLS provider adheres to the following rules when it binds a DLSAP address:

v The DLS provider must define and manage its DLSAP address space.

v The DLS provider allows the same DLSAP to be bound to multiple streams.

The DLS provider may not be able to bind the specified DLSAP address for the

following reasons:

v The DLS provider statically associated a specific DLSAP with each stream. The

value of the dl_sap parameter is ignored by the DLS provider and the

DL_BIND_ACK primitive returns the DLSAP address that is already associated with

the stream.

Note: Because of the provider-specific nature of the DLSAP address,

protocol-independent DLS user software should not have this value hard-coded. The

DLS user should retrieve the necessary DLSAP address from the appropriate header

file for that protocol and insert it without inspection into the DL_BIND_REQ primitive.

dl_max_conind Specifies the maximum number of outstanding DL_CONNECT_IND primitives allowed

on the DLPI stream. This field controls whether a connection-oriented stream will

accept incoming connection indications. This parameter can have one of the following

values:

0 The stream cannot accept any DL_CONNECT_IND primitives.

>0 The DLS user accepts the specified number of DL_CONNECT_IND primitives

before having to respond with a DL_CONNECT_RES or

DL_DISCONNECT_REQ primitive.

The DLS provider may not be able to support the value supplied in the dl_max_conind

parameter for the following reasons:

v If the provider cannot support the specified number of outstanding connect

indications, it should set the value down to a number it can support.

v Only one stream that is bound to the indicated DLSAP can have an allowed number

of maximum outstanding connect indications greater than 0. If a DL_BIND_REQ

primitive specifies a value greater than 0, but another stream has already bound

itself to the DLSAP with a value greater than 0, the request fails. The DLS provider

then sets the dl_errno parameter of the DL_ERROR_ACK primitive to a value of

DL_BOUND.

v A connection cannot be accepted on a stream bound with a dl_max_conind greater

than zero. No other streams in which the value of the dl_max_conind parameter is

greater than 0 can be bound to the same DLSAP. This restriction prevents more than

one stream bound to the same DLSAP from receiving connect indications and

accepting connections.

– A DLS user should always be able to request a dl_max_conind parameter value

of 0, since this indicates to the DLS provider that the stream will only be used to

originate connect requests.

– A stream in which the dl_max_conind parameter has a negotiated value greater

than 0 cannot originate connect requests.

Note: This field is ignored in connectionless-mode service.

58 Technical Reference: Communications, Volume 1

dl_service_mode Specifies the following modes of service for this stream:

DL_CODLS

Selects the connection-oriented only mode. The connection primitives will be

accepted. In addition, an arbitrary number of streams may bind to the same

dl_sap on the same interface, as long as dl_max_conind is zero. No incoming

datagram traffic will be sent up this stream. Such frames will either be routed

to a DL_CLDLS stream, or silently discarded.

DL_CLDLS

Selects the connectionless only mode. The connection primitives will not be

accepted. This mode selects exclusive control of connectionless traffic. All

datagrams (DL_UNITDATA_IND) from any remote station addressed to this

dl_sap will be received on this stream, even if another stream is currently

connected on the same dl_sap. Only one stream per interface may bind

DL_CLDS.

DL_CLDLS|DL_CODLS

Selects the connection-oriented service augmented with conectionless traffic.

An arbitrary number of streams may bind to the same dl_sap on the same

interface. This mode is mutually exclusive with DL_CLDLS.

If the DLS provider does not support the requested service mode, a DL_ERROR_ACK

primitive is generated. This primitive conveys a value of DL_UNSUPPORTED.

dl_conn_mgmt This field is ignored.

dl_xidtest_flg Indicates to the DLS provider that XID or test responses for this stream are to be

automatically generated by the DLS provider. The xidtest_flg parameter contains a bit

mask that can specify either, both, or neither of the following values:

DL_AUTO_XID

Indicates to the DLS provider that automatic responses to XID commands are

to be generated.

DL_AUTO_TEST

Indicates to the DLS provider that automatic responses to test commands are

to be generated.

DL_AUTO_XID|DL_AUTO_TEST

Indicates to the DLS provider that automatic responses to both XID commands

and test commands are to be generated.

The DLS provider supports automatic handling of XID and test responses. If an

automatic XID or test response has been requested, the DLS provider does not

generate DL_XID_IND or DL_TEST_IND primitives. Therefore, if the provider receives

an XID request (DL_XID_REQ) or test request (DL_TEST_REQ) from the DLS user,

the DLS provider returns a DL_ERROR_ACK primitive, specifying a DL_XIDAUTO or

DL_TESTAUTO error code, respectively.

If no value is specified in the dl_xidtest_flg parameter, the DLS provider does not

automatically generate XID and test responses.

The value informs the DLS provider that the DLS user will be handling all XID and

TEST traffic. A nonzero value indicates the DLS provider is responsible for either XID or

TEST traffic or both. If the driver handles XID or TEST, the DLS user will not receive

any incoming XID or TEST frames, nor be allowed to send them.

States

 Valid The primitive is valid in the DL_UNBOUND state.

New The resulting state is DL_BIND_PENDING.

Chapter 2. Data Link Provider Interface (DLPI) 59

Acknowledgments

 Successful The DL_BIND_ACK primitive is sent to the DLS user. The resulting state is DL_IDLE.

Unsuccessful The DL_ERROR_ACK primitive is returned. The resulting state is unchanged.

Error Codes

 DL_ACCESS Indicates the DLS user does not have proper permission to use the requested DLSAP

address.

DL_BADADDR Indicates the DLSAP address information is invalid or is in an incorrect format.

DL_BOUND Indicates the DLS user attempted to bind a second stream to a DLSAP with a

dl_max_conind parameter value greater than 0, or the DLS user attempted to bind a

second connection management stream to the PPA.

DL_INITFAILED Indicates the automatic initialization of the PPA failed.

DL_NOADDR Indicates the DLS provider cannot allocate a DLSAP address for this stream.

DL_NOAUTO Indicates automatic handling of XID and test responses is not supported.

DL_NOTINIT Indicates the PPA was not initialized prior to this request.

DL_NOTESTAUTO Indicates automatic handling of test responses is not supported.

DL_NOXIDAUTO Indicates automatic handling of XID responses is not supported.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

DL_UNSUPPORTED Indicates the DLS provider does not support the requested service mode on this stream.

Related Information

The DL_BIND_ACK primitive, DL_ERROR_ACK primitive.

DL_CONNECT_CON Primitive

Purpose

Informs the local data link service (DLS) user that the requested data link connection has been

established.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_resp_addr_length;

 ulong dl_resp_addr_offset;

 ulong dl_qos_length;

 ulong dl_qos_offset;

 ulong dl_growth;

} dl_connect_con_t;

Description

The DL_CONNECT_CON primitive informs the local DLS user that the requested data link connection has

been established. The primitive contains the data link service access point (DLSAP) address of the

responding DLS user.

Note: This primitive applies to connection mode.

60 Technical Reference: Communications, Volume 1

Parameters

 dl_primitive Specifies the DL_CONNECT_CON primitive.

dl_resp_addr_length Specifies the length of the address of the responding DLSAP associated with

the newly established data link connection.

dl_resp_addr_offset Specifies where responding DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

dl_qos_length The DLS provider does not support QOS parameters. This value is set to 0.

dl_qos_offset The DLS provider does not support QOS parameters. This value is set to 0.

dl_growth Defines a growth field for future enhancements to this primitive. Its value must

be set to zero.

States

 Valid The primitive is valid in the DL_OUTCON_PENDING state.

New The resulting state is DL_DATAXFER.

Related Information

DL_CONNECT_REQ primitive.

DL_CONNECT_IND Primitive

Purpose

Informs the local data link service (DLS) user that a remote (calling) DLS user is attempting to establish a

data link connection.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure.

typedef struct

{

 ulong dl_primitive;

 ulong dl_correlation;

 ulong dl_called_addr_length;

 ulong dl_called_addr_offset;

 ulong dl_calling_addr_length;

 ulong dl_calling_addr_offset;

 ulong dl_qos_length;

 ulong dl_qos_offset;

 ulong dl_growth;

} dl_connect_req_t;

Description

The DL_CONNECT_IND primitive informs the local DLS user that a remote (calling) DLS user is

attempting to establish a data link connection. The primitive contains the data link service access point

(DLSAP) addresses of the calling and called DLS user.

The DL_CONNECT_IND primitive also contains a number that allows the DLS user to correlate the

primitive with a subsequent DL_CONNECT_RES, DL_DISCONNECT_REQ, or DL_DISCONNECT_IND

primitive.

Chapter 2. Data Link Provider Interface (DLPI) 61

The number of outstanding DL_CONNECT_IND primitives issued by the DLS provider must not exceed

the value of the dl_max_conind parameter specified by the DL_BIND_ACK primitive. If this limit is reached

and an additional connect request arrives, the DLS provider does not pass the corresponding connect

indication to the DLS user until a response is received for an outstanding request.

Note: This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_CONNECT_IND primitive.

dl_correlation Specifies the correlation number to be used by the DLS user to associate

this message with the DL_CONNECT_RES, DL_DISCONNECT_REQ, or

DL_DISCONNECT_IND primitive that is to follow. This value enables the

DLS user to multithread connect indications and responses. All

outstanding connect indications must have a distinct, nonzero correlation

value set by the DLS provider.

dl_called_addr_length Specifies the length of the address of the DLSAP for which this

DL_CONNECT_IND primitive is intended. This address is the full DLSAP

address specified by the calling DLS user and is typically the value

returned on the DL_BIND_ACK associated with the given stream.

dl_called_addr_offset Specifies where the called DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message

block.

dl_calling_addr_length Specifies the length of the address of the DLSAP from which the

DL_CONNECT_REQ primitive was sent.

dl_calling_addr_offset Specifies where the calling DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message

block.

dl_qos_length The DLS provider does not support QOS parameters. This length field is

set to 0.

dl_qos_offset The DLS provider does not support QOS parameters. This length field is

set to 0.

dl_growth Defines a growth field for future enhancements to this primitive. Its value

must be set to 0.

States

 Valid The primitive is valid in the DL_IDLE state. It is also valid in the DL_INCON_PENDING state when the

maximum number of outstanding DL_CONNECT_IND primitives has not been reached on this stream.

New The resulting state is DL_INCON_PENDING, regardless of the current state.

Acknowledgments

The DLS user must send either the DL_CONNECT_RES primitive to accept the connect request or the

DL_DISCONNECT_REQ primitive to reject the connect request. In either case, the responding message

must convey the correlation number received from the DL_CONNECT_IND primitive. The DLS provider

uses the correlation number to identify the connect request to which the DLS user is responding.

Related Information

The DL_BIND_ACK primitive, DL_CONNECT_RES primitive, DL_DISCONNECT_IND primitive,

DL_DISCONNECT_REQ primitive.

62 Technical Reference: Communications, Volume 1

DL_CONNECT_REQ Primitive

Purpose

Requests that the data link service (DLS) provider establish a data link connection with a remote DLS

user.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

 ulong dl_qos_length;

 ulong dl_qos_offset;

 ulong dl_growth;

} dl_connect_req_t;

Description

The DL_CONNECT_REQ primitive requests that the DLS provider establish a data link connection with a

remote DLS user. The request contains the data link service access point (DLSAP) address of the remote

DLS user.

Note: This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_CONNECT_REQ primitive.

dl_dest_addr_length Specifies the length of the DLSAP address that identifies the DLS user with

whom a connection is to be established. If the called user is implemented using

DLPI, this address is the full DLSAP address returned on the DL_BIND_ACK

primitive.

dl_dest_addr_offset Specifies where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

dl_qos_length The DLS provider does not support any QOS parameter values. This value is

set to 0.

dl_qos_offset The DLS provider does not support any QOS parameter values. This value is

set to 0.

dl_growth Defines a growth field for future enhancements to this primitive. Its value must

be set to 0.

States

 Valid The primitive is valid in the DL_IDLE state.

New The resulting state is DL_OUTCON_PENDING.

Acknowledgments

There is no immediate response to the connect request. However, if the connect request is accepted by

the called DLS user, the DL_CONNECT_CON primitive is sent to the calling DLS user, resulting in the

DL_DATAXFER state.

Chapter 2. Data Link Provider Interface (DLPI) 63

If the connect request is rejected by the called DLS user, the called DLS user cannot be reached, or the

DLS provider or called DLS user do not agree on the specified quality of service, a

DL_DISCONNECT_IND primitive is sent to the calling DLS user, resulting in the DL_IDLE state.

If the request is erroneous, the DL_ERROR_ACK primitive is returned and the resulting state is

unchanged.

Error Codes

 DL_ACCESS Indicates the DLS user does not have proper permission to use the requested DLSAP

address.

DL_BADADDR Indicates the DLSAP address information is invalid or is in an incorrect format.

DL_BADQOSPARAM Indicates the QOS parameters contain invalid values.

DL_BADQOSTYPE Indicates the QOS structure type is not supported by the DLS provider.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

DL_UNSUPPORTED Indicates the DLS user has indicated QOS parameters, which are unsupported.

Related Information

The DL_CONNECT_CONprimitive, DL_DISCONNECT_IND primitive, DL_ERROR_ACK primitive,

DL_BIND_ACK primitive.

DL_CONNECT_RES Primitive

Purpose

Directs the data link service (DLS) provider to accept a connect request from a remote DLS user.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_correlation;

 ulong dl_resp_token;

 ulong dl_qos_length;

 ulong dl_qos_offset;

 ulong dl_growth;

} dl_connect_res_t;

Description

The DL_CONNECT_RES primitive directs the DLS provider to accept a connect request from a remote

(calling) DLS user on a designated stream. The DLS user can accept the connection on the same stream

where the connect indication arrived, or on a different, previously bound stream. The response contains

the correlation number from the corresponding DL_CONNECT_IND primitive, selected quality of service

(QOS) parameters, and an indication of the stream on which to accept the connection.

After issuing this primitive, the DLS user can immediately begin transferring data using the

DL_DATA_REQ primitive. However, if the DLS provider receives one or more DL_DATA_REQ primitives

from the local DLS user before it has established a connection, the provider must queue the data transfer

requests internally until the connection is successfully established.

64 Technical Reference: Communications, Volume 1

Note: This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_CONNECT_RES primitive.

dl_correlation Specifies the correlation number that was received with the corresponding

DL_CONNECT_IND primitive. The DLS provider uses the correlation number to identify

the connect indication to which the DLS user is responding.

dl_resp_token Specifies one of the following values:

>0 Specifies the token associated with the responding stream on which the DLS

provider is to establish the connection. This stream must be in the DL_IDLE

state. The token value for a stream can be obtained by issuing a

DL_TOKEN_REQ primitive on that stream.

0 Indicates the DLS user is accepting the connection on the stream where the

connect indication arrived.

dl_qos_length The DLS provider does not support QOS parameters. This value is set to 0.

dl_qos_offset The DLS provider does not support QOS parameters. This value is set to 0.

dl_growth Defines a growth field for future enhancements to this primitive. Its value must be set to

0.

States

 Valid The primitive is valid in the DL_INCON_PENDING state.

New The resulting state is DL_CONN_RES_PENDING.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user. If no outstanding connect indications

remain, the resulting state for the current stream is DL_IDLE. Otherwise, it remains

DL_INCON_PENDING. For the responding stream (designated by the dl_resp_token

parameter), the resulting state is DL_DATAXFER. If the current stream and responding

stream are the same, the resulting state of that stream is DL_DATAXFER. These streams

can only be the same when the response corresponds to the only outstanding connect

indication.

Unsuccessful The DL_ERROR_ACK primitive is returned on the stream where the DL_CONNECT_RES

primitive was received, and the resulting state of that stream and the responding stream is

unchanged.

Error Codes

 DL_ACCESS Indicates the DLS user does not have proper permission to use the requested data link

service access point (DLSAP) address.

DL_BADCORR Indicates the correlation number specified in this primitive does not correspond to a

pending connect indication.

DL_BADQOSPARAM Indicates the QOS parameters contain invalid values.

DL_BADQOSTYPE Indicates the QOS structure type is not supported by the DLS provider.

DL_BADTOKEN Indicates the token for the responding stream is not associated with a currently open

stream.

DL_OUTSTATE Indicates the primitive was issued from an invalid state, or the responding stream was not

in a valid state for establishing a connection.

DL_PENDING Indicates the current and responding streams are the same, and there is more than one

outstanding connect indication.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

Chapter 2. Data Link Provider Interface (DLPI) 65

Related Information

The DL_CONNECT_IND primitive, DL_CONNECT_RES primitive, DL_DATA_REQ primitive,

DL_ERROR_ACK primitive, DL_OK_ACK primitive.

DL_DATA_IND Primitive

Purpose

Conveys a data link service data unit (DLSDU) from the data link service (DLS) provider to the DLS user.

Structure

The primitive consists of one or more M_DATA message blocks containing at least one byte of data. (That

is, there is no DLPI data structure associated with this primitive.)

Description

The DL_DATA_IND primitive conveys a DLSDU from the DLS provider to the DLS user. The DLS provider

guarantees to deliver each DLSDU to the local DLS user in the same order as received from the remote

DLS user. If the DLS provider detects unrecoverable data loss during data transfer, this may be indicated

to the DLS user by a DL_RESET_IND primitive, or, if the connection is lost, by a DL_DISCONNECT_IND

primitive.

Note: This primitive applies to connection mode.

States

 Valid The primitive is valid in the DL_DATAXFER state.

New The resulting state is unchanged.

Related Information

The DL_DISCONNECT_IND primitive, DL_RESET_IND primitive.

DL_DATA_REQ Primitive

Purpose

Conveys a complete data link service data unit (DLSDU) from the data link service (DLS) user to the DLS

provider for transmission over the data link connection.

Structure

This primitive consists of one or more M_DATA message blocks containing at least one byte of data. (That

is, there is no DLPI data structure associated with this primitive.)

Description

The DL_DATA_REQ primitive conveys a complete DLSDU from the DLS user to the DLS provider for

transmission over the data link connection. The DLS provider guarantees to deliver each DLSDU to the

remote DLS user in the same order as received from the local DLS user. If the DLS provider detects

unrecoverable data loss during data transfer, the DLS user can be notified by a DL_RESET_IND primitive.

If the connection is lost, the user can be notified by a DL_DISCONNECT_IND primitive.

66 Technical Reference: Communications, Volume 1

To simplify support of a read/write interface to the data link layer, the DLS provider must recognize and

process messages that consist of one or more M_DATA message blocks without a preceding M_PROTO

message block. This message type may originate from the write subroutine.

Notes:

1. This does not imply that the Data Link Provider Interface (DLPI) directly supports a pure read/write

interface. If such an interface is desired, a streams module could be implemented to be pushed above

the DLS provider.

2. (Support of Direct User-Level Access) A streams module would implement more field processing itself

to support direct user-level access. This module could collect messages and send them in one larger

message to the DLS provider, or break large DLSDUs passed to the DLS user into smaller messages.

The module would only be pushed if the DLS user was a user-level process.

3. The DL_DATA_REQ primitive applies to connection mode.

States

 Valid The primitive is valid in the DL_DATAXFER state. If it is received in the DL_IDLE or

DL_PROV_RESET_PENDING state, the primitive is discarded without generating an error.

New The resulting state is unchanged.

Acknowledgments

 Successful No response is generated.

Unsuccessful A streams M_ERROR message is issued to the DLS user specifying an errno global value of

EPROTO. This action should be interpreted as a fatal, unrecoverable, protocol error. A

request will fail under the following conditions:

v The primitive was issued from an invalid state. If the request is issued in the DL_IDLE or

DL_PROV_RESET_PENDING state. However, the request is discarded without generating

an error.

v The amount of data in the current DLSDU is not within the DLS provider’s acceptable

bounds as specified by the dl_min_sdu and dl_max_sdu parameters of the DL_INFO_ACK

primitive.

Related Information

The DL_DISCONNECT_IND primitive, DL_INFO_ACK primitive, DL_RESET_IND primitive.

DL_DETACH_REQ Primitive

Purpose

Requests that the data link service (DLS) style 2 provider detach a physical point of attachment (PPA)

from a stream.

Structure

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

} dl_detach_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Chapter 2. Data Link Provider Interface (DLPI) 67

Description

For style 2 DLS providers, the DL_DETACH_REQ primitive requests the DLS provider detach a PPA from

a stream.

Parameters

 dl_primitive Specifies the DL_DETACH_REQ primitive.

States

 Valid The primitive is valid in the DL_UNBOUND state.

New The resulting state is DL_DETACH_PENDING.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user. The resulting state is

DL_UNATTACHED.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Error Codes

 DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

Related Information

The DL_ERROR_ACK primitive, DL_OK_ACK primitive.

DL_DISABMULTI_REQ Primitive

Purpose

Requests that the data link service (DLS) provider disable specific multicast addresses on a per stream

basis.

Structure

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_addr_length;

 ulong dl_addr_offset;

} dl_disabmulti_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_DISABMULTI_REQ primitive requests that the DLS provider disable specific multicast addresses

on a per stream basis.

68 Technical Reference: Communications, Volume 1

The DLS provider must not run in the interrupt environment. If the DLS provider runs in the interrupt

environment, the system returns a DL_ERROR_ACK primitive with an error code of DL_SYSERR and an

operating system error code of 0.

Parameters

 dl_primitive Specifies the DL_DISABMULTI_REQ primitive.

dl_addr_length Specifies the length of the physical address.

dl_addr_offset Indicates where the multicast address begins. The value of this parameter is the offset

from the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in any state in which a local acknowledgement is not pending, with the exception of

the DL_UNATTACH state.

New The resulting state is unchanged.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Error Codes

 DL_BADADDR Indicates the data link service access point (DLSAP) address information is invalid or is

in an incorrect format.

DL_NOTENAB Indicates the address specified is not enabled.

DL_NOTSUPPORTED Indicates the primitive is known but not supported by the DLS provider.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The DL_ERROR_ACK primitive indicates the system

error.

Related Information

The DL_OK_ACK primitive, DL_ERROR_ACK primitive, DL_ENABMULTI_REQ primitive.

DL_DISCONNECT_IND Primitive

Purpose

Informs the data link service (DLS) user that the data link connection on the current stream has been

disconnected, or that a pending connection has been cancelled.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_originator;

Chapter 2. Data Link Provider Interface (DLPI) 69

ulong dl_reason;

 ulong dl_correlation;

} dl_disconnect_ind_t;

Description

The DL_DISCONNECT_IND primitive informs the DLS user of one of the following conditions:

v The data link connection on the current stream has been disconnected.

v A pending connection from either the DL_CONNECT_REQ or DL_CONNECT_IND primitive has been

cancelled.

The primitive indicates the origin and the cause of the disconnect.

Note: This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_DISCONNECT_IND primitive.

dl_originator Indicates whether the disconnect originated from a DLS user or provider. Valid values are

DL_USER and DL_PROVIDER.

dl_reason Specifies the reason for the disconnect. Reasons for disconnect are:

DL_DISC_PERMANENT_CONDITION

Indicates the connection was released because of a permanent condition.

DL_DISC_TRANSIENT_CONDITION

Indicates the connection was released because of a temporary condition.

DL_CONREJ_DEST_UNKNOWN

Indicates the connect request has an unknown destination.

DL_CONREJ_DEST_UNREACH_PERMANENT

Indicates the connection was released because the destination for connect

request could not be reached. This is a permanent condition.

DL_CONREJ_DEST_UNREACH_TRANSIENT

Indicates the connection was released because the destination for connect

request could not be reached. This is a temporary condition.

DL_CONREJ_QOS_UNAVAIL_PERMANENT

Indicates the requested quality of service (QOS) parameters became

permanently unavailable while establishing a connection.

DL_CONREJ_QOS_UNAVAIL_TRANSIENT

Indicates the requested QOS parameters became temporarily unavailable while

establishing a connection.

DL_DISC_UNSPECIFIED

Indicates the connection was closed because of an unspecified reason.

dl_correlation If the value is nonzero, specifies the correlation number contained in the

DL_CONNECT_IND primitive being cancelled.This value permits the DLS user to

associate the message with the proper DL_CONNECT_IND primitive. If the disconnect

request indicates the release of a connection that is already established, or is indicating

the rejection of a previously sent DL_CONNECT_REQ primitive, the value of the

dl_correlation parameter is zero.

70 Technical Reference: Communications, Volume 1

States

 Valid The primitive is valid in any of the following states:

v DL_DATAXFER

v DL_INCON_PENDING

v DL_OUTCON_PENDING

v DL_PROV_RESET_PENDING

v DL_USER_RESET_PENDING

New The resulting state is DL_IDLE.

Related Information

The DL_CONNECT_IND primitive, DL_CONNECT_REQ primitive.

DL_DISCONNECT_REQ Primitive

Purpose

Requests that an active data link be disconnected.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_reason;

 ulong dl_correlation;

} dl_disconnect_req_t;

Description

The DL_DISCONNECT_REQ primitive requests the data link service (DLS) provider to disconnect an

active data link connection or one that was in the process of activation. The DL_DISCONNECT_REQ

primitive can be sent in response to a previously issued DL_CONNECT_IND or DL_CONNECT_REQ

primitive. If an incoming DL_CONNECT_IND primitive is being refused, the correlation number associated

with that connect indication must be supplied. The message indicates the reason for the disconnect.

Note: This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_DISCONNECT_REQ primitive.

Chapter 2. Data Link Provider Interface (DLPI) 71

dl_reason Indicates one of the following reasons for the disconnect:

DL_DISC_NORMAL_CONDITION

Indicates normal release of a data link connection.

DL_DISC_ABNORMAL_CONDITION

Indicates abnormal release of a data link connection.

DL_CONREJ_PERMANENT_COND

Indicates a permanent condition caused the rejection of a connect request.

DL_CONREJ_TRANSIENT_COND

Indicates a transient condition caused the rejection of a connect request.

DL_DISC_UNSPECIFIED

Indicates the connection was closed for an unspecified reason.

dl_correlation Specifies one of the following values:

0 Indicates either the disconnect request is releasing an established connection or

is cancelling a previously sent DL_CONNECT_REQ primitive.

>0 Specifies the correlation number that was contained in the DL_CONNECT_IND

primitive being rejected. This value permits the DLS provider to associate the

primitive with the proper DL_CONNECT_IND primitive when rejecting an

incoming connection.

States

 Valid The primitive is valid in any of the following states:

v DL_DATAXFER

v DL_INCON_PENDING

v DL_OUTCON_PENDING

v DL_PROV_RESET_PENDING

v DL_USER_RESET_PENDING

 New

v DL_DISCON11_PENDING

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user resulting in the DL_IDLE state.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Error Codes

 DL_BADCORR Indicates the correlation number specified in this primitive does not correspond to a pending

connect indication.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

Related Information

The DL_CONNECT_IND primitive, DL_OK_ACK primitive, DL_ERROR_ACK primitive,

DL_CONNECT_REQ primitive.

72 Technical Reference: Communications, Volume 1

DL_ENABMULTI_REQ Primitive

Purpose

Requests that the data link service (DLS) provider enable specific multicast addresses on a per stream

basis.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_addr_length;

 ulong dl_addr_offset;

} dl_enabmulti_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_ENABMULTI primitive requests that the DLS provider enable specific multicast addresses on a

per stream basis. It is invalid for a DLS provider to pass upstream messages that are destined for any

address other than those explicitly enabled on that stream by the DLS user.

If a duplicate address is requested, the system returns a DL_OK_ACK primitive, with no operation

performed. If the stream is closed, all multicast addresses associated with the stream will be unregistered.

The DLS provider must not run in the interrupt environment. If the DLS provider runs in the interrupt

environment, the system returns a DL_ERROR_ACK primitive with a DL_SYSERR error code and an

operating system error code of 0.

Parameters

 dl_primitive Specifies the DL_ENABMULTI primitive.

dl_addr_length Specifies the length of the multicast address.

dl_addr_offset Indicates where the multicast address begins. The value of this parameter is the offset

from the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in any state in which a local acknowledgement is not pending, with the exception of

the DL_UNATTACH state.

New The resulting state is unchanged.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Chapter 2. Data Link Provider Interface (DLPI) 73

Error Codes

 DL_BADADDR Indicates the data link service access point (DLSAP) address information is invalid or is

in an incorrect format.

DL_NOTSUPPORTED Indicates the primitive is known but not supported by the DLS provider.

DL_OUTSTATE Indicates the primitive was issued from an invalid state, or the responding stream was

not in a valid state for establishing a connection.

DL_TOOMANY Indicates the limit has been exceeded for the maximum number of DLSAPs per stream.

DL_SYSERR Indicates a system error. The DL_ERROR_ACK primitive indicates the error.

Related Information

The DL_OK_ACK primitive, DL_ERROR_ACK primitive, DL_DISABMULTI_REQ primitive.

DL_ERROR_ACK Primitive

Purpose

Informs the data link service (DLS) user that a request or response was invalid.

Structure

The message consists of one M_PCPROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_error_primitive;

 ulong dl_errno;

 ulong dl_unix_errno;

} dl_ok_ack_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_ERROR_ACK primitive informs the DLS user that the previously issued request or response was

invalid. This primitive identifies the primitive in error, specifies a Data Link Provider Interface (DLPI) error

code, and if appropriate, indicates an operating system error code.

Parameters

 dl_primitive Specifies the DL_ERROR_ACK primitive.

dl_error_primitive Identifies the primitive that caused the error.

dl_errno Specifies the DLPI error code associated with the failure. See the individual

request or response for the error codes that are applicable. In addition to those

errors:

DL_BADPRIM

Indicates an unrecognized primitive was issued by the DLS user.

DL_NOTSUPPORTED

Indicates an unsupported primitive was issued by the DLS user.

dl_unix_errno Specifies the operating system error code associated with the failure. This value

should be nonzero only when the dl_errno parameter is set to DL_SYSERR. It is

used to report operating system failures that prevent the processing of a given

request or response.

74 Technical Reference: Communications, Volume 1

States

 Valid The primitive is valid in all states that have a pending acknowledgment or confirmation.

New The resulting state is the same as the one from which the acknowledged request or response was

generated.

Related Information

The DL_OK_ACK primitive.

DL_GET_STATISTICS_ACK Primitive

Purpose

Returns statistics in response to the DL_GET_STATISTICS_REQ primitive.

Structure

The message consists of one M_PCPROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_stat_length;

 ulong dl_stat_offset;

} dl_get_statistics_ack_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_GET_STATISTICS_ACK primitive returns statistics in response to the

DL_GET_STATISTICS_REQ primitive.

The /usr/include/sys/dlpistats.h file defines the statistics that the DL_GET_STATISTICS_ACK and

DL_GET_STATISTICS_REQ primitives support. The primitives support the statistics both globally (totals

for all streams) and per stream. Per stream, or local, statistics can be requested only for the stream over

which the DL_GET_STATISTICS_REQ primitive is requested.

The global and local statistics structures are returned concatenated. The offset in the M_PCPROTO

message, returned by the DL_GET_STATISTICS_ACK primitive, indicates where the two concatenated

structures begin. The first statistics structure contains information about the local stream over which the

DL_GET_STATISTICS_REQ primitive was issued. The second statistics structure contains the global

statistics collected and summed for all streams.

The structures for the local statistics are initialized to zero when the stream is opened. The structure for

the global statistics is initialized to zero when the dlpi kernel extension is loaded. The statistics structures

can be reset to zero using the DL_ZERO_STATS IOCTL command. See ″IOCTL Specifics″ in Data Link

Provider Interface Information.

The statistics collected by the DLPI provider are considered vague. There are no locks protecting the

counters to prevent write collisions.

Parameters

 dl_primitive Specifies the DL_GET_STATISTICS_ACK primitive.

Chapter 2. Data Link Provider Interface (DLPI) 75

dl_stat_length Specifies the length of the statistics structure.

dl_stat_offset Indicates where the statistics information begins. The value of this parameter is the offset

from the beginning of the M_PCPROTO block.

States

 Valid The primitive is valid in any attached state in which a local acknowledgement is not pending.

New The resulting state is unchanged.

Related Information

The DL_GET_STATISTICS_REQ primitive.

″IOCTL Specifics″ in Data Link Provider Interface Information.

DL_GET_STATISTICS_REQ

Purpose

Directs the data link service (DLS) provider to return statistics to the DLS user.

Structure

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

} dl_get_statistics_req_t;

 The dl_get_statistics_req_t structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_GET_STATISTICS_REQ primitive directs the DLS provider to return statistics.

Parameters

 dl_primitive Specifies the DL_GET_STATISTICS_REQ primitive.

States

 Valid The primitive is valid in any attached state in which a local acknowledgment is not pending.

New The resulting state is unchanged.

Acknowledgments

 Successful The DL_GET_STATISTICS_ACK primitive is sent to the DLS user.

Unsuccessful The DL_ERROR_ACK primitive is returned to the DLS user.

76 Technical Reference: Communications, Volume 1

Error Codes

 DL_NOTSUPPORTED Indicates the primitive is known but not supported by the DLS provider.

DL_SYSERR Indicates a system error. The DL_ERROR_ACK primitive indicates the error.

Related Information

The DL_GET_STATISTICS_ACK primitive, DL_ERROR_ACKprimitive.

DL_INFO_ACK Primitive

Purpose

Returns information about the Data Link Provider Interface (DLPI) stream in response to the

DL_INFO_REQ primitive.

Structure

The message consists of one M_PCPROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_max_sdu;

 ulong dl_min_sdu;

 ulong dl_addr_length;

 ulong dl_mac_type;

 ulong dl_reserved;

 ulong dl_current_state;

 long dl_sap_length;

 ulong dl_service_mode;

 ulong dl_qos_length;

 ulong dl_qos_offset;

 ulong dl_qos_range_length;

 ulong dl_qos_range_offset;

 ulong dl_provider_style;

 ulong dl_addr_offset;

 ulong dl_version;

 ulong dl_brdcst_addr_length;

 ulong dl_brdcst_addr_offset;

 ulong dl_growth;

} dl_info_ack_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_INFO_ACK primitive returns information about the DLPI stream to the data link service (DLS).

The DL_INFO_ACK primitive is a response to the DL_INFO_REQ primitive.

Parameters

 dl_primitive Specifies the DL_INFO_ACK primitive.

dl_max_sdu Specifies the maximum number of bytes that can be transmitted in a data

link service data unit (DLSDU). This value must be a positive integer

greater than or equal to the value of the dl_min_sdu parameter.

Chapter 2. Data Link Provider Interface (DLPI) 77

dl_min_sdu Specifies the minimum number of bytes that can be transmitted in a

DLSDU. The minimum value is 1.

dl_addr_length Specifies the length, in bytes, of the provider’s data link service access

point (DLSAP) address. For hierarchical subsequent binds, the length

returned is the total length. The total length is the sum of the values for the

physical address, service access point (SAP), and subsequent address

length.

dl_mac_type Specifies the type of medium supported by this DLPI stream. Possible

values include:

DL_CSMACD

Indicates the medium is carrier sense multiple access with collision

detection (ISO 8802/3).

DL_TPR

Indicates the medium is token-passing ring (ISO 8802/5).

DL_ETHER

Indicates the medium is Ethernet bus.

DL_FDDI

Indicates the medium is a Fiber Distributed Data Interface.

DL_OTHER

Indicates any other medium.

dl_reserved Indicates a reserved field, the value of which must be set to 0.

dl_current_state Specifies the state of the DLPI interface for the stream the DLS provider

issues this acknowledgement.

dl_sap_length Indicates the current length of the SAP component of the DLSAP address.

The specified value must be an integer. The absolute value of the

dl_sap_length parameter provides the length of the SAP component within

the DLSAP address. The value can be one of the following:

>0 Indicates the SAP component precedes the physical component

within the DLSAP address.

<0 Indicates the physical component precedes the SAP component

within the DLSAP address.

0 Indicates that no SAP has been bound.

dl_service_mode Specifies which service modes that the DLS provider supports if the

DL_INFO_ACK primitive is returned before the DL_BIND_REQ primitive is

processed. This parameter contains a bit-mask specifying the following

value:

DL_CODLS

Indicates connection-oriented DLS.

DL_CLDLS

Indicates connectionless DLS.

Once a specific service mode has been bound to the stream, this field

returns that specific service mode.

dl_qos_length The DLS provider does not support *_qos_* parameters. This value is set to

0.

dl_qos_offset The DLS provider does not support *_qos_* parameters. This value is set to

0.

dl_qos_range_length The DLS provider does not support *_qos_* parameters. This value is set to

0.

dl_qos_range_offset The DLS provider does not support *_qos_* parameters. This value is set to

0.

78 Technical Reference: Communications, Volume 1

dl_provider_style Specifies the style of the DLS provider associated with the DLPI stream.

The following provider class is defined:

DL_STYLE2

Indicates the DLS user must explicitly attach a PPA to the DLPI

stream using the DL_ATTACH_REQ primitive.

dl_addr_offset Specifies the offset of the address that is bound to the associated stream. If

the DLS user issues a DL_INFO_REQ primitive before binding a DLSAP,

the value of the dl_addr_length parameter is set to 0.

dl_version Indicates the version of the supported DLPI.

dl_brdcst_addr_length Indicates the length of the physical broadcast address.

dl_brdcst_addr_offset Indicates where the physical broadcast address begins. The value of this

parameter is the offset from the beginning of the PCPROTO block.

dl_growth Specifies a growth field for future use. The value of this parameter is 0.

States

 Valid The primitive is valid in any state in response to a DL_INFO_REQ primitive.

New The resulting state is unchanged.

Related Information

The DL_INFO_REQ primitive, DL_BIND_REQ primitive, DL_ATTACH_REQ primitive.

DL_INFO_REQ Primitive

Purpose

Requests information about the Data Link Provider Interface (DLPI) stream.

Structure

The message consists of one M_PCPROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

} dl_info_req_t;

This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_INFO_REQ primitive requests information from the data link service (DLS) provider about the

DLPI stream. This information includes a set of provider-specific parameters, as well as the current state

of the interface.

Parameters

 dl_primitive Conveys the DL_INFO_REQ primitive.

States

 Valid The primitive is valid in any state in which a local acknowledgment is not pending.

New The resulting state is unchanged.

Chapter 2. Data Link Provider Interface (DLPI) 79

Acknowledgments

The DLS provider responds to the information request with a DL_INFO_ACK primitive.

Related Information

The DL_INFO_ACK primitive.

DL_OK_ACK Primitive

Purpose

Acknowledges that a previously issued primitive was received successfully.

Structure

The message consists of one M_PCPROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_correct_primitive;

} dl_ok_ack_t;

This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_OK_ACK primitive acknowledges to the data link service (DLS) user that a previously issued

primitive was received successfully. It is only initiated for the primitives listed in the ″States″ section.

Parameters

 dl_primitive Specifies the DL_OK_ACK primitive.

dl_correct_primitive Identifies the received primitive that is being acknowledged.

States

 Valid The primitive is valid in response to the following primitives:

v DL_ATTACH_REQ

v DL_DETACH_REQ

v DL_UNBIND_REQ

v DL_SUBS_UNBIND_REQ

v DL_PROMISCON_REQ

v DL_ENABMULTI_REQ

v DL_DISABMULTI_REQ

v DL_PROMISCOFF_REQ

New The resulting state depends on the current state and is fully defined in ″Allowable Sequence of DLPI

Primitives″ in your copy of the AT&T DLPI Specifications.

Related Information

The DL_ATTACH_REQ primitive, DL_DETACH_REQ primitive, DL_UNBIND_REQprimitive,

DL_SUBS_UNBIND_REQ primitive, DL_PROMISCON_REQ primitive, DL_ENABMULTI_REQ primitive,

DL_DISABMULTI_REQ primitive, DL_PROMISCOFF_REQ primitive.

80 Technical Reference: Communications, Volume 1

DL_PHYS_ADDR_ACK Primitive

Purpose

Returns the value for the physical address to the data link service (DLS) user in response to a

DL_PHYS_ADDR_REQ primitive.

Structure

The message consists of one M_PCPROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_addr_length;

 ulong dl_addr_offset;

} dl_phys_addr_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_PHYS_ADDR_ACK primitive returns the value for the physical address to the DLS user in

response to a DL_PHYS_ADDR_REQ primitive.

Parameters

 dl_primitive Specifies the DL_ PHYS_ADDR_ACK primitive.

dl_addr_length Specifies the length of the physical address.

dl_addr_offset Indicates where the physical address begins. The value of this parameter is the offset

from the beginning of the M_PCPROTO block.

States

 Valid The primitive is valid in any state in response to a DL_PHYS_ADDR_REQ primitive.

New The resulting state is unchanged.

Related Information

The DL_PHYS_ADDR_REQ primitive.

DL_PHYS_ADDR_REQ Primitive

Purpose

Requests that the data link service (DLS) provider return the current value of the physical address

associated with the stream.

Structure

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

Chapter 2. Data Link Provider Interface (DLPI) 81

ulong dl_primitive;

 ulong dl_addr_type;

} dl_phys_addr_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_PHYS_ADDR_REQ primitive requests that the DLS provider return the current value of the

physical address associated with the stream.

Parameters

 dl_primitive Specifies the DL_PHYS_ADDR_REQ primitive.

dl_addr_type Specifies the requested address. The value is:

DL_CURR_PHYS_ADDR

Current physical address.

States

 Valid The primitive is valid in any attached state in which a local acknowledgment is not pending. For a style 2

DLS provider, this is after a PPA is attached using the DL_ATTACH_REQ provider.

New The resulting state is unchanged.

Acknowledgments

 Successful The DL_PHYS_ADDR_ACK primitive is sent to the DLS user.

Unsuccessful The DL_ERROR_ACK primitive is returned to the DLS user.

Error Codes

 DL_NOTSUPPORTED Indicates the primitive is known but not supported by the DLS provider.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_UNSUPPORTED Indicates the requested address type is not supplied by the DLS provider.

DL_SYSERR Indicates a system error occurred and the provider did not have access to the physical

address.

Related Information

The DL_PHYS_ADDR_ACK primitive, DL_ERROR_ACK primitive.

DL_PROMISCOFF_REQ Primitive

Purpose

Requests that the data link service (DLS) provider disable promiscuous mode on a per-stream basis, at

either the physical level or the service access point (SAP) level.

Structure

The message consists of one M_PROTO message block, which contains the following structure:

82 Technical Reference: Communications, Volume 1

typedef struct

{

 ulong dl_primitive;

 ulong dl_level;

} dl_promiscoff_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

A device in promiscuous mode lets a user view all packets, not just those destined for the user.

The DL_PROMISCOFF_REQ primitive requests that the DLS provider disable promiscuous mode on a

per-stream basis, at either the physical level or the SAP level.

If the DLS user disables the promiscuous mode at the physical level, the DLS user no longer receives a

copy of every packet on the wire for all SAPs.

If the DLS user disables the promiscuous mode at the SAP level, the DLS user no longer receives a copy

of every packet on the wire directed to that user for all SAPs.

If the DLS user disables the promiscuous mode for all multicast addresses, the DLS user no longer

receives all packets on the wire that have either a multicast or group destination address. This includes

broadcast.

An application issuing the DL_PROMISCOFF_REQ primitive must have root authority. Otherwise, the DLS

provider returns the DL_ERROR_ACK primitive with an error code of DL_ACCESS.

The DLS provider must not run in the interrupt environment. If it does, the system returns a

DL_ERROR_ACK primitive with an error code of DL_SYSERR and an operating system error code of 0.

Parameters

 dl_primitive Specifies the DL_PROMISCOFF_REQ primitive.

dl_level Indicates promiscuous mode at the physical or SAP level. Possible values include:

DL_PROMISC_PHYS

Indicates promiscuous mode at the physical level.

DL_PROMISC_SAP

Indicates promiscuous mode at the SAP level.

DL_PROMISC_MULTI

Indicates promiscuous mode for all multicast addresses.

States

 Valid The primitive is valid in any state in which an acknowledgement is not pending, with the exception of

DL_UNATTACH.

New The resulting state is unchanged.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Chapter 2. Data Link Provider Interface (DLPI) 83

Error Codes

 DL_ACCESS Indicates the DLS user does not have permission to issue the primitive.

DL_NOTENAB Indicates the mode is not enabled.

DL_NOTSUPPORTED Indicates the primitive is known but not supported by the DLS provider.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the

DL_ERROR_ACK primitive.

DL_UNSUPPORTED Indicates the DLS provider does not supply the requested level.

Related Information

The DL_OK_ACK primitive, DL_ERROR_ACK primitive.

DL_PROMISCON_REQ Primitive

Purpose

Requests that the data link service (DLS) provider enable promiscuous mode on a per stream basis, at

either the physical level or the service access point (SAP) level.

Structure

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_level;

} dl_promiscon_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

A device in promiscuous mode lets a user view all packets, not just those destined for the user.

The DL_PROMISCON_REQ primitive requests that the DLS provider enable promiscuous mode on a

per-stream basis, either at the physical level or at the SAP level.

The DLS provider routes all received messages on the media to the DLS user until either a

DL_DETACH_REQ or a DL_PROMISCOFF_REQ primitive is received or the stream is closed.

If the DLS user enables the promiscuous mode at the physical level, the DLS user receives a copy of

every packet on the wire for all SAPs.

If the DLS user enables the promiscuous mode at the SAP level, the DLS user receives a copy of every

packet on the wire directed to that user for all SAPs.

If the DLS user enables the promiscuous mode for all multicast addresses, the DLS user receives all

packets on the wire that have either a multicast or group destination address. This includes broadcast.

If the DLS user issues duplicate requests, the system returns a DL_OK_ACK primitive and does not

perform the operation.

84 Technical Reference: Communications, Volume 1

An application issuing the DL_PROMISCON_REQ primitive must have root authority. Otherwise, the DLS

provider returns the DL_ERROR_ACK primitive with an error code of DL_ACCESS.

The DLS provider must not run in the interrupt environment. If it does, the system returns a

DL_ERROR_ACK primitive with an error code of DL_SYSERR and an operating system error code of 0.

The above code fragment .

The following sample code fragment discards the DL_UNITDATA_IND header, and will work with dlpi:

if (raw_mode) {

if (mp->b_datap->db_type == M_PROTO) {

union DL_primitives *p;

p = (union DL_primitives *)mp->b_rptr;

if (p->dl_primitive == DL_UNITDATA_IND) {

mblk_t *mpl = mp->b_cont;

freeb(mp);

mp = mpl;

}

}

}

For compatibility with future releases, it is recommended that you parse the frame yourself. The MAC and

LLC headers are presented in the M_DATA message for promiscuous mode.

Parameters

 dl_primitive Specifies the DL_PROMISCON_REQ primitive.

dl_level Indicates promiscuous mode at the physical or SAP level. Possible values include:

DL_PROMISC_PHYS

Indicates promiscuous mode at the physical level.

DL_PROMISC_SAP

Indicates promiscuous mode at the SAP level.

DL_PROMISC_MULTI

Indicates promiscuous mode for all multicast addresses.

States

 Valid The primitive is valid in any state in which an acknowledgement is not pending, with the exception of

DL_UNATTACH.

New The resulting state is unchanged.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Error Codes

 DL_ACCESS Indicates the DLS user does not have permission to issue the primitive.

DL_NOTSUPPORTED Indicates the primitive is known but not supported by the DLS provider.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

Chapter 2. Data Link Provider Interface (DLPI) 85

DL_SYSERR Indicates a system error occurred. The system error is indicated in the

DL_ERROR_ACK primitive.

DL_UNSUPPORTED Indicates the DLS provider does not support the requested service on this stream.

Related Information

The DL_OK_ACK primitive, DL_ERROR_ACK primitive, DL_DETACH_REQ primitive,

DL_PROMISCOFF_REQ primitive.

DL_RESET_CON Primitive

Purpose

Informs the data link service (DLS) user that the reset has been completed.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

} dl_reset_con_t;

Description

The DL_RESET_CON primitive informs the DLS user initiating the reset that the reset has been

completed.

Note: This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_RESET_CON primitive.

States

 Valid The primitive is valid in the DL_USER_RESET_PENDING state.

New The resulting state is DL_DATAXFER.

Related Information

DL_RESET_IND Primitive

DL_RESET_IND Primitive

Purpose

Indicates a data link service (DLS) connection has been reset.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure:

86 Technical Reference: Communications, Volume 1

typedef struct

{

 ulong dl_primitive;

 ulong dl_originator;

 ulong dl_reason;

} dl_disconnect_ind_t;

Description

The DL_RESET_IND primitive informs the DLS user that either the remote DLS user is resynchronizing

the data link connection, or the DLS provider is reporting loss of data from which it can not recover. The

primitive indicates the reason for the reset.

Note: This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_RESET_IND primitive.

dl_originator Specifies whether the reset was originated by the DLS user or DLS provider. The values

are DL_USER or DL_PROVIDER, respectively.

dl_reason Indicates one of the following reasons for the reset:

DL_RESET_FLOW_CONTROL

Indicates flow control congestion.

DL_RESET_LINK_ERROR

Indicates the occurrence of a data link error.

DL_RESET_RESYNCH

Indicates a request for resynchronization of a data link connection.

States

 Valid The primitive is valid in the DL_DATAXFER state.

New The resulting state is DL_PROV_RESET_PENDING.

Acknowledgments

The DLS user should issue a DL_RESET_RES primitive to continue the resynchronization procedure.

Related Information

The DL_RESET_RES primitive.

DL_RESET_REQ Primitive

Purpose

Requests that the data link service (DLS) provider begin resynchronizing a data link connection.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

} dl_reset_req_t;

Chapter 2. Data Link Provider Interface (DLPI) 87

Description

The DL_RESET_REQ primitive requests that the DLS provider begin resynchronizing a data link

connection.

Notes:

1. No guarantee exists that data in transit when the DL_RESET_REQ primitive is initiated will be

delivered.

2. This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_RESET_REQ primitive.

States

 Valid The primitive is valid in state DL_DATAXFER.

New The resulting state is DL_USER_RESET_PENDING.

Acknowledgments

 Successful There is no immediate response to the reset request. However, as resynchronization

completes, the DL_RESET_CON primitive is sent to the initiating DLS user, resulting in the

DL_DATAXFER state.

Unsuccessful The DL_ERROR_ACK primitive is returned and the resulting state is unchanged.

Error Codes

 DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

Related Information

The DL_RESET_CON primitive, DL_ERROR_ACK primitive.

DL_RESET_RES Primitive

Purpose

Directs the data link service (DLS) provider to complete resynchronizing the data link connection.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

} dl_reset_res_t;

88 Technical Reference: Communications, Volume 1

Description

The DL_RESET_RES primitive directs the DLS provider to complete resynchronizing the data link

connection.

Note: This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_RESET_RES primitive.

States

 Valid The primitive is valid in the DL_PROV_RESET_PENDING state.

New The resulting state is DL_RESET_RES_PENDING.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user, and the resulting state is

DL_DATAXFER.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Error Codes

 DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

Related Information

DL_RESET_IND Primitive

DL_SUBS_BIND_ACK Primitive

Purpose

Reports the successful bind of a subsequent data link service access point (DLSAP) to a stream and

returns the bound DLSAP address to the data link service (DLS) user.

Structure

The message consists of one M_PCPROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_subs_sap_length;

 ulong dl_subs_sap_offset;

} dl_subs_bind_ack_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Chapter 2. Data Link Provider Interface (DLPI) 89

Description

The DL_SUBS_BIND_ACK primitive reports the successful bind of a subsequent DLSAP to a stream and

returns the bound DLSAP address to the DLS user. This primitive is generated in response to a

DL_BIND_REQ primitive.

Parameters

 dl_primitive Specifies the DL_SUBS_BIND_ACK primitive.

dl_subs_sap_length Specifies the length of the specified DLSAP.

dl_subs_sap_offset Indicates where the DLSAP begins. The value of this parameter is the offset from

the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in the DL_SUBS_BIND_PND state.

New The resulting state is DL_IDLE.

Related Information

The DL_SUBS_BIND_REQ primitive.

DL_SUBS_BIND_REQ Primitive

Purpose

Requests that the data link service (DLS) provider bind a subsequent data link service access point

(DLSAP) to the stream.

Structure

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_subs_sap_offset;

 ulong dl_subs_sap_length;

 ulong dl_subs_bind_class;

} dl_subs_bind_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_SUBS_BIND_REQ primitive requests that the DLS provider bind a subsequent DLSAP to the

stream. The DLS user must identify the address of the subsequent DLSAP to be bound to the stream.

The 802.2 networks accept either DL_HIERARCHICAL_BIND or DL_PEER_BIND. The

dl_subs_sap_length parameter must be 5 (sizeof snap) for hierarchical binds, and dl_subs_sap_offset

must point to a complete SNAP. For peer binds, dl_subs_sap_length may be either 1 or 5, and

dl_subs_sap_offset must point to either a single byte SAP or a complete SNAP (as in hierarchical binds).

In the case of SNAP binds, DL_PEER_BIND and DL_HIERARCHICAL_BIND are synonymous, and fully

interchangeable.

90 Technical Reference: Communications, Volume 1

Several distinct SAPs/SNAPs may be bound on any single stream. Since a DSAP address field is limited

to 8 bits, a maximum of 256 SAPS/SNAPS can be bound to a single stream. Closing the stream or issuing

DL_UNBIND_REQ causes all SAPs and SNAPs to be unbound automatically, or each subs sap can be

individually unbound.

DL_ETHER supports only DL_PEER_BIND, and dl_subs_sap_offset must point to an ethertype

(dl_subs_sap_length == sizeof(ushort)).

Examples:

 Preferred Request Sap

DL_BIND_REQ 0xaa

DL_SUBS_BIND_REQ/DL_HIERARCHICAL_BIND 08.00.07.80.9b

DL_SUBS_BIND_REQ/DL_HIERARCHICAL_BIND 08.00.07.80.f3

or

 Equivalent Effect Sap

DL_BIND_REQ 0xaa

DL_SUBS_BIND_REQ/DL_PEER_BIND 08.00.07.80.9b

DL_SUBS_BIND_REQ/DL_PEER_BIND 08.00.07.80.f3

or

 Equivalent Effect Sap

DL_BIND_REQ 0xaa

DL_SUBS_BIND_REQ/DL_HIERARCHICAL_BIND 08.00.07.80.9b

DL_SUBS_BIND_REQ/DL_PEER_BIND 08.00.07.80.f3

Parameters

 dl_primitive Specifies the DL_SUBS_BIND_REQ primitive.

dl_subs_sap_length Specifies the length of the specified DLSAP.

dl_subs_sap_offset Indicates where the DLSAP begins. The value of this parameter is the offset from

the beginning of the M_PROTO message block.

dl_subs_bind_class Specifies either peer or hierarchical addressing. Possible values include:

DL_PEER_BIND

Specifies peer addressing. The DLSAP specified is used instead of the

DLSAP bound in the bind request.

DL_HIERARCHICAL_BIND

Specifies hierarchical addressing. The DLSAP specified is used in

addition to the DLSAP specified using the bind request.

States

 Valid The primitive is valid in the DL_IDLE state.

New The resulting state is DL_SUBS_BIND_PND.

Chapter 2. Data Link Provider Interface (DLPI) 91

Acknowledgments

 Successful The DL_SUBS_BIND_ACK primitive is sent to the DLS user, and the resulting state is

DL_IDLE.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Error Codes

 DL_ACCESS Indicates the DLS user does not have proper permission to use the requested DLSAP

address.

DL_BADADDR Indicates the DLSAP address information is invalid or is in an incorrect format.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

DL_TOOMANY Indicates the limit has been exceeded for the maximum number of DLSAPs per stream.

DL_UNSUPPORTED Indicates the DLS provider does not support the requested addressing class.

Related Information

The DL_ERROR_ACK primitive, DL_SUBS_BIND_ACK primitive.

DL_SUBS_UNBIND_REQ Primitive

Purpose

Requests that the data link service (DLS) provider unbind the data link service access point (DLSAP) that

was bound by a previous DL_SUBS_BIND_REQ primitive from this stream.

Structure

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_subs_sap_length;

 ulong dl_subs_sap_offset;

} dl_subs_unbind_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_SUBS_UNBIND_REQ primitive requests that the DLS provider unbind the DLSAP that was bound

by a previous DL_SUBS_BIND_REQ primitive from this stream.

Parameters

 dl_primitive Specifies the DL_SUBS_UNBIND_REQ primitive.

dl_subs_sap_length Specifies the length of the specified DLSAP.

dl_subs_sap_offset Indicates where the DLSAP begins. The value of this parameter is the offset from

the beginning of the M_PROTO message block.

92 Technical Reference: Communications, Volume 1

States

 Valid The primitive is valid in the DL_IDLE state.

New The resulting state is DL_SUBS_UNBIND_PND.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user. The resulting state is DL_IDLE.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Error Codes

 DL_BADADDR Indicates the DLSAP address information is invalid or is in an incorrect format.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

Related Information

The DL_OK_ACK primitive, DL_ERROR_ACK primitive, DL_SUBS_BIND_REQ primitive.

DL_TEST_CON Primitive

Purpose

Conveys the test-response data link service data unit (DLSDU) from the data link service (DLS) provider to

the DLS user in response to a DL_TEST_REQ primitive.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure, followed

by zero or more M_DATA blocks containing zero or more bytes of data:

typedef struct

{

 ulong dl_primitive;

 ulong dl_flag;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

 ulong dl_src_addr_length;

 ulong dl_src_addr_offset;

} dl_test_con_t;

Description

The DL_TEST_CON primitive conveys the test-response DLSDU from the DLS provider to the DLS user in

response to a DL_TEST_REQ primitive.

Note: This primitive applies to XID and test operations.

Parameters

 dl_primitive Specifies the DL_TEST_CON primitive.

Chapter 2. Data Link Provider Interface (DLPI) 93

dl_flag Indicates flag values for the request as follows:

DL_POLL_FINAL

Indicates whether the poll/final bit is set.

dl_dest_addr_length Specifies the length of the data link service access point (DLSAP) address of

the destination DLS user. If the destination user is implemented using Data Link

Provider Interface (DLPI), this address is the full DLSAP address returned on

the DL_BIND_ACK primitive.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

dl_src_addr_length Specifies the length of the DLSAP address of the source DLS user.

dl_src_addr_offset Indicates where the source DLSAP address begins. The value of this parameter

is the offset from the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in the DL_IDLE or DL_DATAXFER state.

New The resulting state is unchanged.

Related Information

The DL_BIND_ACK primitive.

DL_TEST_IND Primitive

Purpose

Conveys the test-response indication data link service data unit (DLSDU) from the data link service (DLS)

provider to the DLS user.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure, followed

by zero or more M_DATA blocks containing zero or more bytes of data:

typedef struct

{

 ulong dl_primitive;

 ulong dl_flag;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

 ulong dl_src_adr_length;

 ulong dl_src_addr_offset;

} dl_test_ind_t;

Description

The DL_TEST_IND primitive conveys the test-response indication DLSDU from the DLS provider to the

DLS user.

Note: This primitive applies to XID and test operations.

Parameters

 dl_primitive Specifies the DL_TEST_IND primitive.

dl_flag Indicates flag values for the request as follows:

DL_POLL_FINAL

Indicates whether the poll/final bit is set.

94 Technical Reference: Communications, Volume 1

dl_dest_addr_length Specifies the length of the data link service access point (DLSAP) address of

the destination DLS user. If the destination user is implemented using the Data

Link Provider Interface (DLPI), this address is the full DLSAP address returned

on the DL_BIND_ACK primitive.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

dl_src_addr_length Specifies the length of the DLSAP address of the source DLS user.

dl_src_addr_offset Indicates where the source DLSAP address begins. The value of this parameter

is the offset from the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in the DL_IDLE or DL_DATAXFER state.

New The resulting state is unchanged.

Related Information

The DL_BIND_ACK primitive.

DL_TEST_REQ Primitive

Purpose

Conveys one test-command data link service data unit (DLSDU) from the data link service (DLS) user to

the DLS provider for transmission to a peer DLS provider.

Structure

The message consists of one M_PROTO message block, which contains the following structure, followed

by zero or more M_DATA blocks containing zero or more bytes of data:

typedef struct

{

 ulong dl_primitive;

 ulong dl_flag;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

} dl_test_req_t;

Description

The DL_TEST_REQ primitive conveys one test-command DLSDU from the DLS user to the DLS provider

for transmission to a peer DLS provider.

A DL_ERROR_ACK primitive is always returned.

Note: This primitive applies to XID and test operations.

Parameters

 dl_primitive Specifies the DL_TEST_REQ primitive.

dl_flag Indicates flag values for the request as follows:

DL_POLL_FINAL

Indicates whether the poll/final bit is set.

Chapter 2. Data Link Provider Interface (DLPI) 95

dl_dest_addr_length Specifies the length of the data link service access point (DLSAP) address of

the destination DLS user. If the destination user is implemented using the Data

Link Provider Interface (DLPI), this address is the full DLSAP address returned

on the DL_BIND_ACK primitive.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in the DL_IDLE or DL_DATAXFER state.

New The resulting state is unchanged.

Acknowledgments

 Unsuccessful The DL_ERROR_ACK primitive is returned for an invalid test-command request.

Note: It is recommended that the DLS user use a timeout procedure to recover from a situation when the

peer DLS user does not respond.

Error Code

 DL_OUTSTATE The primitive was issued from an invalid state.

DL_BADADDR The DLSAP address information was invalid or was in an incorrect format.

DL_BADDATA The amount of data in the current DLSDU exceeded the DLS provider’s DLSDU limit.

DL_SYSERR A system error has occurred. The system error is indicated in the DL_ERROR_ACK primitive.

DL_TESTAUTO Indicates the previous bind request specified automatic handling of test responses.

Related Information

The DL_BIND_ACK primitive, DL_ERROR_ACK primitive.

DL_TEST_RES Primitive

Purpose

Conveys the test-response data link service data unit (DLSDU) from the data link service (DLS) user to the

DLS provider in response to a DL_TEST_IND primitive.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure, followed

by zero or more M_DATA blocks containing zero or more bytes of data:

typedef struct

{

 ulong dl_primitive;

 ulong dl_flag;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

} dl_test_res_t;

96 Technical Reference: Communications, Volume 1

Description

The DL_TEST_RES primitive conveys the test-response DLSDU from the DLS user to the DLS provider in

response to a DL_TEST_IND primitive.

Note: This primitive applies to XID and test operations.

Parameters

 dl_primitive Specifies the DL_TEST_RES primitive.

dl_flag Indicates flag values for the request as follows:

DL_POLL_FINAL

Indicates whether the poll/final bit is set.

dl_dest_addr_length Specifies the length of the data link service access point (DLSAP) address of

the destination DLS user. If the destination user is implemented using the Data

Link Provider Interface (DLPI), this address is the full DLSAP address returned

on the DL_BIND_ACK primitive.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in the DL_IDLE or DL_DATAXFER state.

New The resulting state is unchanged.

Related Information

The DL_BIND_ACK primitive.

DL_TOKEN_ACK Primitive

Purpose

Specifies the connection-response token assigned to a stream.

Structure

The primitive consists of one M_PCPROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_token;

} dl_token_req_t;

Description

The DL_TOKEN_ACK primitive is sent in response to the DL_TOKEN_REQ primitive. The

DL_TOKEN_ACK primitive specifies the connection-response token assigned to the stream.

Note: This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_TOKEN_ACK primitive.

Chapter 2. Data Link Provider Interface (DLPI) 97

dl_token Specifies the connection-response token associated with a stream. This value must be a

nonzero value. After an initial DL_TOKEN_REQ primitive is issued on a stream, the data link

service (DLS) provider generates the same token value for each subsequent

DL_TOKEN_REQ primitive issued on the stream.

The DLS provider generates a token value for each stream upon receipt of the first

DL_TOKEN_REQ primitive issued on that stream. The same token value is returned in

response to all subsequent DL_TOKEN_REQ primitives issued on a stream.

States

 Valid The primitive is valid in any state in response to a DL_TOKEN_REQ primitive.

New The resulting state is unchanged.

Related Information

The DL_TOKEN_REQ primitive.

DL_TOKEN_REQ Primitive

Purpose

Requests that a connection-response token be assigned to the stream and returned to the data link

service (DLS) user.

Structure

The primitive consists of one M_PCPROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

} dl_token_req_t;

Description

The DL_TOKEN_REQ primitive requests that a connection-response token be assigned to the stream and

returned to the DLS user. This token can be supplied in the DL_CONNECT_RES primitive to indicate the

stream on which a connection is to be established.

Note: This primitive applies to connection mode.

Parameters

 dl_primitive Specifies the DL_TOKEN_REQ primitive.

States

 Valid The primitive is valid in any state in which a local acknowledgement is not pending.

New The resulting state is unchanged.

Acknowledgments

The DLS provider responds to the information request with a DL_TOKEN_ACK primitive.

98 Technical Reference: Communications, Volume 1

Related Information

The DL_CONNECT_RES primitive, DL_TOKEN_ACK primitive.

DL_UDERROR_IND Primitive

Purpose

Informs the data link service (DLS) user that a previously sent DL_UNITDATA_REQ primitive produced an

error or could not be delivered.

Structure

The message consists of either one M_PROTO message block or one M_PCPROTO message block,

which contains the following structure:

typedef struct

{

 ulong dl_primitive;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

 ulong dl_unix_errno;

 ulong dl_errno;

} dl_uderror_ind_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_UDERROR_IND primitive informs the DLS user that a previously sent DL_UNITDATA_REQ

primitive produced an error or could not be delivered. The primitive indicates the destination DLSAP

address associated with the failed request, and returns an error value that specifies the reason for failure.

There is, however, no guarantee that such an error report will be generated for all undeliverable data units,

because connectionless-mode data transfer is not a confirmed service.

Parameters

 dl_primitive Specifies the DL_UDERROR_IND primitive.

dl_dest_addr_length Specifies the length of the DLSAP address of the destination DLS user.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

dl_unix_errno Specifies the operating system code associated with the failure. This value

should be nonzero only when the dl_errno parameter is set to DL_SYSERR. It

is used to report operating system failures that prevent the processing of a

given request or response.

Chapter 2. Data Link Provider Interface (DLPI) 99

dl_errno Indicates the Data Link Provider Interface (DLPI) error code associated with the

failure. Possible values include:

DL_BADADDR

Indicates the DLSAP address information is invalid or is in an incorrect

format.

DL_OUTSTATE

Indicates the primitive was issued from an invalid state.

DL_UNSUPPORTED

Indicates the DLS provider does not support the requested priority.

DL_UNDELIVERABLE

Indicates the request was valid but for some reason the DLS provider

could not deliver the data unit (for example, due to lack of sufficient

local buffering to store the data unit).

States

 Valid The primitive is valid in the DL_IDLE state.

New The resulting state is unchanged.

Related Information

The DL_UNITDATA_REQ primitive.

DL_UNBIND_REQ Primitive

Purpose

Requests the data link service (DLS) provider to unbind a data link service access point (DLSAP).

Structure

The message consists of one M_PROTO message block, which contains the following structure:

typedef struct

{

 ulong dl_primitive;

} dl_unbind_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_UNBIND_REQ primitive requests that the DLS provider unbind the DLSAP that had been bound

by a previous DL_BIND_REQ primitive. If one or more DLSAPs were bound to the stream with a

DL_SUBS_BIND_REQ primitive and have not been unbound with a DL_SUBS_UNBIND_REQ primitive,

the DL_UNBIND_REQ primitive unbinds all the subsequent DLSAPs for that stream along with the DLSAP

bound with the previous DL_BIND_REQ primitive.

At the successful completion of the request, the DLS user can issue a new DL_BIND_REQ primitive for a

potentially new DLSAP.

Parameters

 dl_primitive Specifies the DL_UNBIND_REQ primitive.

100 Technical Reference: Communications, Volume 1

States

 Valid The primitive is valid in the DL_IDLE state.

New The resulting state is DL_UNBIND_PENDING.

Acknowledgments

 Successful The DL_OK_ACK primitive is sent to the DLS user, and the resulting state is

DL_UNBOUND.

Unsuccessful The DL_ERROR_ACK primitive is returned, and the resulting state is unchanged.

Error Codes

 DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_SYSERR Indicates a system error occurred. The system error is indicated in the DL_ERROR_ACK

primitive.

Related Information

The DL_BIND_REQ primitive, DL_ERROR_ACK primitive, DL_OK_ACK primitive, DL_SUBS_BIND_REQ

primitive, DL_SUBS_UNBIND_REQ primitive.

DL_UNITDATA_IND Primitive

Purpose

Conveys one data link service data unit (DLSDU) from the data link service (DLS) provider to the DLS

user.

Structure

The message consists of one M_PROTO message block, which contains the following structure, followed

by one or more M_DATA blocks containing at least one byte of data:

typedef struct

{

 ulong dl_primitive;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

 ulong dl_src_addr_length;

 ulong dl_src_addr_offset;

 ulong dl_group_address;

} dl_unitdata_ind_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_UNITDATA_IND primitive conveys one DLSDU from the DLS provider to the DLS user.

Note: The amount of user data that may be transferred in a single DLSDU is limited. This limit is

conveyed by the dl_max_sdu parameter of the DL_INFO_ACK primitive.

Chapter 2. Data Link Provider Interface (DLPI) 101

Parameters

 dl_primitive Specifies the DL_UNITDATA_IND primitive.

dl_dest_addr_length Specifies the length of the data link service access point (DLSAP) address of

the destination DLS user. If the destination user is implemented using the Data

Link Provider Interface (DLPI), the full DLSAP address is returned on the

DL_BIND_ACK primitive.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

dl_src_addr_length Specifies the length of the DLSAP address of the source DLS user.

dl_src_addr_offset Indicates where the source DLSAP address begins. The value of this parameter

is the offset from the beginning of the M_PROTO message block.

dl_group_address Indicates the address set by the DLS provider upon receiving and passing

upstream a data message when the destination address of the data message is

a multicast or broadcast address.

States

 Valid The primitive is valid in the DL_IDLE state.

New The resulting state is unchanged.

Related Information

The DL_INFO_ACK primitive, DL_BIND_ACK primitive, DL_UDERROR_IND primitive.

DL_UNITDATA_REQ Primitive

Purpose

Conveys one data link service data unit (DLSDU) from the data link service (DLS) user to the DLS

provider for transmission to a peer DLS user.

Structure

The message consists of one M_PROTO message block, which contains the following structure, followed

by one or more M_DATA blocks containing at least one byte of data:

typedef struct

{

 ulong dl_primitive;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

 dl_priority_t dl_priority;

} dl_unitdata_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

The DL_UNITDATA_REQ primitive conveys one DLSDU from the DLS user to the DLS provider for

transmission to a peer DLS user.

The amount of user data that may be transferred in a single DLSDU is limited. This limit is conveyed by

the dl_max_sdu parameter of the DL_INFO_ACK primitive.

102 Technical Reference: Communications, Volume 1

Because connectionless-mode data transfer is an unacknowledged service, the DLS provider makes no

guarantees of delivery of connectionless DLSDUs. It is the responsibility of the DLS user to do any

necessary sequencing or retransmissions of DLSDUs in the event of a presumed loss.

Parameters

 dl_primitive Specifies the DL_UNITDATA_REQ primitive.

dl_dest_addr_length Specifies the length of the data link service access point (DLSAP) address of

the destination DLS user. If the destination user is implemented using the Data

Link Provider Interface (DLPI), the full DLSAP address is returned on the

DL_BIND_ACK primitive.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

dl_priority Indicates the priority value within the supported range for this particular DLSDU.

States

 Valid The primitive is valid in the DL_IDLE state.

New The resulting state is unchanged.

Acknowledgments

If the DLS provider accepts the data for transmission, there is no response. This does not, however,

guarantee that the data will be delivered to the destination DLS user, because the connectionless-mode

data transfer is not a confirmed service.

If the request is erroneous, the DL_UDERROR_IND primitive is returned, and the resulting state is

unchanged.

If for some reason the request cannot be processed, the DLS provider may generate a

DL_UDERROR_IND primitive to report the problem. There is, however, no guarantee that such an error

report will be generated for all undeliverable data units, because connectionless-mode data transfer is not

a confirmed service.

Error Codes

 DL_BADADDR Indicates the DLSAP address information is invalid or is in an incorrect format.

DL_BADDATA Indicates the amount of data in the current DLSDU exceeds the DLS provider’s DLSDU

limit.

DL_OUTSTATE Indicates the primitive was issued from an invalid state.

DL_UNSUPPORTED Indicates the DLS provider does not support the requested priority.

Related Information

The DL_INFO_ACK primitive, DL_BIND_ACK primitive, DL_UDERROR_IND primitive.

DL_XID_CON Primitive

Purpose

Conveys an XID data link service data unit (DLSDU) from the data link service (DLS) provider to the DLS

user in response to a DL_XID_REQ primitive.

Chapter 2. Data Link Provider Interface (DLPI) 103

Structure

The primitive consists of one M_PROTO message block, which contains the following structure, followed

by zero or more M_DATA blocks containing zero or more bytes of data:

typedef struct

{

 ulong dl_primitive;

 ulong dl_flag;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

 ulong dl_src_addr_length;

 ulong dl_src_addr_offset;

} dl_xid_con_t;

Description

The DL_XID_CON conveys an XID DLSDU from the DLS provider to the DLS user in response to a

DL_XID_REQ primitive.

Note: This primitive applies to XID and test operations.

Parameters

 dl_primitive Specifies the DL_XID_CON primitive.

dl_flag Indicates flag values for the request as follows:

DL_POLL_FINAL

Indicates whether the poll/final bit is set.

dl_dest_addr_length Specifies the length of the data link service access point (DLSAP) address of

the destination DLS user. If the destination user is implemented using the Data

Link Provider Interface (DLPI), this address is the full DLSAP address returned

on the DL_BIND_ACK primitive.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

dl_src_addr_length Specifies the length of the DLSAP address of the source DLS user.

dl_src_addr_offset Indicates where the source DLSAP address begins. The value of this parameter

is the offset from the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in the DL_IDLE or DL_DATAXFER state.

New The resulting state is unchanged.

Related Information

The DL_BIND_ACK primitive, DL_XID_REQ primitive.

DL_XID_IND Primitive

Purpose

Conveys an XID data link service data unit (DLSDU) from the DLS provider to the data link service (DLS)

user.

104 Technical Reference: Communications, Volume 1

Structure

The primitive consists of one M_PROTO message block, which contains the following structure, followed

by zero or more M_DATA blocks containing zero or more bytes of data:

typedef struct

{

 ulong dl_primitive;

 ulong dl_flag;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

 ulong dl_src_addr_length;

 ulong dl_src_addr_offset;

} dl_xid_ind_t;

Description

The DL_XID_IND primitive conveys an XID DLSDU from the DLS provider to the DLS user.

Note: This primitive applies to XID and test operations.

Parameters

 dl_primitive Specifies the DL_XID_IND primitive.

dl_flag Indicates flag values for the request as follows:

DL_POLL_FINAL

Indicates whether the poll/final bit is set.

dl_dest_addr_length Specifies the length of the data link service access point (DLSAP) address of

the destination DLS user. If the destination user is implemented using the Data

Link Provider Interface (DLPI), this address is the full DLSAP address returned

on the DL_BIND_ACK primitive.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

dl_src_addr_length Specifies the length of the DLSAP address of the source DLS user.

dl_src_addr_offset Indicates where the source DLSAP address begins. The value of this parameter

is the offset from the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in the DL_IDLE or DL_DATAXFER state.

New The resulting state is unchanged.

Related Information

The DL_BIND_ACK primitive.

DL_XID_REQ Primitive

Purpose

Conveys one XID data link service data unit (DLSDU) from the data link service (DLS) user to the DLS

provider for transmission to a peer DLS user.

Chapter 2. Data Link Provider Interface (DLPI) 105

Structure

The message consists of one M_PROTO message block, which contains the following structure, followed

by zero or more M_DATA blocks containing zero or more bytes of data:

typedef struct

{

 ulong dl_primitive;

 ulong dl_flag;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

} dl_xid_req_t;

 This structure is defined in /usr/include/sys/dlpi.h.

Description

Conveys one XID DLSDU from the DLS user to the DLS provider for transmission to a peer DLS user.

A DL_ERROR_ACK primitive is always returned.

Note: This primitive applies to XID and test operations.

Parameters

 dl_primitive Specifies the DL_XID_REQ primitive.

dl_flag Indicates flag values for the request as follows:

DL_POLL_FINAL

Indicates whether the poll/final bit is set.

dl_dest_addr_length Specifies the length of the data link service access point (DLSAP) address of

the destination DLS user. If the destination user is implemented using the Data

Link Provider Interface (DLPI), this address is the full DLSAP address returned

on the DL_BIND_ACK primitive.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in the DL_IDLE or DL_DATAXFER state.

New The resulting state is unchanged.

Acknowledgments

 Unsuccessful The DL_ERROR_ACK primitive is returned for an invalid XID request.

Note: It is recommended that the DLS user use a timeout procedure to recover from a situation when

there is no response from the peer DLS User.

Error Codes

 DL_OUTSTATE The primitive was issued from an invalid state.

DL_BADADDR The DLSAP address information was invalid or was in an incorrect format.

DL_BADDATA The amount of data in the current DLSDU exceeded the DLS provider’s DLSDU limit.

DL_SYSERR A system error has occurred. The system error is indicated in the DL_ERROR_ACK primitive.

106 Technical Reference: Communications, Volume 1

DL_XIDAUTO Indicates the previous bind request specified that the provider would handle XID.

Related Information

The DL_BIND_ACK primitive, DL_ERROR_ACK primitive.

DL_XID_RES Primitive

Purpose

Conveys an XID data link service data unit (DLSDU) from the data link service (DLS) user to the DLS

provider in response to a DL_XID_IND primitive.

Structure

The primitive consists of one M_PROTO message block, which contains the following structure, followed

by zero or more M_DATA blocks containing zero or more bytes of data:

typedef struct

{

 ulong dl_primitive;

 ulong dl_flag;

 ulong dl_dest_addr_length;

 ulong dl_dest_addr_offset;

} dl_xid_res_t;

Description

The DL_XID_RES primitive conveys an XID DLSDU from the DLS user to the DLS provider in response to

a DL_XID_IND primitive.

Note: This primitive applies to XID and test operations.

Parameters

 dl_primitive Specifies the DL_XID_RES primitive.

dl_flag Indicates flag values for the request as follows:

DL_POLL_FINAL

Indicates whether the poll/final bit is set.

dl_dest_addr_length Specifies the length of the data link service access point (DLSAP) address of

the destination DLS user. If the destination user is implemented using the Data

Link Provider Interface (DLPI), this address is the full DLSAP address returned

on the DL_BIND_ACK primitive.

dl_dest_addr_offset Indicates where the destination DLSAP address begins. The value of this

parameter is the offset from the beginning of the M_PROTO message block.

States

 Valid The primitive is valid in the DL_IDLE or DL_DATAXFER state.

New The resulting state is unchanged.

Related Information

The DL_BIND_ACK primitive.

Chapter 2. Data Link Provider Interface (DLPI) 107

108 Technical Reference: Communications, Volume 1

Chapter 3. eXternal Data Representation

xdr_accepted_reply Subroutine

Purpose

Encodes RPC reply messages.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

int xdr_accepted_reply (xdrs, ar)

XDR *xdrs;

struct accepted_reply *ar;

Description

The xdr_accepted_reply subroutine encodes Remote Procedure Call (RPC) reply messages. The routine

generates message replies similar to RPC message replies without using the RPC program.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

ar Specifies the address of the structure that contains the RPC reply.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_array Subroutine

Purpose

Translates between variable-length arrays and their corresponding external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_array (xdrs, arrp, sizep, maxsize, elsize, elproc)

XDR * xdrs;

char ** arrp;

u_int * sizep;

© Copyright IBM Corp. 1997, 2006 109

u_int maxsize;

u_int elsize;

xdrproc_t elproc;

Description

The xdr_array subroutine is a filter primitive that translates between variable-length arrays and their

corresponding external representations. This subroutine is called to encode or decode each element of the

array.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

arrp Specifies the address of the pointer to the array. If the arrp parameter is null when the array is being

deserialized, the XDR program allocates an array of the appropriate size and sets the parameter to that

array.

sizep Specifies the address of the element count of the array. The element count cannot exceed the value for

the maxsize parameter.

maxsize Specifies the maximum number of array elements.

elsize Specifies the byte size of each of the array elements.

elproc Translates between the C form of the array elements and their external representations. This parameter

is an XDR filter.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_bool Subroutine

Purpose

Translates between Booleans and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_bool (xdrs, bp)

XDR *xdrs;

bool_t *bp;

Description

The xdr_bool subroutine is a filter primitive that translates between Booleans (C integers) and their

external representations. When encoding data, this filter produces values of either 1 or 0.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

110 Technical Reference: Communications, Volume 1

bp Specifies the address of the Boolean data.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_bytes Subroutine

Purpose

Translates between internal counted byte arrays and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_bytes (xdrs, sp, sizep, maxsize)

XDR *xdrs;

char **sp;

u_int *sizep;

u_int maxsize;

Description

The xdr_bytes subroutine is a filter primitive that translates between counted byte arrays and their

external representations. This subroutine treats a subset of generic arrays, in which the size of array

elements is known to be 1 and the external description of each element is built-in. The length of the byte

array is explicitly located in an unsigned integer. The byte sequence is not terminated by a null character.

The external representation of the bytes is the same as their internal representation.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

sp Specifies the address of the pointer to the byte array.

sizep Points to the length of the byte area. The value of this parameter cannot exceed the value of the

maxsize parameter.

maxsize Specifies the maximum number of bytes allowed when XDR encodes or decodes messages.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 3. eXternal Data Representation 111

xdr_callhdr Subroutine

Purpose

Describes RPC call header messages.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_callhdr (xdrs, chdr)

XDR *xdrs;

struct rpc_msg *chdr;

Description

The xdr_callhdr subroutine describes Remote Procedure Call (RPC) call header messages. This

subroutine generates call headers that are similar to RPC call headers without using the RPC program.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

chdr Points to the structure that contains the header for the call message.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_callmsg Subroutine

Purpose

Describes RPC call messages.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_callmsg (xdrs, cmsg)

XDR *xdrs;

struct rpc_msg *cmsg;

Description

The xdr_callmsg subroutine describes Remote Procedure Call (RPC) call messages. This subroutine

generates messages similar to RPC messages without using the RPC program.

112 Technical Reference: Communications, Volume 1

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

cmsg Points to the structure that contains the text of the call message.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_char Subroutine

Purpose

Translates between C language characters and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_char (xdrs, cp)

XDR *xdrs;

char *cp;

Description

The xdr_char subroutine is a filter primitive that translates between C language characters and their

external representations.

Note: Encoded characters are not packed and occupy 4 bytes each. For arrays of characters, the

programmer should consider using the xdr_bytes, xdr_opaque, or xdr_string routine.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

cp Points to the character.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 3. eXternal Data Representation 113

xdr_destroy Macro

Purpose

Destroys the XDR stream pointed to by the xdrs parameter.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

void xdr_destroy (xdrs)

XDR *xdrs;

Description

The xdr_destroy macro invokes the destroy routine associated with the eXternal Data Representation

(XDR) stream pointed to by the xdrs parameter and frees the private data structures allocated to the

stream. The use of the XDR stream handle is undefined after it is destroyed.

Parameters

 xdrs Points to the XDR stream handle.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Non-Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_enum Subroutine

Purpose

Translates between a C language enumeration (enum) and its external representation.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_enum (xdrs, ep)

XDR *xdrs;

enum_t *ep;

Description

The xdr_enum subroutine is a filter primitive that translates between a C language enumeration (enum)

and its external representation.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

114 Technical Reference: Communications, Volume 1

ep Specifies the address of the enumeration data.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_float Subroutine

Purpose

Translates between C language floats and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_float (xdrs, fp)

XDR *xdrs;

float *fp;

Description

The xdr_float subroutine is a filter primitive that translates between C language floats (normalized

single-precision floating-point numbers) and their external representations.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

fp Specifies the address of the float.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_free Subroutine

Purpose

Deallocates, or frees, memory.

Library

C Library (libc.a)

Chapter 3. eXternal Data Representation 115

Syntax

#include <rpc/xdr.h>

void xdr_free (proc, objp)

xdrproc_t proc;

char *objp;

Description

The xdr_free subroutine is a generic freeing routine that deallocates memory. The proc parameter

specifies the eXternal Data Representation (XDR) routine for the object being freed. The objp parameter is

a pointer to the object itself.

Note: The pointer passed to this routine is not freed, but the object it points to is freed (recursively).

Parameters

 proc Points to the XDR stream handle.

objp Points to the object being freed.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Non-Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_getpos Macro

Purpose

Returns an unsigned integer that describes the current position in the data stream.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

u_int xdr_getpos (xdrs)

XDR *xdrs;

Description

The xdr_getpos macro invokes the get-position routine associated with the eXternal Data Representation

(XDR) stream pointed to by the xdrs parameter. This routine returns an unsigned integer that describes

the current position in the data stream.

Parameters

 xdrs Points to the XDR stream handle.

Return Values

This macro returns an unsigned integer describing the current position in the stream. In some XDR

streams, it returns a value of -1, even though the value has no meaning.

116 Technical Reference: Communications, Volume 1

Related Information

The xdr_setpos macro.

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Non-Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_inline Macro

Purpose

Returns a pointer to the buffer of a stream pointed to by the xdrs parameter.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

long *x_inline (xdrs, len)

XDR *xdrs;

int len;

Description

The xdr_inline macro invokes the inline subroutine associated with the eXternal Data Representation

(XDR) stream pointed to by the xdrs parameter. The subroutine returns a pointer to a contiguous piece of

the stream’s buffer, whose size is specified by the len parameter. The buffer can be used for any purpose,

but it is not data-portable. The xdr_inline macro may return a value of null if it cannot return a buffer

segment of the requested size.

Parameters

 xdrs Points to the XDR stream handle.

len Specifies the size, in bytes, of the internal buffer.

Return Values

This macro returns a pointer to a piece of the stream’s buffer.

Related Information

eXternal Data Representation (XDR) Overview for Programming andUnderstanding XDR Non-Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_int Subroutine

Purpose

Translates between C language integers and their external representations.

Library

C Library (libc.a)

Chapter 3. eXternal Data Representation 117

Syntax

#include <rpc/xdr.h>

xdr_int (xdrs, ip)

XDR *xdrs;

int *ip;

Description

The xdr_int subroutine is a filter primitive that translates between C language integers and their external

representations.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

ip Specifies the address of the integer.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_long Subroutine

Purpose

Translates between C language long integers and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_long

(xdrs, lp)

XDR *xdrs;

long *lp;

Description

The xdr_long filter primitive translates between C language long integers and their external

representations. This primitive is characteristic of most eXternal Data Representation (XDR) library

primitives and all client XDR routines.

Parameters

 xdrs Points to the XDR stream handle. This parameter can be treated as an opaque handler and passed to the

primitive routines.

lp Specifies the address of the number.

118 Technical Reference: Communications, Volume 1

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

When in 64 BIT mode, if the value of the long integer can not be expressed in 32 BIT, xdr_long will return

a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_opaque Subroutine

Purpose

Translates between fixed-size opaque data and its external representation.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_opaque (xdrs, cp, cnt)

XDR *xdrs;

char *cp;

u_int cnt;

Description

The xdr_opaque subroutine is a filter primitive that translates between fixed-size opaque data and its

external representation.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

cp Specifies the address of the opaque object.

cnt Specifies the size, in bytes, of the object. By definition, the actual data contained in the opaque object is not

machine-portable.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_opaque_auth Subroutine

Purpose

Describes RPC authentication messages.

Chapter 3. eXternal Data Representation 119

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_opaque_auth (xdrs, ap)

XDR *xdrs;

struct opaque_auth *ap;

Description

The xdr_opaque_auth subroutine describes Remote Procedure Call (RPC) authentication information

messages. It generates RPC authentication message data without using the RPC program.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

ap Points to the structure that contains the authentication information.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_pmap Subroutine

Purpose

Describes parameters for portmap procedures.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_pmap (xdrs, regs)

XDR *xdrs;

struct pmap *regs;

Description

The xdr_pmap subroutine describes parameters for portmap procedures. This subroutine generates

portmap parameters without using the portmap interface.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

regs Points to the buffer or register where the portmap daemon stores information.

120 Technical Reference: Communications, Volume 1

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The portmap daemon.

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_pmaplist Subroutine

Purpose

Describes a list of port mappings externally.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_pmaplist (xdrs, rp)

XDR *xdrs;

struct pmaplist **rp;

Description

The xdr_pmaplist subroutine describes a list of port mappings externally. This subroutine generates the

port mappings to Remote Procedure Call (RPC) ports without using the portmap interface.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

rp Points to the structure that contains the portmap listings.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The portmap daemon.

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_pointer Subroutine

Purpose

Provides pointer chasing within structures and serializes null pointers.

Library

C Library (libc.a)

Chapter 3. eXternal Data Representation 121

Syntax

#include <rpc/xdr.h>

xdr_pointer (xdrs, objpp, objsize, xdrobj)

XDR * xdrs;

char ** objpp;

u_int objsize;

xdrproc_t xdrobj;

Description

The xdr_pointer subroutine provides pointer chasing within structures and serializes null pointers. This

subroutine can represent recursive data structures, such as binary trees or linked lists.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

objpp Points to the character pointer of the data structure.

objsize Specifies the size of the structure.

xdrobj Specifies the XDR filter for the object.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Non-Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_reference Subroutine

Purpose

Provides pointer chasing within structures.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_reference (xdrs, pp, size, proc)

XDR *xdrs;

char **pp;

u_int size;

xdrproc_t proc;

Description

The xdr_reference subroutine is a filter primitive that provides pointer chasing within structures. This

primitive allows the serializing, deserializing, and freeing of any pointers within one structure that are

referenced by another structure.

122 Technical Reference: Communications, Volume 1

The xdr_reference subroutine does not attach special meaning to a null pointer during serialization.

Attempting to pass the address of a null pointer can cause a memory error. The programmer must

describe data with a two-armed discriminated union. One arm is used when the pointer is valid; the other

arm, when the pointer is null.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

pp Specifies the address of the pointer to the structure. When decoding data, XDR allocates storage if the

pointer is null.

size Specifies the byte size of the structure pointed to by the pp parameter.

proc Translates the structure between its C form and its external representation. This parameter is the XDR

procedure that describes the structure.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_rejected_reply Subroutine

Purpose

Describes RPC message rejection replies.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_rejected_reply (xdrs, rr)

XDR *xdrs;

struct rejected_reply *rr;

Description

The xdr_rejected_reply subroutine describes Remote Procedure Call (RPC) message rejection replies.

This subroutine can be used to generate rejection replies similar to RPC rejection replies without using the

RPC program.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

rr Points to the structure that contains the rejected reply.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Chapter 3. eXternal Data Representation 123

Related Information

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_replymsg Subroutine

Purpose

Describes RPC message replies.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_replymsg (xdrs, rmsg)

XDR *xdrs;

struct rpc_msg *rmsg;

Description

The xdr_replymsg subroutine describes Remote Procedure Call (RPC) message replies. Use this

subroutine to generate message replies similar to RPC message replies without using the RPC program.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

rmsg Points to the structure containing the parameters of the reply message.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_setpos Macro

Purpose

Changes the current position in the XDR stream.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_setpos (xdrs, pos)

XDR *xdrs;

u_int pos;

124 Technical Reference: Communications, Volume 1

Description

The xdr_setpos macro invokes the set-position routine associated with the eXternal Data Representation

(XDR) stream pointed to by the xdrs parameter. The new position setting is obtained from the xdr_getpos

macro. The xdr_setpos macro returns a value of false if the set position is not valid or if the requested

position is out of bounds.

A position cannot be set in some XDR streams. Trying to set a position in such streams causes the macro

to fail. This macro also fails if the programmer requests a position that is not in the stream’s boundaries.

Parameters

 xdrs Points to the XDR stream handle.

pos Specifies a position value obtained from the xdr_getpos macro.

Return Values

Upon successful completion (if the stream is positioned successfully), this macro returns a value of 1. If

unsuccessful, it returns a value of 0.

Related Information

The xdr_getpos macro.

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Non-Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_short Subroutine

Purpose

Translates between C language short integers and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_short (xdrs, sp)

XDR *xdrs;

short *sp;

Description

The xdr_short subroutine is a filter primitive that translates between C language short integers and their

external representations.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

sp Specifies the address of the short integer.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Chapter 3. eXternal Data Representation 125

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_string Subroutine

Purpose

Translates between C language strings and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_string (xdrs, sp, maxsize)

XDR *xdrs;

char **sp;

u_int maxsize;

Description

The xdr_string subroutine is a filter primitive that translates between C language strings and their

corresponding external representations. Externally, strings are represented as sequences of ASCII

characters, while internally, they are represented with character pointers.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

sp Specifies the address of the pointer to the string.

maxsize Specifies the maximum length of the string allowed during encoding or decoding. This value is set in a

protocol. For example, if a protocol specifies that a file name cannot be longer than 255 characters,

then a string cannot exceed 255 characters.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_u_char Subroutine

Purpose

Translates between unsigned C language characters and their external representations.

Library

C Library (libc.a)

126 Technical Reference: Communications, Volume 1

Syntax

#include <rpc/xdr.h>

xdr_u_char (xdrs, ucp)

XDR *xdrs;

char *ucp;

Description

The xdr_u_char subroutine is a filter primitive that translates between unsigned C language characters

and their external representations.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

ucp Points to an unsigned integer.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_u_int Subroutine

Purpose

Translates between C language unsigned integers and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_u_int (xdrs, up)

XDR *xdrs;

u_int *up;

Description

The xdr_u_int subroutine is a filter primitive that translates between C language unsigned integers and

their external representations.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

up Specifies the address of the unsigned long integer.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Chapter 3. eXternal Data Representation 127

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_u_long Subroutine

Purpose

Translates between C language unsigned long integers and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_u_long (xdrs, ulp)

XDR *xdrs;

u_long *ulp;

Description

The xdr_u_long subroutine is a filter primitive that translates between C language unsigned long integers

and their external representations.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

ulp Specifies the address of the unsigned long integer.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_u_short Subroutine

Purpose

Translates between C language unsigned short integers and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_u_short (xdrs, usp)

XDR *xdrs;

u_short *usp;

128 Technical Reference: Communications, Volume 1

Description

The xdr_u_short subroutine is a filter primitive that translates between C language unsigned short

integers and their external representations.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

usp Specifies the address of the unsigned short integer.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_union Subroutine

Purpose

Translates between discriminated unions and their external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_union (xdrs, dscmp, unp, armchoices, defaultarm)

XDR * xdrs;

enum_t * dscmp;

char * unp;

struct xdr_discrim * armchoices;

xdrproc_t (* defaultarm);

Description

The xdr_union subroutine is a filter primitive that translates between discriminated C unions and their

corresponding external representations. It first translates the discriminant of the union located at the

address pointed to by the dscmp parameter. This discriminant is always an enum_t value. Next, this

subroutine translates the union located at the address pointed to by the unp parameter.

The armchoices parameter is a pointer to an array of xdr_discrim structures. Each structure contains an

ordered pair of parameters [value, proc]. If the union’s discriminant is equal to the associated value, then

the specified process is called to translate the union. The end of the xdr_discrim structure array is

denoted by a routine having a null value. If the discriminant is not found in the choices array, then the

defaultarm structure is called (if it is not null).

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

dscmp Specifies the address of the union’s discriminant. The discriminant is an enumeration (enum_t)

value.

Chapter 3. eXternal Data Representation 129

unp Specifies the address of the union.

armchoices Points to an array of xdr_discrim structures.

defaultarm A structure provided in case no discriminants are found. This parameter can have a null value.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_vector Subroutine

Purpose

Translates between fixed-length arrays and their corresponding external representations.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_vector (xdrs, arrp, size, elsize, elproc)

XDR * xdrs;

char * arrp;

u_int size, elsize;

xdrproc_t elproc;

Description

The xdr_vector subroutine is a filter primitive that translates between fixed-length arrays and their

corresponding external representations.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

arrp Specifies the pointer to the array.

size Specifies the element count of the array.

elsize Specifies the size of each of the array elements.

elproc Translates between the C form of the array elements and their external representation. This is an XDR

filter.

Return Values

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

130 Technical Reference: Communications, Volume 1

xdr_void Subroutine

Purpose

Supplies an XDR subroutine to the RPC system without transmitting data.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_void ()

Description

The xdr_void subroutine has no function parameters. It is passed to other Remote Procedure Call (RPC)

subroutines that require a function parameter, but does not transmit data.

Return Values

This subroutine always returns a value of 1.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_wrapstring Subroutine

Purpose

Calls the xdr_string subroutine.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_wrapstring (xdrs, sp)

XDR *xdrs;

char **sp;

Description

The xdr_wrapstring subroutine is a primitive that calls the xdr_string subroutine (xdrs, sp,

MAXUN.UNSIGNED), where the MAXUN.UNSIGNED value is the maximum value of an unsigned integer.

The xdr_wrapstring subroutine is useful because the Remote Procedure Call (RPC) package passes a

maximum of two eXternal Data Representation (XDR) subroutines as parameters, and the xdr_string

subroutine requires three.

Parameters

 xdrs Points to the XDR stream handle.

sp Specifies the address of the pointer to the string.

Chapter 3. eXternal Data Representation 131

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The xdr_string subroutine.

eXternal Data Representation (XDR) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Understanding XDR Library Filter Primitives in AIX 5L Version 5.3 Communications Programming

Concepts.

xdr_authunix_parms Subroutine

Purpose

Describes UNIX-style credentials.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

xdr_authunix_parms (xdrs, app)

XDR *xdrs;

struct authunix_parms *app;

Description

The xdr_authunix_parms subroutine describes UNIX-style credentials. This subroutine generates

credentials without using the Remote Procedure Call (RPC) authentication program.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

app Points to the structure that contains the UNIX-style authentication credentials.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

xdr_double Subroutine

Purpose

Translates between C language double-precision numbers and their external representations.

132 Technical Reference: Communications, Volume 1

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdr_double (xdrs, dp)

XDR *xdrs;

double *dp;

Description

The xdr_double subroutine is a filter primitive that translates between C language double-precision

numbers and their external representations.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

dp Specifies the address of the double-precision number.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Understanding XDR Library Filter

Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdrmem_create Subroutine

Purpose

Initializes in local memory the XDR stream pointed to by the xdrs parameter.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

void

xdrmem_create (xdrs, addr, size, op)

XDR *xdrs;

char *addr;

u_int size;

enum xdr_op op;

Description

The xdrmem_create subroutine initializes in local memory the eXternal Data Representation (XDR)

stream pointed to by the xdrs parameter. The XDR stream data is written to or read from a chunk of

memory at the location specified by the addr parameter.

Chapter 3. eXternal Data Representation 133

Parameters

 xdrs Points to the XDR stream handle.

addr Points to the memory where the XDR stream data is written to or read from.

size Specifies the length of the memory in bytes.

op Specifies the XDR direction. The possible choices are XDR_ENCODE, XDR_DECODE, or XDR_FREE.

Related Information

eXternal Data Representation (XDR) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Understanding XDR Non-Filter Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdrrec_create Subroutine

Purpose

Provides an XDR stream that can contain long sequences of records.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

void

xdrrec_create (xdrs, sendsize, recvsize, handle, readit, writeit)

XDR * xdrs;

u_int sendsize;

u_int recvsize;

char * handle;

int (* readit) (), (* writeit) ();

Description

The xdrrec_create subroutine provides an eXternal Data Representation (XDR) stream that can contain

long sequences of records and handle them in both the encoding and decoding directions. The record

contents contain data in XDR form. The routine initializes the XDR stream object pointed to by the xdrs

parameter.

Note: This XDR stream implements an intermediate record stream. As a result, additional bytes are in the

stream to provide record boundary information.

Parameters

 xdrs Points to the XDR stream handle.

sendsize Sets the size of the input buffer to which data is written. If 0 is specified, the buffers are set to the

system defaults.

recvsize Sets the size of the output buffer from which data is read. If 0 is specified, the buffers are set to the

system defaults.

handle Points to the input/output buffer’s handle, which is opaque.

readit Points to the subroutine to call when a buffer needs to be filled. Similar to the read system call.

writeit Points to the subroutine to call when a buffer needs to be flushed. Similar to the write system call.

134 Technical Reference: Communications, Volume 1

Related Information

eXternal Data Representation (XDR) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Understanding XDR Non-Filter Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdrrec_endofrecord Subroutine

Purpose

Causes the current outgoing data to be marked as a record.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdrrec_endofrecord (xdrs, sendnow)

XDR *xdrs;

bool_t sendnow;

Description

The xdrrec_endofrecord subroutine causes the current outgoing data to be marked as a record and can

only be invoked on streams created by the xdrrec_create subroutine. If the value of the sendnow

parameter is nonzero, the data in the output buffer is marked as a completed record and the output buffer

is optionally written out.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

sendnow Specifies whether the record should be flushed to the output tcp stream.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The xdrrec_create subroutine.

eXternal Data Representation (XDR) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Understanding XDR Non-Filter Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdrrec_eof Subroutine

Purpose

Checks the buffer for an input stream that indicates the end of file (EOF).

Chapter 3. eXternal Data Representation 135

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdrrec_eof (xdrs)

XDR *xdrs;

Description

The xdrrec_eof subroutine checks the buffer for an input stream to see if the stream reached the end of

the file. This subroutine can only be invoked on streams created by the xdrrec_create subroutine.

Parameters

 xdrs Points to the eXternal Data Representation (XDR) stream handle.

Return Values

After consuming the rest of the current record in the stream, this subroutine returns a value of 1 if the

stream has no more input, and a value of 0 otherwise.

Related Information

The xdrrec_create subroutine.

eXternal Data Representation (XDR) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Understanding XDR Non-Filter Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdrrec_skiprecord Subroutine

Purpose

Causes the position of an input stream to move to the beginning of the next record.

Library

C Library (libc.a)

Syntax

#include <rpc/xdr.h>

xdrrec_skiprecord (xdrs)

XDR *xdrs;

Description

The xdrrec_skiprecord subroutine causes the position of an input stream to move past the current record

boundary and onto the beginning of the next record of the stream. This subroutine can only be invoked on

streams created by the xdrrec_create subroutine. The xdrrec_skiprecord subroutine tells the eXternal

Data Representation (XDR) implementation that the rest of the current record in the stream’s input buffer

should be discarded.

136 Technical Reference: Communications, Volume 1

Parameters

 xdrs Points to the XDR stream handle.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The xdrrec_create subroutine.

eXternal Data Representation (XDR) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Understanding XDR Non-Filter Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

xdrstdio_create Subroutine

Purpose

Initializes the XDR data stream pointed to by the xdrs parameter.

Library

C Library (libc.a)

Syntax

#include <stdio.h>

#include <rpc/xdr.h>

void xdrstdio_create (xdrs, file, op)

XDR *xdrs;

FILE *file;

enum xdr_op op;

Description

The xdrstdio_create subroutine initializes the eXternal Data Representation (XDR) data stream pointed to

by the xdrs parameter. The XDR stream data is written to or read from the standard input/output stream

pointed to by the file parameter.

Note: The destroy routine associated with such an XDR stream calls the fflush function on the file

stream, but never calls the fclose function.

Parameters

 xdrs Points to the XDR stream handle to initialize.

file Points to the standard I/O device that data is written to or read from.

op Specifies an XDR direction. The possible choices are XDR_ENCODE, XDR_DECODE, or XDR_FREE.

Related Information

eXternal Data Representation (XDR) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Understanding XDR Non-Filter Primitives in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 3. eXternal Data Representation 137

138 Technical Reference: Communications, Volume 1

Chapter 4. AIX 3270 Host Connection Program (HCON)

cfxfer Function

Purpose

Checks the status of the programmatic File Transfer.

Library

File Transfer Library (libfxfer.a)

C Syntax

#include <fxfer.h>

cfxfer (sxfer)

struct fxs *sxfer;

Pascal Syntax

%include fxfer.inc

%include fxhfile.inc

function pcfxfer (var Sxfer : fxs) : integer; external;

FORTRAN Syntax

INTEGER FCFXFER

EXTERNAL FCFXFER

CHARACTER*XX SRC, DST, TIME

INTEGER BYTCNT, STAT

INTEGER ERRNO

RC = FCFXFER (SRC, DST, BYTCNT,

+ STAT, ERRNO, TIME, RC)

Description

The cfxfer function returns the status of the file transfer request made by the fxfer function. This function

must be called once for each file transfer request. The cfxfer function places the status in the structure

specified by the sxfer parameter for C and Pascal. For FORTRAN, status is placed in each corresponding

parameter.

Each individual file transfer and file transfer status completes the requests in the order the requests are

made. If multiple asynchronous requests are made:

v To a single host session, the cfxfer function returns the status of each request in the same order the

requests are made.

v To more than one host session, the cfxfer function returns the status of each request in the order it is

completed.

If the file transfer is run asynchronously and the cfxfer function is immediately called, the function returns

a status not available -2 code. An application performing a file transfer should not call the cfxfer function

© Copyright IBM Corp. 1997, 2006 139

until an error -1 or ready status 0 is returned. The application program can implement the status check in

a FOR LOOP or a WHILE LOOP and wait for a -1 or 0 to occur.

The cfxfer function is part of the Host Connection Program (HCON).

C Parameters

 sxfer Specifies an fxs structure as defined in the fxfer.h file. The fxs C structure is:

struct fxs {

 int fxs_bytcnt;

 char *fxs_src;

 char *fxs_dst;

 char *fxs_ctime;

 int fxs_stat;

 int fxs_errno;

}

Pascal Parameters

 Sfxfer Specifies a record of type fxs as defined within the fxfer.inc file. The Pascal fxs record format is:

fxs = record

 fxs_bytcnt : integer;

 fxs_src : stringptr;

 fxs_dst : stringptr;

 fxs_ctime : stringptr;

 fxs_stat : integer;

 fxs_errno : integer;

end;

C and Pascal fxs Field Descriptions

 fxc_bytcnt Indicates the number of bytes transferred.

fxc_src Points to a static buffer containing the source file name. The static buffer is overwritten by each

call.

fxc_dst Points to a static buffer containing the destination file name. The static buffer is overwritten by

each call.

fxs_ctime Specifies the time the destination file is created relative to Greenwich Mean Time (GMT) midnight

on January 1, 1970.

fxs_stat Specifies the status of the file transfer request.

fxs_errno Specifies the error number that results from an error in a system call.

FORTRAN Parameters

 SRC Specifies a character array of XX length containing the source file name.

DST Specifies a character array of XX length containing the destination file name.

BYTCNT Indicates the number of bytes transferred.

STAT Specifies the status of the file transfer request.

ERRNO Specifies the error number that results from an error in a system call.

TIME Specifies the time the destination file is created.

140 Technical Reference: Communications, Volume 1

Return Values

The cfxfer function returns the following:

 Value Description

0 Ready status-success. The structure member fxs.fxs_stat contains status of fxfer function.

-1 Error status. Failure of cfxfer function. The fxs structure has NOT been set.

1 Status is not yet available.

The fx_statxxxxxx status file contains the status of each file transfer request made by the application

program. The fxfer function fills in the xxxxxx portion of the fx_stat file based on random letter generation

and places the file in the $HOME directory.

Files

 $HOME/fx_statxxxxxx Temporary file used for status

Related Information

The fxfer command.

The fxfer function, g32_fxfer function.

fxfer Function

Purpose

Initiates a file transfer from within a program.

Library

File Transfer Library (libfxfer.a)

C Syntax

#include <fxfer.h>

fxfer (xfer, sessionname)

struct fxc *xfer;

char *sessionname;

Pascal Syntax

%include /usr/include/fxfer.inc

%include /usr/include/fxhfile.inc

%include /usr/include/fxconst.inc

function pfxfer

(var xfer : fxc; sessionname : stringptr) :

integer; external;

FORTRAN Syntax

INTEGER FFXFER

EXTERNAL FFXFER

Chapter 4. AIX 3270 Host Connection Program (HCON) 141

CHARACTER*XX SRCF, DSTF, LOGID, INPUTFLD, CODESET, SESSIONNAME

INT FLAGS, RECL, BLKSIZE, SPACE, INCR, UNIT, RC

RC = FFXFER (SRCF, DSTF, LOGID, FLAGS, RECL, BLKSIZE,

+ SPACE, INCR, UNIT, INPUTFLD, CODESET, SESSIONNAME)

Description

The fxfer function transfers a file from a specified source to a specified destination. The file transfer is

accomplished as follows:

v In the C or Pascal language, the fxfer or pfxfer function transfers a file specified by the fxc_src variable

to the file specified by the fxc_dst variable. Both variables are defined in the fxc structure.

v In the FORTRAN language, the FFXFER function transfers a file specified by the SRCF variable to the

file specified by the DSTF variable.

The fxfer function is part of the Host Connection Program (HCON).

The fxfer function requires one or more adapters used to connect to a host.

This function requires one of the following operating system environments be installed on the mainframe

host: VM/SP CMS, VM/XA CMS, MVS/SP™ TSO/E, MVS/XA™, TSO/E, CICS/VS, VSE/ESA, or VSE/SP.

This function requires that the System/370 Host-Supported File Transfer Program (IND$FILE or its

equivalent) be installed on the mainframe host.

The file names are character strings. The local-system file names must be in operating system format. The

host file names must conform to the host naming convention, which must be one of the following formats:

 Format Description

VM/CMS FileName FileType FileMode

MVS/TSO DataSetName [(MemberName)][/Password]

CICS/VS FileName (up to 8 characters)

VSE/ESA FileName (up to 8 characters)

Note: The VSE host is not supported in a double-byte character set (DBCS) environment.

C Parameters

 xfer Specifies a pointer to the fxc structure defined in the fxfer.h file.

sessionname Points to the name of a session. The session profile for that session specifies the host

connectivity to be used by the file transfer programming interface. The session name is a single

character in the range of a through z. Capital letters are interpreted as lowercase letters.

Session variables are defined in a HCON session profile. If the value of the sessionname

parameter is set to a null value, the fxfer function assumes you are running in an e789

subshell.

Pascal Parameters

 xfer Specifies a record of fxc type within the fxfer.inc file.

142 Technical Reference: Communications, Volume 1

sessionname Points to the name of a session. The session profile indicated by the sessionname parameter

defines the host connectivity to be used by the file transfer programming interface. The session

name is a single character in the range of a through z. Capital letters are interpreted as

lowercase letters. Session variables are defined in an HCON session profile. If the

sessionname parameter is set to char(0), the pfxfer function assumes you are running in an

e789 subshell.

FORTRAN Parameters

 SRCF Specifies a character array of XX length containing the source file name.

DSTF Specifies a character array of XX length containing the destination file name.

LOGID Specifies a character array of XX length containing the host logon ID.

SESSIONNAME Points to the name of a session. The SESSIONNAME parameter names a session profile that

defines the host connectivity to be used by the file transfer programming interface. The session

name is a single character in the range of a through z. Capital letters are interpreted as

lowercase letters. Session variables are defined in a HCON session profile. If the

SESSIONNAME parameter is set to char(0), the FFXFER function assumes you are running in

an e789 subshell.

FLAGS Contains the option flags value, which is the sum of the desired option values:

1 Upload

2 Download

4 Translate on

8 Translate carriage return line feed

16 Replace

32 Append

64 Queue

128 Fixed-length records

256 Variable-length records

512 Undefined length (TSO only)

1024 Host system TSO

2048 Host system CMS

4096 Host system CICS/VS

8192 Host system VSE/ESA

RECL Specifies the logical record length.

BLKSIZE Specifies the block size.

SPACE Specifies the allocation space.

INCR Specifies the allocation space increment.

UNIT Specifies the unit of allocation:

-1 Specifies the number of TRACKS.

-2 Specifies the number of CYLINDERS.

A positive number indicates the number of bytes to allocate.

INPUTFLD Specifies the host input table field.

Chapter 4. AIX 3270 Host Connection Program (HCON) 143

CODESET Specifies an alternate code set to use for ASCII to EBCDIC and EBCDIC to ASCII translations:

CHAR(0)

Uses current operating-system ASCII code page.

IBM-932

Uses IBM code page 932 for translation in a DBCS environment.

ISO8859-1

Uses ISO 8859-1 Latin alphabet number 1 code page.

ISO8859-7

Uses ISO 8859-7 Greek alphabet.

ISO8859-9

Uses ISO 8859-9 Turkish alphabet.

IBM-eucJP

Uses IBM Extended UNIX code for translation in the Japanese Language environment.

IBM-eucKR

Translates Korean language.

IBM-eucTW

Translates traditional Chinese language.

Notes:

1. All FORTRAN character array strings must be terminated by a null character, as in the following

example:

SRCF = ’rtfile’//CHAR(0)

2. The VSE host system is not supported in a DBCS environment.

3. The unique DBCS file-transfer flags are not supported by this function.

Return Values

If the fxfer function is called synchronously, it returns a value of 0 when the transfer is completed. The

application program can then issue a cfxfer function call to obtain the status of the file transfer.

If the fxfer function is called asynchronously, it returns 0. The application program can issue a cfxfer

function call to determine when the file transfer is completed and to obtain the status of the file transfer. If

the status cannot be reported by the cfxfer function due to an I/O error on the fx_statxxxxxx status file,

the cfxfer function returns a -1. If the status is not ready, the cfxfer function returns a -2.

The fx_statxxxxxx status file contains the status of each file transfer request made by the application

program. The fxfer function fills in the xxxxxx portion of the fx_stat file based on random letter generation

and places the file in the $HOME directory.

Related Information

The file-transfer check status function is the cfxfer function.

g32_alloc Function

Purpose

Initiates interaction with a host application.

Libraries

HCON Library

C (libg3270.a)

144 Technical Reference: Communications, Volume 1

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_alloc (as, applname, mode)

struct g32_api *as;

char *applname;

int mode;

Pascal Syntax

function g32allc (var as : g32_api;

 applname : stringptr;

 mode : integer): integer; external;

FORTRAN Syntax

EXTERNAL G32ALLOC

INTEGER RC, MODE, AS(9), G32ALLOC

CHARACTER* XX NAME

RC = G32ALLOC (AS, NAME, MODE)

Description

The g32_alloc function initiates interaction with a host application and sets the API mode. The host

application program is invoked by entering its name, using the 3270 operatorless interface.

If invocation of the host program is successful and the mode is API/API, control of the session is passed to

the application. If the mode is API/3270, the emulator retains control of the session. The application

communicates with the session by way of the 3270 operatorless interface.

The g32_alloc function may be used only after a successful open using the g32_open or g32_openx

function. The g32_alloc function must be issued before using any of the message or 3270 operatorless

interface functions.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Applications programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

The g32_alloc function is part of the Host Connection Program (HCON).

The g32_alloc function requires one or more adapters used to connect to a host.

CICS and VSE do not support API/API or API/API_T modes.

C Parameters

 as Specifies a pointer to a g32_api structure. Status information is returned in this structure.

applname Specifies a pointer to the name of the host application to be executed. This string should be the

entire string necessary to start the application, including any necessary parameters or options. When

specifying an applname parameter, place the host application name in double quotes (″Testload″) or

specify a pointer to a character string.

Chapter 4. AIX 3270 Host Connection Program (HCON) 145

mode Specifies the API mode. The types of modes that can be used are contained in the g32_api.h file

and are defined as follows:

MODE_3270

The API/3270 mode lets local system applications act like a 3270 operatorless interface.

Applications in this mode use the 3270 operatorless interface to communicate with the host

application. In API/3270 mode, if the value of the applname parameter is a null pointer, no

host application is started.

MODE_API

The API/API mode is a private protocol for communicating with host applications that

assume they are communicating with a program. Applications in this mode use the message

interface to communicate with host applications using the host API. The API program must

use HCON’s API and must have a corresponding host API program that uses HCON’s host

API for the programs to communicate.

Note: When a session is in this mode, all activity to the screen is stopped until this mode is

exited. API/3270 mode functions cannot be used while in the API/API mode. The keyboard

is locked.

MODE_API_T

The API_T mode is the same as the MODE_API type except this mode translates messages

received from the host from EBCDIC to ASCII, and translates messages sent to the host

from ASCII to EBCDIC. The translation tables used are determined by the language

characteristic in the HCON session profile.

Note: A host application started in API/API or API/API_T mode must issue a G32ALLOC

function as the API waits for an acknowledgment from the host application, when starting an

API/API mode session.

Pascal Parameters

 as Specifies the g32_api structure.

applname Specifies a stringptr containing the name of the host application to be executed. This string should

be the entire string necessary to start the host application, including any necessary parameters and

options. A null application name is valid in 3270 mode.

mode Specifies the mode desired for the session.

FORTRAN Parameters

 AS Specifies the g32_api equivalent structure as an array of integers.

NAME Specifies the name of the application that is to execute on the host.

MODE Specifies the desired mode for the API.

Return Values

 0 Indicates successful completion.

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is set to an error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

The following example illustrates the use of the g32_alloc function in C language:

#include <g32_api.h> /* API include file */

main ()

{

struct g32_api *as, asx; /* API status */

146 Technical Reference: Communications, Volume 1

int session_mode = MODE_API /* api session mode. Other

 modes are MODE_API_T

 and MODE_3270 */

char appl_name [20] /* name of the application to

 run on the host */

int return; /* return code */

.

.

.

strcpy (appl_name, "APITESTN"); /* name of host application */

return = g32_alloc(as, appl_name, session_mode);

.

.

.

return = g32_dealloc(as);

.

.

.

g32_close Function

Purpose

Detaches from a session.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_close (as)

struct g32_api *as;

Pascal Syntax

function g32clse (var as : g32_api) : integer; external;

FORTRAN Syntax

EXTERNAL G32CLOSE

INTEGER AS(9), G32CLOSE

RC = G32CLOSE(AS)

Description

The g32_close function disconnects from a 3270 session. If the g32_open or g32_openx function created

a session, the g32_close function logs off from the host and terminates the session. A session must be

terminated (using the g32_dealloc function) before issuing the g32_close function.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Application programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

Chapter 4. AIX 3270 Host Connection Program (HCON) 147

The g32_close function is part of the Host Connection Program (HCON).

The g32_close function requires one or more adapters used to connect to a host.

C Parameters

 as Specifies a pointer to a g32_api structure. Status is returned in this structure.

Pascal Parameters

 as Specifies a g32_api structure.

FORTRAN Parameters

 AS Specifies the g32_api equivalent structure as an array of integers.

Return Values

 0 Indicates successful completion.

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is set to an error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

The following example fragment illustrates the use of the g32_close function in C language:

#include <g32_api.h> /* API include file */

main()

{

struct g32_api *as; /* g32 structure */

int return;

.

.

.

return = g32_close(as);

.

.

.

g32_dealloc Function

Purpose

Ends interaction with a host application.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

148 Technical Reference: Communications, Volume 1

C Syntax

#include <g32_api.h>

g32_dealloc(as)

struct g32_api *as;

Pascal Syntax

function g32deal (var as : g32_api) : integer; external;

FORTRAN Syntax

EXTERNAL G32DEALLOC

INTEGER AS(9), G32DEALLOC

RC = G32DEALLOC(AS)

Description

The g32_dealloc function ends interaction with the operating system application and the host application.

The function releases control of the session.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Application programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

The g32_dealloc function is part of the Host Connection Program (HCON).

The g32_dealloc function requires one or more adapters used to connect to a host.

C Parameters

 as Specifies a pointer to a g32_api structure. Status is returned in this structure.

Pascal Parameters

 as Specifies the g32_api structure.

FORTRAN Parameters

 AS Specifies the g32_api equivalent structure as an array of integers.

Return Values

 0 Indicates successful completion.

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is set to an error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

The following example illustrates the use of the g32_dealloc function in C language:

Chapter 4. AIX 3270 Host Connection Program (HCON) 149

#include <g32_api.h> /* API include file */

main ()

{

struct g32_api *as, asx; /* asx is statically defined */

int session_mode = MODE_API; /* api session mode. Other

 modes are MODE_API_T */

char appl_name [20]; /* name of the application to

 run on the host */

int return; /* return code */

.

.

.

strcpy (appl_name, "APITESTN"); /* name of host application */

return = g32_alloc(as, appl_name, session_mode);

.

.

.

return = g32_dealloc(as);

.

.

.

g32_fxfer Function

Purpose

Invokes a file transfer.

Libraries

HCON Library

File Transfer Library (libfxfer.a)

C (libg3270.a)

Pascal (libg3270p.a)

Fortran (libg3270f.a)

C Syntax

#include <g32_api.h>

#include <fxfer.h>

g32_fxfer (as, xfer)

struct g32_api *as;

struct fxc *xfer;

Pascal Syntax

const

%include /usr/include/g32const.inc

%include /usr/include/g32fxconst.inc

type

%include /usr/include/g32types.inc

%include /usr/include/fxhfile.inc

function g32fxfer(var as : g32_api; var xfer : fxc) : integer; external;

FORTRAN Syntax

INTEGER G32FXFER, RC, AS(9)

EXTERNAL G32FXFER

CHARACTER*XX SRCF, DSTF, INPUTFLD, CODESET

INTEGER FLAGS,RECL,BLKSIZE,SPACE,INCR,UNIT

150 Technical Reference: Communications, Volume 1

RC = G32FXFER(AS,SCRF, DSTF, FLAGS, RECL, BLKSIZE, SPACE,

 + INCR, UNIT, INPUTFLD, CODESET)

Description

The g32_fxfer function allows a file transfer to take place within an API program without the API program

having to invoke a g32_close and relinquish the link. The file transfer is run in a programmatic fashion,

meaning the user must set up the flag options, the source file name, and the destination file name using

either the programmatic fxfer fxc structure for C and Pascal or the numerous variables for FORTRAN.

The g32_fxfer function will detach from the session without terminating it, run the specified file transfer,

and then reattach to the session.

If a g32_alloc function has been issued before invoking the g32_fxfer command, be sure that the

corresponding g32_dealloc function is incorporated into the program before the g32_fxfer function is

called.

The status of the file transfer can be checked by using the cfxfer file-transfer status check function after

the g32_fxfer function has been invoked.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Application programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

The g32_fxfer function is part of the Host Connection Program (HCON).

The g32_fxfer function requires one or more adapters used to connect to a host.

This function requires that the Host-Supported File Transfer Program (IND$FILE or its equivalent) be

installed on the host.

C Parameters

 as Specifies a pointer to the g32_api structure. Status is returned in this structure.

xfer Specifies a pointer to the fxc structure defined in the fxfer.h file.

Pascal Parameters

 as Specifies a record of type g32_api.

xfer Specifies a record of type fxc within the fxfer.inc file.

FORTRAN Parameters

 AS Specifies the g32_api equivalent structure as an array of integers.

SRCF Specifies a character array of XX length containing the source file name.

DSTF Specifies a character array of XX length containing the destination file name.

Chapter 4. AIX 3270 Host Connection Program (HCON) 151

FLAGS Contains the option flags value, which is the sum of the desired option values listed below:

1 Upload

2 Download

4 Translate On

8 Translate Carriage Return Line Feed

16 Replace

32 Append

64 Queue. This option may be specified by the user, but it is blocked by the G32FXFER

command.

128 Fixed Length Records

256 Variable Length Records

512 Undefined Length (TSO only)

1024 Host System TSO

2048 Host System CMS

4096 Host System CICS/VS

8192 Host System VSE/ESA

RECL Specifies the logical record length.

BLKSIZE Specifies the block size (TSO only).

SPACE Specifies the allocation space (TSO only).

INCR Specifies the allocation space increment (TSO only).

UNIT Specifies the unit of allocation (TSO only), which is:

-1 Number of TRACKS

-2 Number of CYLINDERS.

A positive number indicates the number of blocks to be allocated.

INPUTFLD Specifies the host input table field.

152 Technical Reference: Communications, Volume 1

CODESET Specifies an alternate code set to use for ASCII to EBCDIC and EBCDIC to ASCII translations. The

following code sets are supported:

CHAR(0)

Uses current operating system ASCII code page.

IBM850

Uses IBM code page 850 for translation in a single byte code set (SBCS) environment.

IBM932

Uses IBM code page 932 for translation in a double byte code set (DBCS) environment.

ISO8859-1

Uses ISO 8859-1 Latin alphabet number 1 code page.

ISO8859-7

Uses ISO 8859-7 Greek alphabet.

ISO8859-9

Uses ISO 8859-9 Turkish alphabet.

IBMeucJP

Uses IBM Extended UNIX Code for translation in the Japanese Language environment.

IBMeucKR

Korean language.

IBMeucTW

Traditional Chinese language.

Notes:

1. All FORTRAN character array strings must be null-terminated. For

2. example:

SRCF = ’rtfile’//CHAR(0)

3. The Host System VSE is not supported in the DBCS environment.

4. The unique DBCS file transfer flags are not supported by this function.

Return Values

 0 Indicates successful completion. The user may call the cfxfer function to get the status of the file transfer.

1 Indicates the file transfer did not complete successfully. The user may call the cfxfer function to get the status

of the file transfer.

-1 Indicates the g32_fxfer command failed while accessing the link. The errcode field in the g32_api structure is

set to an error code identifying the error. The xerrinfo field can be set to give more information about the

error.

Examples

The following example fragment illustrates the use of the g32_fxfer function in an api_3270 mode

program in C language:

#include <g32_api.h> /* API include file */

#include <fxfer.h> /* file transfer include file */

main()

{

 struct g32_api *as,asx;

 struct fxc *xfer; struct fxs sxfer;

 int session_mode=MODE_3270;

 char *aixfile="/etc/motd";

 char *hostfile="test file a";

 char sessionname[30],uid[30],pw[30];

 int mlog=0,ret=0;

 as = &asx;

Chapter 4. AIX 3270 Host Connection Program (HCON) 153

sessionname = ’\0’; /* We are assuming SNAME is set */

 .

 .

 ret=g32_open(as,mlog,uid,pw,sessionname);

 printf("The g32_open return code = %d\n",ret);

 .

 .

 /* Malloc space for the file transfer structure */

 xfer = (struct fxc *) malloc(2048);

 /* Set the file transfer flags to upload,

 replace, translate and Host CMS */

 xfer->fxc_opts.f_flags = FXC_UP | FXC_REPL | FXC_TNL |

 FXC_CMS;

 xfer->fxc_opts.f_lrecl = 80; /* Set the Logical Record length

 to 80 */

 xfer->fxc_opts.f_inputfld = (char *)0; /* Set Input Field

 to NULL */

 xfer->fxc_opts.f_aix_codepg = (char *)0; /* Set Alternate

 Codepg to NULL */

 xfer->fxc_src = aixfile; /* Set the Source file name to

 aixfile */

 xfer->fxc_dst = hostfile; /* Set the Destination file name

 to hostfile */

 ret=g32_fxfer(as,xfer);

 printf("The g32_fxfer return code = %d\n",ret);

 /* If the file transfer completed then get the status code of

 the file transfer */

 if ((ret == 0) || (ret == 1)) {

 ret = cfxfer(&sxfer);

 if (ret == 0) {

 printf("Source file: %s\n",sxfer.fxs_src);

 printf("Destination file: %s\n", \

 sxfer.fxs_dst);

 printf("Byte Count: %d\n",sxfer.fxs_bytcnt);

 printf("File transfer time: %d\n",sxfer.fxs_ctime);

 printf("Status Message Number: %d\n",sxfer.fxs_stat);

 printf("System Call error number:%d\n",sxfer.fxs_errno);

 }

 }

 .

 .

 .

 ret=g32_close(as);

 printf("The g32_close return code = %d\n",ret);

 return(0);

}

The following example fragment illustrates the use of the g32_fxfer function in an api_3270 mode

program in Pascal language.

program test1(input,output);

const%include /usr/include/g32const.inc

%include /usr/include/fxconst.inc

type

%include /usr/include/g32hfile.inc

%include /usr/include/g32types.inc

%include /usr/include/fxhfile.inc

var

 as:g32_api;

 xfer:fxc;

 sxfer:fxs;

 ret,sess_mode,flag:integer;

 session,timeout,uid,pw:stringptr;

 source,destination:stringptr;

begin

 sess_mode = MODE_3270;

 flag := 0;

154 Technical Reference: Communications, Volume 1

{ Initialize API stringptrs and create space }

 new(uid,8);

 uid@ := chr(0);

 new(pw,8);

 pw@ := chr(0);

 new(session,2);

 session@ := ’a’; { Open session a }

 new(timout,8);

 timeout := ’60’;

 { Call g32openx and open session a }

 ret := g32openx(as,flag,uid,pw,session,timeout);

 writeln(’The g32openx return code = ’,ret:4);

 .

 .

 .

 { Set up the file transfer options and file names }

 new(source,1024);

 source := ’testfile’; { Source file, assumes testfile exists

 in the current directory }

 new(destination,1024);

 destination := ’testfile’; { Destination file, TSO file

 testfile }

 { Set flags to Upload, Replace, Translate and Host TSO }

 xfer.fxc_opts.f_flags := FXC_UP + FXC_TSO + FXC_REPL + \ FXC_TNL;

 xfer.fxc_src := source;

 xfer.fxc_dst := destination;

 {Call the g32_fxfer using the specified flags and file names}

 ret := g32fxfer(as,xfer);

 writeln(’The g32fxfer return code = ’,ret:4);

 { If g32_fxfer returned with 1 or 0 call the file transfer \ status check function }

 if (ret >= 0) then begin

 ret := pcfxfer(sxfer);

 if (ret = 0) then begin

 writeln(’Source file: ’,sxfer.fxs_src@);

 writeln(’Destination file: ’,sxfer.fxs_dst@);

 writeln(’File Transfer Time: ’,sxfer.fxs_ctime@);

 writeln(’Byte Count: ’,sxfer.fxs_bytcnt);

 writeln(’Status Message Number: ’,sxfer.fxs_stat);

 writeln(’System Call Error Number: ’,sxfer.fxs_errno);

 end;

 end;

 .

 .

 .

 { Close the session using the g32close function }

 ret := g32close(as);

 writeln(’The g32close return code = ’,ret:4);

 end.

The following example fragment illustrates the use of the g32_fxfer function in an api_3270 mode

program in FORTRAN language:

 INTEGER G32OPENX,G32FXFER,G32CLOSE,FCFXFER

 INTEGER RET,’AS(9)FLAG

 EXTERNAL G32OPENX

 EXTERNAL G32FXFER

 EXTERNAL G32CLOSE

 EXTERNAL FCFXFER

 CHARACTER*8 UID

 CHARACTER*8 PW

 CHARACTER*2 SESSION

 CHARACTER*8 TIMEOUT

 CHARACTER*256 SRCF

 CHARACTER*256 DSTF

 CHARACTER*256 SRC

 CHARACTER*256 DST

 CHARACTER*64 INPUTFLD

Chapter 4. AIX 3270 Host Connection Program (HCON) 155

CHARACTER*8 CODESET

 CHARACTER*40 TIME

 INTEGER BYTCNT,STAT,ERRNO,TIME

 INTEGER FLAGS,RECL,BLKSIZE,SPACE,INCR,UNIT

C Set up all FORMAT statement

1 FORMAT("THE G32OPENX RETURN CODE = ",I4)

2 FORMAT("THE G32FXFER RETURN CODE = ",I4)

3 FORMAT("THE G32CLOSE RETURN CODE = ",I4)

4 FORMAT("THE FCFXFER RETURN CODE = ",I4)

5 FORMAT("--------------------------------------")

10 FORMAT("SOURCE FILE: ",A)

11 FORMAT("DESTINATION FILE: ",A)

12 FORMAT("BYTE COUNT: ",I10)

13 FORMAT("TIME: ",A)

14 FORMAT("STATUS MESSAGE NUMBER: ",I10)

15 FORMAT("SYSTEM CALL ERROR NUMBER: ",I10)

C Set up all character values for the G32OPENX command

 UID = CHAR(0)

 PW = CHAR(0)

 SESSION = ’z’//CHAR(0)

 TIMEOUT = ’60’//CHAR(0)

 FLAG = 0

 SRCF = ’testcase1’//CHAR(0)

 DSTF = ’/home/test.case1’//CHAR(0)

C Source and Destination files for the fcfxfer status

C check command

 SRC = CHAR(0)

 DST = CHAR(0)

C Set Input Field to NULL

 INPUTFLD = CHAR(0)

C Set Alternate AIX codeset to NULL

 CODESET = CHAR(0)

C Set the G32FXFER file transfer flags and options

C Take the defaults for Logical Record Length, Block Size,

C and Space

 RECL = 0

 BLKSIZE = 0

 SPACE = 0

C Set FLAGS to download (2), translate(4), and Host

TSO(1024)

 FLAGS = 1030

C Call G32OPENX

 RET = G32OPENX(AS,FLAG,UID,PW,sessionname,TIMEOUT)

 WRITE(*,1) RET

 .

 .

 .

C Call G32FXFER

 RET = G32FXFER(AS,SRCF,DSTF,FLAGS,RECL,BLKSIZE,SPACE

 + INCR,UNIT,INPUTFLD,CODESET)

 WRITE(*,2) RET

 .

 .

 .

C Call G32CLOSE

 RET = G32CLOSE(AS)

 WRITE(*,3) RET

C Call FCFXFER for file transfer status output

 RET = FCFXFER(SRC,DST,BYTCNT,STAT,ERRNO,TIME)

 WRITE(*,4) RET

 WRITE(*,5)

 WRITE(*,10) SRC

 WRITE(*,11) DST

 WRITE(*,12) BYTCNT

 WRITE(*,13) TIME

 WRITE(*,14) STAT

156 Technical Reference: Communications, Volume 1

WRITE(*,15) ERRNO

 WRITE(*,5)

 STOP

 END

g32_get_cursor Function

Purpose

Sets the row and column components of the g32_api structure to the current cursor position in a

presentation space.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_get_cursor (as)

struct g32_api as

Pascal Syntax

function g32curs (var as : g32_api) : integer; external;

FORTRAN Syntax

EXTERNAL G32GETCURSOR

INTEGER AS(9), G32GETCURSOR

RC = G32GETCURSOR(AS)

Description

The g32_get_cursor function obtains the row and column address of the cursor and places these values

in the as structure. An application can only use the g32_get_cursor function in API/3270 mode.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Applications programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

The g32_get_cursor function is part of the Host Connection Program (HCON).

The g32_get_cursor function requires one or more adapters used to connect to a host.

C Parameters

 as Specifies a pointer to the g32_api structure. This structure contains the row (row) and column (column)

address of the cursor. Status information is also set in this structure.

Chapter 4. AIX 3270 Host Connection Program (HCON) 157

Pascal Parameters

 as Specifies the g32_api structure.

FORTRAN Parameters

 AS Specifies the g32_api equivalent structure as an array of integers.

Return Values

 0 Indicates successful completion.

v The corresponding row element of the as structure is the row position of the cursor.

v The corresponding column element of the as structure is the column position of the cursor.

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is set to the error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

Note: The following example is missing the required g32_open and g32_alloc functions which are

necessary for every HCON Workstation API program.

The following example fragment illustrates, in C language, the use of the g32_get_cursor function in an

api_3270 mode program:

#include <g32_api.h> /* API include file */

#include <g32_keys.h>

main()

{

struct g32_api *as; /* g32 structure */

char *buffer; /* pointer to char string */

int return; /* return code */

char *malloc(); /* C memory allocation function*/

.

.

.

return = g32_notify(as,1); /* Turn notification on */

buffer = malloc(10);

return = g32_get_cursor(as); /* get location of cursor */

printf ("The cursor position is row: %d col: %d/n",

 as -> row, as -> column);

/* Get data from host starting at the current row and column */

as -> length = 10; /* length of a pattern on host */

return = g32_get_data(as,buffer); /* get data from host */

printf("The data returned is <%s>\n",buffer);

/* Try to search for a particular pattern on host */

as ->row =1; /* row to start search */

as ->column =1; /* column to start search */

return = g32_search(as,"PATTERN");

/*Send a clear key to the host */

return = g32_send_keys(as,CLEAR);

/* Turn notification off */

return = g32_notify(as,0);

.

.

.

158 Technical Reference: Communications, Volume 1

g32_get_data Function

Purpose

Obtains current specified display data from the presentation space.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_get_data (as, buffer)

struct g32_api *as;

char *buffer;

Pascal Syntax

function g32data (var as : g32_api;

 buffer : integer) : integer; external;

FORTRAN Syntax

EXTERNAL G32GETDATA

INTEGER AS(9), G32GETDATA

CHARACTER *XX Buffer

RC = G32GETDATA(AS, Buffer)

Description

The g32_get_data function obtains current display data from the presentation space. The transfer

continues until either the transfer length is exhausted or the starting point is reached. If the transfer length

is greater than the presentation space, then the g32_get_data function only reads data that equals one

presentation space and leaves the rest of the buffer unchanged.

The g32_get_data function can only be used in API/3270 session mode.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Applications programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

The g32_get_data function is part of the Host Connection Program (HCON).

The g32_get_data function requires one or more adapters used to connect to a host.

In a double-byte character set (DBCS) environment, the g32_get_data function only obtains SBCS data

from the presentation space even if Kanji or Katakana characters are displayed on the screen. The DBCS

data are not available.

Chapter 4. AIX 3270 Host Connection Program (HCON) 159

C Parameters

 as Specifies a pointer to the g32_api structure containing the row (row) and column (column) address

where the data begins, and the length (length) of data to return. Status information is also returned in

this structure.

buffer Specifies a pointer to a buffer where the data is placed.

Pascal Parameters

 as Specifies the g32_api structure.

buffer Specifies an address of a character-packed array. The array must be the same length or greater than the

length field in the g32_api structure.

Note: The address of a packed array can be obtained by using the addr() system call:

buffer := addr (<message array name> [1]).

FORTRAN Parameters

 AS Specifies the g32_api equivalent structure as an array of integers.

buffer Specifies the character array that receives the retrieved data. The array must be the same length or

greater than the length field in the g32_api structure.

Note: If the size of the buffer is smaller than AS(LENGTH), a memory fault may occur.

Return Values

 0 Indicates successful completion.

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is set to the error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

The following example fragment illustrates the use of the g32_get_data function in an api_3270 mode

program in C language.

Note: The following example is missing the required g32_open and g32_alloc functions which are

necessary for every HCON Workstation API program.

#include <g32_api.h> /* API include file */

#include <g32_keys.h>

main()

{

struct g32_api *as; /* g32 structure */

char *buffer; /* pointer to char string */

int return; /* return code */

char *malloc(); /* C memory allocation function */

.

.

.

return = g32_notify(as,1); /* Turn notification on */

buffer = malloc(10);

return = g32_get_cursor(as); /* get location of cursor */

printf (" The cursor position is row: %d col: %d/n",

 as -> row, as -> column);

/* Get data from host starting at the current row and column */

as -> length = 10; /* length of a pattern on host */

return = g32_get_data(as,buffer); /* get data from host */

printf("The data returned is <%s>\n",buffer);

160 Technical Reference: Communications, Volume 1

/* Try to search for a particular pattern on host */

as ->row =1; /* row to start search */

as ->column =1; /* column to start search */

return = g32_search(as,"PATTERN");

/*Send a clear key to the host */

return = g32_send_keys(as,CLEAR);

/* Turn notification off */

return = g32_notify(as,0);

.

.

.

g32_get_status Function

Purpose

Returns status information of the logical path.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_get_status (as)

struct g32_api *as;

Pascal Syntax

function g32stat (var as: g32_api) : integer; external;

FORTRAN Syntax

EXTERNAL G32GETSTATUS

INTEGER AS(9),G32GETSTATUS

RC = G32GETSTATUS(AS)

Description

The g32_get_status function obtains status information about the communication path. The function is

called after an API application determines that an error has occurred while reading from or writing to the

communication path or after a time out. The HCON session profile specifies the communication path.

The g32_get_status function can only be used in API/API, API/API_T, and API/3270 modes.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Application programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

The g32_get_status function is part of the Host Connection Program (HCON).

The g32_get_status function requires one or more adapters used to connect to a host.

Chapter 4. AIX 3270 Host Connection Program (HCON) 161

C Parameters

 as Specifies a pointer to a g32_api structure; status is returned in this structure.

Pascal Parameters

 as Specifies the g32_api structure.

FORTRAN Parameters

 AS Specifies a g32_api equivalent structure as an array of integers.

Note: This function is used to determine the condition or status of the link. It should not be used to

determine whether the previous I/O operation was successful or unsuccessful (the return code will

provide this information).

Return Values

 0 Indicates successful completion.

Error Codes

The values of errcode are as follows:

 Error Code Description

G32_NO_ERROR 0, indicates no error has occurred.

G32_COMM_CHK -1, indicates a communications check has occurred.

G32_PROG_CHK -2, indicates a program check has occurred within the emulator.

G32_MACH_CHK -3, indicates a machine check has occurred.

G32_FATAL_ERROR -4, indicates a fatal error has occurred within the emulator.

G32_COMM_REM -5, indicates a communications check reminder has occurred.

If errcode is anything other than G32_NO_ERROR, then xerrinfo contains an emulator program error

code.

 Value Description

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is set to the error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

The following example fragment illustrates the use of the g32_get_status function in C language:

#include <g32_api.h> /* API include file */

main()

{

struct g32_api *as; /* g32 structure */

int return;

return = g32_write(as, mssg, length);

 /* see if unsuccessful */

if (return < 0) {

 return = g32_get_status(as);

 printf("Return from g32_get_status = %d \n",return);

162 Technical Reference: Communications, Volume 1

printf("errcode = %d xerrinfor = %d \n",

 as -> errcode , as -> xerrinfo);

.

.

.

Implementation Specifics

g32_notify Function

Purpose

Turns data notification on or off.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_notify (as, note)

struct g32_api *as;

int note;

Pascal Syntax

subroutine g32note (var as : g32_api;

 note : integer) : integer; external;

FORTRAN Syntax

EXTERNAL G32NOTIFY

INTEGER AS(9), Note, G32NOTIFY

RC = G32NOTIFY(AS, Note)

Description

The g32_notify subroutine is used to turn notification of data arrival on or off. The g32_notify subroutine

may be used only by applications in an API/3270 session mode.

If an application wants to know when the emulator receives data from the host, it turns notification on. This

causes the emulator to send a message to the application whenever it receives data from the host. The

message is sent to the IPC message queue whose file pointer is stored in the eventf field of the as data

structure. The application may then use the poll system call to wait for data from the host. Once notified

the application should clear notification messages from the IPC queue, using the msgrcv subroutine.

When the application no longer wants to be notified, it should turn notification off with another g32_notify

call.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Application programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

Chapter 4. AIX 3270 Host Connection Program (HCON) 163

The g32_notify function is part of the Host Connection Program (HCON).

The g32_notify function requires one or more adapters used to connect to a host.

C Parameters

 as Specifies a pointer to the g32_api structure. Status is returned in this structure.

note Specifies to turn notification off (if the note parameter is zero) or on (if the note parameter is nonzero).

Pascal Parameters

 as Specifies a g32_api structure.

note Specifies an integer that signals whether to turn notification off (if the note parameter is zero) or on (if the

note parameter is nonzero).

FORTRAN Parameters

 AS Specifies a g32_api equivalent structure as an array of integers.

Note Specifies to turn notification off (if the Note parameter is zero) or on (if the Note parameter is nonzero).

Return Values

 0 Indicates successful completion.

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is set to the error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

Note: The following example is missing the required g32_open and g32_alloc functions, which are

necessary for every HCON Workstation API program.

The example fragment illustrates, in C language, the use of the g32_notify function in an api_3270 mode

program:

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/poll.h>

#include <sys/msg.h>

#include "g32_api.h"

**

Note that the following function is an example of g32_notify function use.

It is meant to be called from an API application program that has already

performed a g32_open()or g32_openx() and a g32_alloc() function call. The

function will accept the as structure, a search pattern, and a timeout

(in seconds) as arguments. The purpose for calling this function is to

search for a certain pattern on the "screen" within a given amount of

time. As soon as the host updates the screen (presentation space),the

notification is sent (the poll returns with a success). This data may

not be your desired pattern, so this routine will retry until the timeout

is reached. The function will poll on the message queue and search the

presentation space each time the API is notified. If the pattern is found,

a success is returned. If the pattern is not found in the specified timeout

period, a failure (-1) is returned. The application should pass the timeout

value in seconds.

**/

164 Technical Reference: Communications, Volume 1

search_pres_space (as,pattern,timeout)

 struct g32_api *as; /* Pointer to api structure */

 char *pattern; /* Pattern to search for in

 presentation space */

 int timeout; /* The maximum time to wait before

 returning a failure */

{

 char done=0; /* Flag used to test if loop is

 finished */

 int rc; /* return code */

 long smsg; /* message buffer */

 unsigned long nfdmsgs; /* Specified number of file

 descriptors and number of

 message queues to check. Low

 order 16 bits is the number of

 elements in array of pollfd.

 High order 16 bits is number of

 elements in array of pollmsg.*/

 struct pollmsg msglstptr; /* structure defined in poll.h

 contains message queue id,

 requested events, and returned

 events */

 timeout *= 1000 /* convert to milliseconds for

 poll call */

 g32_notify (as, 1); /* turn on the notify */

 rc = g32_search(as,pattern); /* search the presentation space

 for the pattern */

 if (rc == 0) {

 done = 1;

 }

 /*Loop while the pattern not found and the timeout has not been

 reached */

 /* Note that this is done in 500 ms. increments */

 while (!(done) && (timeout > 0)) {

 /* wait a max of 500 ms for a response from the host */

 /* This is done via the poll system call */

 nfdmsgs = (1<<16); /* One element in the msglstptr

 array. Since the low order

 bits are zero, they will be

 ignored by the poll */

 msglstptr.msgid = as->eventf; /* The message queue id */

 msglstptr.reqevents = POLLIN; /*Set flag to check if input is

 present on message queue */

 /* poll on the message queue. A return code of 1 signifies

 data from the host. An rc of 0 signifies a timeout. An

 rc < 0 signifies an error */

 rc = poll (&msglstptr,nfdmsgs,(long)500);

 rc = rc >> 16; /* shift return code into low

 order bits */

 /* If the poll found something, do another search */

 if (rc = 1) {

 /* call msgrcv system call, retrying until success */

 /* This is done to flush the IPC queue */

 do {

 rc = msgrcv(as->eventf,(struct msgbuf *)&smsg,

 (size_t)0,(long)1,IPC_NOWAIT|IPC_NOERROR);

 }

 while (rc == G32ERROR);

 rc = g32_search (as,pattern); /* Search for pattern */

 /* if pattern is found, set done flag to exit loop */

 if (rc == 0) {

 done = 1;

 }

 }

 timeout -= 500; /* decrement the timeout by 500ms */

Chapter 4. AIX 3270 Host Connection Program (HCON) 165

} /* end while */

 g32_notify (as,0); /* turn the notify off again */

 if (done) {

 return (0); /* search was successful */

 }

 else {

 return (-1); /* failure */

 }

}

g32_open Function

Purpose

Attaches to a session. If the session does not exist, the session is started.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_open (as, flag, uid, pw, sessionname)

struct g32_api * as;

int flag;

char * uid;

char * pw;

char * sessionname;

Pascal Syntax

function g32open(var as : g32_api; flag : integer;

 uid : stringptr;

 pw : stringptr;

 sessionname : stringptr) : integer; external;

FORTRAN Syntax

INTEGER G32OPEN, RC, AS(9), FLAG

EXTERNAL G32OPEN

CHARACTER*XX UID, PW, SESSIONNAME

RC = G32OPEN(AS, FLAG, UID, PW, SESSIONNAME)

166 Technical Reference: Communications, Volume 1

Description

The g32_open function attaches to a session with the host. If the session does not exist, the session is

started automatically. The user is logged on to the host if requested. This function is a subset of the

capability provided by the g32_openx function. An application program must call the g32_open or

g32_openx function before calling any other API function. If an API application is running implicitly, an

automatic login is performed.

The g32_open function can be nested for multiple opens as long as a distinct as structure is created and

passed to each open. Corresponding API functions will map to each open session according to the as

structure passed to each.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Application programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

The g32_open function is part of the Host Connection Program (HCON).

The g32_open function requires one or more adapters used to connect to a host.

CICS/VS and VSE/ESA do not support API/API or API/API_T modes.

C Parameters

 as Specifies a pointer to the g32_api structure. Status is returned in this structure.

flag Signals whether the login procedure should be performed. Flag values are as follows:

v If the emulator is running and the user is logged in to the host, the value of the flag

parameter must be 0.

v If the emulator is running, the user is not logged in to the host, and the API logs in to the

host, the value of the flag parameter must be set to 1.

v If the emulator is not running and the API application executes an automatic login/logoff

procedure, the value of the flag parameter is ignored.

uid Specifies a pointer to the login ID string if the g32_open function logs in to the host. If the login

ID is a null string, the login procedure prompts the user for both the login ID and the password

unless the host login ID is specified in the session profile in which case the user is prompted

only for a password. The login ID is a string consisting of the host user ID and, optionally, a list

of comma-separated AUTOLOG variables, which is passed to the implicit procedure. The

following is a sample list of AUTOLOG variables:

userid, node_id, trace, time=n,...

pw Specifies a pointer to the password string associated with the login ID string. The following

usage considerations apply to the pw parameter:

v If no password is to be specified, the user can specify a null string.

v If no value is provided and the program is running implicitly, the login procedure prompts the

user for the password.

v If the uid parameter is a null string, the pw parameter is ignored.

sessionname Specifies a pointer to the name of a session. The session name is a single character in the

range of a through z. Capital letters are interpreted as lowercase letters.

Pascal Parameters

 as Specifies the g32_api structure.

Chapter 4. AIX 3270 Host Connection Program (HCON) 167

flag Signals whether the login procedure should be performed.

v If the emulator is running, the user is logged in to the host, and the API application executes

as a subshell of the emulator, the value of the flag parameter must be 0.

v If the emulator is running, the user is not logged in to the host, and the API application

executes as a subshell of the emulator and the application is to perform an automatic

login/logoff procedure, the value of the flag parameter must be set to 1.

v If the emulator is not running and the API application executes an automatic login/logoff

procedure, the value of the flag parameter is ignored.

uid Specifies a pointer to the login ID string. If the user ID is a null string, the login procedure

prompts the user for both the user ID and the password unless the host login ID is specified in

the session profile. In the latter case, the user is prompted only for a password.

pw Specifies a pointer to the password string associated with the login ID string. If it points to a

null string, the login procedure prompts the user for the password. This parameter is ignored if

the uid parameter is a null string.

sessionname Specifies a pointer to the name of a session, which indicates the host connectivity to be used

by the API application. The session name is a single character in the range of a through z.

Capital letters are interpreted as lowercase letters.

FORTRAN Parameters

When creating strings in FORTRAN that are to be passed as parameters, the strings must be terminated

by with a null character, CHAR(0).

 Parameter Description

AS Specifies the g32_api equivalent structure as an array of integers.

FLAG Signals whether the login procedure should be performed.

UID Specifies a pointer to the login ID string. If the user ID is a null string, the login procedure

prompts the user for both the user ID and the password unless the host login ID is specified in

the session profile. In the latter case, the user is prompted only for a password.

PW Specifies a pointer to the password string associated with the login ID string. If the parameter

specifies a null string, the login procedure prompts the user for the password. This parameter is

ignored if the uid parameter is a null string.

SESSIONNAME Specifies the name of a session, which indicates the host connectivity to be used by the API

application. The session name is a single character in the range of a through z. Capital letters

are interpreted as lowercase letters.

Return Values

Upon successful completion:

v A value of 0 is returned.

v The lpid field in the g32_api structure is set to the session ID.

Upon unsuccessful completion:

v A value of -1 is returned.

v The errcode field in the g32_api structure is set to an error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

The following example fragment illustrates the use of the g32_open function in an api_3270 mode

program in C language:

#include <g32_api.h>

main()

{

 struct g32_api *as, asx; /* asx is statically

 declared*/

168 Technical Reference: Communications, Volume 1

int flag=0;

 int ret;

 as = &asx; /* as points to an

 allocated structure */

 ret=g32_open(as,flag,"mike","mypassword","a");

 .

 .

 .

}

The following example fragment illustrates the use of the g32_open function in an api_3270 mode

program in Pascal language:

program apitest (input, output);

const

%include /usr/include/g32const.inc

type

%include /usr/include/g32types.inc

var

 as : g32_api;

 rc : integer;

 flag : integer;

 sn : stringptr;

 ret : integer;

 uid, pw : stringptr;

%include /usr/include/g32hfile.inc

begin

 flag := 0;

 new(uid,20);

 uid@ := chr(0);

 new (pw,20);

 pw@ := chr(0);

 new (sn,1);

 sn@ := ’a’;

 ret := g32open(as,flag,uid,pw,sn);

 .

 .

 .

end.

The following example fragment illustrates the use of the g32_open function in an api_3270 mode

program in FORTRAN language:

INTEGER G32OPEN

INTEGER RC, AS(9), FLAG

CHARACTER*20 UID

CHARACTER*10 PW

CHARACTER*2 SN

EXTERNAL G32OPEN

UID = CHAR(0)

PW = CHAR(0)

SN = ’a’//CHAR(0)

FLAG = 0

RC = G32OPEN(AS, FLAG, UID, PW, SN)

 .

 .

 .

g32_openx Function

Purpose

Attaches to a session and provides extended open capabilities. If the session does not exist, the session

is started.

Chapter 4. AIX 3270 Host Connection Program (HCON) 169

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_openx (as, flag, uid, pw, sessionname, timeout)

struct g32_api * as;

int flag;

char * uid;

char * pw;

char * sessionname;

char * timeout;

Pascal Syntax

function g32openx(var as : g32_api; flag: integer;

 uid : stringptr;

 pw : stringptr;

 sessionname : stringptr;

 timeout : stringptr) : integer; external;

FORTRAN Syntax

INTEGER G32OPENX,RC, AS(9), FLAG

EXTERNAL G32OPENX

CHARACTER* XX UID, PW, SESSIONNAME

RC = G32OPENX (AS, FLAG, UID, PW, SESSIONNAME, TIMEOUT)

Description

The g32_openx function attaches to a session. If the session does not exist, the session is started. This is

an automatic login. The user is logged in to the host if requested. The g32_openx function provides

additional capability beyond that of the g32_open function. An application program must call g32_openx

or g32_open before any other API function.

If an API application is run automatically, the function performs an automatic login.

The g32_openx function can be nested for multiple opens as long as a distinct as structure is created and

passed to each open. Corresponding API functions will map to each open session according to the as

structure passed to each.

170 Technical Reference: Communications, Volume 1

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Applications programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

The g32_openx function is part of the Host Connection Program (HCON).

The g32_openx function requires one or more adapters used to connect to a host.

CICS and VSE do not support API/API or API/API_T modes.

C Parameters

The g32_openx function allows for a varying number of parameters after the flag parameter. The as and

flag parameters are required; the uid, pw, session, and timeout parameters are optional.

With the g32_open function, the timeout parameter does not exist and the parameters for uid, pw, and

session are not optional. The reason for making the last four parameters optional is that the system either

prompts for the needed information (uid and pw) or defaults with valid information (session or timeout).

Unless all of the parameters are defined for this function, the parameter list in the calling statement must

be terminated with the integer 0 (like the exec function). Providing an integer of 1 forces a default on a

parameter. Use the default to provide a placeholder for optional parameters that you do not need to

supply.

 Parameter Description

as Specifies a pointer to the g32_api structure.

flag Requires one of the following:

v Set the flag parameter to 0, if the emulator is running and the user is logged on to host.

v Set the flag parameter to 1 if the emulator is running, the user is not logged on to host, and

the API application is to perform the login/logoff procedure.

The g32_openx function ignores the flag parameter, if the emulator is not running and the

API application executes an automatic login/logoff procedure.

uid Specifies a pointer to the login ID string. If the login ID is a null string, the login procedure

prompts the user for both the login ID and the password, unless the host login ID is specified in

the session profile. In the latter case the user is prompted only for a password. The login ID is

a string consisting of the host user ID and an optional list of additional variables separated by

commas, as shown in the example:

userid,var1,var2,...

 In this example, var1 is the login script name (when using AUTOLOG) and var2 is the optional

trace and time values. The list is passed to the automatic procedure.

pw Specifies a pointer to the password string associated with the login ID string. The following

usage considerations apply to the pw parameter:

v If no password is to be specified, the user can specify a null string.

v If no value is provided and the program is running automatically, the login procedure prompts

the user for the password.

v If the uid parameter is a null string, the pw parameter is ignored.

sessionname Points to the name of a session. The session name is a single character in the range of a

through z. Capital letters are interpreted as lowercase letters. Parameters for each session are

specified in a per session profile.

timeout Specifies a pointer to a numerical string that specifies the amount of nonactive time in seconds

allowed to occur between the workstation and the host operations (that is, g32_read and

G32WRITE). This parameter is optional. If no value is provided in the calling statement, the

default value is 15. The minimum value allowed is 1. There is no maximum value limitation.

Chapter 4. AIX 3270 Host Connection Program (HCON) 171

Pascal Parameters

When using C as a programming language, you can make use of the feature of variable numbered

parameters. In Pascal, however, this feature is not allowed. Therefore, calls to the g32_openx function

must contain all six parameters.

To use defaults for the four optional parameters of C, provide a variable whose value is a null string.

Note: The use of the integer 1 is not allowed in the Pascal version of the g32_openx function. Space

must be allocated for any string pointers prior to calling the g32_openx function.

 Parameter Description

as Specifies the g32_api structure.

flag Signals whether the login procedure should be performed:

v Set the flag parameter to 0. If the emulator is running, the user is logged on to host.

v Set the flag parameter to 1. If the emulator is running, the user is not logged on to host, and

the API application performs the login/logoff procedure.

v If the emulator is not running and the API application executes an automatic login/logoff

procedure, the value of flag is ignored.

uid Specifies a pointer to the login ID string. If the login ID is a null string, the login procedure

prompts the user for both the login ID and the password, unless the host login ID is specified in

the session profile. In the latter case the user is prompted only for a password.

pw Specifies a pointer to the password string associated with the login ID string. The following

usage considerations apply to the pw parameter:

v If no password is to be specified, the user can specify a null string.

v If no value is provided and the program is running automatically, the login procedure prompts

the user for the password.

v If the uid parameter is a null string, the pw parameter is ignored.

sessionname Points to the name of a session. The session name is a single character in the range of a

through z. Capital letters are interpreted as lowercase letters. Parameters for each session are

specified in a per session profile.

timeout Specifies a pointer to a numerical string that specifies the amount of nonactive time in seconds

allowed to occur between the workstation and the host operations (that is, g32_read and

g32WRITE). This parameter is optional. If no value is provided in the calling statement, the

default value is 15. The minimum value allowed is 1. There is no maximum value limitation.

FORTRAN Parameters

FORTRAN calls to G32_OPENX must contain all six parameters. To use defaults for the four optional

parameters of C language, provide a variable whose value is a null string. Note that the use of the integer

1 is not allowed in the FORTRAN version of this function. When creating strings in FORTRAN that are to

pass as parameters, the strings must be linked with a null character, CHAR(0).

 Parameter Description

AS Specifies the g32_api equivalent structure as an array of integers.

FLAG Signals that the login procedure should be performed:

v Set the FLAG parameter to 0, if the emulator is running, the user is logged on to host.

v Set the FLAG parameter to 1, if the emulator is running, the user is not logged on to host.

v If the emulator is not running and the API application executes an automatic login/logoff

procedure, the value of the FLAG parameter is ignored.

UID Specifies a pointer to the login ID string. If the login ID is a null string, the login procedure

prompts the user for both the login ID and the password, unless the host login ID is specified in

the session profile. In the latter case the user is prompted only for a password.

172 Technical Reference: Communications, Volume 1

Parameter Description

PW Specifies a pointer to the password string associated with the login ID string. The following

usage considerations apply to the pw parameter:

v If no password is to be specified, the user can specify a null string.

v If no value is provided and the program is running automatically, the login procedure prompts

the user for the password.

v If the uid parameter is a null string, the pw parameter is ignored.

SESSIONNAME Specifies the name of a session. The session name is a single character in the range of a

through z. Capital letters are interpreted as lowercase letters. Parameters for each session are

specified in a per session profile.

TIMEOUT Specifies a numerical string that specifies the amount of nonactive time in seconds allowed to

occur between the workstation and the host operations (that is, g32_read/g32WRITE). There is

no maximum to this, but the minimum is 1.

Return Values

 0 Indicates successful completion. The lpid field in the g32_api structure is set to the session ID.

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is set to an error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

 1. To use the g32_openx function with fewer than four optional string constant parameters specified and

with AUTOLOG, enter:

g32_openx (AS, 0, "john, tso, trace", "j12hn");

 2. To use the g32_openx function with fewer than four optional string constant parameters specified and

with the automatic login facility, enter:

g32_openx (AS, 1, "john", "j12hn", "Z", 0);

 3. To use the g32_openx function with all optional parameters not specified, enter:

g32_openx (AS, 1, 0);

OR

g32_openx (AS, 0, 0);

 4. To use the g32_openx function with four variable optional parameters, enter:

g32_openx (AS, 0, UID, Pw, Sessionname, TimeOut);

 5. To use the g32_openx function with fewer than four variable optional parameters, enter:

g32_openx (AS, 1, UID, Pw, 0);

 6. To use the g32_openx function with two default optional parameters, enter:

g32_openx (AS, 0, 1, 1, 1, "60");

 7. To use the g32_openx function with a mixture:

g32_openx (AS, 0, 1, 1, Session, 0);

 8. To use the g32_openx function within a program segment in the C language:

#include <g32_api.h>

main()

{

 struct g32_api *as, asx; /* asx is a temporary struct */

 /* g32.api so that storage */

 /* is allocated */

 int flag=0;

 int ret;

Chapter 4. AIX 3270 Host Connection Program (HCON) 173

sn = &nm;

 as = &asx; /* as points to an allocated structure */

 ret=g32_openx(as,flag,"mike","mypassword","a","60");

 .

 .

 .

}

Note: Only the first two parameters are mandatory. The remaining parameters can be terminated

with a 0. For example:

ret = g32_openx(as.flag,0);

Null characters may be substituted for any of the string values if profile or command values

are desired.

 9. To use the g32_openx function within a program segment in the Pascal language:

program apitest (input, output);

const

%include /usr/include/g32const.inc

type

%include /usr/include/g32types.inc

var

 as : g32_api;

 rc : integer;

 flag : integer;

 sn : stringptr;

 timeout : stringptr;

 ret : integer;

 uid, pw : stringptr;

%include /usr/include/g32hfile.inc

begin

 flag := 0;

 new(uid,20);

 uid@ := chr(0);

 new (pw,20);

 pw@ := chr(0);

 new (sn,1);

 sn@ := ’a’;

 new (timeout,32);

 timeout@ := ’60’;

 ret := g32openx(as,flag,uid,pw,sn,timeout);

 .

 .

 .

end.

10. To use the g32_openx function within a program segment in the FORTRAN language:

INTEGER G32OPENX

INTEGER RC, AS(9), FLAG

CHARACTER*20 UID

CHARACTER*10 PW

CHARACTER*10 TIMEOUT

CHARACTER*1 SN

EXTERNAL G32OPENX

UID = CHAR(0)

TIMEOUT = CHAR(0)

MODEL = CHAR(0)

PW = CHAR(0)

SN = ’a’//CHAR(0)

TIMEOUT = ’60’//CHAR(0)

FLAG = 0

RC = G32OPENX(AS, FLAG, UID, PW, SN, TIMEOUT)

 .

 .

 .

174 Technical Reference: Communications, Volume 1

g32_read Function

Purpose

Receives a message from a host application.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_read (as, msgbuf, msglen)

struct g32_api *as;

char **msgbuf;

int *msglen;

Pascal Syntax

function g32read (var as : g32_api;

 var buffer : stringptr;

 var msglen : integer) : integer; external;

FORTRAN Syntax

EXTERNAL G32READ

INTEGER AS(9), BUFLEN, G32READ

CHARACTER *XX MSGBUF

RC= G32READ (AS, MSGBUF, BUFLEN)

Description

The g32_read function receives a message from a host application. The g32_read function may only be

used by those applications having API/API or API/API_T mode specified with the g32_alloc function.

v In C or Pascal, a buffer is obtained, a pointer to the buffer is saved, and the message from the host is

read into the buffer. The length of the message and the address of the buffer are returned to the user

application.

v In FORTRAN, the calling procedure must pass a buffer large enough for the incoming message. The

BUFLEN parameter must be the actual size of the buffer. The G32READ function uses the BUFLEN

parameter as the upper array bound. Therefore, any messages larger than BUFLEN are truncated to fit

the buffer.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Application programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

The g32_read function is part of the Host Connection Program (HCON).

The g32_read function requires one or more adapters used to connect to a host.

Chapter 4. AIX 3270 Host Connection Program (HCON) 175

In a DBCS environment, the g32_read function only reads SBCS data from a host in the MODE_API_T

mode.

C Parameters

 as Specifies a pointer to a g32_api structure.

msgbuf Specifies a pointer to a buffer where a message from the host is placed. The API obtains space for this

buffer by using the malloc library subroutine, and the user is responsible for releasing it by issuing a free

call after the g32_read function.

msglen Specifies a pointer to an integer where the length, in bytes, of the msgbuf parameter is placed. The

message length must be greater than 0 but less than or equal to the maximum I/O buffer size parameter

specified in the HCON session profile.

Pascal Parameters

 as Specifies the g32_api structure.

buffer Specifies a stringptr structure. The API obtains space for this buffer by using the malloc C library

subroutine, and the user is responsible for releasing it by issuing a dispose subroutine after the

g32_read function.

msglen Specifies an integer where the number of bytes read is placed. The message length must be greater

than 0 (zero) but less than or equal to the maximum I/O buffer size parameter specified in the HCON

session profile.

FORTRAN Parameters

 AS Specifies the g32_api equivalent structure.

BUFLEN Specifies the size, in bytes, of the value contained in the MSGBUF parameter. The message length must

be greater than 0 and less than or equal to the maximum I/O buffer size parameter specified in the

HCON session profile.

MSGBUF Specifies the storage area for the character data read from the host.

Return Values

 > 0 (greater than or equal to zero) Indicates successful completion.

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is

set to the error code identifying the error.

v The xerrinfo field can be set to give more

information about the error.

Examples

The following example illustrates the use of the g32_read function in C language.

#include <g32_api> /* API include file */

main()

{

struct g32_api *as, asx /* g32_api structure */

char **msg_buf; /* pointer to host msg buffer */

char *messg; /* pointer to character string */

int msg_len; /* pointer to host msg length */

char * malloc(); /* C memory allocation function */

int return; /* return code is no. of bytes read */

.

.

.

176 Technical Reference: Communications, Volume 1

as = &asx;

msg_buff = &messg; /* point to a string */

return = g32_read(as, msg_buff, &msg_len);

.

.

.

free (*msg_buff);

.

.

.

g32_search Function

Purpose

Searches for a character pattern in a presentation space.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_search (as, pattern)

struct g32_api *as;

char *pattern;

Pascal Syntax

function g32srch(var as : g32_api;

 pattern : stringptr) : integer; external;

FORTRAN Syntax

EXTERNAL G32SEARCH

INTEGER AS(9), G32SEARCH

CHARACTER *XX PATTERN

RC = G32SEARCH(AS, PATTERN)

Description

The g32_search function searches for the specified byte pattern in the presentation space associated with

the application.

Note: The g32_search function can only be used in API/3270 mode.

The search is performed from the row and column given in the g32_api structure to the end of the

presentation space. Note that the row and column positions start at 1 (one) and not 0. If you start at 0 for

row and column, an invalid position error will result.

The g32_search function is part of the Host Connection Program (HCON).

Chapter 4. AIX 3270 Host Connection Program (HCON) 177

The g32_search function requires one or more adapters used to connect to a host.

In a DBCS environment, the g32_search function only searches the presentation space for an SBCS

character pattern. This function does not support Katakana or DBCS characters.

Pattern Matching

In any given search pattern, the following characters have special meaning:

 Character Description

? The question mark is the arbitrary character, matching any one character.

* The asterisk is the wildcard character, matching any sequence of zero or more characters.

\ The backslash is the escape character meaning the next character is to be interpreted literally.

Note: The pattern cannot contain two consecutive wildcard characters.

Pattern Matching Example

The string AB?DE matches any of ABCDE, AB9DE, ABxDE, but does not match ABCD, ABCCDE, or

ABDE.

The string AB*DE matches any of ABCDE, AB9DE, ABCCDE, ABDE, but does not match ABCD, ABCDF,

or ABC.

Pattern Matching in C and Pascal

If the pattern needs to contain either a question mark or an asterisk as a literal character, these symbols

must be preceded by two escape characters (\\? or *). For example, to search for the string, How are you

today?, the pattern might be:

How are you today \\?

The backslash can be used as a literal character by specifying four backslash characters (\\\\) in the

pattern. For example, to search for the string, We found the \., the pattern might be:

We found the \\\\.

Pattern Matching in FORTRAN

If the pattern needs to contain either a question mark or an asterisk as a literal character, these symbols

must be preceded by one escape character (\? or *). For example, to search for the string, How are you

today?, the pattern might be:

How are you today\?

The backslash can be used as a literal character by specifying two backslash characters (\\) in the pattern.

For example, to search for the string, We found the \., the pattern might be:

We found the \\.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Application programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

C Parameters

 as Specifies a pointer to a g32_api structure. It also contains the row and column where the search

should begin. Status information is returned in this structure.

pattern Specifies a pointer to a byte pattern, which is searched for in the presentation space.

178 Technical Reference: Communications, Volume 1

Pascal Parameters

 as Specifies the g32_api structure.

pattern Specifies a pointer to a string containing the pattern to search for in the presentation space. The string

must be at least as long as the length indicated in the g32_api structure.

FORTRAN Parameters

 AS Specifies a g32_api equivalent structure as an array of integers.

PATTERN Specifies a string that is searched for in the presentation space.

Return Values

 0 Indicates successful completion.

v The corresponding row field of the as structure is the row position of the beginning of the matched string.

v The corresponding column field of the as structure is the column position of the beginning of the matched

string.

v The corresponding length field of the as structure is the length of the matched string.

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is set to the error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

Note: The following example is missing the required g32_open and g32_alloc functions which are

necessary for every HCON Workstation API program.

The following example fragment illustrates the use of the g32_search function in an api_3270 mode

program in C language:

#include <g32_api.h> /* API include file */

#include <g32_keys.h>

main()

{

struct g32_api *as; /* g32 structure */

char *buffer; /* pointer to char string */

int return; /* return code */

char *malloc(); /* C memory allocation

 function */

.

.

.

return = g32_notify(as,1); /* Turn notification on */

buffer = malloc(10);

return = g32_get_cursor(as); /* get location of cursor */

printf (" The cursor position is row: %d col: %d/n",

 as -> row, as -> column);

/* Get data from host starting at the current row and column */

as -> length = 10; /* length of a pattern on host */

return = g32_get_data(as,buffer); /* get data from host */

printf("The data returned is <%s>\n",buffer);

/* Try to search for a particular pattern on host */

as ->row =1; /* row to start search */

as ->column =1; /* column to start search */

return = g32_search(as,"PATTERN");

/*Send a clear key to the host */

Chapter 4. AIX 3270 Host Connection Program (HCON) 179

return = g32_send_keys(as,CLEAR);

/* Turn notification off */

return = g32_notify(as,0);

.

.

.

g32_send_keys Function

Purpose

Sends key strokes to the terminal emulator.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

#include <g32_keys.h>

g32_send_keys (as, buffer)

struct g32_api *as;

char *buffer;

Pascal Syntax

const

%include /usr/include/g32keys.inc

function g32sdky (var as : g32_api;

 buffer : stringptr) : integer; external;

FORTRAN Syntax

EXTERNAL G32SENDKEYS

INTEGER AS(9), G32SENDKEYS

CHARACTER *XX BUFFER

RC = G32SENDKEYS(AS, BUFFER)

Description

The g32_send_keys function sends one or more key strokes to a terminal emulator as though they came

from the keyboard. ASCII characters are sent by coding their ASCII value. Other keys (such as Enter and

the cursor-movement keys) are sent by coding their values from the g32_keys.h file (for C programs) or

g32keys.inc file (for Pascal programs). FORTRAN users send other keys by passing the name of the key

through the G32SENDKEYS buffer.

Note: The g32_send_keys function can only send 128 characters per call. The g32_send_keys function

can be chained when more than 128 characters must be sent.

The g32_send_keys function can only be used in API/3270 mode.

180 Technical Reference: Communications, Volume 1

The g32_send_keys function is part of the Host Connection Program (HCON).

The g32_send_keys function requires one or more adapters used to connect to a host.

In a DBCS environment, the g32_send_keys function only sends SBCS keystrokes, including ASCII

characters, to a terminal emulator. DBCS characters are ignored.

C Parameters

 as Specifies a pointer to the g32_api structure. Status is returned in this structure.

buffer Specifies a pointer to a buffer of key stroke data.

Pascal Parameters

 as Specifies the g32_api structure. Status is returned in this structure.

buffer Specifies a pointer to a string containing the keys to be sent to the host. The string must be at least as

long as indicated in the g32_api structure.

FORTRAN Parameters

 AS Specifies the g32_api equivalent structure as an array of integers.

BUFFER The character array containing the key sequence to send to the host. A special emulator key can be sent

by the g32_send_keys function as follows:

BUFFER = ’ENTER’//CHAR(0)

RC = G32SENDKEYS (AS,BUFFER)

The special emulator strings recognized by the g32_send_keys function are as follows:

CLEAR DELETE DUP ENTER

EOF ERASE FMARK HOME

INSERT NEWLINE RESET SYSREQ

LEFT RIGHT UP DOWN

LLEFT RRIGHT UUP DDOWN

TAB BTAB ATTN

PA1 PA2 PA3

PF1 PF2 PF3 PF4

PF5 PF6 PF7 PF8

PF9 PF10 PF11 PF12

PF13 PF14 PF15 PF16

PF17 PF18 PF19 PF20

PF21 PF22 PF23 PF24

 CURSEL

Return Values

 0 Indicates successful completion.

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is set to the error code identifying the error.

v The xerrinfo field can be set to give more information about the error.

Examples

Note: The following example is missing the required g32_open and g32_alloc functions which are

necessary for every HCON workstation API program.

Chapter 4. AIX 3270 Host Connection Program (HCON) 181

The following example fragment illustrates, in C language, the use of the g32_send_keys function in an

api_3270 mode program:

#include <g32_api.h> /* API include file */

*include <g32_keys.h>

main()

{

struct g32_api *as; /* g32 structure */

char *buffer; /* pointer to char string */

int return; /* return code */

char *malloc(); /* C memory allocation

 function */

.

.

.

return = g32_notify(as,1); /* Turn notification on */

buffer = malloc(10);

return = g32_get_cursor(as); /* get location of cursor */

printf (" The cursor position is row: %d col: %d/n",

 as -> row, as -> column);

/* Get data from host starting at the current row and column */

as -> length = 10; /* length of a pattern on host */

return = g32_get_data(as,buffer); /* get data from host */

printf("The data returned is <%s>\n",buffer);

/* Try to search for a particular pattern on host */

as ->row =1; /* row to start search */

as ->column =1; /* column to start search */

return = g32_search(as,"PATTERN");

/*Send a clear key to the host */

return = g32_send_keys(as,CLEAR);

/* Turn notification off */

return = g32_notify(as,0);

.

.

.

g32_write Function

Purpose

Sends a message to a host application.

Libraries

HCON Library

C (libg3270.a)

Pascal (libg3270p.a)

FORTRAN (libg3270f.a)

C Syntax

#include <g32_api.h>

g32_write (as, msgbuf, msglen)

struct g32_api *as;

char *msgbuf;

int msglen;

Pascal Syntax

function g32wrte (var as : g32_api;

 buffer : integer;

 msglen : integer) : integer; external;

182 Technical Reference: Communications, Volume 1

FORTRAN Syntax

EXTERNAL G32WRITE

INTEGER AS(9), MSGLEN, G32WRITE

CHARACTER* XX MSGBUF

RC = G32WRITE(AS, MSGBUF, MSGLEN)

Description

The g32_write function sends the message pointed to by the msgbuf parameter to the host. This function

may only be used by those applications having API/API or API/API_T mode specified by the g32_alloc

command.

HCON application programs using the Pascal language interface must include and link both the C and

Pascal libraries. Applications programs using the FORTRAN language for the HCON API must include and

link both the C and FORTRAN libraries.

The g32_write function is part of the Host Connection Program (HCON).

The g32_write function requires one or more adapters used to connect to a host.

In a DBCS environment, the g32_write function only sends SBCS data to a host in the MODE_API_T mode.

C Parameters

 as Specifies the pointer to a g32_api structure.

msgbuf Specifies a pointer to a message, which is a byte string.

msglen Specifies the length, in bytes, of the message pointed to by the msgbuf parameter. The value of the

msglen parameter must be greater than 0 and and less than or equal to the maximum I/O buffer size

specified in the HCON session profile.

Pascal Parameters

 as Specifies the g32_api structure.

buffer Specifies an address of a character-packed array.

Note: The address of a packed array can be obtained by the addr() function call: buffer := addr (<msg

array name> [1]).

msglen Specifies an integer indicating the length of the message to send to the host. The msglen parameter

must be greater than 0 and less than or equal to the maximum I/O buffer size specified in the HCON

session profile.

FORTRAN Parameters

 AS Specifies the g32_api equivalent structure as an array of integers.

MSGBUF Specifies a character array containing the data to be sent to the host.

MSGLEN Specifies the number of bytes to be sent to the host. The MSGLEN parameter must be greater than 0

and less than or equal to the maximum I/O buffer size specified in the HCON session profile.

Return Values

 > 0 (greater than or equal to zero) Indicates successful completion.

Chapter 4. AIX 3270 Host Connection Program (HCON) 183

-1 Indicates an error has occurred.

v The errcode field in the g32_api structure is

set to the error code identifying the error.

v The xerrinfo field can be set to give more

information about the error.

Examples

The following example illustrates, in C language, the use of the g32_write function:

#include <g32_api> /* API include */

main()

{

struct g32_api *as; /* the g32 structure */

char *messg; /* pointer to a character string to

 send to the host */

int length; /* Number of bytes sent */

char *malloc(); /* C memory allocation function */

int return; /* return code is no. of bytes sent */

.

.

.

messg = malloc(30); /* allocate 30 bytes for the string */

 /* initialize message string with information */

strcpy(messg,"string to be sent to host/0");

length = strlen(messg); /* length of the message */

return = g32_write(as,messg,length);

.

.

.

G32ALLOC Function

Purpose

Starts interaction with an API application running simultaneously on the local system.

Syntax

G32ALLOC

Description

The G32ALLOC function starts a session with an application program interface (API) application by

sending a message to the g32_alloc system call indicating that the allocation is complete. The

G32ALLOC function is a HCON API function that can be called by a 370 Assembler application program.

The G32ALLOC function is part of the Host Connection Program (HCON).

The G32ALLOC function requires one or more adapters used to connect to a mainframe host.

Return Values

This call sets register 0 to the following values:

 Value Description

> 0 Indicates a normal return or a successful call. The value returned indicates the maximum number of

bytes that may be transferred to an operating system application by way of G32WRITE or received from

an operating systems application by way of G32READ.

< 0 Indicates less than 0. Host API error condition.

184 Technical Reference: Communications, Volume 1

Examples

The following 370 Assembler code example illustrates the use of the host G32ALLOC function:

L R11,=v(G32DATA)

USING G32DATAD,R11

G32ALLOC /* Allocate a session */

LTR R0,R0

BNM OK /* Normal completion */

C R0,G32ESESS /* Session error */

BE SESSERR

C R0,G32ESYS /* System error */

BE SYSERR

.

.

.

Related Information

Session control subroutines are the g32_alloc subroutine, g32_close subroutine, g32_dealloc subroutine,

g32_open subroutine, and g32_openx subroutine.

Message interface subroutines are the g32_get_status subroutine, g32_read subroutine, and g32_write

subroutine.

Additional host interface functions are the G32DLLOC function, G32READ function, and G32WRITE

function.

G32DLLOC Function

Purpose

Terminates interaction with an API application running simultaneously on the local system.

Syntax

G32DLLOC

Description

The G32DLLOC function ends interaction with an API application. The G32DLLOC function is a HCON

API function that can be called by a 370 Assembler applications program.

The G32DLLOC function requires one or more adapters used to connect to a mainframe host.

Return Values

This call sets register 0 (zero) to the following values:

 Value Description

0 Indicates a normal return or a successful call.

< 0 Indicates less than zero. An error condition exists.

Examples

The following 370 Assembler code example illustrates the use of the host G32DLLOC function:

L R11,=v(G32DATA)

USING G32DATAD,R11

G32DLLOC /* Deallocate a session. */

C R0, G32ESESS /* Check for G32 error. */

BE SESSERR /* Branch if error. */

C R0, G32ESYS /* Check for system error. */

Chapter 4. AIX 3270 Host Connection Program (HCON) 185

BE SYSERR /* Branch if error. */

.

.

.

Related Information

Session control subroutines are the g32_alloc subroutine, g32_close subroutine, g32_dealloc subroutine,

g32_open subroutine, and g32_openx subroutine.

Message interface subroutines are the g32_read subroutine, g32_get_status subroutine, and g32_write

subroutine.

Additional host interface functions are the G32ALLOC function, G32READ function, and G32WRITE

function.

G32READ Function

Purpose

Receives a message from the API application running simultaneously on the local system.

Syntax

G32READ

Description

The G32READ function receives a message from an application programming interface (API) application.

The G32READ function returns when a message is received. The status of the transmission is returned in

register zero (R0).

The G32READ function returns the following information:

 Return Description

R0 Indicates the number of bytes read.

R1 Indicates the address of the message buffer.

In VM/CMS, storage for the read command is obtained using the DMSFREE macro. R0 contains the

number of bytes read. R1 contains the address of the buffer. It is the responsibility of the host application

to release the buffer with a DMSFRET call. Assuming the byte count and address are in R0 and R1,

respectively, the following code fragment should be used to free the buffer:

The G32READ function is part of the Host Connection Program (HCON).

The G32READ function requires one or more adapters used to connect to a mainframe host.

SRL R0,3

A R0,=F’1’

DMSFRET DWORDS=(0),LOC=(1)

In MVS/TSO, storage for the READ command is obtained using the GETMAIN macro. R0 contains the

number of bytes read. R1 contains the address of the buffer. The host application must release the buffer

with a FREEMAIN call.

Attention: In MVS/TSO, when programming an API assembly language application, you must be

careful with the TPUT macro. If it is used in a sequence of G32READ and G32WRITE subroutines, it

186 Technical Reference: Communications, Volume 1

will interrupt the API/API mode and switch the host to the API/3270 mode to exit. You will not be able

to get the API/API mode back until you send the Enter key.

Return Values

The G32READ function sets register zero (R0) to the following values:

 Value Description

> 0 Normal return. Indicates the length of the message as the number of bytes read.

< 0 Less than zero. Indicates a host API error condition.

Examples

The following 370 Assembler code example illustrates the use of the host G32READ function:

 .

 .

 .

MEMORY L 12,=v(G32DATA) /* SET POINTER TO API DATA AREA */

 .

 .

 .

 L 2,=F`2’

 G32READ /* RECEIVE MESSAGE FROM AIX */

 ST 1,ADDR /* STORE ADDRESS OF MESSAGE */

 ST 0,LEN /* STORE LENGTH OF MESSAGE */

 BAL 14,CHECK

 .

 .

 .

Related Information

For documentation on the DMSFREE and DMSFRET macros, consult the VM/SP Entry System

Programmer’s Guide.

For documentation on the GETMAIN and FREEMAIN macros, consult the MVS/XA System Macros and

Facilities, Volume 2 or MVS/XA Supervisor Services and Macros.

G32WRITE Function

Purpose

Sends a message to an API application running simultaneously on the local system.

Syntax

G32WRITE MSG, LEN

Description

The G32WRITE function sends a message to an API application. The maximum number of bytes that may

be transferred is specified by the value returned in register zero (R0) after a successful completion of the

G32ALLOC function.

The G32 WRITE function is a HCON API function that can be called by a 370 Assembler applications

program.

The G32WRITE function requires one or more adapters used to connect to a mainframe host.

Chapter 4. AIX 3270 Host Connection Program (HCON) 187

Parameters

 MSG Gives the address of the message to be sent. It may be:

Label A label on a DC or DS statement declaring the message.

0(reg) A register containing the address of the message.

LEN Specifies the length, in bytes, of the message. It is a full word, whose contents cannot exceed the value

returned by the G32ALLOC function in R0. It must be:

Label The address of a full word containing the length of the message.

Return Values

The G32WRITE function sets register 0 to the following values:

 Value Description

0 Indicates a normal return; call successful.

< 0 Less than 0. Indicates a host API error condition.

Examples

The following 370 Assembler code example illustrates the use of the host G32WRITE function:

L R11,=v(G32DATA)

USING G32DATAD,R11

G32WRITE MSG1, LEN1 /* write "Hello" to AIX */

LTR R0,R0 /* check return code */

BE WRITEOK /* if good, go to write */

(error code)

.

.

.

MSG1 DC C ’HELLO’

LEN1 DC AL4(*-MSG1)

188 Technical Reference: Communications, Volume 1

Chapter 5. Network Computing System (NCS)

lb_$lookup_interface Library Routine (NCS)

Purpose

Looks up information about an interface in the Global Location Broker (GLB) database.

Syntax

void lb_$lookup_interface (object_interface, lookup_handle)

void lb_$lookup_interface (max_results, num_results, results, status)

uuid_$t *object_interface;

lb_$lookup_handle_t *lookup_handle;

unsigned long max_results;

unsigned long *num_results;

lb_$entry_t results [];

status_$t *status;

Description

The lb_$lookup_interface routine returns GLB database entries whose fields in the object_interface

parameters match the specified interface. It returns information about all replicas of all objects that can be

accessed through that interface.

The lb_$lookup_interface routine cannot return more than the number of matching entries specified by

the max_results parameter at one time. The lookup_handle parameter directs this routine to do sequential

lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between lookup calls, which can

cause the locations of entries relative to a lookup_handle value to change. If multiple calls are made to

find all matching results in the database, the returned information may skip or duplicate entries from

the database.

2. It is also possible for the results of a single lookup call to skip or duplicate entries. This can occur if the

size of the results exceeds the size of a remote procedure call (RPC) packet (64KB).

Parameters

Input

 object_interface Points to the Universal Unique Identifier (UUID) of the interface being looked up.

max_results Specifies the maximum number of matching entries that can be returned by a single

call. This should be the number of elements in the results parameter array.

Input/Output

 lookup_handle Specifies a location in the database. On input, the lookup_handle value indicates the

location in the database where the search begins. An input value of

lb_$default_lookup_handle specifies that the search starts at the beginning of the

database.

 On return, the lookup_handle parameter indicates the next unsearched part of the

database (that is, the point at which the next search should begin). A return value of

lb_$default_lookup_handle indicates that the search reached the end of the database.

Any other value indicates that the search found the number of matching entries specified

by the max_results parameter before it reached the end of the database.

© Copyright IBM Corp. 1997, 2006 189

Output

 num_results Points to the number of entries that are returned in the results parameter array.

results Specifies the array that contains the matching GLB database entries, up to the number

specified in the max_results parameter. If the array contains any entries for servers on the

local network, those entries appear first.

status Points to the completion status.

Examples

To look up information in the GLB database about a matrix multiplication interface, enter:

lb_$lookup_interface (&matrix_if_id, &lookup_handle,

 results_array_size, &num_results,

 &matrix_if_results_array, &status);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

lb_$lookup_object Library Routine (NCS)

Purpose

Looks up information about an object in the Global Location Broker (GLB) database.

Syntax

void lb_$lookup_object (object, lookup_handle)

void lb_$lookup_object (max_results, num_results, results, status)

uuid_$t *object;

lb_$lookup_handle_t *lookup_handle;

unsigned long max_results;

unsigned long *num_results;

lb_$entry_t results [];

status_$t *status;

Description

The lb_$lookup_object routine returns GLB database entries whose fields in the object parameter match

the specified object. It returns information about all replicas of an object and all interfaces to the object.

The lb_$lookup_object routine cannot return more than the number of matching entries specified by

max_results parameter at one time. The lookup_handle parameter directs this routine to do sequential

lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between lookup calls, which can

cause the locations of entries relative to a value of the lookup_handle parameter to change. If multiple

calls are made to find all matching results in the database, the returned information may skip or

duplicate entries from the database.

2. It is also possible for the results of a single lookup call to skip or duplicate entries. This can occur if the

size of the results exceeds the size of a remote procedure call (RPC) packet (64KB).

190 Technical Reference: Communications, Volume 1

Parameters

Input

 object Points to the Universal Unique Identifier (UUID) of the object being looked up.

max_results Specifies the maximum number of matching entries that can be returned by a single call. This

should be the number of elements in the results parameter array.

Input/Output

 lookup_handle Specifies a location in the database. On input, the value of the lookup_handle parameter

indicates the location in the database where the search begins. An input value of

lb_$default_lookup_handle specifies that the search starts at the beginning of the

database.

 On return, the lookup_handle parameter indicates the next unsearched part of the

database (that is, the point at which the next search should begin). A return value of

lb_$default_lookup_handle indicates that the search reached the end of the database.

Any other value indicates that the search found at most the number of matching entries

specified by the max_results parameter before it reached the end of the database.

Output

 num_results Points to the number of entries that were returned in the results parameter array.

results Specifies the array that contains the matching GLB database entries, up to the number

specified in the max_results parameter. If the array contains any entries for servers on the

local network, those entries appear first.

status Points to the completion status.

Examples

To look up GLB database entries for the bank bank_id, enter:

lb_$lookup_object(&bank_id, &lookup_handle, MAX_LOCS, &n_locs,

 bank_loc, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

lb_$lookup_object_local Library Routine

Purpose

Looks up information about an object in a Local Location Broker (LLB) database.

Syntax

void lb_$lookup_object_local (object, sockaddr, slength, lookup_handle)

void lb_$lookup_object_local (max_results, num_results, results, status)

uuid_$t *object;

socket_$addr_t *sockaddr;

unsigned long slength;

lb_$lookup_handle_t *lookup_handle;

unsigned long max_results;

unsigned long *num_results;

lb_$entry_t results [];

status_$t *status;

Chapter 5. Network Computing System (NCS) 191

Description

The lb_$lookup_object_local routine searches the specified LLB database and returns all entries whose

fields in the object parameter match the specified object. It returns information about all replicas of an

object and all interfaces to the object that are located on the specified host.

The lb_$lookup_interface routine cannot return more than the number of matching entries specified by

the max_results parameter at one time. The lookup_handle parameter directs this routine to do sequential

lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between lookup calls. This can

cause the locations of entries relative to a value of the lookup_handle parameter to change. If multiple

calls are made to find all matching results in the database, the returned information may skip or

duplicate entries from the database.

2. It is also possible for the results of a single lookup call to skip or duplicate entries. This can occur if the

size of the results exceeds the size of a remote procedure call (RPC) packet (64KB).

Parameters

Input

 object Points to the Universal Unique Identifier (UUID) of the object being looked up.

sockaddr Specifies the location of the LLB database to be searched. The socket address must specify

the network address of a host. However, the port number in the socket address is ignored.

The lookup request is always sent to the host’s LLB port.

slength Specifies the length, in bytes, of the socket address specified by the sockaddr parameter.

max_results Specifies the maximum number of matching entries that can be returned by a single call. This

should be the number of elements in the results parameter array.

Input/Output

 lookup_handle Specifies a location in the database. On input, the value of the lookup_handle parameter

indicates the location in the database where the search begins. An input value of

lb_$default_lookup_handle specifies that the search starts at the beginning of the

database.

 On return, the lookup_handle indicates the next unsearched part of the database (that is,

the point at which the next search should begin). A return value of

lb_$default_lookup_handle indicates that the search reached the end of the database.

Any other value indicates that the search found at most the number of matching entries

specified by the max_results parameter before it reached the end of the database.

Output

 num_results Points to the number of entries that were returned in the results parameter array.

results Specifies the array that contains the matching GLB database entries, up to the number

specified in the max_results parameter. If the array contains any entries for servers on the

local network, those entries appear first.

status Points to the completion status.

Examples

In the following example, the repob object is replicated, with only one replica located on any host. To look

up information about the repob object, enter:

lb_$lookup_object_local (&repob_id, &location, location_length,

 &lookup_handle, 1, &num_results, myob_entry, &st);

192 Technical Reference: Communications, Volume 1

Since there is only one replica located on any host, the routine returns at most one result.

Related Information

lb_$lookup_range Library Routine

Purpose

Looks up information in a Global Location Broker (GLB) or Local Location Broker (LLB) database.

Syntax

void lb_$lookup_range (object, object_type, object_interface, location, lookup_handle)

void lb_$lookup_range (location_length, max_results, num_results, results, status)

uuid_$t *object;

uuid_$t *object_type;

uuid_$t *object_interface;

socket_$addr_t *location;

unsigned long location_length;

lb_$lookup_handle_t *lookup_handle;

unsigned long max_results;

unsigned long *num_results;

lb_$entry_t results [];

status_$t *status;

Description

The lb_$lookup_range routine returns database entries that contain matching object, obj_type, and

obj_interface identifiers. A value of uuid_$nil in any of these input parameters acts as a wildcard and

matches all values in the corresponding entry field. You can include wild cards in any combination of these

parameters.

The lb_$lookup_interface routine cannot return more than the number of matching entries specified by

the max_results parameter at one time. The lookup_handle parameter directs this routine to do sequential

lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between lookup calls, which can

cause the locations of entries relative to a value of the lookup_handle parameter value to change. If

multiple calls are made to find all matching results in the database, the returned information may skip

or duplicate entries from the database.

2. The results of a single lookup call can possibly skip or duplicate entries. This can occur if the size of

the results exceeds the size of a remote procedure call (RPC) packet (64KB).

Parameters

Input

 object Points to the Universal Unique Identifier (UUID) of the object being looked up.

object_type Points to the UUID of the type being looked up.

object_interface Points to the UUID of the interface being looked up.

location Points to the location of the database to be searched. If the value of the

location_length parameter is 0, the GLB database is searched. Otherwise, the LLB

database at the host specified by the socket address is searched. If the LLB

database is searched, the port number in the socket address is ignored, and the

lookup request is sent to the LLB port.

Chapter 5. Network Computing System (NCS) 193

location_length Specifies the length, in bytes, of the socket address indicated by the location

parameter. A value of 0 indicates that the GLB database is to be searched.

max_results Specifies the maximum number of matching entries that can be returned by a single

call. This should be the number of elements in the results array.

Input/Output

 lookup_handle Specifies a location in the database. On input, the value of the lookup_handle parameter

indicates the location in the database where the search begins. An input value of

lb_$default_lookup_handle specifies that the search starts at the beginning of the

database.

 On return, the lookup_handle parameter indicates the next unsearched part of the

database (that is, the point at which the next search should begin). A return value of

lb_$default_lookup_handle indicates that the search reached the end of the database.

Any other value indicates that the search found the number of matching entries specified

by the max_results parameter before it reached the end of the database.

Output

 num_results Points to the number of entries that were returned in the results parameter array.

results Specifies the array that contains the matching GLB database entries, up to the number

specified in the max_results parameter. If the array contains any entries for servers on the

local network, those entries appear first.

status Points to the completion status.

Examples

To look up information in the GLB database about the change_if interface to the proc_db2 object (which

is of the proc_db type), enter:

lb_$lookup_range (&proc_db2_id, &proc_db_id, &change_if_id,

 glb, 0, &lookup_handle, 10, &num_results, results, &st);

The name glb is defined elsewhere as a null pointer. The results parameter is a 10-element array of the

lb_$entry_t type.

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

lb_$lookup_type Library Routine

Purpose

Looks up information about a type in the Global Location Broker (GLB) database.

Syntax

void lb_$lookup_type (object_type, lookup_handle, max_results)

void lb_$lookup_type (num_results, results, status)

uuid_$t *object_type;

lb_$lookup_handle_t *lookup_handle;

unsigned long max_results;

unsigned long *num_results;

lb_$entry_t results [];

status_$t *status;

194 Technical Reference: Communications, Volume 1

Description

The lb_$lookup_type routine returns GLB database entries whose fields in the object_type parameter

match the specified type. It returns information about all replicas of all objects of that type and about all

interfaces to each object.

The lb_$lookup_type routine cannot return more than the number of matching entries specified by the

max_results parameter at one time. The lookup_handle parameter directs this routine to do sequential

lookup calls to find all matching entries.

Notes:

1. The Location Broker does not prevent modification of the database between lookup calls, which can

cause the locations of entries relative to a value of the lookup_handle parameter to change. If multiple

calls are made to find all matching results in the database, the returned information may skip or

duplicate entries from the database.

2. It is also possible for the results of a single lookup call to skip or duplicate entries. This can occur if the

size of the results exceeds the size of a remote procedure call (RPC) packet (64KB).

Parameters

Input

 object_type Points to the Universal Unique Identifier (UUID) of the type being looked up.

max_results Specifies the maximum number of matching entries that can be returned by a single call. This

should be the number of elements in the results parameter array.

Input/Output

 lookup_handle Specifies a location in the database. On input, the value of the lookup_handle parameter

indicates the location in the database where the search begins. An input value of

lb_$default_lookup_handle specifies that the search starts at the beginning of the

database.

On return, the lookup_handle parameter indicates the next unsearched part of the database

(that is, the point at which the next search should begin). A return value of

lb_$default_lookup_handle indicates that the search reached the end of the database.

Any other value indicates that the search found at most the number of matching entries

specified by the max_results parameter before it reached the end of the database.

Output

 num_results Points to the number of entries that were returned in the results parameter array.

results Specifies the array that contains the matching GLB database entries, up to the number

specified in the max_results parameter. If the array contains any entries for servers on the local

network, those entries appear first.

status Points to the completion status.

Examples

To look up information in the GLB database about the array_proc type, enter:

lb_$lookup_type (&array_proc_id, &lookup_handle, 10,

 &num_results, &results, &st)

The results parameter is a 10-element array of the lb_$entry_t type.

Chapter 5. Network Computing System (NCS) 195

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

lb_$register Library Routine (NCS)

Purpose

Registers an object and an interface with the Location Broker.

Syntax

void lb_$register (object, object_type, object_interface, flags, annotation)

void lb_$register (sockaddr, slength, entry, status)

uuid_$t *object;

uuid_$t *object_type;

uuid_$t *object_interface;

b_$server_flag_t *flags;

char annotation [];

socket_$addr_t *sockaddr;

unsigned long slength;

lb_$entry_t *entry;

status_$t *status;

Description

The lb_$register routine registers with the Location Broker a specific interface to an object and the

location of a server that exports that interface. This routine replaces an existing entry in the Location

Broker database that matches the object, object_type, and object_interface parameters as well as both the

address family and host in the socket address specified by the sockaddr parameter. If no such entry

exists, the routine adds a new entry to the database.

If the flags parameter has a value of lb_$server_flag_local, the entry is registered only in the Local

Location Broker (LLB) database at the host where the call is issued. Otherwise, the entry is registered in

both the LLB and the Global Location Broker (GLB) databases.

Parameters

Input

 object Points to the Universal Unique Identifier (UUID) of the object being looked up.

object_type Points to the UUID of the type being looked up.

object_interface Points to the UUID of the interface being looked up.

flags Points to the server that implements the interface. The value must be 0 or

lb_$server_flag_local.

annotation Specifies information, such as textual descriptions of the object and the interface. It is

set in a 64-character array.

sockaddr Points to the socket address of the server that exports the interface to the object.

slength Specifies the length, in bytes, of the socket address (sockaddr) parameter.

Output

 entry Points to the copy of the entry that was entered in the Location Broker database.

status Points to the completion status.

196 Technical Reference: Communications, Volume 1

Examples

To register the bank interface to the bank_id object, enter:

lb_$register (&bank_id, &bank_$uuid, &bank_$if_spec.id, 0,

 BankName, &saddr, slen, &entry, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

lb_$unregister Library Routine

Purpose

Removes an entry from the Location Broker database.

Syntax

void lb_$unregister (entry, status)

lb_$entry_t *entry;

status_$t *status;

Description

The lb_$unregister routine removes from the Location Broker database the entry that matches the value

supplied in the entry parameter. The value of the entry parameter should be identical to that returned by

the lb_$register routine when the database entry was created. However, the lb_$unregister routine does

not compare all of the fields in the entry parameter. It ignores the flags field, the annotation field, and the

port number in the saddr field.

This routine removes the entry from the Local Location Broker (LLB) database on the local host (the host

that issues the call). If the flags field of the entry parameter is not the value lb_$server_flag_local, this

routine also removes the entry from all replicas of the Global Location Broker (GLB) database.

Parameters

Input

 entry Points to the entry being removed from the Location Broker database.

Output

 status Points to the completion status.

Examples

To unregister the entry specified by the BankEntry results structure, which was obtained from a previous

call to the lb_$register routine, enter:

lb_$unregister (&BankEntry, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 5. Network Computing System (NCS) 197

pfm_$cleanup Library Routine

Purpose

Establishes a cleanup handler.

Syntax

#include <idl/c/base.h>

#include <idl/c/pfm.h>

status_$t

pfm_$cleanup(cleanup_record)

pfm_$cleanup_rec *cleanup_record;

Description

The pfm_$cleanup routine establishes a cleanup handler that is executed when a fault occurs. A cleanup

handler is a piece of code executed before a program exits when a signal is received by the process. The

cleanup handler begins with a call to the pfm_$cleanup routine. This routine registers an entry point with

the system where program execution resumes when a fault occurs. When a fault occurs, execution

resumes after the most recent call to the pfm_$cleanup routine.

There can be more than one cleanup handler in a program. Multiple cleanup handlers are executed

consecutively on a last-in-first-out basis (LIFO), starting with the most recently established handler and

ending with the first cleanup handler. The system provides a default cleanup handler established at

program invocation. The default cleanup handler is always called last, just before a program exits, and

releases any system resources still held before returning control to the process that invoked the program.

When called to establish a cleanup handler, the pfm_$cleanup routine returns the pfm_$cleanup_set

status to indicate that the cleanup handler was successfully established. When the cleanup handler is

entered in response to a fault signal, the pfm_$cleanup routine effectively returns the value of the fault

that triggered the handler.

Note: Cleanup handler code runs with asynchronous faults inhibited. When the pfm_$cleanup routine

returns something other than pfm_$cleanup_set status, which indicates that a fault has occurred,

there are four possible ways to leave the cleanup code:

v The program can call the pfm_$signal routine to start the next cleanup handler with a different fault

signal.

v The program can call the pfm_$exit routine to start the next cleanup handler with the same fault signal.

v The program can continue with the code following the cleanup handler. It should generally call the

pfm_$enable routine to re-enable asynchronous faults. Execution continues from the end of the

cleanup handler code; it does not resume where the fault signal was received.

v The program can re-establish the handler by calling the pfm_$reset_cleanup routine before

proceeding.

Parameters

Input

 cleanup_record A record of the context in which the pfm_$cleanup routine is called. A program should

treat this as an opaque data structure and not try to alter or copy its contents. It is

needed by the pfm_$cleanup and pfm_$reset_cleanup routines to restore the context

of the calling process at the cleanup handler entry point.

198 Technical Reference: Communications, Volume 1

Examples

To establish a cleanup handler for a routine, use the following:

fst = pfm_cleanup(crec)

where fst is of type status_$t and crec is of type pfm_$cleanup_crec.

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

pfm_$enable Library Routine

Purpose

Enables asynchronous faults.

Syntax

#include <idl/c/base.h>

#include <idl/c/pfm.h>

void

pfm_$enable (void)

Description

The pfm_$enable routine enables asynchronous faults after they have been inhibited by a call to the

pfm_$inhibit routine. The pfm_$enable routine causes the operating system to pass asynchronous faults

on to the calling process.

While faults are inhibited, the operating system holds at most one asynchronous fault. Consequently, when

the pfm_$enable subroutine returns, there can be at most one fault waiting on the process. If more than

one fault was received between calls to the pfm_$inhibit and pfm_$enable routines, the process receives

the first asynchronous fault received while faults were inhibited.

Examples

To enable asynchronous interrupts to occur after a call to the pfm_$inhibit routine, use the following:

pfm_$enable();

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

pfm_$enable_faults Library Routine

Purpose

Enables asynchronous faults.

Syntax

#include <idl/c/base.h>

#include <idl/c/pfm.h>

void

pfm_$enable_faults (void)

Chapter 5. Network Computing System (NCS) 199

Description

The pfm_$enable_faults routine enables asynchronous faults after they have been inhibited by a call to

the pfm_$inhibit_faults routine. The pfm_$enable_faults routine causes the operating system to pass

asynchronous faults on to the calling process.

While faults are inhibited, the operating system holds at most one asynchronous fault. Consequently, when

pfm_$enable_faults returns, there can be at most one fault waiting on the process. If more than one fault

was received between calls to the pfm_$inhibit_faults and pfm_$enable_faults routines, the process

receives the first asynchronous fault received while faults were inhibited.

Examples

To enable faults to occur after a call to pfm_$inhibit_faults, use the following:

pfm_$enable_faults();

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

pfm_$inhibit Library Routine

Purpose

Inhibits asynchronous faults.

Syntax

#include <idl/c/base.h>

#include <idl/c/pfm.h>

void

pfm_$inhibit (void)

Description

The pfm_$inhibit routine prevents asynchronous faults from being passed to the calling process. While

faults are inhibited, the operating system holds at most one asynchronous fault. Consequently, a call to the

pfm_$inhibit routine can result in the loss of some signals. For that and other reasons, it is good practice

to inhibit faults only when absolutely necessary.

Note: This routine has no effect on the processing of synchronous faults, such as access violations or

floating-point and overflow exceptions.

Examples

To prevent asynchronous interrupts from occurring in a critical portion of a routine, use the following:

pfm_$inhibit();

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

pfm_$inhibit_faults Library Routine

Purpose

Inhibits asynchronous faults, but allows task switching.

200 Technical Reference: Communications, Volume 1

Syntax

#include <idl/c/base.h>

#include <idl/c/pfm.h>

void

pfm_$inhibit_faults (void)

Description

The pfm_$inhibit routine prevents asynchronous faults, except for time-sliced task switching, from being

passed to the calling process. While faults are inhibited, the operating system holds at most one

asynchronous fault. Consequently, a call to the pfm_$inhibit_faults routine can result in the loss of some

signals. For that and other reasons, it is good practice to inhibit faults only when absolutely necessary.

Note: This routine has no effect on the processing of synchronous faults, such as access violations or

floating-point and overflow exceptions.

Examples

To prevent faults from occurring in a critical portion of a routine, use the following:

pfm_$inhibit_faults();

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

pfm_$init Library Routine

Purpose

Initializes the program fault management (PFM) package.

Syntax

#include <idl/c/base.h>

#include <idl/c/pfm.h>

void

pfm_$init (flags)

unsigned long flags;

Description

The pfm_$init routine initializes the PFM package. Applications that use the PFM package should invoke

the pfm_$init routine before invoking any other Network Computing System (NCS) routines.

Parameters

Input

 flags Indicates which initialization activities to perform. Currently only one value is valid:

pfm_$init_signal_handlers. This causes C signals to be intercepted and converted to PFM signals. The

signals intercepted are SIGINT, SIGILL, SIGFPE, SIGTERM, SIGHUP, SIGQUIT, SIGTRAP, SIGBUS,

SIGSEGV, and SIGSYS.

Chapter 5. Network Computing System (NCS) 201

Examples

To initialize the PFM subsystem, enter:

pfm_$init(pfm_$init_signal_handlers);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

pfm_$reset_cleanup Library Routine

Purpose

Resets a cleanup handler.

Syntax

#include <idl/c/base.h>

#include <idl/c/pfm.h>

void

pfm_$reset_cleanup (cleanup_record, status)

pfm_$cleanup_rec *cleanup_record;

status_$t *status;

Description

The pfm_$reset_cleanup routine re-establishes the cleanup handler last entered so that any subsequent

errors enter it first. This procedure should only be used within cleanup handler code.

Parameters

Input

 cleanup_ record Indicates a record of the context at the cleanup handler entry point. It is supplied by

the pfm_$cleanup routine when the cleanup handler is first established.

Output

 status Points to the completion status.

Examples

To re-establish a cleanup handler, enter:

pfm_$reset_cleanup(crec, st);

where the crec cleanup record is a valid cleanup handler.

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

202 Technical Reference: Communications, Volume 1

pfm_$rls_cleanup Library Routine

Purpose

Releases cleanup handlers.

Syntax

#include <idl/c/base.h>

#include <idl/c/pfm.h>

void

pfm_$rls_cleanup(cleanup_record, status)

pfm_$cleanup_rec *cleanup_record;

status_$t *status;

Description

The pfm_$rls_cleanup routine releases the cleanup handler associated with the cleanup_record

parameter and all cleanup handlers established after it.

Parameters

Input

 cleanup_record Indicates the cleanup record for the first cleanup handler to release.

Output

 status Points to the completion status. If the status parameter has a value of pfm_$bad_rls_order, it means

that the caller attempted to release a cleanup handler before releasing all handlers established after it.

This status is only a warning. The intended cleanup handler is released, along with all cleanup handlers

established after it.

Examples

To release an established cleanup handler, enter:

pfm_$rls_cleanup(crec, st);

where crec is a valid cleanup record established by the pfm_$cleanup routine.

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

pfm_$signal Library Routine (NCS)

Purpose

Signals the calling process.

Syntax

#include <idl/c/base.h>

#include <idl/c/pfm.h>

Chapter 5. Network Computing System (NCS) 203

void

pfm_$signal (fault_signal)

status_$t *fault_signal;

Description

The pfm_$signal routine signals the fault specified by the fault_signal parameter to the calling process. It

is usually called to leave cleanup handlers.

Note: This routine does not return when successful.

Parameters

Input

 fault_ signal Indicates a fault code.

Examples

To send the calling process a fault signal, enter:

pfm_$signal(fst);

where fst is a valid PFM fault.

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$alloc_handle Library Routine

Purpose

Creates a Remote Procedure Call (RPC) handle.

Syntax

handle_t rpc_$alloc_handle

(object_id, family, status)

uuid_$t *object_id;

unsigned long family;

status_$t *status;

Description

The rpc_$alloc_handle routine creates an unbound RPC handle that identifies a particular object but not

a particular server or host. A remote procedure call made using an unbound handle is broadcast to all

Local Location Brokers (LLBs) on the local network. If the call’s interface and the object identified by the

handle are both registered with any LLB, that LLB forwards the request to the registering server. The client

RPC runtime library returns the first response that it receives and binds the handle to the server.

Note: This routine is used by clients only.

204 Technical Reference: Communications, Volume 1

Parameters

Input

 object_id Points to the Universal Unique Identifier (UUID) of the object to be accessed. If there is no specific

object, specify uuid_$nil as the value.

family Specifies the address family to use in communications to access the object.

Output

 status Points to the completion status.

Return Values

Upon successful completion, the rpc_$alloc_handle routine returns an RPC handle identifying the remote

object in the form handle_t. This handle is used as the first input parameter to remote procedure calls with

explicit handles.

Examples

The following statement allocates a handle that identifies the Acme company’s payroll database object:

handle = rpc_$alloc_handle (&acme_pay_id, socket_$dds, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$bind Library Routine

Purpose

Allocates an Remote Procedure Call (RPC) handle and sets its binding to a server.

Syntax

handle_t rpc_$bind (object_id, sockaddr, slength, status)

uuid_$t *object_id;

socket_$addr_t *sockaddr;

unsigned long slength;

us_$t *status;

Description

The rpc_$bind function creates a fully bound RPC handle that identifies a particular object and server.

This routine is equivalent to an rpc_$alloc_handle routine followed by an rpc_$set_binding routine.

Note: This routine is used by clients only.

Parameters

Input

 object_id Points to the Universal Unique Identifier (UUID) of the object to be accessed. If there is no specific

object, specify uuid_$nil as the value.

sockaddr Points to the socket address of the server.

slength Specifies the length, in bytes, of the socket address (sockaddr) parameter.

Chapter 5. Network Computing System (NCS) 205

Output

 status Points to the completion status.

Return Values

Upon successful completion, this routine returns an RPC handle (handle_t) that identifies the remote

object. This handle is used as the first input parameter to remote procedure calls with explicit handles.

Examples

The following example binds a banking client program to the specified object and socket address:

h =rpc_$bind(&bank_id, &bank_loc[0].saddr, bank_loc[0].saddr_len,

 &st);

The bank_loc structure is the results parameter of a previous Location Broker lookup call.

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$clear_binding Library Routine

Purpose

Unsets the binding between a Remote Procedure Call (RPC) handle and a host and server.

Syntax

void rpc_$clear_binding (handle, status)

handle_t handle;

status_$t *status;

Description

The rpc_$clear_binding routine removes any association between an RPC handle and a particular server

and host, but does not remove the association between the handle and an object. This routine saves the

RPC handle so that it can be reused to access the same object, either by broadcasting or after resetting

the binding to another server.

A remote procedure call made using an unbound handle is broadcast to all Local Location Brokers (LLBs)

on the local network. If the call’s interface and the object identified by the handle are both registered with

any LLB, that LLB forwards the request to the registering server. The client RPC runtime library returns the

first response that it receives and binds the handle to the server.

The rpc_$clear_binding routine reverses an rpc_$set_binding routine.

Parameters

Input

 handle Specifies the RPC handle from which the binding is being cleared.

Output

 status Points to the completion status.

206 Technical Reference: Communications, Volume 1

Note: This routine is used by clients only.

Examples

To clear the binding represented in a handle, enter:

rpc_$clear_binding(handle, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$clear_server_binding Library Routine

Purpose

Unsets the binding between a Remote Procedure Call (RPC) handle and a server.

Syntax

void rpc_$clear_server_binding (handle, status)

handle_t handle;

status_$t *status;

Description

The rpc_$clear_server_binding routine removes the association between an RPC handle and a

particular server (which is a particular port number), but does not remove the associations with an object

and a host. For example, the routine unmaps the handle to the port number, but it leaves the object and

host associated through a network address.

This routine replaces a fully bound handle with a bound-to-host handle. A bound-to-host handle identifies

an object located on a particular host, but does not identify a server exporting an interface to the object.

If a client uses a bound-to-host handle to make a remote procedure call, the call is sent to the Local

Location Broker (LLB) forwarding port at the host identified by the handle. If the call’s interface and the

object identified by the handle are both registered with the host’s LLB, the LLB forwards the request to the

registering server. When the client RPC runtime library receives a response, it binds the handle to the

server. Subsequent remote procedure calls that use this handle are then sent directly to the bound

server’s port.

The rpc_$clear_server_binding routine is used for client error recovery when a server terminates. The

port that a server uses when it restarts is not necessarily the same port that it used previously. Therefore,

the binding that the client was using may not be correct. This routine enables the client to unbind from the

nonfunctioning server while retaining the binding to the host. When the client sends a request, the binding

is automatically set to the server’s new port.

Note: This routine is used by clients only.

Parameters

Input

 handle Specifies the RPC handle from which the server binding is being cleared.

Chapter 5. Network Computing System (NCS) 207

Output

 status Points to the completion status.

Examples

To clear the server binding represented in a handle, enter:

rpc_$clear_server_binding(handle, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$dup_handle Library Routine

Purpose

Makes a copy of a Remote Procedure Call (RPC) handle.

Syntax

handle_t rpc_$dup_handle (handle, status)

handle_t handle;

status_$t *status;

Description

The rpc_$dup_handle routine returns a copy of an existing RPC handle. Both handles can then be used

in the client program for concurrent multiple accesses to a binding. Because all duplicates of a handle

reference the same data, a call to the rpc_$set_binding, rpc_$clear_binding, or

rpc_$clear_server_binding routine made on any one duplicate affects all duplicates. However, an RPC

handle is not freed until the rpc_$free_handle routine is called on all copies of the handle.

Note: This routine is used by clients only.

Parameters

Input

 handle Specifies the RPC handle to be copied.

Output

 status Points to the completion status.

Return Values

Upon successful completion, this routine returns the duplicate handle (handle_t).

Examples

To create a copy of a handle, enter:

thread_2_handle = rpc_$dup_handle(handle, &st);

The copy is called thread_2_handle.

208 Technical Reference: Communications, Volume 1

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$free_handle Library Routine

Purpose

Frees a Remote Procedure Call (RPC) handle.

Syntax

void rpc_$free_handle (handle, status)

handle_t handle;

status_$t *status;

Description

The rpc_$free_handle routine frees an RPC handle by clearing the association between the handle and a

server or an object, and then releasing the resources identified by the RPC handle. The client program

cannot use a handle after it is freed.

To make multiple RPC calls using the same interface but different socket addresses, replace the binding in

an existing handle with the rpc_$set_binding routine instead of creating a new handle with the

rpc_$free_handle and rpc_$bind routines.

To free copies of RPC handles created by the rpc_$dup_handle routine, use the rpc_$free_handle

routine once for each copy of the handle. However, the RPC runtime library does not differentiate between

calling the rpc_$free_handle routine several times on one copy of a handle and calling it one time for

each of several copies of a handle. Therefore, if you use duplicate handles, you must ensure that no

thread inadvertently makes multiple rpc_$free_handle calls on a single handle.

Note: This routine is used by clients only.

Parameters

Input

 handle Specifies the RPC handle to be freed.

Output

 status Points to the completion status.

Examples

To free two copies of a handle, enter:

rpc_$free_handle(handle, &st);

rpc_$free_handle(thread_2_handle, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 5. Network Computing System (NCS) 209

rpc_$inq_binding Library Routine (NCS)

Purpose

Returns the socket address represented by a Remote Procedure Call (RPC) handle.

Syntax

void rpc_$inq_binding (handle, sockaddr, slength, status)

handle_t handle;

socket_$addr_t *sockaddr;

unsigned long *slength;

status_$t *status;

Description

The rpc_$inq_binding routine enables a client to determine the socket address, and therefore the server,

identified by an RPC handle. It can be used to determine which server is responding to a remote

procedure call when a client uses an unbound handle in the call.

Note: This routine is used by clients only.

Parameters

Input

 handle Specifies an RPC handle.

Output

 sockaddr Points to the socket address represented by the handle parameter.

slength Points to the length, in bytes, of the socket address (sockaddr).

status Points to the completion status.

Return Values

The rpc_$inq_binding routine fails if the following is true:

 Value Description

rpc_$unbound_handle The handle is not bound and does not represent a specific host address.

Examples

The Location Broker administrative tool, lb_admin, uses the following statement to determine the

particular GLB that responded to a lookup request:

rpc_$inq_binding(glb_$handle, &global_broker_addr,

 &global_broker_addr_len, &status);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

210 Technical Reference: Communications, Volume 1

rpc_$inq_object Library Routine (NCS)

Purpose

Returns the object Universal Unique Identifier (UUID) represented by a Remote Procedure Call (RPC)

handle.

Syntax

void rpc_$inq_object (handle, object_id, status)

handle_t handle;

uuid_$t *object_id;

status_$t *status;

Description

The rpc_$inq_object routine enables a server to determine the particular object that a client is accessing.

A server must use the rpc_$inq_object routine if it exports an interface through which multiple objects

may be accessed.

A server can make this call only if the interface uses explicit handles (that is, if each operation in the

interface has a handle argument). If the interface uses an implicit handle, the handle identifier is not

passed to the server.

Note: This routine is used by servers only.

Parameters

Input

 handle Specifies an RPC handle.

Output

 object_id Points to the UUID of the object identified by the handle parameter.

status Points to the completion status.

Examples

A database server that manages multiple databases must determine the particular database to be

accessed whenever it receives a remote procedure call. Each manager routine therefore makes the

following call:

rpc_$inq_object(handle, &db_uuid, &st);

The routine then uses the returned UUID to identify the database to be accessed.

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$listen Library Routine

Purpose

Listens for and handles remote procedure call packets.

Chapter 5. Network Computing System (NCS) 211

Syntax

void rpc_$listen (max_calls, status)

unsigned long max_calls;

status_$t *status;

Description

The rpc_$listen routine dispatches incoming remote procedure call requests to manager procedures and

returns the responses to the client. You must issue an rpc_$use_family or rpc_$use_family_wk routine

before you use the rpc_$listen routine.

Note: This routine is used by servers only.

Parameters

Input

 max_calls Specifies the maximum number of calls (in the range 1 through 10) that a server is allowed to

process concurrently. Although concurrent processes are not supported in this operating system’s

implementation of Network Computing System (NCS), this parameter is provided for compatibility

with other NCS implementations.

Output

 status Points to the completion status.

Return Values

This routine normally does not return.

Examples

To have a server listen for incoming remote procedure call requests, enter:

rpc_$listen(5, &status);

Note: The max_calls parameter, which is set at 5 in the example, is insignificant because this

implementation of NCS does not support concurrent processes. The parameter is provided for

compatibility with other implementations.

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$name_to_sockaddr Library Routine

Purpose

Converts a host name and port number to a socket address.

Syntax

void rpc_$name_to_sockaddr (name, nlength, port, family, sockaddr, slength, status)

char *name;

unsigned long nlength;

unsigned long port;

unsigned long family;

212 Technical Reference: Communications, Volume 1

socket_$addr_t *sockaddr;

unsigned long *slength;

status_$t *status;

Description

The rpc_$name_to_sockaddr routine provides the socket address for a socket, given the host name, the

port number, and the address family.

You can specify the socket address information either as one text string in the name parameter, or by

passing each of the three elements as a separate parameter. When three separate elements are passed,

the name parameter should contain only the host name.

Parameters

Input

 name Points to a host name, and optionally, a port and an address family, in the form: family:host[port]. The

family: and [port] parameters are optional. If you specify a family variable as part of the name

parameter, you must specify socket_$unspec in the family parameter. The only supported value for

the family variable is ip. The host parameter specifies the host name, and port specifies a port number

in integer form.

nlength Specifies the number of characters in the name parameter.

port Specifies the socket port number. If you are not specifying a well-known port, this parameter should

have the value socket_$unspec_port. The returned socket address will specify the Local Location

Broker (LLB) forwarding port at the host. If you specify the port number in the name parameter, this

parameter is ignored.

family Specifies the address family to use for the socket address. This value corresponds to the

communications protocol used to access the socket and determines how the socket address (sockaddr)

parameter is expressed. If you specify the address family in the name parameter, this parameter must

have the value socket_$unspec.

Output

 sockaddr Points to the socket address corresponding to the name, port, and family parameters.

slength Points to the length, in bytes, of the socket address (specified by the sockaddr parameter).

status Points to the completion status.

Examples

To place in the sockaddr structure a socket address that specifies the LLB forwarding port at the host

identified by host_name, enter:

rpc_$name_to_sockaddr(host_name, strlen(host_name),

 socket_$unspec_port,socket_$dds, &sockaddr, &slen, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$register Library Routine

Purpose

Registers an interface at a server.

Chapter 5. Network Computing System (NCS) 213

Syntax

void rpc_$register (if_spec, epv, status)

rpc_$if_spec_t *if_spec;

rpc_$epv_t epv;

status_$t *status;

Description

The rpc_$register routine registers an interface with the Remote Procedure Call (RPC) runtime library.

After an interface is registered, the RPC runtime library passes requests for that interface to the server.

You can call rpc_$register multiple times with the same interface (for example, from various subroutines

of the same server), but each call must specify the same entry point vector (EPV). Each registration

increments a reference count for the registered interface. An equal number of calls to the rpc_$unregister

routine are then required to unregister the interface.

Parameters

Input

 if_spec Points to the interface being registered.

epv Specifies the EPV for the operations in the interface.

Output

 status Points to the completion status.

Note: This routine is used by servers only.

Return Values

The rpc_$register routine fails if one or more of the following is true:

 Value Description

rpc_$too_many_ifs The maximum number of interfaces is already registered with the server.

rpc_$illegal_register You are trying to register an interface that is already registered, and you are

using an EPV different from the one used when the interface was first

registered.

Examples

To register a bank interface with the bank server host’s RPC runtime library, enter:

rpc_$register(&bank_$if_spec, bank_$server_epv, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$set_binding Library Routine

Purpose

Associates a Remote Procedure Call (RPC) handle with a server.

214 Technical Reference: Communications, Volume 1

Syntax

rpc_$set_binding (handle, sockaddr, slength, status)

struct handle_t *handle;

struct socket_$addr_t *sockaddr;

int slength;

struct status_$t *status;

Description

The rpc_$set_binding routine sets the binding of an RPC handle to the specified server. The handle then

identifies a specific object at a specific server. Any subsequent remote procedure calls that a client makes

using the handle are sent to this destination. This routine can also replace an existing binding in a fully

bound handle, or set the binding in an unbound handle.

Note: This routine is used by clients only.

Parameters

Input

 handle Specifies an RPC handle.

sockaddr Specifies the socket address of the server with which the handle is being associated.

slength Specifies the length, in bytes, of the socket address (sockaddr) parameter.

Output

 status Specifies the completion status.

Examples

To set the binding on the m_handle handle to the first server in the results array, which was returned by

a previous Location Broker lookup call, enter:

rpc_$set_binding(m_handle, &lb_reslts[0].saddr,

 lb_reslts[0].saddr_len, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$sockaddr_to_name Library Routine

Purpose

Converts a socket address to a host name and port number.

Syntax

void rpc_$sockaddr_to_name (sockaddr, slength, name, nlength, port, status)

socket_$addr_t *sockaddr;

unsigned long slength;

unsigned long *nlength;

char *name;

unsigned long *port;

status_$t *status;

Chapter 5. Network Computing System (NCS) 215

Description

The rpc_$sockaddr_to_name routine provides the address family, the host name, and the port number

identified by the specified socket address.

Parameters

Input

 sockaddr Points to a socket address.

slength Specifies the length, in bytes, of socket address (sockaddr) parameter.

Input/Output

 nlength On input, points to the length of the name parameter in the buffer. On output, points to the number of

characters returned in the name parameter.

Output

 name Points to a character string that contains the host name and the address family in the format: family:host.

The value of the family parameter must be ip.

port Points to the socket port number.

status Points to the completion status.

Examples

To take the bank server’s socket address, return the server’s host name and port, and then print the

information, enter:

rpc_$sockaddr_to_name(&saddr, slen, name, &namelen, &port, &st);

 printf("(bankd) name=\"%.*s\", port=%d\n", name, namelen, port;

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$unregister Library Routine

Purpose

Unregisters an interface.

Syntax

void rpc_$unregister (if_spec, status)

rpc_$if_spec_t *if_spec;

status_$t *status;

Description

The rpc_$unregister routine unregisters an interface that the server previously registered with the Remote

Procedure Call (RPC) runtime library. After an interface is unregistered, the RPC runtime library does not

pass requests for that interface to the server.

If a server uses multiple calls to the rpc_$register routine to register an interface more than once, then

the server must call the rpc_$unregister routine an equal number of times to unregister the interface.

216 Technical Reference: Communications, Volume 1

Parameters

Input

 if_spec Points to the interface being unregistered.

Output

 status Points to the completion status.

Note: This routine is used by servers only.

Examples

To unregister a matrix arithmetic interface, use the following:

rpc_$unregister (&matrix_$if_spec, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$use_family Library Routine

Purpose

Creates a socket of a specified address family for a Remote Procedure Call (RPC) server.

Syntax

void rpc_$use_family (family, sockaddr, slength, status)

unsigned long family;

socket_$addr_t *sockaddr;

unsigned long *slength;

status_$t *status;

Description

The rpc_$use_family routine creates a socket for a server without specifying its port number. (The RPC

runtime software assigns the port number.) Use this routine to create the server socket unless the server

must listen on a particular well-known port. If the socket must listen on a specific well-known port, use the

rpc_$use_family_wk routine to create the socket.

A server can listen on more than one socket. However, a server normally does not listen on more than one

socket for each address family, regardless of the number of interfaces that it exports. Therefore, most

servers should make this call once for each supported address family.

Note: This routine is used by servers only.

Parameters

Input

 family Specifies the address family of the socket to be created. This value corresponds to the communications

protocol used to access the socket and determines how the socket address (sockaddr) parameter is

expressed.

Chapter 5. Network Computing System (NCS) 217

Output

 sockaddr Points to the socket address of the socket on which the server listens.

slength Points to the length, in bytes, of the socket address (sockaddr) parameter.

status Points to the completion status.

Return Values

The rpc_$use_family routine can fail if one or more of the following is true:

 Value Description

rpc_$cant_create_sock The RPC runtime library is unable to create a socket.

rpc_$cant_bind_sock The RPC runtime library created a socket but is unable to bind it to a

socket address.

rpc_$too_many_sockets The server is trying to use more than the maximum number of sockets

allowed. The server has called the rpc_$use_family or

rpc_$use_family_wk routines too many times.

Examples

To create the bank server’s socket, enter:

rpc_$use_family(atoi(argv[1]), &saddr, &slen, &st);

The numeric value of the address family to be used is supplied as an argument to the program.

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

rpc_$use_family_wk Library Routine

Purpose

Creates a socket with a well-known port for a Remote Procedure Call (RPC) server.

Syntax

void rpc_$use_family_wk (family, if_spec, sockaddr, slength, status)

unsigned long family;

rpc_$if_spec_t *if_spec;

socket_$addr_t *sockaddr;

unsigned long *slength;

status_$t *status;

Description

The rpc_$use_family_wk routine creates a socket that uses the port specified with the if_spec parameter.

Use this routine to create a socket if a server must listen on a particular well-known port. Otherwise,

create the socket with the rpc_$use_family routine.

A server can listen on more than one socket. However, a server normally does not listen on more than one

socket for each address family, regardless of the number of interfaces that it exports. Therefore, most

servers that use well-known ports should make this call once for each supported address family.

Note: This routine is used by servers only.

218 Technical Reference: Communications, Volume 1

Parameters

Input

 family Specifies the address family of the socket to be created. This value corresponds to the communications

protocol used to access the socket and determines how the socket address (sockaddr) parameter is

expressed.

if_spec Points to the interface that will be registered by the server. The well-known port is specified as an

interface attribute.

Output

 sockaddr Points to the socket address of the socket on which the server listens.

slength Points to the length, in bytes, of the socket address (sockaddr) parameter.

status Points to the completion status.

Return Values

The rpc_$use_family_wk routine fails if one of the following is true:

 Value Description

rpc_$cant_create_sock The RPC runtime library is unable to create a socket.

rpc_$cant_bind_sock The RPC runtime library created a socket but is unable to bind it to a

socket address.

rpc_$too_many_sockets The server is trying to use more than the maximum number of sockets

allowed. The server has called the rpc_$use_family or

rpc_$use_family_wk routines too many times.

rpc_$addr_in_use The specified address and port are already in use. This is caused by

multiple calls to the rpc_$use_family_wk routine with the same well-known

port.

Examples

To create a well-known socket for an array processor server, enter:

rpc_$use_family_wk (socket_$internet, &matrix_$if_spec,

&sockaddr, slen, &st);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

uuid_$decode Library Routine (NCS)

Purpose

Converts a character-string representation of a Universal Unique Identifier (UUID) into a UUID.

Syntax

void uuid_$decode (uuid_string, uuid, status)

char *uuid_string;

uuid_$t *uuid;

status_$t *status;

Chapter 5. Network Computing System (NCS) 219

Description

The uuid_$decode routine returns the UUID corresponding to a valid character-string representation of a

UUID.

Parameters

Input

 uuid_string Points to the character-string representation of a UUID in the form uuid_$string_t.

Output

 uuid Points to the UUID that corresponds to the character string represented in the uuid_string parameter.

status Points to the completion status.

Examples

The following call returns as my_uuid the UUID corresponding to the character-string representation in

my_uuid_rep:

uuid_$decode (my_uuid_rep, &my_uuid, &status);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

uuid_$encode Library Routine (NCS)

Purpose

Converts a Universal Unique Identifier (UUID) into its character-string representation.

Syntax

void uuid_$encode (uuid, uuid_string)

uuid_$t *uuid;

char *uuid_string;

Description

The uuid_$encode call returns the character-string representation of a UUID.

Parameters

Input

 uuid Points to the UUID.

Output

 uuid_string Points to the character-string representation of a UUID, in the form uuid_$string_t.

220 Technical Reference: Communications, Volume 1

Examples

The following call returns as my_uuid_rep the character-string representation for the UUID my_uuid:

uuid_$encode (&my_uuid, my_uuid_rep);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

uuid_$gen Library Routine (NCS)

Purpose

Generates a new Universal Unique Identifier (UUID).

Syntax

void uuid_$gen (uuid)

uuid_$t *uuid;

Description

The uuid_$gen routine returns a new UUID.

Parameters

Output

 uuid Points to the new UUID in the form of uuid_$t.

Examples

The following call returns as my_uuid a new UUID:

uuid_$gen (&my_uuid);

Related Information

Remote Procedure Call (RPC) Runtime Library (NCS) in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 5. Network Computing System (NCS) 221

222 Technical Reference: Communications, Volume 1

Chapter 6. Network Information Services (NIS) and Network

Information Services+ (NIS+)

nis_add_entry (NIS+ API)

Purpose

Used to add the NIS+ object to the NIS+ table_name.

Syntax

cc [flag . . .] file. . . -lnsl [library. . .]

#include <rpcsvc/nis.h>

nis_result * nis_add_entry(nis_name table_name, nis_object object, u_long* flags);

Description

One of a group of NIS+ APIs that is used to search and modify NIS+ tables, nis_add_entry() is used to

add the NIS+ object to the NIS+ table_name..

Entries within a table are named by NIS+ indexed names. An indexed name is a compound name that is

composed of a search criteria and a simple NIS+ name that identifies a table object. A search criteria is a

series of column names and their associated values enclosed in bracket [] characters. Indexed names

have the following form:

[colname=value,...],tablename

nis_add_entry() will add the NIS+ object to the NIS+ table_name. The flags parameter is used to

specify the failure semantics for the add operation:

0 The default (flags = 0) is to fail if the entry being added already exists in the table.

ADD_OVERWRITE

Specifies that the existing object is to be overwritten if it exists (a modify operation), or added if it

does not exist. With the ADD_OVERWRITE flag, this function will fail with the error

NIS_PERMISSION if the existing object does not allow modify privileges to the client.

RETURN_RESULT

Specifies that the server will return a copy of the resulting object if the operation was successful.

To succeed, nis_add_entry()must inherit the PAF_TRUSTED_PATH attribute.

Return Values

These functions return a pointer to a structure of type nis_result:

struct nis_result {

 nis_error status;

 struct {

 u_int objects_len;

 nis_object * objects_val;

 } objects;

 netobj cookie;

 u_long zticks;

 u_long dticks;

 u_long aticks;

 u_long cticks;

 };

The status member contains the error status of the the operation. A text message that describes the error

can be obtained by calling the function nis_sperrno().

© Copyright IBM Corp. 1997, 2006 223

The objects structure contains two members: objects_val is an array of nis_object structures;

objects_len is the number of cells in the array. These objects will be freed by a call to nis_freeresult(). If

you need to keep a copy of one or more objects, they can be copied with the function nis_clone_object()

and freed with the function nis_destroy_object().

The various ticks contain details of where the time (in microseconds) was taken during a request. They

can be used to tune one’s data organization for faster access and to compare different database

implementations.

zticks The time spent in the NIS+ service itself, this count starts when the server receives the request

and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the time a database call

starts until a result is returned. If the request results in multiple calls to the database, this is the

sum of all the time spent in those calls.

aticks The time spent in any accelerators or caches. This includes the time required to locate the server

needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the client library and stops

when a result is returned. By subtracting the sum of the other ticks values from this value you can

obtain the local overhead of generating an NIS+ request.

 Subtracting the value in dticks from the value in zticks will yield the time spent in the service code itself.

Subtracting the sum of the values in zticks and aticks from the value in cticks will yield the time spent in

the client library itself.

Note: All of the tick times are measured in microseconds.

Errors

The client library can return a variety of error returns and diagnostics. Following are some of the more

pertinent ones:

NIS_BADATTRIBUTE

The name of an attribute did not match up with a named column in the table, or the attribute did

not have an associated value.

NIS_BADNAME

The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST

A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED

The entry returned came from an object cache that has expired. This means that the time to live

value has gone to zero and the entry may have changed. If the flag NO_CACHE was passed to

the lookup function, the lookup function will retry the operation to get an unexpired copy of the

object.

NIS_CBERROR

An RPC error occurred on the server while it was calling back to the client. The transaction was

aborted at that time and any unsent data was discarded.

NIS_CBRESULTS

Even though the request was successful, all of the entries have been sent to your callback

function and are thus not included in this result.

NIS_FOREIGNNS

The name could not be completely resolved. When the name passed to the function would resolve

224 Technical Reference: Communications, Volume 1

in a namespace that is outside the NIS+ name tree, this error is returned with a NIS+ object of

type DIRECTORY. The returned object contains the type of namespace and contact information

for a server within that namespace.

NIS_INVALIDOBJ

The object pointed to by object is not a valid NIS+ entry object for the given table. This could

occur if it had a mismatched number of columns, or a different data type (for example, binary or

text) than the associated column in the table.

NIS_LINKNAMEERROR

The name passed resolved to a LINK type object and the contents of the object pointed to an

invalid name.

NIS_MODFAIL

The attempted modification failed.

NIS_NAMEEXISTS

An attempt was made to add a name that already exists. To add the name, first remove the

existing name and then add the new name or modify the existing named object.

NIS_NAMEUNREACHABLE

This soft error indicates that a server for the desired directory of the named table object could not

be reached. This can occur when there is a network partition or the server has crashed.

Attempting the operation again may succeed. See the HARD_LOOKUP flag.

NIS_NOCALLBACK

The server was unable to contact the callback service on your machine. This results in no data

being returned.

NIS_NOMEMORY

Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME

This hard error indicates that the named directory of the table object does not exist. This occurs

when the server that should be the parent of the server that serves the table does not know about

the directory in which the table resides.

NIS_NOSUCHTABLE

The named table does not exist.

NIS_NOT_ME

A request was made to a server that does not serve the given name. Normally this will not occur;

however, if you are not using the built in location mechanism for servers, you may see this if your

mechanism is broken.

NIS_NOTFOUND

No entries in the table matched the search criteria. If the search criteria was null (return all

entries), then this result means that the table is empty and may safely be removed by calling the

nis_remove(). If the FOLLOW_PATH flag was set, this error indicates that none of the tables in

the path contain entries that match the search criteria.

NIS_NOTMASTER

A change request was made to a server that serves the name, but it is not the master server. This

can occur when a directory object changes and it specifies a new master server. Clients that have

cached copies of the directory object in the /var/nis/NIS_SHARED_DIRCACHE file will need to

have their cache managers restarted (use nis_cachemgr -i to flush this cache).

NIS_NOTSAMEOBJ

An attempt to remove an object from the namespace was aborted because the object that would

have been removed was not the same object that was passed in the request.

NIS_NOTSEARCHABLE

The table name resolved to a NIS+ object that was not searchable.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 225

NIS_PARTIAL

This result is similar to NIS_NOTFOUND, except that it means the request succeeded but

resolved to zero entries. When this occurs, the server returns a copy of the table object instead of

an entry so that the client may then process the path or implement some other local policy.

NIS_RPCERROR

This fatal error indicates the RPC subsystem failed in some way. Generally there will be a

syslog(3) message indicating why the RPC request failed.

NIS_S_NOTFOUND

The named entry does not exist in the table; however, not all tables in the path could be searched,

so the entry may exist in one of those tables.

NIS_S_SUCCESS

Even though the request was successful, a table in the search path was not able to be searched,

so the result may not be the same as the one you would have received if that table had been

accessible.

NIS_SUCCESS

The request was successful.

NIS_SYSTEMERROR

Some form of generic system error occurred while attempting the request. Check the syslog(3)

record for error messages from the server.

NIS_TOOMANYATTRS

The search criteria passed to the server had more attributes than the table had searchable

columns.

NIS_TRYAGAIN

The server connected to was too busy to handle your request. add_entry(), remove_entry(),

and modify_entry() return this error when the master server is currently updating its internal

state. It can be returned to nis_list() when the function specifies a callback and the server does

not have the resources to handle callbacks.

NIS_TYPEMISMATCH

An attempt was made to add or modify an entry in a table, and the entry passed was of a different

type than the table.

Summary of Trusted

To succeed, nis_add_entry() must inherit the PAF_TRUSTED_PATH attribute.

Related Information

nis_first_entry, nis_list, nis_local_directory, nis_lookup, nis_modify_entry, nis_next_entry, nis_perror,

nis_remove_entry, and nis_sperror.

Network Information Services+ and NIS+ Namespace and Structure in AIX 5L Version 5.3 Network

Information Services (NIS and NIS+) Guide.

TCP/IP protocols in Networks and communication management.

List of NIS and NIS+ Programming References and Remote Procedure Call (RPC) Overview for

Programming in AIX 5L Version 5.3 Communications Programming Concepts.

nis_first_entry (NIS+ API)

Purpose

Used to fetch entries from a table one at a time.

226 Technical Reference: Communications, Volume 1

Syntax

cc [flag . . .] file. . . -lnsl [library. . .]

#include <rpcsvc/nis.h>

nis_result * nis_first_entry(nis_name table_name)

Description

One of a group of NIS+ APIs that is used to search and modify NIS+ tables, nis_first_entry() is used to

fetch entries from a table one at a time.

Entries within a table are named by .NIS+ indexed names. An indexed name is a compound name that is

composed of a search criteria and a simple NIS+ name that identifies a table object. A search criteria is a

series of column names and their associated values enclosed in bracket [] characters. Indexed names

have the following form:

[colname=value,...],tablename

nis_first_entry() fetches entries from a table one at a time. This mode of operation is extremely

inefficient and callbacks should be used instead whenever possible. The table containing the entries of

interest is identified by name. If a search criteria is present in name it is ignored. The value of cookie

within the nis_result structure must be copied by the caller into local storage and passed as an argument

to nis_next_entry().

Return Values

These functions return a pointer to a structure of type nis_result:

struct nis_result {

 nis_error status;

 struct {

 u_int objects_len;

 nis_object * objects_val;

 } objects;

 netobj cookie;

 u_long zticks;

 u_long dticks;

 u_long aticks;

 u_long cticks;

 };

The status member contains the error status of the the operation. A text message that describes the error

can be obtained by calling the function nis_sperrno().

The objects structure contains two members: objects_val is an array of nis_object structures;

objects_len is the number of cells in the array. These objects will be freed by a call to nis_freeresult(). If

you need to keep a copy of one or more objects, they can be copied with the function nis_clone_object()

and freed with the function nis_destroy_object().

The various ticks contain details of where the time (in microseconds) was taken during a request. They

can be used to tune one’s data organization for faster access and to compare different database

implementations.

zticks The time spent in the NIS+ service itself, this count starts when the server receives the request

and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the time a database call

starts, until a result is returned. If the request results in multiple calls to the database, this is the

sum of all the time spent in those calls.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 227

aticks The time spent in any accelerators or caches. This includes the time required to locate the server

needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the client library and stops

when a result is returned. By subtracting the sum of the other ticks values from this value you can

obtain the local overhead of generating an NIS+ request.

 Subtracting the value in dticks from the value in zticks will yield the time spent in the service code itself.

Subtracting the sum of the values in zticks and aticks from the value in cticks will yield the time spent in

the client library itself.

Note: All of the tick times are measured in microseconds.

Errors

The client library can return a variety of error returns and diagnostics. Following are some of the more

pertinent ones:

NIS_BADATTRIBUTE

The name of an attribute did not match up with a named column in the table, or the attribute did

not have an associated value.

NIS_BADNAME

The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST

A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED

The entry returned came from an object cache that has expired. This means that the time to live

value has gone to zero and the entry may have changed. If the flag NO_CACHE was passed to

the lookup function, the lookup function will retry the operation to get an unexpired copy of the

object.

NIS_CBERROR

An RPC error occurred on the server while it was calling back to the client. The transaction was

aborted at that time and any unsent data was discarded.

NIS_CBRESULTS

Even though the request was successful, all of the entries have been sent to your callback

function and are thus not included in this result.

NIS_FOREIGNNS

The name could not be completely resolved. When the name passed to the function would resolve

in a namespace that is outside the NIS+ name tree, this error is returned with aNIS+ object of type

DIRECTORY. The returned object contains the type of namespace and contact information for a

server within that namespace.

NIS_INVALIDOBJ

The object pointed to by object is not a valid NIS+ entry object for the given table. This could

occur if it had a mismatched number of columns, or a different data type (for example, binary or

text) than the associated column in the table.

NIS_LINKNAMEERROR

The name passed resolved to a LINK type object and the contents of the object pointed to an

invalid name.

NIS_MODFAIL

The attempted modification failed.

228 Technical Reference: Communications, Volume 1

NIS_NAMEEXISTS

An attempt was made to add a name that already exists. To add the name, first remove the

existing name and then add the new name or modify the existing named object.

NIS_NAMEUNREACHABLE

This soft error indicates that a server for the desired directory of the named table object could not

be reached. This can occur when there is a network partition or the server has crashed.

Attempting the operation again may succeed. See the HARD_LOOKUP flag.

NIS_NOCALLBACK

The server was unable to contact the callback service on your machine. This results in no data

being returned.

NIS_NOMEMORY

Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME

This hard error indicates that the named directory of the table object does not exist. This occurs

when the server that should be the parent of the server that serves the table does not know about

the directory in which the table resides.

NIS_NOSUCHTABLE

The named table does not exist.

NIS_NOT_ME

A request was made to a server that does not serve the given name. Normally this will not occur;

however, if you are not using the built in location mechanism for servers, you may see this if your

mechanism is broken.

NIS_NOTFOUND

No entries in the table matched the search criteria. If the search criteria was null (return all

entries), then this result means that the table is empty and may safely be removed by calling the

nis_remove(). If the FOLLOW_PATH flag was set, this error indicates that none of the tables in

the path contain entries that match the search criteria.

NIS_NOTMASTER

A change request was made to a server that serves the name, but it is not the master server. This

can occur when a directory object changes and it specifies a new master server. Clients that have

cached copies of the directory object in the /var/nis/NIS_SHARED_DIRCACHE file will need to

have their cache managers restarted (use nis_cachemgr -i to flush this cache).

NIS_NOTSAMEOBJ

An attempt to remove an object from the namespace was aborted because the object that would

have been removed was not the same object that was passed in the request.

NIS_NOTSEARCHABLE

The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL

This result is similar to NIS_NOTFOUND, except that it means the request succeeded but

resolved to zero entries. When this occurs, the server returns a copy of the table object instead of

an entry so that the client may then process the path or implement some other local policy.

NIS_RPCERROR

This fatal error indicates the RPC subsystem failed in some way. Generally there will be a

syslog(3) message indicating why the RPC request failed.

NIS_S_NOTFOUND

The named entry does not exist in the table; however, not all tables in the path could be searched,

so the entry may exist in one of those tables.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 229

NIS_S_SUCCESS

Even though the request was successful, a table in the search path was not able to be searched,

so the result may not be the same as the one you would have received if that table had been

accessible.

NIS_SUCCESS

The request was successful.

NIS_SYSTEMERROR

Some form of generic system error occurred while attempting the request. Check the syslog(3)

record for error messages from the server.

NIS_TOOMANYATTRS

The search criteria passed to the server had more attributes than the table had searchable

columns.

NIS_TRYAGAIN

The server connected to was too busy to handle your request. add_entry(), remove_entry(),

and modify_entry() return this error when the master server is currently updating its internal

state. It can be returned to nis_list() when the function specifies a callback and the server does

not have the resources to handle callbacks.

NIS_TYPEMISMATCH

An attempt was made to add or modify an entry in a table, and the entry passed was of a different

type than the table.

Related Information

nis_add_entry, nis_list, nis_local_directory, nis_lookup, nis_modify_entry, nis_next_entry, nis_perror,

nis_remove_entry, and nis_sperror.

Network Information Services+ and NIS+ Namespace and Structure in AIX 5L Version 5.3 Network

Information Services (NIS and NIS+) Guide.

TCP/IP protocols in Networks and communication management.

List of NIS and NIS+ Programming References and Remote Procedure Call (RPC) Overview for

Programming in AIX 5L Version 5.3 Communications Programming Concepts.

nis_list (NIS+ API)

Purpose

Used to search a table in the NIS+ namespace.

Syntax

cc [flag . . .] file. . . -lnsl [library. . .]

#include <rpcsvc/nis.h>

nis_result * nis_list(name, flags, callback userdata);

nis_name name;

u_long flags;

int (*callback)();

void userdata;

230 Technical Reference: Communications, Volume 1

Description

One of a group of NIS+ APIs that is used to search and modify NIS+ tables, nis_list() is used to search a

table in the NIS+ namespace..

Entries within a table are named by NIS+ indexed names. An indexed name is a compound name that is

composed of a search criteria and a simple NIS+ name that identifies a table object. A search criteria is a

series of column names and their associated values enclosed in bracket [] characters. Indexed names

have the following form:

[colname=value,...],tablename

The list function, nis_list(), takes an indexed name as the value for the name parameter. Here, the

tablename should be a fully qualified NIS+ name unless the EXPAND_NAME flag is set. The second

parameter, flags, defines how the function will respond to various conditions. The value for this parameter

is created by logically OR ing together one or more flags from the following list:

FOLLOW_LINKS

If the table specified in name resolves to be a LINK type object, this flag specifies that the client

library follow that link and do the search at that object. If this flag is not set and the name resolves

to a link, the error NIS_NOTSEARCHABLE will be returned.

FOLLOW_PATH

This flag specifies that if the entry is not found within this table, the list operation should follow the

path specified in the table object. When used in conjunction with the ALL_RESULTS flag, it

specifies that the path should be followed regardless of the result of the search. When used in

conjunction with the FOLLOW_LINKS flag, named tables in the path that resolve to links will be

followed until the table they point to is located. If a table in the path is not reachable because no

server that serves it is available, the result of the operation will be either a ″soft″ success or a

″soft″ failure to indicate that not all tables in the path could be searched. If a name in the path

names is either an invalid or non-existent object, then it is silently ignored.

HARD_LOOKUP

This flag specifies that the operation should continue trying to contact a server of the named table

until a definitive result is returned (such as NIS_NOTFOUND).

 Warning: Use the flag HARD_LOOKUP carefully since it can cause the application to block

indefinitely during a network partition.

ALL_RESULTS

This flag can only be used in conjunction with FOLLOW_PATH and a callback function. When

specified, it forces all of the tables in the path to be searched. If name does not specify a search

criteria (imply that all entries are to be returned), then this flag will cause all of the entries in all of

the tables in the path to be returned.

NO_CACHE

This flag specifies that the client library should bypass any client object caches and get its

information directly from either the master server or a replica server for the named table.

MASTER_ONLY

This flag is even stronger than NO_CACHE as it specifies that the client library should only get its

information from the master server for a particular table. This guarantees that the information will

be up-to-date. However, there may be severe performance penalties associated with contacting

the master server directly on large networks. When used in conjunction with the HARD_LOOKUP

flag, this will block the list operation until the master server is up and available.

EXPAND_NAME

When specified, the client library will attempt to expand a partially qualified name by calling

nis_getnames(), which uses the environment variable NIS_PATH.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 231

RETURN_RESULT

This flag is used to specify that a copy of the returning object be returned in the nis_result

structure if the operation was successful.

 The third parameter to nis_list(), callback, is an optional pointer to a function that will process the

ENTRY type objects that are returned from the search. If this pointer is NULL, then all entries that match

the search criteria are returned in the nis_result structure; otherwise, this function will be called once for

each entry returned. When called, this function should return 0 when additional objects are desired, and 1

when it no longer wishes to see any more objects.

The fourth parameter, userdata, is simply passed to callback function along with the returned entry object.

The client can use this pointer to pass state information or other relevant data that the callback function

might need to process the entries.

Return Values

These functions return a pointer to a structure of type nis_result:

struct nis_result {

 nis_error status;

 struct {

 u_int objects_len;

 nis_object * objects_val;

 } objects;

 netobj cookie;

 u_long zticks;

 u_long dticks;

 u_long aticks;

 u_long cticks;

 };

The status member contains the error status of the the operation. A text message that describes the error

can be obtained by calling the function nis_sperrno().

The objects structure contains two members: objects_val is an array of nis_object structures;

objects_len is the number of cells in the array. These objects will be freed by a call to nis_freeresult(). If

you need to keep a copy of one or more objects, they can be copied with the function nis_clone_object()

and freed with the function nis_destroy_object().

The various ticks contain details of where the time (in microseconds) was taken during a request. They

can be used to tune one’s data organization for faster access and to compare different database

implementations.

zticks The time spent in the NIS+ service itself, this count starts when the server receives the request

and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the time a database call

starts, until a result is returned. If the request results in multiple calls to the database, this is the

sum of all the time spent in those calls.

aticks The time spent in any accelerators or caches. This includes the time required to locate the server

needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the client library and stops

when a result is returned. By subtracting the sum of the other ticks values from this value you can

obtain the local overhead of generating anNIS+ request.

 Subtracting the value in dticks from the value in zticks will yield the time spent in the service code itself.

Subtracting the sum of the values in zticks and aticks from the value in cticks will yield the time spent in

the client library itself.

232 Technical Reference: Communications, Volume 1

Note: All of the tick times are measured in microseconds.

Errors

The client library can return a variety of error returns and diagnostics. Following are some of the more

pertinent ones:

NIS_BADATTRIBUTE

The name of an attribute did not match up with a named column in the table, or the attribute did

not have an associated value.

NIS_BADNAME

The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST

A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED

The entry returned came from an object cache that has expired. This means that the time to live

value has gone to zero and the entry may have changed. If the flag NO_CACHE was passed to

the lookup function, the lookup function will retry the operation to get an unexpired copy of the

object.

NIS_CBERROR

An RPC error occurred on the server while it was calling back to the client. The transaction was

aborted at that time and any unsent data was discarded.

NIS_CBRESULTS

Even though the request was successful, all of the entries have been sent to your callback

function and are thus not included in this result.

NIS_FOREIGNNS

The name could not be completely resolved. When the name passed to the function would resolve

in a namespace that is outside the NIS+ name tree, this error is returned with a NIS+ object of

type DIRECTORY. The returned object contains the type of namespace and contact information

for a server within that namespace.

NIS_INVALIDOBJ

The object pointed to by object is not a valid NIS+ entry object for the given table. This could

occur if it had a mismatched number of columns, or a different data type (for example, binary or

text) than the associated column in the table.

NIS_LINKNAMEERROR

The name passed resolved to a LINK type object and the contents of the object pointed to an

invalid name.

NIS_MODFAIL

The attempted modification failed.

NIS_NAMEEXISTS

An attempt was made to add a name that already exists. To add the name, first remove the

existing name and then add the new name or modify the existing named object.

NIS_NAMEUNREACHABLE

This soft error indicates that a server for the desired directory of the named table object could not

be reached. This can occur when there is a network partition or the server has crashed.

Attempting the operation again may succeed. See the HARD_LOOKUP flag.

NIS_NOCALLBACK

The server was unable to contact the callback service on your machine. This results in no data

being returned.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 233

NIS_NOMEMORY

Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME

This hard error indicates that the named directory of the table object does not exist. This occurs

when the server that should be the parent of the server that serves the table does not know about

the directory in which the table resides.

NIS_NOSUCHTABLE

The named table does not exist.

NIS_NOT_ME

A request was made to a server that does not serve the given name. Normally this will not occur;

however, if you are not using the built in location mechanism for servers, you may see this if your

mechanism is broken.

NIS_NOTFOUND

No entries in the table matched the search criteria. If the search criteria was null (return all

entries), then this result means that the table is empty and may safely be removed by calling the

nis_remove(). If the FOLLOW_PATH flag was set, this error indicates that none of the tables in

the path contain entries that match the search criteria.

NIS_NOTMASTER

A change request was made to a server that serves the name, but it is not the master server. This

can occur when a directory object changes and it specifies a new master server. Clients that have

cached copies of the directory object in the /var/nis/NIS_SHARED_DIRCACHE file will need to

have their cache managers restarted (use nis_cachemgr -i to flush this cache).

NIS_NOTSAMEOBJ

An attempt to remove an object from the namespace was aborted because the object that would

have been removed was not the same object that was passed in the request.

NIS_NOTSEARCHABLE

The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL

This result is similar to NIS_NOTFOUND except that it means the request succeeded but resolved

to zero entries. When this occurs, the server returns a copy of the table object instead of an entry

so that the client may then process the path or implement some other local policy.

NIS_RPCERROR

This fatal error indicates the RPC subsystem failed in some way. Generally there will be a

syslog(3) message indicating why the RPC request failed.

NIS_S_NOTFOUND

The named entry does not exist in the table; however, not all tables in the path could be searched,

so the entry may exist in one of those tables.

NIS_S_SUCCESS

Even though the request was successful, a table in the search path was not able to be searched,

so the result may not be the same as the one you would have received if that table had been

accessible.

NIS_SUCCESS

The request was successful.

NIS_SYSTEMERROR

Some form of generic system error occurred while attempting the request. Check the syslog(3)

record for error messages from the server.

NIS_TOOMANYATTRS

The search criteria passed to the server had more attributes than the table had searchable

columns.

234 Technical Reference: Communications, Volume 1

NIS_TRYAGAIN

The server connected to was too busy to handle your request. add_entry(), remove_entry(),

and modify_entry() return this error when the master server is currently updating its internal

state. It can be returned to nis_list() when the function specifies a callback and the server does

not have the resources to handle callbacks.

NIS_TYPEMISMATCH

An attempt was made to add or modify an entry in a table, and the entry passed was of a different

type than the table.

Environment

NIS_PATH

When set, this variable is the search path used by nis_list() if the flag EXPAND_NAME is set.

Notes:

v The path used when the flag FOLLOW_PATH is specified is the one present in the first table searched.

The path values in tables that are subsequently searched are ignored.

v It is legal to call functions that would access the nameservice from within a list callback. However,

calling a function that would itself use a callback, or calling nis_list() with a callback from within a list

callback function, is not currently supported.

Related Information

nis_add_entry, nis_first_entry, nis_local_directory, nis_lookup, nis_modify_entry, nis_next_entry, nis_perror,

nis_remove_entry, and nis_sperror.

Network Information Services+ and NIS+ Namespace and Structure in AIX 5L Version 5.3 Network

Information Services (NIS and NIS+) Guide.

TCP/IP protocols in Networks and communication management.

List of NIS and NIS+ Programming References and Remote Procedure Call (RPC) Overview for

Programming in AIX 5L Version 5.3 Communications Programming Concepts.

nis_local_directory (NIS+ API)

Purpose

Returns the name of the NIS+ domain for this machine.

Syntax

cc [flag . . .] file. . . -lnsl [library. . .]

#include <rpcsvc/nis.h>

nis_name nis_local_directory(void)

Description

One of a group of NIS+ APIs that return several default NIS+ names associated with the current process,

nis_local_directory() returns the name of the NIS+ domain for this machine. This is currently the same

as the Secure RPC domain returned by the sysinfo(2) system call.

Note: The result returned by this routine is a pointer to a data structure with the NIS+ library, and should

be considered a ″read-only″ result and should not be modified.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 235

Environment

nis_group

This variable contains the name of the local NIS+ group. If the name is not fully qualified, the

value returned by nis_local_directory() will be concatenated to it.

Related Information

nis_add_entry, nis_first_entry, nis_list, nis_lookup, nis_modify_entry, nis_next_entry, nis_perror,

nis_remove_entry, and nis_sperror.

Network Information Services+ and NIS+ Namespace and Structure in AIX 5L Version 5.3 Network

Information Services (NIS and NIS+) Guide.

TCP/IP protocols in Networks and communication management.

List of NIS and NIS+ Programming References and Remote Procedure Call (RPC) Overview for

Programming in AIX 5L Version 5.3 Communications Programming Concepts.

nis_lookup (NIS+ API)

Purpose

Used to resolve an NIS+ name and return a copy of that object from an NIS+ server.

Syntax

cc [flag . . .] file. . . -lnsl [library. . .]

#include <rpcsvc/nis.h>

nis_result * nis_lookup(nis_name name, u_long flags);

void nis_freeresult(nis_result * result);

Description

One of a group of NIS+ APIs that is used to locate and manipulate all NIS+ objects except the NIS+ entry

objects, nis_lookup() resolves an NIS+ name and returns a copy of that object from an NIS+ server.

This function should be used only with names that refer to an NIS+Directory, NIS+Table, NIS+Group, or

NIS+Private object. If a name refers to an NIS+ entry object, the functions listed in nis_subr(3N) should

be used.

nis_lookup returns a pointer to a nis_result structure that must be freed by calling nis_freeresult()

when you have finished using it. If one or more of the objects returned in the structure need to be

retained, they can be copied with nis_clone_object(3N).

nis_lookup() takes two parameters, the name of the object to be resolved in name, and a flags

parameter, flags. The object name is expected to correspond to the syntax of a non-indexed NIS+ name.

The nis_lookup() function is the only function from this group that can use a non-fully qualified name. If

the parameter name is not a fully qualified name, then the flag EXPAND_NAME must be specified in the

call. If this flag is not specified, the function will fail with the error NIS+BADNAME.

The flags parameter is constructed by logically OR ing zero or more flags from the following list:

EXPAND_NAME

When specified, the client library will attempt to expand a partially qualified name by calling the

function nis_getnames(), which uses the environment variable nis_path.

236 Technical Reference: Communications, Volume 1

FOLLOW_LINKS

When specified, the client library will ″follow″ links by issuing another NIS+ lookup call for the

object named by the link. If the linked object is itself a link, then this process will iterate until either

an object is found that is not a link type object, or the library has followed 16 links.

HARD_LOOKUP

When specified, the client library will retry the lookup until it is answered by a server. Using this

flag will cause the library to block until at least one NIS+ server is available. If the network

connectivity is impaired, this can be a relatively long time.

MASTER_ONLY

When specified, the client library will bypass any object caches and any domain replicas and fetch

the object from the NIS+ master server for the object’s domain. This insures that the object

returned is up-to-date at the cost of a possible performance degradation and failure if the master

server is unavailable or physically distant.

NO_CACHE

When specified, the client library will bypass any object caches and will get the object from either

the master NIS+ server or one of its replicas.

 The status value may be translated to ascii text using the function nis_sperrno().

On return, the objects array in the result will contain one and possibly several objects that were resolved

by the request. If the FOLLOW_LINKS flag was present, on success the function could return several

entry objects if the link in question pointed within a table. If an error occurred when following a link, the

objects array will contain a copy of the link object itself.

Return Values

These functions return a pointer to a structure of type nis_result:

struct nis_result {

 nis_error status;

 struct {

 u_int objects_len;

 nis_object * objects_val;

 } objects;

 netobj cookie;

 u_long zticks;

 u_long dticks;

 u_long aticks;

 u_long cticks;

 };

The status member contains the error status of the the operation. A text message that describes the error

can be obtained by calling the function nis_sperrno().

The objects structure contains two members: objects_val is an array of nis_object structures;

objects_lenis the number of cells in the array. These objects will be freed by a call to nis_freeresult(). If

you need to keep a copy of one or more objects, they can be copied with the function nis_clone_object()

and freed with the function nis_destroy_object().

The various ticks contain details of where the time (in microseconds) was taken during a request. They

can be used to tune one’s data organization for faster access and to compare different database

implementations.

zticks The time spent in the NIS+ service itself, this count starts when the server receives the request

and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the time a database call

starts, until a result is returned. If the request results in multiple calls to the database, this is the

sum of all the time spent in those calls.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 237

aticks The time spent in any accelerators or caches. This includes the time required to locate the server

needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the client library and stops

when a result is returned. By subtracting the sum of the other ticks values from this value you can

obtain the local overhead of generating an NIS+ request.

 Subtracting the value in dticks from the value in zticks will yield the time spent in the service code itself.

Subtracting the sum of the values in zticks and aticks from the value in cticks will yield the time spent in

the client library itself.

Note: All of the tick times are measured in microseconds.

Errors

The client library can return a variety of error returns and diagnostics. Following are some of the more

pertinent ones:

NIS_BADNAME

The name passed to the function is not a legal NIS+ name.

NIS_CACHEEXPIRED

The object returned came from an object cache that has expired. This means that the time to live

value has gone to zero and the entry may have changed. If the flag NO_CACHE was passed to

the lookup function, the lookup function will retry the operation to get an unexpired copy of the

object.

NIS_FOREIGNNS

The name could not be completely resolved. When the name passed to the function would resolve

in a namespace that is outside the NIS+ name tree, this error is returned with a NIS+ object of

type DIRECTORY. The returned object contains the type of namespace and contact information

for a server within that namespace.

NIS_INVALIDOBJ

The object pointed to by obj is not a valid NIS+ object.

NIS_LINKNAMEERROR

The name passed resolved to a LINK type object and the contents of the object pointed to an

invalid name.

NIS_MODFAIL

The attempted modification failed.

NIS_NAMEEXISTS

An attempt was made to add a name that already exists. To add the name, first remove the

existing name and then add the new name or modify the existing named object.

NIS_NAMEUNREACHABLE

A server for the directory of the named object could not be reached. This can occur when there is

a network partition or all the server s have crashed. Attempting the operation again may succeed.

See the HARD_LOOKUP flag.

NIS_NOMEMORY

Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME

This hard error indicates that the named directory of the table object does not exist. This occurs

when the server that should be the parent of the server that serves the table does not know about

the directory in which the table resides.

NIS_NOSUCHTABLE

The named table does not exist.

238 Technical Reference: Communications, Volume 1

NIS_NOT_ME

A request was made to a server that does not serve the given name. Normally this will not occur;

however, if you are not using the built-in location mechanism for servers, you may see this if your

mechanism is broken.

NIS_NOTFOUND

The named object does not exist in the namespace.

NIS_NOTMASTER

An attempt was made to update the database on a replica server.

NIS_NOTSAMEOBJ

An attempt to remove an object from the namespace was aborted because the object that would

have been removed was not the same object that was passed in the request.

NIS_RPCERROR

This fatal error indicates the RPC subsystem failed in some way. Generally there will be a

syslog(3) message indicating why the RPC request failed.

NIS_S_SUCCESS

The request was successful; however, the object returned came from an object cache and not

directly from the server. If you want to see objects from object caches, you must specify the flag

NO_CACHE when you call the lookup function.

NIS_SUCCESS

The request was successful.

NIS_SYSTEMERROR

A generic system error occurred while attempting the request. Most commonly the server has

crashed or the database has become corrupted. Check the syslog record for error messages from

the server.

NIS_TRYAGAIN

The server connected to was too busy to handle your request. For the add, remove, and modify

operations this is returned when either the master server for a directory is unavailable or it is in the

process of checkpointing its database. It can also be returned when the server is updating its

internal state or, in the case of nis_list(), if the client specifies a callback and the server does not

have the resources to handle callbacks.

NIS_UNKNOWNOBJ

The object returned is of an unknown type.

Environment

NIS_PATH

If the flag EXPAND_NAME is set, this variable is the search path used by nis_lookup().

Related Information

nis_add_entry, nis_first_entry, nis_list, nis_local_directory, nis_modify_entry, nis_next_entry, nis_perror,

nis_remove_entry, and nis_sperror.

Network Information Services+ and NIS+ Namespace and Structure in AIX 5L Version 5.3 Network

Information Services (NIS and NIS+) Guide.

TCP/IP protocols in Networks and communication management.

List of NIS and NIS+ Programming References and Remote Procedure Call (RPC) Overview for

Programming in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 239

nis_modify_entry (NIS+ API)

Purpose

Used to modify an NIS+ object identified by name.

Syntax

cc [flag . . .] file. . . -lnsl [library. . .]

#include <rpcsvc/nis.h>

nis_remove_entry * nis_remove_entry(nis_name name, nis_object * object, u_long flags);

Description

One of a group of NIS+ APIs that is used to search and modify NIS+ tables; nis_modify_entry() is used

to remove the identified entry from the table or a set of entries identified by table_name.

Entries within a table are named by NIS+ indexed names. An indexed name is a compound name that is

composed of a search criteria and a simple NIS+ name that identifies a table object. A search criteria is a

series of column names and their associated values enclosed in bracket [] characters. Indexed names

have the following form:

[colname=value,...],tablename

nis_modify_entry() modifies an object identified by name. The parameter object should point to an entry

with the EN_MODIFIED flag set in each column that contains new information.

The owner, group, and access rights of an entry are modified by placing the modified information into the

respective fields of the parameter, object: zo_owner, zo_group, and zo_access.

These columns will replace their counterparts in the entry that is stored in the table. The entry passed

must have the same number of columns, same type, and valid data in the modified columns for this

operation to succeed.

If the flags parameter contains the flag MOD_SAMEOBJ, the object pointed to by object is assumed to be

a cached copy of the original object. If the OID of the object passed is different than the OID of the object

the server fetches, then the operation fails with the NIS_NOTSAMEOBJ error. This can be used to

implement a simple read-modify-write protocol that will fail if the object is modified before the client can

write the object back.

If the flag RETURN_RESULT has been specified, the server will return a copy of the resulting object if the

operation was successful.

To succeed, nis_modify_entry() must inherit the PAF_TRUSTED_PATH attribute.

Return Values

These functions return a pointer to a structure of type nis_result:

struct nis_result {

 nis_error status;

 struct {

 u_int objects_len;

 nis_object * objects_val;

 } objects;

 netobj cookie;

 u_long zticks;

240 Technical Reference: Communications, Volume 1

u_long dticks;

 u_long aticks;

 u_long cticks;

 };

The status member contains the error status of the the operation. A text message that describes the error

can be obtained by calling the function nis_sperrno().

The objects structure contains two members: objects_val is an array of nis_object structures;

objects_len is the number of cells in the array. These objects will be freed by a call to nis_freeresult(). If

you need to keep a copy of one or more objects, they can be copied with the function nis_clone_object()

and freed with the function nis_destroy_object().

The various ticks contain details of where the time (in microseconds) was taken during a request. They

can be used to tune one’s data organization for faster access and to compare different database

implementations.

zticks The time spent in the NIS+ service itself, this count starts when the server receives the request

and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the time a database call

starts, until a result is returned. If the request results in multiple calls to the database, this is the

sum of all the time spent in those calls.

aticks The time spent in any accelerators or caches. This includes the time required to locate the server

needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the client library and stops

when a result is returned. By subtracting the sum of the other ticks values from this value you can

obtain the local overhead of generating an NIS+ request.

 Subtracting the value in dticks from the value in zticks will yield the time spent in the service code itself.

Subtracting the sum of the values in zticks and aticks from the value in cticks will yield the time spent in

the client library itself.

Note: All of the tick times are measured in microseconds.

Errors

The client library can return a variety of error returns and diagnostics. Following are some of the more

pertinent ones:

NIS_BADATTRIBUTE

The name of an attribute did not match up with a named column in the table, or the attribute did

not have an associated value.

NIS_BADNAME

The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST

A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED

The entry returned came from an object cache that has expired. This means that the time to live

value has gone to zero and the entry may have changed. If the flag NO_CACHE was passed to

the lookup function, the lookup function will retry the operation to get an unexpired copy of the

object.

NIS_CBERROR

An RPC error occurred on the server while it was calling back to the client. The transaction was

aborted at that time and any unsent data was discarded.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 241

NIS_CBRESULTS

Even though the request was successful, all of the entries have been sent to your callback

function and are thus not included in this result.

NIS_FOREIGNNS

The name could not be completely resolved. When the name passed to the function would resolve

in a namespace that is outside the NIS+ name tree, this error is returned with a NIS+ object of

type DIRECTORY. The returned object contains the type of namespace and contact information

for a server within that namespace.

NIS_INVALIDOBJ

The object pointed to by object is not a valid NIS+ entry object for the given table. This could

occur if it had a mismatched number of columns, or a different data type (for example, binary or

text) than the associated column in the table.

NIS_LINKNAMEERROR

The name passed resolved to a LINK type object and the contents of the object pointed to an

invalid name.

NIS_MODFAIL

The attempted modification failed.

NIS_NAMEEXISTS

An attempt was made to add a name that already exists. To add the name, first remove the

existing name and then add the new name or modify the existing named object.

NIS_NAMEUNREACHABLE

This soft error indicates that a server for the desired directory of the named table object could not

be reached. This can occur when there is a network partition or the server has crashed.

Attempting the operation again may succeed. See the HARD_LOOKUP flag.

NIS_NOCALLBACK

The server was unable to contact the callback service on your machine. This results in no data

being returned.

NIS_NOMEMORY

Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME

This hard error indicates that the named directory of the table object does not exist. This occurs

when the server that should be the parent of the server that serves the table does not know about

the directory in which the table resides.

NIS_NOSUCHTABLE

The named table does not exist.

NIS_NOT_ME

A request was made to a server that does not serve the given name. Normally, this will not occur;

however, if you are not using the built in location mechanism for servers, you may see this if your

mechanism is broken.

NIS_NOTFOUND

No entries in the table matched the search criteria. If the search criteria was null (return all

entries), then this result means that the table is empty and may safely be removed by calling the

nis_remove(). If the FOLLOW_PATH flag was set, this error indicates that none of the tables in

the path contain entries that match the search criteria.

NIS_NOTMASTER

A change request was made to a server that serves the name, but it is not the master server. This

can occur when a directory object changes and it specifies a new master server. Clients that have

cached copies of the directory object in the /var/nis/NIS_SHARED_DIRCACHE file will need to

have their cache managers restarted (use nis_cachemgr -i to flush this cache).

242 Technical Reference: Communications, Volume 1

NIS_NOTSAMEOBJ

An attempt to remove an object from the namespace was aborted because the object that would

have been removed was not the same object that was passed in the request.

NIS_NOTSEARCHABLE

The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL

This result is similar to NIS_NOTFOUND except that it means the request succeeded but resolved

to zero entries. When this occurs, the server returns a copy of the table object instead of an entry

so that the client may then process the path or implement some other local policy.

NIS_RPCERROR

This fatal error indicates the RPC subsystem failed in some way. Generally there will be a

syslog(3) message indicating why the RPC request failed.

NIS_S_NOTFOUND

The named entry does not exist in the table; however, not all tables in the path could be searched,

so the entry may exist in one of those tables.

NIS_S_SUCCESS

Even though the request was successful, a table in the search path was not able to be searched,

so the result may not be the same as the one you would have received if that table had been

accessible.

NIS_SUCCESS

The request was successful.

NIS_SYSTEMERROR

Some form of generic system error occurred while attempting the request. Check the syslog(3)

record for error messages from the server.

NIS_TOOMANYATTRS

The search criteria passed to the server had more attributes than the table had searchable

columns.

NIS_TRYAGAIN

The server connected to was too busy to handle your request. add_entry(), remove_entry(),

and modify_entry() return this error when the master server is currently updating its internal

state. It can be returned to nis_list() when the function specifies a callback and the server does

not have the resources to handle callbacks.

NIS_TYPEMISMATCH

An attempt was made to add or modify an entry in a table, and the entry passed was of a different

type than the table.

Summary of Trusted

To succeed, nis_modify_entry() must inherit the PAF_TRUSTED_PATH attribute.

Related Information

nis_add_entry, nis_first_entry, nis_list, nis_local_directory, nis_lookup, nis_next_entry, nis_perror,

nis_remove_entry, and nis_sperror.

Network Information Services+ and NIS+ Namespace and Structure in AIX 5L Version 5.3 Network

Information Services (NIS and NIS+) Guide.

TCP/IP protocols in Networks and communication management.

List of NIS and NIS+ Programming References and Remote Procedure Call (RPC) Overview for

Programming in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 243

nis_next_entry (NIS+ API)

Purpose

Used to fetch entries from a table one at a time.

Syntax

cc [flag . . .] file. . . -lnsl [library. . .]

#include <rpcsvc/nis.h>

nis_result * nis_next_entry(nis_name table_name, netobj cookie)

Description

One of a group of NIS+ APIs that is used to search and modify NIS+ tables, nis_next_entry() is used to

retrieve the ″next″ entry from a table specified by table_name.

Entries within a table are named by NIS+ indexed names. An indexed name is a compound name that is

composed of a search criteria and a simple NIS+ name that identifies a table object. A search criteria is a

series of column names and their associated values enclosed in bracket [] characters. Indexed names

have the following form:

[colname=value,...],tablename

nis_next_entry() retrieves the ″next″ entry from a table specified by table_name. The order in which

entries are returned is not guaranteed. Further, should an update occur in the table between client calls to

nis_next_entry(), there is no guarantee that an entry that is added or modified will be seen by the client.

Should an entry be removed from the table that would have been the ″next″ entry returned, the error

NIS_CHAINBROKEN is returned instead.

Return Values

These functions return a pointer to a structure of type nis_result:

struct nis_result {

 nis_error status;

 struct {

 u_int objects_len;

 nis_object * objects_val;

 } objects;

 netobj cookie;

 u_long zticks;

 u_long dticks;

 u_long aticks;

 u_long cticks;

 };

The status member contains the error status of the the operation. A text message that describes the error

can be obtained by calling the function nis_sperrno().

The objects structure contains two members: objects_val is an array of nis_object structures;

objects_len is the number of cells in the array. These objects will be freed by a call to nis_freeresult(). If

you need to keep a copy of one or more objects, they can be copied with the function nis_clone_object()

and freed with the function nis_destroy_object().

The various ticks contain details of where the time (in microseconds) was taken during a request. They

can be used to tune one’s data organization for faster access and to compare different database

implementations.

244 Technical Reference: Communications, Volume 1

zticks The time spent in the NIS+ service itself, this count starts when the server receives the request

and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the time a database call

starts, until a result is returned. If the request results in multiple calls to the database, this is the

sum of all the time spent in those calls.

aticks The time spent in any accelerators or caches. This includes the time required to locate the server

needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the client library and stops

when a result is returned. By subtracting the sum of the other ticks values from this value you can

obtain the local overhead of generating an NIS+ request.

 Subtracting the value in dticks from the value in zticks will yield the time spent in the service code itself.

Subtracting the sum of the values in zticks and aticks from the value in cticks will yield the time spent in

the client library itself.

Note: All of the tick times are measured in microseconds.

Errors

The client library can return a variety of error returns and diagnostics. Following are some of the more

pertient ones:

NIS_BADATTRIBUTE

The name of an attribute did not match up with a named column in the table, or the attribute did

not have an associated value.

NIS_BADNAME

The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST

A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED

The entry returned came from an object cache that has expired. This means that the time to live

value has gone to zero and the entry may have changed. If the flag NO_CACHE was passed to

the lookup function, the lookup function will retry the operation to get an unexpired copy of the

object.

NIS_CBERROR

An RPC error occurred on the server while it was calling back to the client. The transaction was

aborted at that time and any unsent data was discarded.

NIS_CBRESULTS

Even though the request was successful, all of the entries have been sent to your callback

function and are thus not included in this result.

NIS_FOREIGNNS

The name could not be completely resolved. When the name passed to the function would resolve

in a namespace that is outside the NIS+ name tree, this error is returned with a NIS+ object of

type DIRECTORY. The returned object contains the type of namespace and contact information

for a server within that namespace.

NIS_INVALIDOBJ

The object pointed to by object is not a valid NIS+ entry object for the given table. This could

occur if it had a mismatched number of columns, or a different data type (for example, binary or

text) than the associated column in the table.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 245

NIS_LINKNAMEERROR

The name passed resolved to a LINK type object and the contents of the object pointed to an

invalid name.

NIS_MODFAIL

The attempted modification failed.

NIS_NAMEEXISTS

An attempt was made to add a name that already exists. To add the name, first remove the

existing name and then add the new name or modify the existing named object.

NIS_NAMEUNREACHABLE

This soft error indicates that a server for the desired directory of the named table object could not

be reached. This can occur when there is a network partition or the server has crashed.

Attempting the operation again may succeed. See the HARD_LOOKUP flag.

NIS_NOCALLBACK

The server was unable to contact the callback service on your machine. This results in no data

being returned.

NIS_NOMEMORY

Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME

This hard error indicates that the named directory of the table object does not exist. This occurs

when the server that should be the parent of the server that serves the table does not know about

the directory in which the table resides.

NIS_NOSUCHTABLE

The named table does not exist.

NIS_NOT_ME

A request was made to a server that does not serve the given name. Normally, this will not occur;

however, if you are not using the built in location mechanism for servers, you may see this if your

mechanism is broken.

NIS_NOTFOUND

No entries in the table matched the search criteria. If the search criteria was null (return all

entries), then this result means that the table is empty and may safely be removed by calling the

nis_remove(). If the FOLLOW_PATH flag was set, this error indicates that none of the tables in

the path contain entries that match the search criteria.

NIS_NOTMASTER

A change request was made to a server that serves the name, but it is not the master server. This

can occur when a directory object changes and it specifies a new master server. Clients that have

cached copies of the directory object in the /var/nis/NIS_SHARED_DIRCACHE file will need to

have their cache managers restarted (use nis_cachemgr -i to flush this cache).

NIS_NOTSAMEOBJ

An attempt to remove an object from the namespace was aborted because the object that would

have been removed was not the same object that was passed in the request.

NIS_NOTSEARCHABLE

The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL

This result is similar to NIS_NOTFOUND, except that it means the request succeeded but

resolved to zero entries. When this occurs, the server returns a copy of the table object instead of

an entry so that the client may then process the path or implement some other local policy.

NIS_RPCERROR

This fatal error indicates the RPC subsystem failed in some way. Generally there will be a

syslog(3) message indicating why the RPC request failed.

246 Technical Reference: Communications, Volume 1

NIS_S_NOTFOUND

The named entry does not exist in the table; however, not all tables in the path could be searched,

so the entry may exist in one of those tables.

NIS_S_SUCCESS

Even though the request was successful, a table in the search path was not able to be searched,

so the result may not be the same as the one you would have received if that table had been

accessible.

NIS_SUCCESS

The request was successful.

NIS_SYSTEMERROR

Some form of generic system error occurred while attempting the request. Check the syslog(3)

record for error messages from the server.

NIS_TOOMANYATTRS

The search criteria passed to the server had more attributes than the table had searchable

columns.

NIS_TRYAGAIN

The server connected to was too busy to handle your request. add_entry(), remove_entry(),

and modify_entry() return this error when the master server is currently updating its internal

state. It can be returned to nis_list() when the function specifies a callback and the server does

not have the resources to handle callbacks.

NIS_TYPEMISMATCH

An attempt was made to add or modify an entry in a table, and the entry passed was of a different

type than the table.

Related Information

nis_add_entry, nis_first_entry, nis_list, nis_local_directory, nis_lookup, nis_modify_entry, nis_perror,

nis_remove_entry, and nis_sperror.

Network Information Services+ and NIS+ Namespace and Structure in AIX 5L Version 5.3 Network

Information Services (NIS and NIS+) Guide.

TCP/IP protocols in Networks and communication management.

List of NIS and NIS+ Programming References and Remote Procedure Call (RPC) Overview for

Programming in AIX 5L Version 5.3 Communications Programming Concepts.

nis_perror (NIS+ API)

Purpose

Prints the error message corresponding to status as ″label: error message″ on standard error.

Syntax

cc

 [

flag

 ...]

file

 ...

-lnsl

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 247

[

library

 ...]

#include <rpcsvc/nis.h>

char * nis_sperrno(nis_error status);

void nis_perror(nis_error status, char * label);

void nis_lerror(nis_error status, char * label);

char * nis_sperror_r(nis_error status, char * label, char * buf, int length);

char * nis_sperror(nis_error status, char * label);

Description

One of a group of NIS+ APIs that convert NIS+ status values into strings, nis_perror prints the error

messages corresponding to status as ″label: error messages″ on standard error.

Related Information

nis_add_entry, nis_first_entry, nis_list, nis_local_directory, nis_lookup, nis_modify_entry, nis_next_entry,

nis_remove_entry, and nis_sperror.

Network Information Services+ and NIS+ Namespace and Structure in AIX 5L Version 5.3 Network

Information Services (NIS and NIS+) Guide.

TCP/IP protocols in Networks and communication management.

List of NIS and NIS+ Programming References and Remote Procedure Call (RPC) Overview for

Programming in AIX 5L Version 5.3 Communications Programming Concepts.

nis_remove_entry (NIS+ API)

Purpose

Used to remove an NIS+ object from the NIS+ table_name.

Syntax

cc [flag . . .] file. . . -lnsl [library. . .]

#include <rpcsvc/nis.h>

nis_result * nis_remove_entry(nis_name name, nis_object, * object, u_long flags);

Description

One of a group of NIS+ APIs that is used to search and modify NIS+ tables, nis_remove_entry() is used

to remove the identified entry from the table or a set of entries identified by table_name.

Entries within a table are named by NIS+ indexed names. An indexed name is a compound name that is

composed of a search criteria and a simple NIS+ name that identifies a table object. A search criteria is a

series of column names and their associated values enclosed in bracket [] characters. Indexed names

have the following form:

[colname=value,...],tablename

nis_remove_entry() removes the identified entry from the table or a set of entries identified by

table_name. If the parameter object is non-null, it is presumed to point to a cached copy of the entry.

When the removal is attempted, and the object that would be removed is not the same as the cached

object pointed to by object, then the operation will fail with an NIS_NOTSAMEOBJ error. If an object is

passed with this function, the search criteria in name is optional as it can be constructed from the values

within the entry. However, if no object is present, the search criteria must be included in the name

parameter. If the flags variable is null, and the search criteria does not uniquely identify an entry, the

248 Technical Reference: Communications, Volume 1

NIS_NOTUNIQUE error is returned and the operation is aborted. If the flag parameter REM_MULTIPLE is

passed, and if remove permission is allowed for each of these objects, then all objects that match the

search criteria will be removed. Note that a null search criteria and the REM_MULTIPLE flag will remove

all entries in a table.

To succeed, nis_remove_entry() must inherit the PAF_TRUSTED_PATH attribute.

Return Values

These functions return a pointer to a structure of type nis_result:

struct nis_result {

 nis_error status;

 struct {

 u_int objects_len;

 nis_object * objects_val;

 } objects;

 netobj cookie;

 u_long zticks;

 u_long dticks;

 u_long aticks;

 u_long cticks;

 };

The status member contains the error status of the the operation. A text message that describes the error

can be obtained by calling the function nis_sperrno().

The objects structure contains two members: objects_val is an array of nis_object structures;

objects_len is the number of cells in the array. These objects will be freed by a call to nis_freeresult(). If

you need to keep a copy of one or more objects, they can be copied with the function nis_clone_object()

and freed with the function nis_destroy_object().

The various ticks contain details of where the time (in microseconds) was taken during a request. They

can be used to tune one’s data organization for faster access and to compare different database

implementations.

zticks The time spent in the NIS+ service itself, this count starts when the server receives the request

and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from the time a database call

starts until a result is returned. If the request results in multiple calls to the database, this is the

sum of all the time spent in those calls.

aticks The time spent in any accelerators or caches. This includes the time required to locate the server

needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter the client library and stops

when a result is returned. By subtracting the sum of the other ticks values from this value you can

obtain the local overhead of generating an NIS+ request.

 Subtracting the value in dticks from the value in zticks will yield the time spent in the service code itself.

Subtracting the sum of the values in zticks and aticks from the value in cticks will yield the time spent in

the client library itself.

Note: All of the tick times are measured in microseconds.

Errors

The client library can return a variety of error returns and diagnostics. Following are some of the mor

pertient ones:

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 249

NIS_BADATTRIBUTE

The name of an attribute did not match up with a named column in the table, or the attribute did

not have an associated value.

NIS_BADNAME

The name passed to the function is not a legal NIS+ name.

NIS_BADREQUEST

A problem was detected in the request structure passed to the client library.

NIS_CACHEEXPIRED

The entry returned came from an object cache that has expired. This means that the time to live

value has gone to zero and the entry may have changed. If the flag NO_CACHE was passed to

the lookup function, the lookup function will retry the operation to get an unexpired copy of the

object.

NIS_CBERROR

An RPC error occurred on the server while it was calling back to the client. The transaction was

aborted at that time and any unsent data was discarded.

NIS_CBRESULTS

Even though the request was successful, all of the entries have been sent to your callback

function and are thus not included in this result.

NIS_FOREIGNNS

The name could not be completely resolved. When the name passed to the function would resolve

in a namespace that is outside the NIS+ name tree, this error is returned with a NIS+ object of

type DIRECTORY. The returned object contains the type of namespace and contact information

for a server within that namespace.

NIS_INVALIDOBJ

The object pointed to by object is not a valid NIS+ entry object for the given table. This could

occur if it had a mismatched number of columns, or a different data type (for example, binary or

text) than the associated column in the table.

NIS_LINKNAMEERROR

The name passed resolved to a LINK type object and the contents of the object pointed to an

invalid name.

NIS_MODFAIL

The attempted modification failed.

NIS_NAMEEXISTS

An attempt was made to add a name that already exists. To add the name, first remove the

existing name and then add the new name or modify the existing named object.

NIS_NAMEUNREACHABLE

This soft error indicates that a server for the desired directory of the named table object could not

be reached. This can occur when there is a network partition or the server has crashed.

Attempting the operation again may succeed. See the HARD_LOOKUP flag.

NIS_NOCALLBACK

The server was unable to contact the callback service on your machine. This results in no data

being returned.

NIS_NOMEMORY

Generally a fatal result. It means that the service ran out of heap space.

NIS_NOSUCHNAME

This hard error indicates that the named directory of the table object does not exist. This occurs

when the server that should be the parent of the server that serves the table does not know about

the directory in which the table resides.

250 Technical Reference: Communications, Volume 1

NIS_NOSUCHTABLE

The named table does not exist.

NIS_NOT_ME

A request was made to a server that does not serve the given name. Normally, this will not occur;

however, if you are not using the built in location mechanism for servers, you may see this if your

mechanism is broken.

NIS_NOTFOUND

No entries in the table matched the search criteria. If the search criteria was null (return all

entries), then this result means that the table is empty and may safely be removed by calling the

nis_remove(). If the FOLLOW_PATH flag was set, this error indicates that none of the tables in

the path contain entries that match the search criteria.

NIS_NOTMASTER

A change request was made to a server that serves the name, but it is not the master server. This

can occur when a directory object changes and it specifies a new master server. Clients that have

cached copies of the directory object in the /var/nis/NIS_SHARED_DIRCACHE file will need to

have their cache managers restarted (use nis_cachemgr -i to flush this cache).

NIS_NOTSAMEOBJ

An attempt to remove an object from the namespace was aborted because the object that would

have been removed was not the same object that was passed in the request.

NIS_NOTSEARCHABLE

The table name resolved to a NIS+ object that was not searchable.

NIS_PARTIAL

This result is similar to NIS_NOTFOUND except that it means the request succeeded but resolved

to zero entries. When this occurs, the server returns a copy of the table object instead of an entry

so that the client may then process the path or implement some other local policy.

NIS_RPCERROR

This fatal error indicates the RPC subsystem failed in some way. Generally there will be a

syslog(3) message indicating why the RPC request failed.

NIS_S_NOTFOUND

The named entry does not exist in the table; however, not all tables in the path could be searched,

so the entry may exist in one of those tables.

NIS_S_SUCCESS

Even though the request was successful, a table in the search path was not able to be searched,

so the result may not be the same as the one you would have received if that table had been

accessible.

NIS_SUCCESS

The request was successful.

NIS_SYSTEMERROR

Some form of generic system error occurred while attempting the request. Check the syslog(3)

record for error messages from the server.

NIS_TOOMANYATTRS

The search criteria passed to the server had more attributes than the table had searchable

columns.

NIS_TRYAGAIN

The server connected to was too busy to handle your request. add_entry(), remove_entry(),

and modify_entry() return this error when the master server is currently updating its internal

state. It can be returned to nis_list() when the function specifies a callback and the server does

not have the resources to handle callbacks.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 251

NIS_TYPEMISMATCH

An attempt was made to add or modify an entry in a table, and the entry passed was of a different

type than the table.

Summary of Trusted

To succeed, nis_remove_entry() must inherit the PAF_TRUSTED_PATH attribute.

Related Information

nis_add_entry, nis_first_entry, nis_list, nis_local_directory, nis_lookup, nis_modify_entry, nis_next_entry,

nis_perror, and nis_sperror.

Network Information Services+ and NIS+ Namespace and Structure in AIX 5L Version 5.3 Network

Information Services (NIS and NIS+) Guide.

TCP/IP protocols in Networks and communication management.

List of NIS and NIS+ Programming References and Remote Procedure Call (RPC) Overview for

Programming in AIX 5L Version 5.3 Communications Programming Concepts.

nis_sperror (NIS+ API)

Purpose

Returns a pointer to a string that can be used or copied using the strdup function.

Syntax

cc

 [

flag

 ...]

file

 ...

-lnsl

 [

library

 ...]

#include <rpcsvc/nis.h>

char * nis_sperror(nis_error status, char * label);

Description

One of a group of NIS+ APIs that convert NIS+ status values into strings, nis_sperror returns a pointer to

a string that can be used or copied using the strdup function. The caller must supply a string buffer, buf,

large enough to hold the error string (a buffer size of 128 bytes is guaranteed to be sufficiently large).

status and label are the same as for nis_perror. The pointer returned by the function is a pointer to buf.

length specifies the number of characters to copy from the error string to buf. The string is returned as a

pointer to a buffer that is reused on each call.

Note: When compiling multithreaded applications, see Writing Reentrant and Thread-Safe Code for

information about the use of the _REENTRANT flag.

Related Information

nis_add_entry, nis_first_entry, nis_list, nis_local_directory, nis_lookup, nis_modify_entry, nis_next_entry,

nis_perror, and nis_remove_entry.

252 Technical Reference: Communications, Volume 1

Network Information Services+ and NIS+ Namespace and Structure in AIX 5L Version 5.3 Network

Information Services (NIS and NIS+) Guide.

TCP/IP protocols in Networks and communication management.

List of NIS and NIS+ Programming References and Remote Procedure Call (RPC) Overview for

Programming in AIX 5L Version 5.3 Communications Programming Concepts.

yp_all Subroutine

Purpose

Transfers all of the key-value pairs from the Network Information Services (NIS) server to the client as the

entire map.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

yp_all (indomain, inmap, incallback)

char *indomain;

char *inmap;

struct ypall_CallBack *incallback {

int (* foreach) ();

char * data;

};

foreach (instatus, inkey, inkeylen, inval, invallen, indata)

int instatus;

char * inkey;

int inkeylen;

char * inval;

int invallen;

char * indata;

Description

The yp_all subroutine provides a way to transfer an entire map from the server to the client in a single

request. The routine uses Transmission Control Protocol (TCP) rather than User Datagram Protocol (UDP)

used by other NIS subroutines. This entire transaction takes place as a single Remote Procedure Call

(RPC) request and response. The yp_all subroutine is used like any other NIS procedure, identifying a

subroutine and map in the normal manner, and supplying a subroutine to process each key-value pair

within the map.

The memory pointed to by the inkey and inval parameters is private to the yp_all subroutine. This memory

is overwritten with each new key-value pair processed. The foreach function uses the contents of the

memory but does not own the memory itself. Key and value objects presented to the foreach function look

exactly as they do in the server’s map. Objects not terminated by a new-line or null character in the

server’s map are not terminated by a new-line or null character in the client’s map.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 253

Note: The remote procedure call is returned to the yp_all subroutine only after the transaction is

completed (successfully or unsuccessfully) or after the foreach function rejects any more key-value

pairs.

Parameters

 data Specifies state information between the foreach function and the mainline code (see also the

indata parameter).

indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

incallback Specifies the structure containing the user-defined foreach function, which is called for each

key-value pair transferred.

instatus Specifies either a return status value of the form NIS_TRUE or an error code. The error codes

are defined in the rpcsvc/yp_prot.h file.

inkey Points to the current key of the key-value pair as returned from the server’s database.

inkeylen Returns the length, in bytes, of the inkey parameter.

inval Points to the current value of the key-value pair as returned from the server’s database.

invallen Specifies the size of the value in bytes.

indata Specifies the contents of the incallback->data element passed to the yp_all subroutine. The

data element shares state information between the foreach function and the mainline code. The

indata parameter is optional because no part of the NIS client package inspects its contents.

Return Values

The foreach subroutine returns a value of 0 when it is ready to be called again for additional received

key-value pairs. It returns a nonzero value to stop the flow of key-value pairs. If the foreach function

returns a nonzero value, it is not called again, and the yp_all subroutine returns a value of 0.

Related Information

Network Information Service (NIS) Overview for System Management and TCP/IP protocols in Networks

and communication management.

List of NIS Programming References and Remote Procedure Call (RPC) Overview for Programming in AIX

5L Version 5.3 Communications Programming Concepts.

yp_bind Subroutine

Purpose

Used in programs to call the ypbind daemon directly for processes that use backup strategies when

Network Information Services (NIS) is not available.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

yp_bind (indomain)

char *indomain;

254 Technical Reference: Communications, Volume 1

Description

In order to use NIS, the client process must be bound to an NIS server that serves the appropriate

domain. That is, the client must be associated with a specific NIS server that services the client’s requests

for NIS information. The NIS lookup processes automatically use the ypbind daemon to bind the client,

but the yp_bind subroutine can be used in programs to call the daemon directly for processes that use

backup strategies (for example, a local file) when NIS is not available.

Each NIS binding allocates, or uses up, one client process socket descriptor, and each bound domain

uses one socket descriptor. Multiple requests to the same domain use the same descriptor.

Note: If a Remote Procedure Call (RPC) failure status returns from the use of the yp_bind subroutine,

the domain is unbound automatically. When this occurs, the NIS client tries to complete the

operation if the ypbind daemon is running and either of the following is true:

v The client process cannot bind a server for the proper domain.

v RPCs to the server fail.

Parameters

 indomain Points to the name of the domain for which to attempt the bind.

Return Values

The NIS client returns control to the user with either an error or a success code if any of the following

occurs:

v The error is not related to RPC.

v The ypbind daemon is not running.

v The ypserv daemon returns the answer.

Related Information

The ypbind daemon, ypserv daemon.

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

List of NIS Programming References and Remote Procedure Call (RPC) Overview for Programming in AIX

5L Version 5.3 Communications Programming Concepts.

yp_first Subroutine

Purpose

Returns the first key-value pair from the named Network Information Services (NIS) map in the named

domain.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 255

yp_first (indomain, inmap, outkey, outkeylen, outval, outvallen)

char * indomain;

char * inmap;

char ** outkey;

int * outkeylen;

char ** outval;

int * outvallen;

Description

The yp_first routine returns the first key-value pair from the named NIS map in the named domain.

Parameters

 indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

outkey Specifies the address of the uninitialized string pointer where the first key is returned. Memory is

allocated by the NIS client using the malloc subroutine, and may be freed by the application.

outkeylen Returns the length, in bytes, of the outkey parameter.

outval Specifies the address of the uninitialized string pointer where the value associated with the key is

returned. Memory is allocated by the NIS client using the malloc subroutine, and may be freed by

the application.

outvallen Returns the length, in bytes, of the outval parameter.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns an error as

described in the rpcsvc/yp_prot.h file.

Related Information

The malloc subroutine.

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

Remote Procedure Call (RPC) Overview for Programming and List of NIS Programming References in AIX

5L Version 5.3 Communications Programming Concepts.

yp_get_default_domain Subroutine

Purpose

Gets the default domain of the node.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

yp_get_default_domain (outdomain)

char **outdomain;

256 Technical Reference: Communications, Volume 1

Description

Network Information Services (NIS) lookup calls require both a map name and a domain name. Client

processes can get the default domain of the node by calling the yp_get_default_domain routine and

using the value returned in the outdomain parameter as the input domain (indomain) parameter for NIS

remote procedure calls.

Parameters

 outdomain Specifies the address of the uninitialized string pointer where the default domain is returned.

Memory is allocated by the NIS client using the malloc subroutine and should not be freed by the

application.

Return Values

Upon successful completion, this routine returns a value of 0. If unsuccessful, it returns an error as

described in the rpcsvc/ypclnt.h file.

Related Information

The malloc subroutine.

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

List of NIS Programming References and Remote Procedure Call (RPC) Overview for Programming in AIX

5L Version 5.3 Communications Programming Concepts.

yp_master Subroutine

Purpose

Returns the machine name of the Network Information Services (NIS) master server for a map.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

yp_master (indomain, inmap, outname)

char *indomain;

char *inmap;

char **outname;

Description

The yp_master subroutine returns the machine name of the NIS master server for a map.

Parameters

 indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 257

outname Specifies the address of the uninitialized string pointer where the name of the domain’s yp_master

server is returned. Memory is allocated by the NIS client using the malloc subroutine, and may be

freed by the application.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns one of the error

codes described in the rpcsvc/yp_prot.h file.

Related Information

The malloc subroutine.

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

List of NIS Programming References and Remote Procedure Call (RPC) Overview for Programming in AIX

5L Version 5.3 Communications Programming Concepts.

yp_match Subroutine

Purpose

Searches for the value associated with a key.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

yp_match (indomain, inmap, inkey, inkeylen, outval, outvallen)

char * indomain;

char * inmap;

char * inkey;

int inkeylen;

char ** outval;

int * outvallen;

Description

The yp_match subroutine searches for the value associated with a key. The input character string entered

as the key must match a key in the Network Information Services (NIS) map exactly because pattern

matching is not available in NIS.

Parameters

 indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

inkey Points to the name of the key used as input to the subroutine.

inkeylen Specifies the length, in bytes, of the key.

outval Specifies the address of the uninitialized string pointer where the values associated with the key

are returned. Memory is allocated by the NIS client using the malloc subroutine, and may be freed

by the application.

258 Technical Reference: Communications, Volume 1

outvallen Returns the length, in bytes, of the outval parameter.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns one of the error

codes described in the rpcsvc/yp_prot.h file.

Related Information

The malloc subroutine.

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

List of NIS Programming References and Remote Procedure Call (RPC) Overview for Programming in AIX

5L Version 5.3 Communications Programming Concepts.

yp_next Subroutine

Purpose

Returns each subsequent value it finds in the named Network Information Services (NIS) map until it

reaches the end of the list.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

yp_next (indomain, inmap, inkey, inkeylen, outkey, outkeylen, outval, outvallen)

char * indomain;

char * inmap;

char * inkey;

int inkeylen;

char ** outkey;

int * outkeylen;

char ** outval;

int * outvallen;

Description

The yp_next subroutine returns each subsequent value it finds in the named NIS map until it reaches the

end of the list.

The yp_next subroutine must be preceded by an initial yp_first subroutine. Use the outkey parameter

value returned from the initial yp_first subroutine as the value of the inkey parameter for the yp_next

subroutine. This will return the second key-value pair associated with the map. To show every entry in the

NIS map, the yp_first subroutine is called with the yp_next subroutine called repeatedly. Each time the

yp_next subroutine returns a key-value, use it as the inkey parameter for the next call.

The concepts of first and next depend on the structure of the NIS map being processed. The routines do

not retrieve the information in a specific order, such as the lexical order from the original, non-NIS

database information files or the numerical sorting order of the keys, values, or key-value pairs. If the

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 259

yp_first subroutine is called on a specific map with the yp_next subroutine called repeatedly until the

process returns a YPERR_NOMORE message, every entry in the NIS map is seen once. If the same

sequence of operations is performed on the same map at the same server, the entries are seen in the

same order.

Note: If a server operates under a heavy load or fails, the domain can become unbound and then bound

again while a client is running. If it binds itself to a different server, entries may be seen twice or not

at all. The domain rebinds itself to protect the enumeration process from being interrupted before it

completes. Avoid this situation by returning all of the keys and values with the yp_all subroutine.

Parameters

 indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

inkey Points to the key that is used as input to the subroutine.

inkeylen Returns the length, in bytes, of the inkey parameter.

outkey Specifies the address of the uninitialized string pointer where the first key is returned. Memory is

allocated by the NIS client using the malloc subroutine, and may be freed by the application.

outkeylen Returns the length, in bytes, of the outkey parameter.

outval Specifies the address of the uninitialized string pointer where the values associated with the key

are returned. Memory is allocated by the NIS client using the malloc subroutine, and may be freed

by the application.

outvallen Returns the length, in bytes, of the outval parameter.

Return Values

Upon successful completion, this routine returns a value of 0. If unsuccessful, it returns one of the error

codes described in the rpcsvc/yp_prot.h file.

Related Information

The malloc subroutine, yp_all subroutine, yp_first subroutine.

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

List of NIS Programming References and Remote Procedure Call (RPC) Overview for Programming in AIX

5L Version 5.3 Communications Programming Concepts.

yp_order Subroutine

Purpose

Returns the order number for an Network Information Services (NIS) map that identifies when the map

was built.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

260 Technical Reference: Communications, Volume 1

yp_order (indomain, inmap, outorder)

char * indomain;

char * inmap;

int * outorder;

Description

The yp_order subroutine returns the order number for a NIS map that identifies when the map was built.

The number determines whether the local NIS map is more current than the master NIS database.

Parameters

 indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

outorder Points to the returned order number, which is a 10-digit ASCII integer that represents the operating

system time, in seconds, when the map was built.

Return Values

Upon successful completion, this routine returns a value of 0. If unsuccessful, it returns one of the error

codes described in the rpcsvc/yp_prot.h file.

Related Information

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

List of NIS Programming References and Remote Procedure Call (RPC) Overview for Programming in AIX

5L Version 5.3 Communications Programming Concepts.

yp_unbind Subroutine

Purpose

Manages socket descriptors for processes that access multiple domains.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

void yp_unbind (indomain)

char *indomain;

Description

The yp_unbind subroutine is available to manage socket descriptors for processes that access multiple

domains. When the yp_unbind subroutine is used to free a domain, all per-process and per-node

resources that were used to bind the domain are also freed.

Parameters

 indomain Points to the name of the domain used as input to the subroutine.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 261

Return Values

Upon successful completion, this routine returns a value of 0. If unsuccessful, it returns one of the error

codes described in the rpcsvc/yp_prot.h file.

Related Information

The yp_bind subroutine.

The ypbind daemon.

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

List of NIS Programming References, Remote Procedure Call (RPC) Overview for Programming, and

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

yp_update Subroutine

Purpose

Makes changes to an Network Information Services (NIS) map.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

yp_update (indomain, inmap, ypop, inkey, inkeylen, indata, indatalen)

char * indomain;

char * inmap;

unsigned ypop;

char * inkey;

int inkeylen;

char * indata;

int indatalen;

Description

Note: This routine depends upon the secure Remote Procedure Call (RPC) protocol, and will not work

unless the network is running it.

The yp_update subroutine is used to make changes to a NIS map. The syntax is the same as that of the

yp_match subroutine except for the additional ypop parameter, which may take on one of the following

four values:

 Value Description

ypop _INSERT Inserts the key-value pair into the map. If the key already exists in the map, the yp_update

subroutine returns a value of YPERR_KEY.

ypop_CHANGE Changes the data associated with the key to the new value. If the key is not found in the

map, the yp_update subroutine returns a value of YPERR_KEY.

ypop_STORE Stores an item in the map regardless of whether the item already exists. No error is returned

in either case.

ypop_DELETE Deletes an entry from the map.

262 Technical Reference: Communications, Volume 1

Parameters

 indomain Points to the name of the domain used as input to the subroutine.

inmap Points to the name of the map used as input to the subroutine.

ypop Specifies the update operation to be used as input to the subroutine.

inkey Points to the input key to be used as input to the subroutine.

inkeylen Specifies the length, in bytes, of the inkey parameter.

indata Points to the data used as input to the subroutine.

indatalen Specifies the length, in bytes, of the data used as input to the subroutine.

Return Values

Upon successful completion, this routine returns a value of 0. If unsuccessful, it returns one of the error

codes described in the rpcsvc/yp_prot.h file.

Files

 /var/yp/updaters A makefile for updating NIS maps.

Related Information

The yp_match subroutine.

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

List of NIS Programming References and Remote Procedure Call (RPC) Overview for Programming in AIX

5L Version 5.3 Communications Programming Concepts.

yperr_string Subroutine

Purpose

Returns a pointer to an error message string.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

char *yperr_string (incode)

int incode;

Description

The yperr_string routine returns a pointer to an error message string. The error message string is

null-terminated but contains no period or new-line escape characters.

Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+) 263

Parameters

 incode Contains Network Information Services (NIS) error codes as described in the rpcsvc/yp_prot.h file.

Return Values

This subroutine returns a pointer to an error message string corresponding to the incode parameter.

Related Information

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

List of NIS Programming References in AIX 5L Version 5.3 Communications Programming Concepts.

ypprot_err Subroutine

Purpose

Takes an Network Information Services NIS protocol error code as input and returns an error code to be

used as input to a yperr_string subroutine.

Library

C Library (libc.a)

Syntax

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

ypprot_err (incode)

u_int incode;

Description

The ypprot_err subroutine takes a NIS protocol error code as input and returns an error code to be used

as input to a yperr_string subroutine.

Parameters

 incode Specifies the NIS protocol error code used as input to the subroutine.

Return Values

This subroutine returns a corresponding error code to be passed to the yperr_string subroutine.

Related Information

The yperr_string subroutine.

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

List of NIS Programming References and Remote Procedure Call (RPC) Overview for Programming in AIX

5L Version 5.3 Communications Programming Concepts.

264 Technical Reference: Communications, Volume 1

Chapter 7. New Database Manager (NDBM)

dbm_close Subroutine

Purpose

Closes a database.

Library

C Library (libc.a)

Syntax

#include <ndbm.h>

void dbm_close (db)

DBM *db;

Description

The dbm_close subroutine closes a database.

Parameters

 db Specifies the database to close.

Related Information

The dbmclose subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

dbm_delete Subroutine

Purpose

Deletes a key and its associated contents.

Library

C Library (libc.a)

Syntax

#include <ndbm.h>

int dbm_delete (db, key)

DBM *db;

datum key;

Description

The dbm_delete subroutine deletes a key and its associated contents.

© Copyright IBM Corp. 1997, 2006 265

Parameters

 db Specifies a database.

key Specifies the key to delete.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, the subroutine returns a

negative value.

Related Information

The delete subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

dbm_fetch Subroutine

Purpose

Accesses data stored under a key.

Library

C Library (libc.a)

Syntax

#include <ndbm.h>

datum dbm_fetch (db, key)

DBM *db;

datum key;

Description

The dbm_fetch subroutine accesses data stored under a key.

Parameters

 db Specifies the database to access.

key Specifies the input key.

Return Values

Upon successful completion, this subroutine returns a datum structure containing the value returned for

the specified key. If the subroutine is unsuccessful, a null value is indicated in the dptr field of the datum

structure.

Related Information

The fetch subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

266 Technical Reference: Communications, Volume 1

dbm_firstkey Subroutine

Purpose

Returns the first key in a database.

Library

C Library (libc.a)

Syntax

#include <ndbm.h>

datum dbm_firstkey (db)

DBM *db;

Description

The dbm_firstkey subroutine returns the first key in a database.

Parameters

 db Specifies the database to access.

Return Values

Upon successful completion, this subroutine returns a datum structure containing the value returned for

the specified key. If the subroutine is unsuccessful, a null value is indicated in the dptr field of the datum

structure.

Related Information

The firstkey subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

dbm_nextkey Subroutine

Purpose

Returns the next key in a database.

Library

C Library (libc.a)

Syntax

#include <ndbm.h>

datum dbm_nextkey (db)

DBM *db;

Description

The dbm_nextkey subroutine returns the next key in a database.

Chapter 7. New Database Manager (NDBM) 267

Parameters

 db Specifies the database to access.

Return Values

Upon successful completion, this subroutine returns a datum structure containing the value returned for

the specified key. If the subroutine is unsuccessful, a null value is indicated in the dptr field of the datum

structure.

Related Information

The nextkey subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

dbm_open Subroutine

Purpose

Opens a database for access.

Library

C Library (libc.a)

Syntax

#include <ndbm.h>

DBM *dbm_open (file, flags, mode)

char *file;

int flags, mode;

Description

The dbm_open subroutine opens a database for access. The subroutine opens or creates the file.dir and

file.pag files, depending on the flags parameter. The returned DBM structure is used as input to other

NDBM routines.

Parameters

 file Specifies the path to open a database.

flags Specifies the flags required to open a subroutine.

mode Specifies the mode required to open a subroutine.

For more information about the flags and mode parameters, see the open, openx, or creat subroutine.

Return Values

Upon successful completion, this subroutine returns a pointer to the DBM structure. If unsuccessful, it

returns a null value.

Related Information

The dbminit subroutine, open, openx, or creat subroutine.

268 Technical Reference: Communications, Volume 1

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts..

dbm_store Subroutine

Purpose

Places data under a key.

Library

C Library (libc.a)

Syntax

#include <ndbm.h>

int dbm_store (db, key, content, flags)

DBM * db;

datum key, content;

int flags;

Description

The dbm_store subroutine places data under a key.

Parameters

 db Specifies the database to store.

key Specifies the input key.

content Specifies the value associated with the key to store.

flags Contains either the DBM_INSERT or DBM_REPLACE flag.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, the subroutine returns a

negative value. When the dbm_store subroutine is called with the flags parameter set to the

DBM_INSERT flag and an existing entry is found, it returns a value of 1. If the flags parameter is set to

the DBM_REPLACE flag, the entry will be replaced, even if it already exists.

Related Information

The store subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

dbmclose Subroutine

Purpose

Closes a database.

Library

DBM Library (libdbm.a)

Chapter 7. New Database Manager (NDBM) 269

Syntax

#include <dbm.h>

void dbmclose (db)

DBM *db;

Description

The dbmclose subroutine closes a database.

Parameters

 db Specifies the database to close.

Related Information

The dbm_close subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

dbminit Subroutine

Purpose

Opens a database for access.

Library

DBM Library (libdbm.a)

Syntax

#include <dbm.h>

dbminit (file)

char *file;

Description

The dbminit subroutine opens a database for access. At the time of the call, the file.dir and file.pag files

must exist.

Note: To build an empty database, create zero-length .dir and .pag files.

Parameters

 file Specifies the path name of the database to open.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, the subroutine returns a

negative value.

Related Information

The dbm_open subroutine.

270 Technical Reference: Communications, Volume 1

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

delete Subroutine

Purpose

Deletes a key and its associated contents.

Library

DBM Library (libdbm.a)

Syntax

#include <dbm.h>

delete (key)

datum key;

Description

The delete subroutine deletes a key and its associated contents.

Parameters

 key Specifies the key to delete.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, the subroutine returns a

negative value.

Related Information

The dbm_delete subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

fetch Subroutine

Purpose

Accesses data stored under a key.

Library

DBM Library (libdbm.a)

Syntax

#include <dbm.h>

datum fetch (key)

datum key;

Chapter 7. New Database Manager (NDBM) 271

Description

The fetch subroutine accesses data stored under a key.

Parameters

 key Specifies the input key.

Return Values

Upon successful completion, this subroutine returns data corresponding to the specified key. If the

subroutine is unsuccessful, a null value is indicated in the dptr field of the returned datum structure.

Related Information

The dbm_fetch subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

firstkey Subroutine

Purpose

Returns the first key in the database.

Library

DBM Library (libdbm.a)

Syntax

#include <dbm.h>

datum firstkey ()

Description

The firstkey subroutine returns the first key in the database.

Return Values

Returns a datum structure containing the first key value pair.

Related Information

The dbm_firstkey subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

nextkey Subroutine

Purpose

Returns the next key in a database.

Library

DBM Library (libdbm.a)

272 Technical Reference: Communications, Volume 1

Syntax

#include <dbm.h>

datum nextkey (key)

datum key;

Description

The nextkey subroutine returns the next key in a database.

Parameters

 key Specifies the input key. This value has no effect on the return value, but must be present.

Return Values

Returns a datum structure containing the next key-value pair.

Related Information

The dbm_nextkey subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

store Subroutine

Purpose

Places data under a key.

Library

DBM Library (libdbm.a)

Syntax

#include <dbm.h>

int store (key, content)

datum key, content;

Description

The store subroutine places data under a key.

Parameters

 key Specifies the input key.

content Specifies the value associated with the key to store.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, the subroutine returns a

negative value.

Chapter 7. New Database Manager (NDBM) 273

Related Information

The dbm_store subroutine.

List of NDBM and DBM Programming References and NDBM Overview in AIX 5L Version 5.3

Communications Programming Concepts.

274 Technical Reference: Communications, Volume 1

Chapter 8. Remote Procedure Calls (RPC)

auth_destroy Macro

Purpose

Destroys authentication information.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void auth_destroy (auth)

auth *auth;

Description

The auth_destroy macro destroys the authentication information structure pointed to by the auth

parameter. Destroying the structure deallocates private data structures. The use of the auth parameter is

undefined after calling this macro.

Parameters

 auth Points to the authentication information structure to be destroyed.

Related Information

List of RPC Programming References.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

authdes_create Subroutine

Purpose

Enables the use of Data Encryption Standard (DES) from the client side.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

AUTH *authdes_create (name, window, syncaddr, ckey)

char * name;

u_int window;

struct sockaddr * syncaddr;

des_block * ckey;

© Copyright IBM Corp. 1997, 2006 275

Description

The authdes_create subroutine interfaces to the secure authentication system, known as DES. This

subroutine, used from the client side, returns the authentication handle that allows use of the secure

authentication system.

Note: The keyserv daemon must be running for the DES authentication system to work.

Parameters

 name Specifies the network name (or netname) of the server process owner. The name parameter can be

either the host name derived from the host2netname subroutine or the user name derived from the

user2netname subroutine.

window Specifies the confirmation of the client credentials, given in seconds. A small value for the window

parameter is more secure than a large one. However, choosing too small a value for the window

parameter increases the frequency of resynchronizations due to clock drift.

syncaddr Identifies clock synchronization. If the syncaddr parameter has a null value, then the authentication

system assumes that the local clock is always in sync with the server’s clock. The authentication

system will not attempt resynchronizations. However, if an address is supplied, the system uses the

address for consulting the remote time service whenever resynchronization is required. This

parameter usually contains the address of the RPC server itself.

ckey Specifies the DES key. If the value of the ckey parameter is null, the authentication system generates

a random DES key to be used for the encryption of credentials. However, if a DES key is supplied,

the supplied key is used.

Return Values

This subroutine returns a pointer to a DES authentication object.

Related Information

List of RPC Programming References.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

authdes_getucred Subroutine

Purpose

Maps a Data Encryption Standard (DES) credential into a UNIX credential.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

authdes_getucred (adc, uid, gid, grouplen, groups)

struct authdes_cred * adc;

short * uid;

short * gid;

short * grouplen;

int * groups;

276 Technical Reference: Communications, Volume 1

Description

The authdes_getucred subroutine interfaces to the secure authentication system known as DES. The

server uses this subroutine to convert a DES credential, which is the independent operating system, into a

UNIX credential. The authdes_getucred subroutine retrieves necessary information from a cache instead

of using the network information service (NIS).

Note: The keyserv daemon must be running for the DES authentication system to work.

Parameters

 adc Points to the DES credential structure.

uid Specifies the caller’s effective user ID (UID).

gid Specifies the caller’s effective group ID (GID).

grouplen Specifies the group’s length.

groups Points to the group’s array.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The keyserv daemon.

List of RPC Programming References.

Network Information Service (NIS) Overview for System Management in Networks and communication

management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

authnone_create Subroutine

Purpose

Creates null authentication.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

AUTH *authnone_create ()

Description

The authnone_create subroutine creates and returns a default Remote Procedure Call (RPC)

authentication handle that passes null authentication information with each remote procedure call.

Return Values

This subroutine returns a pointer to an RPC authentication handle.

Chapter 8. Remote Procedure Calls (RPC) 277

Related Information

The authunix_create subroutine, authunix_create_default subroutine, svcerr_auth subroutine.

The auth_destroy macro.

List of RPC Programming References.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

authunix_create Subroutine

Purpose

Creates an authentication handle with operating system permissions.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

AUTH *authunix_create (host, uid, gid, len, aupgids)

char * host;

int uid, gid;

int len, * aupgids;

Description

The authunix_create subroutine creates and returns a Remote Procedure Call (RPC) authentication

handle with operating system permissions.

Parameters

 host Points to the name of the machine on which the permissions were created.

uid Specifies the caller’s effective user ID (UID).

gid Specifies the caller’s effective group ID (GID).

len Specifies the length of the groups array.

aupgids Points to the counted array of groups to which the user belongs.

Return Values

This subroutine returns an RPC authentication handle.

Related Information

The authnone_create subroutine, authunix_create_default subroutine, svcerr_auth subroutine.

The auth_destroy macro.

List of RPC Programming References.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

278 Technical Reference: Communications, Volume 1

authunix_create_default Subroutine

Purpose

Sets the authentication to default.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

AUTH *authunix_create_default()

Description

The authunix_create_default subroutine calls the authunix_create subroutine to create and return the

default operating system authentication handle.

Return Values

Upon successful completion, this subroutine returns an authentication handle.

Related Information

The authnone_create subroutine, authunix_create subroutine, svcerr_auth subroutine.

The auth_destroy macro.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

callrpc Subroutine

Purpose

Calls the remote procedure on the machine specified by the host parameter.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

callrpc (host, prognum, versnum, procnum, inproc, in, outproc, out)

char * host;

u_long prognum, versnum, procnum;

xdrproc_t inproc;

char * in;

xdrproc_t outproc;

char * out;

Description

The callrpc subroutine calls a remote procedure identified by the prognum parameter, the versnum

parameter, and the procnum parameter on the machine pointed to by the host parameter.

Chapter 8. Remote Procedure Calls (RPC) 279

This subroutine uses User Datagram Protocol/Internet Protocol (UDP/IP) as a transport to call a remote

procedure. No connection will be made if the server is supported by Transmission Control Protocol/Internet

Protocol (TCP/IP). This subroutine does not control time outs or authentication.

Parameters

 host Points to the program name of the remote machine.

prognum Specifies the number of the remote program.

versnum Specifies the version number of the remote program.

procnum Specifies the number of the procedure associated with the remote program being called.

inproc Specifies the name of the XDR procedure that encodes the procedure parameters.

in Specifies the address of the procedure arguments.

outproc Specifies the name of the XDR procedure that decodes the procedure results.

out Specifies the address where results are placed.

Return Values

This subroutine returns a value of enum clnt_stat. Use the clnt_perrno subroutine to translate this failure

status into a displayed message.

Related information

The clnt_broadcast subroutine, clnttcp_create subroutine, clntudp_create subroutine, clnt_perrno

subroutine, registerrpc subroutine, svc_run subroutine.

The clnt_call macro.

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

cbc_crypt, des_setparity, or ecb_crypt Subroutine

Purpose

Implements Data Encryption Standard (DES) encryption routines.

Library

DES library (libdes.a)

Syntax

include <des_crypt.h>

int ecb_crypt (key, data, datalen, mode)

char *key;

char *data;

unsigned datalen;

unsigned mode;

int cbc_crypt(key, data, datalen, mode, ivec)

char *key;

char *data;

280 Technical Reference: Communications, Volume 1

unsigned datalen;

unsigned mode;

char ivec;

void des_setparity(key)

char *key;

Description

The ecb_crypt and cbc_crypt subroutines implement DES encryption routines, set by the National

Bureau of Standards.

v The ecb_crypt subroutine encrypts in ECB (Electronic Code Book) mode, which encrypts blocks of data

independently.

v The cbc_crypt subroutine encrypts in CBC (Cipher Block Chaining) mode, which chains together

successive blocks. CBC mode protects against insertions, deletions, and substitutions of blocks. Also,

regularities in the clear text will not appear in the cipher text.

These subroutines are not available for export outside the United States.

Note: The DES library must be installed to use these subroutines.

Parameters

 data Specifies that the data is to be either encrypted or decrypted.

datalen Specifies the length in bytes of data. The length must be a multiple of 8.

key Specifies the 8-byte encryption key with parity. To set the parity for the key, which for DES is in the low

bit of each byte, use the des_setparity subroutine.

ivec Initializes the vector for the chaining in 8-byte. This is updated to the next initialization vector upon

return.

mode Specifies whether data is to be encrypted or decrypted. This parameter is formed by logically ORing

the DES_ENCRYPT or DES_DECRYPT symbols. For software versus hardware encryption, logically

OR the DES_HW or DES_SW symbols. These four symbols are defined in the /usr/include/
des_crypt.h file.

Return Values

 DESERR_BADPARAM Specifies that a bad parameter was passed to routine.

DESERR_HWERR Specifies that an error occurred in the hardware or driver.

DESERR_NOHWDEVICE Specifies that encryption succeeded, but was done in software instead of the

requested hardware.

DESERR_NONE Specifies no error.

Note: Given the stat variable, for example, which contains the return value for either the ecb_crypt or

cbc_crypt subroutine, the DES_FAILED(stat) macro is false only for the DESERR_NONE and

DESERR_NOHWDEVICE return values.

Files

 /usr/include/des_crypt.h Defines macros and needed symbols for the mode parameter.

Related Information

Secure NFS in Security.

Example Using DES Authentication in AIX 5L Version 5.3 Communications Programming Concepts.

Chapter 8. Remote Procedure Calls (RPC) 281

clnt_broadcast Subroutine

Purpose

Broadcasts a remote procedure call to all locally connected networks.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

enum clnt_stat clnt_broadcast (prognum, versnum, procnum, inproc)

enum clnt_stat clnt_broadcast (in, outproc, out, eachresult)

u_long prognum, versnum, procnum;

xdrproc_t inproc;

char * in;

xdrproc_t outproc;

char * out;

resultproc_t eachresult;

Description

The clnt_broadcast subroutine broadcasts a remote procedure call to all locally connected networks. The

remote procedure is identified by the prognum, versnum, and procnum parameters on the workstation

identified by the host parameter.

Broadcast sockets are limited in size to the maximum transfer unit of the data link. For Ethernet, this value

is 1500 bytes.

When a client broadcasts a remote procedure call over the network, a number of server processes

respond. Each time the client receives a response, the clnt_broadcast subroutine calls the eachresult

routine. The eachresult routine takes the following form:

eachresult (out, *addr)

char *out;

struct sockaddr_in *addr;

Parameters

 prognum Specifies the number of the remote program.

versnum Specifies the version number of the remote program.

procnum Identifies the procedure to be called.

inproc Specifies the procedure that encodes the procedure’s parameters.

in Specifies the address of the procedure’s arguments.

outproc Specifies the procedure that decodes the procedure results.

out Specifies the address where results are placed.

eachresult Specifies the procedure to call when clients respond.

addr Specifies the address of the workstation that sent the results.

Return Values

If the eachresult subroutine returns a value of 0, the clnt_broadcast subroutine waits for more replies.

Otherwise, the clnt_broadcast subroutine returns with the appropriate results.

282 Technical Reference: Communications, Volume 1

Related Information

The callrpc subroutine.

Remote Procedure Call (RPC) Overview for Programming and Sockets Overview in AIX 5L Version 5.3

Communications Programming Concepts.

clnt_call Macro

Purpose

Calls the remote procedure associated with the clnt parameter.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

enum clnt_stat clnt_call (clnt, procnum, inproc, in, outproc, out, tout)

CLIENT * clnt;

u_long procnum;

xdrproc_t inproc;

char * in;

xdrproc_t outproc;

char * out;

struct timeval tout;

Description

The clnt_call macro calls the remote procedure associated with the client handle pointed to by the clnt

parameter.

Parameters

 clnt Points to the structure of the client handle that results from a Remote Procedure Call (RPC) client

creation subroutine, such as the clntudp_create subroutine that opens a User Datagram

Protocol/Internet Protocol (UDP/IP) socket.

procnum Identifies the remote procedure on the host machine.

inproc Specifies the procedure that encodes the procedure’s parameters.

in Specifies the address of the procedure’s arguments.

outproc Specifies the procedure that decodes the procedure’s results.

out Specifies the address where results are placed.

tout Sets the time allowed for results to return.

Related Information

The callrpc subroutine, clnt_perror subroutine, clnttcp_create subroutine, clntudp_create subroutine.

Remote Procedure Call (RPC) Overview for Programming and Sockets Overview in AIX 5L Version 5.3

Communications Programming Concepts.

Chapter 8. Remote Procedure Calls (RPC) 283

clnt_control Macro

Purpose

Changes or retrieves various information about a client object.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

bool_t clnt_control (cI, req, info)

CLIENT * cl;

int req;

char * info;

Description

The clnt_control macro is used to change or retrieve various information about a client object.

User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) have the following supported

values for the req parameter’s argument types and functions:

 Values for the req Parameter Argument Type Function

CLSET_TIMEOUT struct timeval Sets total time out.

CLGET_TIMEOUT struct timeval Gets total time out.

CLGET_SERVER_ADDR struct sockaddr Gets server’s address.

The following operations are valid for UDP only:

 Values for the req Parameter Argument Type Function

CLSET_RETRY_TIMEOUT struct timeval Sets the retry time out.

CLGET_RETRY_TIMEOUT struct timeval Gets the retry time out.

Notes:

1. If the time out is set using the clnt_control subroutine, the time-out parameter passed to the clnt_call

subroutine will be ignored in all future calls.

2. The retry time out is the time that User Datagram Protocol/Remote Procedure Call (UDP/RPC) waits

for the server to reply before retransmitting the request.

Parameters

 cl Points to the structure of the client handle.

req Indicates the type of operation.

info Points to the information for request type.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

284 Technical Reference: Communications, Volume 1

Related Information

The clnttcp_create subroutine, clntudp_create subroutine.

The clnt_call macro.

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

clnt_create Subroutine

Purpose

Creates and returns a generic client handle.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

CLIENT *clnt_create (host, prognum, versnum, protocol)

char * host;

unsigned prognum, versnum;

char * protocol;

Description

Creates and returns a generic client handle.

Remote Procedure Calls (RPC) messages transported by User Datagram Protocol/Internet Protocol

(UDP/IP) can hold up to 8KB of encoded data. Use this transport for procedures that take arguments or

return results of less than 8KB.

Note: When the clnt_create subroutine is used to create a RPC client handle, the timeout value provided

on subsequent calls to clnttcp_call are ignored. Using the clnt_create subroutine has the same

effect as using clnttcp_create followed by a call to clnt_control to set the timeout value for the

RPC client handle. If the timeout paramater is used on the clnttcp_call interface, use the

clnttcp_create interface to create the client handle.

Parameters

 host Identifies the name of the remote host where the server is located.

prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

protocol Identifies which data transport protocol the program is using, either UDP or Transmission Control

Protocol (TCP).

Return Values

Upon successful completion, this subroutine returns a client handle.

Chapter 8. Remote Procedure Calls (RPC) 285

Related Information

The clnttcp_create subroutine, clntudp_create subroutine.

The clnt_control macro, clnt_destroy macro.

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

clnt_destroy Macro

Purpose

Destroys the client’s Remote Procedure Call (RPC) handle.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void clnt_destroy (clnt)

CLIENT *clnt;

Description

The clnt_destroy macro destroys the client’s RPC handle. Destroying the client’s RPC handle deallocates

private data structures, including the clnt parameter itself. The use of the clnt parameter becomes

undefined upon calling the clnt_destroy macro.

Parameters

 clnt Points to the structure of the client handle.

Related Information

The clntudp_create subroutine, clnt_create subroutine.

Remote Procedure Call (RPC) Overview for Programming and Sockets Overview in AIX 5L Version 5.3

Communications Programming Concepts.

clnt_freeres Macro

Purpose

Frees data that was allocated by the Remote Procedure Call/eXternal Data Representation (RPC/XDR)

system.

Library

C Library (libc.a)

286 Technical Reference: Communications, Volume 1

Syntax

#include <rpc/rpc.h>

clnt_freeres (clnt, outproc, out)

CLIENT *clnt;

xdrpoc_t outproc;

char *out;

Description

The clnt_freeres macro frees data allocated by the RPC/XDR system. This data was allocated when the

RPC/XDR system decoded the results of an RPC call.

Parameters

 clnt Points to the structure of the client handle.

outproc Specifies the XDR subroutine that describes the results in simple decoding primitives.

out Specifies the address where the results are placed.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

clnt_geterr Macro

Purpose

Copies error information from a client handle.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void clnt_geterr (clnt, errp)

CLIENT *clnt;

struct rpc_err *errp;

Description

The clnt_geterr macro copies error information from a client handle to an error structure.

Parameters

 clnt Points to the structure of the client handle.

errp Specifies the address of the error structure.

clnt_pcreateerror Subroutine

Purpose

Indicates why a client Remote Procedure Call (RPC) handle was not created.

Chapter 8. Remote Procedure Calls (RPC) 287

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void clnt_pcreateerror (s)

char *s;

Description

The clnt_pcreateerror subroutine writes a message to standard error output, indicating why a client RPC

handle could not be created. The message is preceded by the string pointed to by the s parameter and a

colon.

Use this subroutine if one of the following calls fails: the clntraw_create subroutine, clnttcp_create

subroutine, or clntudp_create subroutine.

Parameters

 s Points to a character string that represents the error text.

Related Information

The clnt_create subroutine, clnt_spcreateerror subroutine, clntraw_create subroutine, clnttcp_create

subroutine, clntudp_create subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

clnt_perrno Subroutine

Purpose

Specifies the condition of the stat parameter.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void clnt_perrno (stat)

enum clnt_stat stat;

Description

The clnt_perrno subroutine writes a message to standard error output, corresponding to the condition

specified by the stat parameter.

This subroutine is used after a callrpc subroutine fails. The clnt_perrno subroutine translates the failure

status (the enum clnt_stat subroutine) into a message.

288 Technical Reference: Communications, Volume 1

If the program does not have a standard error output, or the programmer does not want the message to

be output with the printf subroutine, or the message format used is different from that supported by the

clnt_perrno subroutine, then the clnt_sperrno subroutine is used instead of the clnt_perrno subroutine.

Parameters

 stat Specifies the client error status of the remote procedure call.

Return Values

The clnt_perrno subroutine translates and displays the following enum clnt_stat error status codes:

 RPC_SUCCESS = 0 Call succeeded.

RPC_CANTENCODEARGS = 1 Cannot encode arguments.

RPC_CANTDECODERES = 2 Cannot decode results.

RPC_CANTSEND = 3 Failure in sending call.

RPC_CANTRECV = 4 Failure in receiving result.

RPC_TIMEDOUT = 5 Call timed out.

Related Information

The callrpc subroutine, clnt_sperrno subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

clnt_perror Subroutine

Purpose

Indicates why a remote procedure call failed.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

clnt_perror (clnt, s)

CLIENT *clnt;

char *s;

Description

The clnt_perror subroutine writes a message to standard error output indicating why a remote procedure

call failed. The message is preceded by the string pointed to by the s parameter and a colon.

This subroutine is used after the clnt_call macro.

Parameters

 clnt Points to the structure of the client handle.

s Points to a character string that represents the error text.

Chapter 8. Remote Procedure Calls (RPC) 289

Return Values

This subroutine returns an error string to standard error output.

Related Information

The clnt_sperror subroutine.

The clnt_call macro.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

clnt_spcreateerror Subroutine

Purpose

Indicates why a client Remote Procedure Call (RPC) handle was not created.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

char *clnt_spcreateerror (s)

char *s;

Description

The clnt_spcreateerror subroutine returns a string indicating why a client RPC handle was not created.

Note: This subroutine returns the pointer to static data that is overwritten on each call.

Parameters

 s Points to a character string that represents the error text.

Related Information

The clnt_pcreateerror subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

clnt_sperrno Subroutine

Purpose

Specifies the condition of the stat parameter by returning a pointer to a string containing a status

message.

Library

C Library (libc.a)

290 Technical Reference: Communications, Volume 1

Syntax

#include <rpc/rpc.h>

char *clnt_sperrno (stat)

enum clnt_stat stat;

Description

The clnt_sperrno subroutine specifies the condition of the stat parameter by returning a pointer to a string

containing a status message. The string ends with a new-line character.

Whenever one of the following conditions exists, the clnt_sperrno subroutine is used instead of the

clnt_perrno subroutine when a callrpc routine fails:

v The program does not have a standard error output. This is common for programs running as servers.

v The programmer does not want the message to be output with the printf subroutine.

v A message format differing from that supported by the clnt_perrno subroutine is being used.

Note: The clnt_sperrno subroutine does not return the pointer to static data, so the result is not

overwritten on each call.

Parameters

 stat Specifies the client error status of the remote procedure call.

Return Values

The clnt_sperrno subroutine translates and displays the following enum clnt_stat error status messages:

 Message Description

RPC_SUCCESS = 0 Call succeeded.

RPC_CANTENCODEARGS = 1 Cannot encode arguments.

RPC_CANTDECODERES = 2 Cannot decode results.

RPC_CANTSEND = 3 Failure in sending call.

RPC_CANTRECV = 4 Failure in receiving result.

RPC_TIMEDOUT = 5 Call timed out.

Related Information

The clnt_perrno subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

clnt_sperror Subroutine

Purpose

Indicates why a remote procedure call failed.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

Chapter 8. Remote Procedure Calls (RPC) 291

char *clnt_sperror (cl, s)

CLIENT *cl;

char *s;

Description

The clnt_sperror subroutine returns a string to standard error output indicating why a Remote Procedure

Call (RPC) call failed. This subroutine also returns the pointer to static data overwritten on each call.

Parameters

 cl Points to the structure of the client handle.

s Points to a character string that represents the error text.

Return Values

This subroutine returns an error string to standard error output.

Related Information

The clnt_perror subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

clntraw_create Subroutine

Purpose

Creates a toy Remote Procedure Call (RPC) client for simulation.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

CLIENT *clntraw_create (prognum, versnum)

u_long prognum, versnum;

Description

The clntraw_create subroutine creates a toy RPC client for simulation of a remote program. This toy

client uses a buffer located within the address space of the process for the transport to pass messages to

the service. If the corresponding RPC server lives in the same address space, simulation of RPC and

acquisition of RPC overheads, such as round-trip times, are done without kernel interference.

Parameters

 prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

292 Technical Reference: Communications, Volume 1

Return Values

Upon successful completion, this subroutine returns a pointer to a valid RPC client. If unsuccessful, it

returns a value of NULL.

Related Information

The clnt_pcreateerror subroutine, svcraw_create subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

clnttcp_create Subroutine

Purpose

Creates a Transmission Control Protocol/Internet Protocol (TCP/IP) client transport handle.

Library

C Library (libc.a)

Syntax

CLIENT *clnttcp_create (addr, prognum, versnum, sockp, sendsz, recvsz)

struct sockaddr_in * addr;

u_long prognum, versnum;

int * sockp;

u_int sendsz, recvsz;

Description

The clnttcp_create subroutine creates a Remote Procedure Call (RPC) client transport handle for a

remote program. This client uses TCP/IP as the transport to pass messages to the service.

The TCP/IP remote procedure calls use buffered input/output (I/O). Users can set the size of the send and

receive buffers with the sendsz and recvsz parameters. If the size of either buffer is set to a value of 0, the

svctcp_create subroutine picks suitable default values.

Parameters

 addr Points to the Internet address of the remote program. If the port number for this Internet address

(addr->sin_port) is a value of 0, then the addr parameter is set to the actual port on which the remote

program is listening. The client making the remote procedure call consults the remote portmap

daemon to obtain the port information.

prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

sockp Specifies a pointer to a socket. If the value of the sockp parameter is RPC_ANYSOCK, the

clnttcp_create subroutine opens a new socket and sets the sockp pointer to the new socket.

sendsz Sets the size of the send buffer.

recvsz Sets the size of the receive buffer.

Return Values

Upon successful completion, this routine returns a valid TCP/IP client handle. If unsuccessful, it returns a

value of null.

Chapter 8. Remote Procedure Calls (RPC) 293

Related Information

The callrpc subroutine, clnt_pcreateerror subroutine, clntudp_create subroutine, svctcp_create

subroutine.

The portmap daemon.

The clnt_call macro.

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming and Sockets Overview in AIX 5L Version 5.3

Communications Programming Concepts.

clntudp_create Subroutine

Purpose

Creates a User Datagram Protocol/Internet Protocol (UDP/IP) client transport handle.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

CLIENT *clntudp_create (addr, prognum, versnum, wait, sockp)

struct sockaddr_in * addr;

u_long prognum, versnum;

struct timeval wait;

int * sockp;

Description

The clntudp_create subroutine creates a Remote Procedure Call (RPC) client transport handle for a

remote program. The client uses UDP as the transport to pass messages to the service.

RPC messages transported by UDP/IP can hold up to 8KB of encoded data. Use this subroutine for

procedures that take arguments or return results of less than 8KB.

Parameters

 addr Points to the Internet address of the remote program. If the port number for this Internet address

(addr->sin_port) is 0, then the value of the addr parameter is set to the port that the remote program

is listening on. The clntudp_create subroutine consults the remote portmap daemon for this

information.

prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

wait Sets the amount of time that the UDP/IP transport waits to receive a response before the transport

sends another remote procedure call or the remote procedure call times out. The total time for the call

to time out is set by the clnt_call macro.

sockp Specifies a pointer to a socket. If the value of the sockp parameter is RPC_ANYSOCK, the

clntudp_create subroutine opens a new socket and sets the sockp pointer to that new socket.

294 Technical Reference: Communications, Volume 1

Return Values

Upon successful completion, this subroutine returns a valid UDP client handle. If unsuccessful, it returns a

value of null.

Related Information

The callrpc subroutine, clnt_pcreateerror subroutine, clnttcp_create subroutine, svcudp_create

subroutine.

The portmap daemon.

The clnt_call macro.

Remote Procedure Call (RPC) Overview for Programming and Sockets Overview in AIX 5L Version 5.3

Communications Programming Concepts.

get_myaddress Subroutine

Purpose

Gets the user’s Internet Protocol (IP) address.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void

get_myaddress (addr)

struct sockaddr_in *addr;

Description

The get_myaddress subroutine gets the machine’s IP address without consulting the library routines that

access the /etc/hosts file.

Parameters

 addr Specifies the address where the machine’s IP address is placed. The port number is set to a value of htons

(PMAPPORT).

Related Information

The /etc/hosts file.

Internet Protocol in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 8. Remote Procedure Calls (RPC) 295

getnetname Subroutine

Purpose

Installs the network name of the caller in the array specified by the name parameter.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

getnetname (name)

char name [MAXNETNAMELEN];

Description

The getnetname subroutine installs the caller’s unique, operating-system-independent network name in

the fixed-length array specified by the name parameter.

Parameters

 name Specifies the network name (or netname) of the server process owner. The name parameter can be either

the host name derived from the host2netname subroutine or the user name derived from the user2netname

subroutine.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The host2netname subroutine, user2netname subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

host2netname Subroutine

Purpose

Converts a domain-specific host name to an operating-system-independent network name.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

host2netname (name, host, domain)

char *name;

char *host;

char *domain;

296 Technical Reference: Communications, Volume 1

Description

The host2netname subroutine converts a domain-specific host name to an operating-system-independent

network name.

This subroutine is the inverse of the netname2host subroutine.

Parameters

 name Points to the network name (or netname) of the server process owner. The name parameter can be

either the host name derived from the host2netname subroutine or the user name derived from the

user2netname subroutine.

host Points to the name of the machine on which the permissions were created.

domain Points to the domain name.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The netname2host subroutine, user2netname subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

key_decryptsession Subroutine

Purpose

Decrypts a server network name and a Data Encryption Standard (DES) key.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

key_decryptsession (remotename, deskey)

char *remotename;

des_block *deskey;

Description

The key_decryptsession subroutine interfaces to the keyserv daemon, which is associated with the

secure authentication system known as DES. The subroutine takes a server network name and a DES key

and decrypts the DES key by using the public key of the server and the secret key associated with the

effective user number (UID) of the calling process. User programs rarely need to call this subroutine.

System commands such as keylogin and the Remote Procedure Call (RPC) library are the main clients.

This subroutine is the inverse of the key_encryptsession subroutine.

Parameters

 remotename Points to the remote host name.

deskey Points to the des_block structure.

Chapter 8. Remote Procedure Calls (RPC) 297

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns a value of -1.

Related Information

The key_encryptsession subroutine.

The keylogin command.

The keyserv daemon.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

key_encryptsession Subroutine

Purpose

Encrypts a server network name and a Data Encryption Standard (DES) key.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

key_encryptsession (remotename, deskey)

char *remotename;

des_block *deskey;

Description

The key_encryptsession subroutine interfaces to the keyserv daemon, which is associated with the

secure authentication system known as DES. This subroutine encrypts a server network name and a DES

key. To do so, the routine uses the public key of the server and the secret key associated with the effective

user number (UID) of the calling process. System commands such as keylogin and the Remote

Procedure Call (RPC) library are the main clients. User programs rarely need to call this subroutine.

This subroutine is the inverse of the key_decryptsession subroutine.

Parameters

 remotename Points to the remote host name.

deskey Points to the des_block structure.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns a value of -1.

298 Technical Reference: Communications, Volume 1

Related Information

The key_decryptsession subroutine.

The keylogin command.

The keyserv daemon.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

key_gendes Subroutine

Purpose

Asks the keyserv daemon for a secure conversation key.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

key_gendes (deskey)

des_block *deskey;

Description

The key_gendes subroutine interfaces to the keyserv daemon, which is associated with the secure

authentication system known as Data Encryption Standard (DES). This subroutine asks the keyserv

daemon for a secure conversation key. Choosing a key at random is not recommended because the

common ways of choosing random numbers, such as the current time, are easy to guess. User programs

rarely need to call this subroutine. System commands such as keylogin and the Remote Procedure Call

(RPC) library are the main clients.

Parameters

 deskey Points to the des_block structure.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns a value of -1.

Related Information

The keylogin command.

The keyserv daemon.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 8. Remote Procedure Calls (RPC) 299

key_setsecret Subroutine

Purpose

Sets the key for the effective user number (UID) of the calling process.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

key_setsecret (key)

char *key;

Description

The key_setsecret subroutine interfaces to the keyserv daemon, which is associated with the secure

authentication system known as Data Encryption Standard (DES). This subroutine is used to set the key

for the effective UID of the calling process. User programs rarely need to call this subroutine. System

commands such as keylogin and the Remote Procedure Call (RPC) library are the main clients.

Parameters

 key Points to the key name.

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns a value of -1.

Related Information

The keylogin command.

The keyserv daemon.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

netname2host Subroutine

Purpose

Converts an operating-system-independent network name to a domain-specific host name.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

300 Technical Reference: Communications, Volume 1

netname2host (name, host, hostlen)

char *name;

char *host;

int hostlen;

Description

The netname2host subroutine converts an operating-system-independent network name to a

domain-specific host name.

This subroutine is the inverse of the host2netname subroutine.

Parameters

 name Specifies the network name (or netname) of the server process owner. The name parameter can be

either the host name derived from the host2netname subroutine or the user name derived from the

user2netname subroutine.

host Points to the name of the machine on which the permissions were created.

hostlen Specifies the size of the host name.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The host2netname subroutine, user2netname subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

netname2user Subroutine

Purpose

Converts from an operating-system-independent network name to a domain-specific user number (UID).

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

netname2user (name, uidp, gidp, gidlenp, gidlist)

char * name;

int * uidp;

int * gidp;

int * gidlenp;

int * gidlist;

Description

The netname2user subroutine converts from an operating-system-independent network name to a

domain-specific UID. This subroutine is the inverse of the user2netname subroutine.

Chapter 8. Remote Procedure Calls (RPC) 301

Parameters

 name Points to the network name (or netname) of the server process owner. The name parameter can be

either the host name derived from the host2netname subroutine or the user name derived from the

user2netname subroutine.

uidp Points to the user ID.

gidp Points to the group ID.

gidlenp Points to the size of the group ID.

gidlist Points to the group list.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The host2netname subroutine, user2netname subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

pmap_getmaps Subroutine

Purpose

Returns a list of the current Remote Procedure Call (RPC) program-to-port mappings on the host.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

struct pmaplist *pmap_getmaps (addr)

struct sockaddr_in *addr;

Description

The pmap_getmaps subroutine acts as a user interface to the portmap daemon. The subroutine returns

a list of the current RPC program-to-port mappings on the host located at the Internet Protocol (IP)

address pointed to by the addr parameter.

Note: The rpcinfo -p command calls this subroutine.

Parameters

 addr Specifies the address where the machine’s IP address is placed.

Return Values

If there is no list of current RPC programs, this procedure returns a value of null.

302 Technical Reference: Communications, Volume 1

Related Information

The pmap_set subroutine, pmap_unset subroutine, svc_register subroutine.

The rpcinfo command.

The portmap daemon.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

pmap_getport Subroutine

Purpose

Requests the port number on which a service waits.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

u_short pmap_getport (addr, prognum, versnum, protocol)

struct sockaddr_in * addr;

u_long prognum, versnum, protocol;

Description

The pmap_getport subroutine acts as a user interface to the portmap daemon in order to return the port

number on which a service waits.

Parameters

 addr Points to the Internet Protocol (IP) address of the host where the remote program supporting the

waiting service resides.

prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

protocol Specifies the transport protocol the service recognizes.

Return Values

Upon successful completion, the pmap_getport subroutine returns the port number of the requested

program; otherwise, if the mapping does not exist or the Remote Procedure Call (RPC) system could not

contact the remote portmap daemon, this subroutine returns a value of 0. If the remote portmap daemon

could not be contacted, the rpc_createerr subroutine contains the RPC status.

Related Information

The portmap daemon.

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 8. Remote Procedure Calls (RPC) 303

pmap_rmtcall Subroutine

Purpose

Instructs the portmap daemon to make a remote procedure call.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

enum clnt_stat pmap_rmtcall (addr, prognum, versnum, procnum)\

enum clnt_stat pmap_rmtcall (inproc, in, outproc, out, tout, portp)

struct sockaddr_in * addr;

u_long prognum, versnum, procnum;

xdrproc_t inproc;

char * in;

xdrproc_t outproc;

char * out;

struct timeval tout;

u_long * portp;

Description

The pmap_rmtcall subroutine is a user interface to the portmap daemon. The routine instructs the host

portmap daemon to make a remote procedure call (RPC). Clients consult the portmap daemon when

sending out RPC calls for given program numbers. The portmap daemon tells the client the ports to which

to send the calls.

Parameters

 addr Points to the Internet Protocol (IP) address of the host where the remote program that supports the

waiting service resides.

prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

procnum Identifies the procedure to be called.

inproc Specifies the eXternal Data Representation (XDR) routine that encodes the remote procedure

parameters.

in Points to the address of the procedure arguments.

outproc Specifies the XDR routine that decodes the remote procedure results.

out Points to the address where the results are placed.

tout Sets the time the routine waits for the results to return before sending the call again.

portp Points to the program port number if the procedure succeeds.

Related Information

The clnt_broadcast subroutine.

The portmap daemon.

Internet Protocol in Networks and communication management.

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

304 Technical Reference: Communications, Volume 1

pmap_set Subroutine

Purpose

Maps a remote procedure call to a port.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

pmap_set (prognum, versnum, protocol, port)

u_long prognum, versnum, protocol;

u_short port;

Description

The pmap_set subroutine acts as a user interface to the portmap daemon to map the program number,

version number, and protocol of a remote procedure call to a port on the machine portmap daemon.

Note: The pmap_set subroutine is called by the svc_register subroutine.

Parameters

 prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

protocol Specifies the transport protocol that the service recognizes. The values for this parameter can be

IPPROTO_UDP or IPPROTO_TCP.

port Specifies the port on the machine’s portmap daemon.

Return Values

Upon successful completion, this routine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The portmap daemon.

The pmap_getmaps subroutine, pmap_unset subroutine, svc_register subroutine.

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

pmap_unset Subroutine

Purpose

Destroys the mappings between a remote procedure call and the port.

Library

C Library (libc.a)

Chapter 8. Remote Procedure Calls (RPC) 305

Syntax

#include <rpc/rpc.h>

pmap_unset (prognum, versnum)

u_long prognum, versnum;

Description

The pmap_unset subroutine destroys mappings between the program number and version number of a

remote procedure call and the ports on the host portmap daemon.

Parameters

 prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

Related Information

The pmap_getmaps subroutine, pmap_set subroutine, svc_unregister subroutine.

The portmap daemon.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

registerrpc Subroutine

Purpose

Registers a procedure with the Remote Procedure Call (RPC) service package.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

registerrpc (prognum, versnum, procnum, procname, inproc, outproc)

u_long prognum, versnum, procnum;

char * (* procname) ();

xdrproc_t inproc, outproc;

Description

The registerrpc subroutine registers a procedure with the RPC service package.

If a request arrives that matches the values of the prognum parameter, the versnum parameter, and the

procnum parameter, then the procname parameter is called with a pointer to its parameters, after which it

returns a pointer to its static results.

Note: Remote procedures registered in this form are accessed using the User Datagram Protocol/Internet

Protocol (UDP/IP) transport protocol only.

306 Technical Reference: Communications, Volume 1

Parameters

 prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

procnum Identifies the procedure number to be called.

procname Identifies the procedure name.

inproc Specifies the eXternal Data Representation (XDR) subroutine that decodes the procedure

parameters.

outproc Specifies the XDR subroutine that encodes the procedure results.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of -1.

Related Information

The callrpc subroutine, svcudp_create subroutine.

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

rtime Subroutine

Purpose

Gets remote time.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

#include <sys/types.h>

#include <sys/time.h>

#include <netinet/in.h>

int rtime (addrp, timep, timeout)

struct sockaddr_in *addrp;

struct timeval *timep;

struct timeval *timeout;

Description

The rtime subroutine consults the Internet Time Server (TIME) at the address pointed to by the addrp

parameter and returns the remote time in the timeval structure pointed to by the timep parameter.

Normally, the User Datagram Protocol (UDP) protocol is used when consulting the time server. If the

timeout parameter is specified as null, however, the routine instead uses Transmission Control Protocol

(TCP) and blocks until a reply is received from the time server.

Parameters

 addrp Points to the Internet Time Server.

timep Points to the timeval structure.

timeout Specifies how long the routine waits for a reply before terminating.

Chapter 8. Remote Procedure Calls (RPC) 307

Return Values

Upon successful completion, this subroutine returns a value of 0. If unsuccessful, it returns a value of -1,

and the errno global variable is set to reflect the cause of the error.

Related Information

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

svc_destroy Macro

Purpose

Destroys a Remote Procedure Call (RPC) service transport handle.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void svc_destroy (xprt)

SVCXPRT *xprt;

Description

The svc_destroy macro destroys an RPC service transport handle. Destroying the service transport

handle deallocates the private data structures, including the handle itself. After the svc_destroy macro is

used, the handle pointed to by the xprt parameter is no longer defined.

Parameters

 xprt Points to the RPC service transport handle.

Related Information

The clnt_destroy macro, svc_freeargs macro.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

svc_exit Subroutine

Purpose

Causes the svc_run service loop to terminate and return.

Library

Network Services Library (libnsl.a)

308 Technical Reference: Communications, Volume 1

Syntax

#include <rpc/rpc.h>

void svc_exit (void);

Description

The svc_exit subroutine causes the svc_run loop to terminate and return to the caller. This subroutine

can be called by a service procedure. The call causes all service threads to exit and destroys all server

services. Callers must reestablish all services if they wish to resume server activity.

Related Information

The “svc_run Subroutine” on page 313.

svc_freeargs Macro

Purpose

Frees data allocated by the Remote Procedure Call/eXternal Data Representation (RPC/XDR) system.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

svc_freeargs (xprt, inproc, in)

SVCXPRT *xprt;

xdrproc_t inproc;

char *in;

Description

The svc_freeargs macro frees data allocated by the RPC/XDR system. This data is allocated when the

RPC/XDR system decodes the arguments to a service procedure with the svc_getargs macro.

Parameters

 xprt Points to the RPC service transport handle.

inproc Specifies the XDR routine that decodes the arguments.

in Specifies the address where the procedure arguments are placed.

Related Information

The svc_getargs macro, svc_destroy macro.

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

svc_getargs Macro

Purpose

Decodes the arguments of a Remote Procedure Call (RPC) request.

Chapter 8. Remote Procedure Calls (RPC) 309

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

svc_getargs (xprt, inproc, in)

SVCXPRT *xprt;

xdrproc_t inproc;

char *in;

Description

The svc_getargs macro decodes the arguments of an RPC request associated with the RPC service

transport handle.

Parameters

 xprt Points to the RPC service transport handle.

inproc Specifies the eXternal Data Representation (XDR) routine that decodes the arguments.

in Specifies the address where the arguments are placed.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The svc_freeargs macro.

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

svc_getcaller Macro

Purpose

Gets the network address of the caller of a procedure.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

struct sockaddr_in *

svc_getcaller (xprt)

SVCXPRT *xprt;

Description

The svc_getcaller macro retrieves the network address of the caller of a procedure associated with the

Remote Procedure Call (RPC) service transport handle.

310 Technical Reference: Communications, Volume 1

Parameters

 xprt Points to the RPC service transport handle.

Related Information

The svc_register subroutine, svc_run subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

svc_getreqset Subroutine

Purpose

Services a Remote Procedure Call (RPC) request.

Library

C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/select.h>

#include <rpc/rpc.h>

void svc_getreqset (rdfds)

fd_set *rdfds;

Description

The svc_getreqset subroutine is only used if a service implementor does not call the svc_run subroutine,

but instead implements custom asynchronous event processing. The subroutine is called when the select

subroutine has determined that an RPC request has arrived on any RPC sockets. The svc_getreqset

subroutine returns when all sockets associated with the value specified by the rdfds parameter have been

serviced.

Parameters

 rdfds Specifies the resultant read-file descriptor bit mask.

Restrictions

In AIX 5.2, the maximum number of open file descriptors that an RPC server can use has been set to

32767 so that compatibility can be maintained with RPC-server applications built on earlier releases of AIX.

The fd_set type passed into the svc_getreqset subroutine must be compiled with FD_SETSIZE set to

32767 or larger. Passing in a smaller fd_set argument can cause the svc_getreqset subroutine to overrun

the passed-in buffer.

Related Information

The select subroutine, svc_run subroutine.

Remote Procedure Call (RPC) Overview for Programming and Sockets Overview in AIX 5L Version 5.3

Communications Programming Concepts.

Chapter 8. Remote Procedure Calls (RPC) 311

svc_register Subroutine

Purpose

Maps a remote procedure.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

svc_register (xprt, prognum, versnum, dispatch, protocol)

SVCXPRT * xprt;

u_long prognum, versnum;

void (* dispatch) ();

int protocol;

Description

The svc_register subroutine maps a remote procedure with a service dispatch procedure pointed to by

the dispatch parameter. If the protocol parameter has a value of 0, the service is not registered with the

portmap daemon. If the protocol parameter does not have a value of 0 (or if it is IPPROTO_UDP or

IPPROTO_TCP), the remote procedure triple (prognum, versnum, and protocol parameters) is mapped to

the xprt->xp_port port.

The dispatch procedure takes the following form:

dispatch (request, xprt)

struct svc_req *request;

SVCXPRT *xprt;

Parameters

 xprt Points to a Remote Procedure Call (RPC) service transport handle.

prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

dispatch Points to the service dispatch procedure.

protocol Specifies the data transport used by the service.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The pmap_set subroutine, pmap_getmaps subroutine, svc_unregister subroutine.

The portmap daemon.

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

312 Technical Reference: Communications, Volume 1

svc_run Subroutine

Purpose

Waits for a Remote Procedure Call service request to arrive.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void svc_run (void);

Description

The svc_run subroutine waits for a Remote Procedure Call (RPC) service request to arrive. When a

request arrives, the svc_run subroutine calls the appropriate service procedure with the svc_getreqset

subroutine. This procedure is usually waiting for a select subroutine to return.

Restrictions

In AIX 5.2, the maximum number of open file descriptors that an RPC server can use has been set to

32767 so that compatibility can be maintained with RPC-server applications built on earlier releases of AIX.

Related Information

The callrpc subroutine, registerrpc subroutine, select subroutine, svc_getreqset subroutine, and

“svc_exit Subroutine” on page 308.

Remote Procedure Call (RPC) Overview for Programmingm in AIX 5L Version 5.3 Communications

Programming Concepts.

svc_sendreply Subroutine

Purpose

Sends back the results of a remote procedure call.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

svc_sendreply (xprt, outproc, out)

SVCXPRT *xprt;

xdrproc_t outproc;

char *out;

Description

The svc_sendreply subroutine sends back the results of a remote procedure call. This subroutine is

called by a Remote Procedure Call (RPC) service dispatch subroutine.

Chapter 8. Remote Procedure Calls (RPC) 313

Parameters

 xprt Points to the RPC service transport handle of the caller.

outproc Specifies the eXternal Data Representation (XDR) routine that encodes the results.

out Points to the address where results are placed.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

eXternal Data Representation (XDR) Overview for Programming and Remote Procedure Call (RPC)

Overview for Programming in AIX 5L Version 5.3 Communications Programming Concepts.

svc_unregister Subroutine

Purpose

Removes mappings between procedures and objects.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void svc_unregister (prognum, versnum)

u_long prognum, versnum;

Description

The svc_unregister subroutine removes mappings between dispatch subroutines and the service

procedure identified by the prognum parameter and the versnum parameter. It also removes the mapping

between the port number and the service procedure which is identified by the prognum parameter and the

versnum parameter.

Parameters

 prognum Specifies the program number of the remote program.

versnum Specifies the version number of the remote program.

Related Information

The pmap_unset subroutine, svc_register subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

svcerr_auth Subroutine

Purpose

Indicates that the service dispatch routine cannot complete a remote procedure call due to an

authentication error.

314 Technical Reference: Communications, Volume 1

Library

RPC Library (libcrpc.a)

Syntax

#include <rpc/rpc.h>

void svcerr_auth (xprt, why)

SVCXPRT *xprt;

enum auth_stat why;

Description

The svcerr_auth subroutine is called by a service dispatch subroutine that refuses to perform a remote

procedure call (RPC) because of an authentication error. This subroutine sets the status of the RPC reply

message to AUTH_ERROR.

Parameters

 xprt Points to the RPC service transport handle.

why Specifies the authentication error.

svcerr_decode Subroutine

Purpose

Indicates that the service dispatch routine cannot decode the parameters of a request.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void svcerr_decode (xprt)

SVCXPRT *xprt;

Description

The svcerr_decode subroutine is called by a service dispatch subroutine that cannot decode the

parameters specified in a request. This subroutine sets the status of the Remote Procedure Call (RPC)

reply message to the GARBAGE_ARGS condition.

Parameters

 xprt Points to the RPC service transport handle.

Related Information

The svc_getargs macro.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Chapter 8. Remote Procedure Calls (RPC) 315

svcerr_noproc Subroutine

Purpose

Indicates that the service dispatch routine cannot complete a remote procedure call because the program

cannot support the requested procedure.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void svcerr_noproc (xprt)

SVCXPRT *xprt;

Description

The svcerr_noproc subroutine is called by a service dispatch routine that does not implement the

procedure number the caller has requested. This subroutine sets the status of the Remote Procedure Call

(RPC) reply message to the PROC_UNAVAIL condition, which indicates that the program cannot support

the requested procedure.

Note: Service implementors do not usually need this subroutine.

Parameters

 xprt Points to the RPC service transport handle.

svcerr_noprog Subroutine

Purpose

Indicates that the service dispatch routine cannot complete a remote procedure call because the requested

program is not registered.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void svcerr_noprog (xprt)

SVCXPRT *xprt;

Description

The svcerr_noprog subroutine is called by a service dispatch routine when the requested program is not

registered with the Remote Procedure Call (RPC) package. This subroutine sets the status of the RPC

reply message to the PROG_UNAVAIL condition, which indicates that the remote server has not exported

the program.

Note: Service implementors do not usually need this subroutine.

316 Technical Reference: Communications, Volume 1

Parameters

 xprt Points to the RPC service transport handle.

svcerr_progvers Subroutine

Purpose

Indicates that the service dispatch routine cannot complete the remote procedure call because the

requested program version is not registered.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void svcerr_progvers (xprt)

SVCXPRT *xprt; u_long

Description

The svcerr_progvers subroutine is called by a service dispatch routine when the requested version of a

program is not registered with the Remote Procedure Call (RPC) package. This subroutine sets the status

of the RPC reply message to the PROG_MISMATCH condition, which indicates that the remote server

cannot support the client’s version number.

Note: Service implementors do not usually need this subroutine.

Parameters

 xprt Points to the RPC service transport handle.

svcerr_systemerr Subroutine

Purpose

Indicates that the service dispatch routine cannot complete the remote procedure call due to an error that

is not covered by a protocol.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void svcerr_systemerr (xprt)

SVCXPRT *xprt;

Description

The svcerr_systemerr subroutine is called by a service dispatch subroutine that detects a system error

not covered by a protocol. For example, a service dispatch subroutine calls the svcerr_systemerr

Chapter 8. Remote Procedure Calls (RPC) 317

subroutine if the first subroutine can no longer allocate storage. The routine sets the status of the Remote

Procedure Call (RPC) reply message to the SYSTEM_ERR condition.

Parameters

 xprt Points to the RPC service transport handle.

svcerr_weakauth Subroutine

Purpose

Indicates that the service dispatch routine cannot complete the remote procedure call due to insufficient

authentication security parameters.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

void svcerr_weakauth (xprt)

SVCXPRT *xprt;

Description

The svcerr_weakauth subroutine is called by a service dispatch routine that cannot make the remote

procedure call (RPC) because the supplied authentication parameters are insufficient for security reasons.

The svcerr_weakauth subroutine calls the svcerr_auth subroutine with the correct RPC service transport

handle (the xprt parameter). The subroutine also sets the status of the RPC reply message to the

AUTH_TOOWEAK condition as the authentication error (AUTH_ERR).

Parameters

 xprt Points to the RPC service transport handle.

Related Information

The svcerr_auth subroutine, svcerr_decode subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

svcfd_create Subroutine

Purpose

Creates a service on any open file descriptor.

Library

C Library (libc.a)

318 Technical Reference: Communications, Volume 1

Syntax

#include <rpc/rpc.h>

SVCXPRT *svcfd_create (fd, sendsize, recvsize)

int fd;

u_int sendsize;

u_int recvsize;

Description

The svcfd_create subroutine creates a service on any open file descriptor. Typically, this descriptor is a

connected socket for a stream protocol such as Transmission Control Protocol (TCP).

By default, the RPC server uses nonblocking I/O with TCP. This behavior can be changed by setting the

environment variable RPC_TCP_MODE to USEBLOCKING, which causes the TCP RPC server to use

blocking I/O.

Note: Using blocking I/O leaves the server vulnerable to disruption by malicious or misconfigured clients.

Parameters

 fd Identifies the descriptor.

sendsize Specifies the size of the send buffer.

recvsize Specifies the size of the receive buffer.

Restrictions

In AIX 5.2, the maximum number of open file descriptors that an RPC server can use has been set to

32767 so that compatibility can be maintained with RPC-server applications built on earlier releases of AIX.

Return Values

Upon successful completion, this subroutine returns a TCP-based transport handle. If unsuccessful, it

returns a value of null.

Related Information

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming and Sockets Overview in AIX 5L Version 5.3

Communications Programming Concepts.

svcraw_create Subroutine

Purpose

Creates a toy Remote Procedure Call (RPC) service transport handle for simulation.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

SVCXPRT *svcraw_create ()

Chapter 8. Remote Procedure Calls (RPC) 319

Description

The svcraw_create subroutine creates a toy RPC service transport handle. The service transport handle

is located within the address space of the process. If the corresponding RPC server resides in the same

address space, then simulation of RPC and acquisition of RPC overheads, such as round-trip times, are

done without kernel interference.

Return Values

Upon successful completion, this subroutine returns a pointer to a valid RPC transport handle. If

unsuccessful, it returns a value of null.

Related Information

The clntraw_create subroutine.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

svctcp_create Subroutine

Purpose

Creates a Transmission Control Protocol/Internet Protocol (TCP/IP) service transport handle.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

SVCXPRT *svctcp_create (sock, sendsz, recvsz)

int sock;

u_int sendsz, rcvcsz;

Description

The svctcp_create subroutine creates a Remote Procedure Call (RPC) service transport handle based on

TCP/IP and returns a pointer to it.

Since TCP/IP remote procedure calls use buffered I/O, users can set the size of the send and receive

buffers with the sendsz and recvsz parameters, respectively. If the size of either buffer is set to a value of

0, the svctcp_create subroutine picks suitable default values.

By default, the RPC server uses nonblocking I/O with TCP. This behavior can be changed by setting the

environment variable RPC_TCP_MODE to USEBLOCKING, which causes the TCP RPC server to use

blocking I/O.

Note: Using blocking I/O leaves the server vulnerable to disruption by malicious or misconfigured clients.

Parameters

 sock Specifies the socket associated with the transport. If the value of the sock parameter is RPC_ANYSOCK,

the svctcp_create subroutine creates a new socket. The service transport handle socket number is set

to xprt->xp_sock. If the socket is not bound to a local TCP/IP port, then this routine binds the socket to

an arbitrary port. Its port number is set to xprt->xp_port.

sendsz Specifies the size of the send buffer.

320 Technical Reference: Communications, Volume 1

recvsz Specifies the size of the receive buffer.

Restrictions

In AIX 5.2, the maximum number of open file descriptors that an RPC server can use has been set to

32767 so that compatibility can be maintained with RPC-server applications built on earlier releases of AIX.

Return Values

Upon successful completion, this subroutine returns a valid RPC service transport handle. If unsuccessful,

it returns a value of null.

Related Information

The registerrpc subroutine, svcudp_create subroutine.

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Sockets Overview in AIX 5L Version 5.3 Communications Programming Concepts.

svcudp_create Subroutine

Purpose

Creates a User Datagram Protocol/Internet Protocol (UDP/IP) service transport handle.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

SVCXPRT *svcudp_create (sock)

int sock;

Description

The svcudp_create subroutine creates a Remote Procedure Call (RPC) service transport handle based

on UDP/IP and returns a pointer to it.

The UDP/IP service transport handle is used only for procedures that take up to 8KB of encoded

arguments or results.

Parameters

 sock Specifies the socket associated with the service transport handle. If the value specified by the sock

parameter is RPC_ANYSOCK, the svcudp_create subroutine creates a new socket and sets the service

transport handle socket number to xprt->xp_sock. If the socket is not bound to a local UDP/IP port, then the

svcudp_create subroutine binds the socket to an arbitrary port. The port number is set to xprt->xp_port.

Chapter 8. Remote Procedure Calls (RPC) 321

Restrictions

In AIX 5.2, the maximum number of open file descriptors that an RPC server can use has been set to

32767 so that compatibility can be maintained with RPC-server applications built on earlier releases of AIX.

Return Values

Upon successful completion, this subroutine returns a valid RPC service transport. If unsuccessful, it

returns a value of null.

Related Information

The registerrpc subroutine, svctcp_create subroutine.

TCP/IP protocols in Networks and communication management.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

user2netname Subroutine

Purpose

Converts from a domain-specific user ID to a network name that is independent from the operating

system.

Library

C Library (libc.a)

Syntax

#include <rpc/rpc.h>

int user2netname (name, uid, domain)

char *name;

int uid;

char *domain;

Description

The user2netname subroutine converts from a domain-specific user ID to a network name that is

independent from the operating system.

This subroutine is the inverse of the netname2user subroutine.

Parameters

 name Points to the network name (or netname) of the server process owner.

uid Points to the caller’s effective user ID (UID).

domain Points to the domain name.

Return Values

Upon successful completion, this subroutine returns a value of 1. If unsuccessful, it returns a value of 0.

Related Information

The host2netname subroutine, netname2user subroutine.

322 Technical Reference: Communications, Volume 1

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

xprt_register Subroutine

Purpose

Registers a Remote Procedure Call (RPC) service transport handle.

Library

C Library (libc.a)

Syntax

#include <rpc/svc.h>

void xprt_register (xprt)

SVCXPRT *xprt;

Description

The xprt_register subroutine registers an RPC service transport handle with the RPC program after the

transport has been created. This subroutine modifies the svc_fds global variable.

Note: Service implementors do not usually need this subroutine.

Parameters

 xprt Points to the newly created RPC service transport handle.

Related Information

eXternal Data Representation (XDR) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

xprt_unregister Subroutine

Purpose

Removes a Remote Procedure Call (RPC) service transport handle.

Library

C Library (libc.a)

Syntax

void xprt_unregister (xprt)

SVCXPRT *xprt;

Description

The xprt_unregister subroutine removes an RPC service transport handle from the RPC service program

before the transport handle can be destroyed. This subroutine modifies the svc_fds global variable.

Chapter 8. Remote Procedure Calls (RPC) 323

Note: Service implementors do not usually need this subroutine.

Parameters

 xprt Points to the RPC service transport handle to be destroyed.

Related Information

eXternal Data Representation (XDR) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Remote Procedure Call (RPC) Overview for Programming in AIX 5L Version 5.3 Communications

Programming Concepts.

Data Link Provider Interface (DLPI)

v DL_ATTACH_REQ Primitive

v DL_BIND_ACK Primitive

v DL_BIND_REQ Primitive

v DL_CONNECT_CON Primitive

v DL_CONNECT_IND Primitive

v DL_CONNECT_REQ Primitive

v DL_CONNECT_RES Primitive

v DL_DATA_IND Primitive

v DL_DATA_REQ Primitive

v DL_DETACH_REQ Primitive

v DL_DISABMULTI_REQ Primitive

v DL_DISCONNECT_IND Primitive

v DL_DISCONNECT_REQ Primitive

v DL_ENABMULTI_REQ Primitive

v DL_ERROR_ACK Primitive

v DL_GET_STATISTICS_REQ Primitive

v DL_GET_STATISTICS_ACK Primitive

v DL_INFO_ACK Primitive

v DL_INFO_REQ Primitive

v DL_OK_ACK Primitive

v DL_PHYS_ADDR_REQ Primitive

v DL_PHYS_ADDR_ACK Primitive

v DL_PROMISCOFF_REQ Primitive

v DL_PROMISCON_REQ Primitive

v DL_RESET_CON Primitive

v DL_RESET_IND Primitive

v DL_RESET_REQ Primitive

v DL_RESET_RES Primitive

v DL_SUBS_BIND_ACK Primitive

v DL_SUBS_BIND_REQ Primitive

v DL_SUBS_UNBIND_REQ Primitive

v DL_TEST_CON Primitive

324 Technical Reference: Communications, Volume 1

v DL_TEST_IND Primitive

v DL_TEST_REQ Primitive

v DL_TEST_RES Primitive

v DL_TOKEN_ACK Primitive

v DL_TOKEN_REQ Primitive

v DL_UDERROR_IND Primitive

v DL_UNBIND_REQ Primitive

v DL_UNITDATA_IND Primitive

v DL_UNITDATA_REQ Primitive

v DL_XID_CON Primitive

v DL_XID_IND Primitive

v DL_XID_REQ Primitive

v DL_XID_RES Primitive

Chapter 8. Remote Procedure Calls (RPC) 325

326 Technical Reference: Communications, Volume 1

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Dept. LRAS/Bldg. 003

11400 Burnet Road

Austin, TX 78758-3498

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1997, 2006 327

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AIX

 AIX 5L

 CICS

 IBM

 MVS/SP

 MVS/XA

 VSE/ESA

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

328 Technical Reference: Communications, Volume 1

Index

A
allocated data

freeing 286, 309

API applications
receiving messages from 186

sending messages to 187

starting interaction with 184

terminating interactions 185

arrays
installing network name 296

translating into external representations 109, 111,

130

asynchronous faults
enabling 199

inhibiting 200

auth_destroy macro 275

authdes_create subroutine 275

authdes_getucred subroutine 276

authentication information
destroying 275

authentication messages 119

authnone_create subroutine 277

authunix_create subroutine 278

authunix_create_default subroutine 279

B
Booleans

translating 110

buffers
checking for end of file 135

C
C language, translating

characters 113

discriminated unions 129

enumerations 114

floats 115

integers 110, 117

long integers 118

numbers 132

short integers 125

strings 126, 131

unsigned characters 126

unsigned integers 127

unsigned long integers 128

call header messages 112

call messages 112

calling processes
setting keys 300

callrpc subroutine 279

cbc_crypt subroutine 280

cfxfer function 139

cleanup handlers
establishing 198

releasing 203

cleanup handlers (continued)
resetting 202

client objects
changing or retrieving 284

clnt parameter
calling remote procedure 283

clnt_broadcast subroutine 282

clnt_call macro 283

clnt_control macro 284

clnt_create subroutine 285

clnt_destroy macro 286

clnt_freeres macro 286

clnt_geterr macro 287

clnt_pcreateerror subroutine 287

clnt_perrno subroutine 288

clnt_perror subroutine 289

clnt_spcreateerror subroutine 290

clnt_sperrno subroutine 290

clnt_sperror subroutine 291

clntraw_create subroutine 292

clnttcp_create subroutine 293

clntudp_create subroutine 294

close subroutine interface for DLC devices 11

connection-response token 97

connection-response token assigned 98

conversation key, secure 299

cursor position
setting column components 157

setting row components 157

D
data

marking outgoing as records 135

Data Encryption Standard 280

data link connection 60, 61

Data Link Control 11

Data Link Provider Interface (DLPI) 79

data link service (DLS) 60, 61, 63, 64, 66, 67, 68, 69,

73, 74, 76, 81, 82, 84, 86, 87, 88, 89, 90, 92, 93, 94,

95, 96, 98, 99, 100, 101, 103, 107

data link service (DLS) user 102, 104

data link service access point (DLSAP) 89, 90, 92, 100

data link service data unit (DLSDU) 66, 93, 94, 95, 96,

101, 102, 103, 104, 107

data notification
toggling 163

data streams
getting position of 116

data types
receiving GDLC 20, 23

databases
closing 265, 269

opening for access 268, 270

returning first key 267, 272

returning next key 267, 272

datagram data received routine (DLC) 25

© Copyright IBM Corp. 1997, 2006 329

DBM subroutines
dbmclose 269

dbminit 270

delete 271

fetch 271

firstkey 272

nextkey 272

store 273

dbm_close subroutine 265

dbm_delete subroutine 265

dbm_fetch subroutine 266

dbm_firstkey subroutine 267

dbm_nextkey subroutine 267

dbm_open subroutine 268

dbm_store subroutine 269

dbmclose subroutine 269

dbminit subroutine 270

default domains
getting 256

delete subroutine 271

DES
enabling use of 275

DES encryption routines
starting 280

DES keys
decrypting 297

encrypting 298

des_setparity subroutine 280

device handlers
decoding name 4

disconnect an active link 71

discriminated unions
translating 129

DL_ATTACH_REQ 55

DL_BIND_ACK 56

DL_BIND_REQ 57

DL_CONNECT_CON Primitive 60

DL_CONNECT_IND Primitive 61

DL_CONNECT_REQ Primitive 63

DL_CONNECT_RES Primitive 64

DL_DATA_IND Primitive 66

DL_DATA_REQ Primitive 66

DL_DETACH_REQ Primitive 67

DL_DISABMULTI_REQ Primitive 68

DL_DISCONNECT_IND Primitive 69

DL_DISCONNECT_REQ Primitive 71

DL_ENABMULTI_REQ Primitive 73

DL_ERROR_ACK Primitive 74

DL_GET_STATISTICS_ACK Primitive 75

DL_GET_STATISTICS_REQ 76

DL_GET_STATISTICS_REQ Primitive 75

DL_INFO_ACK Primitive 77

DL_INFO_REQ Primitive 77, 79

DL_OK_ACK Primitive 80

DL_PHYS_ADDR_ACK Primitive 81

DL_PHYS_ADDR_REQ Primitive 81

DL_PROMISCOFF_REQ Primitive 82

DL_PROMISCON_REQ Primitive 84

DL_RESET_IND Primitive 86

DL_RESET_REQ Primitive 87

DL_RESET_RES Primitive 88

DL_SUBS_BIND_ACK Primitive 89

DL_SUBS_BIND_REQ Primitive 90, 92

DL_SUBS_UNBIND_REQ Primitive 92

DL_TEST_CON Primitive 93

DL_TEST_IND Primitive 94, 96

DL_TEST_REQ Primitive 93, 95

DL_TEST_RES Primitive 96

DL_TOKEN_ACK Primitive 97

DL_TOKEN_REQ Primitive 98

DL_UDERROR_IND Primitive 99

DL_UNBIND_REQ Primitive 100

DL_UNITDATA_IND Primitive 101

DL_UNITDATA_REQ Primitive 99, 102

DL_XID_CON Primitive 103

DL_XID_IND Primitive 104, 107

DL_XID_REQ 105

DL_XID_REQ Primitive 103

DL_XID_RES Primitive 107

DLC
asynchronous event notification 25

asynchronous exception notification 42

device descriptor structures 54

extended parameters 19, 20, 23

functional address masks 31, 36

ioctl operations 29

parameter blocks 30

receive address 32

receiving data
data packet 26

datagram packet 25

network-specific 27

XID packet 28

DLC ioctl operations
DLC_ADD_FUNC_ADDR 31

DLC_ADD_GRP 32

DLC_ALTER 32

DLC_CONTACT 36

DLC_DEL_FUNC_ADDR 36

DLC_DEL_GRP 37

DLC_DISABLE_SAP 37

DLC_ENABLE_SAP 38

DLC_ENTER_LBUSY 41

DLC_ENTER_SHOLD 41

DLC_EXIT_LBUSY 41

DLC_EXIT_SHOLD 42

DLC_GET_EXCEP 42

DLC_HALT_LS 47

DLC_QUERY_LS 47

DLC_QUERY_SAP 50

DLC_STARTS_LS 51

DLC_TEST 53

DLC_TRACE 54

IOCINFO 54

DLC kernel routines
datagram data received 25

exception condition 25

I-frame data received 26

network data received 27

XID data received 28

DLC subroutine interfaces
close 11

330 Technical Reference: Communications, Volume 1

DLC subroutine interfaces (continued)
ioctl 12

open 13

readx 15

select 16

writex 17

DLC_ADD_FUNC_ADDR ioctl operation 31

DLC_ADD_GRP ioctl operation 32

DLC_ALTER ioctl operation 32

DLC_CONTACT ioctl operation 36

DLC_DEL_FUNC_ADDR ioctl operation 36

DLC_DEL_GRP 37

DLC_DISABLE_SAP ioctl operation 37

DLC_ENABLE_SAP ioctl operation 38

DLC_ENTER_LBUSY ioctl operation 41

DLC_ENTER_SHOLD ioctl operation 41

DLC_EXIT_LBUSY ioctl operation 41

DLC_EXIT_SHOLD ioctl operation 42

DLC_GET_EXCEP ioctl operation 42

DLC_HALT_LS ioctl operation 47

DLC_QUERY_LS ioctl operation 47

DLC_QUERY_SAP ioctl operation 50

DLC_START_LS ioctl operation 51

DLC_TEST ioctl operation 53

DLC_TRACE ioctl operation 54

dlcclose entry point 1

dlcconfig entry point 2

dlcioctl entry point 3

dlcmpx entry point 4

dlcopen entry point 5

dlcread entry point 7

dlcselect entry point 8

dlcwrite entry point 10

DLPI
DL_ATTACH_REQ 55

DLPI Primitive
DL_BIND_ACK 56

DL_BIND_REQ 57

DL_XID_REQ 105

E
ecb_crypt subroutine 280

error codes
using as input to NIS subroutines 264

error strings
returning pointer 263

exception condition routine (DLC) 25

external representations, translating from
arrays 109, 111, 130

Booleans 110

C language characters 113, 126

C language enumerations 114

C language floats 115

C language integers 117

C language long integers 118

C language numbers 132

C language short integers 125

C language strings 126

C language unsigned integers 127

C language unsigned long integers 128

external representations, translating from (continued)
C language unsigned short integers 128

discriminated unions 129

opaque data 119

F
fault signals 203

fetch subroutine 271

file descriptors
creating services 318

file transfers
initiating 141

invoking 150

firstkey subroutine 272

functional address masks 31, 36

fxfer function 141

G
g32_alloc function 144

g32_close function 147

g32_dealloc function 148

g32_fxfer function 150

g32_get_cursor function 157

g32_get_data function 159

g32_get_status function 161

g32_notify function 163

g32_open function 166

g32_openx function 169

g32_read function 175

g32_search function 177

g32_send_keys function 180

g32_write function 182

G32ALLOC function 184

G32DLLOC function 185

G32READ function 186

G32WRITE function 187

GDLC
asynchronous criteria 8

descriptor readiness 16

ioctl operations 29

providing data link control 23

providing generic 20

reading receive application data 15

reading receive data from 7

sending application data 17

transferring commands to 12

writing transmit data to 10

GDLC channels
allocating 4

closing 1

disabling 11

opening 5

GDLC device manager
closing 11

configuring 2

issuing commands to 3

opening 13

GDLC device manager entry points
dlcclose 1

Index 331

GDLC device manager entry points (continued)
dlcconfig 2

dlcioctl 3

dlcmpx 4

dlcopen 5

dlcread 7

dlcselect 8

dlcwrite 10

Generic Data Link Control 11

get_myaddress subroutine 295

getnetname subroutine 296

GLB database
locating information

on interfaces 189, 193

on objects 190, 193

on types 193, 194

registering objects and interfaces 196

removing entries 197

Global Location Broker 189

H
HCON functions

cfxfer 139

fxfer 141

g32_alloc 144

g32_close 147

g32_dealloc 148

g32_fxfer 150

g32_get_cursor 157

g32_get_data 159

g32_get_status 161

g32_notify 163

g32_open 166

g32_openx 169

g32_read 175

g32_search 177

g32_send_keys 180

g32_write 182

G32ALLOC 184

G32DLLOC 185

G32READ 186

host applications
ending interaction 148

initiating interaction 144

receiving messages 175

sending messages 182

host names
converting socket addresses to 215

converting to network names 296

converting to socket addresses 212

host parameter
calling associated remote procedure 279

host2netname subroutine 296

I
I-frame data received routine for DLC 26

input streams
moving position 136

interfaces
registering 213

unregistering 216

invalid request or response 74

IOCINFO operation
DLC 54

ioctl operations (DLC) 29

ioctl subroutine interface for DLC devices 12

IP addresses
finding 295

K
key_decryptsession subroutine 297

key_encryptsession subroutine 298

key_gendes subroutine 299

key_setsecret subroutine 300

key-value pairs 253, 259

returning first 255

keys
accessing data stored under 266, 271

deleting 265, 271

placing data under 269, 273

searching for associated values 258

keyserv daemon 299

L
lb_$lookup_interface library routine 189

lb_$lookup_object library routine 190

lb_$lookup_object_local library routine 191

lb_$lookup_range library routine 193

lb_$lookup_type library routine 194

lb_$register library routine 196

lb_$unregister library routine 197

link stations 47

LLB database
locating information

on interfaces 193

on objects 191, 193

on types 193

registering objects and interfaces 196

removing entries 197

local busy mode 41

Local Location Broker 189

Location Broker library routines
lb_$lookup_interface 189

lb_$lookup_object 190

lb_$lookup_object_local 191

lb_$lookup_range 193

lb_$lookup_type 194

lb_$register 196

lb_$unregister 197

logical paths
returning status information 161

LS correlators
receiving GDLC 20

LSs
altering configuration parameters 32

contacting remote station 36

halting 47

332 Technical Reference: Communications, Volume 1

LSs (continued)
local busy mode 41

querying statistics 47

receiving GDLC 23

result extensions 45, 46, 47

short hold mode 41, 42

starting 51

testing remote link 53

tracing activity 54

M
mappings

removing 314

master servers
returning machine names 257

memory
freeing 115

message replies 109, 123, 124

multicast addresses 73

removing 37

N
name parameter

installing network name 296

NDBM subroutines
dbm_close 265

dbm_delete 265

dbm_fetch 266

dbm_firstkey 267

dbm_nextkey 267

dbm_open 268

dbm_store 269

netname2host subroutine 300

netname2user subroutine 301

network addresses
retrieving 310

network data received routine (DLC) 27

Network Information Service 253

network names
converting to host names 300

converting to user IDs 301

New Database Manager library 265

nextkey subroutine 272

NIS maps
changing 262

returning order number 260

NIS master servers
returning machine names 257

NIS subroutines
yp_all 253

yp_bind 254

yp_first 255

yp_get_default_domain 256

yp_master 257

yp_match 258

yp_next 259

yp_order 260

yp_unbind 261

yp_update 262

NIS subroutines (continued)
yperr_string 263

ypprot_err 264

O
opaque data

translating 119

open file descriptors
creating service 318

open subroutine interface (DLC) 13

open subroutine, parameters (DLC) 19

openx subroutine
parameters (DLC) 19

P
parameter blocks (DLC) 30

peer DLS provider 95

PFM library routines
pfm_$cleanup 198

pfm_$enable 199

pfm_$enable_faults 199

pfm_$inhibit 200

pfm_$inhibit_faults 200

pfm_$init 201

pfm_$reset_cleanup 202

pfm_$rls_cleanup 203

pfm_$signal 203

PFM package
initializing 201

pfm_$cleanup library routine 198

pfm_$enable library routine 199

pfm_$enable_faults library routine 199

pfm_$inhibit library routine 200

pfm_$inhibit_faults library routine 200

pfm_$init library routine 201

pfm_$reset_cleanup library routine 202

pfm_$rls_cleanup library routine 203

pfm_$signal library routine 203

physical address 81

physical point of attachment (PPA) 67

pmap_getmaps subroutine 302

pmap_getport subroutine 303

pmap_rmtcall subroutine 304

pmap_set subroutine 305

pmap_unset subroutine 305

port mappings
describing 121

port numbers
requesting 303

portmap procedures
describing parameters 120

presentation space
obtaining display data 159

searching for character patterns 177

previously issued primitive 80

processes
managing socket descriptors 261

program-to-port mappings
returning list 302

Index 333

programmatic file transfers
checking status 139

promiscuous mode 82, 84

R
read subroutine parameters (DLC) 20

readx subroutine interface for devices (DLC) 15

readx subroutine parameters (DLC) 20

records
marking outgoing data as 135

skipping 136

registerrpc subroutine 306

remote DLS user 63, 64

remote procedure calls 282

broadcasting 282

creating with portmap daemon 304

error in authenticating 314

error unknown to protocol 317

failing 289, 291

insufficient authentication 318

mapping 305

sending results 313

unmapping 305

unregistered program 316

unregistered program version 317

unsupported procedure 316

remote procedures
mapping 312

remote time
obtaining 307

RPC authentication handles
creating 278

creating NULL 277

setting to default 279

RPC authentication messages 119

RPC authentication subroutines
authdes_create 275

authdes_getucred 276

authnone_create 277

authunix_create 278

authunix_create_default 279

xdr_authunix_parms 132

RPC call header messages 112

RPC call messages 112

RPC client handles
copying error information 287

creating and returning 285

destroying 286

error in creating 287, 290

RPC client objects
changing or retrieving 284

RPC client subroutines
clnt_broadcast 282

clnt_create 285

clnt_pcreateerror 287

clnt_perrno 288

clnt_perror 289

clnt_spcreateerror 290

clnt_sperrno 290

clnt_sperror 291

RPC client subroutines (continued)
clntraw_create 292

clnttcp_create 293

clntudp_create 294

RPC client transport handles
creating TCP/IP 293

creating UDP/IP 294

RPC clients
creating toy 292

RPC handles
allocating 205

associating with servers 214

clearing bindings 206, 207

copying 208

creating 204

freeing 209

returning object UUID 211

returning socket addresses 210

RPC library routines
rpc_$alloc_handle 204

rpc_$bind 205

rpc_$clear_binding 206

rpc_$clear_server_binding 207

rpc_$dup_handle 208

rpc_$free_handle 209

rpc_$inq_binding 210

rpc_$inq_object 211

rpc_$listen 211

rpc_$name_to_sockaddr 212

rpc_$register 213

rpc_$set_binding 214

rpc_$sockaddr_to_name 215

rpc_$unregister 216

rpc_$use_family 217

rpc_$use_family_wk 218

RPC macros
auth_destroy 275

clnt_call 283

clnt_control 284

clnt_destroy 286

clnt_freeres 286

clnt_geterr 287

svc_destroy 308

svc_freeargs 309

svc_getargs 309

svc_getcaller 310

RPC message replies 109, 123, 124

RPC packets
handling 211

RPC portmap subroutines
pmap_getmaps 302

pmap_getport 303

pmap_rmtcall 304

pmap_set 305

pmap_unset 305

RPC program-to-port mappings
returning list 302

RPC reply messages
encoding 109

RPC requests
decoding arguments 309

334 Technical Reference: Communications, Volume 1

RPC requests (continued)
servicing 311

RPC runtime library
registering interfaces 213

unregistering interfaces 216

RPC security subroutines
cbc_crypt 280

des_setparity 280

ecb_crypt 280

key_decryptsession 297

key_encryptsession 298

key_gendes 299

key_setsecret 300

RPC service packages
registering procedure 306

RPC service requests
waiting for arrival 313

RPC service subroutines
svc_exit 308

svc_getreqset 311

svc_register 312

svc_run 313

svc_sendreply 313

svc_unregister 314

svcerr_auth 314

svcerr_decode 315

svcerr_noproc 316

svcerr_noprog 316

svcerr_progvers 317

svcerr_systemerr 317

svcerr_weakauth 318

svcfd_create 318

svcraw_create 319

svctcp_create 320

svcudp_create 321

RPC service transport handles
creating TCP/IP 320

creating toy 319

creating UDP/IP 321

destroying 308

registering 323

removing 323

RPC subroutines
callrpc 279

get_myaddress 295

getnetname 296

host2netname 296

netname2host 300

netname2user 301

receiving XDR subroutines 131

registerrpc 306

rtime 307

user2netname 322

xdr_accepted_reply 109

xdr_callhdr 112

xdr_callmsg 112

xdr_opaque_auth 119

xdr_pmap 120

xdr_pmaplist 121

xdr_rejected_reply 123

xdr_replymsg 124

RPC subroutines (continued)
xprt_register 323

xprt_unregister 323

rpc_$alloc_handle library routine 204

rpc_$bind library routine 205

rpc_$clear_binding library routine 206

rpc_$clear_server_binding library routine 207

rpc_$dup_handle library routine 208

rpc_$free_handle library routine 209

rpc_$inq_binding library routine 210

rpc_$inq_object library routine 211

rpc_$listen library routine 211

rpc_$name_to_sockaddr library routine 212

rpc_$register library routine 213

rpc_$set_binding library routine 214

rpc_$sockaddr_to_name library routine 215

rpc_$unregister library routine 216

rpc_$use_family library routine 217

rpc_$use_family_wk library routine 218

rtime subroutine 307

S
SAPs

disabling 37

enabling 38

querying statistics 50

receiving GDLC 20, 23

result extensions 45

secure conversation key 299

select subroutine interface (DLC) 16

server network names
decrypting 297

encrypting 298

servers
registering interface 213

unregistering interface 216

service access point (SAP) 82, 84

service access points 20

service dispatch routines
error in authenticating 314

error in decoding requests 315

error unknown to protocol 317

insufficient authentication 318

unregistered program 316

unregistered program version 317

unsupported procedure 316

service packages
registering procedure 306

service requests 308, 313

sessions
attaching 166, 169

detaching 147

starting 166, 169

short hold mode 41, 42

socket addresses
converting host names to 212

converting to host names 215

sockets
creating for RPC servers 217, 218

Index 335

stat parameter
specifying condition 288, 290

store subroutine 273

structures
providing pointer chasing 121, 122

serializing null pointers 121

svc_destroy macro 308

svc_exit subroutine 308

svc_freeargs macro 309

svc_getargs macro 309

svc_getcaller macro 310

svc_getreqset subroutine 311

svc_register subroutine 312

svc_run subroutine 313

svc_sendreply subroutine 313

svc_unregister subroutine 314

svcerr_auth subroutine 314

svcerr_decode subroutine 315

svcerr_noproc subroutine 316

svcerr_noprog subroutine 316

svcerr_progvers subroutine 317

svcerr_systemerr subroutine 317

svcerr_weakauth subroutine 318

svcfd_create subroutine 318

svcraw_create subroutine 319

svctcp_create subroutine 320

svcudp_create subroutine 321

T
terminal emulators

sending key strokes 180

toy RPC clients
creating 292

toy RPC service transport handles
creating 319

transmission over the data link connection 66

U
unions

translating 129

Universal Unique Identifiers 220

UNIX credentials
generating 132

mapping DES credentials 276

user IDs
converting to network names 322

user2netname subroutine 322

UUID library routines
uuid_$decode 219

uuid_$encode 220

uuid_$gen 221

uuid_$decode library routine 219

uuid_$encode library routine 220

uuid_$gen library routine 221

UUIDs
converting 219, 220

generating 221

W
write subroutine, parameters (DLC) 23

writex subroutine interface (DLC) 17

writex subroutine, parameters (DLC) 23

X
XDR library filter primitives

xdr_array 109

xdr_bool 110

xdr_bytes 111

xdr_char 113

xdr_double 132

xdr_enum 114

xdr_float 115

xdr_int 117

xdr_long 118

xdr_opaque 119

xdr_reference 122

xdr_short 125

xdr_string 126

xdr_u_char 126

xdr_u_int 127

xdr_u_long 128

xdr_u_short 128

xdr_union 129

xdr_vector 130

xdr_void 131

xdr_wrapstring 131

XDR library non-filter primitives 114, 115, 116, 117,

121, 124, 133, 134, 135

xdrrec_endofrecord 135

xdrrec_skiprecord 136

xdrstdio_create 137

XDR streams
changing current position 124

containing long sequences of records 134

destroying 114

initializing 137

initializing local memory 133

returning pointer to buffer 117

XDR subroutines
supplying to RPC system 131

xdr_accepted_reply subroutine 109

xdr_array subroutine 109

xdr_authunix_parms subroutine 132

xdr_bool subroutine 110

xdr_bytes subroutine 111

xdr_callhdr subroutine 112

xdr_callmsg subroutine 112

xdr_char subroutine 113

xdr_destroy macro 114

xdr_double subroutine 132

xdr_enum subroutine 114

xdr_float subroutine 115

xdr_free subroutine 115

xdr_getpos macro 116

xdr_inline macro 117

xdr_int subroutine 117

xdr_long subroutine 118

336 Technical Reference: Communications, Volume 1

xdr_opaque subroutine 119

xdr_opaque_auth subroutine 119

xdr_pmap subroutine 120

xdr_pmaplist subroutine 121

xdr_pointer subroutine 121

xdr_reference subroutine 122

xdr_rejected_reply subroutine 123

xdr_replymsg subroutine 124

xdr_setpos macro 124

xdr_short subroutine 125

xdr_string subroutine 126, 131

xdr_u_char subroutine 126

xdr_u_int subroutine 127

xdr_u_long subroutine 128

xdr_u_short subroutine 128

xdr_union subroutine 129

xdr_vector subroutine 130

xdr_void subroutine 131

xdr_wrapstring subroutine 131

xdrmem_create subroutine 133

xdrrec_create subroutine 134

xdrrec_endofrecord subroutine 135

xdrrec_eof subroutine 135

xdrrec_skiprecord subroutine 136

xdrstdio_create subroutine 137

XID data received routine for DLC 28

xprt_register subroutine 323

xprt_unregister subroutine 323

Y
yp_all subroutine 253

yp_bind subroutine 254

yp_first subroutine 255

yp_get_default_domain subroutine 256

yp_master subroutine 257

yp_match subroutine 258

yp_next subroutine 259

yp_order subroutine 260

yp_unbind subroutine 261

yp_update subroutine 262

ypbind daemon
calling 254

yperr_string subroutine 263

ypprot_err subroutine 264

Index 337

338 Technical Reference: Communications, Volume 1

Readers’ Comments — We’d Like to Hear from You

AIX 5L Version 5.3

Technical Reference: Communications, Volume 1

 Publication No. SC23-4915-03

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: aix6koub@austin.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-4915-03

SC23-4915-03

���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department 04XA-905-6C006

11501 Burnet Road

Austin, TX 78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in the U.S.A.

SC23-4915-03

	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	32-Bit and 64-Bit Support for the Single UNIX Specification
	Related Publications

	Chapter 1. Data Link Controls
	dlcclose Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcconfig Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcioctl Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcmpx Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcopen Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcread Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcselect Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dlcwrite Entry Point of the GDLC Device Manager
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	close Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ioctl Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	open Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	readx Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	select Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	writex Subroutine Interface for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	open Subroutine Extended Parameters for DLC
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	read Subroutine Extended Parameters for DLC
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	write Subroutine Extended Parameters for DLC
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	Datagram Data Received Routine for DLC
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Exception Condition Routine for DLC
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	I-Frame Data Received Routine for DLC
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Network Data Received Routine for DLC
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	XID Data Received Routine for DLC
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ioctl Operations (op) for DLC
	Syntax
	Description
	Related Information

	Parameter Blocks by ioctl Operation for DLC
	Description

	DLC_ADD_FUNC_ADDR ioctl Operation for DLC
	DLC_ADD_GRP ioctl Operation for DLC
	DLC_ALTER ioctl Operation for DLC
	DLC_CONTACT ioctl Operation for DLC
	DLC_DEL_FUNC_ADDR ioctl Operation for DLC
	DLC_DEL_GRP ioctl Operation for DLC
	DLC_DISABLE_SAP ioctl Operation for DLC
	DLC_ENABLE_SAP ioctl Operation for DLC
	DLC_ENTER_LBUSY ioctl Operation for DLC
	DLC_ENTER_SHOLD ioctl Operation for DLC
	DLC_EXIT_LBUSY ioctl Operation for DLC
	DLC_EXIT_SHOLD ioctl Operation for DLC
	DLC_GET_EXCEP ioctl Operation for DLC
	DLC_SAPE_RES SAP Enabled Result Extension
	DLC_STAS_RES Link Station Started Result Extension
	DLC_STAH_RES Link Station Halted Result Extension
	DLC_RADD_RES Remote Address/Name Change Result Extension

	DLC_HALT_LS ioctl Operation for DLC
	DLC_QUERY_LS ioctl Operation for DLC
	DLC_QUERY_SAP ioctl Operation for DLC
	DLC_START_LS ioctl Operation for DLC
	DLC_TEST ioctl Operation for DLC
	DLC_TRACE ioctl Operation for DLC
	IOCINFO ioctl Operation for DLC
	Related Information

	Chapter 2. Data Link Provider Interface (DLPI)
	DL_ATTACH_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_BIND_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_BIND_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_CONNECT_CON Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_CONNECT_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Related Information

	DL_CONNECT_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_CONNECT_RES Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_DATA_IND Primitive
	Purpose
	Structure
	Description
	States
	Related Information

	DL_DATA_REQ Primitive
	Purpose
	Structure
	Description
	States
	Acknowledgments
	Related Information

	DL_DETACH_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_DISABMULTI_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_DISCONNECT_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_DISCONNECT_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_ENABMULTI_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_ERROR_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_GET_STATISTICS_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_GET_STATISTICS_REQ
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_INFO_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_INFO_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Related Information

	DL_OK_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_PHYS_ADDR_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_PHYS_ADDR_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_PROMISCOFF_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_PROMISCON_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_RESET_CON Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_RESET_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Related Information

	DL_RESET_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_RESET_RES Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_SUBS_BIND_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_SUBS_BIND_REQ Primitive
	Purpose
	Structure
	Description
	Examples:
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_SUBS_UNBIND_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_TEST_CON Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_TEST_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_TEST_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Code
	Related Information

	DL_TEST_RES Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_TOKEN_ACK Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_TOKEN_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Related Information

	DL_UDERROR_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_UNBIND_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_UNITDATA_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_UNITDATA_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_XID_CON Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_XID_IND Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	DL_XID_REQ Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Acknowledgments
	Error Codes
	Related Information

	DL_XID_RES Primitive
	Purpose
	Structure
	Description
	Parameters
	States
	Related Information

	Chapter 3. eXternal Data Representation
	xdr_accepted_reply Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_array Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_bool Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_bytes Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_callhdr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_callmsg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_char Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_destroy Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xdr_enum Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_float Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_free Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xdr_getpos Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_inline Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_int Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_long Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_opaque Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_opaque_auth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_pmap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_pmaplist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_pointer Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_reference Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_rejected_reply Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_replymsg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_setpos Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_short Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_string Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_u_char Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_u_int Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_u_long Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_u_short Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_union Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_vector Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_void Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	xdr_wrapstring Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_authunix_parms Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdr_double Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdrmem_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xdrrec_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xdrrec_endofrecord Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdrrec_eof Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdrrec_skiprecord Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xdrstdio_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	Chapter 4. AIX 3270 Host Connection Program (HCON)
	cfxfer Function
	Purpose
	Library
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	C and Pascal fxs Field Descriptions
	FORTRAN Parameters
	Return Values
	Files
	Related Information

	fxfer Function
	Purpose
	Library
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Related Information

	g32_alloc Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_close Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_dealloc Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_fxfer Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_get_cursor Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_get_data Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_get_status Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics

	g32_notify Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_open Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_openx Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_read Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_search Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_send_keys Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	g32_write Function
	Purpose
	Libraries
	C Syntax
	Pascal Syntax
	FORTRAN Syntax
	Description
	C Parameters
	Pascal Parameters
	FORTRAN Parameters
	Return Values
	Examples

	G32ALLOC Function
	Purpose
	Syntax
	Description
	Return Values
	Examples
	Related Information

	G32DLLOC Function
	Purpose
	Syntax
	Description
	Return Values
	Examples
	Related Information

	G32READ Function
	Purpose
	Syntax
	Description
	Return Values
	Examples
	Related Information

	G32WRITE Function
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples

	Chapter 5. Network Computing System (NCS)
	lb_$lookup_interface Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$lookup_object Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$lookup_object_local Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$lookup_range Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$lookup_type Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$register Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lb_$unregister Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	pfm_$cleanup Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	pfm_$enable Library Routine
	Purpose
	Syntax
	Description
	Examples
	Related Information

	pfm_$enable_faults Library Routine
	Purpose
	Syntax
	Description
	Examples
	Related Information

	pfm_$inhibit Library Routine
	Purpose
	Syntax
	Description
	Examples
	Related Information

	pfm_$inhibit_faults Library Routine
	Purpose
	Syntax
	Description
	Examples
	Related Information

	pfm_$init Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	pfm_$reset_cleanup Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	pfm_$rls_cleanup Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	pfm_$signal Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$alloc_handle Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$bind Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$clear_binding Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$clear_server_binding Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$dup_handle Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$free_handle Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$inq_binding Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$inq_object Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$listen Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$name_to_sockaddr Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$register Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$set_binding Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$sockaddr_to_name Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$unregister Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rpc_$use_family Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	rpc_$use_family_wk Library Routine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	uuid_$decode Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	uuid_$encode Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	uuid_$gen Library Routine (NCS)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	Chapter 6. Network Information Services (NIS) and Network Information Services+ (NIS+)
	nis_add_entry (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Summary of Trusted
	Related Information

	nis_first_entry (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Related Information

	nis_list (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Environment
	Notes:
	Related Information

	nis_local_directory (NIS+ API)
	Purpose
	Syntax
	Description
	Environment
	Related Information

	nis_lookup (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Environment
	Related Information

	nis_modify_entry (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Summary of Trusted
	Related Information

	nis_next_entry (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Related Information

	nis_perror (NIS+ API)
	Purpose
	Syntax
	Description
	Related Information

	nis_remove_entry (NIS+ API)
	Purpose
	Syntax
	Description
	Return Values
	Errors
	Summary of Trusted
	Related Information

	nis_sperror (NIS+ API)
	Purpose
	Syntax
	Description
	Related Information

	yp_all Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_bind Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_first Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_get_default_domain Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_master Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_match Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_next Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_order Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_unbind Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	yp_update Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	yperr_string Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ypprot_err Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Chapter 7. New Database Manager (NDBM)
	dbm_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	dbm_delete Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbm_fetch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbm_firstkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbm_nextkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbm_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbm_store Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	dbmclose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	dbminit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	delete Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fetch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	firstkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	nextkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	store Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Chapter 8. Remote Procedure Calls (RPC)
	auth_destroy Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	authdes_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	authdes_getucred Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	authnone_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	authunix_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	authunix_create_default Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	callrpc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related information

	cbc_crypt, des_setparity, or ecb_crypt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	clnt_broadcast Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_call Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	clnt_control Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_destroy Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	clnt_freeres Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	clnt_geterr Macro
	Purpose
	Library
	Syntax
	Description
	Parameters

	clnt_pcreateerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	clnt_perrno Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_perror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_spcreateerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	clnt_sperrno Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnt_sperror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clntraw_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clnttcp_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	clntudp_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	get_myaddress Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	getnetname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	host2netname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	key_decryptsession Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	key_encryptsession Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	key_gendes Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	key_setsecret Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	netname2host Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	netname2user Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pmap_getmaps Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pmap_getport Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pmap_rmtcall Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pmap_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pmap_unset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	registerrpc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	rtime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	svc_destroy Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svc_exit Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	svc_freeargs Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svc_getargs Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	svc_getcaller Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svc_getreqset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Restrictions
	Related Information

	svc_register Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	svc_run Subroutine
	Purpose
	Library
	Syntax
	Description
	Restrictions
	Related Information

	svc_sendreply Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	svc_unregister Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svcerr_auth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters

	svcerr_decode Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svcerr_noproc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters

	svcerr_noprog Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters

	svcerr_progvers Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters

	svcerr_systemerr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters

	svcerr_weakauth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	svcfd_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Restrictions
	Return Values
	Related Information

	svcraw_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	svctcp_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Restrictions
	Return Values
	Related Information

	svcudp_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Restrictions
	Return Values
	Related Information

	user2netname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xprt_register Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	xprt_unregister Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	Data Link Provider Interface (DLPI)

	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

